WorldWideScience

Sample records for climate change mitigation

  1. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  2. Regional climate change mitigation analysis

    International Nuclear Information System (INIS)

    Rowlands, Ian H.

    1998-01-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the 'regional' - will be especially highlighted. (EG)

  3. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G A; Turkson, J K; Davidson, O R [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  4. Climate change mitigation in Africa

    International Nuclear Information System (INIS)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on 'Climate Change Mitigation in Africa' between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  5. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  6. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  7. Climate change mitigation through adaptation

    NARCIS (Netherlands)

    Hof, Anouschka R.; Dymond, Caren C.; Mladenoff, David J.

    2017-01-01

    Climate change is projected to have negative implications for forest ecosystems and their dependent communities and industries. Adaptation studies of forestry practices have focused on maintaining the provisioning of ecosystem services; however, those practices may have implications for climate

  8. Climate Change 2007: Mitigation of Climate Change.

    OpenAIRE

    Schiavon, Stefano; Zecchin, Roberto

    2007-01-01

    Politiche, misure e strumenti per contenere le emissioni di CO2 Illustriamo l’ultimo contributo al quarto Rapporto sui cambiamenti climatici votato a maggio 2007 dal terzo gruppo di lavoro del Comitato intergovernativo “Intergovernmental Panel on Climate Change”. Il Rapporto affronta la problematica delle tendenze delle emissioni dei gas serra e il tema della mitigazione a breve e lungo termine. Presentiamo un’analisi critica delle proposte del documento.

  9. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  10. Technologies for Climate Change Mitigation - Agriculture Sector

    DEFF Research Database (Denmark)

    Uprety, D.C.; Dhar, Subash; Hongmin, Dong

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts...

  11. Can increased organic consumption mitigate climate changes?

    DEFF Research Database (Denmark)

    Heerwagen, Lennart Ravn; Andersen, Laura Mørch; Christensen, Tove

    2014-01-01

    Purpose – The purpose of this paper is to investigate the evidence for a positive correlation between increased consumption of organic products and potential climate change mitigation via decreased consumption of meat and it is discussed to what extent organic consumption is motivated by climate...... and household heating are perceived as more important strategies. Research limitations/implications – Other food-related mitigation strategies could be investigated. The climate effect of different diets – and how to motivate consumers to pursue them – could be investigated. Individual as opposed to household...... consumers. As some consumers believe that climate change can be mitigated by consuming organic food, the authors propose that this is taken into account in the development of organic farming. Originality/value – The authors propose a shift from analysing the climate-friendliness of production to addressing...

  12. EUROPEAN UNION POLICIES FOR CLIMATE CHANGE MITIGATION

    Directory of Open Access Journals (Sweden)

    Paul Canter

    2017-07-01

    Full Text Available Climate change is one of the most important challenges that humanity faces in the 21st century, and for the European Union, combating this phenomenon represents an important element, which is reflected both in the actions carried out in recent years, domestically and internationally, as well as in the EU policy on climate change. Within the EU, regulations were adopted, that demonstrate the importance that the Union confers to the limitation of this phenomenon, stressing at the same time the need for an integrated policy framework to ensure the security for potential investors and a coordinated approach between Member States. This paper will present recent developments for the most important policies to combat and mitigate climate change in the European Union, starting with "20-20-20" objectives, which are to be met through the package "Energy-Climate Change", continuing with 2030 and 2050 timeframes, and finally presenting the main lines of action to combat climate change.

  13. Mitigating climate change: The Philippine case

    International Nuclear Information System (INIS)

    Garcia, J.L.L.

    1998-01-01

    The Government of the Philippines signed the UN Framework Convention on Climate change on June 12, 1992 and the Philippine Congress ratified it in 1994. The Philippine Government has also subsequently created the Inter-Agency Committee on Climate Change (IACCC). The GOP is currently preparing the Philippine Country Study to address climate change. The first phase of the work was financed by a grant from the US Country Studies Program which is led by the US Department of Energy. The Study includes the following elements: a) development of a National Inventory of GHG emission and Sinks; b) vulnerability assessment and evaluation of adaptations of coastal resources; c) identification of alternative programs and measures to promote mitigation and/or adaptation to climate change; d) public information and education campaign; and e) development of the National Action Plan on Climate Change. (au)

  14. Transport policies related to climate change mitigation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Kappel, Jannik

    and their results are introduced as well. To provide an overview of current trends, related scientific projects and other analyses on climate change mitigation and transport are given in the report. The references used in this report can also serve as a source of data and inspiration for the reader. This report......This report presents the Danish national policies on reducing the emissions of greenhouse gasses and reducing Denmark’s dependency on fossil fuels in the transport sector, as well as some of the results of the policies. Systematic focus on efficient transport and climate mitigation started in 2008...... challenges for the transport sectors, which has not yet been systematically analysed from any Governmental body. In this report we list projects which have done so. The first chapter describes policies and initiatives of international relevance within climate mitigation. The following chapters explain...

  15. Climate change mitigation studies in Sri Lanka

    International Nuclear Information System (INIS)

    Wickramaratne, Rupa

    1998-01-01

    In Sri Lanka, Climate Change Mitigation Studies have received low priority and have been limited to an ADB-sponsored preliminary study followed by an initial assessment of some mitigation options in the energy and agricultural sectors, with technical assistance from the US Country Studies Program. The major focus was on options of the mitigation of carbon dioxide emissions from the energy sector. Owing to funding constraints, only the potential for reduction of carbon dioxide emissions resulting from the various mitigation options were quantified; analysis of monetary costs and benefits or policy/programs for adoption of the options were not undertaken. For the non-energy sector, a very limited study on mitigation of methane emissions from rice fields was carried out. (au)

  16. A New Strategy for Mitigating Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Y.; Akimoto, K./ Oda, J.

    2007-07-01

    This paper proposes a new strategy for mitigating climate change, both in short term and in long term. The basic character of the strategy is action oriented with multi-country collaboration, while the Framework Convention on Climate Change (FCCC) and Kyoto protocol is numerical target oriented within United Nation Framework. The introductory part of the paper briefly describes deficits of FCCC and Kyoto protocol and the needs of a different strategy for mitigating climate change. Then the short term strategy is focused on energy conservation and its effectiveness for mitigating climate change is illustrated by estimating the potential of reducing CO{sub 2} emission when intense collaboration is achieved for distributing main energy conservation measures in power generation and key industries among Asia Pacific Partnership countries. The long term strategy is developing novel types of renewables among countries. Geoheat and space solar power systems (SSPS) are candidates which may be developed among major developed countries. Necessity of international collaboration is stressed for R and D of these candidate renewables. (auth)

  17. Climate change mitigation through livestock system transitions

    Science.gov (United States)

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-01-01

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375

  18. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  19. Technologies for climate change mitigation - Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Uprety, D.C.; Dhar, S.; Hongmin, D.; Kimball, B.A.; Garg, A.; Upadhyay, J.

    2012-07-15

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts in the areas of crops, livestock, emissions, and economics, and we are grateful for their efforts in producing this cross disciplinary work. This publication is part of a technical guidebook series produced by the UNEP Risoe Centre on Energy, Climate and Sustainable Development (URC) as part of the Technology Needs Assessment (TNA) project (http://tech-action.org) that is assisting developing countries in identifying and analysing the priority technology needs for mitigating and adapting to climate change. The TNA process involves different stakeholders in a consultative process, enabling all stakeholders to understand their technology needs in a cohesive manner, and prepare Technology Action Plans (TAPs) accordingly. The TNA project is funded by the Global Environment Facility (GEF) and is being implemented by UNEP and the URC in 36 developing countries. (Author)

  20. Forest Biomass for Climate Change Mitigation

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø

    Awareness of elevated CO2 levels in the atmosphere and resulting climate change has increased focus on renewable energy sources during recent decades. Biomass for energy has been predicted to have the greatest potential for CO2 reductions in the short term and the IPCC assumes that the use...... of biomass for energy is CO2 neutral. Several studies have however criticized this CO2 neutrality assumption and questioned whether CO2 reductions actually are achieved through use of biomass for energy. The purpose of this thesis is to investigate the biomass production potential of poplar plantations...... on southern Scandinavian sites, managed under different systems both in agriculture and in forests. In addition, the objective is to assess the potential of the poplar plantations to mitigate climate change by using poplar biomass for substitution of fossil fuels in comparison to a traditional product...

  1. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  2. National action to mitigate global climate change

    International Nuclear Information System (INIS)

    1995-06-01

    Over 170 participants from 60 countries met for three days in Copenhagen from 7 to 9 June 1994 to discuss howe the aims of the United Nations Framework convention on Climate Change can be translated into practical action. The Conference was organised by the UNEP collaborating Centre on Energy and Environment (UCCEE), with financial support from the Danish International Development Agency (Danida), the Global Environment Facility (GEF), the United Nations Environment Programme (UNEP) and Risoe National Laboratory, Denmark. The main objective of the conference was to identify common approaches to national mitigation analysis for countries to use in meeting their commitments under the FCCC, and in setting priorities for national actions. Although addressing a broader theme, the conference marked the completion and publication of the second phase on UNEP Greenhouse Gas Abatement Costing Study. (au)

  3. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  4. Co-creation of climate change mitigation policies

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    The focus of this paper is on the places where citizens and public authorities meet – possible involving other stakeholders as well – to discuss, formulate and implement climate change mitigation policies at the local level. Through looking at a number of concrete cases stemming from the CIDEA re...... mitigation policies should be aimed at finding ways to support citizen initiated initiatives to a greater extent than is currently the case. Keywords: climate change mitigation, co-creation, behaviour, communities, citizen driven innovation....

  5. Towards demand-side solutions for mitigating climate change

    Science.gov (United States)

    Creutzig, Felix; Roy, Joyashree; Lamb, William F.; Azevedo, Inês M. L.; Bruine de Bruin, Wändi; Dalkmann, Holger; Edelenbosch, Oreane Y.; Geels, Frank W.; Grubler, Arnulf; Hepburn, Cameron; Hertwich, Edgar G.; Khosla, Radhika; Mattauch, Linus; Minx, Jan C.; Ramakrishnan, Anjali; Rao, Narasimha D.; Steinberger, Julia K.; Tavoni, Massimo; Ürge-Vorsatz, Diana; Weber, Elke U.

    2018-04-01

    Research on climate change mitigation tends to focus on supply-side technology solutions. A better understanding of demand-side solutions is missing. We propose a transdisciplinary approach to identify demand-side climate solutions, investigate their mitigation potential, detail policy measures and assess their implications for well-being.

  6. Climate change, nuclear power, and the adaptation-mitigation dilemma

    International Nuclear Information System (INIS)

    Kopytko, Natalie; Perkins, John

    2011-01-01

    Many policy-makers view nuclear power as a mitigation for climate change. Efforts to mitigate and adapt to climate change, however, interact with existing and new nuclear power plants, and these installations must contend with dilemmas between adaptation and mitigation. This paper develops five criteria to assess the adaptation-mitigation dilemma on two major points: (1) the ability of nuclear power to adapt to climate change and (2) the potential for nuclear power operation to hinder climate change adaptation. Sea level rise models for nine coastal sites in the United States, a review of US Nuclear Regulatory Commission documents, and reports from France's nuclear regulatory agency provided insights into issues that have arisen from sea level rise, shoreline erosion, coastal storms, floods, and heat waves. Applying the criteria to inland and coastal nuclear power plants reveals several weaknesses. Safety stands out as the primary concern at coastal locations, while inland locations encounter greater problems with interrupted operation. Adapting nuclear power to climate change entails either increased expenses for construction and operation or incurs significant costs to the environment and public health and welfare. Mere absence of greenhouse gas emissions is not sufficient to assess nuclear power as a mitigation for climate change. - Research Highlights: → The adaptation-mitigation criteria reveal nuclear power's vulnerabilities. → Climate change adaptation could become too costly at many sites. → Nuclear power operation jeopardizes climate change adaptation. → Extreme climate events pose a safety challenge.

  7. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    Science.gov (United States)

    Korkala, Essi A E; Hugg, Timo T; Jaakkola, Jouni J K

    2014-01-01

    Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%). Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%), the Semi-active (63%) and the Active (11%) and two classes among women: the Semi-active (72%) and the Active (28%). The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  8. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    Directory of Open Access Journals (Sweden)

    Essi A E Korkala

    Full Text Available Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%. Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%, the Semi-active (63% and the Active (11% and two classes among women: the Semi-active (72% and the Active (28%. The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  9. Climate Change Mitigation: The Role of Agriculture | Obiora ...

    African Journals Online (AJOL)

    Climate Change Mitigation: The Role of Agriculture. ... rises which affect both crop and animal production, rising sea levels which causes farm land ... be encouraged (iii) extension services should promote awareness-raising about sustainable ...

  10. PUBLIC PRIVATE COLLABORATION ON CLIMATE CHANGE MITIGATION

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    How can local governments influence companies to reduce their climate change impacts? This overall problem is examined in this PhD thesis. The PhD thesis is based on the experiences of seven Danish municipalities participating in the EU Life+ project, Carbon 20. Analyses are made...

  11. The Role Of Urban Forestry In Mitigating Climate Change And ...

    African Journals Online (AJOL)

    The possibility of global climate change, due to increasing levels of CO2 concentrations is one of the key environmental concerns today, and the role of terrestrial vegetation management has received attention as a means of mitigating carbon emissions and climate change. In this study tree dimensions and assessment of ...

  12. Benefits of interrelationships between climate change mitigation and adaptation

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde; Jacobsen, Jette Bredahl

    2014-01-01

    and product 2: climate change adaptation. The production possibilities frontier (PPF) summarises the production benefits of the two products. The case study of the paper is the replanting of mangrove forests in the coastal wetland areas of Peam Krasaob Wildlife Sanctuary in Cambodia. The benefits of climate...... benefits of climate change mitigation and adaptation are tested under different climate change scenarios, seeing as the impact and frequency of storms can have a significant effect on coastal wetland areas and the replanting of the mangrove forests and therefore also on the joint benefits of climate change...

  13. Climate change and livestock: Impacts, adaptation, and mitigation

    Directory of Open Access Journals (Sweden)

    M. Melissa Rojas-Downing

    2017-01-01

    Full Text Available Global demand for livestock products is expected to double by 2050, mainly due to improvement in the worldwide standard of living. Meanwhile, climate change is a threat to livestock production because of the impact on quality of feed crop and forage, water availability, animal and milk production, livestock diseases, animal reproduction, and biodiversity. This study reviews the global impacts of climate change on livestock production, the contribution of livestock production to climate change, and specific climate change adaptation and mitigation strategies in the livestock sector. Livestock production will be limited by climate variability as animal water consumption is expected to increase by a factor of three, demand for agricultural lands increase due to need for 70% growth in production, and food security concern since about one-third of the global cereal harvest is used for livestock feed. Meanwhile, the livestock sector contributes 14.5% of global greenhouse gas (GHG emissions, driving further climate change. Consequently, the livestock sector will be a key player in the mitigation of GHG emissions and improving global food security. Therefore, in the transition to sustainable livestock production, there is a need for: a assessments related to the use of adaptation and mitigation measures tailored to the location and livestock production system in use, and b policies that support and facilitate the implementation of climate change adaptation and mitigation measures.

  14. Carbon sequestration to mitigate climate change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  15. Global climate change: Implications, challenges, and mitigation measures

    International Nuclear Information System (INIS)

    Majumdar, S.K.

    1992-01-01

    This book presents a perspective of the potential problem of global climate change induced by human activity. The editors have presented viewpoints of experts (advocates and skeptics) representing the issues of climate change. Possible results from long-term global change discussed in this book include mass migrations of plants and animals; changes in crop yields; flood and drought; and economic, political, and cultural changes. The text contains 20 chapters on the impact of global climate change and 10 chapters on the mitigation of effects and policy development

  16. Cities in Climate Change Mitigation Policy

    International Nuclear Information System (INIS)

    Paugam, Anne; Giraud, Gael; Thauvin, Eric

    2015-03-01

    The phenomenon of accelerated urbanization of emerging and developing economies is a potential source of harmful environmental impacts on people's well-being. Major negative effects can especially be expected on the climate, possibly compromising, in the long run, large-scale local economic development. This is because the urban environment is characterized by a concentration of activities with high energy consumption (between 56 and 78% of final energy used is ascribable to transportation and buildings, as well as to industries and services). These activities, in addition to generating significant local pollution, are a large source of greenhouse gas (GHG) emissions. Due to divergent methods of calculation as well as to the perimeter of urban activities, there is uncertainty about the exact extent to which these activities contribute to GHG. Nonetheless, a strong increase in the overall impact of cities on climate change can be expected. The international community wants to reach a coordinated commitment to keep global warming between now and the end of the 21. century under the threshold of an average 2 deg. C higher than the temperature of the pre-industrial age and thereby prevent irreversible damage from climate disturbance. This comes down to examining the potential of cities to contribute to implementing effective solutions. However, analysis of mid- to long-term impacts of urban development strategies on GHG emissions is still difficult, due to great complexity of the underlying impact mechanisms. Because of the large number of sectors and services concerned (transportation infrastructures and networks, energy-management services, and urban spatial planning), urban development strategies can simultaneously have a direct and indirect effect on several sources of GHG emissions. They are also highly dependent on each country's competence level and institutional organization. Despite this complexity, the urgency of the climate issues linked to growing

  17. The Climate Science Special Report: Perspectives on Climate Change Mitigation

    Science.gov (United States)

    DeAngelo, B. J.

    2017-12-01

    This chapter of CSSR provides scientific context for key issues regarding the long-term mitigation of climate change. Policy analysis and recommendations are beyond the scope of CSSR. Limiting and stabilizing warming to any level implies that there is an upper limit to the cumulative amount of CO2 that can be added to the atmosphere. Eventually stabilizing the global temperature requires CO2 emissions to approach zero. For a 3.6°F (2°C) or any desired global mean temperature target, an estimated range of allowable cumulative CO2 emissions from the current period onward can be calculated. Accounting for the temperature effects of non-CO2 species, cumulative CO2 emissions are required to stay below about 800 GtC in order to provide a two-thirds likelihood of preventing 3.6°F (2°C) of warming, meaning approximately 230 GtC more could be emitted globally. Assuming global emissions follow the range between the RCP8.5 and RCP4.5 scenarios, emissions could continue for approximately two decades before this cumulative carbon threshold is exceeded. Meeting a 2.7°F (1.5°C) target implies much tighter constraints. Mitigation of non-CO2 species contributes substantially to near-term cooling benefits but cannot be relied upon for ultimate stabilization goals. Successful implementation of the first round of Nationally Determined Contributions associated with the Paris Agreement will provide some likelihood of meeting the long-term temperature goal of limiting global warming to "well below" 3.6°F (2°C) above preindustrial levels; the likelihood depends strongly on the magnitude of global emission reductions after 2030. If interest in geoengineering increases, interest will also increase in assessments of the technical feasibilities, costs, risks, co-benefits, and governance challenges of these additional measures, which are as yet unproven at scale.

  18. Fuel carbon intensity standards may not mitigate climate change

    International Nuclear Information System (INIS)

    Plevin, Richard J.; Delucchi, Mark A.; O’Hare, Michael

    2017-01-01

    To mitigate the climate change effects of transportation, the US states of California and Oregon, the Canadian province of British Columbia, and the European Union have implemented regulations to reduce the life cycle greenhouse gas (GHG) emissions intensity of transport fuel, commonly referred to as 'carbon intensity', or CI. In this article, we unpack the theory and practice of fuel CI standards, examining claims regarding climate-change mitigation. We show that these standards do not reliably mitigate climate change because estimates of GHG reductions rely primarily on models that are not designed to estimate changes in emissions and climate impacts. Some regulations incorporate models that estimate a subset of changes in emissions, but the models must project changes in global markets over decades, and there is little agreement about the best model structure or parameter values. Since multiple models and projections may be equally plausible, fuel CI is inevitably subjective and unverifiable. We conclude that regulating or taxing observable emissions would more reliably achieve emission reduction. - Highlights: • Use of fuel carbon intensity (CI) standards has been expanding recently. • Fuel CI ratings are subjective, scenario- and model-dependent. • Uncertainty in fuel CI ratings creates uncertainty in policy outcomes. • There is no reliable test of whether fuel CI standards mitigate climate change. • Regulating or taxing observable emissions would be a more reliable approach.

  19. Economy of climatic change. From mitigation to adaptation policies

    International Nuclear Information System (INIS)

    Rousset, N.

    2012-01-01

    Climate change adaptation policies are the subject of this thesis. It has been showed that the United Nations Framework Convention on Climate Change (1992) and the response strategies construction are characteristic of a pollutionist approach. This approach led to envision the question of climate change as a classic pollution and environment issue. As a result, this approach has generated a double bias to the disadvantage of adaptation compared to mitigation policies: adaptation has been confined in a secondary and marginal role in climate policies structuring, and with an inoperative conceptual and methodological framework for its implementation. The thesis proposes a deconstruction of this climate change conceptualization. Moreover, the major limits that characterize mitigation policies call into question the predominance given to them in climate policies construction. The 'pollutionist' approach deconstruction allows at first to show that adaptation policies definition and operationalization need to go beyond (i) the standard analytic framework of climate policies and, (ii) the climate change conceptualization as a classic pollution and environment management issue. The thesis then argues that adaptation has to be integrated in development promoting policies, which means that adaptation needs to be conceptualized no longer as an ad hoc management of pollution effects issue, but as a development issue. Whether in the proper context of adaptation policies, or more largely of climate policies, the thesis leaves open the questions of the viability, but also of the organization and financing modalities, of a climate regime which fits within development promoting. (author)

  20. Climate change mitigation in the energy sector of developing countries

    International Nuclear Information System (INIS)

    Sathaye, J.A.

    1998-01-01

    The Framework Convention on Climate change, singed by more than 150 governments worldwide, calls on parties to the Convention to undertake inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. Several institutions, including UNEP, have initiated programs to assist developing countries and countries with economies in transition to meet this obligation. This paper describes a mitigation methodology that is being used for these country studies, and discusses issues that have arisen in conducting mitigation assessments for developing countries in the past. (EG)

  1. Valuation of climate change mitigation co-benefits

    DEFF Research Database (Denmark)

    Bakhtiari, Fatemeh

    a broad range of economic or, more likely, environmental and social issues. Examples of positive environmental impacts that may not be the primary outcome of a climate change mitigation policy include reduced local air pollution or restored ecosystem health. Examples of positive social impacts include......This document describes tools for valuating in monetary terms the co-benefits associated with climate change mitigation actions. The term co-benefits refers to outcomes of those actions other than their primary outcome (reducing greenhouse-gas emissions). Such non-primary outcomes can fall under...... improved human health or increased access to clean energy....

  2. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  3. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran

    2015-01-01

    , provide an update on estimates of technical resource potential and comprehensively identify sustainability effects. Cellulosic feedstocks, increased end-use efficiency, improved land carbon-stock management and residue use, and, when fully developed, BECCS appear as the most promising options, depending...... on development costs, implementation, learning, and risk management. Combined heat and power, efficient biomass cookstoves and small-scale power generation for rural areas can help to promote energy access and sustainable development, along with reduced emissions. We estimate the sustainable technical potential......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects...

  4. Mitigating climate change by minimising the carbon footprint and ...

    African Journals Online (AJOL)

    The analysis determines that lower scaled, spatially economical structures using low embodied energy materials will positively contribute to reduced carbon footprints and thus climate change mitigation strategies. The outcomes of the article also set a benchmark for prospective life-cycle assessments (LCA) and establish ...

  5. Climate Change Mitigation and Adaptation Strategies Used by ...

    African Journals Online (AJOL)

    The majority (73.6%) of the farmers opined that in recent times, flooding had increased which is an indication of climate change. Reduction in the use of generator to get power in the farmers' houses (69.1%) and crop rotation practices (67.3%) were mitigation and adaptation strategies employed by the farmers against the ...

  6. A country framework for analyzing climate change mitigation

    International Nuclear Information System (INIS)

    King, K.

    1995-01-01

    Once the global community accepted the threat of global climate change as a serious one, many countries began to study its possible consequences and the scope for national action that could help mitigate it. Governments will find that national climate change studies are useful quite apart from helping them to fulfill commitments under the FCCC. All countries, developed and developing, will benefit from an understanding of the sacrifice they need to make for the greater benefit of climate change mitigation. This sacrifice - that is, the set of trade-offs or the 'added burden' - is what economists refer to as the 'incremental cost' of climate change mitigation actions. All countries will benefit from knowing what these costs are and from knowing how much their national action will matter. Using measures of cost and mitigation, they will be able to choose from among their alternative national actions those with the greatest effect and the lowest incremental cost. Eligible countries can also use these measures to negotiate the amount of financial assistance they need from the financial mechanism of the FCCC or other sources. A country framework for medium-term considerations will yield results useful for investment planning, policy choice, and financial reimbursement (where appropriate). This is the focus of the framework outlined in this paper. (EG) 15 refs

  7. Climate change mitigation policy paradigms — national objectives and alignments

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Garg, Amit; Christensen, John M.

    2014-01-01

    for discussing how a multi objective policy paradigm can contribute to future climate change mitigation. The paper includes country case studies from Brazil, Canada, China, the European Union (EU), India, Japan, Mexico, Nigeria, South Africa, South Korea and the United States covering renewable energy options......, industry, transportation, the residential sector and cross-sectoral policies. These countries and regions together contribute more than two thirds of global GHG emissions. The paper finds that policies that are nationally driven and that have multiple objectives, including climate-change mitigation, have...... been widely applied for decades in both developing countries and industrialised countries. Many of these policies have a long history, and adjustments have taken place based on experience and cost effectiveness concerns. Various energy and climate-change policy goals have worked together...

  8. Brownfield redevelopment as a measure for climate changes mitigation

    Directory of Open Access Journals (Sweden)

    Cizler Jasna

    2013-01-01

    Full Text Available This paper explores brownfield renewal as a measure of sustainable land use. The aim was to highlight the brownfield redevelopment as a strategy for mitigation of negative effects of climate changes. Emphasis was put on innovative concepts in brownfield redevelopment, which involve land recycling, application of ecological and sustainable solutions. Main case studies are from Austria. Their analysis and evaluation show which concepts and strategies are used in successful redevelopment projects, and which strategies give the best results. This shows that brownfield renewal can have positive effects on regulation and mitigation of climate changes. Finally, guidelines for climate changes accountable and redevelopment will be derived. Research methodology is qualitative and combined, comprising of data analysis, case studies (field work, interviews with relevant actors, analysis of case studies and evaluation according to previously defined criteria, synthesis of results and generalisation and interpretation of results.

  9. Tourism and climate change: socioeconomic implications, mitigation and adaptation measures

    Directory of Open Access Journals (Sweden)

    Utsab Bhattarai

    2015-06-01

    Full Text Available The relationship between tourism and changing climate has been discussed and studied for a relatively long time in tourism research. Over the past 15 years, more focused studies have begun to appear, and especially recently, the issue of adaptation and mitigation has been emphasized as an urgent research need in tourism and climate change studies. This paper is based on the review of selected articles which discuss the several forms of tourism and climate change and provide recommendations for mitigation and adaptation measures. This review paper assesses the impacts of climate change on the popular forms of tourism such as; mountain tourism, wildlife tourism, adventure tourism, sun/sand tourism; last chance tourism, and describes the extent of tourism vulnerabilities and their implications. The paper concludes that the appropriate adaptation and mitigation measures have to be followed to minimize the risk of climate change while trying to save all forms of tourism. The initiative of this article is to present an overview of the existing literature on the relationship between tourism and climate change in order to establish the current state of corporate and institutional responses within the tourism industry and to set out an agenda for future research. The currency of the review is evident given the recent surge in popular discussion on climate change and its effects on tourism, and the appearance of a broad and disparate array of studies on this topic. DOI: http://dx.doi.org/10.3126/ije.v4i2.12664 International Journal of Environment Vol.4(2 2015: 355-373

  10. The role of China in mitigating climate change

    International Nuclear Information System (INIS)

    Paltsev, Sergey; Morris, Jennifer; Cai, Yongxia; Karplus, Valerie; Jacoby, Henry

    2012-01-01

    We explore short- and long-term implications of several energy scenarios of China's role in efforts to mitigate global climate risk. The focus is on the impacts on China's energy system and GDP growth, and on global climate indicators such as greenhouse gas concentrations, radiative forcing, and global temperature change. We employ the MIT Integrated Global System Model (IGSM) framework and its economic component, the MIT Emissions Prediction and Policy Analysis (EPPA) model. We demonstrate that China's commitments for 2020, made during the UN climate meetings in Copenhagen and Cancun, are reachable at very modest cost. Alternative actions by China in the next 10 years do not yield any substantial changes in GHG concentrations or temperature due to inertia in the climate system. Consideration of the longer-term climate implications of the Copenhagen-type of commitments requires an assumption about policies after 2020, and the effects differ drastically depending on the case. Meeting a 2 °C target is problematic unless radical GHG emission reductions are assumed in the short-term. Participation or non-participation of China in global climate architecture can lead by 2100 to a 200–280 ppm difference in atmospheric GHG concentration, which can result in a 1.1 °C to 1.3 °C change by the end of the century. We conclude that it is essential to engage China in GHG emissions mitigation policies, and alternative actions lead to substantial differences in climate, energy, and economic outcomes. Potential channels for engaging China can be air pollution control and involvement in sectoral trading with established emissions trading systems in developed countries. - Highlights: ► It is essential to engage China in GHG emissions mitigation policies. ► China's mitigation actions proposed for 2015 and 2020 are reachable at modest costs. ► Meeting 2 °C target is problematic without radical GHG emissions reductions.

  11. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  12. Advance strategy for climate change adaptation and mitigation in cities

    Science.gov (United States)

    Varquez, A. C. G.; Kanda, M.; Darmanto, N. S.; Sueishi, T.; Kawano, N.

    2017-12-01

    An on-going 5-yr project financially supported by the Ministry of Environment, Japan, has been carried out to specifically address the issue of prescribing appropriate adaptation and mitigation measures to climate change in cities. Entitled "Case Study on Mitigation and Local Adaptation to Climate Change in an Asian Megacity, Jakarta", the project's relevant objectives is to develop a research framework that can consider both urbanization and climate change with the main advantage of being readily implementable for all cities around the world. The test location is the benchmark city, Jakarta, Indonesia, with the end focus of evaluating the benefits of various mitigation and adaptation strategies in Jakarta and other megacities. The framework was designed to improve representation of urban areas when conducting climate change investigations in cities; and to be able to quantify separately the impacts of urbanization and climate change to all cities globally. It is comprised of a sophisticated, top-down, multi-downscaling approach utilizing a regional model (numerical weather model) and a microscale model (energy balance model and CFD model), with global circulation models (GCM) as input. The models, except the GCM, were configured to reasonably consider land cover, urban morphology, and anthropogenic heating (AH). Equally as important, methodologies that can collect and estimate global distribution of urban parametric and AH datasets are continually being developed. Urban growth models, climate scenario matrices that match representative concentration pathways with shared socio-economic pathways, present distribution of socio-demographic indicators such as population and GDP, existing GIS datasets of urban parameters, are utilized. From these tools, future urbanization (urban morphological parameters and AH) can be introduced into the models. Sensitivity using various combinations of GCM and urbanization can be conducted. Furthermore, since the models utilize

  13. Climate Change Mitigation: Climate, Health, and Equity Implications of the Visible and the Hidden

    OpenAIRE

    Shonkoff, Seth Berrin

    2012-01-01

    Anthropogenic climate change and the mitigation strategies aimed to attenuate it are both issues of great importance for human rights, public health, and socioeconomic equity. To understand these concerns and to better inform policy and strategic action it is critical to explore: 1) the disparities in the costs and benefits of climate shifts; 2) the abilities of different populations to adapt to these shifts; and 3) the social and health equity dimensions of the climate change mitigation stra...

  14. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  15. Climate change, mitigation and adaptation with uncertainty and learning

    International Nuclear Information System (INIS)

    Ingham, Alan; Ma Jie; Ulph, Alistair

    2007-01-01

    One of the major issues in climate change policy is how to deal with the considerable uncertainty that surrounds many of the elements. Some of these uncertainties will be resolved through the process of further research. This process of learning raises a crucial timing question: should society delay taking action in anticipation of obtaining better information, or should it accelerate action, because we might learn that climate change is much more serious than expected. Much of the analysis to date has focussed on the case where the actions available to society are just the mitigation of emissions, and where there is little or no role for learning. We extend the analysis to allow for both mitigation and adaptation. We show that including adaptation weakens the effect of the irreversibility constraint and so, for this model, makes it more likely that the prospect of future learning should lead to less action now to deal with climate change. We review the empirical literature on climate change policy with uncertainty, learning, and irreversibility, and show that to date the effects on current policy are rather small, though this may reflect the particular choice of models employed

  16. Leapfrogging over development? Promoting rural renewables for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Zerriffi, Hisham [Liu Institute for Global Issues, 6476 NW Marine Dr., University of British Columbia, Vancouver BC (Canada); Wilson, Elizabeth [Hubert Humphrey Institute of Public Affairs, University of Minnesota, Minneapolis MN (United States)

    2010-04-15

    Renewable energy technologies have the potential to help solve two pressing problems. On one hand, carbon-free energy sources must play a role in climate change mitigation. On the other hand, renewables might help meet needs of rural people without access to modern energy services. However, if renewables are deployed to combat climate change (primarily resulting from emissions in the developed economies) then providing basic energy services in the developing world may be compromised. The tendency to conflate the two drivers by installing renewables in rural areas for carbon mitigation reasons rather than for development reasons could compromise both goals. The danger is supporting sub-optimal policies for mitigating carbon and for rural energy. This is problematic given the limited funds available for energy development and reducing greenhouse gases. This paper analyzes how these goals have been balanced by the Global Environment Facility (GEF). Project documents are used to determine whether incremental costs of installing renewables were covered by GEF funds and whether the costs are comparable with other carbon mitigation options. The results raise concerns about the effectiveness and appropriateness of GEF funding of such projects and highlight the importance of post-Kyoto framework design to reduce emissions and promote development. (author)

  17. Leapfrogging over development? Promoting rural renewables for climate change mitigation

    International Nuclear Information System (INIS)

    Zerriffi, Hisham; Wilson, Elizabeth

    2010-01-01

    Renewable energy technologies have the potential to help solve two pressing problems. On one hand, carbon-free energy sources must play a role in climate change mitigation. On the other hand, renewables might help meet needs of rural people without access to modern energy services. However, if renewables are deployed to combat climate change (primarily resulting from emissions in the developed economies) then providing basic energy services in the developing world may be compromised. The tendency to conflate the two drivers by installing renewables in rural areas for carbon mitigation reasons rather than for development reasons could compromise both goals. The danger is supporting sub-optimal policies for mitigating carbon and for rural energy. This is problematic given the limited funds available for energy development and reducing greenhouse gases. This paper analyzes how these goals have been balanced by the Global Environment Facility (GEF). Project documents are used to determine whether incremental costs of installing renewables were covered by GEF funds and whether the costs are comparable with other carbon mitigation options. The results raise concerns about the effectiveness and appropriateness of GEF funding of such projects and highlight the importance of post-Kyoto framework design to reduce emissions and promote development.

  18. Economics of nuclear power and climate change mitigation policies.

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  19. Economics of nuclear power and climate change mitigation policies

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar

    2012-01-01

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963

  20. IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned

    Science.gov (United States)

    Sokona, Youba

    2014-05-01

    The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.

  1. Climate change mitigation policies and poverty in developing countries

    Science.gov (United States)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-09-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation.

  2. Climate change mitigation policies and poverty in developing countries

    International Nuclear Information System (INIS)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-01-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation. (letter)

  3. Urban Planning and Climate Change: Adaptation and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Fulvia Pinto

    2014-05-01

    Full Text Available Climate change is a current phenomenon: the temperatures rise, rainfall patterns are changing, glaciers melt and the average global sea level is rising. It is expected that these changes will continue and that the extreme weather events, such as floods and droughts, will become more frequent and intense. The impact and vulnerability factors for nature, for the economy and for our health are different, depending on the territorial, social and economic aspects. The current scientific debate is focused on the need to formulate effective policies for adaptation and mitigation to climate change. The city plays an important role in this issue: it emits the most greenhouse gas emissions (more than 60% of the world population currently lives in urban areas and the city is more exposed and vulnerable to the impacts of climate change. Urban planning and territorial governance play a crucial role in this context: the international debate on the sustainability of urban areas is increasing. It’s necessary to adapt the tools of building regulations to increase the quality of energy - environment of the cities.

  4. Local climate action plans in climate change mitigation

    DEFF Research Database (Denmark)

    Damsø, Tue Noa Jacques; Kjær, Tyge; Christensen, Thomas Budde

    2016-01-01

    the extent, targets and scope of LG CAPs and find that Danish LGs are highly involved in mitigation activities with a widespread CAP adoption and an overall high degree of sectoral coverage on base year accounts and action plans, albeit with some significant shortcomings. Different approaches for target...... and scope definition are identified and assessed, and the overall contribution of LGs to the Danish energy transition is discussed....

  5. United States policy for mitigating global climate change

    International Nuclear Information System (INIS)

    Bergman, P.; Kane, R.; Kildow, J.

    1998-01-01

    The primary objective of this paper is to explain current US policy on global climate change. US Department of Energy (DOE) efforts to implement this policy are described. A secondary objective of this paper is to discuss from a US perspective the social and political efforts which must be initiated in order for ocean storage of CO 2 to be considered as a viable CO 2 mitigation option. The fact that the Framework Convention on Climate Change (FCCC) has not been successful in reducing greenhouse gas emissions is now recognized. Thus, US policy has shifted towards the development of binding medium-term emissions targets and long-term atmosphere concentration goals. The US believes these goals can be accomplished through the adoption of cost-effective joint implementation agreements and international emissions trading mechanisms. Studies are currently underway to assess specific targets and timetables for emissions reductions. Voluntary efforts on the part of US industry have proven to be extremely successful in reducing US CO 2 -emissions. The US electric utility industry has taken the lead in voluntarily lowering greenhouse gas emissions under the DOE Climate Challenge Program. Areas of research interest to DOE include the development of high efficiency advanced power generation cycles and CO 2 sequestration technology. The US currently spends $1.6 billion on understanding global climate phenomena and only $1.6 million on CO 2 mitigation research. A number of socio-political considerations must be looked at in assessing the feasibility of ocean storage of CO 2 . Developing public trust appears to be a major concern in establishing the acceptability of ocean storage. Uncertainties in the effects of CO 2 on marine life, potential safety hazards associated with pipelining, and ship transport of CO 2 are all issues which must be dealt with as soon as possible. Some hidden costs associated with ocean disposal is also discussed

  6. Promoting interactions between local climate change mitigation, sustainable energy development, and rural development policies in Lithuania

    International Nuclear Information System (INIS)

    Streimikiene, Dalia; Baležentis, Tomas; Kriščiukaitienė, Irena

    2012-01-01

    Lithuania has developed several important climate change mitigation policy documents however there are no attempts in Lithuania to develop local climate change mitigation policies or to decentralize climate change mitigation policy. Seeking to achieve harmonization and decentralization of climate change mitigation and energy policies in Lithuania the framework for local climate change mitigation strategy need to be developed taking into account requirements, targets and measures set in national climate change mitigation and energy policy documents. The paper will describe how national climate change mitigation and energy policies can be implemented via local energy and climate change mitigation plans. The aim of the paper is to analyze the climate change mitigation policy and its relationship with policies promoting sustainable energy development in Lithuania and to present a framework for local approaches to climate change mitigation in Lithuania, in the context of the existing national and supra-national energy, climate change, and rural development policies. - Highlights: ► The framework for local energy action plans is offered. ► The structural support possibilities are assessed with respect to the Lithuanian legal base. ► The proposals are given for further promotion of sustainable energy at the local level.

  7. Development of bioenergy conversion alternatives for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Derkyi, Nana S.A.; Sekyere, Daniel [CSIR-FORIG, Kwame Nkrumah University of Science and Technology KNUST Box 63 (Ghana); Okyere, Philip Y. [Electrical Engineering Department, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Darkwa, Nicholas A. [FRNR, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Nketiah, Samuel K. [TROPENBOS International (Ghana)

    2011-07-01

    Traditional charcoal production, firewood sourcing and over-dependence on the national grid for electricity are associated with high greenhouse gas emissions relative to other common energy options. However, there have been few attempts to analyze the potential of cogeneration and briquetting as favourable energy options for climate change mitigation. The possibility of utilizing abundant wood residues to produce energy for domestic and industrial application through co-generation and sawdust briquetting was assessed. Annual residues generated in the three mills studied ranged from 19,230 m3 to 32,610 m3. Annual output of semi-carbonized and carbonized sawdust briquette from the briquette factory studied was 1400 tonnes. Heating values of the wood species ranged from 8.2 to 20.3 MJ/kg. Power requirements for the mills, necessary for sizing co-generation units were derived from their monthly electricity bills. Power ratings for co-generation units were specified between 400 kWe to 2000 kWe with heat to power ratios of 19 to 21. The energy generated could be used to produce electrical power and reduce dependency on the national grid. Conversion of sawdust in the briquette factory potentially contributes a saving of 5,600 tonnes of trees/year that would have been cut from the forest. Thus, adoption of co-generation and sawdust briquetting nationwide could be of immense benefit to the country in terms of climate change mitigation.

  8. China's strategy for energy development and climate change mitigation

    International Nuclear Information System (INIS)

    He Jiankun; Yu Zhiwei; Zhang Da

    2012-01-01

    In recent years, China has made great efforts in energy saving and carbon emission reduction by pushing forward domestic sustainable development along with global climate change mitigation. The efforts have paid off with a dramatic decrease in carbon intensity. Nevertheless, China is still confronted with tough challenges in emission control due to the fast pace of industrialization, large total historical emission and high growth rate of emissions. Therefore, China should give priority to energy saving by improving energy efficiency and sectoral structure adjustment and upgrade, and develop sustainable and renewable energy to optimize energy mix and its carbon content. China should continue to regard significant reduction of energy intensity and carbon intensity as the main objective in the near future, strive to achieve peak emissions around 2030, and realize a relatively sharp emissions reduction by 2050 in order to address climate change to meet the goal of making the warming less than 2°. During the 12th Five Year Plan (FYP), China will further strengthen measures to control the amount of energy consumption, establish a statistics, accounting and evaluation system of carbon emissions, and promote a market-based carbon emissions trading mechanism to facilitate the low-carbon transformation of China's economy. - Highlights: ► This paper studies China's strategy for energy development and climate change mitigation. ► We suggest that China should focus on reducing the energy intensity and carbon intensity of GDP, and optimization of energy mix in the near term. ► In the long term, China should achieve the peak emission around 2030, and realize a relative sharp emission reduction by 2050. ► The paper also concludes some important measures which China should take during the 12th Five-Year-Plan (2011–2015).

  9. Climate change and groundwater: India's opportunities for mitigation and adaptation

    International Nuclear Information System (INIS)

    Shah, Tushaar

    2009-01-01

    For millennia, India used surface storage and gravity flow to water crops. During the last 40 years, however, India has witnessed a decline in gravity-flow irrigation and the rise of a booming 'water-scavenging' irrigation economy through millions of small, private tubewells. For India, groundwater has become at once critical and threatened. Climate change will act as a force multiplier; it will enhance groundwater's criticality for drought-proofing agriculture and simultaneously multiply the threat to the resource. Groundwater pumping with electricity and diesel also accounts for an estimated 16-25 million mt of carbon emissions, 4-6% of India's total. From a climate change point of view, India's groundwater hotspots are western and peninsular India. These are critical for climate change mitigation as well as adaptation. To achieve both, India needs to make a transition from surface storage to 'managed aquifer storage' as the center pin of its water strategy with proactive demand- and supply-side management components. In doing this, India needs to learn intelligently from the experience of countries like Australia and the United States that have long experience in managed aquifer recharge.

  10. Renewable Energy Deployment as Climate Change Mitigation in Nigeria

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2016-10-01

    Full Text Available The scientific evidence of climate change as a result of greenhouse gas emissions which causes ozone layer depletion is becoming increasingly obvious and clear. Findings revealed that energy from the fossil fuel is the major source of greenhouse emission which destroys the environment and makes it unhealthy for living beings. In Nigeria, conventional energy (oil and gas with gas flaring has the highest percentage of 52% and liquid fuel of 32% of carbon dioxide (CO2 respectively. This sector contributes revenue of over 70% to Nigeria’s economy and generates an average total 21.8% of greenhouse gas emission. In Nigeria, there is a much more potential for share renewables with 15.4% of total energy production and 8.6 % of energy consumption. In reality with global environmental concern, Nigeria’s carbon dioxide emissions have increased with energy production and consumption. The Integrated Renewable Energy Master Plan of 2008 projects a 26.7% renewable energy contribution to the Nigeria’s energy use and this is expected to reduce CO2 and greenhouse gas emissions at 38% by2025. Nigeria has not been playing significant role by reducing emissions of greenhouse gases. This paper highlights Nigeria’s climate change situation and penetration requirements for various renewable energy deployments as mitigating instrument for climate change towards healthy and productive environment.

  11. Building synergies between climate change mitigation and energy poverty alleviation

    International Nuclear Information System (INIS)

    Ürge-Vorsatz, Diana; Tirado Herrero, Sergio

    2012-01-01

    Even though energy poverty alleviation and climate change mitigation are inextricably linked policy goals, they have remained as relatively disconnected fields of research inquiry and policy development. Acknowledging this gap, this paper explores the mainstream academic and policy literatures to provide a taxonomy of interactions and identify synergies and trade-offs between them. The most important trade-off identified is the potential increase in energy poverty levels as a result of strong climate change action if the internalisation of the external costs of carbon emissions is not offset by efficiency gains. The most significant synergy was found in deep energy efficiency in buildings. The paper argues that neither of the two problems – deep reductions in GHG emissions by mid-century, and energy poverty eradication – is likely to be solved fully on their own merit, while joining the two policy goals may provide a very solid case for deep efficiency improvements. Thus, the paper calls for a strong integration of these two policy goals (plus other key related benefits like energy security or employment), in order to provide sufficient policy motivation to mobilise a wide-scale implementation of deep energy efficiency standards. - Highlights: ► A taxonomy of interactions between climate change and energy poverty is offered. ► Energy poverty levels may increase as a result of strong climate change action. ► However, strong synergies are offered by deep improvements of energy efficiency. ► Access to modern energy carriers is a key requirement in developing countries. ► Sufficiently solving both problems requires the integration of policy goals.

  12. Bird response to future climate and forest management focused on mitigating climate change

    Science.gov (United States)

    Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh

    2016-01-01

    Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...

  13. Implications of small modular reactors for climate change mitigation

    International Nuclear Information System (INIS)

    Iyer, Gokul; Hultman, Nathan; Fetter, Steve; Kim, Son H.

    2014-01-01

    Achieving climate policy targets will require large-scale deployment of low-carbon energy technologies, including nuclear power. The small modular reactor (SMR) is viewed as a possible solution to the problems of energy security as well as climate change. In this paper, we use an integrated assessment model (IAM) to investigate the evolution of a global energy portfolio with SMRs under a stringent climate policy. Technology selection in the model is based on costs; we use results from previous expert elicitation studies of SMR costs. We find that the costs of achieving a 2 °C target are lower with SMRs than without. The costs are higher when large reactors do not compete for market share compared to a world in which they can compete freely. When both SMRs and large reactors compete for market share, reduction in mitigation cost is achieved only under advanced assumptions about SMR technology costs and future cost improvements. While the availability of SMRs could lower mitigation costs by a moderate amount, actual realization of these benefits would depend on the rapid up-scaling of SMRs in the near term. Such rapid deployment could be limited by several social, institutional and behavioral obstacles. - Highlights: • Costs of achieving a 2 °C target are lower with SMRs than without. • Costs are higher when large reactors do not compete for market share. • Under competition, cost is reduced only with advanced SMR technology. • Realization of benefits will depend on rapid near term up-scaling of SMRs

  14. Future Arctic climate changes: Adaptation and mitigation time scales

    Science.gov (United States)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  15. Marine reserves can mitigate and promote adaptation to climate change

    Science.gov (United States)

    Roberts, Callum M.; O’Leary, Bethan C.; McCauley, Douglas J.; Cury, Philippe Maurice; Duarte, Carlos M.; Lubchenco, Jane; Pauly, Daniel; Sáenz-Arroyo, Andrea; Sumaila, Ussif Rashid; Wilson, Rod W.; Worm, Boris; Castilla, Juan Carlos

    2017-01-01

    Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future. PMID:28584096

  16. Marine reserves can mitigate and promote adaptation to climate change

    KAUST Repository

    Roberts, Callum M.

    2017-06-06

    Strong decreases in greenhouse gas emissions are required to meet the reduction trajectory resolved within the 2015 Paris Agreement. However, even these decreases will not avert serious stress and damage to life on Earth, and additional steps are needed to boost the resilience of ecosystems, safeguard their wildlife, and protect their capacity to supply vital goods and services. We discuss how well-managed marine reserves may help marine ecosystems and people adapt to five prominent impacts of climate change: acidification, sea-level rise, intensification of storms, shifts in species distribution, and decreased productivity and oxygen availability, as well as their cumulative effects. We explore the role of managed ecosystems in mitigating climate change by promoting carbon sequestration and storage and by buffering against uncertainty in management, environmental fluctuations, directional change, and extreme events. We highlight both strengths and limitations and conclude that marine reserves are a viable low-tech, cost-effective adaptation strategy that would yield multiple cobenefits from local to global scales, improving the outlook for the environment and people into the future.

  17. Decision-support tools for climate change mitigation planning

    DEFF Research Database (Denmark)

    Puig, Daniel; Aparcana Robles, Sandra Roxana

    . For example, in the case of life-cycle analysis, the evaluation criterion entails that the impacts of interest are examined across the entire life-cycle of the product under study, from extraction of raw materials, to product disposal. Effectively, then, the choice of decision-support tool directs......This document describes three decision-support tools that can aid the process of planning climate change mitigation actions. The phrase ‘decision-support tools’ refers to science-based analytical procedures that facilitate the evaluation of planning options (individually or compared to alternative...... options) against a particular evaluation criterion or set of criteria. Most often decision-support tools are applied with the help of purpose-designed software packages and drawing on specialised databases.The evaluation criteria alluded to above define and characterise each decision-support tool...

  18. climate change: causes, effects and mitigation measures-a review

    African Journals Online (AJOL)

    BARTH EKWUEME

    Both natural and human causes of climate change including the earth's orbital changes, solar variations .... analysis supported by climate models have revealed that cloud ... clouds could actually exert a small cooling effect as temperature ...

  19. U.S. landowner behavior, land use and land cover changes, and climate change mitigation.

    Science.gov (United States)

    Ralph J. Alig

    2003-01-01

    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  20. Etude Climat no. 40 'The contribution of European forest to climate change mitigation'

    International Nuclear Information System (INIS)

    Baron, Frederic; Bellassen, Valentin; Deheza, Mariana

    2013-01-01

    Among the publications of CDC Climat Research, 'Climate Reports' offer in-depth analyses on a given subject. This issue addresses the following points: In a framework where no common forestry policy exists at the EU level (such as the Common Agriculture Policy for agriculture), this report lists EU policies that have an impact on climate change mitigation that can be achieved by the forestry sector. With the objective of analyzing the coherence of these policies, we have established a typology and a hierarchy firstly by laying out the legal status and the financial and institutional resources associated with each policy, and secondly by reviewing the objectives of each policy in regards to climate change mitigation in the forestry sector. We finally analyze potentials synergies and conflicts between them

  1. Global climate change mitigation scenarios for solid waste management

    Energy Technology Data Exchange (ETDEWEB)

    Monni, S. [Benviroc Ltd, Espoo (Finland); Pipatti, R. [Statistics Finland, Helsinki (Finland); Lehtilae, A.; Savolainen, I.; Syri, S. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2006-07-15

    The waste sector is an important contributor to climate change. CH{sub 4} produced at solid waste disposal sites contributes approximately 3.4 percent to the annual global anthropogenic greenhouse gas emissions. Emissions from solid waste disposal are expected to increase with increasing global population and GDP. On the other hand, many cost-efficient emission reduction options are available. The rate of waste degradation in landfills depends on waste composition, climate and conditions in the landfill. Because the duration of CH{sub 4} generation is several decades, estimation of emissions from landfills requires modelling of waste disposal prior to the year whose emissions are of interest. In this study, country- or region-specific first-order decay (FOD) models based on the 2006 IPCC Guidelines are used to estimate emissions from municipal solid waste disposal in landfills. In addition, IPCC methodology is used to estimate emissions from waste incineration. Five global scenarios are compiled from 1990 to 2050. These scenarios take into account political decision making and changes in the waste management system. In the Baseline scenario, waste generation is assumed to follow past and current trends using population and GDP as drivers. In the other scenarios, effects of increased incineration, increased recycling and increased landfill gas recovery on greenhouse gas (GHG) emissions are assessed. Economic maximum emission reduction potentials for these waste management options are estimated at different marginal cost levels for the year 2030 by using the Global TIMES model. Global emissions from landfills are projected to increase from 340 Tg CO{sub 2} eq in 1990 to 1500 Tg CO{sub 2} eq by 2030 and 2900 Tg CO{sub 2} eq by 2050 in the Baseline scenario. The emission reduction scenarios give emissions reductions from 5% (9%) to 21% (27%) compared to the Baseline in 2030 (2050). As each scenario considered one mitigation option, the results are largely additive, and

  2. Policy progress in mitigation of climate change in Taiwan

    International Nuclear Information System (INIS)

    Hwang, Jenn Jiang; Chang, Wei Ru

    2011-01-01

    To make an active contribution to the global effort in mitigation of climate change, Taiwan government has implemented the 'Frameworks for Sustainable Energy Policy-An Energy-Saving and Carbon-Reduction Action Plan' in June 2008. It has made a commitment of a stepwise reduction of nationwide greenhouse gas (GHG) emissions, which returns the nationwide GHG emission to 2008 levels by 2020, then reduces to 2000 levels by 2025, and finally cuts 50% of 2000 levels by 2050. The fundamental strategy is to reduce the GHG emission under acceptable economic development and energy security to achieve generation-spanning triple-win in energy, environment and economy. The major policy instruments such as 'Statute for Renewable Energy Development', 'GHG Reduction Law (draft),' 'Regulation for Energy Tax (draft),' and 'Energy Management Act' have been either implemented or scheduled for legislative reviewing. The purpose of this paper is to present an updated review of the outcomes of GHG emission reduction in Taiwan. In addition, the progress and priority of policy instruments in GHG emission reduction are analyzed as well. - Research highlights: →Taiwan has made a commitment of stepwise targets of GHG emission reduction to contribute to the global efforts in combating climate change in 2008. →The near-term target returns the nationwide GHG emissions back to 2008 levels during years of 2016-2020. Then, emission levels are cut to 2000 levels by 2025, and finally 50% of 2000 levels by 2050. →In addition to finish legislative review of the 'GHG Reduction Act', Taiwan has prepared a comprehensive action plan to reduce the national GHG emissions, involving improvement of the efficiency in energy use, development of the sustainable energy, and taxation of carbon on fossils.

  3. Identify: Improving industrial energy efficiency and mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-07-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO{sub 2}) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO{sub 2} emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project.

  4. Identify: Improving industrial energy efficiency and mitigating global climate change

    International Nuclear Information System (INIS)

    Lazarus, M.; Hill, D.; Cornland, D.W.; Heaps, C.; Hippel, D. von; Williams, R.

    1997-01-01

    The use of energy in the industrial sectors of nations with both industrialized and developing economies will continue to be, a major source of greenhouse gas (GHG) emissions, particularly carbon dioxide. The patterns of industrial-sector energy use--energy provided primarily by the combustion of fossil fuels-have shifted both within the between countries in recent decades. Projections of future energy use and carbon-dioxide (CO 2 ) emissions suggest continued shifts in these patterns, as industrial production in developed countries stabilizes and declines, while industrial output in the developing world continues to expand. This expansion of industrial-sector activity and CO 2 emissions in developing countries presents both a challenge and an opportunity. To seize this opportunity and contribute to international efforts to mitigate global climate change, the United National Industrial Development Organization (UNIDO) recently initiated a two-phase effort to help improve the efficiency of energy-intensive industries (iron and steel, chemicals, refining, paper and pulp, and cement) in developing countries. As part of the Phase I, the authors reviewed industrial sector scenarios and to initiated development of a software-based toolkit for identifying and assessing GHG mitigating technologies. This toolkit, called IDENTIFY, is comprised of a technology inventory and a companion economic analysis tool. In addition, UNIDO commissioned institutions in India, South Africa, and Argentina to review energy use patterns and savings opportunities in selected industries across nine developing countries, and contribute to the development of the IDENTIFY toolkit. UNIDO is now preparing to launch Phase 2, which will focus on full development and dissemination of the IDENTIFY toolkit through seminars and case studies around the world. This paper describes Phase 1 of the UNIDO project

  5. Bioenergy, Land Use Change and Climate Change Mitigation. Report for Policy Advisors and Policy Makers

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goran [Chalmers Univ. of Technology (Sweden); Bird, Nell [Joanneum Research (Austria); Cowle, Annette [National Centre for Rural Greenhouse Gas Research (Australia)

    2010-07-01

    The report addresses a much debated issue - bioenergy and associated land use change, and how the climate change mitigation from use of bioenergy can be influenced by greenhouse gas emissions arising from land use change. The purpose of the report was to produce an unbiased, authoritative statement on this topic aimed especially at policy advisors and policy makers.

  6. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  7. Managing climate change impacts on tourism: Mitigating and ...

    African Journals Online (AJOL)

    Climate is considered to be a tourist resource, and it is widely acknowledged that the nature and distribution of tourist activities are affected by climatic elements. Changing world climatic regimes are therefore likely to have long term impacts on tourism activities, resources and distribution patterns. South African tourism will ...

  8. Climate change: Causes, effects and mitigation measures- A review ...

    African Journals Online (AJOL)

    Global Journal of Pure and Applied Sciences ... far more than at any time in the last 650,000 years resulting in climate change or global warming. Both natural and human causes of climate change including the earth's orbital changes, ... food production, loss of biodiversity, food insecurity, decreased animal health et cetera.

  9. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    Science.gov (United States)

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  10. Impacts on Canadian Competitiveness of International Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Christopher Holling

    1998-06-01

    Full Text Available This article summarizes and provides additional perspective on a study that contributes to the growing body of analyses of the costs of limiting greenhouse gas emissions. The study estimates the economic costs to Canada of six planning scenarios. Four of these scenarios involve the use of tradable emission permits and two involved a carbon tax. In each case, the mechanism's target is to stabilize greenhouse gas emissions at some percentage of 1990 levels (100% or 90% by either 2010 or 2015. Policies that impose greater constraints on carbon dioxide emissions lead to higher economic costs in terms of foregone output. These costs, however, vary for the same objective, depending on the mechanism chosen and the economic assumptions made. In one typical scenario, in which tradable emission permits are used to achieve stabilization at 1990 levels by 2010, GDP is depressed from the "business-as-usual" scenario by about 2% for the first decade, after which it recovers to business-as-usual levels. Generally, for all scenarios, the economic impact of climate change mitigation imposes a transition cost on the economy, but the long-term productive capacity of the economy is not significantly affected.

  11. Chinese Tourists’ Perceptions of Climate Change and Mitigation Behavior: An Application of Norm Activation Theory

    Directory of Open Access Journals (Sweden)

    Guiqiang Qiao

    2017-07-01

    Full Text Available It is well recognized that tourism development is a prominent contributor to climate change, but is also a “victim” of climate change. Therefore, to mitigate climate change is of great importance for the sustainability of tourism. Yet extant studies regarding tourism and climate change tend to be dominated by a supply-side stance, albeit the core role of the tourist in the tourism industry. While researchers are increasingly adopting a tourist perspective, few seek to understand the linkage between climate change and tourists’ specific mitigation behaviors in a tourism context; this is especially so in China. This study investigates the impact of Chinese tourists’ perceptions of climate change on their mitigation behaviors based on norm activation theory. Drawing on 557 self-administrated questionnaires collected in China, it finds that tourists’ perceptions of climate change and perceived contribution of tourism to climate change both positively affect energy saving and carbon reduction behavior in tourism. Yet, compared with perceived contribution of tourism to climate change, tourists’ perceptions of climate change are found to be a much stronger predictor for energy saving and carbon reduction behavior. Therefore, it suggests that tourists’ perceptions of climate change in a general context is more strongly related to climate change mitigation behavior in tourism, calling for attention to go beyond the tourism context to alleviate the negative impacts of tourism on climate change.

  12. Economics and management of climate change: risks, mitigation and adaptation

    National Research Council Canada - National Science Library

    Antes, Ralf

    2008-01-01

    ... climate change poses risks to societies and companies, nor about adequate strategies to cope with these risks. Bringing together scholars from environmental economics, political science, and business management, this book describes, analyses and evaluates climate change risks and responses of societies and companies. The book c...

  13. The social dilemma structure of climate change mitigation: individual responses and effects on action

    OpenAIRE

    Bӧgelein, Sandra

    2015-01-01

    Abstract Climate change mitigation constitutes a social dilemma, a conflict between personal and collective outcomes. Behaviours that result in personal benefits (e.g. travelling quickly, conveniently and cheaply by plane) also result in a collective cost in the form of climate change. Behavioural theories and evidence suggest this social dilemma structure significantly influences behaviour. This thesis aims to understand how the social dilemma structure of climate change mitigation affect...

  14. Climate change and climate variability: personal motivation for adaptation and mitigation.

    Science.gov (United States)

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  15. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  16. Effort sharing in ambitious, global climate change mitigation scenarios

    International Nuclear Information System (INIS)

    Ekholm, Tommi; Soimakallio, Sampo; Moltmann, Sara; Hoehne, Niklas; Syri, Sanna; Savolainen, Ilkka

    2010-01-01

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either -10% or -50% from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system.

  17. Effort sharing in ambitious, global climate change mitigation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Ekholm, Tommi [TKK Helsinki University of Technology, Espoo (Finland); Soimakallio, Sampo; Syri, Sanna; Savolainen, Ilkka [VTT Technical Research Centre of Finland, P.O. Box 1000, FIN-02044 VTT (Finland); Moltmann, Sara; Hoehne, Niklas [Ecofys Germany GmbH, Cologne (Germany)

    2010-04-15

    The post-2012 climate policy framework needs a global commitment to deep greenhouse gas emission cuts. This paper analyzes reaching ambitious emission targets up to 2050, either or from 1990 levels, and how the economic burden from mitigation efforts could be equitably shared between countries. The scenarios indicate a large low-cost mitigation potential in electricity and industry, while reaching low emission levels in international transportation and agricultural emissions might prove difficult. The two effort sharing approaches, Triptych and Multistage, were compared in terms of equitability and coherence. Both approaches produced an equitable cost distribution between countries, with least developed countries having negative or low costs and more developed countries having higher costs. There is, however, no definitive solution on how the costs should be balanced equitably between countries. Triptych seems to be yet more coherent than other approaches, as it can better accommodate national circumstances. Last, challenges and possible hindrances to effective mitigation and equitable effort sharing are presented. The findings underline the significance of assumptions behind effort sharing on mitigation potentials and current emissions, the challenge of sharing the effort with uncertain future allowance prices and how inefficient markets might undermine the efficiency of a cap-and-trade system. (author)

  18. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. management strategies currently used by rural communities. 2. Capture and assess cultural and gender dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified indigenous knowledge with appropriate science and new emerging technologies to develop a training toolkit of effective strategies relevant to all stakeholders. 5. Utilize training sessions, education workshops, curriculum revisions, and appropriate information and communication technologies (ICTs) including social media outlets to disseminate the toolkit strategies. 6. Apply a modified logic

  19. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    Science.gov (United States)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  20. Climate change mitigation and adaptation in strategic environmental assessment

    International Nuclear Information System (INIS)

    Wende, Wolfgang; Bond, Alan; Bobylev, Nikolai; Stratmann, Lars

    2012-01-01

    Countries are implementing CO 2 emission reduction targets in order to meet a globally agreed global warming limit of +2 °C. However, it was hypothesised that these national reduction targets are not translated to regional or state level planning, and are not considered through Strategic Environmental Assessment (SEA) in order to meet emission reduction obligations falling on the transport, energy, housing, agriculture, and forestry sectors. SEAs of land use plans in the German state of Saxony, and the English region of the East of England were examined for their consideration of climate change impacts based on a set of criteria drawn from the literature. It was found that SEAs in both cases failed to consider climate change impacts at scales larger than the boundary of the spatial plan, and that CO 2 reduction targets were not considered. This suggests a need for more clarity in the legal obligations for climate change consideration within the text of the SEA Directive, a requirement for monitoring of carbon emissions, a need for methodological guidance to devolve global climate change targets down to regional and local levels, and a need for guidance on properly implementing climate change protection in SEA. - Highlights: ► Strategic Environmental Assessments (SEA) of 12 land use plans from Germany and England have been examined. ► SEA failed to consider climate change impacts at scales larger than the boundary of the land use plans. ► SEA should be an important instrument for climate protection. ► Concrete steps for climate protection mainstreaming into SEA at the European Union and national levels have been suggested.

  1. Introduction to climate change adaptation and mitigation management options

    Science.gov (United States)

    James M. Vose; Kier D. Klepzig

    2014-01-01

    Climate is a critical factor shaping the structure and function of forest ecosystems in the Southern United States. Human induced changes in climate systems have resulted in an increase in the global average air temperature of about 0.8°C since the 1900s (Pachuri and Reisinger 2007). Data from long-term weather stations show that overall, the continental United States...

  2. Tanzanian rangelands in a changing climate: Impacts, adaptations and mitigation

    OpenAIRE

    Sangeda A. Z.; Malole J. L.

    2014-01-01

    Livestock are central to the livelihoods of Tanzanians who rely on them for income via sales of milk, meat, skins and draught power. Owning livestock is amongst the ways in which many Tanzanians could diversify their risks, increase assets and improve their resilience to changes in climate. Though local coping strategies can deal with shocks in the short-term, they are hardly able to cope with more frequent and severe climate events. Observably, temperature, rainfall and atmospheric CO2 conce...

  3. Sugarcane ethanol: contributions to climate change mitigation and the environment

    NARCIS (Netherlands)

    Zuurbier, P.J.P.; Vooren, van de J.G.

    2008-01-01

    Climate change is a challenge facing human life. It will change mobility and asks for new energy solutions. Bioenergy has gained increased attention as an alternative to fossil fuels. Energy based on renewable sources may offer part of the solution. Bio ethanol based on sugar cane offers advantages

  4. The Paradox of Climate Change Mitigation and Adaptation in Danish Housing

    DEFF Research Database (Denmark)

    Marsh, Rob

    2012-01-01

    that reducing space heating with high levels of thermal insulation and passive solar energy results in overheating and a growing demand for cooling. Climate change is expected to reduce space heating and increase cooling de-mand in housing. An analysis of new build housing using passive solar energy......Climate change means that buildings must greatly reduce their energy consumption. It is however paradoxical that climate mitigation in Denmark has created negative energy and indoor climate problems in housing that may be made worse by climate change. A literature review has been carried out...... of housing schemes where climate mitigation was sought through reduced space heating demand, and it is shown that extensive problems with overheating exist. A theoretical study of regulative and design strategies for climate mitigation in new build housing has therefore been carried out, and it is shown...

  5. Land use and climate change: A global perspective on mitigation options: discussion

    Science.gov (United States)

    R. J. Alig

    2010-01-01

    Land use change can play a very significant role in climate change mitigation and adaptation, as part of efficient portfolios of many land-related activities. Questions involving forestry’s and agriculture’s potential contributions to climate change mitigation are framed within a national context of increased demands for cropland, forage, and wood products to help feed...

  6. How reliably can climate change and mitigation policy impacts on electric utilities be assessed?

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Kopp, R.J.; Palmer, K.; De Witt, D.

    1993-01-01

    Numerous mechanisms link climate change and electric utilities. Electricity generation releases radiatively active trace substances (RATS). Significant changes in atmospheric concentration of RATS can lead to a change in regional and global climate regimes. Mitigation action designed to prevent or limit climate change is possible through curbing emissions. Climate change and related mitigation actions impact on electric utilities. Foresight in electric utility planning requires reliable predictions of how the utilities may be affected in the decades ahead. In this paper the impacts of climate change and mitigation policies are noted, and our ability to assess these is reviewed. To this end a suite of models exploring supply and demand questions have been developed. The overall conclusion of the study is that the demand-side uncertainties dominate other unknowns and need to be better characterized and understood. (author)

  7. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    Science.gov (United States)

    Bird, D. N.; Kunda, M.; Mayer, A.; Schlamadinger, B.; Canella, L.; Johnston, M.

    2008-04-01

    Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation) is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal. In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada. In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure. We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as biofuels replace the grasses, the change in carbon

  8. Proposing mitigation strategies for reducing the impact of rice cultivation on climate change in Egypt

    Directory of Open Access Journals (Sweden)

    Eman Hasan

    2013-10-01

    The research results revealed that farmer acceptance or participation in applying different mitigation strategies is the cornerstone of this aspect. Meanwhile farmer awareness is essential for adaptation with climate change.

  9. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  10. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    OpenAIRE

    Dike, Jude C.

    2014-01-01

    This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and Sout...

  11. Public private partnerships for climate change mitigation – An Indian case

    Directory of Open Access Journals (Sweden)

    Tharun Dolla

    2017-01-01

    Full Text Available Cities are one of the major contributors to greenhouse gas emissions. Climate change poses serious threat to urban infrastructure, quality of life, and entire urban systems. Cities need to adopt an integrated approach for improvement of city services in order to adapt to climate change and reduce their greenhouse emissions. However, the magnitude of investment required to bridge the widening infrastructure service provision demand-supply gap along with the additional investment to mitigate climate change demands the need to look for innovative financing solutions. Private investments through public private partnership (PPP route offer an innovative mechanism for meet both the goals of infrastructure development and climate change mitigation. Private parties in PPP, however, focuses on the project economics only though they have the potential to provide innovative technical, financial and managerial solutions. The paper aims to answer the question how to integrate climate change mitigation objective in procurement process of PPP projects. The study has focused only on PPP projects in Municipal Solid Waste Management sector. The integration of climate change mitigation objective has been through design of a modified procurement protocol which promote private sector to devise project structure that fulfil both the objectives of climate change mitigation and provision of quality infrastructure services.

  12. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    Science.gov (United States)

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  13. Towards a private-public synergy in financing climate change mitigation projects

    NARCIS (Netherlands)

    Zhang, ZX; Maruyama, A

    2001-01-01

    Funding for greenhouse gas mitigation projects in developing countries is crucial for addressing the global climate change problem. By examining current climate change-related financial mechanisms and their limitations, this paper indicates that their roles are limited in affecting developing

  14. The emergence of climate change mitigation action by society : An agent-based scenario discovery study

    NARCIS (Netherlands)

    Greeven, Sebastiaan; Kraan, O.D.E.; Chappin, E.J.L.; Kwakkel, J.H.

    2016-01-01

    Developing model-based narratives of society’s response to climate change is challenged by two factors. First, society’s response to possible future climate change is subject to many uncertainties. Second, we argue that society’s mitigation action emerge out of the actions and interactions of the

  15. Survey data reflecting popular opinions of the causes and mitigation of climate change.

    Science.gov (United States)

    Thompson, Jonathan E

    2017-10-01

    The data presented within this manuscript reports the results of a 20-question opinion survey concerning popular beliefs regarding the causes of and possible mitigation of climate change. The results and opinions from 746 survey respondents are presented. The data reflects certain misconceptions of climate change, and is useful for investigators to begin forming opinions of the public's knowledge regarding the potentially inflammatory topics of climate change, greenhouse gases, and geo-engineering.

  16. Survey data reflecting popular opinions of the causes and mitigation of climate change

    OpenAIRE

    Thompson, Jonathan E.

    2017-01-01

    The data presented within this manuscript reports the results of a 20-question opinion survey concerning popular beliefs regarding the causes of and possible mitigation of climate change. The results and opinions from 746 survey respondents are presented. The data reflects certain misconceptions of climate change, and is useful for investigators to begin forming opinions of the public's knowledge regarding the potentially inflammatory topics of climate change, greenhouse gases, and geo-engine...

  17. Terraforming the Planets and Climate Change Mitigation on Earth

    Science.gov (United States)

    Toon, O. B.

    2008-12-01

    Hopefully, purposeful geo-engineering of the Earth will remain a theoretical concept. Of course, we have already inadvertently changed the Earth, and over geologic history life has left an indelible imprint on our planet. We can learn about geo-engineering schemes by reference to Earth history, for example climate changes after volcanic eruptions provide important clues to using sulfates to modify the climate. The terrestrial planets and Titan offer additional insights. For instance, Mars and Venus both have carbon dioxide dominated greenhouses. Both have more than 10 times as much carbon dioxide in their atmospheres as Earth, and both absorb less sunlight than Earth, yet one is much colder than Earth and one is much hotter. These facts provide important insights into carbon dioxide greenhouses that I will review. Mars cools dramatically following planet wide dust storms, and Titan has what is referred to as an anti- greenhouse climate driven by aerosols. These data can be used to reassure us that we can model aerosol caused changes to the climate of a planet, and also provide examples of aerosols offsetting a gas-driven greenhouse effect. People have long considered whether we might make the other planets habitable. While most of the schemes considered belong in the realm of science fiction, it is possible that some schemes might be practical. Terraforming brings to mind a number of issues that are thought provoking, but not so politically charged as geo-engineering. For example: What criteria define habitability, is it enough for people to live in isolated glass enclosures, or do we need to walk freely on the planet? Different creatures have different needs. Is a planet habitable if plants can thrive in the open, or do animals also need to be free? Are the raw materials present on any planet to make it habitable? If not, can we make the materials, or do we have to import them? Is it ethical to change a planetary climate? What if there are already primitive

  18. The underestimated potential of solar energy to mitigate climate change

    Science.gov (United States)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  19. Nuclear Energy's Role in Mitigating Climate Change and Air Pollution

    International Nuclear Information System (INIS)

    2013-01-01

    Energy experts expect energy demand to rise dramatically in the 21st century, especially in developing countries, where today, over one billion people have no access to modern energy services. Meeting global energy demand will require a 75% expansion in primary energy supply by 2050. If no steps are taken to reduce emissions, the energy-related CO 2 emissions would nearly double in the same period. The increased levels of this greenhouse gas in the atmosphere could raise average global temperatures 3 o C or more above pre-industrial levels, which may trigger the dangerous anthropogenic interference with the climate system, which the United Nations Framework Convention on Climate Change seeks to prevent.

  20. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  1. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  2. Mitigation and adaptation within a climate change policy portfolio: A research program

    Science.gov (United States)

    It is now recognized that optimal global climate policy is a portfolio of the two key responses for reducing the risks of climate change: mitigation and adaptation. Significant differences between the two responses have inhibited understanding of how to appropriately view these...

  3. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation

    Science.gov (United States)

    Gifford, Robert

    2011-01-01

    Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…

  4. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics...

  5. Public perceptions about climate change mitigation in British Columbia's forest sector

    Science.gov (United States)

    Hagerman, Shannon; Kozak, Robert; Hoberg, George

    2018-01-01

    The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio

  6. Framework for Climate Change Mitigation and Adaption in Cities by Utilizing Green Infrastructure

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Davidson, Cliff I.; Jindal, Ranjina

    infrastructure frameworks with indicators from green building rating systems (LEED 2009, BCA Green Mark 4.0, CASBEE, and TREES-NC 1.0). The climate change mitigation and adaptation framework addresses benefits from applying different GI technologies as well as limitations in existing rating systems and the green......Climate change has threatened global security of ecosystems, human health and natural resources. These threats have increased demand for various mitigation technology solutions as well as effective strategies for adapting to anticipated impacts. Green infrastructure (GI) technologies such as green...... roofs and urban forestry are viewed as ones of the best climate adaptation strategies in cities. This study aims to develop a framework for climate change mitigation and adaptation (CCMA) in cities by using green infrastructure technologies. The framework is established by integrating existing green...

  7. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    Science.gov (United States)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  8. Hand in hand: public endorsement of climate change mitigation and adaptation.

    Directory of Open Access Journals (Sweden)

    Adrian Brügger

    Full Text Available This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309 we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation is also willing to prepare for climate change impacts (adaptation. Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.

  9. Hand in hand: public endorsement of climate change mitigation and adaptation.

    Science.gov (United States)

    Brügger, Adrian; Morton, Thomas A; Dessai, Suraje

    2015-01-01

    This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.

  10. Update of indicators for climate change mitigation in Greece

    International Nuclear Information System (INIS)

    Dimitroulopoulou, C.; Ziomas, I.

    2011-01-01

    This paper analyses the factors affecting greenhouse gas (GHG) emissions in Greece, (i.e. the drivers of pressures on climate change), using environmental indicators related to energy, demographics and economic growth. The analysis is based on the data of 2008 and considers types of fuel and sectors. The Kaya identity is used to identify the relationship between drivers and pressures, using annual time series data of National GHG emissions, population, energy consumption and gross domestic product. The analysis shows that over the period 2000-2008, GHG emissions show a slight variation, but they are almost stabilised, with a total increase of 1.6%. Despite the economic growth over that period, this stabilisation may be considered as a combination of reductions in the energy intensity of GDP and the carbon intensity of energy, which are affected by improvements in energy efficiency and introduction of 'cleaner' fuels, such as natural gas and renewables in the energy mixture of the country. - Highlights: → We analyse drivers affecting GHG emissions (pressures on climate) in Greece, using indicators. → Indicators relate to energy, demographics and economic growth. → Kaya identity identifies the relationship between drivers and pressures. → GHG emissions are almost stable due to reductions in energy intensity and carbon intensity of energy. → Improvements in energy efficiency and introduction of clean fuels in energy mix reduce emissions.

  11. Land-use protection for climate change mitigation

    Science.gov (United States)

    Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp

    2014-12-01

    Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.

  12. Ninth Graders and Climate Change: Attitudes towards Consequences, Views on Mitigation, and Predictors of Willingness to Act

    Science.gov (United States)

    Hermans, Mikaela; Korhonen, Johan

    2017-01-01

    The aim of this study is to examine Finnish ninth graders' attitudes towards the consequences of climate change, their views on climate change mitigation and the impact of a set of selected predictors on their willingness to act in climate change mitigation. Students (N = 549) from 11 secondary schools participated in the questionnaire-based…

  13. Climate Change Mitigation and Adaptation Strategies Used by ...

    African Journals Online (AJOL)

    E M IGBOKWE

    This study examined the strategies employed by farmers to mitigate the effects of .... development targets like Nigeria's aspiration to be among the twenty best performing economies of .... structured interview schedule was used to collect data.

  14. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    Science.gov (United States)

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Engaging Reluctant Countries in Climate Change Mitigation Efforts

    OpenAIRE

    Hagen, Eline Kvamme

    2015-01-01

    The parties to the UN climate negotiations have time and again failed to agree on ambitious emissions reductions targets that can prevent dangerous anthropogenic interference with the climate system (UN, 1992, p. 9). Lately, state leaders and UN officials have expressed great hopes for finally reaching a universal and legally binding climate agreement at this year s meeting of the UNFCCC parties in Paris. Game-theoretical perspectives on climate negotiations tell another story. The UN clima...

  16. Potential for carbon sequestration and mitigation of climate change by irrigation of grasslands

    International Nuclear Information System (INIS)

    Olsson, Alexander; Campana, Pietro Elia; Lind, Mårten; Yan, Jinyue

    2014-01-01

    Highlights: • A generic method for climate change mitigation feasibility of PVWPS is developed. • Restoration of degraded lands in China has large climate change mitigation potential. • PV produces excess electricity included in the mitigation potential of the system. • The benefit is higher than if the PV were to produce electricity for the grid only. - Abstract: The climate change mitigation potential of irrigation powered by a photovoltaic water pumping system (PVWPS) to restore degraded grasslands has been investigated using the Intergovernmental Panel on Climate Change (IPCC) 2006 Guidelines for National Greenhouse Gas Inventories for Agriculture, Forestry and Other Land Use. The purpose of this study is to develop a generic and simple method to estimate the climate change mitigation benefit of a PVWPS. The possibility to develop carbon credits for the carbon offset markets has also been studied comparing carbon sequestration in grasslands to other carbon sequestration projects. The soil carbon sequestration following irrigation of the grassland is calculated as an annual increase in the soil organic carbon pool. The PVWPS can also generate an excess of electricity when irrigation is not needed and the emissions reductions due to substitution of grid electricity give additional climate change mitigation potential. The results from this study show that the carbon sequestration and emissions reductions benefits per land area using a PVWPS for irrigating grasslands are comparable to other carbon sequestration options such as switching to no-till practice. Soil carbon in irrigated grasslands is increased with over 60% relative to severely degraded grasslands and if nitrogen fixing species are introduced the increase in soil organic carbon can be almost 80%. Renewable electricity generation by the PVWPS will further increase the mitigation benefit of the system with 70–90%. When applying the methodology developed in this paper to a case in Qinghai, China

  17. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    Directory of Open Access Journals (Sweden)

    Åsa Holmner

    2012-06-01

    Full Text Available Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  18. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    Science.gov (United States)

    Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  19. The Future of Tourism: Can Tourism Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective

    NARCIS (Netherlands)

    Gössling, S.; Hall, C.M.; Peeters, P.M.; Scott, D.

    2010-01-01

    Tourism is an increasingly significant contributor to greenhouse gas (GHG) emissions. Emissions growth in the sector is in substantial conflict with global climate policy goals that seek to mitigate climate change through deep emission reductions. This article discusses the role of various tourism

  20. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    Science.gov (United States)

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-01-01

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies. PMID:27657098

  1. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    Directory of Open Access Journals (Sweden)

    Annabelle Workman

    2016-09-01

    Full Text Available Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies.

  2. Perception, Mitigation and Adaptation Strategies of Irrigated Paddy Farmer Community to Face Climate Change

    Directory of Open Access Journals (Sweden)

    Siska Rasiska Suantapura

    2016-06-01

    Full Text Available Climate change has a real impact on the condition of agriculture in developing countries, including Indonesia. Irrigated paddy farmers are the ones really feeling the impact of climate change. Therefore, we need to understand the perceptions, mitigation and adaptation strategies of irrigated paddy farmer community to face climate change. The study is conducted in Indramayu and Tasikmalaya Regency in West Java by using descriptive survey method, regression analysis and path analysis through Structural Equation Modelling approach with Lisrel TM 8.5. The results showes that: (1 changes to climate variability affects the productivity of rice; (2 perception of irrigated paddy farmer community on climate change and its affects are influenced by internal and external factors; and (3 adaptation strategy are influenced by internal and external factors, whereas no mitigation strategy. Therefore, mitigation and adaptation strategies with site specific location are very necessary improving climate information services, increasing empowerment of farmers through field schools, and providing the provision of facilities that are practical and adaptive to climate.

  3. Climate Change Adaptation and Mitigation in Ecosystems - Benefits, Barriers and Decision‐Making

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde

    ) -Simulation of decision and reaction patterns in relation to the belief in future climate changes and trajectory of decisions when knowledge about future climate is gradually increased (Paper 4. Simulation of Optimal Decision‐Making under the Impacts of Climate Change) Overall, the PhD thesis concludes...... the uncertainty about the actual benefits of adaptation and mitigation of climate change and complicates the process of deciding how to act. Paper 3 provides a more in‐depth empirical analysis of actual decision‐making, considering rural Nepalese households dependent on agricultural production. Paper 3 finds...... to consider long‐term strategies. This underlines the importance of linking development with the fight against climate change in order to secure increased freedom of action for the world’s poorest, thereby increasing their ability to adapt and make optimal decisions for the future. Because climate change...

  4. Reservoir management and environmental protection: The mitigation of climate change

    International Nuclear Information System (INIS)

    Johnston, Paul A.

    1998-01-01

    It is widely accepted that human activities which produce greenhouse gases have had a discernible effect upon global mean temperatures over the last 50 years. A number of gases entering the atmosphere as a result of human activities can act as greenhouse gases. The most important is carbon dioxide the atmospheric concentration of which has risen by about 30% compared to pre-industrial concentrations. Energy related emissions arising from the use of fossil fuels account for more than 80% of the CO 2 released to the atmosphere each year with these fuels accounting for around 90% of the world's commercial energy production. The provisions of the 1997 Kyoto protocol go some way to promote reductions in emissions of greenhouse gases and are an important first step. However, according to this presentation, current energy production and consumption patterns violate principles of sustainability. As a result the world is committed to warming as a result of emissions of greenhouse gases from the use of these fuels. Pragmatically, one should limit the use of fossil fuels and eventually replace them by renewable energy sources.and efforts to increase the overall energy efficiency. Given this, proposals to sequester and dump/store carbon dioxide are an unsustainable solution in their own right, but also perpetuate unsustainable energy use based on fossil fuels. Probably attempts to limit the impacts of climate change by the capture and disposal of CO 2 will result in undesirable and unanticipated impacts. The presentation recommends that resources currently deployed in investigating disposal schemes for CO 2 should rather go to the development of renewable energy generation and energy efficiency

  5. Global Farm Animal Production and Global Warming: Impacting and Mitigating Climate Change

    OpenAIRE

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-01-01

    Background The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. Objectives The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. Methods We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. Discussions An a...

  6. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa

    OpenAIRE

    Descheemaeker, Katrien; Oosting, Simon J.; Homann-Kee Tui, Sabine; Masikati, Patricia; Falconnier, Gatien N.; Giller, K.E.

    2016-01-01

    African mixed crop–livestock systems are vulnerable to climate change and need to adapt in order to improve productivity and sustain people’s livelihoods. These smallholder systems are characterized by high greenhouse gas emission rates, but could play a role in their mitigation. Although the impact of climate change is projected to be large, many uncertainties persist, in particular with respect to impacts on livestock and grazing components, whole-farm dynamics and heterogeneous farm popula...

  7. Net climate change mitigation of the Clean Development Mechanism

    International Nuclear Information System (INIS)

    Erickson, Peter; Lazarus, Michael; Spalding-Fecher, Randall

    2014-01-01

    The Clean Development Mechanism (CDM) has allowed industrialized countries to buy credits from developing countries for the purpose of meeting targets under the Kyoto Protocol. In principle, the CDM simply shifts the location of emission reductions, with no net mitigation impact. Departing from this zero-sum calculus, the Cancun Agreements reached at the sixteenth session of the Conference of the Parties (COP) in 2010 called for “one or more market-based mechanisms” capable of “ensuring a net decrease and/or avoidance of global greenhouse gas emissions”, an intention reiterated at COP 17 and COP 18. This article explores the extent to which the CDM may or may not already lead to such a “net decrease.” It finds that the CDM's net mitigation impact likely hinges on the additionality of large-scale power projects, which are expected to generate the majority of CDM credits going forward. If these projects are truly additional and continue to operate well beyond the credit issuance period, they will decrease global greenhouse gas emissions. However, if they are mostly non-additional, as research suggests, they could increase global greenhouse gas emissions. The article closes with a discussion of possible means to increase mitigation benefit. - Highlights: • The CDM's method for assessing additionality remains controversial and contested. • We develop two scenarios of the net emissions impact of the CDM. • The integrity of the CDM hinges on the emissions impact of power supply projects. • Additionality is hard to demonstrate with confidence for most power-supply projects. • A number of options are available to increase the mitigation benefit of the CDM

  8. Alternative energy balances for Bulgaria to mitigate climate change

    Science.gov (United States)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  9. Climate change mitigation in Asia and financing Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.R.; Deo, P. [eds.

    1998-12-01

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  10. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  11. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  12. Technology policy for climate change mitigation: a transatlantic perspective

    International Nuclear Information System (INIS)

    2004-01-01

    This workshop was the second climate policy conference jointly organized by RFF and IFRI in Paris. (The first one, ''How to Make Progress Post-Kyoto?'', was held on March 19, 2003). This Summary Paper is divided into two parts: The first part presents short summaries of all the presentations at the workshop (rationale and past experience in technology policies, the challenges and policy responses of the climate friendly technologies). The second part, which is an edited version of the closing remarks by Pierre Noel (Ifri), highlights some of the policy lessons that emerged from the workshop. (A.L.B.)

  13. Technology policy for climate change mitigation: a transatlantic perspective

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This workshop was the second climate policy conference jointly organized by RFF and IFRI in Paris. (The first one, ''How to Make Progress Post-Kyoto?'', was held on March 19, 2003). This Summary Paper is divided into two parts: The first part presents short summaries of all the presentations at the workshop (rationale and past experience in technology policies, the challenges and policy responses of the climate friendly technologies). The second part, which is an edited version of the closing remarks by Pierre Noel (Ifri), highlights some of the policy lessons that emerged from the workshop. (A.L.B.)

  14. Soil mapping and processes models to support climate change mitigation and adaptation strategies: a review

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio

    2017-04-01

    As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here

  15. The effect of health benefits on climate change mitigation policies

    NARCIS (Netherlands)

    Ikefuji, M.; Magnus, J.R.; Sakamoto, H.

    2014-01-01

    This paper studies the interplay between climate, health, and the economy in a stylized world with eleven heterogeneous regions, with special emphasis on USA, Europe, China, India, and Africa. We introduce health impacts into a simple economic integrated assessment model where both the local cooling

  16. The mitigation of the climate change: discourse and actions in APEC

    Directory of Open Access Journals (Sweden)

    Silvia Guadalupe Figueroa González

    2011-08-01

    Full Text Available Climate change is a shared problem that requires concerted action to meet the challenge on the best terms. The social, economic and political issue, pressed implications for designing mechanisms for cooperation on mitigation and adaptation. In Asia Pacific the largest emitters of greenhouse gases (GHGs that contribute to climate change are located; therefore becomes important convergence of national policies leading to a regional protocol on sustainable development. The Forum Asia Pacific Economic Cooperation (APEC has added to its agenda commitment to sustainable development and addressing climate change from different approaches: energy, agriculture, transport, and from different areas: the city and the region.

  17. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.

    Science.gov (United States)

    Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad

    2016-04-01

    Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A review of renewable energy sources, sustainability issues and climate change mitigation

    Directory of Open Access Journals (Sweden)

    Phebe Asantewaa Owusu

    2016-12-01

    Full Text Available The world is fast becoming a global village due to the increasing daily requirement of energy by all population across the world while the earth in its form cannot change. The need for energy and its related services to satisfy human social and economic development, welfare and health is increasing. Returning to renewables to help mitigate climate change is an excellent approach which needs to be sustainable in order to meet energy demand of future generations. The study reviewed the opportunities associated with renewable energy sources which includes: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts. Despite these opportunities, there are challenges that hinder the sustainability of renewable energy sources towards climate change mitigation. These challenges include Market failures, lack of information, access to raw materials for future renewable resource deployment, and our daily carbon footprint. The study suggested some measures and policy recommendations which when considered would help achieve the goal of renewable energy thus to reduce emissions, mitigate climate change and provide a clean environment as well as clean energy for all and future generations.

  19. Distributional impacts of climate change mitigation in Indian electricity: The influence of governance

    International Nuclear Information System (INIS)

    Rao, Narasimha D.

    2013-01-01

    Studies that examine the distributional impacts of climate change mitigation policies often neglect the influence of institutions that implement these policies. This study examines the short-term consumption-side distributional impacts of expanding low-carbon electric supply in the state of Maharashtra, India with a focus on the influence of regulatory discretion in pricing. Households' welfare impacts from economy-wide electricity price shocks are simulated against a baseline that is calibrated to actual household economic and electricity service conditions, including actual electricity budgets, block tier prices and supply rationing. Industrial price impacts are propagated to households using a Leontief input–output analysis. Regulatory pricing decisions are evaluated based on social welfare metrics for economic efficiency and income inequality. The analysis reveals new linkages between climate change mitigation, electricity policy and income distribution. Low-income households can be shielded from mitigation impacts without losses in aggregate welfare to the extent that regulators can recover mitigation costs through industrial price increases. Regulators' flexibility to distribute costs across households is constrained by industrial customers' migration off the grid. Reduced supply interruptions to the rural poor from the resulting demand contraction are a potential co-benefit of mitigation. Distributional impacts, therefore, depend on other electricity policies that are driven by the political economy of the sector. - Highlights: • Indirect price increases harm most households less than residential price increases. • Regulators have flexibility to distribute mitigation costs across income groups. • Reduced supply interruptions are a potential co-benefit of mitigation

  20. Synergies between mitigation of, and adaptation to, climate change in agriculture

    DEFF Research Database (Denmark)

    Smith, P; Olesen, Jørgen E

    2010-01-01

    There is a very significant, cost effective greenhouse gas (GHG) mitigation potential in agriculture. The annual mitigation potential in agriculture is estimated to be 4200, 2600 and 1600 Mt CO2 equiv/yr at C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. The value of GHG mitigated each...... year is equivalent to 420 000, 130 000 and 32 000 million US$/yr for C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. From both the mitigation and economic perspectives, we cannot afford to miss out on this mitigation potential. The challenge of agriculture within the climate change context...... of the agroecosystem in some way. This often not only affects the GHG emissions but also the soil properties and nutrient cycling. Adaptation to increased variability of temperature and rainfall involves increasing the resilience of the production systems. This may be done by improving soil water holding capacities...

  1. Dietary changes to mitigate climate change and benefit public health in China.

    Science.gov (United States)

    Song, Guobao; Li, Mingjing; Fullana-I-Palmer, Pere; Williamson, Duncan; Wang, Yixuan

    2017-01-15

    Dietary change presents an opportunity to meet the dual challenges of non-communicable diseases and the effects of climate change in China. Based on a food survey and reviewed data sets, we linked nutrient composition and carbon footprint data by aggregating 1950 types of foods into 28 groups. Nine dietary scenarios for both men and women were modeled based on the current diet and latest National Program for Food and Nutrition. Linear uncertainty optimization was used to produce diets meeting the Chinese Dietary Reference Intakes for adults aged 18-50years while minimizing carbon footprints. The theoretical optimal diet reduced daily footprints by 46%, but this diet was unrealistic due to limited food diversity. Constrained by acceptability, the optimal diet reduced the daily carbon footprints by 7-28%, from 3495 to 2517-3252g CO 2 e, for men and by 5-26%, from 3075 to 2280-2917g CO 2 e, for women. Dietary changes for adults are capable of benefiting China in terms of the considerable footprint reduction of 53-222Mt.CO 2 eyear -1 , when magnified based on the Chinese population, which is the largest worldwide. Seven of eight scenarios showed that reductions in meat consumption resulted in greater reductions in greenhouse gas emissions. However, dramatic reductions in meat consumption may produce smaller reductions in emissions, as the consumption of other ingredients increases to compensate for the nutrients in meat. A trade-off between poultry and other meats (beef, pork, and lamb) is usually observed, and rice, which is a popular food in China, was the largest contributor to carbon footprint reductions. Our findings suggest that changing diets for climate change mitigation and human health is possible in China, though the per capital mitigation potential is slight lower than that in developed economies of France, Spain, Sweden, and New Zealand. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to

  3. Governing Congo Basin forests in a changing climate: actors, discourses and institutions for adaptation and mitigation

    NARCIS (Netherlands)

    Somorin, O.A.

    2014-01-01

    Governing Congo Basin Forests in a Changing Climate: Actors, Discourses and Institutions for Adaptation and Mitigation

    OA Somorin

    Abstract

    The thesis deals with the central question of the governance processes of making

  4. Avoiding an uncertain catastrophe: Climate change mitigation under risk and wealth heterogeneity

    Science.gov (United States)

    Thomas C. Brown; Stephan Kroll

    2017-01-01

    For environmental problems such as climate change, uncertainty about future conditions makes it difficult to know what the goal of mitigation efforts should be, and inequality among the affected parties makes it hard for them to know how much they each should do toward reaching the goal. We examine the effects of scientific uncertainty and wealth inequality in...

  5. Challenging the claims on the potential of biochar to mitigate climate change

    NARCIS (Netherlands)

    Francischinelli Rittl, T.

    2015-01-01

    Summary

    In this PhD thesis I studied the influence of biochar discourses on the political practices in Brazil and the impact of biochar on soil organic carbon (SOC) stocks, thus contributing to the current debate on the potential of biochar to mitigate climate change. Biochar is the solid

  6. Framework for multi-scale integrated impact analyses of climate change mitigation options

    NARCIS (Netherlands)

    Perez-Soba, M.; Parr, T.; Roupioz, L.F.S.; Winograd, M.; Peña-Claros, M.; Varela Ortega, C.; Ascarrunz, N.; Balvanera, P.; Bholanath, P.; Equihua, M.; Guerreiro, L.; Jones, L.; Maass, M.; Thonicke, K.

    2013-01-01

    Tropical forest ecosystems are hotspots for biodiversity and represent one of the largest terrestrial carbon stocks, making their role in climate change mitigation (CCM) programmes increasingly important (e.g. REDD+). In Latin America these ecosystems suffer from high land use pressures that have

  7. Mitigating climate change through small-scale forestry in the USA: opportunities and challenges

    Science.gov (United States)

    Susan Charnley; David Diaz; Hannah. Gosnell

    2010-01-01

    Forest management for carbon sequestration is a low-cost, low-technology, relatively easy way to help mitigate global climate change that can be adopted now while additional long-term solutions are developed. Carbon-oriented management of forests also offers forest owners an opportunity to obtain a new source of income, and commonly has environmental co-benefits. The...

  8. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa

    NARCIS (Netherlands)

    Descheemaeker, Katrien; Oosting, Simon J.; Homann-Kee Tui, Sabine; Masikati, Patricia; Falconnier, Gatien N.; Giller, K.E.

    2016-01-01

    African mixed crop–livestock systems are vulnerable to climate change and need to adapt in order to improve productivity and sustain people’s livelihoods. These smallholder systems are characterized by high greenhouse gas emission rates, but could play a role in their mitigation. Although the

  9. Ethical implications of co-benefits rationale within climate change mitigation strategy

    Directory of Open Access Journals (Sweden)

    Rita Vasconcellos Oliveira

    2016-10-01

    Full Text Available Climate change mitigation effort is being translated into several actions and discourses that make collateral benefits and their rationale increasingly relevant for sustainability, in such a way that they are now a constant part of the political agenda. Taking a border and consensual perspective, co-benefits are considered here to be emerging advantages of the implementation of measures regarding the lowering of greenhouse gases.Departing from the analysis of policy documents referring to two European urban transportation strategies, the emergent co-benefits are problematized and discussed to better understand their moral aspect. Further ethical reflection is conducted after an analysis of some unintended consequences of co-benefits rationale coming from the mentioned examples. The focus is primarily on the challenges of an integrative moral justification for co-benefits and also for their role in the climate change mitigation effort. We also discuss the limitations of the current normative models that frame co-benefits rationale, from a moral viewpoint and in relation to the overall climate change mitigation strategy.In this article, we propose the concepts of well-being and freedom, as portrayed by Capabilities Approach, as possible guiding notions for the moral and social evaluation of goodness of these emergent benefits and their rationale too. Additionally, some preliminary conclusions are drawn regarding the potential of the presented concepts to favour the climate change mitigation action. Finally, a scenario is drawn where Capabilities Approach is the moral guideline for co-benefits rationale showing this way its potential in terms of enhancing climate change mitigation strategy.

  10. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    Science.gov (United States)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates

  11. Sensitivity of climate change mitigation estimates to assumptions about technical change

    International Nuclear Information System (INIS)

    Dowlatabadi, H.

    1998-01-01

    With greater certainty in anthropogenic influence on observed changes in climate there is increasing pressure for agreements to control emissions of greenhouse gases ([HOUGHTON]). While it is difficult to assess the appropriate level of mitigation, it has been argued that flexibility in meeting emission targets offers significant economic savings. Such flexibility can be exercised in terms of timing of mitigation (i.e. delay) or geographic location of the intervention (e.g. permit trading and Joint-Implementation). Much of this insight is based on standard models of technical change in energy supply and demand. However, standard model formulations rarely consider: (i) a link between the pattern of technical change and policy interventions; (ii) economies of learning; and (iii) technical progress in discovery and recovery of oil and gas. While there is evidence to support the importance of these factors in historic patterns of technical progress, the data necessary to calibrate internally consistent economic models of these phenomena have not been available. In this paper simple representations of endogenous and induced technical change have been used to explore the sensitivity of mitigation cost estimates to how technical change is represented in energy economics models. The scenarios involve control of CO 2 emissions to limit its concentration to no more than 550 ppm(v), starting in the year 2000, and delayed to 2025. This sensitivity analysis has revealed four robust insights: (i) If endogenous technical change is assumed, expected business as usual emissions are higher than otherwise estimated - nevertheless, while 25% greater CO 2 control is required for meeting the CO 2 concentration target, the cost of mitigation is 40% lower; (ii) If technical progress in oil and gas discovery and recovery is assumed, energy use and CO 2 emissions increase by 75% and 65%, respectively above the standard estimates; (iii) If the economies of learning exhibited in various

  12. Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift

    International Nuclear Information System (INIS)

    Mishra, Gouri Shankar; Zakerinia, Saleh; Yeh, Sonia; Teter, Jacob; Morrison, Geoff

    2014-01-01

    We decompose the contribution of five drivers of energy use and CO 2 emissions reductions in achieving climate change goals over 2005–2100 for various climate policy scenarios. This study contributes to the decomposition literature in three ways. First, it disaggregates drivers of energy demand into technological progress and demand for energy services, represented in terms of useful energy, allowing us to estimate their contributions independently — an improvement over other economy-wide decomposition studies. Secondly, this approach reduces the ambiguity present in many previous measures of structural change. We delineate structural shifts into two separate measures: changes in fuel mix within a given resource or service pathway; and changes in mix among distinct energy resources or end-use services. Finally, this study applies decomposition methods to energy and emission trajectories from two mutually informing perspectives: (i) primary energy resources — crude oil, natural gas, coal, nuclear, and renewables; and (ii) end-uses of energy services — residential and commercial buildings, industry, and transportation. Our results show that technological improvements and energy conservation are important in meeting climate goals in the first half of the coming century; and that nuclear and renewable energy and CCS technology are crucial in meeting more stringent goals in the second half of the century. We examine the relative roles of the drivers in reducing CO 2 emissions separately for developed and developing regions. Although the majority of energy and emission growth – and by extension the greatest opportunities for mitigation – will occur in developing countries, the decomposition shows that the relative roles of the five drivers are broadly consistent between these two regions. - Highlights: • We decompose the contribution of five drivers of energy use and CO2 emissions reductions in achieving climate change goals • We analyze differences

  13. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    Directory of Open Access Journals (Sweden)

    Jude C. Dike

    2014-01-01

    Full Text Available This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and South America, the EU, the Middle East, and North America. Results show that there is a positive relationship between crude oil prices and carbon intensity, and a 1% change in carbon intensity is expected to cause about 1.6% change in crude oil prices in the short run and 8.4% change in crude oil prices in the long run while the speed of adjustment is 19%.

  14. Reflections on the uptake of climate change policies by local governments: facing the challenges of mitigation and adaptation

    NARCIS (Netherlands)

    Hoppe, Thomas; van den Berg, Maya Marieke; Coenen, Franciscus H.J.M.

    2014-01-01

    Background: There is a growing body of literature that examines the role of local governments in addressing climate change vis-a-vis mitigation and adaptation. Although it appears that climate change mitigation strategies - in particular those addressing energy issues - are being adopted by a large

  15. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    International Nuclear Information System (INIS)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; Mundra, Anupriya

    2015-01-01

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B). (letter)

  16. Climate change mitigation in Asia and financing mechanism (contributions from Bangladesh)

    International Nuclear Information System (INIS)

    Wahhab, Abdul

    1998-01-01

    The Department of Environment (DOE), Ministlry of Environment and forest, Government of the people's Republic of Bangladesh made a request for a grant to the U.S. Government for studying various aspects of climate change and its implications for Bangladesh. Upon its subsequent approval, a country Study on Climate Change (Bangladesh Climate Change study) was launched in October 1994 to address the following major issues: Preparation of a country-specific inventory of greenhouse gases (GHGs); Assessment of vulnerability of the country, with special respect to climate change; Assessment of mitigation options to develop appropriate strategies and policies for reducing GHG emission into the atmosphere; Recommendations for an appropriate awareness and dissemination programme based on findings of the above components. (au)

  17. Using wood products to mitigate climate change: External costs and structural change

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, 831 25 Oestersund (Sweden)

    2009-02-15

    In this study we examine the use of wood products as a means to mitigate climate change. We describe the life cycle of wood products including forest growth, wood harvest and processing, and product use and disposal, focusing on the multiple roles of wood as both material and fuel. We present a comparative case study of a building constructed with either a wood or a reinforced concrete frame. We find that the production of wood building material uses less energy and emits less carbon than the production of reinforced concrete material. We compare the relative cost of the two building methods without environmental taxation, under the current Swedish industrial energy taxation regime, and in scenarios that incorporate estimates of the full social cost of carbon emission. We find that the inclusion of climate-related external costs improves the economic standing of wood construction vis-a-vis concrete construction. We conclude that policy instruments that internalise the external costs of carbon emission should encourage a structural change toward the increased use of sustainably produced wood products. (author)

  18. Mitigation of climate change impacts on raptors by behavioural adaptation: ecological buffering mechanisms

    Science.gov (United States)

    Wichmann, Matthias C.; Groeneveld, Jürgen; Jeltsch, Florian; Grimm, Volker

    2005-07-01

    The predicted climate change causes deep concerns on the effects of increasing temperatures and changing precipitation patterns on species viability and, in turn, on biodiversity. Models of Population Viability Analysis (PVA) provide a powerful tool to assess the risk of species extinction. However, most PVA models do not take into account the potential effects of behavioural adaptations. Organisms might adapt to new environmental situations and thereby mitigate negative effects of climate change. To demonstrate such mitigation effects, we use an existing PVA model describing a population of the tawny eagle ( Aquila rapax) in the southern Kalahari. This model does not include behavioural adaptations. We develop a new model by assuming that the birds enlarge their average territory size to compensate for lower amounts of precipitation. Here, we found the predicted increase in risk of extinction due to climate change to be much lower than in the original model. However, this "buffering" of climate change by behavioural adaptation is not very effective in coping with increasing interannual variances. We refer to further examples of ecological "buffering mechanisms" from the literature and argue that possible buffering mechanisms should be given due consideration when the effects of climate change on biodiversity are to be predicted.

  19. Mapping of soil organic carbon stocks for spatially explicit assessments of climate change mitigation potential

    International Nuclear Information System (INIS)

    Vågen, Tor-Gunnar; Winowiecki, Leigh A

    2013-01-01

    Current methods for assessing soil organic carbon (SOC) stocks are generally not well suited for understanding variations in SOC stocks in landscapes. This is due to the tedious and time-consuming nature of the sampling methods most commonly used to collect bulk density cores, which limits repeatability across large areas, particularly where information is needed on the spatial dynamics of SOC stocks at scales relevant to management and for spatially explicit targeting of climate change mitigation options. In the current study, approaches were explored for (i) field-based estimates of SOC stocks and (ii) mapping of SOC stocks at moderate to high resolution on the basis of data from four widely contrasting ecosystems in East Africa. Estimated SOC stocks for 0–30 cm depth varied both within and between sites, with site averages ranging from 2 to 8 kg m −2 . The differences in SOC stocks were determined in part by rainfall, but more importantly by sand content. Results also indicate that managing soil erosion is a key strategy for reducing SOC loss and hence in mitigation of climate change in these landscapes. Further, maps were developed on the basis of satellite image reflectance data with multiple R-squared values of 0.65 for the independent validation data set, showing variations in SOC stocks across these landscapes. These maps allow for spatially explicit targeting of potential climate change mitigation efforts through soil carbon sequestration, which is one option for climate change mitigation and adaptation. Further, the maps can be used to monitor the impacts of such mitigation efforts over time. (letter)

  20. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    Science.gov (United States)

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  1. Engaging Climate Change Mitigation Strategies as Citizen-Scientists at SUNY College at Oneonta

    Science.gov (United States)

    Ellis, T. D.; McEnroe, N. A.

    2009-12-01

    At SUNY College at Oneonta, we have developed a new course on Global Climate Change that seeks to educate students on the science and policy considerations related to the ongoing discussion of the causes and effects of climatic change. In this course, taught by the Department of Earth Sciences, we engage not only the science behind how and why the climate is changing, but there is a curricular emphasis on improving how we communicate about climate change science. Class activities include developing personal action plans that include evaluation of how effective their plans will be and the challenges they will face; a mock town-hall meeting that will help student-scientists put themselves into different roles in the community and attempt to see things from different perspectives, and a term-project where students will go in-depth on a proposed mitigation plan (local, regional, national, or international), weigh the pros and cons, and recommend a course of action in terms that a lay person can understand. Our goal is to produce citizen-scientists who can communicate more effectively in public about the science and the stakes of mitigating climate change.

  2. International technology transfer for climate change mitigation and the cases of Russia and China

    Energy Technology Data Exchange (ETDEWEB)

    Martinot, E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Stockholm Environment Inst., Boston, MA (United States); Sinton, J.E. [Univ. of California, Berkeley, CA (United States). Energy and Resources Group]|[Lawrence Berkeley National Lab., CA (United States). International Energy Studies Group; Haddad, B.M. [Univ. of California, Berkeley, CA (United States)

    1997-12-31

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs.

  3. International technology transfer for climate change mitigation and the cases of Russia and China

    International Nuclear Information System (INIS)

    Martinot, E.; Sinton, J.E.

    1997-01-01

    The environmental agenda for mitigating climate change through international transfers of technology is linked with a diverse literature, reviewed here within a framework that combines technological, agent/agenda, and market/transaction perspectives. Literature that bears on international technology transfer for climate change mitigation is similar in many ways for Russia and China: opportunities for energy efficiency and renewable energy, economic reform and restructuring, the difficulties enterprises face in responding to market conditions, international assistance policies, international joint ventures, market intermediation, and capacity building for market development. In both countries, capacity building means enhancing market-oriented capabilities in addition to technological capabilities. For Russia, institutional development is critical, such as new commercial legal codes and housing-sector changes beyond privatization. For China, technology policies and modernization programs significantly influence technology transfers. 234 refs., 3 tabs

  4. Implementing climate change mitigation in health services: the importance of context.

    Science.gov (United States)

    Desmond, Sharon

    2016-10-01

    Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies. © The Author(s) 2016.

  5. Evaluating Health Co-Benefits of Climate Change Mitigation in Urban Mobility.

    Science.gov (United States)

    Wolkinger, Brigitte; Haas, Willi; Bachner, Gabriel; Weisz, Ulli; Steininger, Karl; Hutter, Hans-Peter; Delcour, Jennifer; Griebler, Robert; Mittelbach, Bernhard; Maier, Philipp; Reifeltshammer, Raphael

    2018-04-28

    There is growing recognition that implementation of low-carbon policies in urban passenger transport has near-term health co-benefits through increased physical activity and improved air quality. Nevertheless, co-benefits and related cost reductions are often not taken into account in decision processes, likely because they are not easy to capture. In an interdisciplinary multi-model approach we address this gap, investigating the co-benefits resulting from increased physical activity and improved air quality due to climate mitigation policies for three urban areas. Additionally we take a (macro-)economic perspective, since that is the ultimate interest of policy-makers. Methodologically, we link a transport modelling tool, a transport emission model, an emission dispersion model, a health model and a macroeconomic Computable General Equilibrium (CGE) model to analyze three climate change mitigation scenarios. We show that higher levels of physical exercise and reduced exposure to pollutants due to mitigation measures substantially decrease morbidity and mortality. Expenditures are mainly born by the public sector but are mostly offset by the emerging co-benefits. Our macroeconomic results indicate a strong positive welfare effect, yet with slightly negative GDP and employment effects. We conclude that considering economic co-benefits of climate change mitigation policies in urban mobility can be put forward as a forceful argument for policy makers to take action.

  6. Nuclear power forms an important pillar of many countries’ climate change mitigation strategies

    International Nuclear Information System (INIS)

    Gaspar, Miklos; Sadler, Julie

    2015-01-01

    The need for climate change mitigation is a salient reason for an increasing number of countries considering nuclear power within their national energy portfolios, according to IAEA experts and government sources. “Concerns about climate change is one of the drivers for countries to introduce or to expand their use of nuclear power,” said David Shropshire, Head of the IAEA’s Planning and Economic Studies Section. Other factors include growing energy demands and the desire to increase energy security and reduce dependence on volatile fossil fuel costs, he added.

  7. Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Tomas Lundmark

    2014-03-01

    Full Text Available In Sweden, where forests cover more than 60% of the land area, silviculture and the use of forest products by industry and society play crucial roles in the national carbon balance. A scientific challenge is to understand how different forest management and wood use strategies can best contribute to climate change mitigation benefits. This study uses a set of models to analyze the effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and removals through 2105. If the present Swedish forest use strategy is continued, the long-term climate change mitigation benefit will correspond to more than 60 million tons of avoided or reduced emissions of carbon dioxide annually, compared to a scenario with similar consumption patterns in society but where non-renewable products are used instead of forest-based products. On average about 470 kg of carbon dioxide emissions are avoided for each cubic meter of biomass harvested, after accounting for carbon stock changes, substitution effects and all emissions related to forest management and industrial processes. Due to Sweden’s large export share of forest-based products, the climate change mitigation effect of Swedish forestry is larger abroad than within the country. The study also shows that silvicultural methods to increase forest biomass production can further reduce net carbon dioxide emissions by an additional 40 million tons of per year. Forestry’s contribution to climate change mitigation could be significantly increased if management of the boreal forest were oriented towards increased biomass production and if more wood were used to substitute fossil fuels and energy-intensive materials.

  8. Climate change impacts and greenhouse gas mitigation effects on U.S. hydropower generation

    International Nuclear Information System (INIS)

    Boehlert, Brent; Strzepek, Kenneth M.; Gebretsadik, Yohannes; Swanson, Richard; McCluskey, Alyssa; Neumann, James E.; McFarland, James; Martinich, Jeremy

    2016-01-01

    Highlights: • Analyze contiguous U.S. hydropower generation under various emissions scenarios. • Employ systems model that allocates water to competing uses in 2119 river basins. • Average U.S. generation increases under climate change, but falls under low flows. • Mitigation benefits are $2-$4 billion/year due to high values of carbon-free energy. - Abstract: Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues and consumer expenditures. We analyze the physical and economic effects of changes in hydropower generation for the contiguous U.S. in futures with and without global-scale greenhouse gas (GHG) mitigation, and across patterns from 18 General Circulation Models. Using a monthly water resources systems model of 2119 river basins that routes simulated river runoff through reservoirs, and allocates water to potentially conflicting and climate dependent demands, we provide a first-order estimate of the impacts of various projected emissions outcomes on hydropower generation, and monetize these impacts using outputs from an electric sector planning model for over 500 of the largest U.S. hydropower facilities. We find that, due to generally increasing river runoff under higher emissions scenarios in the Pacific Northwest, climate change tends to increase overall hydropower generation in the contiguous U.S. During low flow months, generation tends to fall with increasing emissions, potentially threatening the estimated low flow, firm energy from hydropower. Although global GHG mitigation slows the growth in hydropower generation, the higher value placed on carbon-free hydropower leads to annual economic benefits ranging from $1.8 billion to $4.3 billion. The present value of these benefits to the U.S. from global greenhouse gas

  9. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Sunil; Raju, K.V. [Institute for Social and Economic Change, Bangalore (India). Centre for Ecological Economics and Natural Resources; Rao, K.S. [Delhi Univ. (India). Dept. of Botany; Kaechele, Harald [Leibniz Centre for Agricultural Landscape Research, Muencheberg (Germany). Inst. of Socioeconomics; Schaldach, Ruediger (ed.) [Kassel Univ. (Germany). Centre for Environmental System Research

    2013-07-01

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  10. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    International Nuclear Information System (INIS)

    Nautiyal, Sunil; Raju, K.V.; Rao, K.S.; Kaechele, Harald; Schaldach, Ruediger

    2013-01-01

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  11. Transforming trash: reuse as a waste management and climate change mitigation strategy

    OpenAIRE

    Vergara, Sintana Eugenia

    2011-01-01

    Waste reflects the culture that produces it and affects the health of the people and environment surrounding it. As urbanization and waste production increase on a global scale, cities are faced with the challenge of how to manage their waste effectively to minimize its negative impacts on public and environmental health. Using waste as a resource can offer a variety of environmental benefits, including climate change mitigation, though these benefits are variable and uncertain. My work begin...

  12. Transport policies related to climate change mitigation: the case of Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Vad Mathiesen, B.; Kappel, J.

    2013-03-15

    This report presents the Danish national policies on reducing the emissions of greenhouse gasses and reducing Denmark's dependency on fossil fuels in the transport sector, as well as some of the results of the policies. Systematic focus on efficient transport and climate mitigation started in 2008 and 2009 with a change - not only in the wording and in the political visions - but also in the actual prioritisation of investments and policies to a very large extent. In March 2012 another milestone was set by the Government, to have Denmark based on 100% renewable energy in 2050. This entails large challenges for the transport sectors, which has not yet been systematically analysed from any Governmental body. In this report we list projects which have done so. The first chapter describes policies and initiatives of international relevance within climate mitigation. The following chapters explain in further debt these policies and their effects as well as a number of additional policies and initiatives related to climate mitigation and transport. The private sector and local government has proven important in connection with an efficient transport sector. Hence selected local and regional projects and their results are introduced as well. To provide an overview of current trends, related scientific projects and other analyses on climate change mitigation and transport are given in the report. The references used in this report can also serve as a source of data and inspiration for the reader. This report is prepared as one of many inputs to the analyses conducted in The Swedish Government's Commission on fossil-free road transport. The task of this Commission is to: ''review alternative developments of fuels and vehicles for fossil-free road transport, to consider measures and policy options that would enable the Swedish road transport system to become climate neutral by 2050, and to propose intermediate emission reduction targets for years such as

  13. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  14. Carbon stock corridors to mitigate climate change and promote biodiversity in the tropics

    Science.gov (United States)

    Jantz, Patrick; Goetz, Scott; Laporte, Nadine

    2014-02-01

    A key issue in global conservation is how biodiversity co-benefits can be incorporated into land use and climate change mitigation activities, particularly those being negotiated under the United Nations to reduce emissions from tropical deforestation and forest degradation. Protected areas have been the dominant strategy for tropical forest conservation and they have increased substantially in recent decades. Avoiding deforestation by preserving carbon stored in vegetation between protected areas provides an opportunity to mitigate the effects of land use and climate change on biodiversity by maintaining habitat connectivity across landscapes. Here we use a high-resolution data set of vegetation carbon stock to map corridors traversing areas of highest biomass between protected areas in the tropics. The derived corridors contain 15% of the total unprotected aboveground carbon in the tropical region. A large number of corridors have carbon densities that approach or exceed those of the protected areas they connect, suggesting these are suitable areas for achieving both habitat connectivity and climate change mitigation benefits. To further illustrate how economic and biological information can be used for corridor prioritization on a regional scale, we conducted a multicriteria analysis of corridors in the Legal Amazon, identifying corridors with high carbon, high species richness and endemism, and low economic opportunity costs. We also assessed the vulnerability of corridors to future deforestation threat.

  15. Strategic and legal framework in forestry and related sectors: Climate change mitigation in European Union and Serbia

    Directory of Open Access Journals (Sweden)

    Ranković Nenad

    2016-01-01

    Full Text Available The important role of forests in mitigating and adapting to climate changes is recognized and widely accepted. Therefore, it becomes a subject of universal interest and support. However, in the national strategies relating to climate change, the importance of the forestry sector in mitigating these changes is quite often not discussed in detail. In addition, the problem of climate change is not fully represented and included in national forestry policies. The aim of this research was to determine the compliance and differences of strategic and legislative frameworks in forestry and related sectors, relating to climate change mitigation in the EU and Serbia. At the EU level, there are two strategies and a policy framework, and in Serbia, eight sectoral strategies, referring and discussing the climate change mitigation through forestry. At the same time, these issues are highlighted as the primary objective, only in the Climate and Energy Package of the EU and the Forestry Development Strategy in Serbia. In terms of legislative framework in Serbia, two laws have climate change mitigation through forestry as the primary objective, while for the analyzed relevant EU legislation, this is a secondary objective. In Serbia, only the Forest law has a direct impact on climate change mitigation through forestry, while at EU level, there is no regulation, directive or communication, with the same direct influence. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studies of climate changes and their impact on the environment-monitoring impacts, adaptation and mitigation, podprojekat, 43007/16-III: Socio-economic development, mitigation and adaptation to climate change

  16. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    Science.gov (United States)

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  17. Perspectives on global climate change: A review of the adaptation and mitigation approaches

    International Nuclear Information System (INIS)

    Morrisette, P.M.

    1992-01-01

    This paper was prepared for the conference on Global Climate Change and International Security sponsored by the Midwest Consortium for International Security Studies of the American Academy of Arts and Sciences and held in Chicago, Illinois on February 11-13, 1992. The purpose of the paper is to provide some background on the different perceptions and perspectives that are presently shaping the policy debate on how to respond to the problem of global warming. For better or worse, this debate has focused primarily on whether to adapt to climate change in the future or to mitigate climate change in the present, and as the issue has become increasingly political this debate has become polarized. The two approaches, as this paper notes, are not mutually exclusive; in fact, they share much in common. Differences, however, can be found in how proponents of each view the risks of global climate change. This paper provides a brief outline of the progression of global warming from an obscure scientific concern into a leading international political issue, reviews previous efforts by social scientists to assess attitudes and positions on global warming, and examines in detail the adaptation and mitigation perspectives and assesses how they differ on the basis of different conceptions of uncertainty and risk, equity, and technology

  18. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    Science.gov (United States)

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John

  19. ¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Karena Shaw

    2013-05-01

    Full Text Available Shale gas proponents argue this unconventional fossil fuel offers a “bridge” towards a cleaner energy system by offsetting higher-carbon fuels such as coal. The technical feasibility of reconciling shale gas development with climate action remains contested. However, we here argue that governance challenges are both more pressing and more profound. Reconciling shale gas and climate action requires institutions capable of responding effectively to uncertainty; intervening to mandate emissions reductions and internalize costs to industry; and managing the energy system strategically towards a lower carbon future. Such policy measures prove challenging, particularly in jurisdictions that stand to benefit economically from unconventional fuels. We illustrate this dilemma through a case study of shale gas development in British Columbia, Canada, a global leader on climate policy that is nonetheless struggling to manage gas development for mitigation. The BC case is indicative of the constraints jurisdictions face both to reconcile gas development and climate action, and to manage the industry adequately to achieve social licence and minimize resistance. More broadly, the case attests to the magnitude of change required to transform our energy systems to mitigate climate change.

  20. Limited influence of climate change mitigation on short-term glacier mass loss

    Science.gov (United States)

    Marzeion, Ben; Kaser, Georg; Maussion, Fabien; Champollion, Nicolas

    2018-04-01

    Glacier mass loss is a key contributor to sea-level change1,2, slope instability in high-mountain regions3,4 and the changing seasonality and volume of river flow5-7. Understanding the causes, mechanisms and time scales of glacier change is therefore paramount to identifying successful strategies for mitigation and adaptation. Here, we use temperature and precipitation fields from the Coupled Model Intercomparison Project Phase 5 output to force a glacier evolution model, quantifying mass responses to future climatic change. We find that contemporary glacier mass is in disequilibrium with the current climate, and 36 ± 8% mass loss is already committed in response to past greenhouse gas emissions. Consequently, mitigating future emissions will have only very limited influence on glacier mass change in the twenty-first century. No significant differences between 1.5 and 2 K warming scenarios are detectable in the sea-level contribution of glaciers accumulated within the twenty-first century. In the long-term, however, mitigation will exert strong control, suggesting that ambitious measures are necessary for the long-term preservation of glaciers.

  1. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    Science.gov (United States)

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  2. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers

    International Nuclear Information System (INIS)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z.

    2007-01-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO 2 Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  3. Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a 'business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995-2015) scenario and from the three BAU climate (2040-2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1-3: 2010-2039, 2040-2069, 2070-2098) in which changes in annual average temperature were +0.5, +1.3 and +2.1C, respectively, while critical winter season precipitation changes were -3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040-2060 period was +1.2C and the average winter precipitation change was -3 percent, relative to the RCM control climate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative

  4. Unprecedented rates of land-use transformation in modeled climate change mitigation pathways

    Science.gov (United States)

    Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.

    2017-12-01

    Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.

  5. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    Directory of Open Access Journals (Sweden)

    Heather Keith

    Full Text Available Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize

  6. Toward Collective Impact for Climate Resilience: Maximizing Climate Change Education for Preparedness, Adaptation, and Mitigation

    Science.gov (United States)

    Ledley, T. S.; Niepold, F., III; McCaffrey, M.

    2014-12-01

    Increasing the capacity of society to make informed climate decisions based on scientific evidence is imperative. While a wide range of education programs and communication efforts to improve understanding and facilitate responsible effective decision-making have been developed in recent years, these efforts have been largely disconnected. The interdisciplinary and trans-disciplinary nature of the problems and potential responses to climate change requires a broad range of expertise and a strategy that overcomes the inherent limitations of isolated programs and efforts. To extend the reach and impact of climate change education and engagement efforts, it is necessary to have a coordination that results in greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network has facilitated a series of discussions at six professional meetings from late 2012 through spring 2014 to begin to develop and define the elements of collective impact on climate change education and engagement. These discussions have focused on getting input from the community on a common agenda and what a backbone support organization could do to help extend their reach and impact and enable a longer-term sustainability. These discussions will continue at future meetings, with the focus shifting to developing a common agenda and shared metrics. In this presentation we will summarize the outcomes of these discussions thus far, especially with respect to what activities a backbone support organization might provide to help increase the collective impact of climate change education effort and invite others to join the development of public-private partnership to improve the nations climate literacy. The cumulative input into this evolving discussion on collective

  7. Combating the effects of climatic change on forests by mitigation strategies

    Directory of Open Access Journals (Sweden)

    Dieter Matthias

    2010-11-01

    Full Text Available Abstract Background Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions. Results We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES. We used the scenarios A1B (rapid and successful economic development and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development. Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management. Conclusions The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.

  8. Public attention to science and political news and support for climate change mitigation

    Science.gov (United States)

    Hart, P. Sol; Nisbet, Erik C.; Myers, Teresa A.

    2015-06-01

    We examine how attention to science and political news may influence public knowledge, perceived harm, and support for climate mitigation policies. Previous research examining these relationships has not fully accounted for how political ideology shapes the mental processes through which the public interprets media discourses about climate change. We incorporate political ideology and the concept of motivated cognition into our analysis to compare and contrast two prominent models of opinion formation, the scientific literacy model, which posits that disseminating scientific information will move public opinion towards the scientific consensus, and the motivated reasoning model, which posits that individuals will interpret information in a biased manner. Our analysis finds support for both models of opinion formation with key differences across ideological groups. Attention to science news was associated with greater perceptions of harm and knowledge for conservatives, but only additional knowledge for liberals. Supporting the literacy model, greater knowledge was associated with more support for climate mitigation for liberals. In contrast, consistent with motivated reasoning, more knowledgeable conservatives were less supportive of mitigation policy. In addition, attention to political news had a negative association with perceived harm for conservatives but not for liberals.

  9. Accessing international financing for climate change mitigation - A guidebook for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Limaye, D.R.; Zhu, X.

    2012-08-15

    This guidebook has been prepared by the UNEP Risoe Centre (URC) as part of its Technology Needs Assessment (TNA) project. The TNA project assists developing countries to identify national mitigation and adaptation technology priorities and to develop Technology Action Plans (TAPs) for mitigation of greenhouse gas (GHG) emissions and climate change adaptation. This guidebook provides information to help TNA countries better identify and access financial resources for the mitigation activities included in their national TAPs. This guidebook covers both mitigation 'projects' (such as a wind farm or a solar PV generation facility) and 'programmes' (such as a credit line for financing energy efficiency projects in small and medium-sized enterprises (SMEs), or bulk procurement and distribution of compact fluorescent lamps to households). The primary emphasis is on multilateral and bilateral sources of financing but the guidebook also includes an overview of private funding sources and public-private partnerships (PPPs). This guidebook only covers international financing for mitigation actions in developing countries. For example, EU funding for EU member countries and Chinese funding for mitigation in China are not covered in this guidebook. However, the EU funding for mitigation in developing countries and Chinese funding supporting mitigation in other developing countries are included. Special funds established in some developing countries by pooling financing support from developed countries are also covered in this guidebook. Information on the financing sources was compiled in a standard format and reviewed and analysed to categorise the financing sources. For the multilateral and bilateral financing sources, the available information was used to define their major characteristics (such as geographic coverage, technology/sector focus, funding sources, financing objectives, financing mechanisms, and management and governance). In addition, the

  10. Four key reasons why climate change adaptation and mitigation need a gendered approach

    Directory of Open Access Journals (Sweden)

    Carla Sarrouy

    2014-09-01

    Full Text Available Climate change is having a growing impact on every human activity, especially on agriculture with altered rainfall patterns and an increased number and intensity of extreme weather events. This article argues that efforts to mitigate and adapt to climate change must consider whole food systems – rather than the sole production of food – whilst embracing a conscious gendered approach. Women are the main victims of hunger, but they are also the main actors of global food systems, they greatly contribute to their household’s and community’s wellbeing and detain a rich and often untapped knowledge of food systems. Promoting the role of women in our global food systems enhances the inclusion of criteria mainly valued by women such as resilience, diversity and nutrition, which are paramount for climate change mitigation and adaptation.   Photo credit: By OxFam East Africa [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0], via Wikimedia Commons

  11. Climate change mitigation in the Forest Sector: what Happened in Poznan

    International Nuclear Information System (INIS)

    Loisel, C.

    2008-01-01

    Climate change mitigation in the forestry sector was an important topic during the recent Climate Convention conference in Poznan (1- 12 December 2008). Forests appeared in various agenda items of the formal negotiations: - under the Ad Hoc Working Group on Long-term Cooperative Action under the Convention (AWG-LCA) concerning policy approaches and positives incentives on issues relating to reducing emissions from deforestation and forest degradation in developing countries; and the role of conservation, sustainable management of forests and enhancement of forest carbon stocks in developing countries ('REDD+'), - under the Subsidiary Body for Scientific and Technological Advice (SBSTA) concerning methodological aspects on the above, - under the Ad Hoc Working Group on Further Commitments for Annex I Parties under the Kyoto Protocol (AWG-KP) concerning the treatment of greenhouse gas emissions and removals related to land use, land use change and forestry (LULUCF) in Annex I Parties in the context of post-2012 commitments. This note recalls what happened under these agenda items and also on the margins of formal negotiations in relation to climate change mitigation in the forest sector. (author)

  12. Climate Change Mitigation in a Sustainable World - Findings of the IPCC 4th Assessment Report

    International Nuclear Information System (INIS)

    Sims, R. E. H.

    2007-01-01

    The 4th Assessment Report on climate change of the Intergovernmental Panel on Climate Change (IPCC, 2007) has recently been completed. The fi rst report in the IPCC 4th Assessment series by Working Group I outlined the latest knowledge on Climate Science. The second by Working Group 2 covered the possibilities for Adaptation of ecosystems, glaciers preceding, sea level rising, droughts etc in various regions. This paper is based on the findings of Working Group III as presented in the recently published report Climate Change 2007: Mitigation of Climate Change. The 27 paragraph Summary for Policy Makers was approved sentence by sentence over 4 days in May 2007 by 120 government delegations in Bangkok, Thailand. The three short Summaries for Policy Makers (SPM), Synthesis report, and the three full reports can be found at www.ipcc.ch. In addition the short Synthesis Report across all three working groups is soon to be released. The report on Mitigation attempted to compile the latest scientific knowledge relating to low-carbon emitting technologies; assessed their costs and potentials for greenhouse gas (GHG) emission avoidance; evaluated their long term prospects out to 2100 for stabilising atmospheric GHGs; provided a detailed list of policy options; and discussed the opportunities for sustainable development and equity linked with GHG abatement. Over the 3 year writing and review process, the author of this paper was the co-ordinating lead author of the writing team for the Working Group III chapter on Energy Supply. Of the 13 chapters, this one received the greatest attention with over 5000 review comments that were each responded to, and with the sections on nuclear and renewable energy receiving a major share of them. Since the 3rd Assessment Report (TAR) was published in 2001, the over-arching message now being delivered by Working Group III is a stronger but positive one: Action is required. The situation is urgent - but not beyond repair. Many energy

  13. Pathways to Mexico’s climate change mitigation targets: A multi-model analysis

    International Nuclear Information System (INIS)

    Veysey, Jason; Octaviano, Claudia; Calvin, Katherine; Martinez, Sara Herreras; Kitous, Alban; McFarland, James; Zwaan, Bob van der

    2016-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic models involved in the CLIMACAP-LAMP project. To meet Mexico’s emission reduction targets, all modeling groups agree that decarbonization of electricity is needed, along with changes in the transport sector, either to more efficient vehicles or a combination of more efficient vehicles and lower carbon fuels. These measures reduce GHG emissions as well as emissions of other air pollutants. The models find different energy supply pathways, with some solutions based on renewable energy and others relying on biomass or fossil fuels with carbon capture and storage. The economy-wide costs of deep mitigation could range from 2% to 4% of GDP in 2030, and from 7% to 15% of GDP in 2050. Our results suggest that Mexico has some flexibility in designing deep mitigation strategies, and that technological options could allow Mexico to achieve its emission reduction targets, albeit at a cost to the country. - Highlights: • We explore paths to deep mitigation for Mexico (50% cut in GHG emissions by 2050). • We present results from six models and compare them with Mexican climate policy. • We find a range of potential paths and costs, implying options for policy makers. • An important commonality between the paths is a decarbonized electricity supply. • Estimated mitigation costs vary but are higher than official published estimates.

  14. Attitudes to climate change, perceptions of disaster risk, and mitigation and adaptation behavior in Yunlin County, Taiwan.

    Science.gov (United States)

    Lee, Yung-Jaan; Tung, Chuan-Ming; Lin, Shih-Chien

    2018-02-08

    Issues that are associated with climate change have global importance. Most related studies take a national or regional perspective on the impact of climate change. Taiwan is constrained by its geographical conditions, which increase its vulnerability to climate change, especially in its western coastal areas. The county that is most affected by climate change is Yunlin. In 2013-2014, projects that were sponsored by Taiwan's government analyzed the relationship among synthesized vulnerability, ecological footprint (EF) and adaptation to climate change and proposed 15 categories of synthesized vulnerability and EF values. This study further examines the relationship between vulnerability and EF values and examines how residents of four townships-Linnei, Sihu, Mailiao, and Huwei-cope with the effects of climate change. This study investigates whether the residents of the four townships vary in their attitudes to climate change, their perceptions of disaster risk, and their behavioral intentions with respect to coping with climate change. The structural equation model (SEM) is used to examine the relationships among attitudes to climate change, perceptions of disaster risk, and the behavioral intentions of residents in townships with various vulnerabilities to climate change. The results that are obtained using the SEM reveal that climate change mitigation/adaptation behavior is affected by attitudes to climate change and perceptions of disaster risk. However, the effects of attitudes and perceptions on mitigation and adaptation that are mediated by place attachment are not statistically significant.

  15. Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Arvesen, Anders, E-mail: anders.arvesen@ntnu.no [Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491 (Norway); Bright, Ryan M.; Hertwich, Edgar G. [Industrial Ecology Programme and Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim NO-7491 (Norway)

    2011-11-15

    This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the climate policy arena, we argue that unrealistic technology optimism exists in current climate change mitigation assessments, and, consequently, world energy and climate policy. The overarching theme of the arguments is that incomplete knowledge of indirect effects, and neglect of interactions between parts of physical and social sub-systems, systematically leads to overly optimistic assessments. Society must likely seek deeper changes in social and economic structures to preserve the climatic conditions to which the human civilization is adapted. We call for priority to be given to research evaluating aspects of mitigation in a broad, system-wide perspective. - Highlights: > We highlight some of the simplifying assumptions in climate change mitigation scenarios. > Mitigation assessments are the basis of unfounded technology optimism in climate policy. > Society must likely seek deeper changes in social and economic structures to stabilize climate.

  16. Considering only first-order effects? How simplifications lead to unrealistic technology optimism in climate change mitigation

    International Nuclear Information System (INIS)

    Arvesen, Anders; Bright, Ryan M.; Hertwich, Edgar G.

    2011-01-01

    This article challenges the notion that energy efficiency and 'clean' energy technologies can deliver sufficient degrees of climate change mitigation. By six arguments not widely recognized in the climate policy arena, we argue that unrealistic technology optimism exists in current climate change mitigation assessments, and, consequently, world energy and climate policy. The overarching theme of the arguments is that incomplete knowledge of indirect effects, and neglect of interactions between parts of physical and social sub-systems, systematically leads to overly optimistic assessments. Society must likely seek deeper changes in social and economic structures to preserve the climatic conditions to which the human civilization is adapted. We call for priority to be given to research evaluating aspects of mitigation in a broad, system-wide perspective. - Highlights: → We highlight some of the simplifying assumptions in climate change mitigation scenarios. → Mitigation assessments are the basis of unfounded technology optimism in climate policy. → Society must likely seek deeper changes in social and economic structures to stabilize climate.

  17. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?

    KAUST Repository

    Duarte, Carlos M.

    2017-04-12

    Seaweed aquaculture, the fastest-growing component of global food production, offers a slate of opportunities to mitigate, and adapt to climate change. Seaweed farms release carbon that maybe buried in sediments or exported to the deep sea, therefore acting as a CO2 sink. The crop can also be used, in total or in part, for biofuel production, with a potential CO2 mitigation capacity, in terms of avoided emissions from fossil fuels, of about 1,500 tons CO2 km−2 year−1. Seaweed aquaculture can also help reduce the emissions from agriculture, by improving soil quality substituting synthetic fertilizer and when included in cattle fed, lowering methane emissions from cattle. Seaweed aquaculture contributes to climate change adaptation by damping wave energy and protecting shorelines, and by elevating pH and supplying oxygen to the waters, thereby locally reducing the effects of ocean acidification and de-oxygenation. The scope to expand seaweed aquaculture is, however, limited by the availability of suitable areas and competition for suitable areas with other uses, engineering systems capable of coping with rough conditions offshore, and increasing market demand for seaweed products, among other factors. Despite these limitations, seaweed farming practices can be optimized to maximize climate benefits, which may, if economically compensated, improve the income of seaweed farmers.

  18. Nitrogen use efficiency in the US economy: Towards mitigation of climate change impacts

    Science.gov (United States)

    Houlton, B. Z.; Boyer, E. W.; Finzi, A. C.; Galloway, J. N.; Leach, A.; Liptzin, D.; Melillo, J. M.; Rosenstock, T.; Sobota, D. J.; Townsend, A. R.

    2011-12-01

    Nitrogen (N) interacts strongly with climate change in determining the severity and extent of many human health and environmental issues, such as eutrophication, poor air quality, and the maintenance of a secure food system. We were motivated by such N-climate interactions and their environmental impacts as part of a broader assessment of N in the continental United States. We here seek to identify and quantify inefficiencies associated with intentional N creation (i.e., creating synthetic N fertilizers and cultivating N-fixing legumes) among the major N-dependent sectors of the United States economy. We define efficiency of N use as the proportion N directly incorporated into food, fiber, biofuel, and industrial goods from the pool of intentionally created N. We are interested in whether reductions in N use could be achieved without changing the current functioning of the major N-dependent economic sectors. Our analysis points to substantial inefficiencies in N use at the national scale. A large percentage of the N applied as synthetic fertilizer and fixed by legumes annually fails to enter the United States food supply. Much of the unincorporated N enters air, land and water, where it can impact human health and ecosystems. The climate change forcing of N is uncertain, though it appears that the combined effects of intentionally and unintentionally created N on climate is roughly neutral in the United States (i.e., net effect of N-enhanced C storage, nitrous oxide emissions, N-based aerosols, and tropospheric ozone on climate forcing). Thus, it is reasonable to expect that improved efficiencies in N use would have minimal negative side effects on the United States economy, human health and the environment. We suggest that policies aimed at improving N-use efficiencies are an alternative to direct climate mitigation strategies in offsetting several impacts of climate change on human health and ecosystem functioning.

  19. Climate change, insurance, and the buildings sector: Technological synergisms between adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2002-11-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to better understand this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognized are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to significantly expanding these efforts. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups.

  20. Climate change, insurance and the building sector: technological synergisms between adaptation and mitigation

    International Nuclear Information System (INIS)

    Mills, E.

    2003-01-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy-efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to understand better this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognised are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to expanding these efforts significantly. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups. (author)

  1. Public Perception of Climate Change and Mitigation Technologies; Percepcion Publica del Cambio Climatico y las Tecnologias de Mitigacion

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R; Sala, R; Oltra, C

    2007-09-27

    Public perception and understanding of climate change and mitigation policies may have a significant influence on the development of political programs as well as on individual behavioral intentions to address climate change. The study of public attitudes and beliefs about climate change and energy policy may be useful in the design of suitable communication strategies and in the efficient implementation of climate change mitigation and adaptation strategies. Based on a survey to the Spanish population, we analyze different issues such as the level of concern towards climate change, the existing knowledge about the contribution of different energy technologies to global warming, the attitudes toward energy technologies and the beliefs about potential adaptation strategies. Comparisons with other countries based on similar public opinion surveys are established to obtain a broader view of policy preferences and attitudes regarding climate change. (Author) 5 refs.

  2. The Emergence of Climate Change and Mitigation Action by Society: An Agent-Based Scenario Discovery Study

    NARCIS (Netherlands)

    Greeven, Sebastiaan; Kraan, O.D.E.; Chappin, E.J.L.

    2016-01-01

    Developing model-based narratives of society’s response to climate change is challenged by two factors. First, society’s response to possible future climate change is subject to many uncertainties. Second, we argue that society’s mitigation action emerge out of the actions and interactions of the

  3. Obesity and climate change mitigation in Australia: overview and analysis of policies with co-benefits.

    Science.gov (United States)

    Lowe, Melanie

    2014-02-01

    To provide an overview of the shared structural causes of obesity and climate change, and analyse policies that could be implemented in Australia to both equitably reduce obesity rates and contribute to mitigating climate change. Informed by the political economy of health theoretical framework, a review was conducted of the literature on the shared causes of, and solutions to, obesity and climate change. Policies with potential co-benefits for climate change and obesity were then analysed based upon their feasibility and capacity to reduce greenhouse gas emissions and equitably reduce obesity rates in Australia. Policies with potential co-benefits fit within three broad categories: those to replace car use with low-emissions, active modes of transport; those to improve diets and reduce emissions from the food system; and macro-level economic policies to reduce the over-consumption of food and fossil fuel energy. Given the complex causes of both problems, it is argued that a full spectrum of complementary strategies across different sectors should be utilised. Such an approach would have significant public health, social and environmental benefits. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  4. Financialization impedes climate change mitigation: Evidence from the early American solar industry.

    Science.gov (United States)

    Jerneck, Max

    2017-03-01

    The article investigates how financialization impedes climate change mitigation by examining its effects on the early history of one low-carbon industry, solar photovoltaics in the United States. The industry grew rapidly in the 1970s, as large financial conglomerates acquired independent firms. While providing needed financial support, conglomerates changed the focus from existing markets in consumer applications toward a future utility market that never materialized. Concentration of the industry also left it vulnerable to the corporate restructuring of the 1980s, when the conglomerates were dismantled and solar divisions were pared back or sold off to foreign firms. Both the move toward conglomeration, when corporations became managed as stock portfolios, and its subsequent reversal were the result of increased financial dominance over corporate governance. The American case is contrasted with the more successful case of Japan, where these changes to corporate governance did not occur. Insulated from shareholder pressure and financial turbulence, Japanese photovoltaics manufacturers continued to expand investment throughout the 1980s when their American rivals were cutting back. The study is informed by Joseph Schumpeter's theory of creative destruction and Hyman Minsky's theory of financialization, along with economic sociology. By highlighting the tenuous and conflicting relation between finance and production that shaped the early history of the photovoltaics industry, the article raises doubts about the prevailing approach to mitigate climate change through carbon pricing. Given the uncertainty of innovation and the ease of speculation, it will do little to spur low-carbon technology development without financial structures supporting patient capital.

  5. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    Science.gov (United States)

    Haden, Van R; Niles, Meredith T; Lubell, Mark; Perlman, Joshua; Jackson, Louise E

    2012-01-01

    In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  6. CFD modeling of a vertical-axis wind turbine for efficiency improvement and climate change mitigation

    International Nuclear Information System (INIS)

    Ajedegba, J.O.; Rosen, M.A.; Naterer, G.F.; Tsang, E.

    2009-01-01

    Wind power can help mitigate climate change. Computational fluid dynamics (CFD) is used here to simulate and analyze the Zephyr vertical axis wind turbine and to assess how it reduces greenhouse gas emissions. Fluid flow through the turbine is simulated to predict its performance. A multiple reference frame model capability of CFD is used to express the turbine power output as a function of the wind free stream velocity and the rotor rotational speed. The results suggest the wind turbine could significantly reduce energy demand and greenhouse gas emissions in urban and rural settings relative to conventional power systems. (author)

  7. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    Science.gov (United States)

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  9. Benefits of collaborative and comparative research on land use change and climate mitigation

    Science.gov (United States)

    Zhu, Zhiliang; Gong, Peng

    2016-04-01

    The world's two largest economies are also the latest greenhouse gas emitters. The United States is committed to reduce the net greenhouse gas emission by 28% below the 2005 level by 2025. Similarly China also announced significant climate mitigation steps at the Paris climate convention. These policy plans will require actions including reduction of GHG emissions as well as protection of carbon stored in biologic pools and increase of carbon sequestration by the natural ecosystems. Major drivers of ecosystem carbon sequestration and protection of existing carbon resources include land use, disturbances, and climate change. Recent studies indicate that vegetated ecosystems in the United States remain as a carbon sink but the sink is weakening due to increased disturbances (such as wildfire and harvesting) and aging of forests. Unique land use policies in China such as large-scale afforestation in the recent decades have reportedly led to significant increase in total forest area and aboveground biomass, although it is not clear to what degree the increase has translated to strengthened net uptake of atmospheric CO2 and the rate of sequestration by vegetated ecosystems. What lessons can we draw from different land management and land use practices in the U.S. and China that can benefit scientific advances and climate mitigation goals? Research conducted collaboratively by the U.S. Geological Survey and China Ministry of Science and Technology has led to improved techniques for tracking and modeling land use change and ecosystem disturbances and improved understanding of consequences of different land use change and management practices on ecosystem carbon sequestration capacities.

  10. Enhancing international technology cooperation for climate change mitigation. Lessons from an electromobility case study

    Energy Technology Data Exchange (ETDEWEB)

    Bhasin, Shikha

    2014-07-01

    As a global agreement on climate mitigation and absolute emissions reductions remains grid-locked, this paper assesses whether the prospects for international technology cooperation in low-carbon sectors can be improved. It analyses the case of international cooperation on electric vehicle technologies to elaborate on the trade-offs that cooperation such as this inherently attempts to balance- national growth objectives of industrial and technology development versus the global goods benefit of reducing greenhouse gas (GHG) emissions. It focuses on bilateral German-Chinese programmes for electric vehicle development, as well as multilateral platforms on low-carbon technology cooperation related to electric vehicles. Based on insights from these cases studies, this paper ultimately provides policy recommendations to address gaps in international technology cooperation at a bilateral level for ongoing German-Chinese engagement on electric vehicles; and at a multilateral level with a focus on the emerging technology cooperation framework of the United Nations Framework Convention on Climate Change (UNFCCC).

  11. Enhancing international technology cooperation for climate change mitigation. Lessons from an electromobility case study

    International Nuclear Information System (INIS)

    Bhasin, Shikha

    2014-01-01

    As a global agreement on climate mitigation and absolute emissions reductions remains grid-locked, this paper assesses whether the prospects for international technology cooperation in low-carbon sectors can be improved. It analyses the case of international cooperation on electric vehicle technologies to elaborate on the trade-offs that cooperation such as this inherently attempts to balance- national growth objectives of industrial and technology development versus the global goods benefit of reducing greenhouse gas (GHG) emissions. It focuses on bilateral German-Chinese programmes for electric vehicle development, as well as multilateral platforms on low-carbon technology cooperation related to electric vehicles. Based on insights from these cases studies, this paper ultimately provides policy recommendations to address gaps in international technology cooperation at a bilateral level for ongoing German-Chinese engagement on electric vehicles; and at a multilateral level with a focus on the emerging technology cooperation framework of the United Nations Framework Convention on Climate Change (UNFCCC).

  12. Climate change mitigation in developing countries. Brazil, China, India, Mexico, South Africa, and Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Chandler, W.; Secrest, T.J.; Logan, J. [Battelle Memorial Institute, Columbus, OH (United States); Schaeffer, R.; Szklo, A.S.; Schuler, M.E. [Federal University of Rio de Janeiro, Rio de Janeiro (Brazil); Dadi, Zhou; Kejun, Zhang; Yuezhong, Zhu; Huaqing, Xu [China Energy Research Institute, Beijing (China); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India); Tudela, F. [El Colegio de Mexico, Mexico D.F. (Mexico); Davidson, O.; Mwakasonda, S.; Spalding-Fecher, R.; Winkler, H.; Mukheibir, P. [University of Cape Toen, Cape Town (South Africa); Alpan-Atamer, S. [MedConsult, Ankara (Turkey)

    2002-10-15

    Greenhouse gas emissions from developing countries will likely surpass those from developed countries within the first half of this century, highlighting the need for developing country efforts to reduce the risk of climate change. While developing nations have been reluctant to accept binding emissions targets, asking that richer nations take action first, many are undertaking efforts that have significantly reduced the growth of their own greenhouse gas emissions. In most cases, climate mitigation is not the goal, but rather an outgrowth of efforts driven by economic, security, or local environmental concerns. This study attempts to document the climate mitigation resulting from such efforts in six key countries (Brazil, China, India, Mexico, South Africa, and Turkey) and to inform policy-making aimed at further mitigation in these and other developing nations. The six countries examined here reflect significant regional, economic, demographic, and energy resource diversity. They include the world's two most populous nations, a major oil exporter, Africa's largest greenhouse gas emitter, and the country with the largest expanse of tropical forest. While their circumstances vary widely, these countries share common concerns that have motivated actions resulting in reduced greenhouse gas emissions growth. Primary among these concerns are economic growth, energy security, and improved air quality. The analysis presented here demonstrates that actions taken by these countries to achieve these and other goals have reduced the growth of their combined annual greenhouse gas emissions over the past three decades by nearly 300 million tons a year. If not for these actions, the annual emissions of these six countries would likely be about 18 percent higher than they are today. To put these figures in perspective, if all developed countries were to meet the emission targets set by the Kyoto Protocol, they would have to reduce their emissions by an estimated 392

  13. Applying a Systems Approach to Monitoring and Assessing Climate Change Mitigation Potential in Mexico's Forest Sector

    Science.gov (United States)

    Olguin-Alvarez, M. I.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.; Magnan, M.; Dugan, A.; Mascorro, V.; Alanís, A.; Serrano, E.; Kurz, W. A.

    2017-12-01

    Since 2012, the Mexican government through its National Forestry Commission, with support from the Commission for Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made important progress towards the use of carbon dynamics models ("gain-loss" approach) for greenhouse gas (GHG) emissions monitoring and projections into the future. Here we assess the biophysical mitigation potential of policy alternatives identified by the Mexican Government (e.g. net zero deforestation rate, sustainable forest management) based on a systems approach that models carbon dynamics in forest ecosystems, harvested wood products and substitution benefits in two contrasting states of Mexico. We provide key messages and results derived from the use of the Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model, parameterized with input data from Mexicós National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data). The ultimate goal of this tri-national effort is to develop data and tools for carbon assessment in strategic landscapes in North America, emphasizing the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation in accordance with the Paris Agreement of the United Nation Framework Convention on Climate Change (e.g. Mid-Century Strategy, NDC goals).

  14. Tooling up urban planning for climate change mitigation in Malaysian cities

    International Nuclear Information System (INIS)

    Chau, L W; Yap, Z C; Ho, C S

    2014-01-01

    The city's 2-dimensional spatial structure and 3-dimensional form significantly influence its energy and GHG emission intensity. In rapidly developing urban-regions, the ability of the local planning authorities to quantify the spatial structure and form of existing urban areas, new developments and the emergent urban-region in terms of GHG emission is vital to any effective local, national and global climate change mitigation effort. While a wide array of tools has been developed for assessing built environment sustainability at various spatial scales, these are predominantly eco-efficiency rating tools that do not model the 'spatial structure-GHG' relationship and do not illustrate the GHG implications of urban structure and form, which crucially inform local planning decisions with respect to climate change mitigation. This paper takes the first steps in analysing three spatial-based planning models (Envision Tomorrow, GHGProof, URBEMIS) that estimate GHG emissions towards assessing their adaptability for application in Malaysian cities. It looks into the models' i nner working , unpacking the variables and their relationships; assumptions and conversion rates used; and their data requirement and structure. The models' characteristics and features are critically compared to evaluate their capabilities, limitations and relevance to the Malaysian urban planning context, particularly in terms of data availability

  15. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  16. Integrating Climate Change Adaptation and Mitigation with Urban planning for a Livable city in Tehran

    Directory of Open Access Journals (Sweden)

    Mojtaba Rafieian

    2015-09-01

    Full Text Available Climate change impacts are seen within growing numbers of cities in low- and middle-income countries, so there is growing interest in the adaptation and mitigation plans and programs put forward by city authorities. This paper aims to provide a better understanding of the constraints which cities face them in this subject by analyzing the case of Tehran. City has a commitment to decentralization, transparency, accountability and participation. There are some new programs and plansin urban planning which has evolved to include a broad vision of urban challenges and responses, a commitment to environmental sustainability and a strategic plan that has involved multiple stakeholders. This paper describes the principles for integrating climate change adaptation and mitigation with urban planning which can be useful for urban authorities. Then it analysesthe many measures implemented in Tehran over the last years, which provide a solid foundation for more systematically addressing adaptation. It also describes the significant challenges faced by the city’s administration, especially around funding, data and the challenge of responding to pressing and competing interests.Tehran city is still struggling to complete greenhouse gas inventories andit has, however, implemented several specific mitigation measures and tries continuously to place this issue on the government’s agenda.However, Tehran’s particular way of responding to current development challenges has put in place the flexibility, creativity and commitment needed for adaptation, regardless of whether this is made explicit or not. The results of this study reveal thatTehran’s policies have had continuity and consistency, despite being frequently revised over years, because each administration has built upon the progress of its predecessor. This is quite unusual; it is more common for there to be a revision of all that has been accomplished and for the need to point out the negative

  17. Ruang Terbuka Hijau Dalam Mitigasi Perubahan Iklim Green Open Space in Climate Change Mitigation

    OpenAIRE

    Dewi, Yusriani Sapta

    2010-01-01

    Climate change is any substantial change in Earth's climate that lasts for an extended period oftime. Global warming refers to climate change that causes an increase in the average temperature of thelower atmosphere. Global warming is the combined result of anthropogenic (human-caused) emissionsof greenhouse gases and changes in solar irradiance, while climate change refers to any change in thestate of the climate that can be identified by changes in the average and/or the variability of its ...

  18. Using land to mitigate climate change: hitting the target, recognizing the trade-offs.

    Science.gov (United States)

    Reilly, John; Melillo, Jerry; Cai, Yongxia; Kicklighter, David; Gurgel, Angelo; Paltsev, Sergey; Cronin, Timothy; Sokolov, Andrei; Schlosser, Adam

    2012-06-05

    Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can play in a global mitigation strategy to stabilize Earth's average temperature within 2 °C of the preindustrial level and their impacts on agriculture. We show that an ambitious global Energy-Only climate policy that includes biofuels would likely not achieve the 2 °C target. A thought-experiment where the world ideally prices land carbon fluxes combined with biofuels (Energy+Land policy) gets the world much closer. Land could become a large net carbon sink of about 178 Pg C over the 21st century with price incentives in the Energy+Land scenario. With land carbon pricing but without biofuels (a No-Biofuel scenario) the carbon sink is nearly identical to the case with biofuels, but emissions from energy are somewhat higher, thereby results in more warming. Absent such incentives, land is either a much smaller net carbon sink (+37 Pg C - Energy-Only policy) or a net source (-21 Pg C - No-Policy). The significant trade-off with this integrated land-use approach is that prices for agricultural products rise substantially because of mitigation costs borne by the sector and higher land prices. Share of income spent on food for wealthier regions continues to fall, but for the poorest regions, higher food prices lead to a rising share of income spent on food.

  19. Butterfly effect: understanding and mitigating the local consequences of climate change impacts

    International Nuclear Information System (INIS)

    Lorenz, Donna

    2007-01-01

    Full text: The Butterfly Effect is the notion that tiny differences in initial conditions are amplified in the evolution of a dynamic system and directly affect the eventual outcome. In 1963 mathematician and meteorologist Edward Lorenz proposed that the flapping of a butterfly's wing would cause a disturbance that becomes exponentially amplified so as to eventually affect large-scale atmospheric motion. This was to illustrate the 'sensitive dependence on initial conditions'; sensitivity also true in affecting the extent of damages experienced as a result of climate change. In a climate change context, The Butterfly Effect suggests the local consequences of climate change impacts will depend on their interaction with the economic, environmental, institutional, technological and demographic attributes unique to a city or region. It is this mix of factors that will determine the extent, both positively and negatively, to which climate change will be experienced locally. For a truly effective climate change response, it is imperative that regional risk assessments and adaptation strategies take into account not only the projected impacts but the full range of flow-on implications of those impacts and their sensitivity factors. Understanding of the sensitivity factors that will amplify or mitigate climate change impacts and implications enables government and business leaders to calculate the likely extent of localised damages if no adaptation is undertaken. This allows industries and communities to evaluate the likely significance of a particular impact and to consider how to adjust or counter the sensitivity factor to build resilience and reduce vulnerability. Thus, it also assists in the local prioritisation of issues and responses. Such a strategic response can also mean the required adaptation measures may be less extensive and thereby require less cost and time to implement. This paper discusses the flow-on implications of Australia's projected climate change

  20. South Africa's national REDD+ initiative: assessing the potential of the forestry sector on climate change mitigation

    International Nuclear Information System (INIS)

    Rahlao, Sebataolo; Mantlana, Brian; Winkler, Harald; Knowles, Tony

    2012-01-01

    Reducing emissions from deforestation and forest degradation in developing countries (REDD+) is regarded by its proponents as one of the more efficient and cost effective ways to mitigate climate change. There was further progress toward the implementation of this mechanism at the 16th Conference of Parties (COP) in Cancun in December 2010. Many countries in southern African, including South Africa, have not been integrated (do not participate) into the UN-REDD+ programme, probably due to their low forest cover and national rates of deforestation. This paper discusses the potential contribution of REDD+ activities to the South African Government's pledge of reducing national greenhouse gas (GHG) emissions by 34% below business as usual by 2020. A number of issues such as complex land tenure system, limited forest cover and other conflicting environmental issues present challenges for REDD+ in South Africa. Despite these genuine concerns, REDD+ remains a practical strategy to contribute to climate change mitigation for South Africa. The paper raises the need for development of a variety of emission reduction programmes – not only in the energy sector. The paper also assesses several national options and opportunities towards a working REDD+ mechanism. It concludes by identifying key mechanisms for moving forward to prepare for REDD+ actions in South Africa and raises the urgent need for national dialogue between stakeholders and institutions to evaluate the feasibility of making use of the mechanism in South Africa and the Southern African Development Cooperation (SADC) region. The paper further addresses possible synergies and conflicts between the national climate change and forestry policies towards REDD+ development. It suggests that REDD+ should be part of the national dialogue on policy to respond to climate change and should be integrated into the national flagship programmes that the national climate change white paper seeks to implement. A multiple

  1. Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation

    Science.gov (United States)

    Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.

    2015-12-01

    The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of

  2. Impact of population growth and population ethics on climate change mitigation policy.

    Science.gov (United States)

    Scovronick, Noah; Budolfson, Mark B; Dennig, Francis; Fleurbaey, Marc; Siebert, Asher; Socolow, Robert H; Spears, Dean; Wagner, Fabian

    2017-11-14

    Future population growth is uncertain and matters for climate policy: higher growth entails more emissions and means more people will be vulnerable to climate-related impacts. We show that how future population is valued importantly determines mitigation decisions. Using the Dynamic Integrated Climate-Economy model, we explore two approaches to valuing population: a discounted version of total utilitarianism (TU), which considers total wellbeing and is standard in social cost of carbon dioxide (SCC) models, and of average utilitarianism (AU), which ignores population size and sums only each time period's discounted average wellbeing. Under both approaches, as population increases the SCC increases, but optimal peak temperature decreases. The effect is larger under TU, because it responds to the fact that a larger population means climate change hurts more people: for example, in 2025, assuming the United Nations (UN)-high rather than UN-low population scenario entails an increase in the SCC of 85% under TU vs. 5% under AU. The difference in the SCC between the two population scenarios under TU is comparable to commonly debated decisions regarding time discounting. Additionally, we estimate the avoided mitigation costs implied by plausible reductions in population growth, finding that large near-term savings ($billions annually) occur under TU; savings under AU emerge in the more distant future. These savings are larger than spending shortfalls for human development policies that may lower fertility. Finally, we show that whether lowering population growth entails overall improvements in wellbeing-rather than merely cost savings-again depends on the ethical approach to valuing population. Copyright © 2017 the Author(s). Published by PNAS.

  3. The role of technological availability for the distributive impacts of climate change mitigation policy

    International Nuclear Information System (INIS)

    Lueken, Michael; Edenhofer, Ottmar; Knopf, Brigitte; Leimbach, Marian; Luderer, Gunnar; Bauer, Nico

    2011-01-01

    The impacts of the availability of low-carbon technologies on the regional distribution of mitigation costs are analyzed in a global multi-regional integrated assessment model. Three effects on regional consumption losses are distinguished: domestic measures, trade of fossil energy carriers and trade of emission permits. Key results are: (i) GDP losses and a redirection of investments in the energy system towards capital-intensive technologies are major contributions to regional consumption losses. (ii) A devaluation of tradable fossil energy endowments contributes largely to the mitigation costs of fossil fuel exporters. (iii) In case of reduced availability of low-carbon technologies, the permit market volume and associated monetary redistributions increase. The results suggest that the availability of a broad portfolio of low-carbon technologies could facilitate negotiations on the permit allocation scheme in a global cap-and-trade system. - Highlights: → We analyze the distribution of climate change mitigation costs among world regions. → We quantify contributions from various effects on regional costs. → The interference of world trade and low-carbon technologies is essential. → A broad portfolio of technologies helps international negotiations.

  4. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    Directory of Open Access Journals (Sweden)

    Q. Zhou

    2018-01-01

    Full Text Available As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China. Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID, driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP 8.5. The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems scenarios suggests that local adaptation is more effective than climate change mitigation in reducing

  5. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    Science.gov (United States)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-01

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has

  6. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  7. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johns, T.C.; Hewitt, C.D. [Met Office, Hadley Centre, Exeter (United Kingdom); Royer, J.F.; Salas y. Melia, D. [Centre National de Recherches Meteorologiques-Groupe d' Etude de l' Atmosphere Meteorologique (CNRM-GAME Meteo-France CNRS), Toulouse (France); Hoeschel, I.; Koerper, J. [Freie Universitaet Berlin, Institute for Meteorology, Berlin (Germany); Huebener, H. [Hessian Agency for the Environment and Geology, Wiesbaden (Germany); Roeckner, E.; Giorgetta, M.A. [Max Planck Institute for Meteorology, Hamburg (Germany); Manzini, E. [Max Planck Institute for Meteorology, Hamburg (Germany); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); May, W.; Yang, S. [Danish Meteorological Institute, Danish Climate Centre, Copenhagen (Denmark); Dufresne, J.L. [Laboratoire de Meteorologie Dynamique (LMD/IPSL), UMR 8539 CNRS, ENS, UPMC, Ecole Polytechnique, Paris Cedex 05 (France); Otteraa, O.H. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Uni. Bjerknes Centre, Bergen (Norway); Vuuren, D.P. van [Utrecht University, Utrecht (Netherlands); Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands); Denvil, S. [Institut Pierre Simon Laplace (IPSL), FR 636 CNRS, UVSQ, UPMC, Paris Cedex 05 (France); Fogli, P.G. [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Tjiputra, J.F. [University of Bergen, Department of Geophysics, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Stehfest, E. [Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands)

    2011-11-15

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  8. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    decisions, the operation of the upstream reservoir (Como Lake) is optimised with respect to the real irrigation demand of the crops. Then, the farmers can re-adapt their decisions according with the new optimal operating strategy, thus activating a loop between the two systems that exchange expected supply and irrigation demand. Results show that the proposed interaction between farmers and water managers is able to enhance the efficiency of water management practices, foster crop production and mitigate climate change impacts.

  9. Bridging Climate Change Resilience and Mitigation in the Electricity Sector Through Renewable Energy and Energy Efficiency: Emerging Climate Change and Development Topics for Energy Sector Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sarah L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hotchkiss, Elizabeth L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bilello, Daniel E [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Watson, Andrea C [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Holm, Alison [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-03

    Reliable, safe, and secure electricity is essential for economic and social development and a necessary input for many sectors of the economy. However, electricity generation and associated processes make up a significant portion of global greenhouse gas (GHG) emissions contributing to climate change. Furthermore, electricity systems are vulnerable to climate change impacts - both short-term events and changes over the longer term. This vulnerability presents both near-term and chronic challenges in providing reliable, affordable, equitable, and sustainable energy services. Within this context, developing countries face a number of challenges in the energy sector, including the need to reliably meet growing electricity demand, lessen dependence on imported fuels, expand energy access, and improve stressed infrastructure for fuel supply and electricity transmission. Energy efficiency (EE) and renewable energy (RE) technical solutions described in this paper can bridge action across climate change mitigation and resilience through reducing GHG emissions and supporting electric power sector adaptation to increasing climate risk. Integrated planning approaches, also highlighted in this paper, play an integral role in bringing together mitigation and resilience action under broader frameworks. Through supporting EE and RE deployment and integrated planning approaches, unique to specific national and local circumstances, countries can design and implement policies, strategies, and sectoral plans that unite development priorities, climate change mitigation, and resilience.

  10. Financialization impedes climate change mitigation: Evidence from the early American solar industry

    Science.gov (United States)

    Jerneck, Max

    2017-01-01

    The article investigates how financialization impedes climate change mitigation by examining its effects on the early history of one low-carbon industry, solar photovoltaics in the United States. The industry grew rapidly in the 1970s, as large financial conglomerates acquired independent firms. While providing needed financial support, conglomerates changed the focus from existing markets in consumer applications toward a future utility market that never materialized. Concentration of the industry also left it vulnerable to the corporate restructuring of the 1980s, when the conglomerates were dismantled and solar divisions were pared back or sold off to foreign firms. Both the move toward conglomeration, when corporations became managed as stock portfolios, and its subsequent reversal were the result of increased financial dominance over corporate governance. The American case is contrasted with the more successful case of Japan, where these changes to corporate governance did not occur. Insulated from shareholder pressure and financial turbulence, Japanese photovoltaics manufacturers continued to expand investment throughout the 1980s when their American rivals were cutting back. The study is informed by Joseph Schumpeter’s theory of creative destruction and Hyman Minsky’s theory of financialization, along with economic sociology. By highlighting the tenuous and conflicting relation between finance and production that shaped the early history of the photovoltaics industry, the article raises doubts about the prevailing approach to mitigate climate change through carbon pricing. Given the uncertainty of innovation and the ease of speculation, it will do little to spur low-carbon technology development without financial structures supporting patient capital. PMID:28435862

  11. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    Science.gov (United States)

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  12. Experimenting with International Collaborative Governance for Climate Change Mitigation by Private Actors: Scaling up Dutch Co-Regulation

    OpenAIRE

    TELESETSKY, Anastasia

    2011-01-01

    For the past two decades, international climate policy has been handled as a matter for State to State deliberation. Non-state actors have played at best marginal roles in making and implementing international policy. This paper argues that climate change remains an intractable transnational problem because State to State deliberations failed to acknowledge that both climate mitigation and adaptation require ongoing collaborative governance with non-State actors to shift normative behavior. T...

  13. Climate change beliefs and hazard mitigation behaviors: Homeowners and wildfire risk

    Science.gov (United States)

    Hannah Brenkert-Smith; James R. Meldrum; Patricia A. Champ

    2015-01-01

    Downscaled climate models provide projections of how climate change may exacerbate the local impacts of natural hazards. The extent to which people facing exacerbated hazard conditions understand or respond to climate-related changes to local hazards has been largely overlooked. In this article, we examine the relationships among climate change beliefs, environmental...

  14. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program

    Science.gov (United States)

    Shin, Yong Seung

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities. PMID:23256088

  15. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program.

    Science.gov (United States)

    Shin, Yong Seung; Ha, Jongsik

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities.

  16. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    Science.gov (United States)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  17. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  18. Political Challenges and Opportunities to Climate Change Mitigation: A View from the Front Lines

    Science.gov (United States)

    Weaver, A. J.

    2014-12-01

    Subsequent to the release of the 2007 Report of the Intergovernmental Panel on Climate Change, the Province of British Columbia in Canada became an international leader in the development and implementation of innovative climate change mitigation policies. These include, but are not limited to, the 2008 Greenhouse Gas Reductions Target Act, the 2008 Carbon Tax Act and the 2010 Clean Energy Act. British Columbia's Cleantech sector quickly responded to, and thrived as a result of, the signal sent by government to the market. But with a change in Premier in 2011 came a change in priorities. A number of the previous initiatives have either been weakened or no longer followed through with as the Province sets its vision of being a major exporter of Liquified Natural Gas. As a member of the British Columbia Climate Action Team set up by Premier Gordon Campbell in 2007 to provide advice to government on a variety of policy-related matters, I was fortunate to be able to watch first hand as the Province aggressively moved towards reducing its Greenhouse gas emissions. Rather than stand on the sidelines as the government lost its direction on the climate file I chose to run with the BC Green Party in the 2013 provincial election. I was subsequently elected as a Member of the Legislative Assembly representing the constituents of Oak Bay Gordon Head. While science can and should inform policy deliberations, in and of itself, science cannot and should not prescribe policy outcomes. Whether or not we deal with today's challenge of climate change boils down to a question of intergeneration equity. Does the present generation owe anything to future generations in terms of the quality of the environment that they inherit? Many of today's elected decision-makers are focused on short-term decision-making. Yet those who will be affected by the consequences of these decisions are not part of the decision making process — hence the political conundrum. In this presentation I detail

  19. Will Transition of Staple Food Strategy in China Really Mitigate Global Climate Change?

    Science.gov (United States)

    Liu, B.; Zhao, D.

    2017-12-01

    With the increase in agricultural demand, reducing greenhouse gas (GHG) emissions is a vital challenge in mitigating climate change. Potato staple food strategy in China introduced by Ministry of Agriculture in 2015 is to gradually adjust staple food structure, which provides an opportunity to meet with the challenge. Apart from staple food structure, difference on energy, material input, geography, and crop management are essential to determine agriculture's contribution to climate change. In this study, we conduct a life cycle analysis of four staple foods in China, namely rice, wheat, maize, and potato, to develop crop-specific estimates of GHG emissions and GHG intensity by using `Production intensity' (carbon dioxide equivalent emissions per kilocalorie produced), to help us understand potential synergies and frictions between food producing and climate mitigation. Data used in this study is on city / province levels if city level is unavailable in 2015. First, we evaluate GHG reductions due to transition of staple food structure in China. Staple food GHG emissions in China are 546.90 Tg CO2e yr-1 in 2015, with 47.6%, 21.9%, 27.3% and 3.2% from rice, wheat, maize and potato. Mean production intensity of staple food is 0.45 Mg CO2e M kcal-1 in 2015. Maize leads the intensity with 0.77 Mg CO2e M kcal-1, followed by rice (0.49 Mg CO2e M kcal-1), wheat (0.28 Mg CO2e M kcal-1) and potato (0.24 Mg CO2e M kcal-1). After staple food structure adjustment, 25 Tg CO2e yr-1 (4.2%) reduction will be accomplished in 2020 without any crop management improvement. Further reduction (33.3% - 40.4%) could be achieved with crop management improvement. In addition, because of staple food structure switching, native rice production will decline, which might lead to more export from countries with higher production intensity. Estimated emission leakage from rice import is 30.10 Tg CO2e yr-1, exceeds emission reduction in native China. Therefore, potato staple food strategy could

  20. Climate change and cities: why urban agendas are central to adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Satterthwaite, David

    2007-12-15

    Cities could hold the key to slowing and eventually stopping global warming. Most greenhouse gas emissions are generated from producing the goods and services used by middle- and upper-income urban consumers. Keeping global warming within safe limits demands far more energy-efficient urban buildings and production systems and urban lifestyles that are far less carbon-intensive. It is up to high-income nations — the biggest contributors to greenhouse gas emissions past and present — to show how such a transformation can be combined with high living standards. However, urgent action is also needed in the urban areas of low- and middleincome countries, both through mitigation to curb greenhouse gas emissions, and adaptation to the serious risks that climate change brings.

  1. Climate Change mitigation opportunities in the Energy sector for the Caribbean region

    DEFF Research Database (Denmark)

    Doral, Wenceslao Carrera; Chinchilla, Oscar Coto; Delgado, Ivan Relova

    , investment costs, available indigenous skills and management capabilities”. Seven of the countries in the area are currently members of the International Renewable Energy Agency (IRENA)5, with an additional three currently in the process of becoming members6. In this context, the electricity sector...... generation based on thermal fossil fuel based sources is in the order of 93.2% with renewable energy sources amounting to a mere 6.8% of total installed capacity (mainly from hydro resources in selected countries).......The “Climate change mitigation opportunities in the energy sector for the Caribbean region” has been prepared as part of the implementation of the Caribbean Regional Subcomponent of the MEAs Program for Africa, the Caribbean and the Pacific (ACP MEAs)1. The study has being executed...

  2. Linking climate change mitigation and coastal eutrophication management through biogas technology

    DEFF Research Database (Denmark)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael

    2016-01-01

    concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under...... and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63tyr.-1 and 9tyr.-1, respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific...... environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions....

  3. Reforestation and Climate Change Mitigation. A background Study for Joint Implementation in China and Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lin; Naess, Lars Otto; Kasa, Sjur; O` Brien, Karen L

    1998-12-01

    This report studies the importance of institutional barriers in promoting reforestation as a means of mitigating global climate change. It is argued that cost-effective implementation of reforestation depends on proper institutional settings in host countries. Particular emphasis is placed on the role of property rights. The relationship between various stakeholders, such as governments, non-governmental organisations, the private sector, and international aid agencies is analysed. Discussed aspects include conflicts among stakeholders, long-term security or stability of property rights regimes, distribution of property rights, and information exchange. The forest situation in China and Indonesia is used as an example. The study outlines a number of conflicts in the property rights regime that need a better understanding. Some important issues that need further study are listed. 66 refs., 1 fig., 2 tabs.

  4. Sectoral approaches establishment for climate change mitigation in Thailand upstream oil and gas industry

    International Nuclear Information System (INIS)

    Chaiyapa, Warathida; Esteban, Miguel; Kameyama, Yasuko

    2016-01-01

    Understanding the upstream oil and gas (O&G) industry's responses to climate change and what factors can be influential to trigger their mitigation strategies is crucial for policy-makers to harness the huge resources that this industry can mobilize towards environmental protection. Considering that individual climate change efforts are unlikely to affect global mitigation paths, the study investigates the possibility that sectoral approaches can help in the reduction of greenhouse gas emissions, using Thailand as a case study. It conducted online questionnaire surveys and semi-structured interviews to acquire primary data from companies and key informants from the government, NGOs, NPOs and academics. The results suggested that, among three possible groups of factors that could affect company decisions on whether to promote sectoral approaches, domestic politics (particularly the Thai government) is the most important, though other factors also play important and interrelated roles. The most welcomed type of scheme that could be envisaged would appear to be a sectoral agreement between government and industry. Finally, the authors provide two main policy recommendations, namely the establishment of an industrial association of O&G companies and for it to target how to start looking at measures to reduce greenhouse gas emissions amongst large companies in the sector. - Highlights: •Examining the possibility of establishing a sectoral approach Thailand's upstream O&G industry. •Analytical framework was constructed to ascertain most influential factors. •Questionnaires and interviews were employed with companies, government, NGOs and academic. •Domestic politics is the most determining factor, but other factors have strong interrelation. •Sectoral agreement between government and industry is the most likely scheme to be established.

  5. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  6. MANAGEMENT OF SUSTAINABLE SEAWEED (Kappaphycus alvarezii AQUACULTURE IN THE CONTEXT OF CLIMATE CHANGE MITIGATION

    Directory of Open Access Journals (Sweden)

    Erlania Erlania

    2014-06-01

    Full Text Available Seaweed is an important aquaculture commodity that could contribute on climate change mitigation, related to its ability on absorbing CO2, as one of the green house gases, through photosynthesis. This study aimed to analyze seaweed potencies on carbon sequestration in the context of climate change mitigation while still resulting optimum production as primary purpose and to analyze the carrying capacity of Gerupuk Bay in order to manage sustainability of seaweed aquaculture. Seaweed, (Kappaphycus alvarezii was cultivated with long-line system in Gerupuk Bay, West Nusa Tenggara, during five months for three cultivation cycles. Samplings were conducted at days-15, 30, and 45 with CO2 absorption rates as main parameters. Water carrying capacity was calculated to determine the ability of Gerupuk Bay waters for supporting development of sustainable seaweed aquaculture. The results showed that absorption rates of CO2 by seaweed (K. alvarezii were different at each sampling days of cultivation periods; the highest value was at 10-20 days of cultivation. CO2 absorption analysis resulted based on sampling days of cultivation period could be appl ied to formulate the strategies for management of sustainable seaweed aquaculture, with optimal production and positively contributed to the environment. However, waters carrying capacity should also be considered as major aspect in the application of seaweed cultivation management, thus it can run continuously without causing conflicts with other interests.

  7. International energy technology collaboration and climate change mitigation. Case study 1. Concentrating Solar Power Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Philibert, C. [Energy and Environment Division, International Energy Agency IEA, Paris (France)

    2004-07-01

    Mitigating climate change and achieving stabilisation of greenhouse gas atmospheric concentrations will require deep reductions in global emissions of energy-related carbon dioxide emissions. Developing and disseminating new, low-carbon energy technology will thus be needed. Two previous AIXG papers have focused on possible drivers for such a profound technological change: Technology Innovation, Development and Diffusion, released in June 2003, and International Energy Technology Collaboration and Climate Change Mitigation, released in June 2004. The first of these papers assesses a broad range of technical options for reducing energy-related CO2 emissions. It examines how technologies evolve and the role of research and development efforts, alternative policies, and short-term investment decisions in making long-term options available. It considers various policy tools that may induce technological change, some very specific, and others with broader expected effects. Its overall conclusion is that policies specifically designed to promote technical change, or 'technology push', could play a critical role in making available and affordable new energy technologies. However, such policies would not be sufficient to achieve the Convention's objective in the absence of broader policies. First, because there is a large potential for cuts that could be achieved in the short run with existing technologies; and second, the development of new technologies requires a market pull as much as a technology push. The second paper considers the potential advantages and disadvantages of international energy technology collaboration and transfer for promoting technological change. Advantages of collaboration may consist of lowering R and D costs and stimulating other countries to invest in R and D; disadvantage may include free-riding and the inefficiency of reaching agreement between many actors. This paper sets the context for further discussion on the role of

  8. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.

    Science.gov (United States)

    Tribouillois, Hélène; Constantin, Julie; Justes, Eric

    2018-02-14

    Cover crops provide ecosystem services such as storing atmospheric carbon in soils after incorporation of their residues. Cover crops also influence soil water balance, which can be an issue in temperate climates with dry summers as for example in southern France and Europe. As a consequence, it is necessary to understand cover crops' long-term influence on greenhouse gases (GHG) and water balances to assess their potential to mitigate climate change in arable cropping systems. We used the previously calibrated and validated soil-crop model STICS to simulate scenarios of cover crop introduction to assess their influence on rainfed and irrigated cropping systems and crop rotations distributed among five contrasted sites in southern France from 2007 to 2052. Our results showed that cover crops can improve mean direct GHG balance by 315 kg CO 2 e ha -1  year -1 in the long term compared to that of bare soil. This was due mainly to an increase in carbon storage in the soil despite a slight increase in N 2 O emissions which can be compensated by adapting fertilization. Cover crops also influence the water balance by reducing mean annual drainage by 20 mm/year but increasing mean annual evapotranspiration by 20 mm/year compared to those of bare soil. Using cover crops to improve the GHG balance may help to mitigate climate change by decreasing CO 2 e emitted in cropping systems which can represent a decrease from 4.5% to 9% of annual GHG emissions of the French agriculture and forestry sector. However, if not well managed, they also could create water management issues in watersheds with shallow groundwater. Relationships between cover crop biomass and its influence on several variables such as drainage, carbon sequestration, and GHG emissions could be used to extend our results to other conditions to assess the cover crops' influence in a wider range of areas. © 2018 John Wiley & Sons Ltd.

  9. The mitigation framework in the 2015 climate change agreement: from targets to pathways

    International Nuclear Information System (INIS)

    Spencer, Thomas; Colombier, Michel; Ribera, Teresa; Sha, Fu; Ji, Zou

    2014-01-01

    This paper is an effort between researchers from different countries and with different backgrounds to achieve an agreed text on an important issue in the climate negotiations through a thought experiment of 'think tank level negotiation'. It is a significant achievement for two groups of authors from China and Europe to have come this far. Countries have agreed to negotiate a new climate agreement by 2015. One of the key elements of this negotiation process will be a new mitigation framework and new emissions targets for all. How should the information that Parties put forward be structured, in order to promote participation, equity, transparency and ambition? The new agreement needs to find a way to allow the continuous strengthening of the action of sovereign states, to reflect the 2 deg. C objective. It will also need to provide a flexible and equitable framework for mitigation targets, to reflect both different levels of uncertainty and the large spectrum of countries and gaps in the development of different country groups. There is a need to shift out of the 'target mentality' and towards an understanding of climate change as the challenge of shifting long-term social, technological, investment and infra-structural pathways, as well as behaviours. Uncertainties in such structural processes may be particularly high in developing or emerging countries still undergoing industrialization, demographic shift, and urbanization. Mastering them requires long-term policy horizons, cooperation, technology innovation and policy learning, focusing on the drivers of emissions reductions. The Warsaw decision stated in 2013 that mitigation targets would be nationally-determined. In this context, the discussion around a global goal should no longer be seen as a basis for top-down allocation, but rather as a directional reference against which global progress must be assessed to identify the gap to be filled to foster enhanced action. It is essential to

  10. Voluntary business activities to mitigate climate change: Case studies in Japan

    International Nuclear Information System (INIS)

    Wakabayashi, Masayo

    2013-01-01

    Voluntary business activities, such as the voluntary action plans conducted by comprehensive business associations in Japan to reduce environmental damage, are viable policy instruments alongside regulations and economic incentives (e.g. taxes and emissions trading schemes). This paper examines three case studies in which voluntary activities have played a successful role in mitigating climate change. Based on interviews with business organisations together with a literature review and data analysis, we show why businesses are motivated to take socially responsible actions and describe the major benefits of such activities. One of the important benefits of voluntary activities is their flexibility in phasing measures. This flexibility is greatly appreciated, since industries are able to retain control of their responses to future uncertainties, which allows them to tackle climate change issues aggressively. We conclude that voluntary activities have been more environmentally effective than alternative policy measures under a proper institutional framework, which consists of effective motivation mechanisms for businesses, governmental measures to encourage their compliance, and capable industrial associations that can lessen the transaction costs both of the government and of industry. - Highlights: • Businesses are well motivated to take suitable, technologically feasible actions. • Capability of industrial associations is a key to successful voluntary activities. • Flexibility allows businesses to manage uncertainty and aim for ambitious goals

  11. Implications of electric power sector restructuring on climate change mitigation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Hasson, G; Bouille, D [Instituto de Economia Energetica, (Argentina); Redlinger, R [UNEP, (Denmark)

    2000-05-01

    The Argentine electricity industry has undergone fundamental reforms since 1992, involving large-scale privatisation, and competition in generation and wholesale power markets. In terms of climate change mitigation, these reforms have had the beneficial effect of encouraging improved generation efficiency among thermal power plants and improved end-use consumption efficiency among large industrial firms. However, the reforms have also had the negative effect (from a climate change perspective) of encouraging an ever-increasing use of natural gas combustion for electricity generation, greatly diminishing the role of hydroelectric power which had previously played an important role in the Agentine electricity sector. This report examines the current structure and regulations of the Argentine electricity system and analyses the forces at work which are influencing current technology choices, both in terms of power generation and end-use consumption. The report goes on to examine international experiences in promoting renewable energy and energy efficiency technologies; and finally, the report considers the applicability of these various policy mechanisms within the Agentine context. (EHS)

  12. The Forgotten Benefits of Climate Change Mitigation. Innovation, Technological Leapfrogging, Employment, and Sustainable Development

    Energy Technology Data Exchange (ETDEWEB)

    Jochem, E. [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung ISI, Karlsruhe (Germany); Madlener, R. [Centre for Energy Policy and Economics CEPE, ETH Zentrum, WEC, Zuerich (Switzerland)

    2003-07-01

    Traditional concepts for ancillary benefit/co-benefit frameworks reflect a macro and welfare economics perspective. They are often designed to serve certain modelling requirements, and typically focus primarily on avoided environmental damages and/or on induced net employment. This paper presents a conceptual framework that is extended to non-environmental and non-climate-change externalities. It not only includes the net ancillary and co-benefits that accrue from the dynamics of technological innovation and market diffusion, but also those from spillover effects that arise from global trade, communications, and technology transfer, which can all have important impacts on both the business economics and the macroeconomic level. We show that multi-functionality of energy-efficient technologies at the useful energy level, in contrast to mono-functionality of energy conversion technologies, leads to net ancillary benefits/co-benefits of GHG mitigation that may go far beyond fossil energy savings and emission mitigation, and that are in many cases not (or at least not sufficiently) accounted for in investment decision-making and policy-making processes. Several illustrative examples are provided to underline the points that are made.

  13. Climate change mitigation in developing countries through interregional collaboration by local governments: Japanese citizens' preference

    International Nuclear Information System (INIS)

    Nakamura, Hidenori; Kato, Takaaki

    2011-01-01

    This study explores the motivation of domestic and international interregional collaboration on climate change mitigation through carbon crediting by Japanese local governments, using a social survey. The study finds balanced collaboration with domestic partner regions and developing countries is preferred in the case of collaboration, given that the unit cost of collaboration is assumed lower than that of no collaboration. Appreciation of benefits such as technology transfer and local environmental improvement in developing countries increases the preference of collaboration with developing countries. Two factors hinder Japanese local governments' collaboration with developing countries from the perspective of citizens: a sense of environmental responsibility to reduce greenhouse gas (GHG) emissions within the city and a preference for domestic orientation even if the collaboration with developing countries is less costly and has benefits of technology transfer and local environmental improvement. The preference for a lower total cost of GHG emissions reductions is confirmed except for those with a sense of environmental responsibility. The study also finds that provision of information on mitigation projects and co-benefits would increase the preference for interregional collaboration with developing countries depending on the types of collaborative project, except for those with a sense of environmental responsibility. - Highlights: → We surveyed views of Japanese citizens on interregional/international cooperation of their cities for GHG reduction. → Sense of environmental responsibility is negatively correlated with the needs for cooperation. → Information on co-benefits of collaboration would strengthen preference for cooperation.

  14. Decarbonising electricity supply: Is climate change mitigation going to be carried out at the expense of other environmental impacts?

    OpenAIRE

    Kouloumpis, Victor; Stamford, Laurence; Azapagic, Adisa

    2015-01-01

    As nations face the need to decarbonise their energy supply, there is a risk that attention will be focused solely on carbon and climate change, potentially at the expense of other environmental impacts. To explore the trade-offs between climate change mitigation and other environmental impacts, this work focuses on electricity and considers a number of scenarios up to 2070 in a UK context with different carbon reduction targets and electricity demand to estimate the related life cycle enviro...

  15. Special report on renewable energy sources and climate change mitigation, (SRREN). Summary for policy makers; FNs klimapanel: Spesialrapport om fornybar energi, sammendrag for beslutningstakere

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-15

    In May 2011 the Intergovernmental Panel on Climate Change published a report on six renewable energy sources and their role in climate change mitigation. This is a Norwegian, unofficial translation of the Summary for Policy makers. (Author)

  16. Evaluation of forestry strategies for climate change mitigation in continental France. Scientific literature and main actors' positioning review

    International Nuclear Information System (INIS)

    Buitrago Esquinas, Miriam

    2012-01-01

    This work contributes to the current scientific debate regarding the optimization of the forest sector's contribution to mitigating climate change. A scientific literature review has pointed out some uncertainties on the contribution to emission reduction objectives in the short to medium-term of an increasing harvest of forest resources for wood construction and energy generation. Timing of mitigation benefits for a managed forest depends on forestry upstream characteristics(forest and soil type and silviculture method) and downstream characteristics (transport distance, use of wood, efficiency of wood based energy production, fossil-fuel based reference system that is substituted,etc). A survey conducted among national forest experts points out debates concerning optimal silviculture practices to mitigating climate change. These discussions are due to the trades-off between sequestering carbon in forest ecosystems and climatic benefits obtained by sustainable forest harvesting and use of wood products to displace fossil emissions. (author) [fr

  17. Policies and Measures to Realise Industrial Energy Efficiency and Mitigate Climate Change

    International Nuclear Information System (INIS)

    Price, L.K.; McKane, A.T.; Ploutakhina, M.; Monga, P.; Gielen, D.; Bazilian, M.; Nussbaumer, P.; Howells, M.; Rogner, H.-H.

    2009-01-01

    The industrial sector is responsible for a significant share of global energy use and carbon dioxide (CO 2 ) emissions. Energy efficiency is commonly seen as the most cost-effective, least-polluting, and most readily-accessible industrial energy saving option available in the industrial sector worldwide. Capturing the full extent of these potential end-use energy efficiency improvements rapidly is essential if the world is to be on a path to stabilise greenhouse gas (GHG) concentrations to a level that would prevent dangerous anthropogenic interference with the climate system. In the International Energy Agency (IEA) 450 parts per million stabilisation scenario, over a quarter of all energy efficiency gains need to come from the industrial sector by 2050, largely by changing the pattern of industrial energy use. The reduction potential estimated by IEA and the Intergovernmental Panel on Climate Change (IPCC) for five energy-intensive industrial sub-sectors ranges from about 10 to 40 per cent, depending upon the sector. There is significant potential to reduce, at low or no cost, the amount of energy used to manufacture most commodities. Many policies and programmes - at a national level - have already demonstrated significant improvements in industrial energy efficiency. The associate reduction in energy needs often also improves economic competitiveness as well as mitigates GHG emissions. However, at an international level, approaches such as the Clean Development Mechanism (CDM) are not yet delivering the expected energy efficiency improvements. Existing and effective industrial energy efficiency policies and measures could be replicated at a global level. Key elements of those policies and measures include increasing facility management attention to the issue of energy efficiency; promoting the dissemination of information, practice, and tools; increasing the auditing and implementation capacity; and developing the market for industrial energy efficiency

  18. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  19. Impact of Real-world Factors Influencing Investment Decisions on the Costs and Distribution of Climate Change Mitigation

    Science.gov (United States)

    Edmonds, J.; Iyer, G.; McJeon, H. C.; Leon, C.; Hultman, N.

    2015-12-01

    Strategies to mitigate dangerous anthropogenic climate change require a dramatic transformation of the energy system to reduce greenhouse gas emissions, that in turn requires large-scale investments. Investment decisions depend not only on investment capital availability but also on investment risks. A number of factors such as national policy environments, quality of public and private institutions, sector, firm and technology specific characteristics can affect investors' assessments of risks, leading to a wide variation in the business climate for investment. Such heterogeneity in investment risks can have important implications, as investors usually respond to risks by requiring higher returns for riskier projects; delaying or forgoing the investments; or preferring to invest in existing, familiar projects. We study the impact of variation in investment risks on regional patterns of emissions mitigation, the cost of emissions mitigation and patterns of technology deployment. We modify an integrated assessment model, widely used in global climate policy analyses (the Global Change Assessment Model) and incorporate decisions on investments based on risks along two dimensions. Along the first dimension, we vary perceived risks associated with particular technologies. To do so, we assign a higher cost of capital for investment in low-carbon technologies as these involve intrinsically higher levels of regulatory and market risk. The second dimension uses a proxy to vary investment risks across regions, based on an institutional quality metric published by the World Economic Forum. Explicit representation of investment risks has two major effects. First, it raises the cost of emissions mitigation relative to a world with uniform investment risks. Second, it shifts the pattern of emissions mitigation, with industrialized countries mitigating more, and developing countries mitigating less. Our results suggest that institutional reforms aimed at lowering investment

  20. iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

    2010-10-01

    The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

  1. Pleistocene Park: the restoration of steppes as a tool to mitigate climate change through albedo effect

    Science.gov (United States)

    Zimov, N.; Loranty, M. M.; Edgar, C.; Kropp, H.; Zimov, S. A.

    2017-12-01

    In the late Pleistocene, the world largest ecosystem was the mammoth steppe. It stretched from the Iberian Peninsula to Canada and from the New Siberian Islands to China. It was a highly productive steppe ecosystem with numerous predators and herbivores that maintained the dominance of grasslands. With the end of the Pleistocene, the climate warmed and humans entered Siberia and the Americas. The introduction of humans as predators in these regions led to the extinction of most large animals, and the further degradation of the steppes. Mosses, shrubs and larch forest soon replaced grasses and herbs. Pleistocene Park is an experiment conducted in the far north of Siberia; its main goal is to revive the extinct steppe ecosystem in the Arctic. This would increase the richness of the northern ecosystems and, bioproductivity, and through a series of ecological mechanisms help to mitigate climate change. To conduct the experiment, was fenced 2000 hectares of land, and continue the ongoing process of introducing animals that either lived on this territory in the past or that can adapt to the modern northern environment. Through grazing, animals slowly transform the vegetation, replacing mosses, shrubs, and trees with grasses and herbs. Here we present the effects grazing animals have on the albedo of the landscape. Several years of year-round measurement of albedo and incoming and reflected radiation conducted in the grasslands in the park indicate substantially higher albedo compared with most modern ecosystems like larch forest and shrublands. Since grasses are lighter than forest, they reflect a higher portion of energy back to space. Results indicate the most dramatic difference in reflected solar radiation is in April and early May. Grasslands covered with snow reflect most of the sun's energy, while dark stems of forests and shrubs absorb that energy and promote warming. We argue that large-scale promotion of highly productive steppes in the Arctic will

  2. Land use strategies to mitigate climate change in carbon dense temperate forests.

    Science.gov (United States)

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  3. Land use strategies to mitigate climate change in carbon dense temperate forests

    Science.gov (United States)

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  4. Potential for Climate Change Mitigation in Degraded Forests: A Study from La Primavera, México

    Directory of Open Access Journals (Sweden)

    Arturo Balderas Torres

    2013-11-01

    Full Text Available Forests contribute to climate change mitigation by removing atmospheric carbon dioxide and storing it in biomass and other carbon pools. Additionally, since appropriate forest management can reduce emissions from deforestation and forest degradation, it is important to estimate the magnitude of these services to include them into climate policy. We used a forest inventory stratified by canopy cover in the oak-pine forest of La Primavera Biosphere Reserve in México (30,500 ha, to assess the potential provision of forest carbon services. Inventory results were used in combination with a Landsat image to estimate carbon stocks in arboreal biomass. Potential carbon removals were calculated from published allometric equations and models estimating tree growth rates, for enhancements in forested areas and for reforestation/afforestation. Carbon stocks estimated in arboreal biomass at the time of the inventory were 4.16 MtCO2eq (3.42–4.89. The potential for further carbon sequestration and enhancement could take the level of stocks up to 9.77 MtCO2eq (7.66–11.89, 95% confidence interval; previous fires have degraded carbon stocks below their natural potential. The results present a gradient of carbon stocks for different degradation levels and are consistent with national and international estimates and previous local research. The baseline for the estimation of reduced emissions is critical for assessing the overall contribution of forests to mitigate climate change. The local baseline of emissions might be around 1% according to historical data; however, when enhancements and reduced emissions are valuated together, a baseline of 3.7% is required to prevent the creation of perverse incentives favouring previously degraded areas; considering these figures for reduced emissions, the yearly carbon services provided by La Primavera, including enhancements, sequestration and reduced emissions, could be between 169.4 ktCO2eq/year (134.8–204.5 and

  5. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Science.gov (United States)

    Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey

    2013-01-01

    Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...

  6. Asia's role in mitigating climate change: A technology and sector specific analysis with ReMIND-R

    International Nuclear Information System (INIS)

    Luderer, Gunnar; Pietzcker, Robert C.; Kriegler, Elmar; Haller, Markus; Bauer, Nico

    2012-01-01

    We use the ReMIND-R model to analyze the role of Asia in the context of a global effort to mitigate climate change. We introduce a novel method of secondary energy based mitigation shares, which allows us to quantify the economic mitigation potential of technologies in different regions and final energy carriers. The 2005 share of Asia in global CO 2 emissions amounts to 38%, and is projected to grow to 53% under business-as-usual until the end of the century. Asia also holds a large fraction of the global mitigation potential. A broad portfolio of technologies is deployed in the climate policy scenarios. We find that biomass in combination with CCS, other renewables, and end-use efficiency each make up a large fraction of the global mitigation potential, followed by nuclear and fossil CCS. We find considerable differences in decarbonization patterns across the final energy types electricity, heat and transport fuels. Regional differences in technology use are a function of differences in resource endowments, and structural differences in energy end use. Under climate policy, a substantial mitigation potential of non-biomass renewables emerges for China and other developing countries of Asia (OAS). Asia also accounts for the dominant share of the global mitigation potential of nuclear energy. In view of the substantial near term investments into new energy infrastructure in China and India, early adoption of climate policy prevents lock-in into carbon intensive infrastructure and thus leads to a much higher long-term mitigation potential. - Highlights: ► We develop a novel methodology for the attribution of emission reductions to technologies. ► Asia accounts for a substantial and increasing share of global CO 2 emissions. ► A broad portfolio of technologies contributes to emission reductions. ► Early action increases the long term mitigation potential of China and India.

  7. SUSTAINABLE DIVERSIFIED AGRICULTURE AND LAND MANAGEMENT IN THE HIMALAYA: IMPLICATIONS FOR CLIMATE CHANGE ADAPTATION AND MITIGATION

    Directory of Open Access Journals (Sweden)

    R. M. Bajracharya

    2016-08-01

    Full Text Available The soil and land resources play a vital role in sustaining the local livelihoods of rural communities in the Himalaya. Most of the arable land has already been brought under cultivation, hence the ever-increasing demand for food and fiber has left farmers with no choice but to intensify agriculture. However, producing more crops and greater quantities of food, fiber and other materials on the same parcel of land can to soil fertility and productivity decline with overall degradation of land quality. Therefore, ways and means to intensify agriculture to enhance productivity without degrading the soil and land resource base have become imperative. Agro-forestry, agro-slivi-pastoral systems, and the adoption of a variety of crop, soil and water management and conservation practices offer potential to deliver multiple benefits without sacrificing the very resource upon which the human population depends. Presented herein are findings on approaches to sustainable intensification of agriculture and land management related to soil OM management and C sequestration for multiple benefits, and, agro-forestry as a crop diversification strategy with both livelihood, and climate change adaptation/mitigation benefits. The results indicate that sustainable soil management practices could lead to significant SOC accumulations (4-8 t/ha over 6 yrs. SOC and soil C stocks tend to increase with elevation due to cooler climate and slow decomposition rates. Carbon stocks for the 3 LU types was in the order CF>AF/LH>AG, suggesting that diversified cropping practices including agro-forestry have good potential sequester C while providing livelihood opportunities and climate adaptive capacity for local farming communities. Biochar amendment increased growth of both coffee plants and radish with mixed grass/weed biochar being most effective. Biochar application also significantly decreased emission of GHGs, especially N2O.

  8. Energy Technology Roll-Out for Climate Change Mitigation: A Multi-Model Study for Latin America

    NARCIS (Netherlands)

    van der Zwaan, B.; Kober, T.; Calderon, S.; Clarke, L.; Daenzer, K.; Kitous, A.; Labriet, M.; Lucena, A.F.P.; Octaviano, C.; Di Sbroiavacca, N.

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be

  9. Do Kenya's climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?

    NARCIS (Netherlands)

    Dalla Longa, F.; van der Zwaan, B.

    2017-01-01

    In this paper Kenya's climate change mitigation ambitions are analysed from an energy system perspective, with a focus on the role of renewable and other low-carbon energy technologies. At COP-21 in 2015 in Paris, Kenya has committed to a `nationally determined contribution' of reducing domestic

  10. Micro water harvesting for climate change mitigation: Trade-offs between health and poverty reduction in Northern Ethiopia

    NARCIS (Netherlands)

    Fitsum, H.; Mekonen, Y.; Linderhof, V.G.M.; Kruseman, G.; Mulugeta, A.; Girmay, G.; Zenebe, A.

    2006-01-01

    Water harvesting is an important tool for mitigating the adverse effects of climate change. This report investigates the trade-offs between health and poverty reduction by considering the impacts of water harvesting on health in Tigray region, northern Ethiopia. In particular, we assess the

  11. A systematic analysis of enabling conditions for synergy between climate change mitigation and adaptation measures in developing countries

    NARCIS (Netherlands)

    Duguma, L.A.; Wambugu, S.W.; Minang, P.A.; Noordwijk, van M.

    2014-01-01

    There is a growing quest for synergy between mitigation and adaptation due to concerns of inefficiency and ineffectiveness of the compartmentalized approaches to climate change. However, little has been done to explore the necessary enabling conditions for synergistic design and implementation. This

  12. Offshore CCS and ocean acidification : A global long-term probabilistic cost-benefit analysis of climate change mitigation

    NARCIS (Netherlands)

    van der Zwaan, B.C.C.; Gerlagh, Reyer

    Public fear over environmental and health impacts of CO2 storage, or over potential leakage of CO2 from geological reservoirs, is among the reasons why over the past decade CCS has not yet been deployed on a scale large enough so as to meaningfully contribute to mitigate climate change. Storage of

  13. Yes in my backyard : market based mechanisms for forest conservation and climate change mitigation in La Primavera, México

    NARCIS (Netherlands)

    Balderas Torres, Arturo

    2012-01-01

    This work makes a multidisciplinary analysis of the potential of market-based mechanisms in the provision of forest carbon services based on local demand in the context of climate change mitigation. The analysis contrasts, from the perspective of an emerging economy (Mexico), the possibilities of

  14. Trade-offs between electrification and climate change mitigation : An analysis of the Java-Bali power system in Indonesia

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram; Filatova, Tatiana

    2017-01-01

    The power sector in many developing countries face challenges of a fast-rising electricity demand in urban areas and an urgency of improved electricity access in rural areas. In the context of climate change, these development needs are challenged by the vital goal of CO2 mitigation. This paper

  15. Projected US timber and primary forest product market impacts of climate change mitigation through timber set-asides

    Science.gov (United States)

    Prakash Nepal; Peter J. Ince; Kenneth E. Skog; Sun J. Chang

    2013-01-01

    Whereas climate change mitigation involving payments to forest landowners for accumulating carbon on their land may increase carbon stored in forests, it will also affect timber supply and prices. This study estimated the effect on US timber and primary forest product markets of hypothetical timber set-aside scenarios where US forest landowners would be paid to forego...

  16. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    Directory of Open Access Journals (Sweden)

    Karine Princé

    Full Text Available Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform

  17. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  18. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  19. US/Japan workshop on mitigation and adaptation technologies related to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bernthal, F.M.

    1993-12-31

    It is a great pleasure for me to have the honor of delivering the keynote address for this important gathering, an honor enhanced further because of the many activities and historic relationships represented by this workshop. First of all, it represents the spirit of continuing cooperation and good relations between the United States and Japan. With the aid of the framework provided by the U.S./Japan Science and Technology Agreement, our two nations can come together to address a problem that has no national boundaries {hor_ellipsis} and we can think about solutions of potential benefit to all citizens of the global community. This workshop also symbolizes the spirit of cooperation so characteristic of the conduct of research in science and technology -- cooperation between us as individual scientists and engineers, between the various institutions we represent, and across our diverse disciplines. This workshop is only the second of its kind. The first US/Japan Workshop on global climate change was held last year in Japan. That workshop focused on cooperative scientific research in the United States and Japan. Out of it came a general agreement to continue collaborative work and to extend cooperation into the area of global change-related technologies, in particular those technologies that hold promise for mitigation and adaptation.

  20. Crop-Cattle Integrated Farming System: An Alternative of Climatic Change Mitigation

    Directory of Open Access Journals (Sweden)

    Munandar

    2015-08-01

    Full Text Available An integrated farming system is one of the alternatives for climatic change mitigation. This paper reports the application of corn-cattle based integrated farming system in Agrotechno Park Center of Palembang, and discusses its impact on CO2 fixation and the reduction of methane emissions. The study was based on the data of the first 6 yr from 2003 until 2009. The CO2 fixed in the soil and plants was determined based on the content of organic C which was multiplied by the index of 3.67. The methane gas produced by Balinese cattle and its dung was observed and modified into feed rations. The results showed that soil organic C increased from 40.80 tons C/ha in the 1st yr to 66.40 tons C/ha in the 6th yr. In addition, there was organic C fixation equivalent to 93.95 tons of CO2e. Corn biomass increased from 6.67 tons/ha to 18.66 tons/ha, equivalent to an increase in the fixation of atmospheric CO2e as much as 19.80 tons CO2e/ha. The supplementation of 60%-80% grass fodder with concentrate lowered the concentration of methane gas in cattle breathing by 28.7%, from 617 ppm to 440 ppm, while the methane emissions from cattle manure decreased by 31%, from 1367 mL/head/d to 943 mL/head/d. Installing a bio digester that generates biogas served to accommodate methane gas emissions from cattle dung and used it for bioenergy. Composting reduced the formation of methane gas from cattle manure through a regular process of turning over that gives aeration and forms aerobic condition in the heap of cattle dung. Recycling produces a variety of organic products that store carbon for a longer period of time and slowed the conversion of organic C into CO2. This study showed that the diverse activities of an integrated crop-cattle farming could be an alternative solution to climatic change mitigation.

  1. The effectiveness of energy service demand reduction: A scenario analysis of global climate change mitigation

    International Nuclear Information System (INIS)

    Fujimori, S.; Kainuma, M.; Masui, T.; Hasegawa, T.; Dai, H.

    2014-01-01

    A reduction of energy service demand is a climate mitigation option, but its effectiveness has never been quantified. We quantify the effectiveness of energy service demand reduction in the building, transport, and industry sectors using the Asia-Pacific Integrated Assessment/Computable General Equilibrium (AIM/CGE) model for the period 2015–2050 under various scenarios. There were two major findings. First, a 25% energy service demand reduction in the building, transport, and basic material industry sectors would reduce the GDP loss induced by climate mitigation from 4.0% to 3.0% and from 1.2% to 0.7% in 2050 under the 450 ppm and 550 ppm CO 2 equivalent concentration stabilization scenarios, respectively. Second, the effectiveness of a reduction in the building sector's energy service demand would be higher than those of the other sectors at the same rate of the energy service demand reduction. Furthermore, we also conducted a sensitivity analysis of different socioeconomic conditions, and the climate mitigation target was found to be a key determinant of the effectiveness of energy service demand reduction measures. Therefore, more certain climate mitigation targets would be useful for the decision makers who design energy service demand reduction measures. - Highlights: • The effectiveness of a reduction in energy service demand is quantified. • A 25% reduction in energy service demand would be equivalent to 1% of GDP in 2050. • Stringent mitigation increases the effectiveness of energy service demand reduction. • Effectiveness of a reduction in energy demand service is higher in the building sector

  2. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  3. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    Science.gov (United States)

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-04-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate related events and due to overgrazing. The peat degradation causes significant losses of carbon store, GHG emissions and is followed by changes in water balance and water composition. The issue arises if such a type of ecosystems as peatlands could be a subject for ecosystem restoration in this arid and subhumid climate. Could it be considered as measure for climate change mitigation and adaptation? With funding opportunities from the Asian Development Bank a pilot project for peatland restoration had been launched in 2016 in Khashaat soum, Arkhangai aimag in Central Mongolia. The pilot aimed to merge local interests of herders with global targets of climate change mitigation. The following questions are addressed: what are the losses of natural functions and ecosystem services of peatland; what are expectations and demands of local communities and incentives for their involvement; how should and could look the target ecosystem; what are the technical solutions in order to achieve the target ecosystem characteristics; and what are the parameters for monitoring to assess the success of the project? The comprehensive baseline study addressed both natural and social aspects. The conclusions are: most of peat in the study area had been mineralised and has turned to organic rich soil with carbon content between 20 to 40 %, the key sources of water - small springs - are partly destroyed by cattle; the permafrost disappeared in this area and could not be the subject for restoration; local herders understand the value of peatland as water source and had carried out some voluntary activities for water storage and regulation such as dam construction; nevertheless there is no

  4. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  5. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    of biomaterials.The recently developed approach for quantifying the climate tipping potential (CTP) of emissions is used, with some adaption, to account for the value of temporary carbon storage. CTP values for short-, medium- and long-term carbon storage in chosen biomaterials are calculated for two possible...... future atmospheric greenhouse gas (GHG) concentration development scenarios. The potential magnitude of the temporary carbon storage in biomaterials is estimated by considering the global polymer production being biobased in the future.Both sets of CTP values show the same trend; storage which releases...... contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...

  6. A multi-criteria evaluation method for climate change mitigation policy instruments

    International Nuclear Information System (INIS)

    Konidari, Popi; Mavrakis, Dimitrios

    2007-01-01

    This paper presents an integrated multi-criteria analysis method for the quantitative evaluation of climate change mitigation policy instruments. The method consists of: (i) a set of criteria supported by sub-criteria, all of which describe the complex framework under which these instruments are selected by policy makers and implemented, (ii) an Analytical Hierarchy Process (AHP) process for defining weight coefficients for criteria and sub-criteria according to the preferences of three stakeholders groups and (iii) a Multi-Attribute Theory (MAUT)/Simple Multi-Attribute Ranking Technique (SMART) process for assigning grades to each instrument that is evaluated for its performance under a specific sub-criterion. Arguments for the selected combination of these standard methods and definitions for criteria/sub-criteria are quoted. Consistency and robustness tests are performed. The functionality of the proposed method is tested by assessing the aggregate performances of the EU emission trading scheme at Denmark, Germany, Greece, Italy, Netherlands, Portugal, Sweden and United Kingdom. Conclusions are discussed

  7. Market of innovative timber products in Europe and Serbia and their contribution to climate change mitigation

    Directory of Open Access Journals (Sweden)

    Sretenović Predrag

    2014-01-01

    Full Text Available The paper shows results of researching the market of glued laminated timber as the most frequent innovative timber product in constructing timber framed residential facilities in Europe and Serbia. The research included the development of production, consumption and trade flows for the most significant countries in the European Union and Serbia. Additionally, the paper gives characteristics of this innovative timber product regarding dimensions, allowed deviations of dimensions defined in adequate European standard, wood species it is made of and fire resistance. The last part of the paper shows results of econometric modeling of the impact of building timber-framed houses on the consumption of glued laminated timber in Austria as one of the countries belonging to the group of the largest consumers of this innovative timber product in Europe. Taking into consideration that the substitution of classic building materials, primarily concrete, steel and aluminum, with glued laminated timber in residential construction contributes to the reduction of carbon-dioxide emission and climate change mitigation, research results of the effects of such substitution are presented in the last chapter in this paper. [Projekat Ministarstva nauke Republike Srbije, br. III43007: Istraživanje klimatskih promena na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje

  8. The economics of climate change mitigation in developing countries - methodological and empirical results

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.

    1997-12-01

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs.

  9. Mitigating climate change by sequestering carbon soils: A hypertext-based scientific assessment

    International Nuclear Information System (INIS)

    Rauscher, H.M.; Alban, D.H.; Johnson, D.W.

    1992-01-01

    The general objective of this project is the development of a hypertext-based scientific assessment on the subject of mitigating climate change by sequestering carbon in soils. Specifically, the authors want to (1) translate the scientific knowledge base on soil carbon cycling into a form meaningful for policy makers by using the theory of issue-based hypertext for problem solving using the argumentative approach developed by the late Horst Rittel, professor of planning and design at the University of California, Berkeley; (2) provide an organized and evaluated scientific knowledge base on soil carbon dynamics for research scientists to aid in the rapid and economical review and understanding of the subfield of science; and (3) test this new hybrid hypertext and AI methodology for use as a tool for program managers to help them evaluate a research domain to find knowledge gaps, to prioritize these knowledge gaps, to channel available research funding to these projects aimed at filling the most promising knowledge gaps in order to have the greatest possible impact on the entire knowledge base of the field, and to help explicitly measure scientific progress in terms that funding sources can understand. The authors began this project in fall 1991 and expect to complete it by fall 1993

  10. The economics of climate change mitigation in developing countries -methodological and empirical results

    International Nuclear Information System (INIS)

    Halsnaes, K.

    1997-12-01

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs

  11. Must developing countries commit quantified targets? Time flexibility and equity in climate change mitigation

    International Nuclear Information System (INIS)

    Sugiyama, Taishi; Deshun, Liu

    2004-01-01

    Equity and efficiency dimensions of global time flexibility in GHG emission reduction are analyzed with an integrated assessment model. Global time flexibility is justifiable to some extent as found in previous studies by Wigley et al. Nevertheless, it does not necessarily serve as a rationale to delay emission reduction commitment and efforts of developed countries as they suggested. The time flexibility can be saved for developing countries, and it must be so in equity consideration; early reduction by developed countries eases burden of developing countries in both time and emission quantity dimensions. This equity-oriented argument is robust against time and spatial efficiency consideration, since the apparent benefits that might accrue to developed countries from delaying reductions will by no means be transferred to far distant future developing countries for mitigation of and adaptation to climate change. The analysis thus support entry into force of the Kyoto Protocol without participation of key low income developing countries such as China and India with legally binding quantified targets in the First Commitment Period from 2008 to 2012

  12. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    Science.gov (United States)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  13. Adaptive Effectiveness of Irrigated Area Expansion in Mitigating the Impacts of Climate Change on Crop Yields in Northern China

    Directory of Open Access Journals (Sweden)

    Tianyi Zhang

    2017-05-01

    Full Text Available To improve adaptive capacity and further strengthen the role of irrigation in mitigating climate change impacts, the Chinese government has planned to expand irrigated areas by 4.4% by the 2030s. Examining the adaptive potential of irrigated area expansion under climate change is therefore critical. Here, we assess the effects of irrigated area expansion on crop yields based on county-level data during 1980–2011 in northern China and estimate climate impacts under irrigated area scenarios in the 2030s. Based on regression analysis, there is a statistically significant effect of irrigated area expansion on reducing negative climate impacts. More irrigated areas indicate less heat and drought impacts. Irrigated area expansion will alleviate yield reduction by 0.7–0.8% in the future but associated yield benefits will still not compensate for greater adverse climate impacts. Yields are estimated to decrease by 4.0–6.5% under future climate conditions when an additional 4.4% of irrigated area is established, and no fundamental yield increase with an even further 10% or 15% expansion of irrigated area is predicted. This finding suggests that expected adverse climate change risks in the 2030s cannot be mitigated by expanding irrigated areas. A combination of this and other adaptation programs is needed to guarantee grain production under more serious drought stresses in the future.

  14. Evaluating climate change mitigation potential of hydrochars: compounding insights from three different indicators

    DEFF Research Database (Denmark)

    Owsianiak, Mikołaj; Brooks, Jennifer; Renz, Michael

    2017-01-01

    beet, fava bean, onion and lucerne) and two different countries (Spain and Germany), and used three different indicators of climate change: global warming potential (GWP), global temperature change potential (GTP), and climate tipping potential (CTP). We found that although climate change benefits (GWP......) from just sequestration and temporary storage of carbon are sufficient to outweigh impacts stemming from hydrochar production and transportation to the field, even greater benefits stem from replacing climate-inefficient biowaste management treatment options, like composting in Spain. By contrast...

  15. Adaptation and mitigation options for forests and forest management in a changing climate

    NARCIS (Netherlands)

    Johnston, M.; Lindner, M.; Parotta, J.; Giessen, L.

    2012-01-01

    Climate change is now accepted as an important issue for forests and forest management around the world. Climate change will affect forests' ability to provide ecosystem goods and services on which human communities depend: biodiversity, carbon sequestration, regulation of water quality and

  16. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    Science.gov (United States)

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  17. Do algae have moral standing? On exploitation, ethical extension, and climate change mitigation

    NARCIS (Netherlands)

    Geerts, R.J.

    2012-01-01

    Climate change is a major framing condition for sustainable development of agriculture and food. Global food production is a major contributor to global greenhouse gas emissions and at the same time it is among the sectors worst affected by climate change. This book brings together a

  18. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    Science.gov (United States)

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  19. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    Science.gov (United States)

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  20. Macroeconomic impacts of climate change mitigation in Latin America: A cross-model comparison

    International Nuclear Information System (INIS)

    Kober, Tom; Summerton, Philip; Pollitt, Hector; Chewpreecha, Unnada; Ren, Xiaolin; Wills, William; Octaviano, Claudia; McFarland, James; Beach, Robert; Cai, Yongxia; Calderon, Silvia; Fisher-Vanden, Karen; Rodriguez, Ana Maria Loboguerrero

    2016-01-01

    In this paper we analyse macroeconomic consequences of greenhouse gas emission mitigation in Latin America up to 2050 through a multi-model comparison approach undertaken in the context of the CLIMACAP–LAMP research project. We compare two carbon tax scenarios with a business-as-usual scenario of anticipated future energy demand. In the short term, with carbon prices reaching around $15/tCO_2 by 2030, most models agree that the reduction in consumer spending, as a proxy for welfare, is limited to about 0.3%. By 2050, at carbon prices of $165/tCO_2, there is much more divergence in the estimated impact on consumer spending as well as GDP across models and regions, which reflects uncertainties about technology costs and substitution opportunities between technologies. We observe that the consequences of increasingly higher carbon prices, in terms of reduced consumer spending and GDP, tend to be fairly linear with the carbon price in our CGE models. However, the consequences are divergent and nonlinear in our econometric model, that is linked to an energy system model that simulates step-changes in technology substitution. The results of one model show that climate policy measures can have positive effects on consumer spending and GDP, which results from an investment stimulus and the redistribution of carbon price revenues to consumers. - Highlights: • Depending on the model approach negative and positive macro-economic impacts are possible if carbon taxes are introduced. • Limited impact of moderate carbon taxes (up to $15/tCO_2 by 2030) on consumer spending in the medium-term • Impact of High CO_2 prices (around $165/tCO_2 in 2050) on GDP 5% at most in the long-term

  1. Climate change adaptation and mitigation options a guide for natural resource managers in southern forest ecosystems

    Science.gov (United States)

    James M. Vose; Kier D. Klepzig

    2014-01-01

    The rapid pace of climate change and its direct and indirect effects on forest ecosystems present a pressing need for better scientific understanding and the development of new science-management partnerships. Understanding the effects of stressors and disturbances (including climatic variability), and developing and testing science-based management options to deal...

  2. Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies

    Science.gov (United States)

    Bofferding, Laura; Kloser, Matthew

    2015-01-01

    Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…

  3. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    Science.gov (United States)

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  4. Water quality management and climate change mitigation: cost-effectiveness of joint implementation in the Baltic Sea region

    DEFF Research Database (Denmark)

    Nainggolan, Doan; Hasler, Berit; Andersen, Hans Estrup

    2018-01-01

    of contrasting strategies: single environmental objective management versus joint implementation strategy. The results show that implementing land-based measures with a sole focus on water quality (to meet the HELCOM's 2013 Baltic Sea Action Plan nutrient abatement targets) can produce climate change mitigation......This paper explores the scope for simultaneously managing nutrient abatement and climate change mitigation in the Baltic Sea (BS) region through the implementation of a selection of measures. The analysis is undertaken using a cost-minimisation model for the entire BS region, the BALTCOST model....... In the present research, the model has been extended to include greenhouse gas (GHG) emissions effects, enabling us to analyse the tradeoffs between cost-effective GHG and nutrient load reductions. We run the model for four different scenarios in order to compare the environmental and economic consequences...

  5. The variance of the model representation of nuclear power generation and its implication to the climate change mitigation assessment

    International Nuclear Information System (INIS)

    Wada, Kenichi; Sano, Fuminori; Oshima, Kanji; Akimoto, Keigo

    2013-01-01

    Nuclear power secures affordable carbon-free energy supply, but entails various risks and constraints, such as safety concerns, waste disposal protest campaign, and proliferation. Given the nature of these characteristics of nuclear power generation, there is wide range of variations in representation of nuclear power technologies across models. In this paper, we explore the variance of the model representation of nuclear power generation and its implication to the climate change mitigation assessment, based on the EMF27 study. The most common result is that under efforts to mitigate climate change more nuclear energy use is needed. We find, however, that perspectives on the contribution of nuclear energy to global energy needs vary tremendously among the modeling teams. This diversity mainly comes from the difference in the level of detail that characterize nuclear energy technologies and the broad range of nuclear contributions in the long-term scenarios of global energy use. (author)

  6. What if ... abrupt and extreme climate change? Programme of VAM (Vulnerability, Adaptation, Mitigation)

    International Nuclear Information System (INIS)

    2008-10-01

    A number of researchers from different social scientific disciplines present a view in response to the question 'what will happen in our society if the climate suddenly changes?'. They answer questions such as: How will people respond to real risks such as imminent flooding? What are the economic consequences? How will it affect sectors such as inland shipping and coastal tourism? What are the costs of adapting our country to rising sea levels or sudden cold? As a society what do we consider to be socially and publicly acceptable? Can we still insure ourselves? Who will assume responsibility and what are the tasks of the various parties involved? The book merely sets the scene. Social sciences research into climate change has only just started. Besides providing answers to the question about the social and public implications of abrupt climate change, the book calls for a greater involvement of social scientists in climate change issues

  7. Can Seaweed Farming Play a Role in Climate Change Mitigation and Adaptation?

    KAUST Repository

    Duarte, Carlos M.; Wu, Jiaping; Xiao, Xi; Bruhn, Annette; Krause-Jensen, Dorte

    2017-01-01

    also help reduce the emissions from agriculture, by improving soil quality substituting synthetic fertilizer and when included in cattle fed, lowering methane emissions from cattle. Seaweed aquaculture contributes to climate change adaptation by damping

  8. Tropical and Highland Temperate Forest Plantations in Mexico: Pathways for Climate Change Mitigation and Ecosystem Services Delivery

    Directory of Open Access Journals (Sweden)

    Vidal Guerra-De la Cruz

    2017-12-01

    Full Text Available Forest plantations are a possible way of increasing forest productivity in temperate and tropical forests, and therefore also increasing above- and belowground carbon pools. In the context of climate change, monospecific plantations might become an alternative to mitigate global warming; however, their contribution to the structural complexity, complementarity, and biodiversity of forests has not been addressed. Mixed forest plantations can ensure that objectives of climate change mitigation are met through carbon sequestration, while also delivering anticipated ecosystem services (e.g., nutrient cycling, erosion control, and wildlife habitat. However, mixed forest plantations pose considerable operational challenges and research opportunities. For example, it is essential to know how many species or functional traits are necessary to deliver a set of benefits, or what mixture of species and densities are key to maintaining productive plantations and delivering multiple ecosystem services. At the same time, the establishment of forest plantations in Mexico should not be motivated solely by timber production. Forest plantations should also increase carbon sequestration, maintain biodiversity, and provide other ecosystem services. This article analyzes some matters that affect the development of planted forests in the Mexican national context, and presents alternatives for forest resources management through the recommendation of mixed forest plantations as a means of contributing to climate change mitigation and the delivery of ecosystem services.

  9. Government programs for climate change mitigation in Japan. An analysis based on public budget documents and Government Project Review Sheets

    International Nuclear Information System (INIS)

    Kimura, Osamu

    2016-01-01

    The Japanese government has been spending huge public budgets for various programs to mitigate climate change, such as subsidy programs for energy efficient and renewable technologies, and R and D programs to develop innovative low carbon technologies. This report makes a comprehensive review of government projects and expenditure related to climate change mitigation in order to grasp their total expenditure and to analyze portfolio of supported technology and activity types, outcome, and the cost-effectiveness. It is estimated that the total expenditure for climate change mitigation excluding nuclear energy and forest sink projects amounts to 4.8 trillion JPY (approximately 40 billion USD) in the period of 2008 to 2014. 40% of the total expenditure went to only three largest programs, namely the Eco Car Subsidy, the Eco Point Programs for Appliances and Houses, all of which have gone through virtually no or only poor evaluations by the implementing ministries. While some programs had decent cost-effectiveness of reducing carbon dioxide emission at below 10,000 JPY/t-CO 2 (approximately 90 USD), there are also programs with very low cost-effectiveness at more than 100,000 JPY/t-CO 2 . Moreover, all of the evaluation was based on 'gross' reduction, not on 'net' of freeriders, rebound and other factors, which may lead to overestimation of performances. The result shows the need for a much larger resource for evaluation activities by the government. (author)

  10. Adaptation and mitigation options to manage aflatoxin contamination in food with a climate change perspective

    DEFF Research Database (Denmark)

    Wambui, J. M.; Karuri, E. G.; Ojiambo, J. A.

    2016-01-01

    Understanding the impact of climate change remains vital for food safety and public health. Of particular importance is the influence of climatic conditions on the growth of Aspergillus flavus and production of their toxins. Nevertheless, little is known about the actual impact of climate change....... We used a systematic literature review of review and research articles, with limited searching but systematic screening to explore available qualitative and quantitative data. Projections from the data, showed that on average, a 58.9% increase of aflatoxin contamination in the Central and Western...... parts and a decrease of 44.6% in the Eastern and Southern parts is expected but with several possible scenarios. This makes the impact of climate change on aflatoxin contamination in Kenya complex. To protect the public and environment from the negative impact, a regulatory framework that allows...

  11. The contribution of sectoral climate change mitigation options to national targets: a quantitative assessment of dairy production in Kenya

    Science.gov (United States)

    Brandt, Patric; Herold, Martin; Rufino, Mariana C.

    2018-03-01

    Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%-31%, partially achieves the national milk productivity target for 2030 by 38%-41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed

  12. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  13. Public willingness to pay for CO2 mitigation and the determinants under climate change: a case study of Suzhou, China.

    Science.gov (United States)

    Yang, Jie; Zou, Liping; Lin, Tiansheng; Wu, Ying; Wang, Haikun

    2014-12-15

    This study explored the factors that influence respondents' willingness to pay (WTP) for CO2 mitigation under climate change. A questionnaire survey combined with contingent valuation and psychometric paradigm methods were conducted in the city of Suzhou, Jiangsu Province in China. Respondents' traditional demographic attributes, risk perception of greenhouse gas (GHG), and attitude toward the government's risk management practices were established using a Tobit model to analyze the determinants. The results showed that about 55% of the respondents refused to pay for CO2 mitigation, respondent's WTP increased with increasing CO2 mitigation percentage. Important factors influencing WTP include people's feeling of dread of GHGs, confidence in policy, the timeliness of governmental information disclosure, age, education and income level. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. The Land Use and Cover Change in Miombo Woodlands under Community Based Forest Management and Its Implication to Climate Change Mitigation: A Case of Southern Highlands of Tanzania

    Directory of Open Access Journals (Sweden)

    Z. J. Lupala

    2015-01-01

    Full Text Available In Tanzania, miombo woodland is the most significant forest vegetation with both ecological and socioeconomic importance. The vegetation has been threatened from land use and cover change due to unsustainable utilization. Over the past two decades, community based forest management (CBFM has been practiced to address the problem. Given the current need to mitigate global climate change, little is known on the influence of CBFM to the land use and cover change in miombo woodlands and therefore compromising climate change mitigation strategies. This study explored the dynamic of land use and covers change and biomass due to CBFM and established the implication to climate change mitigation. The study revealed increasing miombo woodland cover density with decreasing unsustainable utilization. The observed improvement in cover density and biomass provides potential for climate change mitigation strategies. CBFM also developed solidarity, cohesion, and social control of miombo woodlands illegal extraction. This further enhances permanence, reduces leakage, and increases accountability requirement for carbon credits. Collectively with these promising results, good land use plan at village level and introduction of alternative income generating activities can be among the best options to further reduce land use change and biomass loss in miombo woodlands.

  15. Continuity and Change: Dealing with Political Volatility to Advance Climate Change Mitigation Strategies—Examples from the Transport Sector

    Directory of Open Access Journals (Sweden)

    Oliver Lah

    2017-06-01

    Full Text Available As the recent withdrawal of the United States from the Paris Agreement has shown, political volatility directly affects climate change mitigation policies, in particular in sectors, such as transport associated with long-term investments by individuals (vehicles and by local and national governments (urban form and transport infrastructure and services. There is a large potential for cost-effective solutions to reduce greenhouse gas emissions and to improve the sustainability of the transport sector that is yet unexploited. Considering the cost-effectiveness and the potential for co-benefits, it is hard to understand why efficiency gains and CO2 emission reductions in the transport sector are still lagging behind this potential. Particularly interesting is the fact that there is substantial difference among countries with relatively similar economic performances in the development of their transport CO2 emissions over the past thirty years despite the fact that these countries had relatively similar access to efficient technologies and vehicles. This study aims to explore some well-established political science theories on the particular example of climate change mitigation in the transport sector in order to identify some of the factors that could help explain the variations in success of policies and strategies in this sector. The analysis suggests that institutional arrangements that contribute to consensus building in the political process provide a high level of political and policy stability which is vital to long-term changes in energy end-use sectors that rely on long-term investments. However, there is no direct correlation between institutional structures, e.g., corporatism and success in reducing greenhouse gas emissions in the transport sector. Environmental objectives need to be built into the consensus-based policy structure before actual policy progress can be observed. This usually takes longer in consensus democracies than in

  16. Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector

    Science.gov (United States)

    Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.

    2018-03-01

    The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the

  17. Reservoir operations under climate change: Storage capacity options to mitigate risk

    Science.gov (United States)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  18. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    Science.gov (United States)

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands necessitates caution when interpreting model results. Recent changes in weather patterns throughout much of the Prairie Pothole Region have been in increased precipitation that results in increased water inputs to wetlands above losses associated with warmer temperatures. However, observed precipitation increases are within the range of natural climate variability and therefore, may not persist. Identifying management techniques with the potential to affect water inputs to prairie pothole wetlands would provide increased options for managers when dealing with the uncertainties associated with a changing climate. Several grassland management techniques (for example, grazing and burning) have the potential to affect water levels and hydroperiods of prairie pothole by affecting infiltration, evapotranspiration, and snow deposition.

  19. Cost of preventing workplace heat-related illness through worker breaks and the benefit of climate-change mitigation

    Science.gov (United States)

    Takakura, Jun'ya; Fujimori, Shinichiro; Takahashi, Kiyoshi; Hijioka, Yasuaki; Hasegawa, Tomoko; Honda, Yasushi; Masui, Toshihiko

    2017-06-01

    The exposure of workers to hot environments is expected to increase as a result of climate change. In order to prevent heat-related illness, it is recommended that workers take breaks during working hours. However, this would lead to reductions in worktime and labor productivity. In this study, we estimate the economic cost of heat-related illness prevention through worker breaks associated with climate change under a wide range of climatic and socioeconomic conditions. We calculate the worktime reduction based on the recommendation of work/rest ratio and the estimated future wet bulb glove temperature, which is an index of heat stresses. Corresponding GDP losses (cost of heat-related illness prevention through worker breaks) are estimated using a computable general equilibrium model throughout this century. Under the highest emission scenario, GDP losses in 2100 will range from 2.6 to 4.0% compared to the current climate conditions. On the other hand, GDP losses will be less than 0.5% if the 2.0 °C goal is achieved. The benefit of climate-change mitigation for avoiding worktime loss is comparable to the cost of mitigation (cost of the greenhouse gas emission reduction) under the 2.0 °C goal. The relationship between the cost of heat-related illness prevention through worker breaks and global average temperature rise is approximately linear, and the difference in economic loss between the 1.5 °C goal and the 2.0 °C goal is expected to be approximately 0.3% of global GDP in 2100. Although climate mitigation and socioeconomic development can limit the vulnerable regions and sectors, particularly in developing countries, outdoor work is still expected to be affected. The effectiveness of some adaptation measures such as additional installation of air conditioning devices or shifting the time of day for working are also suggested. In order to reduce the economic impacts, adaptation measures should also be implemented as well as pursing ambitious climate change

  20. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    Science.gov (United States)

    Lorenz, K.

    2010-12-01

    long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  1. Comparative analysis of climate change policy in a trans-Atlantic perspective, The implications of level of governance regarding climate change mitigation effectiveness

    NARCIS (Netherlands)

    Taminiau, Job

    2010-01-01

    The United States and the European Union address climate change in a fundamentally different manner. The US seems uninterested to address climate change from a federal level, but individual states within the US are definitely moving forward with climate c

  2. Transdisciplinarity Within the North American Climate Change Mitigation Research Community, Specifically the Carbon Dioxide Capture, Transportation, Utilization and Storage Community

    Science.gov (United States)

    Carpenter, Steven Michael

    This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or

  3. Soil organic carbon pool's contribution to climate change mitigation on marginal land of a Mediterranean montane area in Italy.

    Science.gov (United States)

    Tommaso, Chiti; Emanuele, Blasi; Guido, Pellis; Lucia, Perugini; Vincenza, Chiriacò Maria; Riccardo, Valentini

    2018-07-15

    To evaluate the mitigation potential provided by the SOC pool, we investigated the impact of woody encroachment in the 0-30 cm depth of mineral soil across a natural succession from abandoned pastures and croplands to broadleaves forests on the central Apennine in Italy. In parallel, to assess the effect of the land use change (LUC) from cropland to pasture, a series of pastures established on former agricultural sites, abandoned at different time in the past, were also investigated. Our results show that woody encroachment on former pastures and croplands contributes largely to mitigate climate change, with an increase of the original SOC stock of 45% (40.5 Mg C ha -1 ) and 120% (66.5 Mg C ha -1 ), respectively. Also the LUC from croplands to pastures, greatly contributes to climate change mitigation trough a SOC increase of about 80% of the original SOC (45.9 Mg C ha -1 ). The management of abandoned lands represent a crucial point in the mitigation potential of agriculture and forestry activities, and particularly the role of the SOC pool. A policy effort should focus on minimizing the risk of speculative management options, particularly when the value of woody biomass become convenient to supply new energy systems allowing monetizing a long term forests productivity. In conclusion, despite both the land abandonment and the LUC can have a different impact on the SOC pool under different climatic conditions, these results can be useful to improve the SOC estimates in the National greenhouse gases Inventory at country level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Transport-related measures to mitigate climate change in Basel, Switzerland: A health-effectiveness comparison study.

    Science.gov (United States)

    Perez, L; Trüeb, S; Cowie, H; Keuken, M P; Mudu, P; Ragettli, M S; Sarigiannis, D A; Tobollik, M; Tuomisto, J; Vienneau, D; Sabel, C; Künzli, N

    2015-12-01

    Local strategies to reduce green-house gases (GHG) imply changes of non-climatic exposure patterns. To assess the health impacts of locally relevant transport-related climate change policies in Basel, Switzerland. We modelled change in mortality and morbidity for the year 2020 based on several locally relevant transport scenarios including all decided transport policies up to 2020, additional realistic and hypothesized traffic reductions, as well as ambitious diffusion levels of electric cars. The scenarios were compared to the reference condition in 2010 assumed as status quo. The changes in non-climatic population exposure included ambient air pollution, physical activity, and noise. As secondary outcome, changes in Disability-Adjusted Life Years (DALYs) were put into perspective with predicted changes of CO2 emissions and fuel consumption. Under the scenario that assumed a strict particle emissions standard in diesel cars and all planned transport measures, 3% of premature deaths could be prevented from projected PM2.5 exposure reduction. A traffic reduction scenario assuming more active trips provided only minor added health benefits for any of the changes in exposure considered. A hypothetical strong support to electric vehicles diffusion would have the largest health effectiveness given that the energy production in Basel comes from renewable sources. The planned local transport related GHG emission reduction policies in Basel are sensible for mitigating climate change and improving public health. In this context, the most effective policy remains increasing zero-emission vehicles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Chapter 5. Assessing the Need for High Impact Technology Research, Development & Deployment for Mitigating Climate Change

    Directory of Open Access Journals (Sweden)

    David Auston

    2016-12-01

    Full Text Available Technology is a centrally important component of all strategies to mitigate climate change. As such, it encompasses a multi-dimensional space that is far too large to be fully addressed in this brief chapter. Consequently, we have elected to focus on a subset of topics that we believe have the potential for substantial impact. As researchers, we have also narrowed our focus to address applied research, development and deployment issues and omit basic research topics that have a longer-term impact. This handful of topics also omits technologies that we deem to be relatively mature, such as solar photovoltaics and wind turbines, even though we acknowledge that additional research could further reduce costs and enhance performance. These and other mature technologies such as transportation are discussed in Chapter 6. This report and the related Summit Conference are an outgrowth of the University of California President’s Carbon Neutrality Initiative, and consequently we are strongly motivated by the special demands of this ambitious goal, as we are also motivated by the corresponding goals for the State of California, the nation and the world. The unique feature of the UC Carbon Neutrality Initiative is the quest to achieve zero greenhouse gas emissions by 2025 at all ten 10 campuses. It should be emphasized that a zero emission target is enormously demanding and requires careful strategic planning to arrive at a mix of technologies, policies, and behavioral measures, as well as highly effective communication – all of which are far more challenging than reducing emissions by some 40% or even 80%. Each campus has a unique set of requirements based on its current energy and emissions. Factors such as a local climate, dependence on cogeneration, access to wholesale electricity markets, and whether a medical school is included shape the specific challenges of the campuses, each of which is a “living laboratory” setting a model for others to

  6. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different

  7. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  8. The integration of empirical, remote sensing and modelling approaches enhances insight in the role of biodiversity in climate change mitigation by tropical forests

    NARCIS (Netherlands)

    Sande, van der Masha T.; Poorter, Lourens; Balvanera, Patricia; Kooistra, Lammert; Thonicke, Kirsten; Boit, Alice; Dutrieux, Loic; Equihua, Julian; Gerard, France; Herold, Martin; Kolb, Melanie; Simões, Margareth; Peña-Claros, Marielos

    2017-01-01

    Tropical forests store and sequester high amounts of carbon and are the most diverse terrestrial ecosystem. A complete understanding of the relationship between biodiversity and carbon storage and sequestration across spatiotemporal scales relevant for climate change mitigation needs three

  9. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways

    NARCIS (Netherlands)

    Mouratiadou, Ioanna; Biewald, Anne; Pehl, Michaja; Bonsch, Markus; Baumstark, Lavinia; Klein, David; Popp, Alexander; Luderer, Gunnar; Kriegler, Elmar

    2016-01-01

    Abstract Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the

  10. Reducing GHG Emissions from Traditional Livestock Systems to Mitigate Changing Climate and Biodiversity

    NARCIS (Netherlands)

    Mushi, D.E.; Eik, L.O.; Bernués, A.; Ripoll Bosch, R.; Sundstol, F.; Mo, M.

    2015-01-01

    Climate change (CC) directly impacts the economy, ecosystems, water resources, weather events, health issues, desertification, sea level rise, and even political and social stability. The effects of CC affect different groups of societies differently. In Tanzania, the effects of CC have even

  11. Agricultural conservation practices can help mitigate the impact of climate change.

    Science.gov (United States)

    Wagena, Moges B; Easton, Zachary M

    2018-09-01

    Agricultural conservation practices (CPs) are commonly implemented to reduce diffuse nutrient pollution. Climate change can complicate the development, implementation, and efficiency of agricultural CPs by altering hydrology, nutrient cycling, and erosion. This research quantifies the impact of climate change on hydrology, nutrient cycling, erosion, and the effectiveness of agricultural CP in the Susquehanna River Basin in the Chesapeake Bay Watershed, USA. We develop, calibrate, and test the Soil and Water Assessment Tool-Variable Source Area (SWAT-VSA) model and select four CPs; buffer strips, strip-cropping, no-till, and tile drainage, to test their effectiveness in reducing climate change impacts on water quality. We force the model with six downscaled global climate models (GCMs) for a historic period (1990-2014) and two future scenario periods (2041-2065 and 2075-2099) and quantify the impact of climate change on hydrology, nitrate-N (NO 3 -N), total N (TN), dissolved phosphorus (DP), total phosphorus (TP), and sediment export with and without CPs. We also test prioritizing CP installation on the 30% of agricultural lands that generate the most runoff (e.g., critical source areas-CSAs). Compared against the historical baseline and with no CPs, the ensemble model predictions indicate that climate change results in annual increases in flow (4.5±7.3%), surface runoff (3.5±6.1%), sediment export (28.5±18.2%) and TN export (9.5±5.1%), but decreases in NO 3 -N (12±12.8%), DP (14±11.5), and TP (2.5±7.4%) export. When agricultural CPs are simulated most do not appreciably change the water balance, however, tile drainage and strip-cropping decrease surface runoff, sediment export, and DP/TP, while buffer strips reduce N export. Installing CPs on CSAs results in nearly the same level of performance for most practices and most pollutants. These results suggest that climate change will influence the performance of agricultural CPs and that targeting agricultural

  12. Climate change mitigation strategies in fast-growing countries: The benefits of early action

    International Nuclear Information System (INIS)

    Bosetti, Valentina; Carraro, Carlo; Tavoni, Massimo

    2009-01-01

    This paper builds on the assumption that OECD countries are (or will soon be) taking actions to reduce their greenhouse gas emissions. These actions, however, will not be sufficient to control global warming, unless developing countries also get involved in the cooperative effort to reduce GHG emissions. The paper investigates the best short-term strategies that emerging economies can adopt in reacting to OECD countries' mitigation effort, given the common long-term goal to prevent excessive warming without hampering economic growth. Results indicate that developing countries would incur substantial economic losses by following a myopic strategy that disregards climate in the short-run, and that their optimal investment behaviour is to anticipate the implementation of a climate policy by roughly 10 years. Investing in innovation ahead of time is also found to be advantageous. The degree of policy anticipation is shown to be important in determining the financial transfers of an international carbon market meant to provide incentives for the participation of developing countries. This is especially relevant for China, whose recent and foreseeable trends of investments in innovation are consistent with the adoption of domestic emission reduction obligations in 2030.

  13. GLIMPSE: A decision support tool for simultaneously achieving our air quality management and climate change mitigation goals

    Science.gov (United States)

    Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.

    2012-12-01

    Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.

  14. Climate Change Mitigation Potential of Wood Use in Civil Engineering in Japan Based on Life-Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Chihiro Kayo

    2018-02-01

    Full Text Available Throughout its life-cycle, wood contributes to climate change mitigation through carbon storage and material and energy substitution. Focusing on wood use for piles, check dams, paved walkways, guardrails, and noise barriers, we quantified the nationwide potential for climate change mitigation in civil engineering in Japan through 2050. To assess mitigation potential, we examined life-cycle greenhouse gas (GHG emissions that are avoided by storing carbon in wood and forests, substituting wooden materials for non-wooden materials (cement, concrete, steel, and asphalt, and substituting processing residue and waste wood salvaged from defunct civil engineering structures for fossil fuels (heavy oil. Our projections suggest that there will be a maximum potential domestic log volume of 6.80 million m3/year available for civil engineering use in Japan in 2050, and that it would be possible to produce this volume while increasing Japan’s forest resources over the long term. A maximum nationwide avoided GHG emissions potential of 9.63 million t-CO2eq/year could be achieved in 2050, which is equivalent to 0.7% of Japan’s current GHG emissions. The breakdown of avoided emissions is 73%, 19%, and 8% for carbon storage, material substitution, and energy substitution, respectively, with the greatest contributions coming from carbon storage through the use of log piles.

  15. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes

    Science.gov (United States)

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-09-01

    The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (˜50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend.

  16. Reconciling Oil Palm Expansion and Climate Change Mitigation in Kalimantan, Indonesia

    Science.gov (United States)

    Austin, Kemen G.; Kasibhatla, Prasad S.; Urban, Dean L.; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world’s most abundant vegetable oil and a commodity that has contributed significantly to Indonesia’s economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4–211.4 MtCO2 yr-1 under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55–60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia’s national emissions mitigation goal, while allowing oil palm area to double. PMID:26011182

  17. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    Science.gov (United States)

    Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.

  18. How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review.

    Science.gov (United States)

    Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena

    2016-02-01

    Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.

  19. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  20. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  1. The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation

    NARCIS (Netherlands)

    van Vuuren, D.P.; Isaac, M.; Kundzewicz, Z.W.; Arnell, N.; Barker, T.; Criqui, P.; Berkhout, F.; Hilderink, H.; Hinkel, J.; Hof, Andries; Kitous, A.; Kram, T.; Mechler, R.; Scrieciu, S.

    2011-01-01

    Scenarios are used to explore the consequences of different adaptation and mitigation strategies under uncertainty. In this paper, two scenarios are used to explore developments with (1) no mitigation leading to an increase of global mean temperature of 4 °C by 2100 and (2) an ambitious mitigation

  2. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

    Science.gov (United States)

    Kreidenweis, Ulrich; Humpenöder, Florian; Stevanović, Miodrag; Bodirsky, Benjamin Leon; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, Alexander

    2016-08-01

    Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions.

  3. Mitigating Climate Change by the Development and Deployment of Solar Water Heating Systems

    Directory of Open Access Journals (Sweden)

    S. T. Wara

    2013-01-01

    Full Text Available Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in Water Heating Systems. Ogun State in Nigeria was used as a case study. The solar radiation for the state was explored with an annual average of 4.775 kWh/m2 recorded. The designed system comprised storage tanks and the collector unit which comprises wooden casing, copper tube, and aluminium foil. Test results for the unlagged and lagged storage tanks for water temperature at various angles of inclination (2.500°–20.000° were on the average 27.800°C and 28.300°C, respectively, for the inlet temperature and 60.100°C and 63.000°C for the outlet temperature, respectively. The efficiency of the Solar Water Heating System was 72.500% and the power saved 2.798 kW. The cost of the unit is put at 1121,400 ($145 as at August 2012. The unit developed can be applied for the purpose of reducing the cost of energy, dealing with environmental challenges, and improving the use of energy, hence serving as a climate mitigation process as this can be extended for water heating for domestic and other industrial purposes.

  4. Tourism’s impact on climate change and its mitigation challenges : How can tourism become ‘climatically sustainable’?

    NARCIS (Netherlands)

    Peeters, P.M.

    2017-01-01

    In 2015, the global community came together in Paris and agreed on a CO2 emissions pathway to avoid a temperature anomaly of more than 2 °C above pre-industrial levels. A significant source of CO2 emissions, the main greenhouse gas causing climate change, is the tourism sector. From research

  5. Future state of the climate change, mitigation and development of sustainable agriculture in Bulgaria

    Science.gov (United States)

    Kazandjiev, V.; Georgieva, V.; Moteva, M.; Marinova, T.; Dimitrov, P.

    2010-09-01

    The farming is one of the most important branches that bring the increase to the gross internal production in Bulgaria. At the same time, the agriculture is the only branch, as in home, so in world scale in which the made as well direct production spending and investing regenerating (or not) only in the frameworks to one vegetative season. In addition on this, development of the intensive farming without using the most advanced technologies such as irrigation, automation, selection - for obtaining stable cultivars and hybrids, permanent weather monitoring and agroclimatic zoning and integrated and biochemical protection to the cultures and plantations had not possible. Analysis of long-term meteorological data from different regions shows clear tendencies to warming and drying for the period of contemporary climate (1971-2000) as well in Bulgaria. Hydro-meteorological conditions in the country are worsened. The most entire estimate is made from the Intergovernmental Panel for Climate Change (IPCC) 2007. Most of authors proven that the last decades are really warmest for last century, even for the entire period of the most instrumental observations. The causes for global warming was long time debatable, but the last investigations prove it anthropogenetic derive. The main goal of the paper is framing in conditions of the expected climate changes in our country for period 2020-2050-2070 and the most likely impacts on the agriculture with inspection padding to the consequences in them and making physical conditions for development of proof farming in production regions of the country. By the means of the systematized database of meteorological and agrometeorological data which we have at disposition for the period of this survey (1971-2000); Provide assignment of the expected climatic changes according to the scenarios in the centers for observing and investigations of climatic changes in Europe, US., Canada and Australia (ECHAM 4, HadCM 2, CGCM 1, CSIRO-MK2 Bs and

  6. Carbon Lock-In: Barriers to the Deployment of Climate Change Mitigation Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lapsa, Melissa Voss [ORNL; Brown, Marilyn A. [ORNL

    2008-01-01

    The United States shares with many other countries the objective of stabilizing greenhouse gas (GHG) concentrations in the Earth's atmosphere at a level that would prevent dangerous interference with the climate system. Many believe that accelerating the pace of technology improvement and deployment could significantly reduce the cost of achieving this goal. The critical role of new technologies is underscored by the fact that most anthropogenic greenhouse gases emitted over the next century will come from equipment and infrastructure built in the future. As a result, new technologies and fuels have the potential to transform the nation's energy system while meeting climate change as well as energy security and other goals.

  7. POTENTIAL IMPACTS OF CLIMATE CHANGE ON PLANT DIVERSITY OF HILLY AREAS OF AZAD KASHMIR AND THEIR MITIGATION: A REVIEW

    Directory of Open Access Journals (Sweden)

    K. F. Akbar

    2017-08-01

    Full Text Available Azad Kashmir has variety of mountain ecosystems which are rich in floral and faunal diversity. These ecosystems are fragile and are under stress due to various natural and anthropogenic pressures. Mountain ecosystems of Azad Kashmir are more vulnerable to global warming and are expected to show its impacts rapidly. Climate change may cause major changes in distribution ranges of different vegetation types. As a result of climate change, the area of three vegetation groups (alpine, grassland/arid woodlands and deserts is expected to decrease and the areas of five types (cold conifer/mixed woodland, cold conifer/mixed forests, temperate conifer/mixed forests, warm conifer/mixed forests, and steppe/arid shrub lands are expected to increase. Climate change is going to affect conservation of plant species and ecosystems by causing direct loss of plant species and intensify the effects of existing threats such as habitat degradation, deforestation and over-harvesting of plants by local communities, pollution and invasive species. These stresses, acting individually and collectively on species, communities and ecosystems, are depleting and will continue to deplete biodiversity. The negative impacts of climate change are multi-dimensional and wide-ranging. Their mitigation requires an integrated and coordinated policy response for conservation of plant resources. These measures include a regular monitoring and observation system, restoration of degraded habitats and forests, identifying new solutions involving cross-sectoral linkages to conserve biological diversity of Azad Kashmir by supporting the intricate and complex responses of species and ecosystems to climate change.

  8. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    Science.gov (United States)

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  9. Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure.

    Science.gov (United States)

    Demuzere, M; Orru, K; Heidrich, O; Olazabal, E; Geneletti, D; Orru, H; Bhave, A G; Mittal, N; Feliu, E; Faehnle, M

    2014-12-15

    In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Using Design as Boundary Spanner Object in Climate Change Mitigation Projects

    Directory of Open Access Journals (Sweden)

    Walter Fernandez

    2010-01-01

    Full Text Available Climate change is a growing concern for society and the focus of numerous research initiatives across multiple fields of science. These initiatives often need to capitalize on the cross-specialized knowledge contributed by researchers from very different fields. The diversity of worldviews among key stakeholders requires an effective overall design strategy acting as a boundary spanner object. This study presents an account of the issues faced by a multidisciplinary research project and discusses the suitability of a design approach to help address issues such as equality, empowerment, autonomy, creativity, performance, reduction of innovation cycle times and also provide for the necessary balance between control, speediness and flexibility.

  11. Opportunities and Challenges of Electric Vehicles Development in Mitigating Climate Change in China

    Science.gov (United States)

    Liu, R.; Li, M. H.; Zhang, H. N.

    2017-10-01

    As a developing country, China has also undergone a noticeable climate change due to the increasing consumption of fossil fuels. The automotive market in China is estimated to be the world’s second largest new automotive growth market. China is now capable of manufacturing cars totally independently, which makes car prices more attractive to middle- income families. As one of the energy solutions, Electric Vehicles Technologies cannot be considered solely in environmental aspects. One energy system should not only contribute to sustainable development, but also to the environmental, social and economic aspects.

  12. Quantifying the evidence for co-benefits between species conservation and climate change mitigation in giant panda habitats.

    Science.gov (United States)

    Li, Renqiang; Xu, Ming; Powers, Ryan; Zhao, Fen; Jetz, Walter; Wen, Hui; Sheng, Qingkai

    2017-10-05

    Conservationists strive for practical, cost-effective management solutions to forest-based species conservation and climate change mitigation. However, this is compromised by insufficient information about the effectiveness of protected areas in increasing carbon storage, and the co-benefits of species and carbon conservation remain poorly understood. Here, we present the first rigorous quantitative assessment of the roles of giant panda nature reserves (NRs) in carbon sequestration, and explore the co-benefits of habitat conservation and climate change mitigation. Results show that more than 90% of the studied panda NRs are effective in increasing carbon storage, with the mean biomass carbon density of the whole NRs exhibiting a 4.2% higher growth rate compared with lands not declared as NRs over the period 1988-2012, while this effectiveness in carbon storage masks important patterns of spatial heterogeneity across the giant panda habitats. Moreover, the significant associations have been identified between biomass carbon density and panda's habitat suitability in ~85% NRs and at the NR level. These findings suggest that the planning for carbon and species conservation co-benefits would enhance the greatest return on limited conservation investments, which is a critical need for the giant panda after its conservation status has been downgraded from "endangered" to "vulnerable".

  13. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  14. Forest policy implications of climate change: Economic impacts and potential mitigation strategies

    International Nuclear Information System (INIS)

    Hodges, D.G.; Belli, K.L.; Watson, W.F.; Regens, J.L.

    1994-01-01

    Increasing mean global temperatures due to rising levels of carbon dioxide and other ''greenhouse'' gases in the atmosphere could affect the distribution of commercially important forests in North America significantly. The temperature increases might outpace the ability of forests to adapt, causing considerable stress and mortality to trees in the southern part of their range without a commensurate increase in growth across the expanding range. If realized, these potential biological impacts on forest distribution and health would affect management decisions substantially and could adversely impact forest-based economies in the United States. Specific effects on forest management include changes in the methods and costs of fire, insect, and disease protection; greater demands on forest lands for conversion to food production; and uncertain changes in site quality. One means of mitigating the effects of CO 2 emissions is to establish tree plantations for carbon sequestration. Preliminary analyses suggest that a program aimed at marginal cropland in the South could store more than 563 million tons of carbon over 45 years, although 90 million tons would be lost due to risks associated with plantations

  15. Can forest watershed management mitigate climate change impacts on water resources?

    Science.gov (United States)

    James M. Vose; Chelcy R. Ford; Stephanie Laseter; Salli Dymond; GE Sun; Mary Beth Adams; Stephen Sebestyen; John Campbell; Charles Luce; Devendra Amatya; Kelly Elder; Tamara. Heartsill-Scalley

    2012-01-01

    Long-term hydrology and climate data from United States Forest Service Experimental Forests and Ranges (EFR) provide critical information on the interactions among climate, streamflow, and forest management practices. We examined the relationships among streamflow responses to climate variation and forest management using long-term data. Analysis of climate data from a...

  16. Added value. Collaboration on mitigating climate change in coastal towns by community driven processes

    DEFF Research Database (Denmark)

    Mechlenborg, Mette; Hansen, Jesper Rohr

    2018-01-01

    How should the collaborations between private and public landowners be organized and driven in order to make the mitigation of coastal towns and lines more innovative, economic and environmental sustainable?......How should the collaborations between private and public landowners be organized and driven in order to make the mitigation of coastal towns and lines more innovative, economic and environmental sustainable?...

  17. Climate Change And Mitigation Measures For The Hydrometerological Disaster In Himachal Pradesh India- In Light Of Dams.

    Directory of Open Access Journals (Sweden)

    Vinay K. Pandey

    2015-01-01

    Full Text Available Abstract Continuing climate change is predicted to lead to major changes in the climate of the Himalayan region. Casualties and damage due to hazards in mountain regions will increase irrespective of global warming especially where populations are growing and infrastructure is developed at exposed locations. But climate change will definitely increase risk due to the fact that expected increases of heavy rainfall heat waves and glacier melt will amplify hazards in Himalayan region. The rapid release of melt water and rainfall may combine to trigger debris flows and flash flood in higher ranges including the formation of potentially dangerous lakes. These lakes may breach suddenly resulting in discharge of huge volume of water and debris. Himachal Pradesh had experienced a large number of incidences of Hydro-meteorological disaster HMD since its inception in 1971. Flash flood of March 1975 Dec 1988 Satluj flash flood of August 2000 July 2001 June 2005 Flash flood of July 2005 and Cloud burst in June 2013 are the major natural calamities in Himachal Pradesh. Due to continuous HMD brought heavy toll to the state as the loss was estimated in several thousand millions of rupees and also killed several hundreds of people besides large number of cattle heads. Through this paper we carried out a comprehensive study of past HMD and mitigation measures solution and concluded that these disaster are by their nature difficult to predict and control but it is possible to reduce the risk to lives and property through develop mitigation strategy and plan to construct damsbarrages with awareness and knowledge among local communities about the impacts of global warming natural disaster and the threat to the ecosystem communities and infrastructure are generally inadequate.

  18. Integrating climate change mitigation, adaptation, communication and education strategies in Matanzas Province, Cuba: A Citizen Science Approach

    Science.gov (United States)

    Rodriguez Bueno, R. A.; Byrne, J. M.

    2015-12-01

    The Environment Service Center of Matanzas (ESCM), Cuba and the University of Lethbridge are collaborating on the development of climate mitigation and adaptation programs in Matanzas province. Tourism is the largest industry in Matanzas. Protecting that industry means protecting coastal zones and conservation areas of value to tourism. These same areas are critical to protecting the landscape from global environmental change: enhanced tropical cyclones, flooding, drought and a range of other environmental change impacts. Byrne (2014) adapted a multidisciplinary methodology for climate adaptation capacity definition for the population of Nicaragua. A wide array of adaptive capacity skills and resources were integrated with agricultural crop modeling to define regions of the country where adaptive capacity development were weakest and should be improved. In Matanzas province, we are developing a series of multidisciplinary mitigation and adaptation programs that builds social science and science knowledge to expand capacity within the ESCM and the provincial population. We will be exploring increased risk due to combined watershed and tropical cyclone flooding, stresses on crops, and defining a range of possibilities in shifting from fossil fuels to renewable energy. The program will build ongoing interactions with thousands of Matanzas citizens through site visits carried out by numerous Cuban and visiting students participating in a four-month education semester with a number of Lethbridge and Matanzas faculty. These visits will also provide local citizens with better access to web-based interactions. We will evaluate mitigation and adaptive capacities in three municipalities and some rural areas across the province. Furthermore, we will explore better ways and means to communicate between the research and conservation staff and the larger population of the province.

  19. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  20. Forest management considerations and climatic change in the Pacific Northwest: A framework for devising adaptation/mitigation strategies

    International Nuclear Information System (INIS)

    Gucinski, H.; McKelvey, R.

    1991-01-01

    The potential for global climate change, especially in its regional and local manifestations, requires decision making in the face of uncertainty. It is demonstrated that in the Pacific Northwest region, the present climate forecasts are uncertain and probabilistic, and the ecological responses are equally uncertain, but a framework for analyzing and devising response strategies for future conditions is feasible in this context. A risk-based approach derived from classical decision analysis is suggested as the most rational response currently practicable to protect the forest resources of the Pacific Northwest. Lists of possible events are needed for two areas: the anticipated outcome of climate change and the possible responses of Pacific Northwest forests to these changes. Meaningful analysis requires estimates of the outcomes and responses, even if they remain subjective for some time, or at least until better and more reliable information becomes available. Once possible responses have been identified, an analysis of the valuation of the tradeoffs for various strategies needs to be made. This approach permits updating, revision, and even negation, but also provides a process that puts focus on information needs and priorities for action. It is concluded that it is highly unlikely that mitigation may be easier to implement than adaptation. 39 refs., 1 fig., 1 tab

  1. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Science.gov (United States)

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  2. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    Science.gov (United States)

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  3. Impact of socio-demographic factors on the mitigating actions for climate change: a path analysis with mediating effects of attitudinal variables.

    Science.gov (United States)

    Masud, Muhammad Mehedi; Akhatr, Rulia; Nasrin, Shamima; Adamu, Ibrahim Mohammed

    2017-12-01

    Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.

  4. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

    Science.gov (United States)

    Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2015-09-01

    Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate. © 2014 John Wiley & Sons Ltd.

  5. Evaluation of mitigation scenarios of climate change in the electric sector

    International Nuclear Information System (INIS)

    Perez Martin, David; Lopez Lopez, I.

    1999-01-01

    The electricity generation contributes to development and to improve the quality of life, But it is ones of the most important contributors to the Greenhouse Gas and particle emissions particularly in Cuba where 99.4% of electricity in the National Electric System is generated from fossil fuels. In the paper from mitigation measures three mitigation scenarios are evaluated for the Expansion of the Cuban electric system using DECADES Tools. Evaluated scenarios include the Use of 60% of the biomass potential, the combinations of this with nuclear power reactors, Hydraulic energy and combined cycle power plants. Finally in the paper the Greenhouse Gas level reduction, investment, fuel, operation and Maintenance costs and Carbon Intensity in generation are analyzed for evaluated mitigation Scenarios and conclusions are offered

  6. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    Science.gov (United States)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or

  7. Adaptation of business activities to the requirements of climate change mitigation - Case carrier bags; Liiketoiminnan sopeuttaminen ilmastonmuutoksen hillinnaen vaatimuksiin (OPTIKASSI)

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbo, H.; Mattila, T.; Korhonen, M.-R.; Myllymaa, T. (Finnish Environment Institute SYKE, Helsinki (Finland)); Soukka, R. (Lappeenranta Univ. of Technology, Department of Energy and Environmental Technology (Finland)); Kujanpaeae, M. (KCL Science and Consulting, Espoo (Finland))

    2009-07-01

    Shopping bags have been a prominent topic of debate lately. Many countries have banned disposable bags or imposed a tax on them. The motives have been to avoid littering, reduce reliance on oil, and curb climate change. Restrictions are also justified by the accumulation of plastic garbage in the oceans, and by the damage to marine organisms. The environmental effects of production, use, and disposal of shopping bags are small compared with other consumption. However, the choice of a shopping bag is repeated every week, and the consumer is not sure about the consequences of each alternative. To reduce this uncertainty the OPTIKASSI study was made. The study called 'Adaptation of business activities to the requirements of climate change mitigation . case shopping bags, OPTIKASSI project' was implemented to study shopping bag alternatives in Finnish grocery stores, and the effects of the bags on climate change and the possibilities to mitigate them. Finnish Environment Institute and Lappeenranta University of Technology were responsible for the study, funded by Tekes ClimBus Programme, and the bag producers Suominen Flexible Packaging Ltd, Plastiroll Oy (Ltd), UPM-Kymmene LtdWisapaper and CabassiOy. The goal of the OPTIKASSI project was to compile lifecycle based information about the climate effects of the most typical shopping bags. It was also desirable to find the best consumption and waste management solutions for bags made of various materials. Products compared were plastic bags of virgin material, and of recycled material, paper bags, canvas bags, and shopping bags of biodegradable plastic. According to the results the shopping bags are an insignificant part of the climate effects of a Finnish household, but negligent use of bags may multiply the effects. Based on scenario, sensitivity, and ambiguity studies: garbage bags should be replaced by plastic bags, and the bins packed full and tight, incineration is not sensible; paper bags should be

  8. Rewetted industrial cutaway peatlands in western Ireland: a prime location for climate change mitigation?

    Directory of Open Access Journals (Sweden)

    D. Wilson

    2013-04-01

    Full Text Available Rewetting of drained industrial peatlands may reduce greenhouse gas (GHG emissions and promote recolonisation by peat forming plant species. We investigated carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O dynamics over a three-year period in a rewetted industrial peatland in Ireland. Sample plots were established in bare peat, Juncus effusus-Sphagnum cuspidatum, Sphagnum cuspidatum and Eriophorum angustifolium dominated microsites. The relationships between fluxes and environmental variables were examined and regression models were used to provide an estimate of the annual GHG balance for each microsite. All the vegetated microsites were carbon sinks for the duration of the study. Highest uptake occurred in the Eriophorum microsite (146–583 g C m-2 yr-1, followed by Juncus-Sphagnum (35–204 g C m-2 yr-1 and Sphagnum (5–140 g C m-2 yr-1. The bare peat microsite was a source of 37–82 g C m-2 yr-1. No N2O fluxes were detected. Strong inter-annual variation was observed in all microsites, driven by variation in precipitation and subsequent changes in the position of the water table. In terms of Global Warming Potential (GWP, the microsites had either a cooling effect (Eriophorum, a close to neutral effect (Juncus-Sphagnum, Sphagnum or a warming effect (bare peat on the climate.

  9. Socio-demographic predictors of health and environmental co-benefit behaviours for climate change mitigation in urban China.

    Science.gov (United States)

    Chan, Emily Ying Yang; Wang, Susan Shuxin; Ho, Janice Ying-En; Huang, Zhe; Liu, Sida; Guo, Chunlan

    2017-01-01

    This study aims to examine the patterns and socio-demographic predictors of health and environmental co-benefit behaviours that support climate change mitigation in a densely populated Asian metropolis-Hong Kong. A population-based, stratified and cross-sectional random digit dialling telephone survey study was conducted between January and February 2016, among the Cantonese-speaking population aged 15 and above in Hong Kong. Socio-demographic data and the self-reported practice of 10 different co-benefit behaviours were solicited. Ethics approval and participant's verbal consent were sought. The study sample consisted of 1,017 respondents (response rate: 63.6%) were comparable to the age, gender and geographical distributions of the Hong Kong population found in the latest 2011 Hong Kong Population Census. Among the co-benefit behaviours, using less packaging and disposable shopping bags were practiced in the highest frequency (70.1%). However, four behaviours were found to have never been practiced by more than half of the respondents, including bringing personal eating utensils when dining in restaurants or small eateries, showering less than five minutes, having one vegetarian meal a week, and buying more organic food. Results of multivariable logistic regression showed that frequency of practicing co-benefit behaviours were consistently associated with gender and age. Urban residents in Hong Kong do not engage in the practice of co-benefit behaviours in a uniform way. In general, females and older people are more likely to adopt co-benefit behaviours in their daily lives. Further research to assess the knowledge and attitudes of the population towards these co-benefit behaviours will provide support to relevant climate change mitigation policies and education programmes.

  10. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    Science.gov (United States)

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  11. What incentives to climate change mitigation through harvested wood products in the current french policy framework? (Summary). Climate Report no. 47

    International Nuclear Information System (INIS)

    Deheza, Mariana; N'Goran, Carmen; Bellassen, Valentin

    2014-09-01

    Beyond the important role that forests play in the fight against climate change through the sequestration of carbon in their biomass, wood products also contribute to climate change through three channels: - Material substitution: the manufacturing of wood products being less energy intensive allows to avoid carbon emissions from the processing of other alternative materials (eg. concrete, steel, etc); - Energy substitution: achieved by the generation of energy from wood combustion replacing other fossil fuels. - Carbon sequestration in the wood products: wood products sequester carbon during their whole life span until their decomposition. This Climate Report identifies French policies that have an impact on climate change mitigation by wood products through these three mitigation channels. Our analysis asserts that similarly to the context at the EU level, the current national policy framework incentives are mostly directed to the 'energy wood' sector. These incentives include fiscal and financial instruments such as: - The heat fund ('fonds chaleur'), which subsidizes the production of renewable heat particularly from biomass; - The zero interest rate eco-loans ('eco-pret a taux zero') and the Sustainable development tax credit ('credit d'impot developpement durable (CIDD)') which partly subsidize wood heating; - Reduced VAT on renewable heat purchases. The use of wood as a material is currently less encouraged, at least on the financial side: the few devices that support it are rarely binding and mobilize limited resources. Future measures planned under the National Action Plan for the forest-based sector and the upcoming law for the future of agriculture and forestry ('Loi d'avenir pour l'agriculture et la foret') could slightly re-balance this situation. (authors)

  12. Energy technology roll-out for climate change mitigation: A multi-model study for Latin America

    Energy Technology Data Exchange (ETDEWEB)

    van der Zwaan, Bob; Kober, Tom; Calderon, Silvia; Clarke, Leon; Daenzer, Katie; Kitous, Alban; Labriet, Maryse; Lucena, André F. P.; Octaviano, Claudia; Di Sbroiavacca, Nicolas

    2016-05-01

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, they play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050.Wefind that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of

  13. Coastal Climate Change Education, Mitigation, and Adaptation in the Natural and Built Environments: Progress of the Coastal Areas Climate Change Education Partnership

    Science.gov (United States)

    Feldman, A.; Herman, B.; Vernaza-Hernández, V.; Ryan, J. G.; Muller-Karger, F. E.; Gilbes, F.

    2011-12-01

    The Coastal Area Climate Change Education (CACCE) Partnership, funded by the National Science Foundation, seeks to develop new ways to educate citizens about global climate change. The core themes are sea level rise and impacts of climate change in the southeastern United States and the Caribbean Sea. CACCE focuses on helping partners, educators, students, and the general public gain a fundamental and working understanding of the interrelation among the natural environment, built environment, and social aspects in the context of climate change in coastal regions. To this end, CACCE's objectives reported here include: 1) defining the current state of awareness, perceptions, and literacy about the impacts of climate change; and 2) testing a model of transdisciplinary research and learning as a means of training a new generation of climate professionals. Objective one is met in part by CACCE survey efforts that reveal Florida and Puerto Rico secondary science teachers hold many non-scientific views about climate change and climate change science and provide inadequate instruction about climate change. Associated with objective two are five Multiple Outcome Interdisciplinary Research and Learning (MOIRL) pilot projects underway in schools in Florida and Puerto Rico. In the CACCE Partnership the stakeholders include: students (K-16 and graduate); teachers and education researchers; informal science educators; scientists and engineers; business and industry; policy makers; and community members. CACCE combines interdisciplinary research with action research and community-based participatory research in a way that is best described as "transdisciplinary". Learning occurs in all spheres of interactions among stakeholders as they engage in scientific, educational, community and business activities through their legitimate peripheral participation in research communities of practice. We will describe the process of seeking and building partnerships, and call for a dialogue

  14. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Directory of Open Access Journals (Sweden)

    Regina S Redman

    Full Text Available Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization.These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  15. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Science.gov (United States)

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  16. The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system

    International Nuclear Information System (INIS)

    Popp, Alexander; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Klein, David; Bauer, Nico; Krause, Michael; Beringer, Tim; Gerten, Dieter; Edenhofer, Ottmar

    2011-01-01

    Biomass from cellulosic bioenergy crops is expected to play a substantial role in future energy systems, especially if climate policy aims at stabilizing greenhouse gas concentration at low levels. However, the potential of bioenergy for climate change mitigation remains unclear due to large uncertainties about future agricultural yield improvements and land availability for biomass plantations. This letter, by applying a modelling framework with detailed economic representation of the land and energy sector, explores the cost-effective contribution of bioenergy to a low-carbon transition, paying special attention to implications for the land system. In this modelling framework, bioenergy competes directly with other energy technology options on the basis of costs, including implicit costs due to biophysical constraints on land and water availability. As a result, we find that bioenergy from specialized grassy and woody bioenergy crops, such as Miscanthus or poplar, can contribute approximately 100 EJ in 2055 and up to 300 EJ of primary energy in 2095. Protecting natural forests decreases biomass availability for energy production in the medium, but not in the long run. Reducing the land available for agricultural use can partially be compensated for by means of higher rates of technological change in agriculture. In addition, our trade-off analysis indicates that forest protection combined with large-scale cultivation of dedicated bioenergy is likely to affect bioenergy potentials, but also to increase global food prices and increase water scarcity. Therefore, integrated policies for energy, land use and water management are needed.

  17. The evolution of international policies and mechanisms to advance sustainable forest management and mitigate global climate change

    International Nuclear Information System (INIS)

    Bologna, J.; Lyke, J.; Theophile, K.

    1995-01-01

    Scientific findings regarding global climate change and deforestation led industrialized nations to bring both issues to the forefront of an international dialogue on the environment. International institutional attention to deforestation began in 1985 with the Tropical Forestry Action Program which helped countries develop plans for sustainable forest management. A few years later, the International Tropical Timber Organization, though designed to facilitate tropical timber trade, adopted guidelines for sustainable management of tropical production forests. Next, the activities before and after UNCED established a general set of forest principles and regional efforts to define sustainable forest management. The World Bank has also sought to reduce past lending failures that led to deforestation and other environmental degradation, through programmatic redirections and macro-economic policy reforms. Finally, through innovative financial incentives, industrialized and developing countries are identifying opportunities to offset debts and increase economic development without depleting forest resources. Collectively, these efforts have let to some trends that support sustainable forest management and mitigate climate change. The upcoming years will see a proactive set of multilateral programs to address deforestation, an increasing link between trade and the environment, and more uses of financial incentives to encourage sustainable forest management

  18. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    Science.gov (United States)

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  19. Sustainable land management contribution to successful land-based climate change adaptation and mitigation : a report of the Science-Policy Interface

    OpenAIRE

    Sanz, M.J.; De Vente, J.L.; Chotte, Jean-Luc; Bernoux, Martial; Kust, G.; Ruiz, I.; Almagro, M.; Alloza, J.A.; Vallejo, R.; Castillo, V.; Hebel, A.; Akhtar-Schuster, M.

    2017-01-01

    Sustainable Land Management (SLM) represents a holistic approach to achieving long-term productive ecosystems by integrating biophysical, socio-cultural and economic needs and values. SLM is one of the main mechanisms to achieve Land Degradation Neutrality (LDN).To foster and facilitate the adoption of SLM practices that address DLDD while mitigating climate change and enhancing climate change adaptation, this report assesses the synergistic potential of SLM practices while als...

  20. Climate change mitigation in Asia and financing Mechanisms.Proceedings of a Regional Conference

    International Nuclear Information System (INIS)

    Shukla, P.R.; Deo, P.

    1998-12-01

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  1. Mind the gap in SEA: An institutional perspective on why assessment of synergies amongst climate change mitigation, adaptation and other policy areas are missing

    International Nuclear Information System (INIS)

    Vammen Larsen, Sanne; Kørnøv, Lone; Wejs, Anja

    2012-01-01

    This article takes its point of departure in two approaches to integrating climate change into Strategic Environmental Assessment (SEA): Mitigation and adaptation, and in the fact that these, as well as the synergies between them and other policy areas, are needed as part of an integrated assessment and policy response. First, the article makes a review of how positive and negative synergies between a) climate change mitigation and adaptation and b) climate change and other environmental concerns are integrated into Danish SEA practice. Then, the article discusses the implications of not addressing synergies. Finally, the article explores institutional explanations as to why synergies are not addressed in SEA practice. A document analysis of 149 Danish SEA reports shows that only one report comprises the assessment of synergies between mitigation and adaptation, whilst 9,4% of the reports assess the synergies between climate change and other environmental concerns. The consequences of separation are both the risk of trade-offs and missed opportunities for enhancing positive synergies. In order to propose explanations for the lacking integration, the institutional background is analysed and discussed, mainly based on Scott's theory of institutions. The institutional analysis highlights a regulatory element, since the assessment of climate change synergies is underpinned by legislation, but not by guidance. This means that great focus is on normative elements such as the local interpretation of legislation and of climate change mitigation and adaptation. The analysis also focuses on how the fragmentation of the organisation in which climate change and SEA are embedded has bearings on both normative and cultural–cognitive elements. This makes the assessment of synergies challenging. The evidence gathered and presented in the article points to a need for developing the SEA process and methodology in Denmark with the aim to include climate change in the assessments in

  2. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    Science.gov (United States)

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  3. Agroforestry, livestock, fodder production and climate change adaptation and mitigation in East Africa: issues and options

    DEFF Research Database (Denmark)

    Dawson, Ian K; Carsan, Sammy; Franzel, Steve

    Agroforestry and livestock-keeping both have the potential to promote anthropogenic climate changeresilience, and understanding how they can support each other in this context is crucial. Here, we discuss relevant issues in East Africa, where recent agroforestry interventions to support...

  4. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    NARCIS (Netherlands)

    Veysey, J.; Octaviano, C.; Calvin, K.; Herreras Martinez, S.; Kitous, A.; McFarland, J.; van der Zwaan, B.

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in

  5. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    NARCIS (Netherlands)

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-01-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate

  6. Bioenergy expansion in the EU: Cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels

    International Nuclear Information System (INIS)

    Berndes, Goeran; Hansson, Julia

    2007-01-01

    Presently, the European Union (EU) is promoting bioenergy. The aim of this paper is to study the prospects for using domestic biomass resources in Europe and specifically to investigate whether different policy objectives underlying the promotion of bioenergy (cost-effective climate change mitigation, employment creation and reduced dependency on imported fuels) agree on which bioenergy options that should be used. We model bioenergy use from a cost-effectiveness perspective with a linear regionalized energy- and transport-system model and perform supplementary analysis. It is found that the different policy objectives do not agree on the order of priority among bioenergy options. Maximizing climate benefits cost-effectively is in conflict with maximizing employment creation. The former perspective proposes the use of lignocellulosic biomass in the stationary sector, while the latter requires biofuels for transport based on traditional agricultural crops. Further, from a security-of-supply perspective, the appeal of a given bioenergy option depends on how oil and gas import dependencies are weighed relative to each other. Consequently, there are tradeoffs that need to be addressed by policymakers promoting the use of bioenergy. Also, the importance of bioenergy in relation to employment creation and fuel import dependency reduction needs to be further addressed

  7. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Balbus, John M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenblatt, Jeffery B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chari, Ramya [Rand Corporation, Santa Monica, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ebi, Kristie L. [ClimAdapt, Inc., Los Altos, CA (United States)

    2015-02-01

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.

  8. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Science.gov (United States)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  9. TECHNOLOGY NEEDS ASSESSMENT (TNA FOR CLIMATE CHANGE MITIGATION IN AGRICULTURE SECTOR: CRITERIA, PRIORITIZING AND BARRIERS

    Directory of Open Access Journals (Sweden)

    Kasdi Subagyono

    2010-11-01

    Full Text Available Upaya mitigasi di sektor pertanian menjadi sangat penting karena sektor ini berkontribusi terhadap munculnya emisi gas rumah kaca (GRK, namun demikian kajian terhadap kebutuhan teknologi untuk mitigasi belum dilakukan. Kajian difokuskan pada seleksi teknologi, kendala dan peluang untuk mengatasi masalah. Seleksi teknologi didasarkan pada criteria dan opsi teknologi yang diperlukan. Data dan informasi dikumpulkan dari berbagai lembaga baik badan, pusat dan lembaga-lembaga terkait lainnya serta melalui lokakarya yang melibatkan para pemangku kepentingan. Seleksi teknologi untuk mitigasi mempertimbangkan criteria umum yang meliputi pengurangan emisi GRK dari tanaman dan ternak, konservasi sumberdaya, untuk keberlanjutan keanekaragaman hayati, mengangkat isu energi hijau, keberlanjutan keamanan pangan, dan mengangkat isu energi alternatif; dan spesifik criteria yang meliputi memprioritaskan teknologi lokal untuk mitigasi, keberlanjutan plasma nutfah spesifik lokasi, memprioritaskan teknologi yang murah untuk petani miskin, introduksi varietas tanaman yang rendah emisi, mengganti sebagian pupuk kimia dengan pupuk organik, serta mengurangi emisi gas metana (CH4. Kriteria tersebut diskor kedalam 4 kelas, yaitu nilai tinggi/relevansi tinggi/sangat berdampak (skor 5, nilai sedang/relevan/berdampak sedang (skor: 3; nilai rendah/kurang relevan/kurang berdampak (skor: 1; dan tidak relevan/tidak berdampak (skor: 0. Hasil kjian menunjukkan bahwa prioritas teknologi yang dibutuhkan untuk mitigasi: (a untuk lahan sawah: varietas tanaman dengan emisi rendah, pemupukan yang tepat, tanpa olah tanah/olah tanah minimum, dan irigasi berselang, (b untuk tanaman tahunan: teknologi tebang baker yang tepat dan biofuel, (c untuk peternakan: teknologi pengomposan dan biogas, dan (d untuk lahan gambut: menghindari tebang bakar, menghindari drainasi yang berlebihan dan menjaga kelembaban tanah.   Mitigation action in agriculture sector is crucial since it contributes to

  10. Composting projects under the Clean Development Mechanism: Sustainable contribution to mitigate climate change

    International Nuclear Information System (INIS)

    Rogger, Cyrill; Beaurain, Francois; Schmidt, Tobias S.

    2011-01-01

    The Clean Development Mechanism (CDM) of the Kyoto Protocol aims to reduce greenhouse gas emissions in developing countries and at the same time to assist these countries in sustainable development. While composting as a suitable mitigation option in the waste sector can clearly contribute to the former goal there are indications that high rents can also be achieved regarding the latter. In this article composting is compared with other CDM project types inside and outside the waste sector with regards to both project numbers and contribution to sustainable development. It is found that, despite the high number of waste projects, composting is underrepresented and a major reason for this fact is identified. Based on a multi-criteria analysis it is shown that composting has a higher potential for contribution to sustainable development than most other best in class projects. As these contributions can only be assured if certain requirements are followed, eight key obligations are presented.

  11. Use of cost-effective construction technologies in India to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, N. [Forum of Scientists, Engineers and Technologists, Kolkata (India)

    2008-01-10

    Concentration of greenhouse gases plays a major role in raising the earth's temperature. Carbon dioxide, produced from burning of fossil fuels, is the principle greenhouse gas and efforts are being made at international level to reduce its emission through adoption of energy-efficient technologies. The UN Conference on Environment and Development, 1992 made a significant development in this field by initiating the discussion on sustainable development under the Agenda 21. Cost-effective construction technologies can bring down the embodied energy level associated with production of building materials by lowering use of energy-consuming materials. This embodied energy is a crucial factor for sustainable construction practices and effective reduction of the same would contribute in mitigating global warming. The cost-effective construction technologies would emerge as the most acceptable case of sustainable technologies in India both in terms of cost and environment.

  12. Adaptation versus mitigation broadens need for societal capacity building coping with climate change

    DEFF Research Database (Denmark)

    Buch-Hansen, Mogens

    2009-01-01

    Kampen for at nedbringe koncentrationen af drivhusgasser i atmossfæren, på engelsk betegnet mitigation, har i vid udstrækning været ført an af naturvidenskaberne, ikke mindst i opstillingen af forskellige klimamodeller. Tilpasningen til de uundgåelige klimaforandringer, som vil være mest omfatten...... i de fattige u-lande, der har de ringeste forudsætninger, kræver derimod en stærkt forøget indsats fra samfundsvidenskaberne. Der argumenteres i abstract for nødvendigheden af en transdisciplinær tilgang med udgangspunkt i samfundets kapacitet for at sikre en bæredygtig tilpasning....

  13. On the Commons and Climate Change: Collective Action and GHG Mitigation - Working Paper No. 2012-13

    International Nuclear Information System (INIS)

    Cochran, Ian

    2012-07-01

    Reducing greenhouse-gas (GHG) emissions from anthropogenic activity may be one of the greatest collective-action problems faced by humanity. This poses challenges not only in terms of the institutional configurations to support coordinated governance processes, but equally the information tools and expertise necessary to link GHG mitigation with other policy priorities. This paper theoretically explores how the adoption of a modified theory of collective action based upon a behavioral theory of the individual allows for a re-framing of the climate-change policy challenge. As such, it appears important to develop a context within which collective action becomes possible where success is no longer solely tied to incentives, but equally to the provision of information, learning, and interaction between stakeholders while simultaneously fostering trust and reciprocity among actors. At all levels of government, information plays a key role to both inform and to facilitate communication, as well as to identify and develop the necessary actions and investments and to track changes in conditions. In the case of climate change, greenhouse-gas inventories and other informational tools are necessary components to track an a priori intangible emission. As such, it is key to analyze the legitimacy, credibility and saliency of information and expertise integrated into the decision-making process. Further, it is important to recognize that the construction of indicators and other information tools is not apolitical, but rather the product of a number of assumptions, interests and decisions concerning what is included and what is excluded shaped by the involved actors. (author)

  14. Southwest Regional Climate Hub and California Subsidiary Hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Science.gov (United States)

    Emile Elias; Caiti Steele; Kris Havstad; Kerri Steenwerth; Jeanne Chambers; Helena Deswood; Amber Kerr; Albert Rango; Mark Schwartz; Peter Stine; Rachel Steele

    2015-01-01

    This report is a joint effort of the Southwest Regional Climate Hub and the California Subsidiary Hub (Sub Hub). The Southwest Regional Climate Hub covers Arizona, California, Hawai‘i and the U.S. affiliated Pacific Islands, Nevada, New Mexico, and Utah and contains vast areas of western rangeland, forests, and high-value specialty crops (Figure 1). The California Sub...

  15. Temporal and Spatial Explicit Modelling of Renewable Energy Systems : Modelling variable renewable energy systems to address climate change mitigation and universal electricity access

    NARCIS (Netherlands)

    Zeyringer, Marianne

    2017-01-01

    Two major global challenges climate change mitigation and universal electricity access, can be addressed by large scale deployment of renewable energy sources (Alstone et al., 2015). Around 60% of greenhouse gas emissions originate from energy generation and 90% of CO2 emissions are caused by fossil

  16. Engaging western landowners in climate change mitigation: a guide to carbon-oriented forest and range management and carbon market opportunities

    Science.gov (United States)

    David D. Diaz; Susan Charnley; Hannah Gosnell

    2009-01-01

    There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...

  17. Implementing Local Climate Change Adaptation and Mitigation Actions: The Role of Various Policy Instruments in a Multi-Level Governance Context

    DEFF Research Database (Denmark)

    Keskitalo, E. Carina H.; Juhola, Sirkku; Baron, Nina

    2016-01-01

    Recently, considerable focus, e.g., in the fifth IPCC (Intergovernmental Panel on Climate Change) Assessment Report (2014) has been trained on why adaptation and mitigation have not been developed more than at present, with relatively few local government actions taken compared with, for example,...

  18. What Drives the International Transfer of Climate Change Mitigation Technologies? Empirical Evidence from Patent Data

    International Nuclear Information System (INIS)

    Dechezleprete, A.; Glachant, M.; Meniere, Y.

    2010-01-01

    Using patent data from 66 countries for the period 1990-2003, we characterize the factors which promote or hinder the international diffusion of climate-friendly technologies on a global scale. Regression results show that technology-specific capabilities of the recipient countries are determinant factors. In contrast, the general level of education is less important. We also show that restrictions to international trade - e.g., high tariff rates - and to a lesser extent lax intellectual property regimes negatively influence the international diffusion of patented knowledge. A counter-intuitive result is that barriers to foreign direct investments can promote transfers. We discuss different possible interpretations. (authors)

  19. The impact of residential, commercial, and transport energy demand uncertainties in Asia on climate change mitigation

    International Nuclear Information System (INIS)

    Koljonen, Tiina; Lehtilä, Antti

    2012-01-01

    Energy consumption in residential, commercial and transport sectors have been growing rapidly in the non-OECD Asian countries over the last decades, and the trend is expected to continue over the coming decades as well. However, the per capita projections for energy demand in these particular sectors often seem to be very low compared to the OECD average until 2050, and it is clear that the scenario assessments of final energy demands in these sectors include large uncertainties. In this paper, a sensitivity analysis have been carried out to study the impact of higher rates of energy demand growths in the non-OECD Asia on global mitigation costs. The long term energy and emission scenarios for China, India and South-East Asia have been contributed as a part of Asian Modeling Exercise (AME). The scenarios presented have been modeled by using a global TIMES-VTT energy system model, which is based on the IEA-ETSAP TIMES energy system modeling framework and the global ETSAP-TIAM model. Our scenario results indicate that the impacts of accelerated energy demand in the non-OECD Asia has a relatively small impact on the global marginal costs of greenhouse gas abatement. However, with the accelerated demand projections, the average per capita greenhouse gas emissions in the OECD were decreased while China, India, and South-East Asia increased their per capita greenhouse gas emissions. This indicates that the costs of the greenhouse gas abatement would especially increase in the OECD region, if developing Asian countries increase their final energy consumption more rapidly than expected. - Highlights: ► Scenarios of final energy demands in developing Asia include large uncertainties. ► Impact of accelerated Asian energy demand on global mitigation costs is quite low. ► Accelerated Asian energy consumption increases GHG abatement costs in the OECD. ► 3.7 W/m 3 target is feasible in costs even with accelerated Asian energy demands. ► 2.6 W/m 2 target is beyond

  20. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    Science.gov (United States)

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO 2 eq kg -1 rice, 45.54 kg CO 2 eq kg -1 mutton meat and 2.4 kg CO 2 eq kg -1 milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  1. Ecotourism and Climates changes: the ecolodge contribution in global warming mitigation

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2014-01-01

    Full Text Available Global attention to the global warming reduction has invite numerous strategy implemented with the objectives is mitigating greenhouse gasses emission which threats to the future of living in biosphere. Essentially, absorbing CO2 from atmosphere and sequestering in terrestrial ecosystem is one of the significant strategy. While in developing countries it is become essential, support for forest conservation, afforestation and effort to increase terrestrial ability to capture and storage carbon is poor. Ecotourism offer potential key to solved such problems by promoting ecolodge as a sustainable tourism accomodations. This paper aims to explore the potential of ecotourism sector to alleviate global warming and establishing framework for ecolodge planning and development in tropical developing countries. This paper highlight the significant of ecolodge attraction and development management to meet proper carbon capture and sequestration mechanism. The attraction management and developing programs ultimately able to increase plants biomass while accommodation able to practicing energy efficient and optimizing reuse and recycle approach. It will become the potential solution for reducing greenhouse gas emissions and create clean development strategy.

  2. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    International Nuclear Information System (INIS)

    Kesicki, Fabian; Anandarajah, Gabrial

    2011-01-01

    In order to reduce energy-related CO 2 emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO 2 emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: → A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. → The role of demand is a lot higher in transport than in the residential sector. → Contribution of demand reduction is higher in early periods of the 21st century. → Societal welfare loss is found to be high when the price elasticity of demand is low. → Regional shares in residual emissions vary under different elasticity scenarios.

  3. The role of energy-service demand reduction in global climate change mitigation: Combining energy modelling and decomposition analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kesicki, Fabian, E-mail: fabian.kesicki.09@ucl.ac.uk [UCL Energy Institute, University College London, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom); Anandarajah, Gabrial [UCL Energy Institute, University College London, 14 Upper Woburn Place, London, WC1H 0NN (United Kingdom)

    2011-11-15

    In order to reduce energy-related CO{sub 2} emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM-UCL global energy system model is used in combination with decomposition analysis. The results of the CO{sub 2} emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low. - Highlights: > A reduction in global energy-service demand can contribute around 5% to global emission reduction in the 21st century. > The role of demand is a lot higher in transport than in the residential sector. > Contribution of demand reduction is higher in early periods of the 21st century. > Societal welfare loss is found to be high when the price elasticity of demand is low. > Regional shares in residual emissions vary under different elasticity scenarios.

  4. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  5. RE: Forests and forest management plays a key role in mitigating climate change

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Nord-Larsen, Thomas; Larsen, Søren

    2016-01-01

    as also reported by Naudts et al. By ignoring the link between forestry and fossil carbon pools and not considering development in the absence of forest management, there is no accounting for the effect on GHG emissions, and no basis for estimating the contribution of forest management to cl......The report by Naudts et al. concludes that forest management in Europe during the last 260 years has failed to result in net CO2 removal from the atmosphere. The authors have reached this conclusion through their failure to consider a key factor in their otherwise comprehensive analysis....... The authors present an analysis of net carbon emissions from forest, but omit substitution effects related to the link between forest management and the fossil carbon pool. The link between fossil and terrestrial carbon pools is however critical for modelling climate impacts. To conclude as they do...

  6. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security

    Science.gov (United States)

    Shindell, Drew; Kuylenstierna, Johan C. I.; Vignati, Elisabetta; van Dingenen, Rita; Amann, Markus; Klimont, Zbigniew; Anenberg, Susan C.; Muller, Nicholas; Janssens-Maenhout, Greet; Raes, Frank; Schwartz, Joel; Faluvegi, Greg; Pozzoli, Luca; Kupiainen, Kaarle; Höglund-Isaksson, Lena; Emberson, Lisa; Streets, David; Ramanathan, V.; Hicks, Kevin; Oanh, N. T. Kim; Milly, George; Williams, Martin; Demkine, Volodymyr; Fowler, David

    2012-01-01

    Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.

  7. Simultaneously mitigating near-term climate change and improving human health and food security.

    Science.gov (United States)

    Shindell, Drew; Kuylenstierna, Johan C I; Vignati, Elisabetta; van Dingenen, Rita; Amann, Markus; Klimont, Zbigniew; Anenberg, Susan C; Muller, Nicholas; Janssens-Maenhout, Greet; Raes, Frank; Schwartz, Joel; Faluvegi, Greg; Pozzoli, Luca; Kupiainen, Kaarle; Höglund-Isaksson, Lena; Emberson, Lisa; Streets, David; Ramanathan, V; Hicks, Kevin; Oanh, N T Kim; Milly, George; Williams, Martin; Demkine, Volodymyr; Fowler, David

    2012-01-13

    Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.

  8. Implementing Local Climate Change Adaptation and Mitigation Actions: The Role of Various Policy Instruments in a Multi-Level Governance Context

    Directory of Open Access Journals (Sweden)

    E. Carina H. Keskitalo

    2016-01-01

    Full Text Available Recently, considerable focus, e.g., in the fifth IPCC (Intergovernmental Panel on Climate Change Assessment Report (2014 has been trained on why adaptation and mitigation have not been developed more than at present, with relatively few local government actions taken compared with, for example, more discursive policy agreement on the importance of the issue of climate change. Going beyond a focus on general limits and barriers, this comment suggests that one important issue is that climate change has not yet been sufficiently integrated into the state regulative structure of legislation and policy-making. A comparison between three cases suggests that local developments that are not supported in particular by binding regulation are unlikely to achieve the same general level of implementation as issues for which such regulative demands (and thereby also requirements for prioritization exist. This constitutes an important consideration for the development of adaptation and mitigation as policy areas, including on the local level.

  9. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level

    Directory of Open Access Journals (Sweden)

    Roberto Barraza

    2016-04-01

    Full Text Available This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  10. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level.

    Science.gov (United States)

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-04-27

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  11. Projected impacts to the production of outdoor recreation opportunities across US state park systems due to the adoption of a domestic climate change mitigation policy

    International Nuclear Information System (INIS)

    Smith, Jordan W.; Leung, Yu-Fai; Seekamp, Erin; Walden-Schreiner, Chelsey; Miller, Anna B.

    2015-01-01

    Highlights: • A technical efficiency model identifies where state park systems can be improved. • The technical efficiency model is joined with output of CC policy simulations. • Shifts in operating expenditure under the CC mitigation policy are estimated. • Results reveal substantial variability across states. • Increasing technical efficiency is the best solution to adapt to CC policy impacts. - Abstract: Numerous empirical and simulation-based studies have documented or estimated variable impacts to the economic growth of nation states due to the adoption of domestic climate change mitigation policies. However, few studies have been able to empirically link projected changes in economic growth to the provision of public goods and services. In this research, we couple projected changes in economic growth to US states brought about by the adoption of a domestic climate change mitigation policy with a longitudinal panel dataset detailing the production of outdoor recreation opportunities on lands managed in the public interest. Joining empirical data and simulation-based estimates allow us to better understand how the adoption of a domestic climate change mitigation policy would affect the provision of public goods in the future. We first employ a technical efficiency model and metrics to provide decision makers with evidence of specific areas where operational efficiencies within the nation's state park systems can be improved. We then augment the empirical analysis with simulation-based changes in gross state product (GSP) to estimate changes to the states’ ability to provide outdoor recreation opportunities from 2014 to 2020; the results reveal substantial variability across states. Finally, we explore two potential solutions (increasing GSP or increasing technical efficiency) for addressing the negative impacts on the states’ park systems operating budgets brought about by the adoption of a domestic climate change mitigation policy; the

  12. Behavioural Climate Change Mitigation Options and Their Appropriate Inclusion in Quantitative Longer Term Policy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Schroten, A.; Bles, M.; Sevenster, M.; Markowska, A.; Smit, M. [CE Delft, Delft (Netherlands); Rohde, C.; Duetschke, E.; Koehler, J.; Gigli, M. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany); Zimmermann, K.; Soboh, R.; Van ' t Riet, J. [Landbouw Economisch Instituut LEI, Wageningen (Netherlands)

    2012-01-15

    Changes in consumer behaviour can lead to major reductions in greenhouse gas emissions in the European Union, particularly in the areas of transport, housing and food. Behavioural changes can complement technological changes and can allow emission reduction targets to be achieved more cost-effectively overall. The study identifies 36 options for behavioural change that would cut greenhouse gas emissions. Of these, 11 particularly relevant options have been studied in detail. They include shifting to a more healthy and balanced diet, eating less meat and dairy products, buying and using a smaller car or an electric car, teleworking, adjusting room temperature and optimising ventilation. For each of the behavioural changes studied in depth, emission reduction potentials have been quantified for 2020, 2030 and 2050. The study identifies barriers to implementing the changes, and quantifies the likely effects of policy packages which could overcome these barriers. The results show that the behavioural changes that could take place simultaneously have the potential to save emissions totalling up to about 600 million tonnes of CO2-equivalent a year in 2020. This is about one-quarter of the projected annual emissions from sectors not covered by the EU emissions trading system. The savings potential is particularly high in the area of food.

  13. Energy R and D portfolio analysis based on climate change mitigation

    International Nuclear Information System (INIS)

    Pugh, Graham; Clarke, Leon; Marlay, Robert; Kyle, Page; Wise, Marshall; McJeon, Haewon; Chan, Gabriel

    2011-01-01

    The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R and D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R and D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R and D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R and D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R and D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not

  14. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Directory of Open Access Journals (Sweden)

    Ian Vázquez-Rowe

    Full Text Available Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI. Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin. In contrast, there appears to be a strong, positive correlation between GHG emissions and social

  15. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro

    2017-01-01

    Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic

  16. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture.

    Science.gov (United States)

    Edwards, David P; Lim, Felix; James, Rachael H; Pearce, Christopher R; Scholes, Julie; Freckleton, Robert P; Beerling, David J

    2017-04-01

    Restricting future global temperature increase to 2°C or less requires the adoption of negative emissions technologies for carbon capture and storage. We review the potential for deployment of enhanced weathering (EW), via the application of crushed reactive silicate rocks (such as basalt), on over 680 million hectares of tropical agricultural and tree plantations to offset fossil fuel CO 2 emissions. Warm tropical climates and productive crops will substantially enhance weathering rates, with potential co-benefits including decreased soil acidification and increased phosphorus supply promoting higher crop yields sparing forest for conservation, and reduced cultural eutrophication. Potential pitfalls include the impacts of mining operations on deforestation, producing the energy to crush and transport silicates and the erosion of silicates into rivers and coral reefs that increases inorganic turbidity, sedimentation and pH, with unknown impacts for biodiversity. We identify nine priority research areas for untapping the potential of EW in the tropics, including effectiveness of tropical agriculture at EW for major crops in relation to particle sizes and soil types, impacts on human health, and effects on farmland, adjacent forest and stream-water biodiversity. © 2017 The Author(s).

  17. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  18. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  19. Implications of Climate Mitigation for Future Agricultural Production

    Science.gov (United States)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many

  20. Implications of climate mitigation for future agricultural production

    International Nuclear Information System (INIS)

    Müller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A M; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate ∼81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure

  1. Transport-related measures to mitigate climate change in Basel, Switzerland

    DEFF Research Database (Denmark)

    Perez, L.; Trüeb, S.; Cowie, H.

    2015-01-01

    for the year 2020 based on several locally relevant transport scenarios including all decided transport policies up to 2020, additional realistic and hypothesized traffic reductions, as well as ambitious diffusion levels of electric cars. The scenarios were compared to the reference condition in 2010 assumed......: Under the scenario that assumed a strict particle emissions standard in diesel cars and all planned transport measures, 3% of premature deaths could be prevented from projected PM2.5 exposure reduction. A traffic reduction scenario assuming more active trips provided only minor added health...... benefits for any of the changes in exposure considered. A hypothetical strong support to electric vehicles diffusion would have the largest health effectiveness given that the energy production in Basel comes from renewable sources. Conclusion: The planned local transport related GHG emission reduction...

  2. Reforestation of Imperata grasslands in Indonesia as an option for mitigation of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Naess, L O [Center for International Climate and Environmental Research, Oslo (Norway)

    1999-12-31

    The paper discusses reforestation of Imperata (alang-alang) grasslands in Indonesia as one strategy to counteract the anthropogenically enhanced greenhouse effect. Large-scale Imperata grasslands, mainly formed as a result of deforestation and land use change, cover at least 8.6 million hectares or 4.5% of the land area in Indonesia. Reforestation of these lands has a large potential for carbon sequestration and could yield significant socio-economic and environmental benefits. However, there are at present several constraints and barriers to capturing these benefits. The global carbon sequestration benefits of reforestation must be considered jointly with objectives for local development and environmental conservation. A major challenge is to examine potential areas of synergy or conflict between global and local objectives. There is also a need for a more comprehensive assessment of how reforestation projects affect carbon flows and stocks. 45 refs.

  3. Geoscience research helps rice farmers mitigate climate change and world hunger

    Science.gov (United States)

    Runkle, B.; Suvocarev, K.; Reba, M. L.

    2017-12-01

    Rice is a globally important crop - it comprises 30% of total human caloric consumption - and will be an important crop in the face of expanding population growth. Unfortunately, it is often grown in flooded paddies whose swampy conditions allow microbes to produce the strong greenhouse gas, methane. Over 10% of anthropogenic methane emission to the atmosphere are attributed to rice cultivation. Fortunately, a water-saving irrigation method known as Alternate Wetting and Drying can reduce methane emissions by periodically drying the soil. In our experiments, the method has no effect on rice harvest yields. In our research with rice farmers in Arkansas, we work to evaluate the amount of methane reductions on different fields with this irrigation practice. This research aims to expand the scientific basis for carbon emission reductions programs that enable farmers to be paid for implementing this practice. There are still gaps in our knowledge about how much methane is produced and under what conditions. Our research involves the continuous detection of field methane emissions and correlates then to changes in environmental conditions like the height and temperature of paddy water. Understanding these relationships may help more farmers qualify for credits in the growing carbon emission reductions programs. Because many farmers are already collecting information about their irrigation practices to reduce water applications, we aim to help them re-use this data to more quickly qualify for carbon emissions reductions payments.

  4. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A; Naess, L O; Sutamihardja, R T.M.; Gintings, N

    1997-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  5. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A.; Naess, L.O.; Sutamihardja, R.T.M.; Gintings, N.

    1996-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  6. The energy policy relevance of the 2014 IPCC Working Group III report on the macro-economics of mitigating climate change

    International Nuclear Information System (INIS)

    Rosen, Richard A.; Guenther, Edeltraud

    2016-01-01

    Research which attempted to determine the macroeconomic importance of mitigating climate change through 2100 was presented primarily in Chapter 6 of the 2014 IPCC Working Group III report. Some of the findings of this chapter were then summarized in the Summary for Policy Makers (SPMs) of both the Synthesis Report, and the WGIII report. Unfortunately, these SPMs omitted key aspects of what the overall macroeconomic results for the costs and benefits of mitigating climate change actually did and did not include, how they were produced, and a careful assessment of their uncertainty and scientific validity. Yet, many of the major omissions were acknowledged deep in the text of Chapter 6, but were not revealed to the public. We conclude, therefore, that neither of these SPMs was useful for energy policy makers and energy managers, and they were misleading due to their many key omissions. Finally, we recommend several improvements that can be made to integrated assessment modeling methodologies so that the macroeconomic analysis of mitigating climate change resulting from the use of such models can be more relevant and useful to energy policy makers in the future, and can be communicated to them better. - Highlights: •The 2014 IPCC Working Group III Report has major omissions in its economic analysis. •Many well-known benefits of mitigation are not included in its economic results. •The Summary for Policy Makers is not very useful for energy policy decision makers. •The upcoming Sixth IPCC WGIII analysis should be structured quite differently.

  7. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z

    2007-07-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  8. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T; Bashmakov, I; Bernstein, L; Bogner, J; Bosch, P; Dave, R; Davidson, O; Fisher, B; Grubb, M; Gupta, S; Halsnaes, K; Heij, B; Kahn Ribeiro, S; Kobayashi, S; Levine, M; Martino, D; Masera Cerutti, O; Metz, B; Meyer, L; Nabuurs, G J; Najam, A; Nakicenovic, N; Holger Rogner, H; Roy, J; Sathaye, J; Schock, R; Shukla, P; Sims, R; Smith, P; Swart, R; Tirpak, D; Urge-Vorsatz, D; Dadi, Z

    2007-07-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  9. Re-use of wastewater for a sustainable forest production and climate change mitigation under arid environments

    Directory of Open Access Journals (Sweden)

    Maria Cristina Monteverdi

    2014-06-01

    Full Text Available 800x600 Over the last decades biotic and abiotic constrains together with human actions are determining a substantial environmental pressure, particularly in dry lands as the south of the Mediterranean region. From very long time, indeed, simultaneous drivers such as demographic growth, climate change and socio-economic factors are weakening the previous homeostasis between human needs and natural resources on the regional scale.Resulting pressures are determining environmental degradation and increase of desertification risk for the arid and semiarid lands. Water quality and availability are both crucial points limiting people well-being and livelihoods in the same context. Scarcity of fresh water and heavy and mismanaged production of wastewater are the main factors affecting water resources. Increasing pollution of soil and ground waters reduces the possibility of sustainable development of local communities with relevant social consequences. The FAO's supporting program in north Africa aims to: a develop new and cheaper phytotechnologies (e.g. constructed wetland system; innovative treatment system for reuse of waste water for fertigation; b treat wastewater for water quality protection; c promote land recovery by means of sustainable multipurpose forestry; d adopt bioengineering interventions to stop slopes erosion and protect urban, and semi-urban infrastructures; e create pilot demonstrative areas to test multi-purpose sustainable agroforestry systems. Within this frame, an integrated approach was designed to promote innovative sustainable water management and multipurpose forestry, in order to mitigate the effects of climate change, promote land recovery, and improve the livelihoods of local population. The present paper aims to provide an overview of the FAO project GCP/RAB/013/ITA. Particularly, two pilot studies are shown and discussed. Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions

  10. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation

    Science.gov (United States)

    Matthew W. Warren; Steve Frolking; Zhaohua Dai; Sofyan Kurnianto

    2016-01-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics...

  11. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    OpenAIRE

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J. J.; Pag?, Christian; De Baets, Sarah; Quine, Timothy A.

    2016-01-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by takin...

  12. Forest and Water Management for Mitigating the effects of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Forest and Water Management for Mitigating the effects of Climate Change in the ... forest, agriculture and water management strategies play in both adaptation to and ... IDRC joins more than 800 international delegates at the Resilient Cities ...

  13. Forest and Water Management for Mitigating the effects of Climate ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Forest and Water Management for Mitigating the effects of Climate Change in the ... Internet as a gateway in expanding choices for building adaptive capacity : a case ... L'honorable Chrystia Freeland, ministre du Commerce international, ...

  14. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    Directory of Open Access Journals (Sweden)

    Nadja Kabisch

    2016-06-01

    Full Text Available Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy