WorldWideScience

Sample records for climate change mitigation

  1. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  2. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  3. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  4. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  5. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  6. Forests and climate change: adaptation and mitigation

    NARCIS (Netherlands)

    Bodegom, van A.J.; Savenije, H.; Wit, de M.

    2009-01-01

    ETFRN news No. 50: Forests and Climate Change: adaptation and mitigation. This newsletter contains interesting materials for those who think about the question how to proceed with forests and climate change after Copenhagen, with or without an agreement. Here below are presented some observations fr

  7. Can increased organic consumption mitigate climate changes?

    DEFF Research Database (Denmark)

    Heerwagen, Lennart Ravn; Andersen, Laura Mørch; Christensen, Tove

    2014-01-01

    correlation between increasing organic budget shares and decreasing meat budget shares is found. People include food-related behaviour such as the purchase of organic food and reduced meat consumption as ways to mitigate climate change. However, other behavioural modifications such as reduction of car usage...... and household heating are perceived as more important strategies. Research limitations/implications – Other food-related mitigation strategies could be investigated. The climate effect of different diets – and how to motivate consumers to pursue them – could be investigated. Individual as opposed to household...... the climate-friendliness of consumption using consumption of organic food as a case. The authors link stated concerns for climate changes with actual food-related behaviour....

  8. University Leadership in Island Climate Change Mitigation

    Science.gov (United States)

    Coffman, Makena

    2009-01-01

    Purpose: The purpose of this paper is to present the University of Hawaii at Manoa's (UHM's) initiatives in achieving greenhouse gas (GHG) emissions reductions on campus and at the state level. Design/methodology/approach: UHM has taken a "lead by example" approach to climate change mitigation in terms of working to meet the American College &…

  9. Technologies for Climate Change Mitigation - Agriculture Sector

    DEFF Research Database (Denmark)

    Uprety, D.C.; Dhar, Subash; Hongmin, Dong

    This guidebook describes crop and livestock management technologies and practices that contribute to climate change mitigation while improving crop productivity, reducing reliance on synthetic fertilizers, and lowering water consumption. It is co-authored by internationally recognised experts...... in the areas of crops, livestock, emissions, and economics, and we are grateful for their efforts in producing this cross disciplinary work. This publication is part of a technical guidebook series produced by the UNEP Risø Centre on Energy, Climate and Sustainable Development (URC) as part of the Technology...... Needs Assessment (TNA) project (http://tech-action.org) that is assisting developing countries in identifying and analysing the priority technology needs for mitigating and adapting to climate change. The TNA process involves different stakeholders in a consultative process, enabling all stakeholders...

  10. A New Strategy for Mitigating Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Y.; Akimoto, K./ Oda, J.

    2007-07-01

    This paper proposes a new strategy for mitigating climate change, both in short term and in long term. The basic character of the strategy is action oriented with multi-country collaboration, while the Framework Convention on Climate Change (FCCC) and Kyoto protocol is numerical target oriented within United Nation Framework. The introductory part of the paper briefly describes deficits of FCCC and Kyoto protocol and the needs of a different strategy for mitigating climate change. Then the short term strategy is focused on energy conservation and its effectiveness for mitigating climate change is illustrated by estimating the potential of reducing CO{sub 2} emission when intense collaboration is achieved for distributing main energy conservation measures in power generation and key industries among Asia Pacific Partnership countries. The long term strategy is developing novel types of renewables among countries. Geoheat and space solar power systems (SSPS) are candidates which may be developed among major developed countries. Necessity of international collaboration is stressed for R and D of these candidate renewables. (auth)

  11. Transport policies related to climate change mitigation

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Kappel, Jannik

    and 2009 with a change – not only in the wording and in the political visions – but also in the actual prioritisation of investments and policies to a very large extent. In March 2012 another milestone was set by the Government, to have Denmark based on 100% renewable energy in 2050. This entails large...... and their results are introduced as well. To provide an overview of current trends, related scientific projects and other analyses on climate change mitigation and transport are given in the report. The references used in this report can also serve as a source of data and inspiration for the reader. This report...

  12. Integrating uncertainties for climate change mitigation

    Science.gov (United States)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by

  13. Forest Biomass for Climate Change Mitigation

    DEFF Research Database (Denmark)

    Nielsen, Anders Tærø

    Awareness of elevated CO2 levels in the atmosphere and resulting climate change has increased focus on renewable energy sources during recent decades. Biomass for energy has been predicted to have the greatest potential for CO2 reductions in the short term and the IPCC assumes that the use...... of biomass for energy is CO2 neutral. Several studies have however criticized this CO2 neutrality assumption and questioned whether CO2 reductions actually are achieved through use of biomass for energy. The purpose of this thesis is to investigate the biomass production potential of poplar plantations...... on southern Scandinavian sites, managed under different systems both in agriculture and in forests. In addition, the objective is to assess the potential of the poplar plantations to mitigate climate change by using poplar biomass for substitution of fossil fuels in comparison to a traditional product...

  14. Equity Concerns over Climate Change Mitigation

    Institute of Scientific and Technical Information of China (English)

    Chen Ying; Pan Jiahu

    2004-01-01

    As a complicated concept with ethical implications, equity or fairness in the field of climate change mitigation concerns the relations not only between individual human beings but also between human beings and the nature. In this paper, after the review of equity between individuals, market and non-market attributes of emissions rights are distinguished and discussed. Based on the argument of equal per capita emissions rights, three types of emissions rights and the concept of minimum emissions rights as social security are proposed.

  15. Mitigating Climate Change with Earth Orbital Sunshades

    Science.gov (United States)

    Coverstone, Victoria; Johnson, Les

    2015-01-01

    An array of rotating sunshades based on emerging solar sail technology will be deployed in a novel Earth orbit to provide near-continuous partial shading of the Earth, reducing the heat input to the atmosphere by blocking a small percentage of the incoming sunlight, and mitigating local weather effects of anticipated climate change over the next century. The technology will provide local cooling relief during extreme heat events (and heating relief during extreme cold events) thereby saving human lives, agriculture, livestock, water and energy needs. A synthesis of the solar sail design, the sails' operational modes, and the selected orbit combine to provide local weather modification.

  16. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    Energy Technology Data Exchange (ETDEWEB)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  17. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  18. Benefits of interrelationships between climate change mitigation and adaptation

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde; Jacobsen, Jette Bredahl

    2014-01-01

    change mitigation will be estimated on the basis of the amount of carbon sequestrated in the replanted area. The benefits of climate change adaptation are the replanted area’s ability to protect the local community from storms and sea level rise, including the co-benefits of enhanced productivity......The paper demonstrates welfare benefits of climate change mitigation and adaptation as a joint response to climate changes using the theory of multiple-use forestry or joint production by Vincent and Binkley (1993). The production of two products is considered: product 1: climate change mitigation...... and product 2: climate change adaptation. The production possibilities frontier (PPF) summarises the production benefits of the two products. The case study of the paper is the replanting of mangrove forests in the coastal wetland areas of Peam Krasaob Wildlife Sanctuary in Cambodia. The benefits of climate...

  19. Climate change and agriculture: Mitigation and Adaptation

    NARCIS (Netherlands)

    Neeteson, J.J.; Verhagen, A.

    2010-01-01

    Human activities have changed the composition of the atmosphere resulting in rising global temperatures and sea levels. Agriculture contributes significantly to climate change through the emission of the greenhouse gases carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Continuation of th

  20. Mitigating Climate Change in the American Southwest

    Science.gov (United States)

    McCarthy, Patrick D.; Enquist, Carolyn A. F.; Garfin, Gregg

    2008-01-01

    New Mexico Climate Change Ecology and Adaptation Workshop; Albuquerque, New Mexico, 22 October 2007; Climate change has had greater impacts on the American Southwest than perhaps anywhere else in the contiguous United States. The future likely holds even more dramatic impacts for the region's ecosystems. Managers of deserts, forests, grasslands, rivers, and streams in this vast and scenic region are under pressure to respond to the unprecedented wildfires, forest dieback, and insect outbreaks that have resulted from years of record warm temperatures and drought. Already faced with urban encroachment and water shortages, managers need to better understand the regional implications of global climate change in order to take informed action to build the adaptive capacity of the landscapes that provide ecosystem services to our communities and habitat for a great diversity of species.

  1. Indonesian National Policy on Adaptation and Mitigation of Climate Change

    Directory of Open Access Journals (Sweden)

    Wahyu Yun Santoso

    2015-12-01

    Full Text Available From its arousal, the issue of climate change or global warming has become a distinct global trend setter in multidisciplinary discussion, including in the law perspective. Within legal discourse, the issue of climate change developed rapidly into several aspect, not only about adaptation nor mitigation, especially since the plurality of moral conviction relevant to the climate change facts. As a global matter, each country has the responsibility to adapt and mitigate with its own character and policy. This normative research aims to explore and describe in brief the Indonesian national policy in climate change adaptation and mitigation. Gradually, the contribution of Indonesia is getting firm and solid to the climate change regime, especially after the Bali Action Plan 2007.

  2. Implications of climate change mitigation for sustainable development

    Science.gov (United States)

    Jakob, Michael; Steckel, Jan Christoph

    2016-10-01

    Evaluating the trade-offs between the risks related to climate change, climate change mitigation as well as co-benefits requires an integrated scenarios approach to sustainable development. We outline a conceptual multi-objective framework to assess climate policies that takes into account climate impacts, mitigation costs, water and food availability, technological risks of nuclear energy and carbon capture and sequestration as well as co-benefits of reducing local air pollution and increasing energy security. This framework is then employed as an example to different climate change mitigation scenarios generated with integrated assessment models. Even though some scenarios encompass considerable challenges for sustainability, no scenario performs better or worse than others in all dimensions, pointing to trade-offs between different dimensions of sustainable development. For this reason, we argue that these trade-offs need to be evaluated in a process of public deliberation that includes all relevant social actors.

  3. Benefits of interrelationships between climate change mitigation and adaptation

    DEFF Research Database (Denmark)

    Møller, Lea Ravnkilde; Jacobsen, Jette Bredahl

    2014-01-01

    and product 2: climate change adaptation. The production possibilities frontier (PPF) summarises the production benefits of the two products. The case study of the paper is the replanting of mangrove forests in the coastal wetland areas of Peam Krasaob Wildlife Sanctuary in Cambodia. The benefits of climate...... benefits of climate change mitigation and adaptation are tested under different climate change scenarios, seeing as the impact and frequency of storms can have a significant effect on coastal wetland areas and the replanting of the mangrove forests and therefore also on the joint benefits of climate change...

  4. Mitigation and Solar Radiation Management in Climate Change Policies

    OpenAIRE

    Manousi, Vasiliki; Xepapadeas, Anastasios

    2013-01-01

    We couple a spatially homogeneous energy balance climate model with an economic growth model which incorporates two potential policies against climate change: mitigation, which is the traditional policy, and geoengineering. We analyze the optimal policy mix of geoengineering and mitigation in both a cooperative and a noncooperative framework, in which we study open loop and feedback solutions. Our results suggests that greenhouse gas accumulation is relatively higher when geoengineering polic...

  5. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Science.gov (United States)

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  6. Carbon Sequestration to Mitigate Climate Change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  7. Valuation of climate change mitigation co-benefits

    DEFF Research Database (Denmark)

    Bakhtiari, Fatemeh

    This document describes tools for valuating in monetary terms the co-benefits associated with climate change mitigation actions. The term co-benefits refers to outcomes of those actions other than their primary outcome (reducing greenhouse-gas emissions). Such non-primary outcomes can fall under...... a broad range of economic or, more likely, environmental and social issues. Examples of positive environmental impacts that may not be the primary outcome of a climate change mitigation policy include reduced local air pollution or restored ecosystem health. Examples of positive social impacts include...

  8. Climate Change and Water in Vulnerable Agriculture: Impacts - Mitigation - Adaptation

    Science.gov (United States)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2016-04-01

    Agriculture highly depends on climate and is adversely affected by climate extremes caused mainly by anthropogenic climate change and increasing climate variability. Moreover, agricultural production risks and vulnerability of agriculture may become an issue in several regions around the world, since they are likely to increase the incidence of crop failure. The aim of this paper is to present the water availability and requirements in Southern Europe and specifically in the Mediterranean region, which is characterized by vulnerable agriculture. Indeed, the climatic trend in the 21st century for this region indicates temperature increase, precipitation decrease combined with an increase in the frequency of climate extremes, such as droughts, heat waves and forest fires. The three major components of climate change are examined, namely impacts, mitigation and adaptation. In particular, precipitation frequency analysis has already indicated a reduction in the precipitation amounts and a shift towards more intense rainstorms. Moreover, time series of drought indices are presented in affected areas. The importance of climate change mitigation measures is also highlighted. Finally, an adaptation scheme for agriculture from climate change in vulnerable and water scarce areas is presented.

  9. Industrial Energy Efficiency and Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Bernstein, Lenny; Roy, Joyashree; Price, Lynn; de la Rue du Can, Stephane; Harnisch, Jochen

    2009-02-02

    Industry contributes directly and indirectly (through consumed electricity) about 37% of the global greenhouse gas emissions, of which over 80% is from energy use. Total energy-related emissions, which were 9.9 GtCO2 in 2004, have grown by 65% since 1971. Even so, industry has almost continuously improved its energy efficiency over the past decades. In the near future, energy efficiency is potentially the most important and cost-effective means for mitigating greenhouse gas emissions from industry. This paper discusses the potential contribution of industrial energy efficiency technologies and policies to reduce energy use and greenhouse gas emissions to 2030.

  10. PUBLIC PRIVATE COLLABORATION ON CLIMATE CHANGE MITIGATION

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Kasper

    ’ activities to combine local business support with the climate and environmental agenda under the concept of green growth • The learning and competences of the municipal officers. The insights from these five analyses are combined into the sixth analysis as an assessment of the competencies needed to assist...

  11. Developments in national climate change mitigation legislation and strategy

    NARCIS (Netherlands)

    Dubash, N.K.; Hagemann, M.; Höhne, N.; Upadhyaya, P.

    2013-01-01

    The results are presented from a survey of national legislation and strategies to mitigate climate change covering almost all United Nations member states between 2007 and 2012. This data set is distinguished from the existing literature in its breadth of coverage, its focus on national policies (ra

  12. China–Europe Relations in the Mitigation of Climate Change

    DEFF Research Database (Denmark)

    Berger, Axel; Fischer, Doris; Lema, Rasmus

    2013-01-01

    Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these polic...

  13. Investigating afforestation and bioenergy CCS as climate change mitigation strategies

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Dietrich, Jan Philip; Klein, David; Lotze-Campen, Hermann; Bonsch, Markus; Bodirsky, Benjamin Leon; Weindl, Isabelle; Stevanovic, Miodrag; Müller, Christoph

    2014-05-01

    The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO2), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO2) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.

  14. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    Directory of Open Access Journals (Sweden)

    Sara Shields

    2015-05-01

    Full Text Available The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture.

  15. Methodological Issues on Climate Change Mitigation Studies

    DEFF Research Database (Denmark)

    Sørensen, Lene; Borges, Pedro Castro; Vidal, Rene Victor Valqui

    1999-01-01

    This paper uses national greenhouse gas emission abatement costing studies as a case to discuss influential factors that determine their outcome and achievement. Costing studies are seen as part of an interconnected whole social process where actors (decision makers, clients, facilitators, experts....... Some methodological principles are suggested to address such contradictions, structure, and change th einteractions between the different dimensions of hte social process framework. Two studies are mentioned in which ideas are presented on how to deal with the central contradictions. Applying...

  16. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  17. Climate change mitigation policy paradigms — national objectives and alignments

    DEFF Research Database (Denmark)

    Halsnæs, Kirsten; Garg, Amit; Christensen, John M.

    2014-01-01

    in these countries, and in practice a mix of policies reflecting specific priorities and contexts have been pursued. In this way, climate-change mitigation has been aligned with other policy objectives and integrated into broader policy packages, though in many cases specific attention has not been given...... to the achievement of large GHG emission reductions. Based on these experiences with policy implementation, the paper highlights a number of key coordination and design issues that are pertinent to the successful joint implementation of several energy and climate-change policy goals....

  18. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  19. Demographic aspects of climate change mitigation and adaptation.

    Science.gov (United States)

    Lutz, Wolfgang; Striessnig, Erich

    2015-01-01

    This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.

  20. Economics of nuclear power and climate change mitigation policies.

    Science.gov (United States)

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  1. Conservation strategies to mitigate impacts from climate change in Amazonia.

    Science.gov (United States)

    Killeen, Timothy J; Solórzano, Luis A

    2008-05-27

    Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.

  2. Climate change and human health: impacts, vulnerability, and mitigation.

    Science.gov (United States)

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-06-24

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways--eg, as a result of increased frequency and intensity of heat waves, reduction in cold-related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases, and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries might also be adversely affected. Adaptation to climate change requires public-health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing the use of a number of renewable energy technologies should improve health in the near term by reducing exposure to air pollution.

  3. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    Science.gov (United States)

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  4. Forestry solutions for mitigating climate change in China

    Directory of Open Access Journals (Sweden)

    Guanglei Gao

    2014-03-01

    Full Text Available Aim of study: Forests have vital functions in global carbon cycle, and thus are of prime importance in efforts to curb climate change. This study intends to guide effective forestry solutions to combat climate change in China.Area of study: China, not only a major emitter of greenhouse gases, but also one of the five most-forest richest countries with the largest plantations in the world.Material and methods: We summarize and recommend carbon sequestration forestry by considering two Kyoto Protocol activities: afforestation/reforestation and forest management.Main results: Afforestation has a top priority of carbon sequestration forestry in China. However, the tree-based solution will reach its limits to growth in a predictable near future. Forest management contributes to break the deadlock. When scientifically and sustainably managed, forests still have a central role in climate change mitigation. Research highlights: China’s efforts on carbon sequestration forestry should shift the focus from afforestation to forest management.Key words: climate change; carbon sequestration forestry; afforestation; forest management.

  5. Protected areas' role in climate-change mitigation.

    Science.gov (United States)

    Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P

    2016-03-01

    Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.

  6. Climate change mitigation policies and poverty in developing countries

    Science.gov (United States)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-09-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation.

  7. Urban Planning and Climate Change: Adaptation and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Fulvia Pinto

    2014-05-01

    Full Text Available Climate change is a current phenomenon: the temperatures rise, rainfall patterns are changing, glaciers melt and the average global sea level is rising. It is expected that these changes will continue and that the extreme weather events, such as floods and droughts, will become more frequent and intense. The impact and vulnerability factors for nature, for the economy and for our health are different, depending on the territorial, social and economic aspects. The current scientific debate is focused on the need to formulate effective policies for adaptation and mitigation to climate change. The city plays an important role in this issue: it emits the most greenhouse gas emissions (more than 60% of the world population currently lives in urban areas and the city is more exposed and vulnerable to the impacts of climate change. Urban planning and territorial governance play a crucial role in this context: the international debate on the sustainability of urban areas is increasing. It’s necessary to adapt the tools of building regulations to increase the quality of energy - environment of the cities.

  8. Development of bioenergy conversion alternatives for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Derkyi, Nana S.A.; Sekyere, Daniel [CSIR-FORIG, Kwame Nkrumah University of Science and Technology KNUST Box 63 (Ghana); Okyere, Philip Y. [Electrical Engineering Department, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Darkwa, Nicholas A. [FRNR, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Nketiah, Samuel K. [TROPENBOS International (Ghana)

    2011-07-01

    Traditional charcoal production, firewood sourcing and over-dependence on the national grid for electricity are associated with high greenhouse gas emissions relative to other common energy options. However, there have been few attempts to analyze the potential of cogeneration and briquetting as favourable energy options for climate change mitigation. The possibility of utilizing abundant wood residues to produce energy for domestic and industrial application through co-generation and sawdust briquetting was assessed. Annual residues generated in the three mills studied ranged from 19,230 m3 to 32,610 m3. Annual output of semi-carbonized and carbonized sawdust briquette from the briquette factory studied was 1400 tonnes. Heating values of the wood species ranged from 8.2 to 20.3 MJ/kg. Power requirements for the mills, necessary for sizing co-generation units were derived from their monthly electricity bills. Power ratings for co-generation units were specified between 400 kWe to 2000 kWe with heat to power ratios of 19 to 21. The energy generated could be used to produce electrical power and reduce dependency on the national grid. Conversion of sawdust in the briquette factory potentially contributes a saving of 5,600 tonnes of trees/year that would have been cut from the forest. Thus, adoption of co-generation and sawdust briquetting nationwide could be of immense benefit to the country in terms of climate change mitigation.

  9. Local climate action plans in climate change mitigation

    DEFF Research Database (Denmark)

    Damsø, Tue Noa Jacques; Kjær, Tyge; Christensen, Thomas Budde

    2016-01-01

    The article examines the climate action plans (CAPs) of local governments (LGs) in Denmark. Applying a quantitative content analysis approach, all available Danish LG action plans within the climate and energy field has been collected and coded, giving insight into the extent of LG CAPs. We asses...... and scope definition are identified and assessed, and the overall contribution of LGs to the Danish energy transition is discussed....

  10. Renewable Energy Deployment as Climate Change Mitigation in Nigeria

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya

    2016-10-01

    Full Text Available The scientific evidence of climate change as a result of greenhouse gas emissions which causes ozone layer depletion is becoming increasingly obvious and clear. Findings revealed that energy from the fossil fuel is the major source of greenhouse emission which destroys the environment and makes it unhealthy for living beings. In Nigeria, conventional energy (oil and gas with gas flaring has the highest percentage of 52% and liquid fuel of 32% of carbon dioxide (CO2 respectively. This sector contributes revenue of over 70% to Nigeria’s economy and generates an average total 21.8% of greenhouse gas emission. In Nigeria, there is a much more potential for share renewables with 15.4% of total energy production and 8.6 % of energy consumption. In reality with global environmental concern, Nigeria’s carbon dioxide emissions have increased with energy production and consumption. The Integrated Renewable Energy Master Plan of 2008 projects a 26.7% renewable energy contribution to the Nigeria’s energy use and this is expected to reduce CO2 and greenhouse gas emissions at 38% by2025. Nigeria has not been playing significant role by reducing emissions of greenhouse gases. This paper highlights Nigeria’s climate change situation and penetration requirements for various renewable energy deployments as mitigating instrument for climate change towards healthy and productive environment.

  11. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    OpenAIRE

    Bird, D. N.; Kunda, M.; Mayer, A.; Schlamadinger, B.; Canella, L.; Johnston, M.

    2008-01-01

    Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation) is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal.

    In this pape...

  12. Setting priorities for land management to mitigate climate change

    Directory of Open Access Journals (Sweden)

    Böttcher Hannes

    2012-03-01

    Full Text Available Abstract Background No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production. Results In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option. Conclusions When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long

  13. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  14. Decision-support tools for climate change mitigation planning

    DEFF Research Database (Denmark)

    Puig, Daniel; Aparcana Robles, Sandra Roxana

    This document describes three decision-support tools that can aid the process of planning climate change mitigation actions. The phrase ‘decision-support tools’ refers to science-based analytical procedures that facilitate the evaluation of planning options (individually or compared to alternative...... options) against a particular evaluation criterion or set of criteria. Most often decision-support tools are applied with the help of purpose-designed software packages and drawing on specialised databases.The evaluation criteria alluded to above define and characterise each decision-support tool....... For example, in the case of life-cycle analysis, the evaluation criterion entails that the impacts of interest are examined across the entire life-cycle of the product under study, from extraction of raw materials, to product disposal. Effectively, then, the choice of decision-support tool directs...

  15. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    Science.gov (United States)

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  16. Web Service Based Approach to Link Heterogeneous Climate-Energy-Economy Models for Climate Change Mitigation Analysis

    NARCIS (Netherlands)

    Belete, Getachew F.; Voinov, Alexey; Bulavskaya, Tatyana; Niamir, Leila; Dhavala, Kishore

    2016-01-01

    Climate change mitigation analysis requires understanding the causes and identifying the possible alternative actions that could be taken. We linked heterogeneous models that focus on climate, energy, and economy for the purpose of climate change mitigation. The models were originally developed to s

  17. Bioenergy, Land Use Change and Climate Change Mitigation. Report for Policy Advisors and Policy Makers

    Energy Technology Data Exchange (ETDEWEB)

    Berndes, Goran [Chalmers Univ. of Technology (Sweden); Bird, Nell [Joanneum Research (Austria); Cowle, Annette [National Centre for Rural Greenhouse Gas Research (Australia)

    2010-07-01

    The report addresses a much debated issue - bioenergy and associated land use change, and how the climate change mitigation from use of bioenergy can be influenced by greenhouse gas emissions arising from land use change. The purpose of the report was to produce an unbiased, authoritative statement on this topic aimed especially at policy advisors and policy makers.

  18. Integrated energy planning: Strategies to mitigate climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, Johnny N; Sheffield, John W [University of Missouri-Rolla (United States)

    1997-07-01

    The framework convention on climate change, signed by more than 150 governments worldwide in June 1992, calls on parties to the convention undertaken inventories of national sources and sinks of greenhouse gases and to develop plans for responding to climate change. The energy sector is comprised of the major energy demand sectors (industry, residential and commercial, transport and agriculture), and the energy supply sector, which consists of resource extraction, conversion, and delivery of energy products. Greenhouse Gas (GHG) emissions occur at various points in the sector, from resource extraction to end use application, and accordingly, options for mitigation exist at various points. In most countries, will be a major focus of GHG mitigation analysis. The primary focus of this paper is on the identification of strategies that can mitigate climate changes on the basis of integrated energy planing analysis. The overall approach follows a methodology developed by the U.S. Country Studies Program under the framework of the Convention's commitments. It involves the development of scenarios based on energy uses and evaluation of specific technologies that can satisfy demands for energy services. One can compare technologies based on their relative cost to achieve a unit of GHG reduction and other features of interest. This approach gives equal weight to both energy supply and energy demand options. A variety of screening criteria including indicators of cost-effectiveness as well as non-economic analysis concerns, can be used to identify and assess promising options, which can then be combined to create one or more scenarios. Mitigation scenarios are evaluated against the backdrop of a baseline scenario, which simulates assumed to take place in the absence of mitigation efforts. Mitigation scenarios can be designed to meet specific emission reduction targets or to simulate the effect of specific policy inventions. The paper ends with an application using a

  19. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    Science.gov (United States)

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  20. Air pollution may alter efforts to mitigate climate change

    Science.gov (United States)

    Yassaa, Noureddine

    2016-02-01

    Renewable energy, considered in the past as a mitigation option to climate change by reducing carbon emission, is now becoming a source of energy security and competing fossil fuels in many areas of the world. According to recent reports (e.g., IEA, IRENA, REN21), renewable energy has reached in 2014 a historical record of power generation capacity. With 1712 GW installed capacity in 2014, renewable energy represents 27.7% of the world's power generating capacity. Solar photovoltaic (PV) energy, conversion of solar light to electricity through solar panels, has increased to reach 177 GW mostly due to the political engagement for the deployment of renewable through targeted programs and the decrease of PV panels prize in the market (roughly 80% decrease since 2008 according to IRENA's report). Concentrated Solar Power (CSP), reaching a total capacity of 4.4 GW in 2014 (REN21 Report), is also demonstrating a clear growth and progresses have been made with regards to the efficiency, the storage capacity and the cost. In order to reduce the energy consumption and carbon emissions, water solar heaters are being installed in the rooftop of households and a total capacity of 406 GW thermal was recorded in 2014 (REN21 Report).

  1. Impacts on Canadian Competitiveness of International Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Robin Somerville

    1998-06-01

    Full Text Available This article summarizes and provides additional perspective on a study that contributes to the growing body of analyses of the costs of limiting greenhouse gas emissions. The study estimates the economic costs to Canada of six planning scenarios. Four of these scenarios involve the use of tradable emission permits and two involved a carbon tax. In each case, the mechanism's target is to stabilize greenhouse gas emissions at some percentage of 1990 levels (100% or 90% by either 2010 or 2015. Policies that impose greater constraints on carbon dioxide emissions lead to higher economic costs in terms of foregone output. These costs, however, vary for the same objective, depending on the mechanism chosen and the economic assumptions made. In one typical scenario, in which tradable emission permits are used to achieve stabilization at 1990 levels by 2010, GDP is depressed from the "business-as-usual" scenario by about 2% for the first decade, after which it recovers to business-as-usual levels. Generally, for all scenarios, the economic impact of climate change mitigation imposes a transition cost on the economy, but the long-term productive capacity of the economy is not significantly affected.

  2. Changing Family Habits: A Case Study into Climate Change Mitigation Behavior in Families

    Science.gov (United States)

    Leger, Michel T.; Pruneau, Diane

    2012-01-01

    A case-study methodology was used to explore the process of change as experienced by 3 suburban families in an attempt to incorporate climate change mitigation behavior into their day to day life. Cross-case analysis of the findings revealed the emergence of three major conceptual themes associated with behavior adoption: collectively applied…

  3. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  4. The Paradox of Climate Change Mitigation and Adaptation in Danish Housing

    DEFF Research Database (Denmark)

    Marsh, Rob

    2012-01-01

    that reducing space heating with high levels of thermal insulation and passive solar energy results in overheating and a growing demand for cooling. Climate change is expected to reduce space heating and increase cooling de-mand in housing. An analysis of new build housing using passive solar energy...... as a climate mitigation strategy has therefore been carried out in relation to future climate change scenarios. It is shown that severe indoor comfort problems can occur, ques-tioning the relevance of passive solar energy as a climate mitigation strategy. In con-clusion, a theoretical study of the interplay......Climate change means that buildings must greatly reduce their energy consumption. It is however paradoxical that climate mitigation in Denmark has created negative energy and indoor climate problems in housing that may be made worse by climate change. A literature review has been carried out...

  5. Regional climate change mitigation with crops: context and assessment.

    Science.gov (United States)

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  6. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    While lasting mitigation solutions are needed to avoid climate change in the long term, temporary solutions may play a positive role in terms of avoiding certain climatic target levels, for preventing the crossing of critical and perhaps irreversible climatic tipping points. While the potential...... contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  7. Mitigating Climate Change in the Arid Lands of Namibia

    Science.gov (United States)

    Schneider, Martin B.; Sorensen, Marten

    2014-05-01

    Mitigating Climate Change in the Arid Lands of Namibia Namibia is the most arid country south of the Sahara, with scarce rainfall and perennial rivers only at its borders, > 80% of the area relies solely on groundwater. This has had devastating economic effects limiting opportunities for sustainable rural livelihoods that keep the population majority living below the World Bank poverty line (IFAD, 2013). A primary example of climatic variability which affects agrarian productivity is increased bush encroachment of Namibia's arid grazing land. The result has been a severe biodiversity loss, increased desertification and diminished water-use efficiency and underground water tables. Given these factors, Namibia's arid lands provide a unique opportunity to assess and test innovative / appropriate adaptation and mitigation strategies. Working toward sustainable management, restoration, and maintenance of balanced, resilient arid ecosystems in Namibia will also be a means to support and expand economic sectors incl. opportunities for job creation and potentially provide a model for similar arid regions. Main vegetation zones are: desert (46%), savannah (37%), and dry woodlands and forests (17%), i.e. management strategies currently used by rural communities. 2. Capture and assess cultural and gender dimensions of management strategies within stakeholder groups using participatory approaches. 3. Determine science-based alternatives for adaptive land management strategies and test their acceptability to local communities and within the current policy framework. 4. Integrate identified indigenous knowledge with appropriate science and new emerging technologies to develop a training toolkit of effective strategies relevant to all stakeholders. 5. Utilize training sessions, education workshops, curriculum revisions, and appropriate information and communication technologies (ICTs) including social media outlets to disseminate the toolkit strategies. 6. Apply a modified logic

  8. Synergies between mitigation of, and adaptation to, climate change in agriculture

    DEFF Research Database (Denmark)

    Smith, P; Olesen, Jørgen E

    2010-01-01

    is two-fold, both to reduce emissions and to adapt to a changing and more variable climate. The primary aim of the mitigation options is to reduce emissions of methane or nitrous oxide or to increase soil carbon storage. All the mitigation options, therefore, affect the carbon and/or nitrogen cycle...... through adding crop residues and manure to arable soils or by adding diversity to the crop rotations. Though some mitigation measures may have negative impacts on the adaptive capacity of farming systems, most categories of adaptation options for climate change have positive impacts on mitigation...... year is equivalent to 420 000, 130 000 and 32 000 million US$/yr for C prices of 100, 50 and 20 US$/t CO2 equiv, respectively. From both the mitigation and economic perspectives, we cannot afford to miss out on this mitigation potential. The challenge of agriculture within the climate change context...

  9. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    Science.gov (United States)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  10. The Climate Change Challenge in Africa:- Impacts, Mitigation and Adaptation

    OpenAIRE

    Adebamowo Michael; Uduma-Olugu Nnezi; Oginni Adeyemi

    2012-01-01

    Climate change is now a reality, and is already having devastating effects on the natural environment and human populations across the world. Many studies (Maathai, 2006; UNFCC 2006; CCDI 2007; IPCC 2007 and UNDP 2009) have confirmed that Africa contributes the least to global warming but the region is the most vulnerable and most adversely affected by climate change. Unpredictable rains and floods, prolonged droughts, subsequent crop failures and rapid desertification among others have in fa...

  11. Climate change mitigation and adaptation in strategic environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wende, Wolfgang, E-mail: W.Wende@ioer.de [Head of Research Area on Landscape Change and Management, Leibniz Institute of Ecological and Regional Development, Weberplatz 1, D-01217 Dresden (Germany); Bond, Alan, E-mail: alan.bond@uea.ac.uk [InteREAM, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ (United Kingdom); Bobylev, Nikolai, E-mail: nikolaibobylev@gmail.com [School of Innovation Science, Saint Petersburg State Polytechnical University, 195251, Politechnicheskaya, 29, St. Petersburg (Russian Federation); St. Petersburg Research Centre for Ecological Safety of the Russian Academy of Sciences, 197110, Korpusnaya, 18, St. Petersburg (Russian Federation); Stratmann, Lars, E-mail: l.stratmann@ioer.de [Leibniz Institute of Ecological and Regional Development, Weberplatz 1, D-01217 Dresden (Germany)

    2012-01-15

    Countries are implementing CO{sub 2} emission reduction targets in order to meet a globally agreed global warming limit of +2 Degree-Sign C. However, it was hypothesised that these national reduction targets are not translated to regional or state level planning, and are not considered through Strategic Environmental Assessment (SEA) in order to meet emission reduction obligations falling on the transport, energy, housing, agriculture, and forestry sectors. SEAs of land use plans in the German state of Saxony, and the English region of the East of England were examined for their consideration of climate change impacts based on a set of criteria drawn from the literature. It was found that SEAs in both cases failed to consider climate change impacts at scales larger than the boundary of the spatial plan, and that CO{sub 2} reduction targets were not considered. This suggests a need for more clarity in the legal obligations for climate change consideration within the text of the SEA Directive, a requirement for monitoring of carbon emissions, a need for methodological guidance to devolve global climate change targets down to regional and local levels, and a need for guidance on properly implementing climate change protection in SEA. - Highlights: Black-Right-Pointing-Pointer Strategic Environmental Assessments (SEA) of 12 land use plans from Germany and England have been examined. Black-Right-Pointing-Pointer SEA failed to consider climate change impacts at scales larger than the boundary of the land use plans. Black-Right-Pointing-Pointer SEA should be an important instrument for climate protection. Black-Right-Pointing-Pointer Concrete steps for climate protection mainstreaming into SEA at the European Union and national levels have been suggested.

  12. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute...... to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics......, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa...

  13. Sugarcane ethanol: contributions to climate change mitigation and the environment

    NARCIS (Netherlands)

    Zuurbier, P.J.P.; Vooren, van de J.G.

    2008-01-01

    Climate change is a challenge facing human life. It will change mobility and asks for new energy solutions. Bioenergy has gained increased attention as an alternative to fossil fuels. Energy based on renewable sources may offer part of the solution. Bio ethanol based on sugar cane offers advantages

  14. Proposing mitigation strategies for reducing the impact of rice cultivation on climate change in Egypt

    Directory of Open Access Journals (Sweden)

    Eman Hasan

    2013-10-01

    The research results revealed that farmer acceptance or participation in applying different mitigation strategies is the cornerstone of this aspect. Meanwhile farmer awareness is essential for adaptation with climate change.

  15. Forestry solutions for mitigating climate change in China

    OpenAIRE

    Guanglei Gao; Guodong Ding; Yuanyuan Zhao; Yanfeng Bao; Minghan Yu

    2014-01-01

    Aim of study: Forests have vital functions in global carbon cycle, and thus are of prime importance in efforts to curb climate change. This study intends to guide effective forestry solutions to combat climate change in China.Area of study: China, not only a major emitter of greenhouse gases, but also one of the five most-forest richest countries with the largest plantations in the world.Material and methods: We summarize and recommend carbon sequestration forestry by considering two Kyoto Pr...

  16. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  17. Incorporating climate change mitigation programmes in local administration

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    2015-01-01

    of the programme’s implementation in Australia and New Zealand a substantial translation took place, especially in the larger local councils and where energy managers or climate change officers were appointed. This translation was supported by organisational norms related to project ownership and network creation...

  18. Climate change: a call for adaptation and mitigation strategies

    Science.gov (United States)

    Projected climate change is expected to substantially affect crop and livestock production, and water availability and quality. Concomitantly, the agricultural community is faced with a challenge of increasing food production by more than 70% to meet demand from global population increase by the mid...

  19. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.

    Science.gov (United States)

    Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon

    2015-02-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).

  20. Impacts of adaptation and responsibility framings on attitudes towards climate change mitigation

    OpenAIRE

    Howell, Rachel; Capstick, Stuart B.; Whitmarsh, Lorraine E.

    2016-01-01

    It is likely that climate change communications and media coverage will increasingly stress the importance of adaptation, yet little is known about whether or how this may affect attitudes towards mitigation. Despite concerns that communicating adaptation could undermine public support for mitigation, previous research has found it can have the opposite effect by increasing risk salience. It is also unclear whether people respond differently to information about mitigation and adaptation depe...

  1. Groundwater and climate change: mitigating the global groundwater crisis and adapting to climate change model

    Science.gov (United States)

    To better understand the effects of climate change on global groundwater resources, the United Nations Educational, Scientific, and Cultural Organization (UNESCO) International Hydrological Programme (IHP) initiated the GRAPHIC (Groundwater Resources Assessment under the Pressures of Humanity and Cl...

  2. Focus: relative vulnerability of fossil fuel net exporters to climate change mitigation measures

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The United Nations Framework Convention on Climate Change contains explicit reference to the need to protect the interests of countries whose economies are particularly vulnerable to climate change mitigation measures. A recent study by the OPEC Secretariat showed that net exporters of fossil fuel in general, and OPEC in particular, would suffer from losses in export revenue as a result of climatic change mitigation measures. In this new study, an attempt is made to identify in more detail those countries that are likely to be most affected by such measures. 3 refs., 3 figs., 2 tabs.

  3. Renewable energy sources and climate change mitigation. Special report of the Intergovernmental Panel on Climate Change (IPCC)

    Energy Technology Data Exchange (ETDEWEB)

    Edenhofer, O. (Potsdam Institute for Climate Impact Research (PIK), Potsdam (Germany)); Pichs Madruga, R. (Centro de Investigaciones de la Economia Mundial (CIEM), Hanoi (Viet Nam)); Sokona, Y. (African Climate Policy Centre, United Nations Economic Commission for Africa, Addis Ababa (Ethiopia)) (and others)

    2012-07-01

    Climate change is one of the great challenges of the 21st century. Its most severe impacts may still be avoided if efforts are made to transform current energy systems. Renewable energy sources have a large potential to displace emissions of greenhouse gases from the combustion of fossil fuels and thereby to mitigate climate change. If implemented properly, renewable energy sources can contribute to social and economic development, to energy access, to a secure and sustainable energy supply, and to a reduction of negative impacts of energy provision on the environment and human health. This Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) impartially assesses the scientific literature on the potential role of renewable energy in the mitigation of climate change for policymakers, the private sector, academic researchers and civil society. It covers six renewable energy sources - bioenergy, direct solar energy, geothermal energy, hydropower, ocean energy and wind energy - as well as their integration into present and future energy systems. It considers the environmental and social consequences associated with the deployment of these technologies, and presents strategies to overcome technical as well as non-technical obstacles to their application and diffusion. The authors also compare the levelized cost of energy from renewable energy sources to recent non-renewable energy costs. (Author)

  4. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    contributes with negative CTP values, which means mitigation. The longer the duration of the storage, the larger the mitigation potential.Temporary carbon storage in biomaterials has a potential for contributing to avoid or postpone the crossing of a climatic target level of 450 ppm CO2e, depending on GHG...... concentration development scenario. The potential mitigation value depends on the timing of sequestration and re-emission of CO2. The suggested CTP approach enables inclusion of the potential benefit from temporary carbon storage in the environmental profile of biomaterials. This should be seen as supplement...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  5. Climate change mitigation for agriculture: water quality benefits and costs.

    Science.gov (United States)

    Wilcock, Robert; Elliott, Sandy; Hudson, Neale; Parkyn, Stephanie; Quinn, John

    2008-01-01

    impair wetland function to intercept and remove nitrate from drainage water, or even add to the overall N loading to waterways. DCD is water soluble and degrades rapidly in warm soil conditions. The recommended application rate of 10 kg DCD/ha corresponds to 6 kg N/ha and may be exceeded in warm climates. Of the N2O produced by agricultural systems, approximately 30% is emitted from indirect sources, which are waterways draining agriculture. It is important therefore to focus strategies for managing N inputs to agricultural systems generally to reduce inputs to wetlands and streams where these might be reduced to N2O. Waste management options include utilizing the CH4 resource produced in farm waste treatment ponds as a source of energy, with conversion to CO2 via combustion achieving a 21-fold reduction in GHG emissions. Both of these have co-benefits for waterways as a result of reduced loadings. A conceptual model derived showing the linkages between key land management practices for greenhouse gas mitigation and key waterway values and ecosystem attributes is derived to aid resource managers making decisions affecting waterways and atmospheric GHG emissions.

  6. Saltwater Intrusion: Climate change mitigation or just water resources management?

    Science.gov (United States)

    Ferguson, G. A.; Gleeson, T.

    2011-12-01

    Climate change and population growth are expected to substantially increase the vulnerability of global water resources throughout the 21st century. Coastal groundwater systems are a nexus of the world's changing oceanic and hydrologic systems and a critical resource for the over one billion people living in coastal areas as well as for terrestrial and offshore ecosystems. Synthesis studies and detailed simulations predict that rising sea levels could negatively impact coastal aquifers by causing saltwater to intrude landward within coastal aquifers or by saltwater inundation of coastal regions. Saltwater intrusion caused by excessive extraction is already impacting entire island nations and globally in diverse regions such as Nile River delta in Egypt, Queensland, Australia and Long Island, USA. However, the vulnerability of coastal aquifers to sea level rise and excessive extraction has not been systematically compared. Here we show that coastal aquifers are much more vulnerable to groundwater extraction than predicted sea level rise in wide-ranging hydrogeologic conditions and population densities. Low lying areas with small hydraulic gradients are more sensitive to climate change but a review of existing coastal aquifer indicates that saltwater intrusion problems are more likely to arise where water demand is high. No cases studies were found linking saltwater intrusion to sea level rise during the past century. Humans are a key driver in the hydrology of coastal aquifers and that adapting to sea level rise at the expense of better water management is misguided.

  7. Energy supply options for climate change mitigation and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Dobran, Flavio

    2010-09-15

    Modern society is dependent on fossil fuels for its energy needs, but their combustion is producing emissions of greenhouse gases that cause global warming. If these emissions remain unconstrained they risk of producing significant impacts on humanity and ecosystems. Replacement of fossil fuels with alternative energy sources can stabilize anthropogenic global warming and thus reduce the climate change impacts. The deployment of alternative energy supply technologies should be based on objectives that are consistent with sustainability indicators and incorporate quantitative risk assessment multiattribute utility decision methodologies capable of ascertaining effective future energy supply options.

  8. Mitigation and adaptation within a climate change policy portfolio: A research program

    Science.gov (United States)

    It is now recognized that optimal global climate policy is a portfolio of the two key responses for reducing the risks of climate change: mitigation and adaptation. Significant differences between the two responses have inhibited understanding of how to appropriately view these...

  9. The Dragons of Inaction: Psychological Barriers That Limit Climate Change Mitigation and Adaptation

    Science.gov (United States)

    Gifford, Robert

    2011-01-01

    Most people think climate change and sustainability are important problems, but too few global citizens engaged in high-greenhouse-gas-emitting behavior are engaged in enough mitigating behavior to stem the increasing flow of greenhouse gases and other environmental problems. Why is that? Structural barriers such as a climate-averse infrastructure…

  10. Framework for Climate Change Mitigation and Adaption in Cities by Utilizing Green Infrastructure

    DEFF Research Database (Denmark)

    Prapaspongsa, Trakarn; Davidson, Cliff I.; Jindal, Ranjina;

    Climate change has threatened global security of ecosystems, human health and natural resources. These threats have increased demand for various mitigation technology solutions as well as effective strategies for adapting to anticipated impacts. Green infrastructure (GI) technologies such as green...... roofs and urban forestry are viewed as ones of the best climate adaptation strategies in cities. This study aims to develop a framework for climate change mitigation and adaptation (CCMA) in cities by using green infrastructure technologies. The framework is established by integrating existing green...

  11. Trade-Offs Associated with Soil Carbon Sequestration in ecosystems as Climate Change Mitigation (Invited)

    Science.gov (United States)

    Six, J. W.; Kong, A. Y.

    2010-12-01

    Ecosystems, especially agroecosystems, have been proposed to have the potential to mitigate anthropogenic contributions to climate change through management. It has been suggested that the adoption of agricultural soil management practices that decrease disturbance and/or increase C inputs to soils can transform soils from C ‘sources’ to C ‘sinks’. However, for these management practices to genuinely mitigate climate change, they must slow the increase of atmospheric CO2 levels by establishing a net transfer of C from atmospheric CO2 to the soil or vegetation. Furthermore, a change in land management must not increase the emission of any other greenhouse gases (e.g., nitrous oxide). Here, we expose the global warming ‘costs’ - tradeoffs - associated with management options that have been promoted as soil C sequestration strategies, but may not always achieve their goals of climate change mitigation. We also discuss fundamental mechanistic potentials and constraints to the sequestration of C in soils, which allow but also limit the potential of soil C sequestration as a means of climate change mitigation. Only by using a whole (agro)ecosystems approach that addresses the linked cycles of C, nitrogen, and phosphorous in soils, can management practices genuinely contribute to climate change mitigation.

  12. Hand in hand: public endorsement of climate change mitigation and adaptation.

    Science.gov (United States)

    Brügger, Adrian; Morton, Thomas A; Dessai, Suraje

    2015-01-01

    This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.

  13. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    Science.gov (United States)

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized.

  14. Incorporating changes in albedo in estimating the climate mitigation benefits of land use change projects

    Directory of Open Access Journals (Sweden)

    D. N. Bird

    2008-04-01

    Full Text Available Some climate scientists are questioning whether the practice of converting of non-forest lands to forest land (afforestation or reforestation is an effective climate change mitigation option. The discussion focuses particularly on areas where the new forest is primarily coniferous and there is significant amount of snow since the increased climate forcing due to the change in albedo may counteract the decreased climate forcing due to carbon dioxide removal.

    In this paper, we develop a stand-based model that combines changes in surface albedo, solar radiation, latitude, cloud cover and carbon sequestration. As well, we develop a procedure to convert carbon stock changes to equivalent climatic forcing or climatic forcing to equivalent carbon stock changes. Using the model, we investigate the sensitivity of combined affects of changes in surface albedo and carbon stock changes to model parameters. The model is sensitive to amount of cloud, atmospheric absorption, timing of canopy closure, carbon sequestration rate among other factors. The sensitivity of the model is investigated at one Canadian site, and then the model is tested at numerous sites across Canada.

    In general, we find that the change in albedo reduces the carbon sequestration benefits by approximately 30% over 100 years, but this is not drastic enough to suggest that one should not use afforestation or reforestation as a climate change mitigation option. This occurs because the forests grow in places where there is significant amount of cloud in winter. As well, variations in sequestration rate seem to be counterbalanced by the amount and timing of canopy closure.

    We close by speculating that the effects of albedo may also be significant in locations at lower latitudes, where there are less clouds, and where there are extended dry seasons. These conditions make grasses light coloured and when irrigated crops, dark forests or other vegetation such as

  15. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    Science.gov (United States)

    Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  16. The Future of Tourism: Can Tourism Growth and Climate Policy be Reconciled? A Climate Change Mitigation Perspective

    NARCIS (Netherlands)

    Gössling, S.; Hall, C.M.; Peeters, P.M.; Scott, D.

    2010-01-01

    Tourism is an increasingly significant contributor to greenhouse gas (GHG) emissions. Emissions growth in the sector is in substantial conflict with global climate policy goals that seek to mitigate climate change through deep emission reductions. This article discusses the role of various tourism s

  17. Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    CERN Document Server

    Hamwey, R M

    2005-01-01

    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.

  18. U.S. Air Quality and Health Benefits from Avoided Climate Change under Greenhouse Gas Mitigation.

    Science.gov (United States)

    Garcia-Menendez, Fernando; Saari, Rebecca K; Monier, Erwan; Selin, Noelle E

    2015-07-07

    We evaluate the impact of climate change on U.S. air quality and health in 2050 and 2100 using a global modeling framework and integrated economic, climate, and air pollution projections. Three internally consistent socioeconomic scenarios are used to value health benefits of greenhouse gas mitigation policies specifically derived from slowing climate change. Our projections suggest that climate change, exclusive of changes in air pollutant emissions, can significantly impact ozone (O3) and fine particulate matter (PM2.5) pollution across the U.S. and increase associated health effects. Climate policy can substantially reduce these impacts, and climate-related air pollution health benefits alone can offset a significant fraction of mitigation costs. We find that in contrast to cobenefits from reductions to coemitted pollutants, the climate-induced air quality benefits of policy increase with time and are largest between 2050 and 2100. Our projections also suggest that increasing climate policy stringency beyond a certain degree may lead to diminishing returns relative to its cost. However, our results indicate that the air quality impacts of climate change are substantial and should be considered by cost-benefit climate policy analyses.

  19. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    Science.gov (United States)

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-01-01

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies. PMID:27657098

  20. Data of a willingness to pay survey for national climate change mitigation policies in Germany.

    Science.gov (United States)

    Uehleke, Reinhard

    2016-06-01

    The dataset includes responses from a contingent valuation study about the national climate change mitigation policies in Germany. The online survey was carried out in the spring of 2014. It assesses the willingness to pay for an increase of the national CO2 reduction target by 10 percentage points, which closely represents Germany׳s climate change mitigation strategy. Respondents were randomly allocated to one of the following three question formats: The dichotomous choice referendum, the dissonance minimizing referendum and the two-sided payment ladder. The data can be used to investigate the influence of alternative statistical approaches on the willingness to pay measures and their comparison across question formats.

  1. Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan

    Directory of Open Access Journals (Sweden)

    Nophea Sasaki

    2011-04-01

    Full Text Available As a member of the Annex 1 countries to the Kyoto Protocol of the United Nations Framework Convention on Climate Change, Japan is committed to reducing 6% of the greenhouse gas emissions. In order to achieve this commitment, Japan has undertaken several major mitigation measures, one of which is the domestic measure that includes ecologically friendly lifestyle programs, utilizing natural energy, participating in local environmental activities, and amending environmental laws. Mitigation policies could be achieved if public responses were strong. As the internet has increasingly become an online platform for sharing environmental information, public responses to the need for reducing greenhouse gas emissions may be assessed using available online tools. We used Google Insights for Search, Google AdWords Keyword Tool, and Google Timeline View to assess public responses in Japan based on the interest shown for five search terms that define global climate change and its mitigation policies. Data on online search interests from January 04, 2004 to July 18, 2010 were analyzed according to locations and categories. Our study suggests that the search interests for the five chosen search terms dramatically increased, especially when new mitigation policies were introduced or when climate change related events were organized. Such a rapid increase indicates that the Japanese public strongly responds to climate change mitigation policies.

  2. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  3. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  4. Technical Note on Mitigation and Adaptation to Climate Change in Brazil

    OpenAIRE

    Ludena, Carlos E.; Maria Netto

    2011-01-01

    This Mitigation and Adaptation to Climate Change in Brazil sector note has been elaborated as input to the Bank's Country Strategy with Brazil for the 2012-2014 period. Some of the most significant aspects of this note are: background and context, sector problems and priorities, Bank Actions related to climate change, strategic framework, necessary actions to achieve strategic objectives, expected results, risks and indicators.

  5. Climate change mitigation in Asia and financing Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, P.R.; Deo, P. [eds.

    1998-12-01

    The three primary objectives of the conference, which was organized by the UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Environment Department of the World Bank, at Goa in India from May 4 to 6, 1998, were: 1) to share the GHG mitigation experiences from Asian developing countries; 2) to disseminate the standard methodological approach for mitigation analysis developed by UNEP and its applications in different countries; and 3) assess the role and efficacy of financial mechanisms and to, specifically, seek feedback on the Prototype Carbon Fund proposed by the World Bank. Follwing these objectives, the workshop presentations and discussions were structured in three parts. In the first part, participants from eleven Asian developing countries made presentations that were followed by discussions. The second part included the presentations by the experts from UCCEE, UNFCCC and other invited experts who presented the mitigation methodology and the issues and experiences relating to various co-operative implementation mechanisms. The third part included the presentations by the World Bank representatives on the Prototype Carbon Fund and the discussions on financial mechanisms. (EG)

  6. Reservoir management and environmental protection: The mitigation of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, Paul A.

    1998-07-01

    It is widely accepted that human activities which produce greenhouse gases have had a discernible effect upon global mean temperatures over the last 50 years. A number of gases entering the atmosphere as a result of human activities can act as greenhouse gases. The most important is carbon dioxide the atmospheric concentration of which has risen by about 30% compared to pre-industrial concentrations. Energy related emissions arising from the use of fossil fuels account for more than 80% of the CO{sub 2} released to the atmosphere each year with these fuels accounting for around 90% of the world's commercial energy production. The provisions of the 1997 Kyoto protocol go some way to promote reductions in emissions of greenhouse gases and are an important first step. However, according to this presentation, current energy production and consumption patterns violate principles of sustainability. As a result the world is committed to warming as a result of emissions of greenhouse gases from the use of these fuels. Pragmatically, one should limit the use of fossil fuels and eventually replace them by renewable energy sources.and efforts to increase the overall energy efficiency. Given this, proposals to sequester and dump/store carbon dioxide are an unsustainable solution in their own right, but also perpetuate unsustainable energy use based on fossil fuels. Probably attempts to limit the impacts of climate change by the capture and disposal of CO{sub 2} will result in undesirable and unanticipated impacts. The presentation recommends that resources currently deployed in investigating disposal schemes for CO{sub 2} should rather go to the development of renewable energy generation and energy efficiency.

  7. The mitigation of the climate change: discourse and actions in APEC

    Directory of Open Access Journals (Sweden)

    Silvia Guadalupe Figueroa González

    2011-08-01

    Full Text Available Climate change is a shared problem that requires concerted action to meet the challenge on the best terms. The social, economic and political issue, pressed implications for designing mechanisms for cooperation on mitigation and adaptation. In Asia Pacific the largest emitters of greenhouse gases (GHGs that contribute to climate change are located; therefore becomes important convergence of national policies leading to a regional protocol on sustainable development. The Forum Asia Pacific Economic Cooperation (APEC has added to its agenda commitment to sustainable development and addressing climate change from different approaches: energy, agriculture, transport, and from different areas: the city and the region.

  8. Technology policy for climate change mitigation: a transatlantic perspective

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This workshop was the second climate policy conference jointly organized by RFF and IFRI in Paris. (The first one, ''How to Make Progress Post-Kyoto?'', was held on March 19, 2003). This Summary Paper is divided into two parts: The first part presents short summaries of all the presentations at the workshop (rationale and past experience in technology policies, the challenges and policy responses of the climate friendly technologies). The second part, which is an edited version of the closing remarks by Pierre Noel (Ifri), highlights some of the policy lessons that emerged from the workshop. (A.L.B.)

  9. A review of renewable energy sources, sustainability issues and climate change mitigation

    Directory of Open Access Journals (Sweden)

    Phebe Asantewaa Owusu

    2016-12-01

    Full Text Available The world is fast becoming a global village due to the increasing daily requirement of energy by all population across the world while the earth in its form cannot change. The need for energy and its related services to satisfy human social and economic development, welfare and health is increasing. Returning to renewables to help mitigate climate change is an excellent approach which needs to be sustainable in order to meet energy demand of future generations. The study reviewed the opportunities associated with renewable energy sources which includes: Energy Security, Energy Access, Social and Economic development, Climate Change Mitigation, and reduction of environmental and health impacts. Despite these opportunities, there are challenges that hinder the sustainability of renewable energy sources towards climate change mitigation. These challenges include Market failures, lack of information, access to raw materials for future renewable resource deployment, and our daily carbon footprint. The study suggested some measures and policy recommendations which when considered would help achieve the goal of renewable energy thus to reduce emissions, mitigate climate change and provide a clean environment as well as clean energy for all and future generations.

  10. Harmonising climate change adaptation and mitigation: The case of tourist resorts in Fiji

    Energy Technology Data Exchange (ETDEWEB)

    Becken, Susanne [Landcare Research, Canterbury (New Zealand)

    2005-12-01

    Tourism in island states is vulnerable to climate change because it may result in detrimental changes in relation to extreme events, sea level rise, transport and communication interruption. This study analyses adaptation to climate change by tourist resorts in Fiji, as well as their potential to reduce climate change through reductions in carbon dioxide emissions. Interviews, site visitations, and an accommodation survey were undertaken. Many operators already prepare for climate-related events and therefore adapt to potential impacts resulting from climate change. Reducing emissions is not important to operators; however, decreasing energy costs for economic reasons is practised. Recommendations for further initiatives are made and synergies between the adaptation and mitigation approaches are explored. (Author)

  11. The Role of Hydropower in Climate Change Mitigation and Adaptation: A Review

    Directory of Open Access Journals (Sweden)

    Luis Berga

    2016-09-01

    Full Text Available Hydropower is a clean, renewable, and environmentally friendly source of energy. It produces 3930 (TW.h.a−1, and yields 16% of the world’s generated electricity and about 78% of renewable electricity generation (in 2015. Hydropower and climate change show a double relationship. On the one hand, as an important renewable energy resource, hydropower contributes significantly to the avoidance of greenhouse gas (GHG emissions and to the mitigation of global warming. On the other hand, climate change is likely to alter river discharge, impacting water availability and hydropower generation. Hydropower contributes significantly to the reduction of GHG emissions and to energy supply security. Compared with conventional coal power plants, hydropower prevents the emission of about 3 GT CO2 per year, which represents about 9% of global annual CO2 emissions. Hydropower projects may also have an enabling role beyond the electricity sector, as a financing instrument for multipurpose reservoirs and as an adaptive measure regarding the impacts of climate change on water resources, because regulated basins with large reservoir capacities are more resilient to water resource changes, less vulnerable to climate change, and act as a storage buffer against climate change. At the global level, the overall impact of climate change on existing hydropower generation may be expected to be small, or even slightly positive. However, there is the possibility of substantial variations across regions and even within countries. In conclusion, the general verdict on hydropower is that it is a cheap and mature technology that contributes significantly to climate change mitigation, and could play an important role in the climate change adaptation of water resource availability. However, careful attention is necessary to mitigate the substantial environmental and social costs. Roughly more than a terawatt of capacity could be added in upcoming decades.

  12. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa

    NARCIS (Netherlands)

    Descheemaeker, Katrien; Oosting, Simon J.; Homann-Kee Tui, Sabine; Masikati, Patricia; Falconnier, Gatien N.; Giller, K.E.

    2016-01-01

    African mixed crop–livestock systems are vulnerable to climate change and need to adapt in order to improve productivity and sustain people’s livelihoods. These smallholder systems are characterized by high greenhouse gas emission rates, but could play a role in their mitigation. Although the imp

  13. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    2009-01-01

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to Chi

  14. Framework for multi-scale integrated impact analyses of climate change mitigation options

    NARCIS (Netherlands)

    Perez-Soba, M.; Parr, T.; Roupioz, L.F.S.; Winograd, M.; Peña-Claros, M.; Varela Ortega, C.; Ascarrunz, N.; Balvanera, P.; Bholanath, P.; Equihua, M.; Guerreiro, L.; Jones, L.; Maass, M.; Thonicke, K.

    2013-01-01

    Tropical forest ecosystems are hotspots for biodiversity and represent one of the largest terrestrial carbon stocks, making their role in climate change mitigation (CCM) programmes increasingly important (e.g. REDD+). In Latin America these ecosystems suffer from high land use pressures that have re

  15. Challenging the claims on the potential of biochar to mitigate climate change

    NARCIS (Netherlands)

    Francischinelli Rittl, T.

    2015-01-01

    Summary In this PhD thesis I studied the influence of biochar discourses on the political practices in Brazil and the impact of biochar on soil organic carbon (SOC) stocks, thus contributing to the current debate on the potential of biochar to mitigate climate change. Biochar is the solid material o

  16. Ethical implications of co-benefits rationale within climate change mitigation strategy

    Directory of Open Access Journals (Sweden)

    Rita Vasconcellos Oliveira

    2016-10-01

    Full Text Available Climate change mitigation effort is being translated into several actions and discourses that make collateral benefits and their rationale increasingly relevant for sustainability, in such a way that they are now a constant part of the political agenda. Taking a border and consensual perspective, co-benefits are considered here to be emerging advantages of the implementation of measures regarding the lowering of greenhouse gases.Departing from the analysis of policy documents referring to two European urban transportation strategies, the emergent co-benefits are problematized and discussed to better understand their moral aspect. Further ethical reflection is conducted after an analysis of some unintended consequences of co-benefits rationale coming from the mentioned examples. The focus is primarily on the challenges of an integrative moral justification for co-benefits and also for their role in the climate change mitigation effort. We also discuss the limitations of the current normative models that frame co-benefits rationale, from a moral viewpoint and in relation to the overall climate change mitigation strategy.In this article, we propose the concepts of well-being and freedom, as portrayed by Capabilities Approach, as possible guiding notions for the moral and social evaluation of goodness of these emergent benefits and their rationale too. Additionally, some preliminary conclusions are drawn regarding the potential of the presented concepts to favour the climate change mitigation action. Finally, a scenario is drawn where Capabilities Approach is the moral guideline for co-benefits rationale showing this way its potential in terms of enhancing climate change mitigation strategy.

  17. Balance between climate change mitigation benefits and land use impacts of bioenergy : Conservation implications for European birds

    NARCIS (Netherlands)

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-e

  18. Does Climate Change Mitigation Activity Affect Crude Oil Prices? Evidence from Dynamic Panel Model

    Directory of Open Access Journals (Sweden)

    Jude C. Dike

    2014-01-01

    Full Text Available This paper empirically investigates how climate change mitigation affects crude oil prices while using carbon intensity as the indicator for climate change mitigation. The relationship between crude oil prices and carbon intensity is estimated using an Arellano and Bond GMM dynamic panel model. This study undertakes a regional-level analysis because of the geographical similarities among the countries in a region. Regions considered for the study are Africa, Asia and Oceania, Central and South America, the EU, the Middle East, and North America. Results show that there is a positive relationship between crude oil prices and carbon intensity, and a 1% change in carbon intensity is expected to cause about 1.6% change in crude oil prices in the short run and 8.4% change in crude oil prices in the long run while the speed of adjustment is 19%.

  19. Assessment of rainfall-runoff modelling for climate change mitigation

    Science.gov (United States)

    Otieno, Hesbon; Han, Dawei; Woods, Ross

    2015-04-01

    Sustainable water resources management requires reliable methods for quantification of hydrological variables. This is a big challenge in developing countries, due to the problem of inadequate data as a result of sparse gauge networks. Successive occurrence of both abundance and shortage of water can arise in a catchment within the same year, with deficit situations becoming an increasingly occurring phenomenon in Kenya. This work compares the performance of two models in the Tana River catchment in Kenya, in generation of synthetic flow data. One of the models is the simpler USGS Thornthwaite monthly water balance model that uses a monthly time step and has three parameters. In order to explore alternative modelling schemes, the more complex Pitman model with 19 parameters was also applied in the catchment. It is uncertain whether the complex model (Pitman) will do better than the simple model, because a model with a large number of parameters may do well in the current system but poorly in future. To check this we have used old data (1970-1985) to calibrate the models and to validate with recent data (after 1985) to see which model is robust over time. This study is relevant and useful to water resources managers in scenario analysis for water resources management, planning and development in African countries with similar climates and catchment conditions.

  20. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    Science.gov (United States)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the

  1. The Social and Behavioural Aspects of Climate Change. Linking Vulnerability, Adaptation and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Martens, P.; Chang, Chiung Ting (eds.) [International Centre for Integrated Assessment and Sustainable Development ICIS, Maastricht University, Maastricht (Netherlands)

    2010-09-15

    Over the past few years, and certainly since the publication of the Stern Report , there has been increasing recognition that climate change is not only an environmental crisis, but one with important social and economic dimensions. There is now a growing need for multi-disciplinary research and for the science of climate change to be usefully translated for policy-makers. Until very recently, scientific and policy emphasis on climate change has focused almost exclusively on mitigation efforts: mechanisms and regulations to reduce greenhouse gas emissions. The success of such efforts to date is debatable. In fact, the impact of ever more stringent emission control programmes could potentially have enormous social consequences. Little effort has been expended on the exploration of a systematic evaluation of climate stabilisation benefits or the costs of adapting to a changed climate, let alone attempting to integrate different approaches. There is an increasing recognition that the key actors in the climate crisis also need to be preparing for change that is unavoidable. This has resulted in a greater consideration of vulnerability and adaptation. The book, based on the research programme 'Vulnerability, Adaptation and Mitigation' (VAM) which ran from 2004 to 2010, funded by the Netherlands Organisation for Scientific Research (NWO), presents a cluster of case studies of industries, communities and institutions which each show how vulnerability, adaptation and mitigation analyses can be integrated using social behavioural sciences. Each chapter makes specific recommendations for the studied industry sector, community or institution, analyses the latest research developments of the field and identifies priorities for future research. The book argues that the inherent complexity of climate change will ultimately require a much more integrated response both scientifically - to better understand multiple causes and impacts - as well as at the scientific

  2. Climate benefits of changes in agricultural practices in the context of heat wave mitigation

    Science.gov (United States)

    Davin, E.; Seneviratne, S. I.; Ciais, P.; Olioso, A.; Wang, T.

    2014-12-01

    About half of the terrestrial biosphere is under direct human influence through land management (i.e., agricultural areas and managed forests). Changing management practices is therefore a promising avenue for climate change mitigation. The mitigation potential arising from changes in land management practices has been mainly evaluated in terms of carbon storage and GHG emissions [2]. On the other hand, these practices can also influence climate by altering the physical properties of the land surface, but these effects have received less attention so far. Here we show that peak temperatures during heat heaves can be attenuated through cropland albedo management [2]. We first present observational evidence that a substantial summer albedo increase can be obtained by switching from conventional to no-till agriculture. Then, using a regional climate model, we investigate the biogeophysical effect of a full conversion to no-till management over Europe. The cooling effect owing to albedo increase under no-till farming appears to be strongly amplified during warm events. This is due to the low cloud cover during these events, thus leading to a more efficient radiative cooling from albedo change. This implies a strong potential of no-till farming to mitigate heat wave impacts. The reduced evaporation associated with the crop residue cover tends to counteract the albedo-induced cooling, but during hot days the albedo effect remains the dominating factor. For heatwave summer days the local cooling effect gained from no-till practice is of the order of 2 degrees. These findings strongly suggest that the biogeophysical effect of management practices should be considered in the design of climate mitigation policies involving land management. References:[1] Smith, P. et al. (2014): Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel

  3. Co-creation of climate change mitigation policies: the superiority of a community-based approach

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam

    research project and spread over the continuum from local government initiated to citizen initiated, and from projects aimed at changing individual behaviour to projects involving bigger communities (housing association, villages, etc.), it will be argued that both from a governance perspective (CO2......-reductions), as well as from a democratic perspective, citizen initiated projects involving communities of different kinds are clearly superior to for example government initiated campaigns aimed at the behaviour of individuals. This finding has clear policy-implications meaning that local climate change...... mitigation policies should be aimed at finding ways to support citizen initiated initiatives to a greater extent than is currently the case. Keywords: climate change mitigation, co-creation, behaviour, communities, citizen driven innovation....

  4. Implementing climate change mitigation in health services: the importance of context.

    Science.gov (United States)

    Desmond, Sharon

    2016-10-01

    Academic interest in strategies to reduce the impact of health services on climate change is quickening. Research has largely focused on local innovations with little consideration of the contextual and systemic elements that influence sustainable development across health systems. A realistic framework specifically to guide decision-making by health care providers is still needed. To address this deficit, the literature is explored in relation to health services and climate change mitigation strategies, and the contextual factors that influence efforts to mitigate climate effects in health service delivery environments are highlighted. A conceptual framework is proposed that offers a model for the pursuit of sustainable development practice in health services. A set of propositions is advanced to provide a systems approach to assist decision-making by decoding the challenges faced in implementing sustainable health services. This has important implications for health care providers, funders and legislators since the financial, policy and regulatory environment of health care, along with its leadership and models of care generally conflict with carbon literacy and climate change mitigation strategies.

  5. The role of coastal plant communities for climate change mitigation and adaptation

    Science.gov (United States)

    Duarte, Carlos M.; Losada, Iñigo J.; Hendriks, Iris E.; Mazarrasa, Inés; Marbà, Núria

    2013-11-01

    Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

  6. Role of the Freight Sector in Future Climate Change Mitigation Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Muratori, Matteo; Smith, Steven J.; Kyle, Page; Link, Robert; Mignone, Bryan K.; Kheshgi, Haroon S.

    2017-02-28

    The freight sector's role is examined using the Global Change Assessment Model (GCAM) for a range of climate change mitigation scenarios and future freight demand assumptions. Energy usage and CO2 emissions from freight have historically grown with a correlation to GDP, and there is limited evidence of near-term global decoupling of freight demand from GDP. Over the 21st century, greenhouse gas (GHG) emissions from freight are projected to grow faster than passenger transportation or other major end-use sectors, with the magnitude of growth dependent on the assumed extent of long-term decoupling. In climate change mitigation scenarios that apply a price to GHG emissions, mitigation of freight emissions (including the effects of demand elasticity, mode and technology shifting, and fuel substitution) is more limited than for other demand sectors. In such scenarios, shifting to less-emitting transportation modes and technologies is projected to play a relatively small role in reducing freight emissions in GCAM. By contrast, changes in the supply chain of liquid fuels that reduce the fuel carbon intensity, especially deriving from large-scale use of biofuels coupled to carbon capture and storage technologies, are responsible for the majority of freight emissions mitigation, followed by price-induced reduction in freight demand services.

  7. Potential Roles of Swedish Forestry in the Context of Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Tomas Lundmark

    2014-03-01

    Full Text Available In Sweden, where forests cover more than 60% of the land area, silviculture and the use of forest products by industry and society play crucial roles in the national carbon balance. A scientific challenge is to understand how different forest management and wood use strategies can best contribute to climate change mitigation benefits. This study uses a set of models to analyze the effects of different forest management and wood use strategies in Sweden on carbon dioxide emissions and removals through 2105. If the present Swedish forest use strategy is continued, the long-term climate change mitigation benefit will correspond to more than 60 million tons of avoided or reduced emissions of carbon dioxide annually, compared to a scenario with similar consumption patterns in society but where non-renewable products are used instead of forest-based products. On average about 470 kg of carbon dioxide emissions are avoided for each cubic meter of biomass harvested, after accounting for carbon stock changes, substitution effects and all emissions related to forest management and industrial processes. Due to Sweden’s large export share of forest-based products, the climate change mitigation effect of Swedish forestry is larger abroad than within the country. The study also shows that silvicultural methods to increase forest biomass production can further reduce net carbon dioxide emissions by an additional 40 million tons of per year. Forestry’s contribution to climate change mitigation could be significantly increased if management of the boreal forest were oriented towards increased biomass production and if more wood were used to substitute fossil fuels and energy-intensive materials.

  8. Northwest regional climate hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Science.gov (United States)

    This assessment draws from a large bank of information developed by scientists and extension specialists in the Northwest to describe where we need to focus when dealing with climate risks to working landscapes. The changing climate has many secondary effects, such as irrigation water loss, increase...

  9. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    Directory of Open Access Journals (Sweden)

    José Manuel Ortega-Egea

    Full Text Available The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change and socio-demographics (especially country-level variables in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  10. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  11. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    Science.gov (United States)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  12. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer.

    Science.gov (United States)

    Li, Li; Xu, Jianhua; Hu, Jianxin; Han, Jiarui

    2014-05-06

    Reducing nitrous oxide (N2O) emissions offers the combined benefits of mitigating climate change and protecting the ozone layer. This study estimates historical and future N2O emissions and explores the mitigation potential for China's chemical industry. The results show that (1) from 1990 to 2012, industrial N2O emissions in China grew by some 37-fold from 5.07 to 174 Gg (N2O), with total accumulated emissions of 1.26 Tg, and (2) from 2012 to 2020, the projected emissions are expected to continue growing rapidly from 174 to 561 Gg under current policies and assuming no additional mitigation measures. The total accumulated mitigation potential for this forecast period is about 1.54 Tg, the equivalent of reducing all the 2011 greenhouse gases from Australia or halocarbon ozone-depleting substances from China. Adipic acid production, the major industrial emission source, contributes nearly 80% of the industrial N2O emissions, and represents about 96.2% of the industrial mitigation potential. However, the mitigation will not happen without implementing effective policies and regulatory programs.

  13. Strategic and legal framework in forestry and related sectors: Climate change mitigation in European Union and Serbia

    Directory of Open Access Journals (Sweden)

    Ranković Nenad

    2016-01-01

    Full Text Available The important role of forests in mitigating and adapting to climate changes is recognized and widely accepted. Therefore, it becomes a subject of universal interest and support. However, in the national strategies relating to climate change, the importance of the forestry sector in mitigating these changes is quite often not discussed in detail. In addition, the problem of climate change is not fully represented and included in national forestry policies. The aim of this research was to determine the compliance and differences of strategic and legislative frameworks in forestry and related sectors, relating to climate change mitigation in the EU and Serbia. At the EU level, there are two strategies and a policy framework, and in Serbia, eight sectoral strategies, referring and discussing the climate change mitigation through forestry. At the same time, these issues are highlighted as the primary objective, only in the Climate and Energy Package of the EU and the Forestry Development Strategy in Serbia. In terms of legislative framework in Serbia, two laws have climate change mitigation through forestry as the primary objective, while for the analyzed relevant EU legislation, this is a secondary objective. In Serbia, only the Forest law has a direct impact on climate change mitigation through forestry, while at EU level, there is no regulation, directive or communication, with the same direct influence. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Studies of climate changes and their impact on the environment-monitoring impacts, adaptation and mitigation, podprojekat, 43007/16-III: Socio-economic development, mitigation and adaptation to climate change

  14. The Role of Forests in Mitigating Climate Change – a Case Study for Europe

    Directory of Open Access Journals (Sweden)

    GÁLOS, Borbála

    2012-01-01

    Full Text Available A regional-scale case study has been carried out to assess the possible climatic benefits of forest cover increase in Europe. For the end of the 21st century (2071–2090 it has been investigated, whether the projected climate change could be reduced assuming potential afforestation of the continent. The magnitude of the biogeophysical effects of enhanced forest cover on temperature and precipitation means and extremes have been analyzed relative to the magnitude of the climate change signal applying the regional climate model REMO. The simulation results indicate that in the largest part of the temperate zone potential afforestation may reduce the projected climate change through cooler and moister conditions, thus could contribute to the mitigation of the projected climate change for the entire summer period. The largest relative effect of forest cover increase can be expected in northern Germany, Poland and Ukraine. Here, the projected precipitation decrease could be fully compensated, the temperature increase could be relieved by up to 0.5 °C, and the probability of extremely warm and dry days could be reduced. Results can help to identify the areas, where forest cover increase could be the most effective from climatic point of view. Thus they can build an important basis of the future adaptation strategies and forest policy.

  15. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    Science.gov (United States)

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  16. ¨ A Dilemma of Abundance: Governance Challenges of Reconciling Shale Gas Development and Climate Change Mitigation

    Directory of Open Access Journals (Sweden)

    Karena Shaw

    2013-05-01

    Full Text Available Shale gas proponents argue this unconventional fossil fuel offers a “bridge” towards a cleaner energy system by offsetting higher-carbon fuels such as coal. The technical feasibility of reconciling shale gas development with climate action remains contested. However, we here argue that governance challenges are both more pressing and more profound. Reconciling shale gas and climate action requires institutions capable of responding effectively to uncertainty; intervening to mandate emissions reductions and internalize costs to industry; and managing the energy system strategically towards a lower carbon future. Such policy measures prove challenging, particularly in jurisdictions that stand to benefit economically from unconventional fuels. We illustrate this dilemma through a case study of shale gas development in British Columbia, Canada, a global leader on climate policy that is nonetheless struggling to manage gas development for mitigation. The BC case is indicative of the constraints jurisdictions face both to reconcile gas development and climate action, and to manage the industry adequately to achieve social licence and minimize resistance. More broadly, the case attests to the magnitude of change required to transform our energy systems to mitigate climate change.

  17. Land use and management change under climate change adaptation and mitigation strategies: a U.S. case study

    Science.gov (United States)

    Mu, Jianhong E.; Wein, Anne; McCarl, Bruce

    2015-01-01

    We examine the effects of crop management adaptation and climate mitigation strategies on land use and land management, plus on related environmental and economic outcomes. We find that crop management adaptation (e.g. crop mix, new species) increases Greenhouse gas (GHG) emissions by 1.7 % under a more severe climate projection while a carbon price reduces total forest and agriculture GHG annual flux by 15 % and 9 %, respectively. This shows that trade-offs are likely between mitigation and adaptation. Climate change coupled with crop management adaptation has small and mostly negative effects on welfare; mitigation, which is implemented as a carbon price starting at $15 per metric ton carbon dioxide (CO2) equivalent with a 5 % annual increase rate, bolsters welfare carbon payments. When both crop management adaptation and carbon price are implemented the effects of the latter dominates.

  18. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    Science.gov (United States)

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  19. The role of HFCs in mitigating 21st century climate change

    Directory of Open Access Journals (Sweden)

    Y. Xu

    2013-06-01

    Full Text Available There is growing international interest in mitigating climate change during the early part of this century by reducing emissions of short-lived climate pollutants (SLCPs, in addition to reducing emissions of CO2. The SLCPs include methane (CH4, black carbon aerosols (BC, tropospheric ozone (O3 and hydrofluorocarbons (HFCs. Recent studies have estimated that by mitigating emissions of CH4, BC, and O3 using available technologies, about 0.5 to 0.6 °C warming can be avoided by mid-21st century. Here we show that avoiding production and use of high-GWP (global warming potential HFCs by using technologically feasible low-GWP substitutes to meet the increasing global demand can avoid as much as another 0.5 °C warming by the end of the century. This combined mitigation of SLCPs would cut the cumulative warming since 2005 by 50% at 2050 and by 60% at 2100 from the CO2-only mitigation scenarios, significantly reducing the rate of warming and lowering the probability of exceeding the 2 °C warming threshold during this century.

  20. Simulation and Evaluation of Urban Growth for Germany Including Climate Change Mitigation and Adaptation Measures

    Directory of Open Access Journals (Sweden)

    Jana Hoymann

    2016-06-01

    Full Text Available Decision-makers in the fields of urban and regional planning in Germany face new challenges. High rates of urban sprawl need to be reduced by increased inner-urban development while settlements have to adapt to climate change and contribute to the reduction of greenhouse gas emissions at the same time. In this study, we analyze conflicts in the management of urban areas and develop integrated sustainable land use strategies for Germany. The spatial explicit land use change model Land Use Scanner is used to simulate alternative scenarios of land use change for Germany for 2030. A multi-criteria analysis is set up based on these scenarios and based on a set of indicators. They are used to measure whether the mitigation and adaptation objectives can be achieved and to uncover conflicts between these aims. The results show that the built-up and transport area development can be influenced both in terms of magnitude and spatial distribution to contribute to climate change mitigation and adaptation. Strengthening the inner-urban development is particularly effective in terms of reducing built-up and transport area development. It is possible to reduce built-up and transport area development to approximately 30 ha per day in 2030, which matches the sustainability objective of the German Federal Government for the year 2020. In the case of adaptation to climate change, the inclusion of extreme flood events in the context of spatial planning requirements may contribute to a reduction of the damage potential.

  1. Climate effects of black carbon and the emission reduction for mitigating climate change /

    OpenAIRE

    Xu, Yangyang

    2014-01-01

    Black carbon (BC) aerosols are significant contributors to anthropogenic climate change and are considered as the second largest warming agent only after CO₂. To better quantify the present-day Asian BC aerosol forcing, in Chapter 2 we utilize both a top-down approach using ground -based and satellite observations, as well as a bottom-up approach using a latest global climate model. By comparing the observations with the model simulations, we show that the emission inventory over Asia used in...

  2. Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a 'business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995-2015) scenario and from the three BAU climate (2040-2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1-3: 2010-2039, 2040-2069, 2070-2098) in which changes in annual average temperature were +0.5, +1.3 and +2.1C, respectively, while critical winter season precipitation changes were -3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040-2060 period was +1.2C and the average winter precipitation change was -3 percent, relative to the RCM control climate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative

  3. Cotton and Climate Change: Impacts and Options to mitigate and adapt.

    Science.gov (United States)

    Ton, P.

    2012-04-01

    Cotton & Climate change: Impacts and Options to mitigate and adapt. Climate change will have major impacts on cotton production and trade depending on production location. This report to be presented analyses the impacts of climate change on cotton production and trade in the main producing areas world-wide, and the options available to mitigate and to adapt to these impacts. Cotton production is both a contributor to climate change and subject to its impacts. Agricultural production, processing, trade and consumption contribute up to 40% of the world's emissions when forest clearance is included in the calculation. Cotton production contributes to between 0.3% and 1% of total global GHG emissions. Cotton has a certain resilience to high temperatures and drought due to its vertical tap root. The crop is, however, sensitive to water availability, particularly at the height of flowering and boll formation. Rising temperatures favour plant development, unless day temperatures exceed 32°C. New production areas may be established where cotton was not grown before. Increases in atmospheric CO2 will also favour plant development. In turn, increased pests, water stress, diseases, and weather extremes will pose adaptation challenges. Overall, the negative impacts of climate change on cotton production relate to the reduced availability of water for irrigation, in particular in Xinjiang (China), Pakistan, Australia and the western United States. Heat stress risks creating depressed yields in Pakistan in particular, while in other countries limited increases in temperatures could favour cotton plant growth and lengthen the cotton growing season. The impacts of climate change on rainfall will likely be positive in the Yellow River area (China), in India, the south-eastern United States and south-eastern Anatolia (Turkey). Impacts on rainfall in Brazil and West and Central Africa are unclear. Mitigation and adaptation to climate change in cotton production, as in agriculture

  4. Accessing international financing for climate change mitigation - A guidebook for developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Limaye, D.R.; Zhu, X.

    2012-08-15

    This guidebook has been prepared by the UNEP Risoe Centre (URC) as part of its Technology Needs Assessment (TNA) project. The TNA project assists developing countries to identify national mitigation and adaptation technology priorities and to develop Technology Action Plans (TAPs) for mitigation of greenhouse gas (GHG) emissions and climate change adaptation. This guidebook provides information to help TNA countries better identify and access financial resources for the mitigation activities included in their national TAPs. This guidebook covers both mitigation 'projects' (such as a wind farm or a solar PV generation facility) and 'programmes' (such as a credit line for financing energy efficiency projects in small and medium-sized enterprises (SMEs), or bulk procurement and distribution of compact fluorescent lamps to households). The primary emphasis is on multilateral and bilateral sources of financing but the guidebook also includes an overview of private funding sources and public-private partnerships (PPPs). This guidebook only covers international financing for mitigation actions in developing countries. For example, EU funding for EU member countries and Chinese funding for mitigation in China are not covered in this guidebook. However, the EU funding for mitigation in developing countries and Chinese funding supporting mitigation in other developing countries are included. Special funds established in some developing countries by pooling financing support from developed countries are also covered in this guidebook. Information on the financing sources was compiled in a standard format and reviewed and analysed to categorise the financing sources. For the multilateral and bilateral financing sources, the available information was used to define their major characteristics (such as geographic coverage, technology/sector focus, funding sources, financing objectives, financing mechanisms, and management and governance). In addition, the

  5. Combating the effects of climatic change on forests by mitigation strategies

    Directory of Open Access Journals (Sweden)

    Dieter Matthias

    2010-11-01

    Full Text Available Abstract Background Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions. Results We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES. We used the scenarios A1B (rapid and successful economic development and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development. Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management. Conclusions The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.

  6. Mitigating the Urban Heat Island under Climate Change through Urban Management

    Science.gov (United States)

    Zhao, L.; Lee, X.; Oleson, K. W.; Schultz, N. M.; Smith, R. B.

    2015-12-01

    The urban heat island (UHI) represents ubiquitous urban warmth compared to surrounding rural areas. This phenomenon, when compounded with future climate warming, will exacerbate heat stress on urban residents who will comprise 70% of the world's population by 2070. At the same time, urban climate adaptation plans have shown great potential for reducing the impacts of global change. In this study, we assess three mitigation strategies, including reflective roofs, green roofs, and street trees, to ameliorate the warming under climate change through both "online" and "offline" methods. The "online" method compares modeling results from a modified urban roof albedo configuration (ALB-MOD) where the roof albedo is raised to a high reflective value to the modeling results from the default configuration (CTRL), both using the Community Earth System Model (CESM). Three pairs of simulations under current climate forcing and two future scenarios (RCP4.5 and RCP8.5) are conducted. The "offline" method uses a surface temperature attribution solution derived previously for partitioning the UHI intensity to assess the efficacy of the mitigation strategies. The "offline" method supplements the "online" method in assessing green roof and street tree strategies, because the current design of CESM does not have explicit vegetation in the urban canopy configuration. The excellent agreement between the "online" and "offline" results confirms the validity of the offline scheme, supporting that the "offline" method can be used to predict the impacts of various urban adaptation strategies for development planning. Results show that albedo management is the most effective and viable way to mitigate UHIs, whereas although green roof and street trees strategies have evaporative cooling effects, the cooling is compensated by vegetation's lower albedo, showing much less effectiveness on UHI mitigation. Although convection efficiency associated with the surface roughness is an important

  7. Four key reasons why climate change adaptation and mitigation need a gendered approach

    Directory of Open Access Journals (Sweden)

    Carla Sarrouy

    2014-09-01

    Full Text Available Climate change is having a growing impact on every human activity, especially on agriculture with altered rainfall patterns and an increased number and intensity of extreme weather events. This article argues that efforts to mitigate and adapt to climate change must consider whole food systems – rather than the sole production of food – whilst embracing a conscious gendered approach. Women are the main victims of hunger, but they are also the main actors of global food systems, they greatly contribute to their household’s and community’s wellbeing and detain a rich and often untapped knowledge of food systems. Promoting the role of women in our global food systems enhances the inclusion of criteria mainly valued by women such as resilience, diversity and nutrition, which are paramount for climate change mitigation and adaptation. Photo credit: By OxFam East Africa [CC-BY-2.0 (http://creativecommons.org/licenses/by/2.0], via Wikimedia Commons

  8. USDA Southwest Regional Hub for Adaptation to and Mitigation of Climate Change

    Science.gov (United States)

    Rango, A.; Elias, E.; Steele, C. M.; Havstad, K.

    2014-12-01

    The USDA Southwest (SW) Climate Hub was created in February 2014 to develop risk adaptation and mitigation strategies for coping with climate change effects on agricultural productivity. There are seven regional hubs across the country with three subsidiary hubs. The SW Climate Hub Region is made up of six states: New Mexico, Arizona, Utah, Nevada, California and Hawaii (plus the Trust Territories of the Pacific Islands). The SW Climate Hub has a subsidiary hub located in Davis, California. The Southwest region has high climatic diversity, with the lowest and highest average annual rainfall in the U.S.(6.0 cm in Death Valley, CA and 1168 cm at Mt. Waialeale, HI). There are major deserts in five of the six states, yet most of the states, with exception of Hawaii, depend upon the melting of mountain snowpacks for their surface water supply. Additionally, many of the agricultural areas of the SW Regional Hub depend upon irrigation water to maintain productivity. Scientific climate information developed by the Hub will be used for climate-smart decision making. To do this, the SW Regional Hub will rely upon existing infrastructure of the Cooperative Extension Service at Land-Grant State Universities. Extension service and USDA-NRCS personnel have existing networks to communicate with stakeholders (farmers, ranchers, and forest landowners) through meetings and workshops which have already started in the six states. Outreach through the development of a weather and climate impact modules designed for seventh grade students and their teachers will foster education of future generations of rural land managers. We will be synthesizing and evaluating existing reports, literature and information on regional climate projections, water resources, and agricultural adaptation strategies related to climate in the Southwest. The results will be organized in a spatial format and provided through the SW Hub website (http://swclimatehub.info) and peer-reviewed articles.

  9. Public Perception of Climate Change and Mitigation Technologies; Percepcion Publica del Cambio Climatico y las Tecnologias de Mitigacion

    Energy Technology Data Exchange (ETDEWEB)

    Sola, R.; Sala, R.; Oltra, C.

    2007-09-27

    Public perception and understanding of climate change and mitigation policies may have a significant influence on the development of political programs as well as on individual behavioral intentions to address climate change. The study of public attitudes and beliefs about climate change and energy policy may be useful in the design of suitable communication strategies and in the efficient implementation of climate change mitigation and adaptation strategies. Based on a survey to the Spanish population, we analyze different issues such as the level of concern towards climate change, the existing knowledge about the contribution of different energy technologies to global warming, the attitudes toward energy technologies and the beliefs about potential adaptation strategies. Comparisons with other countries based on similar public opinion surveys are established to obtain a broader view of policy preferences and attitudes regarding climate change. (Author) 5 refs.

  10. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    Directory of Open Access Journals (Sweden)

    Van R Haden

    Full Text Available In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  11. Linking climate change mitigation and coastal eutrophication management through biogas technology

    DEFF Research Database (Denmark)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael

    2016-01-01

    concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under...... and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63tyr.-1 and 9tyr.-1, respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific...... food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total...

  12. Climate change, insurance, and the buildings sector: Technological synergisms between adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan

    2002-11-01

    Examining the intersection of risk analysis and sustainable energy strategies reveals numerous examples of energy efficient and renewable energy technologies that offer insurance loss-prevention benefits. The growing threat of climate change provides an added motivation for the risk community to better understand this area of opportunity. While analyses of climate change mitigation typically focus on the emissions-reduction characteristics of sustainable energy technologies, less often recognized are a host of synergistic ways in which these technologies also offer adaptation benefits, e.g. making buildings more resilient to natural disasters. While there is already some relevant activity, there remain various barriers to significantly expanding these efforts. Achieving successful integration of sustainable energy considerations with risk-management objectives requires a more proactive orientation, and coordination among diverse actors and industry groups.

  13. Risk and return of project-based climate change mitigation: a portfolio approach

    Energy Technology Data Exchange (ETDEWEB)

    Laurikka, H. [Helsinki University of Technology (Finland). Laboratory for Energy Economics and Power Plant Engineering; Springer, U. [ECOPLAN, Bern (Switzerland)

    2003-10-01

    We present a framework for evaluating the risks of investments in climate change mitigation projects to generate emission credits. Risk factors that influence the quantity of emission credits are identified for six project types. Since not all project types are affected by the same factors, diversification is a viable risk reduction strategy. We propose a methodology for quantifying risk and return of such investments, discuss data requirements, and illustrate it using a sample of voluntary projects. In our sample, the returns of an optimally diversified low-risk portfolio are up to 10 times higher than those of single projects, holding risk exposure constant. (author)

  14. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    Science.gov (United States)

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC.

  15. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  16. The potential of carbon sequestration to mitigate against climate change in forests and agro ecosystems of Zimbabwe

    OpenAIRE

    2014-01-01

    Climate change adversely affects human livelihoods and the environment through alteration of temperatures, rainfall patterns, sea level rise and ecosystem productivity. Developing countries are more vulnerable to climate change because they directly depend on agriculture and natural ecosystem products for their livelihoods. Mitigation of climate change impacts includes practices that can store carbon (C) in soil and biomass thus, reducing concentrations of atmospheric carbon dioxide (CO2) and...

  17. Accounting for Impacts of Natural Disturbances on Climate Change Mitigation Projects in Tropical Forests (Invited)

    Science.gov (United States)

    Birdsey, R.; Dai, Z.; Hernandez, J.; Johnson, K. D.; Vargas, R.

    2013-12-01

    Most forests in the world are recovering from natural or human-induced disturbances -- the fraction of the world's forests disturbed each year by fire and insects alone is conservatively estimated by FAO to be 2.6%. Natural disturbances are common in many tropical forest areas and have significant impacts on carbon stocks. For example, emissions from wildfires in tropical forests are estimated to exceed 700 TgC yr-1 annually, with significant interannual variability related to global weather cycles. Several lines of evidence point toward long-term climate-induced increases in natural disturbances, with the potential for changing the world's terrestrial ecosystems from a sink to a source of CO2. This raises the important question of whether forests can be an effective part of a climate change mitigation strategy and concurrently, how to account for the effects of disturbances separately from the effects of changes in land use or forest management. Although global and regional studies have made some good progress to quantify the impacts of natural disturbances, it remains a technical challenge to separate or 'factor out' the impacts of natural disturbances from other causes of changes in carbon stocks, such as vegetation regrowth and CO2 fertilization, when developing the accounting and monitoring systems required to support climate change mitigation projects. We tested one approach in the semi-deciduous dry forests of the Yucatan Peninsula of Mexico using the ecosystem process model DNDC. Spatial variability in simulated C stocks reflects variations in stand age, vegetation type, soil characteristics and disturbance. Disturbances that occurred between 1985 and 2010 led to a mean decrease in C stocks of 3.2 Mg C ha-1 in 2012 not including forestland lost to crops and urban land uses. Other approaches may be possible for factoring out specific causes of changes in carbon stocks, but the IPCC has twice determined that none of the currently available alternatives is

  18. EFFECT OF CLIMATE CHANGE ON DAIRY PRODUCTION IN BOTSWANA AND ITS SUITABLE MITIGATION STRATEGIES

    Directory of Open Access Journals (Sweden)

    J. C. MOREKI

    2013-11-01

    Full Text Available This paper explores the effects of climate change on dairy production in Botswana and mitigation strategies are suggested. Dairy farming has not experienced growth over time rendering the country heavily dependent on milk imports. National dairy herd is estimated to be approximately 5000 and per capita consumption of milk about 32.5 litres per person per year. Currently, Botswana is experiencing average high temperatures and low rainfall, frequent droughts and scarcity of both ground and surface water, which all contribute to low livestock and crop productivity. Changes in rainfall patterns, frequent droughts, high incidences of animal diseases (e.g., mastitis and FMD and parasites, and high environmental temperatures cause significant decrease in livestock productivity. For dairy animals, there is a decline in milk yield and reduced animal weight gain due mainly to high temperatures and inadequate feeds. Mitigation strategies comprise using smaller dairy breeds such as Jersey and Brown Swiss and local Tswana breed, growing fodder crops and utilization of crop residues and constructing cow sheds. Thus, the effects of climate change on dairy cattle production are real and require immediate attention if they are to be minimized or managed properly to attain higher milk production.

  19. Limited potential of no-till agriculture for climate change mitigation

    Science.gov (United States)

    Powlson, David S.; Stirling, Clare M.; Jat, M. L.; Gerard, Bruno G.; Palm, Cheryl A.; Sanchez, Pedro A.; Cassman, Kenneth G.

    2014-08-01

    The Emissions Gap Report 2013 from the United Nations Environment Programme restates the claim that changing to no-till practices in agriculture, as an alternative to conventional tillage, causes an accumulation of organic carbon in soil, thus mitigating climate change through carbon sequestration. But these claims ignore a large body of experimental evidence showing that the quantity of additional organic carbon in soil under no-till is relatively small: in large part apparent increases result from an altered depth distribution. The larger concentration near the surface in no-till is generally beneficial for soil properties that often, though not always, translate into improved crop growth. In many regions where no-till is practised it is common for soil to be cultivated conventionally every few years for a range of agronomic reasons, so any soil carbon benefit is then lost. We argue that no-till is beneficial for soil quality and adaptation of agriculture to climate change, but its role in mitigation is widely overstated.

  20. Benefits of collaborative and comparative research on land use change and climate mitigation

    Science.gov (United States)

    Zhu, Zhiliang; Gong, Peng

    2016-04-01

    The world's two largest economies are also the latest greenhouse gas emitters. The United States is committed to reduce the net greenhouse gas emission by 28% below the 2005 level by 2025. Similarly China also announced significant climate mitigation steps at the Paris climate convention. These policy plans will require actions including reduction of GHG emissions as well as protection of carbon stored in biologic pools and increase of carbon sequestration by the natural ecosystems. Major drivers of ecosystem carbon sequestration and protection of existing carbon resources include land use, disturbances, and climate change. Recent studies indicate that vegetated ecosystems in the United States remain as a carbon sink but the sink is weakening due to increased disturbances (such as wildfire and harvesting) and aging of forests. Unique land use policies in China such as large-scale afforestation in the recent decades have reportedly led to significant increase in total forest area and aboveground biomass, although it is not clear to what degree the increase has translated to strengthened net uptake of atmospheric CO2 and the rate of sequestration by vegetated ecosystems. What lessons can we draw from different land management and land use practices in the U.S. and China that can benefit scientific advances and climate mitigation goals? Research conducted collaboratively by the U.S. Geological Survey and China Ministry of Science and Technology has led to improved techniques for tracking and modeling land use change and ecosystem disturbances and improved understanding of consequences of different land use change and management practices on ecosystem carbon sequestration capacities.

  1. Applications of Advanced Technology for Monitoring Forest Carbon to Support Climate Change Mitigation

    Science.gov (United States)

    Birdsey, R.; Hurtt, G. C.; Dubayah, R.; Hagen, S. C.; Vargas, R.; Nehrkorn, T.; Domke, G. M.; Houghton, R. A.

    2015-12-01

    Measurement, Reporting, and Verification (MRV) is a broad concept guiding the application of monitoring technology to the needs of countries or entities for reporting and verifying reductions in greenhouse gas emissions or increases in greenhouse gas sinks. Credibility, cost-effectiveness, and compatibility are important features of global MRV efforts that can support implementation of climate change mitigation programs such as Reducing Emissions from Deforestation and Forest Degradation and Sustainable Forest Management (REDD+). Applications of MRV technology may be tailored to individual country circumstances following guidance provided by the Intergovernmental Panel on Climate Change; hence, there is no single approach that is uniquely viable but rather a range of ways to integrate new MRV methods. MRV technology is advancing rapidly with new remote sensing and advanced measurement of atmospheric CO2, and in situ terrestrial and ocean measurements, coupled with improvements in data analysis, modeling, and assessing uncertainty. Here we briefly summarize some of the most application-ready MRV technologies being developed under NASA's Carbon Monitoring System (CMS) program, and illustrate how these technologies may be applied for monitoring forests using several case studies that span a range of scales, country circumstances, and stakeholder reporting requirements. We also include remarks about the potential role of advanced monitoring technology in the context of the global climate accord that is expected to result from the 21st session of the Conference of the Parties to the United Nations Framework Convention on Climate Change, which is expected to take place in December 2015, in Paris, France.

  2. Reframing nuclear power in the UK energy debate: nuclear power, climate change mitigation and radioactive waste.

    Science.gov (United States)

    Bickerstaff, K; Lorenzoni, I; Pidgeon, N F; Poortinga, W; Simmons, P

    2008-04-01

    In the past decade, human influence on the climate through increased use of fossil fuels has become widely acknowledged as one of the most pressing issues for the global community. For the United Kingdom, we suggest that these concerns have increasingly become manifest in a new strand of political debate around energy policy, which reframes nuclear power as part of the solution to the need for low-carbon energy options. A mixed-methods analysis of citizen views of climate change and radioactive waste is presented, integrating focus group data and a nationally representative survey. The data allow us to explore how UK citizens might now and in the future interpret and make sense of this new framing of nuclear power--which ultimately centers on a risk-risk trade-off scenario. We use the term "reluctant acceptance" to describe how, in complex ways, many focus group participants discursively re-negotiated their position on nuclear energy when it was positioned alongside climate change. In the concluding section of the paper, we reflect on the societal implications of the emerging discourse of new nuclear build as a means of delivering climate change mitigation and set an agenda for future research regarding the (re)framing of the nuclear energy debate in the UK and beyond.

  3. Enhancing international technology cooperation for climate change mitigation. Lessons from an electromobility case study

    Energy Technology Data Exchange (ETDEWEB)

    Bhasin, Shikha

    2014-07-01

    As a global agreement on climate mitigation and absolute emissions reductions remains grid-locked, this paper assesses whether the prospects for international technology cooperation in low-carbon sectors can be improved. It analyses the case of international cooperation on electric vehicle technologies to elaborate on the trade-offs that cooperation such as this inherently attempts to balance- national growth objectives of industrial and technology development versus the global goods benefit of reducing greenhouse gas (GHG) emissions. It focuses on bilateral German-Chinese programmes for electric vehicle development, as well as multilateral platforms on low-carbon technology cooperation related to electric vehicles. Based on insights from these cases studies, this paper ultimately provides policy recommendations to address gaps in international technology cooperation at a bilateral level for ongoing German-Chinese engagement on electric vehicles; and at a multilateral level with a focus on the emerging technology cooperation framework of the United Nations Framework Convention on Climate Change (UNFCCC).

  4. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  5. Tooling up urban planning for climate change mitigation in Malaysian cities

    Science.gov (United States)

    Chau, L. W.; Yap, Z. C.; Ho, C. S.

    2014-02-01

    The city's 2-dimensional spatial structure and 3-dimensional form significantly influence its energy and GHG emission intensity. In rapidly developing urban-regions, the ability of the local planning authorities to quantify the spatial structure and form of existing urban areas, new developments and the emergent urban-region in terms of GHG emission is vital to any effective local, national and global climate change mitigation effort. While a wide array of tools has been developed for assessing built environment sustainability at various spatial scales, these are predominantly eco-efficiency rating tools that do not model the 'spatial structure-GHG' relationship and do not illustrate the GHG implications of urban structure and form, which crucially inform local planning decisions with respect to climate change mitigation. This paper takes the first steps in analysing three spatial-based planning models (Envision Tomorrow, GHGProof, URBEMIS) that estimate GHG emissions towards assessing their adaptability for application in Malaysian cities. It looks into the models' "inner working", unpacking the variables and their relationships; assumptions and conversion rates used; and their data requirement and structure. The models' characteristics and features are critically compared to evaluate their capabilities, limitations and relevance to the Malaysian urban planning context, particularly in terms of data availability.

  6. A trinity of sense: Using biomass in the transport sector for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lindfeldt, Erik G.

    2008-11-15

    This thesis analyses two strategies for decreasing anthropogenic carbon dioxide (CO_2) emissions: to capture and store CO_2, and to increase the use of biomass. First, two concepts for CO_2 capture with low capture penalties are evaluated. The concepts are an integrated gasification combined cycle where the oxygen is supplied by a membrane reactor, and a hybrid cycle where the CO_2 is captured at elevated pressure. Although the cycles have comparatively high efficiencies and low penalties, they illustrate the inevitable fact that capturing CO_2 will always induce significant efficiency penalties. Other strategies are also needed if CO_2 emissions are to be forcefully decreased. An alternative is increased use of biomass, which partially could be used for production of motor fuels (biofuels). This work examines arguments for directing biomass to the transport sector, analyses how biofuels (and also some other means) may be used to reduce CO_2 emissions and increase security of motor fuel supply. The thesis also explores the possibility of reducing CO_2 emissions by comparatively easy and cost-efficient CO_2 capture from concentrated CO_2 streams available in some types of biofuel plants. Many conclusions of the thesis could be associated with either of three meanings of the word sense: First, there is reason in biofuel production - since it e.g. reduces oil dependence. From a climate change mitigation perspective, however, motor fuel production is often a CO_2-inefficient use of biomass, but the thesis explores how biofuels' climate change mitigation effects may be increased by introducing low-cost CO_2 capture. Second, the Swedish promotion of biofuels appears to have been governed more by a feeling for attaining other goals than striving for curbing climate change. Third, it seems to have been the prevalent opinion among politicians that the advantages of biofuels - among them their climate change mitigation benefits - are far greater than the disadvantages

  7. A trinity of sense: Using biomass in the transport sector for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Lindfeldt, Erik G.

    2008-10-15

    This thesis analyses two strategies for decreasing anthropogenic carbon dioxide emissions: to capture and store CO{sub 2}, and to increase the use of biomass. First, two concepts for CO{sub 2} capture with low capture penalties are evaluated. The concepts are an integrated gasification combined cycle where the oxygen is supplied by a membrane reactor, and a hybrid cycle where the CO{sub 2} is captured at elevated pressure. Although the cycles have comparatively high efficiencies and low penalties, they illustrate the inevitable fact that capturing CO{sub 2} will always induce significant efficiency penalties. Other strategies are also needed if CO{sub 2} emissions are to be forcefully decreased. An alternative is increased use of biomass, which partially could be used for production of motor fuels (biofuels). This work examines arguments for directing biomass to the transport sector, analyses how biofuels (and also some other means) may be used to reduce CO{sub 2} emissions and increase security of motor fuel supply. The thesis also explores the possibility of reducing CO{sub 2} emissions by comparatively easy and cost-efficient CO{sub 2} capture from concentrated CO{sub 2} streams available in some types of biofuel plants. Many conclusions of the thesis could be associated with either of three meanings of the word sense: First, there is reason in biofuel production - since it e.g. reduces oil dependence. From a climate change mitigation perspective, however, motor fuel production is often a CO{sub 2}-inefficient use of biomass, but the thesis explores how biofuels' climate change mitigation effects may be increased by introducing low-cost CO{sub 2} capture. Second, the Swedish promotion of biofuels appears to have been governed more by a feeling for attaining other goals than striving for curbing climate change. Third, it seems to have been the prevalent opinion among politicians that the advantages of biofuels - among them their climate change mitigation

  8. The role of technological availability for the distributive impacts of climate change mitigation policy

    Energy Technology Data Exchange (ETDEWEB)

    Lueken, Michael, E-mail: bmlueken@web.de [Potsdam Institute for Climate Impact Research (PIK), Research Domain Sustainable Solutions, PO Box 60 12 03, 14412 Potsdam (Germany); Edenhofer, Ottmar; Knopf, Brigitte; Leimbach, Marian; Luderer, Gunnar; Bauer, Nico [Potsdam Institute for Climate Impact Research (PIK), Research Domain Sustainable Solutions, PO Box 60 12 03, 14412 Potsdam (Germany)

    2011-10-15

    The impacts of the availability of low-carbon technologies on the regional distribution of mitigation costs are analyzed in a global multi-regional integrated assessment model. Three effects on regional consumption losses are distinguished: domestic measures, trade of fossil energy carriers and trade of emission permits. Key results are: (i) GDP losses and a redirection of investments in the energy system towards capital-intensive technologies are major contributions to regional consumption losses. (ii) A devaluation of tradable fossil energy endowments contributes largely to the mitigation costs of fossil fuel exporters. (iii) In case of reduced availability of low-carbon technologies, the permit market volume and associated monetary redistributions increase. The results suggest that the availability of a broad portfolio of low-carbon technologies could facilitate negotiations on the permit allocation scheme in a global cap-and-trade system. - Highlights: > We analyze the distribution of climate change mitigation costs among world regions. > We quantify contributions from various effects on regional costs. > The interference of world trade and low-carbon technologies is essential. > A broad portfolio of technologies helps international negotiations.

  9. Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation

    Science.gov (United States)

    Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.

    2015-12-01

    The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of

  10. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes; Lee, David R.

    2016-10-01

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg-1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg-1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.

  11. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  12. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    Science.gov (United States)

    Johns, T. C.; Royer, J.-F.; Höschel, I.; Huebener, H.; Roeckner, E.; Manzini, E.; May, W.; Dufresne, J.-L.; Otterå, O. H.; van Vuuren, D. P.; Salas Y Melia, D.; Giorgetta, M. A.; Denvil, S.; Yang, S.; Fogli, P. G.; Körper, J.; Tjiputra, J. F.; Stehfest, E.; Hewitt, C. D.

    2011-11-01

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  13. Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johns, T.C.; Hewitt, C.D. [Met Office, Hadley Centre, Exeter (United Kingdom); Royer, J.F.; Salas y. Melia, D. [Centre National de Recherches Meteorologiques-Groupe d' Etude de l' Atmosphere Meteorologique (CNRM-GAME Meteo-France CNRS), Toulouse (France); Hoeschel, I.; Koerper, J. [Freie Universitaet Berlin, Institute for Meteorology, Berlin (Germany); Huebener, H. [Hessian Agency for the Environment and Geology, Wiesbaden (Germany); Roeckner, E.; Giorgetta, M.A. [Max Planck Institute for Meteorology, Hamburg (Germany); Manzini, E. [Max Planck Institute for Meteorology, Hamburg (Germany); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); May, W.; Yang, S. [Danish Meteorological Institute, Danish Climate Centre, Copenhagen (Denmark); Dufresne, J.L. [Laboratoire de Meteorologie Dynamique (LMD/IPSL), UMR 8539 CNRS, ENS, UPMC, Ecole Polytechnique, Paris Cedex 05 (France); Otteraa, O.H. [Nansen Environmental and Remote Sensing Center, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Uni. Bjerknes Centre, Bergen (Norway); Vuuren, D.P. van [Utrecht University, Utrecht (Netherlands); Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands); Denvil, S. [Institut Pierre Simon Laplace (IPSL), FR 636 CNRS, UVSQ, UPMC, Paris Cedex 05 (France); Fogli, P.G. [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Tjiputra, J.F. [University of Bergen, Department of Geophysics, Bergen (Norway); Bjerknes Centre for Climate Research, Bergen (Norway); Stehfest, E. [Planbureau voor de Leefomgeving (PBL), Bilthoven (Netherlands)

    2011-11-15

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental design for the forthcoming 5th Intergovernmental Panel on Climate Change assessment. Atmospheric carbon-dioxide concentrations pathways rather than carbon emissions are specified in all models, including five ESMs that contain interactive carbon cycles. Specified forcings also include minor greenhouse gas concentration pathways, ozone concentration, aerosols (via concentrations or precursor emissions) and land use change (in five models). The new aggressive mitigation scenario (E1), constructed using an integrated assessment model (IMAGE 2.4) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K, is studied alongside the medium-high non-mitigation scenario SRES A1B. Resulting twenty-first century global mean warming and precipitation changes for A1B are broadly consistent with previous studies. In E1 twenty-first century global warming remains below 2 K in most models, but global mean precipitation changes are higher than in A1B up to 2065 and consistently higher per degree of warming. The spread in global temperature and precipitation responses is partly attributable to inter-model variations in aerosol loading and representations of aerosol-related radiative forcing effects. Our study illustrates that the benefits of mitigation will not be realised in temperature terms until several decades after emissions reductions begin, and may vary considerably between regions. A subset of the models containing integrated carbon cycles agree that land and ocean sinks remove roughly half of present day anthropogenic carbon emissions from the atmosphere, and that anthropogenic carbon emissions must decrease by at least 50% by 2050 relative

  14. Regional air quality management aspects of climate change: impact of climate mitigation options on regional air emissions.

    Science.gov (United States)

    Rudokas, Jason; Miller, Paul J; Trail, Marcus A; Russell, Armistead G

    2015-04-21

    We investigate the projected impact of six climate mitigation scenarios on U.S. emissions of carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOX) associated with energy use in major sectors of the U.S. economy (commercial, residential, industrial, electricity generation, and transportation). We use the EPA U.S. 9-region national database with the MARKet Allocation energy system model to project emissions changes over the 2005 to 2050 time frame. The modeled scenarios are two carbon tax, two low carbon transportation, and two biomass fuel choice scenarios. In the lower carbon tax and both biomass fuel choice scenarios, SO2 and NOX achieve reductions largely through pre-existing rules and policies, with only relatively modest additional changes occurring from the climate mitigation measures. The higher carbon tax scenario projects greater declines in CO2 and SO2 relative to the 2050 reference case, but electricity sector NOX increases. This is a result of reduced investments in power plant NOX controls in earlier years in anticipation of accelerated coal power plant retirements, energy penalties associated with carbon capture systems, and shifting of NOX emissions in later years from power plants subject to a regional NOX cap to those in regions not subject to the cap.

  15. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program.

    Science.gov (United States)

    Shin, Yong Seung; Ha, Jongsik

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities.

  16. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  17. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Science.gov (United States)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration

  18. Political Challenges and Opportunities to Climate Change Mitigation: A View from the Front Lines

    Science.gov (United States)

    Weaver, A. J.

    2014-12-01

    Subsequent to the release of the 2007 Report of the Intergovernmental Panel on Climate Change, the Province of British Columbia in Canada became an international leader in the development and implementation of innovative climate change mitigation policies. These include, but are not limited to, the 2008 Greenhouse Gas Reductions Target Act, the 2008 Carbon Tax Act and the 2010 Clean Energy Act. British Columbia's Cleantech sector quickly responded to, and thrived as a result of, the signal sent by government to the market. But with a change in Premier in 2011 came a change in priorities. A number of the previous initiatives have either been weakened or no longer followed through with as the Province sets its vision of being a major exporter of Liquified Natural Gas. As a member of the British Columbia Climate Action Team set up by Premier Gordon Campbell in 2007 to provide advice to government on a variety of policy-related matters, I was fortunate to be able to watch first hand as the Province aggressively moved towards reducing its Greenhouse gas emissions. Rather than stand on the sidelines as the government lost its direction on the climate file I chose to run with the BC Green Party in the 2013 provincial election. I was subsequently elected as a Member of the Legislative Assembly representing the constituents of Oak Bay Gordon Head. While science can and should inform policy deliberations, in and of itself, science cannot and should not prescribe policy outcomes. Whether or not we deal with today's challenge of climate change boils down to a question of intergeneration equity. Does the present generation owe anything to future generations in terms of the quality of the environment that they inherit? Many of today's elected decision-makers are focused on short-term decision-making. Yet those who will be affected by the consequences of these decisions are not part of the decision making process — hence the political conundrum. In this presentation I detail

  19. China–Europe Relations in the Mitigation of Climate Change: A Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Axel Berger

    2013-01-01

    Full Text Available Despite the large-scale investments of both China and the EU in climate-change mitigation and renewable-energy promotion, the prevailing view on China–EU relations is one of conflict rather than cooperation. In order to evaluate the prospects of cooperation between China and the EU in these policy fields, empirical research has to go beyond simplistic narratives. This paper suggests a conceptual apparatus that will help researchers better understand the complexities of the real world. The relevant actors operate at different levels and in the public and private sectors. The main message of the paper is that combining the multi-level governance and value-chain approaches helps clarify the multiple relationships between these actors.

  20. Climate change and cities: why urban agendas are central to adaptation and mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Reid, Hannah; Satterthwaite, David

    2007-12-15

    Cities could hold the key to slowing and eventually stopping global warming. Most greenhouse gas emissions are generated from producing the goods and services used by middle- and upper-income urban consumers. Keeping global warming within safe limits demands far more energy-efficient urban buildings and production systems and urban lifestyles that are far less carbon-intensive. It is up to high-income nations — the biggest contributors to greenhouse gas emissions past and present — to show how such a transformation can be combined with high living standards. However, urgent action is also needed in the urban areas of low- and middleincome countries, both through mitigation to curb greenhouse gas emissions, and adaptation to the serious risks that climate change brings.

  1. MANAGEMENT OF SUSTAINABLE SEAWEED (Kappaphycus alvarezii AQUACULTURE IN THE CONTEXT OF CLIMATE CHANGE MITIGATION

    Directory of Open Access Journals (Sweden)

    Erlania Erlania

    2014-06-01

    Full Text Available Seaweed is an important aquaculture commodity that could contribute on climate change mitigation, related to its ability on absorbing CO2, as one of the green house gases, through photosynthesis. This study aimed to analyze seaweed potencies on carbon sequestration in the context of climate change mitigation while still resulting optimum production as primary purpose and to analyze the carrying capacity of Gerupuk Bay in order to manage sustainability of seaweed aquaculture. Seaweed, (Kappaphycus alvarezii was cultivated with long-line system in Gerupuk Bay, West Nusa Tenggara, during five months for three cultivation cycles. Samplings were conducted at days-15, 30, and 45 with CO2 absorption rates as main parameters. Water carrying capacity was calculated to determine the ability of Gerupuk Bay waters for supporting development of sustainable seaweed aquaculture. The results showed that absorption rates of CO2 by seaweed (K. alvarezii were different at each sampling days of cultivation periods; the highest value was at 10-20 days of cultivation. CO2 absorption analysis resulted based on sampling days of cultivation period could be appl ied to formulate the strategies for management of sustainable seaweed aquaculture, with optimal production and positively contributed to the environment. However, waters carrying capacity should also be considered as major aspect in the application of seaweed cultivation management, thus it can run continuously without causing conflicts with other interests.

  2. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  3. Special report on renewable energy sources and climate change mitigation, (SRREN). Summary for policy makers; FNs klimapanel: Spesialrapport om fornybar energi, sammendrag for beslutningstakere

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-15

    In May 2011 the Intergovernmental Panel on Climate Change published a report on six renewable energy sources and their role in climate change mitigation. This is a Norwegian, unofficial translation of the Summary for Policy makers. (Author)

  4. Developing Carbon Sequestration Forestry for Mitigating Climate Change: Practice and Management of Carbon Sequestration Forestry in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    By elaborating the functions and effects of forestry in mitigating climate change, introducing the concepts and significance of forest carbon sink, forestry carbon sequestration, and carbon sequestration forestry, and summarizing the practices of carbon sequestration forestry in China, the paper came up with the outline for strengthening the management of carbon sequestration forestry, i.e. implementing the Climate Change Forestry Action Plan, reinforcing the accounting and monitoring of national forest car...

  5. Implications of electric power sector restructuring on climate change mitigation in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Hasson, G.; Bouille, D. [Instituto de Economia Energetica, (Argentina); Redlinger, R. [UNEP, (Denmark)

    2000-05-01

    The Argentine electricity industry has undergone fundamental reforms since 1992, involving large-scale privatisation, and competition in generation and wholesale power markets. In terms of climate change mitigation, these reforms have had the beneficial effect of encouraging improved generation efficiency among thermal power plants and improved end-use consumption efficiency among large industrial firms. However, the reforms have also had the negative effect (from a climate change perspective) of encouraging an ever-increasing use of natural gas combustion for electricity generation, greatly diminishing the role of hydroelectric power which had previously played an important role in the Agentine electricity sector. This report examines the current structure and regulations of the Argentine electricity system and analyses the forces at work which are influencing current technology choices, both in terms of power generation and end-use consumption. The report goes on to examine international experiences in promoting renewable energy and energy efficiency technologies; and finally, the report considers the applicability of these various policy mechanisms within the Agentine context. (EHS)

  6. Approaches to classifying and restoring degraded tropical forests for the anticipated REDD+ climate change mitigation mechanism

    Directory of Open Access Journals (Sweden)

    Sasaki N

    2011-01-01

    Full Text Available Inclusion of improved forest management as a way to enhance carbon sinks in the Copenhagen Accord of the United Nations Framework Convention on Climate Change (December 2009 suggests that forest restoration will play a role in global climate change mitigation under the post-Kyoto agreement. Although discussions about restoration strategies often pertain solely to severely degraded tropical forests and invoke only the enrichment planting option, different approaches to restoration are needed to counter the full range of degrees of degradation. We propose approaches for restoration of forests that range from being slightly to severely degraded. Our methods start with ceasing the causes of degradation and letting forests regenerate on their own, progress through active management of natural regeneration in degraded areas to accelerate tree regeneration and growth, and finally include the stage of degradation at which re-planting is necessary. We argue that when the appropriate techniques are employed, forest restoration is cost-effective relative to conventional planting, provides abundant social and ecological co-benefits, and results in the sequestration of substantial amounts of carbon. For forest restoration efforts to succeed, a supportive post-Kyoto agreement is needed as well as appropriate national policies, institutional arrangements, and local participation.

  7. The role of interactions in a world implementing adaptation and mitigation solutions to climate change.

    Science.gov (United States)

    Warren, Rachel

    2011-01-13

    The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.

  8. Impact of Real-world Factors Influencing Investment Decisions on the Costs and Distribution of Climate Change Mitigation

    Science.gov (United States)

    Edmonds, J.; Iyer, G.; McJeon, H. C.; Leon, C.; Hultman, N.

    2015-12-01

    Strategies to mitigate dangerous anthropogenic climate change require a dramatic transformation of the energy system to reduce greenhouse gas emissions, that in turn requires large-scale investments. Investment decisions depend not only on investment capital availability but also on investment risks. A number of factors such as national policy environments, quality of public and private institutions, sector, firm and technology specific characteristics can affect investors' assessments of risks, leading to a wide variation in the business climate for investment. Such heterogeneity in investment risks can have important implications, as investors usually respond to risks by requiring higher returns for riskier projects; delaying or forgoing the investments; or preferring to invest in existing, familiar projects. We study the impact of variation in investment risks on regional patterns of emissions mitigation, the cost of emissions mitigation and patterns of technology deployment. We modify an integrated assessment model, widely used in global climate policy analyses (the Global Change Assessment Model) and incorporate decisions on investments based on risks along two dimensions. Along the first dimension, we vary perceived risks associated with particular technologies. To do so, we assign a higher cost of capital for investment in low-carbon technologies as these involve intrinsically higher levels of regulatory and market risk. The second dimension uses a proxy to vary investment risks across regions, based on an institutional quality metric published by the World Economic Forum. Explicit representation of investment risks has two major effects. First, it raises the cost of emissions mitigation relative to a world with uniform investment risks. Second, it shifts the pattern of emissions mitigation, with industrialized countries mitigating more, and developing countries mitigating less. Our results suggest that institutional reforms aimed at lowering investment

  9. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  10. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  11. iRESM INITIATIVE UNDERSTANDING DECISION SUPPORT NEEDS FOR CLIMATE CHANGE MITIGATION AND ADAPTATION --US Midwest Region—

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Jennie S.; Runci, Paul J.; Moss, Richard H.; Anderson, Kate L.

    2010-10-01

    The impacts of climate change are already affecting human and environmental systems worldwide, yet many uncertainties persist in the prediction of future climate changes and impacts due to limitations in scientific understanding of relevant causal factors. In particular, there is mounting urgency to efforts to improve models of human and environmental systems at the regional scale, and to integrate climate, ecosystem and energy-economic models to support policy, investment, and risk management decisions related to climate change mitigation (i.e., reducing greenhouse gas emissions) and adaptation (i.e., responding to climate change impacts). The Pacific Northwest National Laboratory (PNNL) is developing a modeling framework, the integrated Regional Earth System Model (iRESM), to address regional human-environmental system interactions in response to climate change and the uncertainties therein. The framework will consist of a suite of integrated models representing regional climate change, regional climate policy, and the regional economy, with a focus on simulating the mitigation and adaptation decisions made over time in the energy, transportation, agriculture, and natural resource management sectors.

  12. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    Science.gov (United States)

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  13. Potential for Climate Change Mitigation in Degraded Forests: A Study from La Primavera, México

    Directory of Open Access Journals (Sweden)

    Arturo Balderas Torres

    2013-11-01

    Full Text Available Forests contribute to climate change mitigation by removing atmospheric carbon dioxide and storing it in biomass and other carbon pools. Additionally, since appropriate forest management can reduce emissions from deforestation and forest degradation, it is important to estimate the magnitude of these services to include them into climate policy. We used a forest inventory stratified by canopy cover in the oak-pine forest of La Primavera Biosphere Reserve in México (30,500 ha, to assess the potential provision of forest carbon services. Inventory results were used in combination with a Landsat image to estimate carbon stocks in arboreal biomass. Potential carbon removals were calculated from published allometric equations and models estimating tree growth rates, for enhancements in forested areas and for reforestation/afforestation. Carbon stocks estimated in arboreal biomass at the time of the inventory were 4.16 MtCO2eq (3.42–4.89. The potential for further carbon sequestration and enhancement could take the level of stocks up to 9.77 MtCO2eq (7.66–11.89, 95% confidence interval; previous fires have degraded carbon stocks below their natural potential. The results present a gradient of carbon stocks for different degradation levels and are consistent with national and international estimates and previous local research. The baseline for the estimation of reduced emissions is critical for assessing the overall contribution of forests to mitigate climate change. The local baseline of emissions might be around 1% according to historical data; however, when enhancements and reduced emissions are valuated together, a baseline of 3.7% is required to prevent the creation of perverse incentives favouring previously degraded areas; considering these figures for reduced emissions, the yearly carbon services provided by La Primavera, including enhancements, sequestration and reduced emissions, could be between 169.4 ktCO2eq/year (134.8–204.5 and

  14. Climate Change under aggressive mitigation: The ENSEMBLES multi-model experiment

    NARCIS (Netherlands)

    Johns, T.C.; Royer, J.F.; Hoeschel, I.; Huebener, H.; Roeckner, E.; Manzini, E.; May, W.; Dufresne, J.L.; Ottera, O.H.; van Vuuren, D.P.; Salas y Melia, D.; Giorgetta, M.A.; Denvil, S.; Yang, S.; Fogli, P.G.; Koerper, J.; Tjiputra, J.F.; Stehfest, E.; Hewitt, C.D.

    2011-01-01

    We present results from multiple comprehensive models used to simulate an aggressive mitigation scenario based on detailed results of an Integrated Assessment Model. The experiment employs ten global climate and Earth System models (GCMs and ESMs) and pioneers elements of the long-term experimental

  15. Yes in my backyard : market based mechanisms for forest conservation and climate change mitigation in La Primavera, México

    NARCIS (Netherlands)

    Balderas Torres, A.

    2012-01-01

    This work makes a multidisciplinary analysis of the potential of market-based mechanisms in the provision of forest carbon services based on local demand in the context of climate change mitigation. The analysis contrasts, from the perspective of an emerging economy (Mexico), the possibilities of lo

  16. Offshore CCS and ocean acidification : A global long-term probabilistic cost-benefit analysis of climate change mitigation

    NARCIS (Netherlands)

    van der Zwaan, B.C.C.; Gerlagh, Reyer

    2016-01-01

    Public fear over environmental and health impacts of CO2 storage, or over potential leakage of CO2 from geological reservoirs, is among the reasons why over the past decade CCS has not yet been deployed on a scale large enough so as to meaningfully contribute to mitigate climate change. Storage of C

  17. Mitigating Future Avian Malaria Threats to Hawaiian Forest Birds from Climate Change

    Science.gov (United States)

    Atkinson, Carter T.; LaPointe, Dennis A.; Samuel, Michael D.

    2017-01-01

    Avian malaria, transmitted by Culex quinquefasciatus mosquitoes in the Hawaiian Islands, has been a primary contributor to population range limitations, declines, and extinctions for many endemic Hawaiian honeycreepers. Avian malaria is strongly influenced by climate; therefore, predicted future changes are expected to expand transmission into higher elevations and intensify and lengthen existing transmission periods at lower elevations, leading to further population declines and potential extinction of highly susceptible honeycreepers in mid- and high-elevation forests. Based on future climate changes and resulting malaria risk, we evaluated the viability of alternative conservation strategies to preserve endemic Hawaiian birds at mid and high elevations through the 21st century. We linked an epidemiological model with three alternative climatic projections from the Coupled Model Intercomparison Project to predict future malaria risk and bird population dynamics for the coming century. Based on climate change predictions, proposed strategies included mosquito population suppression using modified males, release of genetically modified refractory mosquitoes, competition from other introduced mosquitoes that are not competent vectors, evolved malaria-tolerance in native honeycreepers, feral pig control to reduce mosquito larval habitats, and predator control to improve bird demographics. Transmission rates of malaria are predicted to be higher than currently observed and are likely to have larger impacts in high-elevation forests where current low rates of transmission create a refuge for highly-susceptible birds. As a result, several current and proposed conservation strategies will be insufficient to maintain existing forest bird populations. We concluded that mitigating malaria transmission at high elevations should be a primary conservation goal. Conservation strategies that maintain highly susceptible species like Iiwi (Drepanis coccinea) will likely benefit

  18. Adaptation and mitigation options to manage aflatoxin contamination in food with a climate change perspective

    DEFF Research Database (Denmark)

    Wambui, J. M.; Karuri, E. G.; Ojiambo, J. A.

    2016-01-01

    Understanding the impact of climate change remains vital for food safety and public health. Of particular importance is the influence of climatic conditions on the growth of Aspergillus flavus and production of their toxins. Nevertheless, little is known about the actual impact of climate change...

  19. Integrated assessment of global water scarcity over the 21st century – Part 2: Climate change mitigation policies

    Directory of Open Access Journals (Sweden)

    M. I. Hejazi

    2013-03-01

    Full Text Available We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM, a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m−2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively, under two carbon tax regimes (a universal carbon tax (UCT which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT which excludes land use change emissions are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy with radiative forcing reaching 8.8 W m−2 (equivalent to the SRES A1Fi emission scenario by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  20. US/Japan workshop on mitigation and adaptation technologies related to global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Bernthal, F.M.

    1993-12-31

    It is a great pleasure for me to have the honor of delivering the keynote address for this important gathering, an honor enhanced further because of the many activities and historic relationships represented by this workshop. First of all, it represents the spirit of continuing cooperation and good relations between the United States and Japan. With the aid of the framework provided by the U.S./Japan Science and Technology Agreement, our two nations can come together to address a problem that has no national boundaries {hor_ellipsis} and we can think about solutions of potential benefit to all citizens of the global community. This workshop also symbolizes the spirit of cooperation so characteristic of the conduct of research in science and technology -- cooperation between us as individual scientists and engineers, between the various institutions we represent, and across our diverse disciplines. This workshop is only the second of its kind. The first US/Japan Workshop on global climate change was held last year in Japan. That workshop focused on cooperative scientific research in the United States and Japan. Out of it came a general agreement to continue collaborative work and to extend cooperation into the area of global change-related technologies, in particular those technologies that hold promise for mitigation and adaptation.

  1. Crop-Cattle Integrated Farming System: An Alternative of Climatic Change Mitigation

    Directory of Open Access Journals (Sweden)

    Munandar

    2015-08-01

    Full Text Available An integrated farming system is one of the alternatives for climatic change mitigation. This paper reports the application of corn-cattle based integrated farming system in Agrotechno Park Center of Palembang, and discusses its impact on CO2 fixation and the reduction of methane emissions. The study was based on the data of the first 6 yr from 2003 until 2009. The CO2 fixed in the soil and plants was determined based on the content of organic C which was multiplied by the index of 3.67. The methane gas produced by Balinese cattle and its dung was observed and modified into feed rations. The results showed that soil organic C increased from 40.80 tons C/ha in the 1st yr to 66.40 tons C/ha in the 6th yr. In addition, there was organic C fixation equivalent to 93.95 tons of CO2e. Corn biomass increased from 6.67 tons/ha to 18.66 tons/ha, equivalent to an increase in the fixation of atmospheric CO2e as much as 19.80 tons CO2e/ha. The supplementation of 60%-80% grass fodder with concentrate lowered the concentration of methane gas in cattle breathing by 28.7%, from 617 ppm to 440 ppm, while the methane emissions from cattle manure decreased by 31%, from 1367 mL/head/d to 943 mL/head/d. Installing a bio digester that generates biogas served to accommodate methane gas emissions from cattle dung and used it for bioenergy. Composting reduced the formation of methane gas from cattle manure through a regular process of turning over that gives aeration and forms aerobic condition in the heap of cattle dung. Recycling produces a variety of organic products that store carbon for a longer period of time and slowed the conversion of organic C into CO2. This study showed that the diverse activities of an integrated crop-cattle farming could be an alternative solution to climatic change mitigation.

  2. Practicing Conservation Agriculture to mitigate and adapt to Climate Change in Jordan.

    Science.gov (United States)

    Khresat, Saeb

    2016-04-01

    Climate change scenarios indicate that Jordan and the Middle East could suffer from reduced agricultural productivity and water availability among other negative impacts. Based on the projection models for the area, average temperature in Jordan is projected to increase between 1.2 and 1.6 °C by 2050. Projections for precipitation trends are projected to decrease by 16% by the year 2050. Evaporation is likely to increase due to higher temperatures. This is likely to increase the incidence of drought potential since precipitation is projected to decrease. The dominant form of agriculture system in Jordan is based on intensive tillage. This form of tillage has resulted in large losses of organic soil carbon, weaker soil structure, and cause compaction. It has negative effects on soil aeration, root development and water infiltration among other factors. There is a need to transform farming practices to conservation agriculture to sequester carbon so that climate change mitigation becomes an inherent property of future farming systems. Conservation Agriculture, a system avoiding or minimizing soil disturbance, combined with soil cover and crop diversification, is considered to be a sustainable production system that can also sequester carbon unlike tillage agriculture. Conservation agriculture promotes minimal disturbance of the soil by tillage (zero tillage), balanced application of chemical inputs and careful management of residues and wastes. This study was conducted to develop a clear understanding of the impacts and benefits of the two most common types of agriculture, traditional tillage agriculture and conservation agriculture with respect to their effects on land productivity and on soil carbon pools. The study results indicated that conservation agriculture contributed to the reduction of the farming systems' greenhouse gas emissions and enhance its role as carbon sinks. Also, it was found that by shifting to conservation agriculture labor cost needed for

  3. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    Directory of Open Access Journals (Sweden)

    C. E. Smyth

    2014-01-01

    delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  4. Climate Change and Air Pollution: Exploring the Synergies and Potential for Mitigation in Industrializing Countries

    Directory of Open Access Journals (Sweden)

    Frances C. Moore

    2009-03-01

    Full Text Available Air pollutants such as tropospheric ozone and black carbon (soot also contribute to the greenhouse effect. Black carbon is thought to be the second or third most important anthropogenic contributor to global warming, while troposheric ozone is the fourth most important. Both are also major components of indoor and outdoor air pollution. This paper reviews the existing literature of the health, economic, and climatic impacts of tropospheric ozone and black carbon emissions, together with mitigation options. The local nature of many of the impacts, combined with their short atmospheric lifetime and the existence of cost-effective abatement technologies that are already widely deployed in developed countries means reducing these emissions provides a highly climatically-effective mitigation option that is also appropriate to the development strategy of industrializing countries.

  5. Mulching as a mitigation agricultural technology against land degradation in the wake of climate change

    Directory of Open Access Journals (Sweden)

    Bhanooduth Lalljee

    2013-12-01

    Full Text Available The sloping topography of the island of Rodrigues (an outer island dependency of the Republic of Mauritius makes it very prone to soil erosion, and loss of fertile topsoil. Climate variability and climate change in the form of increasing temperatures, long periods of drought followed by short periods of torrential rains are exacerbating this situation. Mulching is a cheap, affordable, sustainable agricultural technology for sustainable soil and land management and reducing soil erosion, which can be adopted by small as well as large farmers. The present work on mulching was carried out in Rodrigues in farmers’ fields that were prone to severe soil erosion (8% slope Banana (Musa sp leaves, coconut (Cocos nucifera leaves, and vetiver (Vetiveria zizanoides grass, at 0 t ha −1, 10 t ha −1, 20 t ha −1 and 40 t ha −1, were used as natural organic mulches after seeding the plots with maize in a randomised block design with four replicates. Runoff and sediment were collected from the treated and control plots, and analysed for total sediments, total runoff, and nutrient content (N, P, K. Results showed that all the mulches tested contributed to lowering of soil and nutrient losses, albeit in varying amounts. Coconut leaves mulch was found to be the most efficient, followed by vetiver and then banana leaves. Percentage mitigation in soil and nutrient erosion was found to be 28. 9% for banana leaves at 10 t ha −1, and 57. 3% for coconut leaves at 40 t ha −1. The reduction of soil and nutrient losses was attributed to the mechanical barrier provided by the mulches, and also to the reduction in the momentum of raindrops acting on the soil aggregates. Mulching also contributed to increasing infiltration rate, lowering temperature and therefore lowering evaporation.

  6. The economics of climate change mitigation in developing countries - methodological and empirical results

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K.

    1997-12-01

    This thesis presents a methodological and empirical discussion of the costs associated with implementing greenhouse gas reduction strategies in developing countries. It presents a methodological framework for national costing studies and evaluates a number of associated valuation methods. The methodological framework has been applied in several developing countries as part of a UNEP project in which the author has participated, and reference is made to the results of these country studies. Some of the theoretical issues associated with the determination of the costs of emission reductions are discussed with reference to a number of World Bank and UN guidelines for project analysis in developing countries. The use of several accounting prices is recommended for mitigation projects, with a distinction being made between internationally and domestically traded goods. The consequences of using different accounting prices are discussed with respect to the methodology applied in the UNEP country studies. In conclusion the thesis reviews the results of some of the most important international studies of greenhouse gas emissions in developing countries. The review, which encompasses a total of 27 country studies, was undertaken by the author for the Intergovernmental Panel of Climate Change, the IPCC. Its conclusion is that the UNEP methodological framework and associated country study results are consistent with the recommendations and conclusions of the IPCC. (EG) 23 refs.

  7. Market of innovative timber products in Europe and Serbia and their contribution to climate change mitigation

    Directory of Open Access Journals (Sweden)

    Sretenović Predrag

    2014-01-01

    Full Text Available The paper shows results of researching the market of glued laminated timber as the most frequent innovative timber product in constructing timber framed residential facilities in Europe and Serbia. The research included the development of production, consumption and trade flows for the most significant countries in the European Union and Serbia. Additionally, the paper gives characteristics of this innovative timber product regarding dimensions, allowed deviations of dimensions defined in adequate European standard, wood species it is made of and fire resistance. The last part of the paper shows results of econometric modeling of the impact of building timber-framed houses on the consumption of glued laminated timber in Austria as one of the countries belonging to the group of the largest consumers of this innovative timber product in Europe. Taking into consideration that the substitution of classic building materials, primarily concrete, steel and aluminum, with glued laminated timber in residential construction contributes to the reduction of carbon-dioxide emission and climate change mitigation, research results of the effects of such substitution are presented in the last chapter in this paper. [Projekat Ministarstva nauke Republike Srbije, br. III43007: Istraživanje klimatskih promena na životnu sredinu: praćenje uticaja, adaptacija i ublažavanje

  8. Developed and developing world responsibilities for historical climate change and CO2 mitigation.

    Science.gov (United States)

    Wei, Ting; Yang, Shili; Moore, John C; Shi, Peijun; Cui, Xuefeng; Duan, Qingyun; Xu, Bing; Dai, Yongjiu; Yuan, Wenping; Wei, Xin; Yang, Zhipeng; Wen, Tijian; Teng, Fei; Gao, Yun; Chou, Jieming; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Jiang, Yundi; Gao, Xuejie; Wang, Kaicun; Zheng, Xiaogu; Ren, Fumin; Lv, Shihua; Yu, Yongqiang; Liu, Bin; Luo, Yong; Li, Weijing; Ji, Duoying; Feng, Jinming; Wu, Qizhong; Cheng, Huaqiong; He, Jiankun; Fu, Congbin; Ye, Duzheng; Xu, Guanhua; Dong, Wenjie

    2012-08-07

    At the United Nations Framework Convention on Climate Change Conference in Cancun, in November 2010, the Heads of State reached an agreement on the aim of limiting the global temperature rise to 2 °C relative to preindustrial levels. They recognized that long-term future warming is primarily constrained by cumulative anthropogenic greenhouse gas emissions, that deep cuts in global emissions are required, and that action based on equity must be taken to meet this objective. However, negotiations on emission reduction among countries are increasingly fraught with difficulty, partly because of arguments about the responsibility for the ongoing temperature rise. Simulations with two earth-system models (NCAR/CESM and BNU-ESM) demonstrate that developed countries had contributed about 60-80%, developing countries about 20-40%, to the global temperature rise, upper ocean warming, and sea-ice reduction by 2005. Enacting pledges made at Cancun with continuation to 2100 leads to a reduction in global temperature rise relative to business as usual with a 1/3-2/3 (CESM 33-67%, BNU-ESM 35-65%) contribution from developed and developing countries, respectively. To prevent a temperature rise by 2 °C or more in 2100, it is necessary to fill the gap with more ambitious mitigation efforts.

  9. Transport-related measures to mitigate climate change in Basel, Switzerland

    DEFF Research Database (Denmark)

    Perez, L.; Trüeb, S.; Cowie, H.

    2015-01-01

    Background: Local strategies to reduce green-house gases (GHG) imply changes of non-climatic exposure patterns. Objective: To assess the health impacts of locally relevant transport-related climate change policies in Basel, Switzerland. Methods: We modelled change in mortality and morbidity...

  10. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    OpenAIRE

    Veysey, J.; Octaviano, C.; K. Calvin; Herreras Martinez, S.; Kitous, A; McFarland, J; Zwaan, van der, B.C.C.

    2015-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexico have grown substantially over the last two decades. We investigate how Mexico might reverse current trends and reach its mitigation targets by exploring results from energy system and economic mo...

  11. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    Science.gov (United States)

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  12. Adaptation and mitigation options for forests and forest management in a changing climate

    NARCIS (Netherlands)

    Johnston, M.; Lindner, M.; Parotta, J.; Giessen, L.

    2012-01-01

    Climate change is now accepted as an important issue for forests and forest management around the world. Climate change will affect forests' ability to provide ecosystem goods and services on which human communities depend: biodiversity, carbon sequestration, regulation of water quality and quantity

  13. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    Science.gov (United States)

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  14. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    Science.gov (United States)

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  15. Agroforestry, livestock, fodder production and climate change adaptation and mitigation in East Africa: issues and options

    DEFF Research Database (Denmark)

    Dawson, Ian K; Carsan, Sammy; Franzel, Steve

    Agroforestry and livestock-keeping both have the potential to promote anthropogenic climate changeresilience, and understanding how they can support each other in this context is crucial. Here, we discuss relevant issues in East Africa, where recent agroforestry interventions to support livestock......Agroforestry and livestock-keeping both have the potential to promote anthropogenic climate changeresilience, and understanding how they can support each other in this context is crucial. Here, we discuss relevant issues in East Africa, where recent agroforestry interventions to support...... livestockkeeping have included the planting of mostly-exotic tree-fodders, and where most parts of the region are expected to become drier in the next decades, although smaller areas may become wetter. Wider cultivation and improved management of fodder trees provides adaptation and mitigation opportunities......- and future-climate tree species distribution modelling, important areas for future research....

  16. Mitigation/adaptation and health: health policymaking in the global response to climate change and implications for other upstream determinants.

    Science.gov (United States)

    Wiley, Lindsay F

    2010-01-01

    The time is ripe for innovation in global health governance if we are to achieve global health and development objectives in the face of formidable challenges. Integration of global health concerns into the law and governance of other, related disciplines should be given high priority. This article explores opportunities for health policymaking in the global response to climate change. Climate change and environmental degradation will affect weather disasters, food and water security, infectious disease patterns, and air pollution. Although scientific research has pointed to the interdependence of the global environment and human health, policymakers have been slow to integrate their approaches to environmental and health concerns. A robust response to climate change will require improved integration on two fronts: health concerns must be given higher priority in the response to climate change and threats associated with climate change and environmental degradation must be more adequately addressed by global health law and governance. The mitigation/adaptation response paradigm developing within and beyond the United Nations Framework Convention on Climate Change provides a useful framework for thinking about global health law and governance with respect to climate change, environmental degradation, and possibly other upstream determinants of health as well.

  17. Low-carbon agriculture in South America to mitigate global climate change and advance food security.

    Science.gov (United States)

    Sá, João Carlos de Moraes; Lal, Rattan; Cerri, Carlos Clemente; Lorenz, Klaus; Hungria, Mariangela; de Faccio Carvalho, Paulo Cesar

    2017-01-01

    The worldwide historical carbon (C) losses due to Land Use and Land-Use Change between 1870 and 2014 are estimated at 148 Pg C (1 Pg=1billionton). South America is chosen for this study because its soils contain 10.3% (160 Pg C to 1-m depth) of the soil organic carbon stock of the world soils, it is home to 5.7% (0.419 billion people) of the world population, and accounts for 8.6% of the world food (491milliontons) and 21.0% of meat production (355milliontons of cattle and buffalo). The annual C emissions from fossil fuel combustion and cement production in South America represent only 2.5% (0.25 Pg C) of the total global emissions (9.8 Pg C). However, South America contributes 31.3% (0.34 Pg C) of global annual greenhouse gas emissions (1.1 Pg C) through Land Use and Land Use Change. The potential of South America as a terrestrial C sink for mitigating climate change with adoption of Low-Carbon Agriculture (LCA) strategies based on scenario analysis method is 8.24 Pg C between 2016 and 2050. The annual C offset for 2016 to 2020, 2021 to 2035, and 2036 to 2050 is estimated at 0.08, 0.25, and 0.28 Pg C, respectively, equivalent to offsetting 7.5, 22.2 and 25.2% of the global annual greenhouse gas emissions by Land Use and Land Use Change for each period. Emission offset for LCA activities is estimated at 31.0% by restoration of degraded pasturelands, 25.6% by integrated crop-livestock-forestry-systems, 24.3% by no-till cropping systems, 12.8% by planted commercial forest and forestation, 4.2% by biological N fixation and 2.0% by recycling the industrial organic wastes. The ecosystem carbon payback time for historical C losses from South America through LCA strategies may be 56 to 188years, and the adoption of LCA can also increase food and meat production by 615Mton or 17.6Mtonyear(-1) and 56Mton or 1.6Mtonyear(-1), respectively, between 2016 and 2050.

  18. Climate change policy in the European Union: Confronting the dilemmas of mitigation and adaptation?

    Science.gov (United States)

    Betts, Alan

    2011-08-01

    There is no doubt that climate change presents an exquisite dilemma to global society and our systems of governance. Either we accept our collective responsibility and adapt our energy systems, or our societies and many critical ecosystems may be swept away by climate extremes, food crises, and, eventually, rising seas. The European Union (EU) has emerged in a leading role in the international struggle to govern climate change. Climate change is an accepted part of the political agenda in the EU, so agreement on targets has been relatively easy compared to the actual implementation of policies to reduce emissions. This book addresses in a historical context, from the late 1980s to 2010, the challenges that climate change policy has presented to the EU and how policy has been developed. The risks posed by climate change have been known for several decades. The evolution of climate change policy in the EU has occurred in parallel with extensive expansion of the EU itself, which grew from 9 member countries in the 1980s to its present 27. The EU is a relatively large emitter of greenhouse gases, and with 27 countries, it represents a microcosm of the global community, albeit with a unique form of governance.

  19. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    Science.gov (United States)

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  20. Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies

    Science.gov (United States)

    Bofferding, Laura; Kloser, Matthew

    2015-01-01

    Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…

  1. What if ... abrupt and extreme climate change? Programme of VAM (Vulnerability, Adaptation, Mitigation)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-10-15

    A number of researchers from different social scientific disciplines present a view in response to the question 'what will happen in our society if the climate suddenly changes?'. They answer questions such as: How will people respond to real risks such as imminent flooding? What are the economic consequences? How will it affect sectors such as inland shipping and coastal tourism? What are the costs of adapting our country to rising sea levels or sudden cold? As a society what do we consider to be socially and publicly acceptable? Can we still insure ourselves? Who will assume responsibility and what are the tasks of the various parties involved? The book merely sets the scene. Social sciences research into climate change has only just started. Besides providing answers to the question about the social and public implications of abrupt climate change, the book calls for a greater involvement of social scientists in climate change issues.

  2. Southwest regional climate hub and California subsidiary hub assessment of climate change vulnerability and adaptation and mitigation strategies

    Science.gov (United States)

    This report describes the potential vulnerability of specialty crops, field crops, forests, and animal agriculture to climate-driven environmental changes. Here, vulnerability is defined as a function of exposure to climate change effects, sensitivity to these effects, and adaptive capacity. The exp...

  3. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    Science.gov (United States)

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  4. The Land Use and Cover Change in Miombo Woodlands under Community Based Forest Management and Its Implication to Climate Change Mitigation: A Case of Southern Highlands of Tanzania

    Directory of Open Access Journals (Sweden)

    Z. J. Lupala

    2015-01-01

    Full Text Available In Tanzania, miombo woodland is the most significant forest vegetation with both ecological and socioeconomic importance. The vegetation has been threatened from land use and cover change due to unsustainable utilization. Over the past two decades, community based forest management (CBFM has been practiced to address the problem. Given the current need to mitigate global climate change, little is known on the influence of CBFM to the land use and cover change in miombo woodlands and therefore compromising climate change mitigation strategies. This study explored the dynamic of land use and covers change and biomass due to CBFM and established the implication to climate change mitigation. The study revealed increasing miombo woodland cover density with decreasing unsustainable utilization. The observed improvement in cover density and biomass provides potential for climate change mitigation strategies. CBFM also developed solidarity, cohesion, and social control of miombo woodlands illegal extraction. This further enhances permanence, reduces leakage, and increases accountability requirement for carbon credits. Collectively with these promising results, good land use plan at village level and introduction of alternative income generating activities can be among the best options to further reduce land use change and biomass loss in miombo woodlands.

  5. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    Science.gov (United States)

    Lorenz, K.

    2010-12-01

    long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  6. Climate change politics with Chinese characteristics: from discourse to institutionalised greenhouse gas mitigation

    OpenAIRE

    2013-01-01

    China has seen tremendous economic growth in the past three decades, and in the order of eight to ten per cent since 2000. This development has come with ever increasing energy consumption, and thus emissions of greenhouse gases (GHG). This trend has been an important topic in the international climate negotiations under the United Nations Framework Convention on Climate Change; China is under constant pressure from other large economies to contribute to reversing the GHG emissions trend in o...

  7. Climate Change Impacts and Greenhouse Gas Mitigation Effects on US Water Quality

    Science.gov (United States)

    Climate change will have potentially significant effects on freshwater quality due to increases in river and lake temperatures, changes in the magnitude and seasonality of river runoff, and more frequent and severe extreme events. These physical impacts will in turn have economic...

  8. Comparative analysis of climate change policy in a trans-Atlantic perspective, The implications of level of governance regarding climate change mitigation effectiveness

    NARCIS (Netherlands)

    Taminiau, Job

    2010-01-01

    The United States and the European Union address climate change in a fundamentally different manner. The US seems uninterested to address climate change from a federal level, but individual states within the US are definitely moving forward with climate c

  9. Chapter 5. Assessing the Need for High Impact Technology Research, Development & Deployment for Mitigating Climate Change

    Directory of Open Access Journals (Sweden)

    David Auston

    2016-12-01

    Full Text Available Technology is a centrally important component of all strategies to mitigate climate change. As such, it encompasses a multi-dimensional space that is far too large to be fully addressed in this brief chapter. Consequently, we have elected to focus on a subset of topics that we believe have the potential for substantial impact. As researchers, we have also narrowed our focus to address applied research, development and deployment issues and omit basic research topics that have a longer-term impact. This handful of topics also omits technologies that we deem to be relatively mature, such as solar photovoltaics and wind turbines, even though we acknowledge that additional research could further reduce costs and enhance performance. These and other mature technologies such as transportation are discussed in Chapter 6. This report and the related Summit Conference are an outgrowth of the University of California President’s Carbon Neutrality Initiative, and consequently we are strongly motivated by the special demands of this ambitious goal, as we are also motivated by the corresponding goals for the State of California, the nation and the world. The unique feature of the UC Carbon Neutrality Initiative is the quest to achieve zero greenhouse gas emissions by 2025 at all ten 10 campuses. It should be emphasized that a zero emission target is enormously demanding and requires careful strategic planning to arrive at a mix of technologies, policies, and behavioral measures, as well as highly effective communication – all of which are far more challenging than reducing emissions by some 40% or even 80%. Each campus has a unique set of requirements based on its current energy and emissions. Factors such as a local climate, dependence on cogeneration, access to wholesale electricity markets, and whether a medical school is included shape the specific challenges of the campuses, each of which is a “living laboratory” setting a model for others to

  10. The effect of climate change, population distribution, and climate mitigation on building energy use in the U.S. and China

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yuyu; Eom, Jiyong; Clarke, Leon E.

    2013-08-01

    A changing climate will affect the energy system in a number of ways, one of which is through changes in demands for heating and cooling in buildings. Understanding the potential effect of climate on heating and cooling demands must take into account not only the manner in which the building sector might evolve over time - including, for example, movements from rural to urban environments in developing countries - but also important uncertainty about the nature of climate change itself and the growth and movements of populations over time. In this study, we explored the uncertainty in climate change impacts on heating and cooling by constructing estimates of heating and cooling degree days for both a reference (no-policy) scenario and a climate mitigation scenario built from 0.5 degree latitude by 0.5 degree longitude resolution output from three different Global Climate Models (GCMs) and three gridded scenarios of population distribution. The implications that changing climate and population distribution might have for building energy consumption in the U.S. and China were then explored by using the heating and cooling degree days results as inputs to a detailed, building energy model, nested in the long-term global integrated assessment framework, Global Change Assessment Model (GCAM). Across the climate models and population distribution scenarios, the results indicate that unabated climate change would cause total final energy consumption to decrease modestly in both U.S. and China buildings by the end of the century, as decreased heating consumption is more than balanced by increased cooling using primarily electricity. However, the results also indicate that when indirect emissions from the power sector are also taken into account, climate change may have negligible effect on building sector CO2 emissions in the two countries. The variation in results due to variation of population distribution is noticeably smaller than variation due to the use of different

  11. Reducing GHG Emissions from Traditional Livestock Systems to Mitigate Changing Climate and Biodiversity

    NARCIS (Netherlands)

    Mushi, D.E.; Eik, L.O.; Bernués, A.; Ripoll Bosch, R.; Sundstol, F.; Mo, M.

    2015-01-01

    Climate change (CC) directly impacts the economy, ecosystems, water resources, weather events, health issues, desertification, sea level rise, and even political and social stability. The effects of CC affect different groups of societies differently. In Tanzania, the effects of CC have even acquire

  12. CO2 capture, reuse, and sequestration technologies for mitigating global climate change

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, H.J., MIT Energy Laboratory

    1998-01-01

    Fossil fuels currently supply over 85% of the world`s energy needs. They will remain in abundant supply well into the 21st century. They have been a major contributor to the high standard of living enjoyed by the industrialized world. We have learned how to extract energy from fossil fuels in environmentally friendly ways, controlling the emissions of NO{sub x}, S0{sub 2}, unburned hydrocarbons, and particulates. Even with these added pollution controls, the cost of fossil energy generated power keeps falling. Despite this good news about fossil energy, its future is clouded because of the environmental and economic threat posed by possible climate change, commonly referred to as the `greenhouse effect`. The major greenhouse gas is carbon dioxide (CO{sub 2}) and the major source of anthropogenic C0{sub 2} is combustio of fossil fuels. The potential impacts of global climate change are many and varied, though there is much uncertainty as to the timing and magnitude (Watson et al., 1996). Because of the potential adverse impacts, the world community has adopted the Framework Convention on Climate Change (see Box 1). The urgency of their work was recently underscored when the Intergovernmental Panel on Climate Change (IPCC) issued their Second Assessment Report which stated that `the balance of evidence suggests a discernible human influence on global climate`. The goal of stabilization of greenhouse gas emissions at their 1990 levels in the year 2000 will not be met by the vast majority of countries. Based on this experience, it is obvious that more aggressive technology responses are required if we want to control greenhouse gas emissions.

  13. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    NARCIS (Netherlands)

    N. Kabisch (Nadja); N. Frantzeskaki (Niki); S. Pauleit (Stephan); Naumann, S. (Sandra); Davis, M. (McKenna); M. Artmann (Martina); D. Haase (Dagmar); Knapp, S. (Sonja); Korn, H. (Horst); Stadler, J. (Jutta); Zaunberger, K. (Karin); Bonn, A. (Aletta)

    2016-01-01

    textabstractNature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation option

  14. Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum

    NARCIS (Netherlands)

    Dornburg, V.; Marland, G.

    2008-01-01

    Kirschbaum (Mitig Adapt Strat Glob Change 11:1151–1164, 2006) explores the climatic impact over time of temporarily sequestering carbon from the atmosphere. He concludes that temporary storage of carbon in the terrestrial biosphere “achieves effectively no climate-change mitigation”. His strongly wo

  15. Reconciling oil palm expansion and climate change mitigation in Kalimantan, Indonesia.

    Science.gov (United States)

    Austin, Kemen G; Kasibhatla, Prasad S; Urban, Dean L; Stolle, Fred; Vincent, Jeffrey

    2015-01-01

    Our society faces the pressing challenge of increasing agricultural production while minimizing negative consequences on ecosystems and the global climate. Indonesia, which has pledged to reduce greenhouse gas (GHG) emissions from deforestation while doubling production of several major agricultural commodities, exemplifies this challenge. Here we focus on palm oil, the world's most abundant vegetable oil and a commodity that has contributed significantly to Indonesia's economy. Most oil palm expansion in the country has occurred at the expense of forests, resulting in significant GHG emissions. We examine the extent to which land management policies can resolve the apparently conflicting goals of oil palm expansion and GHG mitigation in Kalimantan, a major oil palm growing region of Indonesia. Using a logistic regression model to predict the locations of new oil palm between 2010 and 2020 we evaluate the impacts of six alternative policy scenarios on future emissions. We estimate net emissions of 128.4-211.4 MtCO2 yr(-1) under business as usual expansion of oil palm plantations. The impact of diverting new plantations to low carbon stock land depends on the design of the policy. We estimate that emissions can be reduced by 9-10% by extending the current moratorium on new concessions in primary forests and peat lands, 35% by limiting expansion on all peat and forestlands, 46% by limiting expansion to areas with moderate carbon stocks, and 55-60% by limiting expansion to areas with low carbon stocks. Our results suggest that these policies would reduce oil palm profits only moderately but would vary greatly in terms of cost-effectiveness of emissions reductions. We conclude that a carefully designed and implemented oil palm expansion plan can contribute significantly towards Indonesia's national emissions mitigation goal, while allowing oil palm area to double.

  16. Managing and Mitigating the Health Risks of Climate Change: Calling for Evidence-Informed Policy and Action

    Science.gov (United States)

    Tong, Shilu; Confalonieri, Ulisses; Ebi, Kristie; Olsen, Jorn

    2016-01-01

    Summary: Climate change affects many natural and social systems and processes that are essential for life. It disrupts the Earth’s life-support systems that underpin the world’s capacity to supply adequate food and fresh water, and it disturbs the eco-physical buffering against natural disasters. Epidemiologists need to develop and improve research and monitoring programs to better understand the scale and immediacy of the threat of climate change to human health and to act within a much larger and more comprehensive framework. To address one of the greatest environmental issues of our lifetime, the scientific and policy-making communities should work together to formulate evidence-informed public policy to mitigate greenhouse gas emissions and adapt to its inevitable impacts in this generation and, more importantly, in future generations to come. PMID:27689449

  17. How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review.

    Science.gov (United States)

    Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena

    2016-02-01

    Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.

  18. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  19. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  20. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change

    OpenAIRE

    César A Cuartas Cardona; Juan F Naranjo Ramírez; Ariel M Tarazona Morales; Enrique Murgueitio Restrepo; Julián D Chará Orozco; Juan Ku Vera; Francisco J Solorio Sánchez; Martha X Flores Estrada; Baldomero Solorio Sánchez; Rolando Barahona Rosales

    2014-01-01

    According to FAO, world demand for animal products will double in the first half of this century as a result of increasing population and economic growth. During the same period, major changes are expected in world climate. Food security remains one of the highest priority issues in developing Latin American countries, a region where livestock production plays a fundamental role. Agricultural activities seriously threaten natural resources; therefore, it is necessary to ensure that livestock ...

  1. Afforestation to mitigate climate change: impacts on food prices under consideration of albedo effects

    Science.gov (United States)

    Kreidenweis, Ulrich; Humpenöder, Florian; Stevanović, Miodrag; Bodirsky, Benjamin Leon; Kriegler, Elmar; Lotze-Campen, Hermann; Popp, Alexander

    2016-08-01

    Ambitious climate targets, such as the 2 °C target, are likely to require the removal of carbon dioxide from the atmosphere. Afforestation is one such mitigation option but could, through the competition for land, also lead to food prices hikes. In addition, afforestation often decreases land-surface albedo and the amount of short-wave radiation reflected back to space, which results in a warming effect. In particular in the boreal zone, such biophysical warming effects following from afforestation are estimated to offset the cooling effect from carbon sequestration. We assessed the food price response of afforestation, and considered the albedo effect with scenarios in which afforestation was restricted to certain latitudinal zones. In our study, afforestation was incentivized by a globally uniform reward for carbon uptake in the terrestrial biosphere. This resulted in large-scale afforestation (2580 Mha globally) and substantial carbon sequestration (860 GtCO2) up to the end of the century. However, it was also associated with an increase in food prices of about 80% by 2050 and a more than fourfold increase by 2100. When afforestation was restricted to the tropics the food price response was substantially reduced, while still almost 60% cumulative carbon sequestration was achieved. In the medium term, the increase in prices was then lower than the increase in income underlying our scenario projections. Moreover, our results indicate that more liberalised trade in agricultural commodities could buffer the food price increases following from afforestation in tropical regions.

  2. Mitigating Climate Change by the Development and Deployment of Solar Water Heating Systems

    Directory of Open Access Journals (Sweden)

    S. T. Wara

    2013-01-01

    Full Text Available Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in Water Heating Systems. Ogun State in Nigeria was used as a case study. The solar radiation for the state was explored with an annual average of 4.775 kWh/m2 recorded. The designed system comprised storage tanks and the collector unit which comprises wooden casing, copper tube, and aluminium foil. Test results for the unlagged and lagged storage tanks for water temperature at various angles of inclination (2.500°–20.000° were on the average 27.800°C and 28.300°C, respectively, for the inlet temperature and 60.100°C and 63.000°C for the outlet temperature, respectively. The efficiency of the Solar Water Heating System was 72.500% and the power saved 2.798 kW. The cost of the unit is put at 1121,400 ($145 as at August 2012. The unit developed can be applied for the purpose of reducing the cost of energy, dealing with environmental challenges, and improving the use of energy, hence serving as a climate mitigation process as this can be extended for water heating for domestic and other industrial purposes.

  3. Implementing Local Climate Change Adaptation and Mitigation Actions: The Role of Various Policy Instruments in a Multi-Level Governance Context

    DEFF Research Database (Denmark)

    Keskitalo, E. Carina H.; Juhola, Sirkku; Baron, Nina

    2016-01-01

    Recently, considerable focus, e.g., in the fifth IPCC (Intergovernmental Panel on Climate Change) Assessment Report (2014) has been trained on why adaptation and mitigation have not been developed more than at present, with relatively few local government actions taken compared with, for example......, more discursive policy agreement on the importance of the issue of climate change. Going beyond a focus on general limits and barriers, this comment suggests that one important issue is that climate change has not yet been sufficiently integrated into the state regulative structure of legislation....... This constitutes an important consideration for the development of adaptation and mitigation as policy areas, including on the local level....

  4. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    Science.gov (United States)

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows.

  5. Future state of the climate change, mitigation and development of sustainable agriculture in Bulgaria

    Science.gov (United States)

    Kazandjiev, V.; Georgieva, V.; Moteva, M.; Marinova, T.; Dimitrov, P.

    2010-09-01

    The farming is one of the most important branches that bring the increase to the gross internal production in Bulgaria. At the same time, the agriculture is the only branch, as in home, so in world scale in which the made as well direct production spending and investing regenerating (or not) only in the frameworks to one vegetative season. In addition on this, development of the intensive farming without using the most advanced technologies such as irrigation, automation, selection - for obtaining stable cultivars and hybrids, permanent weather monitoring and agroclimatic zoning and integrated and biochemical protection to the cultures and plantations had not possible. Analysis of long-term meteorological data from different regions shows clear tendencies to warming and drying for the period of contemporary climate (1971-2000) as well in Bulgaria. Hydro-meteorological conditions in the country are worsened. The most entire estimate is made from the Intergovernmental Panel for Climate Change (IPCC) 2007. Most of authors proven that the last decades are really warmest for last century, even for the entire period of the most instrumental observations. The causes for global warming was long time debatable, but the last investigations prove it anthropogenetic derive. The main goal of the paper is framing in conditions of the expected climate changes in our country for period 2020-2050-2070 and the most likely impacts on the agriculture with inspection padding to the consequences in them and making physical conditions for development of proof farming in production regions of the country. By the means of the systematized database of meteorological and agrometeorological data which we have at disposition for the period of this survey (1971-2000); Provide assignment of the expected climatic changes according to the scenarios in the centers for observing and investigations of climatic changes in Europe, US., Canada and Australia (ECHAM 4, HadCM 2, CGCM 1, CSIRO-MK2 Bs and

  6. The ancillary benefits and costs of climate change mitigation: a conceptual framework

    Energy Technology Data Exchange (ETDEWEB)

    Krupnick, A.; Burtraw, D.; Markandya, A. [Resources for the Future, Washington, DC (USA)

    2000-07-01

    The paper concentrates on what the authors consider the most important in identifying and measuring ancillary benefits and costs in order to inform national-level policy analysis regarding mitigation of greenhouse gases. It considers ancillary benefits in the context of standard welfare economic theory, examines various types of claimed benefits to determine when they are valid, identifies factors that could change the benefit levels, examines the possibilities that economic behaviour could bring ancillary costs rather than benefits, and pays special attention to these issues in a developing country context. It mentions that reducing output of coal-based electricity by, for example, substituting nuclear or hydroelectric power could introduce health risks and create negative externalities to river ecosystems. Reduction in electricity use could, in developing countries, lead to an increase in indoor air pollution. 56 refs., 2 figs., 3 tabs.

  7. Mitigation of climate change impacts by hydrologic and cultural components of traditional acequia irrigation systems

    Science.gov (United States)

    Fernald, A.

    2009-12-01

    In northern New Mexico and other physiographically similar semi-arid settings worldwide, traditional irrigation systems divert snowmelt runoff from streams for distribution to valley croplands. This field hydrology and culture study is taking place in three New Mexico watersheds. Ongoing measurements show that seepage to groundwater and subsequent stream recharge from subsurface return flows effectively reduce spring runoff peaks and augment summer baseflow. This retransmission function of traditional acequia irrigated valleys is important for downstream users, particularly in the face of changing climate with projected earlier snowmelt and increased rain. Preliminary evaluations of the community irrigation management structure show high adaptability to climate variation. Water is partitioned to individual users based on water availability, with more water for all in wet years and less for all in dry years. Irrigation water seepage has additional benefits: water quality improvement, wildlife habitat creation, riparian vegetation support, and aesthetic enhancement. Community cohesion and longevity are supported by hydrologic and cultural aspects of the irrigation systems. Lessons learned from these systems promise a window into techniques for sustainable management of linked watersheds and river valleys under future climate change scenarios.

  8. Mitigation and health: Climate policy not so costly

    Science.gov (United States)

    Buonocore, Jonathan

    2014-10-01

    Climate change mitigation can benefit human health by reducing air pollution. Research now shows that the economic value of health improvements can substantially outweigh mitigation costs, and that more flexible policies could have higher benefits.

  9. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    Science.gov (United States)

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  10. Governance and networks for health co-benefits of climate change mitigation: Lessons from two Indian cities.

    Science.gov (United States)

    Puppim de Oliveira, Jose A; Doll, Christopher N H

    2016-12-01

    Health has been the main driver for many urban environmental interventions, particularly in cases of significant health problems linked to poor urban environmental conditions. This paper examines empirically the links between climate change mitigation and health in urban areas, when health is the main driver for improvements. The paper aims to understand how systems of urban governance can enable or prevent the creation of health outcomes via continuous improvements in the environmental conditions in a city. The research draws on cases from two Indian cities where initiatives were undertaken in different sectors: Surat (waste) and Delhi (transportation). Using the literature on network effectiveness as an analytical framework, the paper compares the cases to identify the possible ways to strengthen the governance and policy making process in the urban system so that each intervention can intentionally realize multiple impacts for both local health and climate change mitigation in the long term as well as factors that may pose a threat to long-term progress and revert back to the previous situation after initial achievements.

  11. Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

  12. Climate Change Law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan

    2016-01-01

    This book brings together over seventy fifty authors for a comprehensive examination of the emerging global regime of climate change law. Despite the relative youth of climate change law, we can already begin to see the outlines of legal regimes addressing climate change mitigation and adaptation (a

  13. Mitigating Climate Change with Ocean Pipes: Influencing Land Temperature and Hydrology and Termination Overshoot Risk

    Science.gov (United States)

    Kwiatkowski, L.; Caldeira, K.; Ricke, K.

    2014-12-01

    With increasing risk of dangerous climate change geoengineering solutions to Earth's climate problems have attracted much attention. One proposed geoengineering approach considers the use of ocean pipes as a means to increase ocean carbon uptake and the storage of thermal energy in the deep ocean. We use a latest generation Earth System Model (ESM) to perform simulations of idealised extreme implementations of ocean pipes. In our simulations, downward transport of thermal energy by ocean pipes strongly cools the near surface atmosphere - by up to 11°C on a global mean. The ocean pipes cause net thermal energy to be transported from the terrestrial environment to the deep ocean while increasing the global net transport of water to land. By cooling the ocean surface more than the land, ocean pipes tend to promote a monsoonal-type circulation, resulting in increased water vapour transport to land. Throughout their implementation, ocean pipes prevent energy from escaping to space, increasing the amount of energy stored in Earth's climate system despite reductions in surface temperature. As a consequence, our results indicate that an abrupt termination of ocean pipes could cause dramatic increases in surface temperatures beyond that which would have been obtained had ocean pipes not been implemented.

  14. Using Design as Boundary Spanner Object in Climate Change Mitigation Projects

    Directory of Open Access Journals (Sweden)

    Walter Fernandez

    2010-01-01

    Full Text Available Climate change is a growing concern for society and the focus of numerous research initiatives across multiple fields of science. These initiatives often need to capitalize on the cross-specialized knowledge contributed by researchers from very different fields. The diversity of worldviews among key stakeholders requires an effective overall design strategy acting as a boundary spanner object. This study presents an account of the issues faced by a multidisciplinary research project and discusses the suitability of a design approach to help address issues such as equality, empowerment, autonomy, creativity, performance, reduction of innovation cycle times and also provide for the necessary balance between control, speediness and flexibility.

  15. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    Science.gov (United States)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions.

  16. Integrating climate change mitigation, adaptation, communication and education strategies in Matanzas Province, Cuba: A Citizen Science Approach

    Science.gov (United States)

    Rodriguez Bueno, R. A.; Byrne, J. M.

    2015-12-01

    The Environment Service Center of Matanzas (ESCM), Cuba and the University of Lethbridge are collaborating on the development of climate mitigation and adaptation programs in Matanzas province. Tourism is the largest industry in Matanzas. Protecting that industry means protecting coastal zones and conservation areas of value to tourism. These same areas are critical to protecting the landscape from global environmental change: enhanced tropical cyclones, flooding, drought and a range of other environmental change impacts. Byrne (2014) adapted a multidisciplinary methodology for climate adaptation capacity definition for the population of Nicaragua. A wide array of adaptive capacity skills and resources were integrated with agricultural crop modeling to define regions of the country where adaptive capacity development were weakest and should be improved. In Matanzas province, we are developing a series of multidisciplinary mitigation and adaptation programs that builds social science and science knowledge to expand capacity within the ESCM and the provincial population. We will be exploring increased risk due to combined watershed and tropical cyclone flooding, stresses on crops, and defining a range of possibilities in shifting from fossil fuels to renewable energy. The program will build ongoing interactions with thousands of Matanzas citizens through site visits carried out by numerous Cuban and visiting students participating in a four-month education semester with a number of Lethbridge and Matanzas faculty. These visits will also provide local citizens with better access to web-based interactions. We will evaluate mitigation and adaptive capacities in three municipalities and some rural areas across the province. Furthermore, we will explore better ways and means to communicate between the research and conservation staff and the larger population of the province.

  17. Climate Change And Mitigation Measures For The Hydrometerological Disaster In Himachal Pradesh India- In Light Of Dams.

    Directory of Open Access Journals (Sweden)

    Vinay K. Pandey

    2015-01-01

    Full Text Available Abstract Continuing climate change is predicted to lead to major changes in the climate of the Himalayan region. Casualties and damage due to hazards in mountain regions will increase irrespective of global warming especially where populations are growing and infrastructure is developed at exposed locations. But climate change will definitely increase risk due to the fact that expected increases of heavy rainfall heat waves and glacier melt will amplify hazards in Himalayan region. The rapid release of melt water and rainfall may combine to trigger debris flows and flash flood in higher ranges including the formation of potentially dangerous lakes. These lakes may breach suddenly resulting in discharge of huge volume of water and debris. Himachal Pradesh had experienced a large number of incidences of Hydro-meteorological disaster HMD since its inception in 1971. Flash flood of March 1975 Dec 1988 Satluj flash flood of August 2000 July 2001 June 2005 Flash flood of July 2005 and Cloud burst in June 2013 are the major natural calamities in Himachal Pradesh. Due to continuous HMD brought heavy toll to the state as the loss was estimated in several thousand millions of rupees and also killed several hundreds of people besides large number of cattle heads. Through this paper we carried out a comprehensive study of past HMD and mitigation measures solution and concluded that these disaster are by their nature difficult to predict and control but it is possible to reduce the risk to lives and property through develop mitigation strategy and plan to construct damsbarrages with awareness and knowledge among local communities about the impacts of global warming natural disaster and the threat to the ecosystem communities and infrastructure are generally inadequate.

  18. Land Management for Climate Change Mitigation and Geoengineering - Are Earth System Models up to the Challenge?

    Science.gov (United States)

    Bonan, G. B.

    2015-12-01

    Many of the terrestrial models included in Earth system models simulate changes to the land surface from human activities. In the Community Land Model (CLM), for example, irrigation, nitrogen fertilization, soil tillage, wood harvesting, and numerous crop types are represented in addition to anthropogenic land-cover change (e.g., deforestation, reforestation, and afforestation). These land uses are included in the models because they have a strong influence on the hydrological cycle (irrigation), crop yield and greenhouse gas emissions (nitrogen fertilization, crop type), and carbon storage (wood harvesting, tillage). However, the representation of these processes in Earth system models is uncertain, as is the specification of transient changes from 1850 through the historical era and into the future. A more fundamental aspect of land surface models is the coupling of land and atmosphere through exchanges of energy, mass, and momentum. Here, too, anthropogenic activities can affect climate through land-cover change and land management. Eddy covariance flux tower analyses suggest that the land management effects are as significant as the land-cover change effects. These analyses pose a challenge to land surface models - How well do the models simulate the effects of land management (e.g., changes in leaf area index or community composition) on surface flux exchange with the atmosphere? Here I use the CLM and a new, advanced multilayer canopy flux model to illustrate challenges in model surface fluxes and the influence of land management on surface fluxes.

  19. Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change

    Science.gov (United States)

    Han, Xingguo; Sun, Xue; Wang, Cheng; Wu, Mengxiong; Dong, Da; Zhong, Ting; Thies, Janice E.; Wu, Weixiang

    2016-04-01

    Elevated global temperatures and increased concentrations of carbon dioxide (CO2) in the atmosphere associated with climate change will exert profound effects on rice cropping systems, particularly on their greenhouse gas emitting potential. Incorporating biochar into paddy soil has been shown previously to reduce methane (CH4) emission from paddy rice under ambient temperature and CO2. We examined the ability of rice straw-derived biochar to reduce CH4 emission from paddy soil under elevated temperature and CO2 concentrations expected in the future. Adding biochar to paddy soil reduced CH4 emission under ambient conditions and significantly reduced emissions by 39.5% (ranging from 185.4 mg kg‑1 dry weight soil, dws season‑1 to 112.2 mg kg‑1 dws season‑1) under simultaneously elevated temperature and CO2. Reduced CH4 release was mainly attributable to the decreased activity of methanogens along with the increased CH4 oxidation activity and pmoA gene abundance of methanotrophs. Our findings highlight the valuable services of biochar amendment for CH4 control from paddy soil in a future that will be shaped by climate change.

  20. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    Science.gov (United States)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha(-1) yr(-1). Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha(-1) yr(-1). Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  1. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    Science.gov (United States)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  2. Understanding Perceptions of Climate Change, Priorities, and Decision-Making among Municipalities in Lima, Peru to Better Inform Adaptation and Mitigation Planning.

    Science.gov (United States)

    Siña, Mariella; Wood, Rachel C; Saldarriaga, Enrique; Lawler, Joshua; Zunt, Joseph; Garcia, Patricia; Cárcamo, César

    2016-01-01

    Climate change poses multiple risks to the population of Lima, the largest city and capital of Peru, located on the Pacific coast in a desert ecosystem. These risks include increased water scarcity, increased heat, and the introduction and emergence of vector-borne and other climate sensitive diseases. To respond to these threats, it is necessary for the government, at every level, to adopt more mitigation and adaptation strategies. Here, focus groups were conducted with representatives from five Lima municipalities to determine priorities, perception of climate change, and decision-making processes for implementing projects within each municipality. These factors can affect the ability and desire of a community to implement climate change adaptation and mitigation strategies. The results show that climate change and other environmental factors are of relatively low priority, whereas public safety and water and sanitation services are of highest concern. Perhaps most importantly, climate change is not well understood among the municipalities. Participants had trouble distinguishing climate change from other environmental issues and did not fully understand its causes and effects. Greater understanding of what climate change is and why it is important is necessary for it to become a priority for the municipalities. Different aspects of increased climate change awareness seem to be connected to having experienced extreme weather events, whether related or not to climate change, and to higher socioeconomic status.

  3. Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests.

    Directory of Open Access Journals (Sweden)

    Jacob E Hill

    Full Text Available Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such

  4. Shading and watering as a tool to mitigate the impacts of climate change in sea turtle nests.

    Science.gov (United States)

    Hill, Jacob E; Paladino, Frank V; Spotila, James R; Tomillo, Pilar Santidrián

    2015-01-01

    Increasing sand temperatures resulting from climate change may negatively impact sea turtle nests by altering sex ratios and decreasing reproductive output. We analyzed the effect of nest shading and watering on sand temperatures as climate mitigation strategies in a beach hatchery at Playa Grande, Costa Rica. We set up plots and placed thermocouples at depths of 45 cm and 75 cm. Half of the plots were shaded and half were exposed to the sun. Within these exposure treatments, we applied three watering treatments over one month, replicating local climatic conditions experienced in this area. We also examined gravimetric water content of sand by collecting sand samples the day before watering began, the day after watering was complete, and one month after completion. Shading had the largest impact on sand temperature, followed by watering and depth. All watering treatments lowered sand temperature, but the effect varied with depth. Temperatures in plots that received water returned to control levels within 10 days after watering stopped. Water content increased at both depths in the two highest water treatments, and 30 days after the end of water application remained higher than plots with low water. While the impacts of watering on sand temperature dissipate rapidly after the end of application, the impacts on water content are much more lasting. Although less effective at lowering sand temperatures than shading, watering may benefit sea turtle clutches by offsetting negative impacts of low levels of rain in particularly dry areas. Prior to implementing such strategies, the natural conditions at the location of interest (e.g. clutch depth, environmental conditions, and beach characteristics) and natural hatchling sex ratios should be taken into consideration. These results provide insight into the effectiveness of nest shading and watering as climate mitigation techniques and illustrate important points of consideration in the crafting of such strategies.

  5. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    Science.gov (United States)

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  6. Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy

    Science.gov (United States)

    Duguma, Lalisa A.; Minang, Peter A.; van Noordwijk, Meine

    2014-09-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity—i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.

  7. Concerns About Climate Change Mitigation Projects: Summary of Findings from Case Studies in Brazil, India, Mexico, and South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Andrasko, Kenneth; Makundi, Willy; La Rovere, Emilio Lebre; Ravinandranath, N.H.; Melli, Anandi; Rangachari, Anita; Amaz, Mireya; Gay, Carlos; Friedmann, Rafael; Goldberg, Beth; van Horen, Clive; Simmonds, Gillina; Parker, Gretchen

    1998-11-01

    The concept of joint implementation as a way to implement climate change mitigation projects in another country has been controversial ever since its inception. Developing countries have raised numerous issues at the project-specific technical level, and broader concerns having to do with equity and burden sharing. This paper summarizes the findings of studies for Brazil, India, Mexico and South Africa, four countries that have large greenhouse gas emissions and are heavily engaged in the debate on climate change projects under the Kyoto Protocol. The studies examine potential or current projects/programs to determine whether eight technical concerns about joint implementation can be adequately addressed. They conclude that about half the concerns were minor or well managed by project developers, but concerns about additionality of funds, host country institutions and guarantees of performance (including the issues of baselines and possible leakage) need much more effort to be adequately addressed. All the papers agree on the need to develop institutional arrangements for approving and monitoring such projects in each of the countries represented. The case studies illustrate that these projects have the potential to bring new technology, investment, employment and ancillary socioeconomic and environmental benefits to developing countries. These benefits are consistent with the goal of sustainable development in the four study countries. At a policy level, the studies' authors note that in their view, the Annex I countries should consider limits on the use of jointly implemented projects as a way to get credits against their own emissions at home, and stress the importance of industrialized countries developing new technologies that will benefit all countries. The authors also observe that if all countries accepted caps on their emissions (with a longer time period allowed for developing countries to do so) project-based GHG mitigation would be significantly

  8. Evaluating the demand for carbon sequestration in olive grove soils as a strategy toward mitigating climate change.

    Science.gov (United States)

    Rodríguez-Entrena, Macario; Barreiro-Hurlé, Jesús; Gómez-Limón, José A; Espinosa-Goded, María; Castro-Rodríguez, Juan

    2012-12-15

    In this paper we present an estimate of the economic value of carbon sequestration in olive grove soils derived from the implementation of different agricultural management systems. Carbon sequestration is considered jointly with other environmental co-benefits, such as enhanced erosion prevention and increased biodiversity. The estimates have been obtained using choice experiments and show that there is a significant demand from society for these environmental services. From a policy perspective, an agri-environmental scheme that delivers the highest level of each environmental service would be valued by society at 121 Euros per hectare. If we focus on carbon sequestration, each ton of CO(2) would be valued at 17 Euros. These results show that there is scope to include agricultural soil carbon sequestration in climate change mitigation strategies and to provide guidance for setting payments for agri-environmental schemes promoting soil management changes.

  9. Climate Change Mitigation Activities in the Philippine Forestry Sector. Application of the COMAP Model

    Energy Technology Data Exchange (ETDEWEB)

    Lasco, Rodel D.; Pulhin, Florencia B. [Environmental Forestry Programme (ENFOR), College of Forestry and Natural Resources, University of the Philippines at Los Banos College, 4031 Laguna (Philippines)

    2001-07-01

    The forest sector in the Philippines has the potential to be a major sink for carbon (C). The present study was conducted to evaluate potential forestry mitigation options in the Philippines using the Comprehensive Mitigation Assessment Process (COMAP) model. The baseline scenario (BAU) assumes that current trends continue up to the year 2030 ('business-as-usual'). Two mitigation scenarios were evaluated: high scenario (HS) and low scenario (LS). The former is patterned largely from the government's forest master plan while the latter assumes a 50% lower success rate of the master plan. The results of the analyses show that by 2030, the total C stock of the Philippine forest sector in the baseline scenario decreases to 814 x 10{sup 6} Mg C, down by 37% compared to the 1990 level. The C stocks of the HS and LS mitigation scenarios were 22% and 18% higher than the BAU, respectively. Of the mitigation options assessed, long rotation plantations and forest protection activities produce the greatest C gain (199 and 104 x 10{sup 6} Mg, respectively under HS). The not present value (NPV) of benefits is highest in the bioenergy option with $24.48 per Mg C (excluding opportunity costs) at a real discount rate of 12%. However, the investment and life cycle costs are also highest using bioenergy. The study also estimated potential investments needed under the mitigation scenarios. The investment requirement for the LS amounts to $263 x 10{sup 6} while for the HS it is $748 x 10{sup 6}. Finally, policy issues and decisions that may be useful for the Philippines to evaluate LULUCF mitigation options under the UNFCCC Kyoto Protocol, are identified and discussed. 30 refs.

  10. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    Science.gov (United States)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  11. Integrated Assessment of Global Water Scarcity over the 21st Century under Multiple Climate Change Mitigation Policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-01-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and a global population of 14 billion by 2095, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demand for water exceeds the amount of water availability in two GCAM regions, the Middle East and India. Additionally, in years 2050 and 2095, 20% and 27% of the global population, respectively, is projected to live in areas (grid cells) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). This study implies an increasingly prominent role for water in future human decisions, and highlights the importance of including water in integrated assessment of global change.

  12. Climate-resilient agroforestry: physiological responses to climate change and engineering of crassulacean acid metabolism (CAM) as a mitigation strategy.

    Science.gov (United States)

    Borland, Anne M; Wullschleger, Stan D; Weston, David J; Hartwell, James; Tuskan, Gerald A; Yang, Xiaohan; Cushman, John C

    2015-09-01

    Global climate change threatens the sustainability of agriculture and agroforestry worldwide through increased heat, drought, surface evaporation and associated soil drying. Exposure of crops and forests to warmer and drier environments will increase leaf:air water vapour-pressure deficits (VPD), and will result in increased drought susceptibility and reduced productivity, not only in arid regions but also in tropical regions with seasonal dry periods. Fast-growing, short-rotation forestry (SRF) bioenergy crops such as poplar (Populus spp.) and willow (Salix spp.) are particularly susceptible to hydraulic failure following drought stress due to their isohydric nature and relatively high stomatal conductance. One approach to sustaining plant productivity is to improve water-use efficiency (WUE) by engineering crassulacean acid metabolism (CAM) into C3 crops. CAM improves WUE by shifting stomatal opening and primary CO2 uptake and fixation to the night-time when leaf:air VPD is low. CAM members of the tree genus Clusia exemplify the compatibility of CAM performance within tree species and highlight CAM as a mechanism to conserve water and maintain carbon uptake during drought conditions. The introduction of bioengineered CAM into SRF bioenergy trees is a potentially viable path to sustaining agroforestry production systems in the face of a globally changing climate.

  13. Climate change adaptation & mitigation strategies for Water-Energy-Land Nexus management in Mediterranean region: Case study of Catalunya (Spain).

    Science.gov (United States)

    Kumar, Vikas; Schuhmacher, Marta

    2016-04-01

    Water-Energy-Land (WEL) Nexus management is one of those complex decision problems where holistic approach to supply-demand management considering different criteria would be valuable. However, multi-criteria decision making with diverse indicators measured on different scales and uncertainty levels is difficult to solve. On the other hand, climate adaptation and mitigation need to be integrated, and resource sensitive regions like Mediterranean provide ample opportunities towards that end. While the water sector plays a key role in climate adaptation, mitigation focuses on the energy and agriculture sector. Recent studies on the so-called WEL nexus confirm the potential synergies to be derived from mainstreaming climate adaptation in the water sector, while simultaneously addressing opportunities for co-management with energy (and also land use). Objective of this paper is to develop scenarios for the future imbalances in water & energy supply and demand for a water stressed Mediterranean area of Northern Spain (Catalonia) and to test the scenario based climate adaptation & mitigation strategy for WEL management policies. Resource sensitive area of Catalonia presents an interesting nexus problem to study highly stressed water demand scenario (representing all major demand sectors), very heterogeneous land use including intensive agriculture to diversified urban and industrial uses, and mixed energy supply including hydro, wind, gas turbine to nuclear energy. Different energy sectors have different water and land requirements. Inter-river basin water transfer is another factor which is considered for this area. The water-energy link is multifaceted. Energy production can affect water quality, while energy is used in water treatment and to reduce pollution. Similarly, hydropower - producing energy from water - and desalination - producing freshwater using energy - both play important role in economic growth by supplying large and secure amounts of 'green' energy or

  14. Adaptation of business activities to the requirements of climate change mitigation - Case carrier bags; Liiketoiminnan sopeuttaminen ilmastonmuutoksen hillinnaen vaatimuksiin (OPTIKASSI)

    Energy Technology Data Exchange (ETDEWEB)

    Dahlbo, H.; Mattila, T.; Korhonen, M.-R.; Myllymaa, T. (Finnish Environment Institute SYKE, Helsinki (Finland)); Soukka, R. (Lappeenranta Univ. of Technology, Department of Energy and Environmental Technology (Finland)); Kujanpaeae, M. (KCL Science and Consulting, Espoo (Finland))

    2009-07-01

    Shopping bags have been a prominent topic of debate lately. Many countries have banned disposable bags or imposed a tax on them. The motives have been to avoid littering, reduce reliance on oil, and curb climate change. Restrictions are also justified by the accumulation of plastic garbage in the oceans, and by the damage to marine organisms. The environmental effects of production, use, and disposal of shopping bags are small compared with other consumption. However, the choice of a shopping bag is repeated every week, and the consumer is not sure about the consequences of each alternative. To reduce this uncertainty the OPTIKASSI study was made. The study called 'Adaptation of business activities to the requirements of climate change mitigation . case shopping bags, OPTIKASSI project' was implemented to study shopping bag alternatives in Finnish grocery stores, and the effects of the bags on climate change and the possibilities to mitigate them. Finnish Environment Institute and Lappeenranta University of Technology were responsible for the study, funded by Tekes ClimBus Programme, and the bag producers Suominen Flexible Packaging Ltd, Plastiroll Oy (Ltd), UPM-Kymmene LtdWisapaper and CabassiOy. The goal of the OPTIKASSI project was to compile lifecycle based information about the climate effects of the most typical shopping bags. It was also desirable to find the best consumption and waste management solutions for bags made of various materials. Products compared were plastic bags of virgin material, and of recycled material, paper bags, canvas bags, and shopping bags of biodegradable plastic. According to the results the shopping bags are an insignificant part of the climate effects of a Finnish household, but negligent use of bags may multiply the effects. Based on scenario, sensitivity, and ambiguity studies: garbage bags should be replaced by plastic bags, and the bins packed full and tight, incineration is not sensible; paper bags should be

  15. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    Science.gov (United States)

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  16. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    Science.gov (United States)

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  17. Innovative Financial Instruments and mechanisms for financing forest restoration and mitigating climate change: select cases from India

    Directory of Open Access Journals (Sweden)

    Teki Surayya

    2012-06-01

    Full Text Available Climate Change (CC is universal concern. One of the causes for CC is degradation offorest. World over every minute 22 hectares forest is degraded. Reckonings suggests thatUS$ 11880, funds must be invested every minute to restore the forest.In India Atmospheric pollution has severed in 90’s because of increasedautomobiles and electronic goods. Green car congress reported level of NO2concentration in Delhi ranged 70 - 102 microgram per cm, in 2005. It is argued that theconsumers are capable of meeting part of cost of CC mitigation. Recent survey (Teki,2008 in National Capital Region revealed that 40% of sample preferred to compensatethrough tax on petroleum products, 22 % in investing in forestry bonds, 57% favouredcompulsory investment in bonds. Awareness rate about climate change was 92%, and 88%favoured both technology transitions and economic sanctions for mitigating CC. Evolvinginnovative financing instruments and mechanisms to finance forest restoration andmitigating CC is important.Timber was considered important contribution of forests, as 2% GDP comes toexchequer. NTFPs now considered equally important for forest restoration as 25 – 55% offorest living people survival comes from NTFPs. Forests have innovative financialinstruments like Eco-tourism, to finance forest restoration. Self reliance apart from thegovernment funding and the private funding. Mobilisation of savings, bank finance,creating/strengthening global carbon fund effectively and financing the substitute sectorsare important for restoration of ecological integration and productivity and economic valueof deforested or degraded land. Objectives of paper are: a to assess level and impact offorest degradation and forest restoration in India, b to translate carbon pollution level intomitigating CC, b awareness level of CC in NCR c measure willingness of consumers tocompensate for CC, and d evolve innovative financial instruments and mechanisms tofinance sustainable forest

  18. Energy technology roll-out for climate change mitigation: A multi-model study for Latin America

    Energy Technology Data Exchange (ETDEWEB)

    van der Zwaan, Bob; Kober, Tom; Calderon, Silvia; Clarke, Leon; Daenzer, Katie; Kitous, Alban; Labriet, Maryse; Lucena, André F. P.; Octaviano, Claudia; Di Sbroiavacca, Nicolas

    2016-05-01

    In this paper we investigate opportunities for energy technology deployment under climate change mitigation efforts in Latin America. Through several carbon tax and CO2 abatement scenarios until 2050 we analyze what resources and technologies, notably for electricity generation, could be cost-optimal in the energy sector to significantly reduce CO2 emissions in the region. By way of sensitivity test we perform a cross-model comparison study and inspect whether robust conclusions can be drawn across results from different models as well as different types of models (general versus partial equilibrium). Given the abundance of biomass resources in Latin America, they play a large role in energy supply in all scenarios we inspect. This is especially true for stringent climate policy scenarios, for instance because the use of biomass in power plants in combination with CCS can yield negative CO2 emissions. We find that hydropower, which today contributes about 800 TWh to overall power production in Latin America, could be significantly expanded to meet the climate policies we investigate, typically by about 50%, but potentially by as much as 75%. According to all models, electricity generation increases exponentially with a two- to three-fold expansion between 2010 and 2050.Wefind that in our climate policy scenarios renewable energy overall expands typically at double-digit growth rates annually, but there is substantial spread in model results for specific options such as wind and solar power: the climate policies that we simulate raise wind power in 2050 on average to half the production level that hydropower provides today, while they raise solar power to either a substantially higher or a much lower level than hydropower supplies at present, depending on which model is used. Also for CCS we observe large diversity in model outcomes, which reflects the uncertainties with regard to its future implementation potential as a result of

  19. Rewetted industrial cutaway peatlands in western Ireland: a prime location for climate change mitigation?

    Directory of Open Access Journals (Sweden)

    D. Wilson

    2013-04-01

    Full Text Available Rewetting of drained industrial peatlands may reduce greenhouse gas (GHG emissions and promote recolonisation by peat forming plant species. We investigated carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O dynamics over a three-year period in a rewetted industrial peatland in Ireland. Sample plots were established in bare peat, Juncus effusus-Sphagnum cuspidatum, Sphagnum cuspidatum and Eriophorum angustifolium dominated microsites. The relationships between fluxes and environmental variables were examined and regression models were used to provide an estimate of the annual GHG balance for each microsite. All the vegetated microsites were carbon sinks for the duration of the study. Highest uptake occurred in the Eriophorum microsite (146–583 g C m-2 yr-1, followed by Juncus-Sphagnum (35–204 g C m-2 yr-1 and Sphagnum (5–140 g C m-2 yr-1. The bare peat microsite was a source of 37–82 g C m-2 yr-1. No N2O fluxes were detected. Strong inter-annual variation was observed in all microsites, driven by variation in precipitation and subsequent changes in the position of the water table. In terms of Global Warming Potential (GWP, the microsites had either a cooling effect (Eriophorum, a close to neutral effect (Juncus-Sphagnum, Sphagnum or a warming effect (bare peat on the climate.

  20. Presentation of an Innovative Zero-Emission Cycle for Mitigating the Global Climate Change

    Directory of Open Access Journals (Sweden)

    Philippe Mathieu

    1998-06-01

    Full Text Available In the spectrum of possible options to cope with the global climate change, a novel technology based on the zero CO2 emission MATIANT cycle (contraction of the names of the 2 designers : MATHIEU and IANTOVSKI is presented here. This latter is basically a regenerative gas cycle operating on CO2 as the working fluid and using O2 as the fuel oxidiser in the combustion chambers. The cycle uses the highest temperatures and pressures compatible with the most advanced materials in the steam and gas turbines. In addition, reheat and staged compression with intercooling are used. Therefore the optimized cycle efficiency rises up to around 45% when operating on natural gas. A big asset of the system is its ability to remove totally the CO2 produced in the combustion process in liquid or supercritical state and at high pressure, making it ready for transportation, for reuse or for final storage. It avoids the cost in performance (decrease of efficiency and power output and in money of the CO2 capture by a MEA scrubber. The assets and drawbacks of the cycle are mentioned. The technical issues for the design of a prototype plant are examined.

  1. Toward policies for climate change mitigation: "Barriers for family-sized biogas in the District of Gihanga, Burundi"

    Science.gov (United States)

    Nkunzimana, Leonard; Huart, Michel; Zaccai, Edwin

    2014-05-01

    In the context of climate change mitigation and poverty reduction, it has been argued that biogas energy is relevant, as it is economically and ecologically useful. In the 1980s, biogas use played an important role in the development of Burundi. Many schools and public institutions had implemented such installations. Unfortunately, many biogas infrastructures were destroyed in the civil war of the 1990s. This study analyzes what could be done, after a decade of crisis, to develop that sector. It aims to assess how and to what extent the inhabitants of villages are willing to contribute to the development of biogas technologies. We interviewed 150 farmers in order to assess their perception on the ecologic and economic features of biogas plants if implemented in their villages. The influence of socioeconomic, cultural, and demographic factors of households was assessed in this study. Results suggest that the maximum amount that a household is willing to pay each month for biogas use at a family level is positive for large-size households, households that are aware of climate change, consumers of candles, households with high income, households with an educated head, women, and breeders. However, the willingness decreases for households with older head of families. The study concludes that awareness campaigns on biogas benefits and financial and nonfinancial incentives are necessary. This policy should probably and primarily be oriented toward some more receptive categories of the population. Women should be fully involved, considering their positive motivation toward sustaining this sector.

  2. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    Science.gov (United States)

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  3. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Science.gov (United States)

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  4. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    Directory of Open Access Journals (Sweden)

    Regina S Redman

    Full Text Available Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization.These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  5. Mind the gap in SEA: An institutional perspective on why assessment of synergies amongst climate change mitigation, adaptation and other policy areas are missing

    Energy Technology Data Exchange (ETDEWEB)

    Vammen Larsen, Sanne, E-mail: sannevl@plan.aau.dk [Aalborg University, Lautrupvang 1A, 2750 Ballerup (Denmark); Kornov, Lone, E-mail: lonek@plan.aau.dk [Aalborg University, Fibigerstraede 13, 9220 Aalborg O (Denmark); Wejs, Anja, E-mail: wejs@plan.aau.dk [Aalborg University, Fibigerstraede 13, 9220 Aalborg O (Denmark)

    2012-02-15

    This article takes its point of departure in two approaches to integrating climate change into Strategic Environmental Assessment (SEA): Mitigation and adaptation, and in the fact that these, as well as the synergies between them and other policy areas, are needed as part of an integrated assessment and policy response. First, the article makes a review of how positive and negative synergies between a) climate change mitigation and adaptation and b) climate change and other environmental concerns are integrated into Danish SEA practice. Then, the article discusses the implications of not addressing synergies. Finally, the article explores institutional explanations as to why synergies are not addressed in SEA practice. A document analysis of 149 Danish SEA reports shows that only one report comprises the assessment of synergies between mitigation and adaptation, whilst 9,4% of the reports assess the synergies between climate change and other environmental concerns. The consequences of separation are both the risk of trade-offs and missed opportunities for enhancing positive synergies. In order to propose explanations for the lacking integration, the institutional background is analysed and discussed, mainly based on Scott's theory of institutions. The institutional analysis highlights a regulatory element, since the assessment of climate change synergies is underpinned by legislation, but not by guidance. This means that great focus is on normative elements such as the local interpretation of legislation and of climate change mitigation and adaptation. The analysis also focuses on how the fragmentation of the organisation in which climate change and SEA are embedded has bearings on both normative and cultural-cognitive elements. This makes the assessment of synergies challenging. The evidence gathered and presented in the article points to a need for developing the SEA process and methodology in Denmark with the aim to include climate change in the assessments

  6. The potential of carbon sequestration to mitigate against climate change in forests and agro ecosystems of Zimbabwe

    NARCIS (Netherlands)

    Mujuru, L.

    2014-01-01

    Climate change adversely affects human livelihoods and the environment through alteration of temperatures, rainfall patterns, sea level rise and ecosystem productivity. Developing countries are more vulnerable to climate change because they directly depend on agriculture and natural ecosystem produc

  7. Natural resource mitigation, adaptation and research needs related to climate change in the Great Basin and Mojave Desert

    Science.gov (United States)

    Hughson, Debra L.; Busch, David E.; Davis, Scott; Finn, Sean P.; Caicco, Steve; Verburg, Paul S.J.

    2011-01-01

    This report synthesizes the knowledge, opinions, and concerns of many Federal and State land managers, scientists, stakeholders, and partners from a workshop, held at the University of Nevada, Las Vegas, on April 20-22, 2010. Land managers, research scientists, and resource specialists identified common concerns regarding the potential effects of climate change on public lands and natural resources in the Great Basin and Mojave Desert and developed recommendations for mitigation, adaptation, and research needs. Water and, conversely, the effects of drought emerged as a common theme in all breakout sessions on terrestrial and aquatic species at risk, managing across boundaries, monitoring, and ecosystem services. Climate change models for the southwestern deserts predict general warming and drying with increasing precipitation variability year to year. Scientists noted that under these changing conditions the past may no longer be a guide to the future in which managers envision increasing conflicts between human water uses and sustaining ecosystems. Increasing environmental stress also is expected as a consequence of shifting ecosystem boundaries and species distributions, expansion of non-native species, and decoupling of biotic mutualisms, leading to increasingly unstable biologic communities. Managers uniformly expressed a desire to work across management and agency boundaries at a landscape scale but conceded that conflicting agency missions and budgetary constraints often impede collaboration. More and better science is needed to cope with the effects of climate change but, perhaps even more important is the application of science to management issues using the methods of adaptive management based on long-term monitoring to assess the merits of management actions. Access to data is essential for science-based land management. Basic inventories, spatial databases, baseline condition assessments, data quality assurance, and data sharing were identified as top

  8. Using Remotely Sensed Data for Climate Change Mitigation and Adaptation: A Collaborative Effort Between the Climate Change Adaptation Science Investigators Workgroup (CASI), NASA Johnson Space Center, and Jacobs Technology

    Science.gov (United States)

    Jagge, Amy

    2016-01-01

    With ever changing landscapes and environmental conditions due to human induced climate change, adaptability is imperative for the long-term success of facilities and Federal agency missions. To mitigate the effects of climate change, indicators such as above-ground biomass change must be identified to establish a comprehensive monitoring effort. Researching the varying effects of climate change on ecosystems can provide a scientific framework that will help produce informative, strategic and tactical policies for environmental adaptation. As a proactive approach to climate change mitigation, NASA tasked the Climate Change Adaptation Science Investigators Workgroup (CASI) to provide climate change expertise and data to Center facility managers and planners in order to ensure sustainability based on predictive models and current research. Generation of historical datasets that will be used in an agency-wide effort to establish strategies for climate change mitigation and adaptation at NASA facilities is part of the CASI strategy. Using time series of historical remotely sensed data is well-established means of measuring change over time. CASI investigators have acquired multispectral and hyperspectral optical and LiDAR remotely sensed datasets from NASA Earth Observation Satellites (including the International Space Station), airborne sensors, and astronaut photography using hand held digital cameras to create a historical dataset for the Johnson Space Center, as well as the Houston and Galveston area. The raster imagery within each dataset has been georectified, and the multispectral and hyperspectral imagery has been atmospherically corrected. Using ArcGIS for Server, the CASI-Regional Remote Sensing data has been published as an image service, and can be visualized through a basic web mapping application. Future work will include a customized web mapping application created using a JavaScript Application Programming Interface (API), and inclusion of the CASI data

  9. A wedge-based approach to estimating health co-benefits of climate change mitigation activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Balbus, John M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Greenblatt, Jeffery B. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chari, Ramya [Rand Corporation, Santa Monica, CA (United States); Millstein, Dev [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ebi, Kristie L. [ClimAdapt, Inc., Los Altos, CA (United States)

    2015-02-01

    While it has been recognized that actions reducing greenhouse gas (GHG) emissions can have significant positive and negative impacts on human health through reductions in ambient fine particulate matter (PM2.5) concentrations, these impacts are rarely taken into account when analyzing specific policies. This study presents a new framework for estimating the change in health outcomes resulting from implementation of specific carbon dioxide (CO2) reduction activities, allowing comparison of different sectors and options for climate mitigation activities. Our estimates suggest that in the year 2020, the reductions in adverse health outcomes from lessened exposure to PM2.5 would yield economic benefits in the range of $6 to $14 billion (in 2008 USD), depending on the specific activity. This equates to between $40 and $93 per metric ton of CO2 in health benefits. Specific climate interventions will vary in the health co-benefits they provide as well as in potential harms that may result from their implementation. Rigorous assessment of these health impacts is essential for guiding policy decisions as efforts to reduce GHG emissions increase in scope and intensity.

  10. District Heating and CHP - Local Possibilities for Global Climate Change Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Difs, Kristina

    2010-07-01

    Global warming, in combination with increasing energy demand and higher energy prices, makes it necessary to change the energy use. To secure the energy supply and to develop sustainable societies, construction of energy-efficient systems is at the same time most vital. The aim of this thesis is therefore to identify how a local energy company, producing district heating (DH), district cooling (DC) and electricity in combined heat and power (CHP) plants, can contribute to resource-efficient energy systems and cost-effective reductions of global carbon dioxide (CO{sub 2}) emissions, along with its customers. Analyses have been performed on how a local energy company can optimise their DH and DC production and what supply-side and demand-side measures can lead to energy-efficient systems in combination with economic and climate change benefits. The energy company in focus is located in Linkoeping, Sweden. Optimisation models, such as MODEST and reMIND, have been used for analysing the energy systems. Scenario and sensitivity analyses have also been performed for evaluation of the robustness of the energy systems studied. For all analyses a European energy system perspective was applied, where a fully deregulated European electricity market with no bottlenecks or other system failures was assumed. In this thesis it is concluded that of the DH-supply technologies studied, the biomass gasification applications and the natural gas combined cycle (NGCC) CHP are the technologies with the largest global CO{sub 2} reduction potential, while the biomass-fuelled plant that only produces heat is the investment with the smallest global CO{sub 2} reduction and savings potential. However, the global CO{sub 2} reduction potential for the biomass integrated gasification combined cycle (BIGCC) CHP and NGCC CHP, the two technologies with highest electricity efficiencies, is highly dependent on the assumptions made about marginal European electricity production. Regarding the effect on

  11. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    NARCIS (Netherlands)

    Veysey, J.; Octaviano, C.; Calvin, K.; Herreras Martinez, S.; Kitous, A.; McFarland, J.; van der Zwaan, B.

    2016-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexic

  12. Pathways to Mexico’s climate change mitigation targets: a multi-model analysis

    NARCIS (Netherlands)

    J. Veysey; C. Octaviano; K. Calvin; S. Herreras Martinez; A. Kitous; J. McFarland; B. van der Zwaan

    2015-01-01

    Mexico’s climate policy sets ambitious national greenhouse gas (GHG) emission reduction targets—30% versus a business-as-usual baseline by 2020, 50% versus 2000 by 2050. However, these goals are at odds with recent energy and emission trends in the country. Both energy use and GHG emissions in Mexic

  13. USDA Midwest and Northern Forests Regional Climate Hub: Assessment of climate change vulnerability and adaptation and mitigation strategies

    Science.gov (United States)

    The Midwest Regional Climate Hub covers the States of Illinois, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio, and Wisconsin and represents one of the most extensive and intensive agricultural systems in the world. The Northern Forests Climate Sub Hub shares this footprint and represents people...

  14. Review: Soil management in mitigating the adverse effects of climate change

    Directory of Open Access Journals (Sweden)

    Aman Ullah BhattI

    2012-05-01

    Full Text Available Emission of Green House Gases (GHGs from various sources into the atmosphere causes rise in air temperature. This addition of GHGs has a great impact on the environment. Among the GHGs, carbon dioxide (CO2 is the major contributor. A variety of options exists for mitigation of GHGs emissions in agriculture. The most prominent options are improved soil management practices viz. integrated plant nutrient management, precision agriculture (variable rate fertilizer technology, use of nitrification inhibitors, crop residue management, moisture restoration and restoration of crop productivity of degraded lands, which increase crop production per unit area, enhancing crop production and withdraw atmospheric CO2 through enhanced photosynthesis. This paper shows that such improved soil management practices can restore the crop productivity of marginal lands and purify the air by withdrawing atmospheric CO2.

  15. Health co-benefits of climate change mitigation policies in the transport sector

    Science.gov (United States)

    Shaw, Caroline; Hales, Simon; Howden-Chapman, Philippa; Edwards, Richard

    2014-06-01

    Theory, common sense and modelling studies suggest that some interventions to mitigate carbon emissions in the transport sector can also have substantial short-term benefits for population health. Policies that encourage active modes of transportation such as cycling may, for example, increase population physical activity and decrease air pollution, thus reducing the burden of conditions such as some cancers, diabetes, heart disease and dementia. In this Perspective we systematically review the evidence from 'real life' transport policies and their impacts on health and CO2 emissions. We identified a few studies that mostly involved personalized travel planning and showed modest increases in active transport such as walking, and reductions in vehicle use and CO2 emissions. Given the poor quality of the studies identified, urgent action is needed to provide more robust evidence for policies.

  16. A ranking of net national contributions to climate change mitigation through tropical forest conservation.

    Science.gov (United States)

    Carrasco, L R; Papworth, S K

    2014-12-15

    Deforestation in tropical regions causes 15% of global anthropogenic carbon emissions and reduces the mitigation potential of carbon sequestration services. A global market failure occurs as the value of many ecosystem services provided by forests is not recognised by the markets. Identifying the contribution of individual countries to tropical carbon stocks and sequestration might help identify responsibilities and facilitate debate towards the correction of the market failure through international payments for ecosystem services. We compare and rank tropical countries' contributions by estimating carbon sequestration services vs. emissions disservices. The annual value of tropical carbon sequestration services in 2010 from 88 tropical countries was estimated to range from $2.8 to $30.7 billion, using market and social prices of carbon respectively. Democratic Republic of Congo, India and Sudan contribute the highest net carbon sequestration, whereas Brazil, Nigeria and Indonesia are the highest net emitters.

  17. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways

    NARCIS (Netherlands)

    Mouratiadou, Ioanna; Biewald, Anne; Pehl, Michaja; Bonsch, Markus; Baumstark, Lavinia; Klein, David; Popp, Alexander; Luderer, Gunnar; Kriegler, Elmar

    2016-01-01

    Abstract Climate change mitigation, in the context of growing population and ever increasing economic activity, will require a transformation of energy and agricultural systems, posing significant challenges to global water resources. We use an integrated modelling framework of the water-energy-land

  18. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program

    OpenAIRE

    Shin, Yong Seung; Ha, Jongsik

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationall...

  19. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level

    Directory of Open Access Journals (Sweden)

    Roberto Barraza

    2016-04-01

    Full Text Available This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  20. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level

    Science.gov (United States)

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-01-01

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico. PMID:27128933

  1. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level.

    Science.gov (United States)

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-04-27

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  2. Harnessing the biosphere to mitigate global climate change and sea level rise

    Digital Repository Service at National Institute of Oceanography (India)

    Smetacek, V.

    . Recently, an expert on the financial markets has sounded a clarion call to climate scientists in a one-page essay freely available on the internet titled: ‘Be persuasive. Be brave. Be arrested (if necessary)’ published by the journal Nature (Grantham.... The view from his vantage point----the behaviour of the financial markets----corresponds with that of earth system scientists on the current state and near future of the planet. He also draws attention to the problem of dwindling resources, citing...

  3. Ecotourism and Climates changes: the ecolodge contribution in global warming mitigation

    Directory of Open Access Journals (Sweden)

    Lukman Hakim

    2014-01-01

    Full Text Available Global attention to the global warming reduction has invite numerous strategy implemented with the objectives is mitigating greenhouse gasses emission which threats to the future of living in biosphere. Essentially, absorbing CO2 from atmosphere and sequestering in terrestrial ecosystem is one of the significant strategy. While in developing countries it is become essential, support for forest conservation, afforestation and effort to increase terrestrial ability to capture and storage carbon is poor. Ecotourism offer potential key to solved such problems by promoting ecolodge as a sustainable tourism accomodations. This paper aims to explore the potential of ecotourism sector to alleviate global warming and establishing framework for ecolodge planning and development in tropical developing countries. This paper highlight the significant of ecolodge attraction and development management to meet proper carbon capture and sequestration mechanism. The attraction management and developing programs ultimately able to increase plants biomass while accommodation able to practicing energy efficient and optimizing reuse and recycle approach. It will become the potential solution for reducing greenhouse gas emissions and create clean development strategy.

  4. Greenhouse gas emissions from agricultural food production to supply Indian diets: Implications for climate change mitigation.

    Science.gov (United States)

    Vetter, Sylvia H; Sapkota, Tek B; Hillier, Jon; Stirling, Clare M; Macdiarmid, Jennie I; Aleksandrowicz, Lukasz; Green, Rosemary; Joy, Edward J M; Dangour, Alan D; Smith, Pete

    2017-01-16

    Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO2eq kg(-1) rice, 45.54 kg CO2eq kg(-1) mutton meat and 2.4 kg CO2eq kg(-1) milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with <1 kg CO2eq kg(-1) product. These findings suggest that a shift towards dietary patterns with greater consumption of animal source foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

  5. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  6. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Science.gov (United States)

    Liao, Chengzhang; Luo, Yiqi; Fang, Changming; Li, Bo

    2010-05-27

    Uncertainties remain in the potential of forest plantations to sequestrate carbon (C). We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests). Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1) in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years), stand types (broadleaved vs. coniferous and deciduous vs. evergreen), tree species origin (native vs. exotic) of plantations, land-use history (afforestation vs. reforestation) and site preparation for plantations (unburnt vs. burnt), and study regions (tropic vs. temperate). The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  7. Green technology for keeping soil-water-nutrient fluxes on cultivated steep land and climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Effiom Oku

    2014-06-01

    Full Text Available Use of vetiver as a green technology can address African farmers’ ecological problems through protecting farmlands on steep lands. In addition, it offers the opportunity to integrate smallholders into the green economy as it sequesters carbon, keep water and nutrient fluxes within the system, sustain high crop yield with climate change adaptation potentials. This is particularly important as more slopes are converted to agricultural lands due to increase in population density and poverty. Thus, the study investigated the optimal strip width for increases in soil productivity and farmers’ preferences for space. The study planted maize and cassava in between vetiver field structures (VFS installed on the contour at 5, 15 , 25 m apart and compared it with Farmers’ Practice (FP on a 45 % slope and quantified the amount of soil displaced, water and plant nutrient losses and crop yields. Vetiver installed at 5 m surface interval spacing significantly enhanced carbon sequestration indicating potentials for GHGs mitigation and reduced N, P, Ca, Mg, Na and K losses when compared with FP. Vetiver allowed only 7 % rainfall lost as against 29 % on FP this demonstrates the climate change adaptation potentials of vetiver. Soil displaced under FP was 68 times higher than the soil loss tolerance limit of 12 t ha-1 yr-1 whereas under VFS at 5, 15 and 25 m it was 2½, 13 and 12 times higher. Maize grain yield were 35, 23 and 24 % higher on the VFS field at 5, 15 and 25 m respectively when compared to FP. The corresponding values for cassava fresh tuber were 43, 32 and 29 % higher. Unlike other technologies, vetiver grass contributes to the livelihood of the farmers by providing raw material for house thatching, handicrafts and fodder for livestock during lean seasons.

  8. RE: Forests and forest management plays a key role in mitigating climate change

    DEFF Research Database (Denmark)

    Bentsen, Niclas Scott; Nord-Larsen, Thomas; Larsen, Søren

    2016-01-01

    The report by Naudts et al. concludes that forest management in Europe during the last 260 years has failed to result in net CO2 removal from the atmosphere. The authors have reached this conclusion through their failure to consider a key factor in their otherwise comprehensive analysis...... as also reported by Naudts et al. By ignoring the link between forestry and fossil carbon pools and not considering development in the absence of forest management, there is no accounting for the effect on GHG emissions, and no basis for estimating the contribution of forest management to cl....... The authors present an analysis of net carbon emissions from forest, but omit substitution effects related to the link between forest management and the fossil carbon pool. The link between fossil and terrestrial carbon pools is however critical for modelling climate impacts. To conclude as they do...

  9. Mitigating GHG emissions from agriculture under climate change constrains - a case study for the State of Saxony, Germany

    Science.gov (United States)

    Haas, E.; Kiese, R.; Klatt, S.; Butterbach-Bahl, K.

    2012-12-01

    Mitigating greenhouse gas (N2O, CO2, CH4) emissions from agricultural soils under conditions of projected climate change (IPCC SRES scenarios) is a prerequisite to limit global warming. In this study we used the recently developed regional biogeochemical ecosystem model LandscapeDNDC (Haas et al., 2012, Landscape Ecology) and two time slices for present day (1998 - 2018) and future climate (2078-2098) (regional downscale of IPCC SRES A1B climate simulation) and compared a business as usual agricultural management scenario (winter rape seed - winter barley - winter wheat rotation; fertilization: 170 / 150 / 110 kg-N mineral fertilizer; straw harvest barley/wheat: 90 %) with scenarios where either one or all of the following options were realized: no-till, residue return to fields equal 100%, reduction of fertilization rate s were left on the field or reduction of N fertilization by 10%. The spatial domain is the State of Saxony (1 073 523 hectares of arable land), a typical region for agricultural production in Central Europe. The simulations are based on a high resolution polygonal datasets (5 517 agricultural grid cells) for which relevant information on soil properties is available. The regionalization of the N2O emissions was validated against the IPCC Tier I methodology resulting in N2O emissions of 1 824 / 1 610 / 1 180 [t N2O-N yr-1] for of the baseline years whereas the simulations results in 6 955 / 6 039 / 2 207 [t N2O-N yr-1] for the first three years of the baseline scenarios and ranging between 621 and 6 955 [t N2O-N yr-1] within the following years (mean of 2 923). The influence of climate change (elevated mean temperature of approx. 2°C and minor changes in precipitation) results in an increase of 259 [t N2O-N yr-1] (mean 3 182) or approx. 9 percent on average (with a minimum of 618 and a maximum of 6 553 [t N2O-N yr-1]). Focusing on the mitigation , the recarbonization did result in an increase of soil carbon stocks of 2 585 [kg C/ha] within the

  10. Scientific research about climate change mitigation in transport: a critical review

    NARCIS (Netherlands)

    Schwanen, T.; Banister, D.; Anable, J.

    2011-01-01

    This paper seeks to develop a deeper understanding of the research on climatechangemitigation in transport. We suggest that work to date has focused on the effects of improvements in transport technologies, changes in the price of transport, physical infrastructure provision, behavioural change and

  11. Behavioural Climate Change Mitigation Options and Their Appropriate Inclusion in Quantitative Longer Term Policy Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Faber, J.; Schroten, A.; Bles, M.; Sevenster, M.; Markowska, A.; Smit, M. [CE Delft, Delft (Netherlands); Rohde, C.; Duetschke, E.; Koehler, J.; Gigli, M. [Fraunhofer Institute for Systems and Innovation Research ISI, Karlsruhe (Germany); Zimmermann, K.; Soboh, R.; Van ' t Riet, J. [Landbouw Economisch Instituut LEI, Wageningen (Netherlands)

    2012-01-15

    Changes in consumer behaviour can lead to major reductions in greenhouse gas emissions in the European Union, particularly in the areas of transport, housing and food. Behavioural changes can complement technological changes and can allow emission reduction targets to be achieved more cost-effectively overall. The study identifies 36 options for behavioural change that would cut greenhouse gas emissions. Of these, 11 particularly relevant options have been studied in detail. They include shifting to a more healthy and balanced diet, eating less meat and dairy products, buying and using a smaller car or an electric car, teleworking, adjusting room temperature and optimising ventilation. For each of the behavioural changes studied in depth, emission reduction potentials have been quantified for 2020, 2030 and 2050. The study identifies barriers to implementing the changes, and quantifies the likely effects of policy packages which could overcome these barriers. The results show that the behavioural changes that could take place simultaneously have the potential to save emissions totalling up to about 600 million tonnes of CO2-equivalent a year in 2020. This is about one-quarter of the projected annual emissions from sectors not covered by the EU emissions trading system. The savings potential is particularly high in the area of food.

  12. Energy R and D portfolio analysis based on climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Graham, E-mail: graham.pugh@hq.doe.gov [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States); Clarke, Leon [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD (United States); Marlay, Robert [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States); Kyle, Page; Wise, Marshall; McJeon, Haewon [Joint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD (United States); Chan, Gabriel [U.S. Climate Change Technology Program, U.S. Department of Energy, Washington, DC (United States)

    2011-07-15

    The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R and D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R and D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R and D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R and D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R and D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not

  13. Energy R&D portfolio analysis based on climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Pugh, Graham; Clarke, Leon E.; Marlay, Robert; Kyle, G. Page; Wise, Marshall A.; McJeon, Haewon C.; Chan, Gabriel

    2011-07-01

    The diverse nature and uncertain potential of the energy technologies that are or may be available to mitigate greenhouse gas emissions pose a challenge to policymakers trying to invest public funds in an optimal R&D portfolio. This paper discusses two analytical approaches to this challenge used to inform funding decisions related to the U.S. Department of Energy (DOE) applied energy R&D portfolio. The two approaches are distinguished by the constraints under which they were conducted: the need to provide an end-to-end portfolio analysis as input to internal DOE budgeting processes, but with limited time and subject to institutional constraints regarding important issues such as expert judgment. Because of these constraints, neither approach should be viewed as an attempt to push forward the state of the art in portfolio analysis in the abstract. Instead, they are an attempt to use more stylized, heuristic methods that can provide first-order insights in the DOE institutional context. Both approaches make use of advanced technology scenarios implemented in an integrated assessment modeling framework and then apply expert judgment regarding the likelihood of achieving associated R&D and commercialization goals. The approaches differ in the granularity of the scenarios used and in the definition of the benefits of technological advance: in one approach the benefits are defined as the cumulative emission reduction attributable to a particular technology; in the other approach benefits are defined as the cumulative cost reduction. In both approaches a return on investment (ROI) criterion is established based on benefits divided by federal R&D investment. The ROI is then used to build a first-order approximation of an optimal applied energy R&D investment portfolio. Although these methodologies have been used to inform an actual budget request, the results reflect only one input among many used in budget formulation. The results are therefore not representative of an

  14. Investigation of the impact of climate change on river water temperature: possible mitigation measures using riparian vegetation

    Science.gov (United States)

    Weihs, Philipp; Trimmel, Heidelinde; Formayer, Herbert; Kalny, Gerda; Rauch, Hans Peter; Leidinger, David

    2016-04-01

    Water stream temperature is a relevant factor for water quality since it is an important driver of water oxygen content and in turn also reduces or increases stress on the aquatic fauna. The water temperature of streams is determined by the source and inflow water temperature, by the energy balance at the stream surface and by the hydrological regime of the stream. Main factors driving the energy balance of streams are radiation balance and air temperature which influence the sensitive and latent heat flux. The present study investigates the influence of climate change on water temperature of streams and the potential of riparian vegetation to mitigate its effects. Within the scope of the project BIO_CLIC routine measurements of water temperature at 33 locations alongside the rivers Pinka and Lafnitz were performed from spring 2012 until autumn 2014. In addition meteorological measurements of global shortwave and longwave radiation, air temperature, wind and air humidity were carried out during this time. For the same time period, data of discharge and water levels of both rivers were provided by the public hydrological office. This time period also includes the heat episode of summer 2013 during which the highest air temperature ever recorded in Austria was reported on 8 August at 40.5°C. In the lower reaches of the river Pinka, at the station Burg the monthly mean water temperature of August 2013 was with more than 22°C, 1°C higher than the mean water temperature of the same period of the previous years. At the same station, the maximum water temperature of 27.1°C was recorded on 29 July, 9 days prior to the air temperature record. Analysis shows that at the downstream stations the main driving parameter is solar radiation whereas at the upstream stations a better correlation between air temperature and water temperature is obtained. The influence of riparian vegetation on water temperature, leading to lower water temperature by shading, is also detectable

  15. 2007 status of climate change: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policy-makers; Bilan 2007 des changements climatiques: l'attenuation des changements climatiques. Contribution du Groupe de travail 3 au quatrieme rapport d'evaluation du Groupe d'Experts Intergouvernemental sur l'Evolution du Climat (GIEC). Resume a l'attention des decideurs

    Energy Technology Data Exchange (ETDEWEB)

    Barker, T.; Bashmakov, I.; Bernstein, L.; Bogner, J.; Bosch, P.; Dave, R.; Davidson, O.; Fisher, B.; Grubb, M.; Gupta, S.; Halsnaes, K.; Heij, B.; Kahn Ribeiro, S.; Kobayashi, S.; Levine, M.; Martino, D.; Masera Cerutti, O.; Metz, B.; Meyer, L.; Nabuurs, G.J.; Najam, A.; Nakicenovic, N.; Holger Rogner, H.; Roy, J.; Sathaye, J.; Schock, R.; Shukla, P.; Sims, R.; Smith, P.; Swart, R.; Tirpak, D.; Urge-Vorsatz, D.; Dadi, Z

    2007-07-01

    The Working Group III contribution to the IPCC Fourth Assessment Report (AR4) focuses on new literature on the scientific, technological, environmental, economic and social aspects of mitigation of climate change, published since the IPCC Third Assessment Report (TAR) and the Special Reports on CO{sub 2} Capture and Storage (SRCCS) and on Safeguarding the Ozone Layer and the Global Climate System (SROC).The main aim of this summary report is to assess options for mitigating climate change. Several aspects link climate change with development issues. This report explores these links in detail, and illustrates where climate change and sustainable development are mutually reinforcing. Economic development needs, resource endowments and mitigative and adaptive capacities differ across regions. There is no one-size-fits-all approach to the climate change problem, and solutions need to be regionally differentiated to reflect different socio-economic conditions and, to a lesser extent, geographical differences. Although this report has a global focus, an attempt is made to differentiate the assessment of scientific and technical findings for the various regions. Given that mitigation options vary significantly between economic sectors, it was decided to use the economic sectors to organize the material on short- to medium-term mitigation options. Contrary to what was done in the Third Assessment Report, all relevant aspects of sectoral mitigation options, such as technology, cost, policies etc., are discussed together, to provide the user with a comprehensive discussion of the sectoral mitigation options. The report is organised into six sections after the introduction: - Greenhouse gas (GHG) emission trends; - Mitigation in the short and medium term, across different economic sectors (until 2030); - Mitigation in the long-term (beyond 2030); - Policies, measures and instruments to mitigate climate change; - Sustainable development and climate change mitigation; - Gaps in

  16. Feasibility Study on: Reforestation of Degraded Grasslands in Indonesia as a Climate Change Mitigation Option

    Energy Technology Data Exchange (ETDEWEB)

    Dalfelt, A.; Naess, L.O.; Sutamihardja, R.T.M.; Gintings, N.

    1996-12-31

    The report deals with a cooperation project between Norway and Indonesia dealing with a feasibility study on sustainable reforestation of degraded grasslands in Indonesia. Poor forest management and uncontrolled land use changes contribute a significant share anthropogenic emissions of greenhouse gases, especially CO{sub 2}, and one of many ways to reduce the CO{sub 2} emission is to encourage reforestation and better forest management. The report contains a brief overview of the issue of Imperata (alang-alang) grasslands, an outline of the present status, a discussion of potential costs and benefits associated with reforestation, and suggestions of strategies which could be applied to reach the desired goals. Case studies are presented from three locations where field work has been undertaken. The case studies provide baseline data about the sites and the imperata grasslands, experiences from earlier efforts to rehabilitate the grasslands, the common attitude to reforestation among the local communities, a discussion of the feasibility of reforestation, and finally, recommendations for the future. 142 refs., 11 figs., 15 tabs.

  17. Climate Change and Water Tools

    Science.gov (United States)

    EPA tools and workbooks guide users to mitigate and adapt to climate change impacts. Various tools can help manage risks, others can visualize climate projections in maps. Included are comprehensive tool kits hosted by other federal agencies.

  18. Re-use of wastewater for a sustainable forest production and climate change mitigation under arid environments

    Directory of Open Access Journals (Sweden)

    Maria Cristina Monteverdi

    2014-06-01

    Full Text Available 800x600 Over the last decades biotic and abiotic constrains together with human actions are determining a substantial environmental pressure, particularly in dry lands as the south of the Mediterranean region. From very long time, indeed, simultaneous drivers such as demographic growth, climate change and socio-economic factors are weakening the previous homeostasis between human needs and natural resources on the regional scale.Resulting pressures are determining environmental degradation and increase of desertification risk for the arid and semiarid lands. Water quality and availability are both crucial points limiting people well-being and livelihoods in the same context. Scarcity of fresh water and heavy and mismanaged production of wastewater are the main factors affecting water resources. Increasing pollution of soil and ground waters reduces the possibility of sustainable development of local communities with relevant social consequences. The FAO's supporting program in north Africa aims to: a develop new and cheaper phytotechnologies (e.g. constructed wetland system; innovative treatment system for reuse of waste water for fertigation; b treat wastewater for water quality protection; c promote land recovery by means of sustainable multipurpose forestry; d adopt bioengineering interventions to stop slopes erosion and protect urban, and semi-urban infrastructures; e create pilot demonstrative areas to test multi-purpose sustainable agroforestry systems. Within this frame, an integrated approach was designed to promote innovative sustainable water management and multipurpose forestry, in order to mitigate the effects of climate change, promote land recovery, and improve the livelihoods of local population. The present paper aims to provide an overview of the FAO project GCP/RAB/013/ITA. Particularly, two pilot studies are shown and discussed. Normal 0 14 false false false IT X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions

  19. Can ecosystem-scale translocations mitigate the impact of climate change on terrestrial biodiversity? Promises, pitfalls, and possibilities [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Stéphane Boyer

    2016-02-01

    Full Text Available Because ecological interactions are the first components of the ecosystem to be impacted by climate change, future forms of threatened-species and ecosystem management should aim at conserving complete, functioning communities rather than single charismatic species. A possible way forward is the deployment of ecosystem-scale translocation (EST, where above- and below-ground elements of a functioning terrestrial ecosystem (including vegetation and topsoil are carefully collected and moved together. Small-scale attempts at such practice have been made for the purpose of ecological restoration. By moving larger subsets of functioning ecosystems from climatically unstable regions to more stable ones, EST could provide a practical means to conserve mature and complex ecosystems threatened by climate change. However, there are a number of challenges associated with EST in the context of climate change mitigation, in particular the choice of donor and receptor sites. With the aim of fostering discussion and debate about the EST concept, we  1 outline the possible promises and pitfalls of EST in mitigating the impact of climate change on terrestrial biodiversity and 2 use a GIS-based approach to illustrate how  potential source and receptor sites, where EST could be trialed and evaluated globally, could be identified.

  20. Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action

    Directory of Open Access Journals (Sweden)

    Nadja Kabisch

    2016-06-01

    Full Text Available Nature-based solutions promoting green and blue urban areas have significant potential to decrease the vulnerability and enhance the resilience of cities in light of climatic change. They can thereby help to mitigate climate change-induced impacts and serve as proactive adaptation options for municipalities. We explore the various contexts in which nature-based solutions are relevant for climate mitigation and adaptation in urban areas, identify indicators for assessing the effectiveness of nature-based solutions and related knowledge gaps. In addition, we explore existing barriers and potential opportunities for increasing the scale and effectiveness of nature-based solution implementation. The results were derived from an inter- and transdisciplinary workshop with experts from research, municipalities, policy, and society. As an outcome of the workshop discussions and building on existing evidence, we highlight three main needs for future science and policy agendas when dealing with nature-based solutions: (i produce stronger evidence on nature-based solutions for climate change adaptation and mitigation and raise awareness by increasing implementation; (ii adapt for governance challenges in implementing nature-based solutions by using reflexive approaches, which implies bringing together new networks of society, nature-based solution ambassadors, and practitioners; (iii consider socio-environmental justice and social cohesion when implementing nature-based solutions by using integrated governance approaches that take into account an integrative and transdisciplinary participation of diverse actors. Taking these needs into account, nature-based solutions can serve as climate mitigation and adaptation tools that produce additional cobenefits for societal well-being, thereby serving as strong investment options for sustainable urban planning.

  1. Co-benefits of private investment in climate change mitigation and adaptation in developing countries. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bystricky, E.; Gilbert, A.; Klaus, S.; Rordorf, J. [Ecofys Group, Utrecht (Netherlands); Ward, M. [GtripleC, Wellington (New Zealand)

    2010-11-15

    The aim of this report is to inform the international community of the potential benefits for development that can be gained from adding private sector finance to public finance for climate change mitigation and adaptation. Specifically it considers whether, in addition to helping to reduce emissions, leveraging private finance through public-private financing mechanisms can result in other benefits that may not be achieved through public financing alone. These include among others access to electricity for the poorest communities from off-grid renewable electricity investments, new jobs, and transfer and development of skills and expertise. An initial literature review suggests that there has been little quantification of the developmental co-benefits of private investment, and little methodology available to estimate the additional benefits that may result. The purpose of this document is to address this analytical gap. Without a clear understanding of the co-benefits, developing countries will continue to view private finance as being less important than public finance. This may act as a barrier to them enjoying the developmental benefits of private investment. Section 2 defines co-benefits, and their link to private sector finance. Section 3 presents the methodology needed to help quantify these co-benefits, and section 4 presents some numbers based on projects and case studies. Forestry and adaptation have been looked at specifically, with results presented in section 5. Co-benefits can also carry risks, and there may be pre-conditions for them to be realised, as discussed in section 6. Section 7 gives conclusions and further steps needed. Appendices A and B cover general aspects of methodology and job creation.

  2. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  3. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    Science.gov (United States)

    Meersmans, Jeroen; Arrouays, Dominique; van Rompaey, Anton J. J.; Pagé, Christian; de Baets, Sarah; Quine, Timothy A.

    2016-11-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils.

  4. Quantifying the effectiveness of climate change mitigation through forest plantations and carbon sequestration with an integrated land-use model

    Directory of Open Access Journals (Sweden)

    Swart Rob J

    2008-04-01

    Full Text Available Abstract Background Carbon plantations are introduced in climate change policy as an option to slow the build-up of atmospheric carbon dioxide (CO2 concentrations. Here we present a methodology to evaluate the potential effectiveness of carbon plantations. The methodology explicitly considers future long-term land-use change around the world and all relevant carbon (C fluxes, including all natural fluxes. Both issues have generally been ignored in earlier studies. Results Two different baseline scenarios up to 2100 indicate that uncertainties in future land-use change lead to a near 100% difference in estimates of carbon sequestration potentials. Moreover, social, economic and institutional barriers preventing carbon plantations in natural vegetation areas decrease the physical potential by 75–80% or more. Nevertheless, carbon plantations can still considerably contribute to slowing the increase in the atmospheric CO2 concentration but only in the long term. The most conservative set of assumptions lowers the increase of the atmospheric CO2 concentration in 2100 by a 27 ppm and compensates for 5–7% of the total energy-related CO2 emissions. The net sequestration up to 2020 is limited, given the short-term increased need for agricultural land in most regions and the long period needed to compensate for emissions through the establishment of the plantations. The potential is highest in the tropics, despite projections that most of the agricultural expansion will be in these regions. Plantations in high latitudes as Northern Europe and Northern Russia should only be established if the objective to sequester carbon is combined with other activities. Conclusion Carbon sequestration in plantations can play an important role in mitigating the build-up of atmospheric CO2. The actual magnitude depends on natural and management factors, social barriers, and the time frame considered. In addition, there are a number of ancillary benefits for local

  5. Mitigation and Adaptation within a Climate Policy Portfolio

    Science.gov (United States)

    An effective policy response to climate change will include, among other things, investments in lowering greenhouse gas emissions (mitigation), as well as short-term temporary (flow) and long-lived capital-intensive (stock) adaptation to climate change. A critical near-term ques...

  6. Climate mitigation: sustainable preferences and cumulative carbon

    Science.gov (United States)

    Buckle, Simon

    2010-05-01

    We develop a stylized AK growth model with both climate damages to ecosystem goods and services and sustainable preferences that allow trade-offs between present discounted utility and long-run climate damages. The simplicity of the model permits analytical solutions. Concern for the long-term provides a strong driver for mitigation action. One plausible specification of sustainable preferences leads to the result that, for a range of initial parameter values, an optimizing agent would choose a level of cumulative carbon dioxide (CO2) emissions independent of initial production capital endowment and CO2 levels. There is no technological change so, for economies with sufficiently high initial capital and CO2 endowments, optimal mitigation will lead to disinvestment. For lower values of initial capital and/or CO2 levels, positive investment can be optimal, but still within the same overall level of cumulative emissions. One striking aspect of the model is the complexity of possible outcomes, in addition to these optimal solutions. We also identify a resource constrained region and several regions where climate damages exceed resources available for consumption. Other specifications of sustainable preferences are discussed, as is the case of a hard constraint on long-run damages. Scientists are currently highlighting the potential importance of the cumulative carbon emissions concept as a robust yet flexible target for climate policymakers. This paper shows that it also has an ethical interpretation: it embodies an implicit trade off in global welfare between present discounted welfare and long-term climate damages. We hope that further development of the ideas presented here might contribute to the research and policy debate on the critical areas of intra- and intergenerational welfare.

  7. Upscaling SOC changes from long term field experiments to regional level - evaluation of agri-environmental measures on their contribution to mitigate climate change

    Science.gov (United States)

    Freudenschuss, Alexandra; Sedy, Katrin; Spiegel, Heide; Zethner, Gerhard

    2010-05-01

    Several agri-environment measures in Austria are presumed to also mitigate climate change. These are mainly measures that lead to an increase or stabilization of soil organic carbon (SOC) in arable soils, like e.g. organic farming, legumes and cover crops in the crop rotation as well as the application of organic fertilizers. A reduction of mineral fertiliser application may also reduce greenhouse gas emissions. The results of the study aim to evaluate different agricultural practices on their impact on SOC changes. Data from long term field experiments in Austria with different tillage systems and incorporation rates of crop residues and manure are used to determine effects of agricultural practices on SOC changes. Management factors that compare results from different activities on cropland are calculated and compared with international data. Furthermore these data are used to verify results gained from the application of humus balance model (VDLUFA). For the upscaling of potential SOC changes at regional level (federal states of Austria) data of the IACS - Integrated Administrative Control System are applied in the humus balance model. In order to cover the range of possible SOC changes three different approaches of the humus balance model are introduced and the results will be presented.

  8. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  9. Climate Change

    Science.gov (United States)

    ... events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  10. Land use and desertification in the Binh Thuan Province of Southeastern Vietnam: mitigation and adaptation options now and under climate change

    Science.gov (United States)

    Gobin, A.; Le Trinh, H.; Pham Ha, L.; Hens, L.

    2012-04-01

    Desertification and drought affects approximately 300,000 ha of land in the southeastern provinces of Vietnam, much of which is located on agricultural land and forest in the Binh Thuan Province. The methodology for analysing mitigation and adaptation options follows a chain of risk approach that includes a spatio-temporal characterisation of (1) the hazard, (2) the bio-physical and socio-economic impact, (3) the vulnerability to different activities as related to land uses, and (4) risk management options. The present forms of land degradation include sand dune formation and severe erosion (63%), degradation due to laterisation (14%), salinisation (13%), and rock outcrops (10%). The climate is characterized by a distinct dry season with high temperatures, a lot of sunshine and a warm land wind resulting in high evapotranspiration rates. Delays in the onset of the rainy season, e.g. with 20 days in 2010, cause a shift in the growing season. Damages due to drought are estimated at hundreds billion VND (US 1 = VND 20,8900) and contribute to poverty in the rural areas. The current risk-exposure is exacerbated further by climate change. Combined effects of desertification and climate change cause increased degradation of natural resources including land cover. At the same time land use changes are crucial in influencing responses to climate change and desertification. A further SWOT analysis combined with spatio-temporal analysis for each of the major sectors (agriculture, forestry and nature protection, urban and rural development, water resources and fisheries, industry) demonstrates a series of adaptation and mitigation options. Land is a valuable and limited resource. An integrated approach to land use and management is therefore essential to combat environmental hazards such as desertification and climate change.

  11. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates

  12. Europe's forest management did not mitigate climate warming.

    Science.gov (United States)

    Naudts, Kim; Chen, Yiying; McGrath, Matthew J; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-02-01

    Afforestation and forest management are considered to be key instruments in mitigating climate change. Here we show that since 1750, in spite of considerable afforestation, wood extraction has led to Europe's forests accumulating a carbon debt of 3.1 petagrams of carbon. We found that afforestation is responsible for an increase of 0.12 watts per square meter in the radiative imbalance at the top of the atmosphere, whereas an increase of 0.12 kelvin in summertime atmospheric boundary layer temperature was mainly caused by species conversion. Thus, two and a half centuries of forest management in Europe have not cooled the climate. The political imperative to mitigate climate change through afforestation and forest management therefore risks failure, unless it is recognized that not all forestry contributes to climate change mitigation.

  13. Politics of climate change belief

    Science.gov (United States)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  14. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  15. Scenarios for future biodiversity loss due to multiple drivers reveal conflict between mitigating climate change and preserving biodiversity

    Science.gov (United States)

    Powell, Thomas W. R.; Lenton, Timothy M.

    2013-06-01

    We assess the potential for future biodiversity loss due to three interacting factors: energy withdrawal from ecosystems due to biomass harvest, habitat loss due to land-use change, and climate change. We develop four scenarios to 2050 with different combinations of high or low agricultural efficiency and high or low meat diets, and use species-energy and species-area relationships to estimate their effects on biodiversity. In our scenarios, natural ecosystems are protected except when additional land is necessary to fulfil the increasing dietary demands of the global population. Biomass energy with carbon capture and storage (BECCS) is used as a means of carbon dioxide removal (CDR) from the atmosphere (and offsetting fossil fuel emissions). BECCS is based on waste biomass, with the addition of bio-energy crops only when already managed land is no longer needed for food production. Forecast biodiversity loss from natural biomes increases by more than a factor of five in going from high to low agricultural efficiency scenarios, due to destruction of productive habitats by the expansion of pasture. Biodiversity loss from energy withdrawal on managed land varies by a factor of two across the scenarios. Biodiversity loss due to climate change varies only modestly across the scenarios. Climate change is lowest in the ‘low meat high efficiency’ scenario, in which by 2050 around 660 million hectares of pasture are converted to biomass plantation that is used for BECCS. However, the resulting withdrawal of energy from managed ecosystems has a large negative impact on biodiversity. Although the effects of energy withdrawal and climate change on biodiversity cannot be directly compared, this suggests that using bio-energy to tackle climate change in order to limit biodiversity loss could instead have the opposite effect.

  16. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  17. Evaluating the contribution of Sustainable Land Management to climate change adaptation and mitigation, and its impacts on Mediterranean ecosystem services.

    Science.gov (United States)

    de Vente, Joris; Zagaria, Cecilia; Pérez-Cutillas, Pedro; Almagro, Maria; Martínez-Mena, Maria; Baartman, Jantiene; Boix-Fayos, Carolina

    2015-04-01

    Changing climate and land management have strong implications for soil and water resources and for many essential ecosystem services (ES), such as provision of drinking and irrigation water, soil erosion control, and carbon sequestration. Large impacts of climate change are expected in the Mediterranean, characterized by a high dependence on scarce soil and water resources. On the other hand, well designed Sustainable Land Management (SLM) strategies can reduce the risks associated with climate change, but their design requires knowledge of their multiple effects on ecosystem services under present and future climate scenarios and of possible tradeoffs. Moreover, strategies are only viable if suited to local environmental, socio-economic and cultural conditions, so stakeholder engagement is crucial during their selection, evaluation and implementation. We present preliminary results of a catchment wide assessment of the expected impacts of climate change on water availability in the Segura basin (18800 km2) southeastern Spain. Furthermore, we evaluated the impacts of past land use changes and the benefits of catchment wide implementation of SLM practices to protect soil and water resources, prevent sedimentation of reservoirs and increase carbon sequestration in soil and vegetation. We used the InVEST modeling framework to simulate the water availability and sediment export under different climate, land use and land management scenarios, and quantified carbon stocks in soil and vegetation. Realistic scenarios of implementation of SLM practices were prepared based on an extensive process of stakeholder engagement and using latest climate change predictions from Regional Climate Models for different emission scenarios. Results indicate a strong decrease in water availability in the Segura catchment under expected climate change, with average reductions of upto 60% and large spatial variability. Land use changes (1990 - 2006) resulted in a slight increase in water

  18. Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review

    DEFF Research Database (Denmark)

    Jensen, Erik Steen; Peoples, Mark B.; Boddey, Robert M.

    2012-01-01

    Humans are currently confronted by many global challenges. These include achieving food security for a rapidly expanding population, lowering the risk of climate change by reducing the net release of greenhouse gases into the atmosphere due to human activity, and meeting the increasing demand for...

  19. EXPLORING CLIMATE CHANGE EFFECTS ON WATERSHED SEDIMENT YIELD AND LAND COVER-BASED MITIGATION MEASURES USING SWAT MODEL, RS AND GIS: CASE OF CAGAYAN RIVER BASIN, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    J. A. Principe

    2012-07-01

    Full Text Available The impact of climate change in the Philippines was examined in the country's largest basin–the Cagayan River Basin–by predicting its sediment yield for a long period of time. This was done by integrating the Soil and Water Assessment Tool (SWAT model, Remote Sensing (RS and Geographic Information System (GIS. A set of Landsat imageries were processed to include an atmospheric correction and a filling procedure for cloud and cloud-shadow infested pixels was used to maximize each downloaded scene for a subsequent land cover classification using Maximum Likelihood classifier. The Shuttle Radar Topography Mission (SRTM-DEM was used for the digital elevation model (DEM requirement of the model while ArcGIS™ provided the platform for the ArcSWAT extension, for storing data and displaying spatial data. The impact of climate change was assessed by varying air surface temperature and amount of precipitation as predicted in the Intergovernmental Panel on Climate Change (IPCC scenarios. A Nash-Sutcliff efficiency (NSE > 0.4 and coefficient of determination (R2 > 0.5 for both the calibration and validation of the model showed that SWAT model can realistically simulate the hydrological processes in the study area. The model was then utilized for land cover change and climate change analyses and their influence on sediment yield. Results showed a significant relationship exists among the changes in the climate regime, land cover distributions and sediment yield. Finally, the study suggested land cover distribution that can potentially mitigate the serious negative effects of climate change to a regional watershed's sediment yield.

  20. Exploring Climate Change Effects on Watershed Sediment Yield and Land Cover-Based Mitigation Measures Using Swat Model, RS and Gis: Case of Cagayan River Basin, Philippines

    Science.gov (United States)

    Principe, J. A.

    2012-07-01

    The impact of climate change in the Philippines was examined in the country's largest basin-the Cagayan River Basin-by predicting its sediment yield for a long period of time. This was done by integrating the Soil and Water Assessment Tool (SWAT) model, Remote Sensing (RS) and Geographic Information System (GIS). A set of Landsat imageries were processed to include an atmospheric correction and a filling procedure for cloud and cloud-shadow infested pixels was used to maximize each downloaded scene for a subsequent land cover classification using Maximum Likelihood classifier. The Shuttle Radar Topography Mission (SRTM)-DEM was used for the digital elevation model (DEM) requirement of the model while ArcGIS™ provided the platform for the ArcSWAT extension, for storing data and displaying spatial data. The impact of climate change was assessed by varying air surface temperature and amount of precipitation as predicted in the Intergovernmental Panel on Climate Change (IPCC) scenarios. A Nash-Sutcliff efficiency (NSE) > 0.4 and coefficient of determination (R2) > 0.5 for both the calibration and validation of the model showed that SWAT model can realistically simulate the hydrological processes in the study area. The model was then utilized for land cover change and climate change analyses and their influence on sediment yield. Results showed a significant relationship exists among the changes in the climate regime, land cover distributions and sediment yield. Finally, the study suggested land cover distribution that can potentially mitigate the serious negative effects of climate change to a regional watershed's sediment yield.

  1. A Decision Matrix Approach to Evaluating the Impacts of Land-Use Activities Undertaken to Mitigate Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Kueppers, L.M.; Harte, J.; Smith, M.E. [Department of Environmental Science, Policy and Management, University of California Berkeley, 151 Hilgard Hall, Berkeley, CA 94720 (United States); Baer, P. [Energy and Resources Group, University of California Berkeley, 310 Barrows Hall, Berkeley, CA 94720 (United States); Haya, B.; Koteen, L.E. [Energy and Resources Group, University of California Berkeley, 310 Barrows Hall, Berkeley, CA 94720 (United States)

    2004-07-01

    Land-use activities that affect the global balance of greenhouse gases have been a topic of intense discussion during ongoing climate change treaty negotiations. Policy mechanisms that reward countries for implementing climatically beneficial land-use practices have been included in the Bonn and Marrakech agreements on implementation of the Kyoto Protocol. However some still fear that land-use projects focused narrowly on carbon gain will result in socioeconomic and environmental harm, and thus conflict with the explicit sustainable development objectives of the agreement. We propose a policy tool, in the form of a multi-attribute decision matrix, which can be used to evaluate potential and completed land-use projects for their climate, environmental and socioeconomic impacts simultaneously. Project evaluation using this tool makes tradeoffs explicit and allows identification of projects with multiple co-benefits for promotion ahead of others. Combined with appropriate public participation, accounting, and verification policies, a land-use activity decision matrix can help ensure that progressive land management practices are an effective part of the solution to global climate change.

  2. Quantification and Mitigation of Long-Term Impacts of Urbanization and Climate Change in the Tropical Coastal City of San Juan, Puerto Rico

    Science.gov (United States)

    Comarazamy, Daniel; Gonzalez, Jorge E.; Luvall, Jeffrey C.

    2014-01-01

    Urbanization, along with other cases of land cover and land use changes, has significant climate impacts in tropical regions with the added complexity of occurring within the context of global warming. The individual and combined effects of these two factors on the surface energy balance of a tropical city are investigated by use of an integrated atmospheric modeling approach, taking the San Juan Metropolitan Area (SJMA), Puerto Rico as the test case. To achieve this goal, an ensemble of climate and weather simulations is performed, with the climate scenarios combining urban development and sprawl with regional climate change over the past 50 years, and the short-term simulations designed to test the sensitivity to different urban vegetation configurations as mitigating alternatives. As indicator of change, we use the thermal response number (TRN), which is a measure of the sensible heating to the thermal storage of a surface or region, and the Bowen ratio, which is defined as the ratio of sensible to latent heat fluxes. The TRN of the area occupied by the SJMA has decreased as a consequence of replacing the low land coastal plain vegetation with man made materials, indicating that it takes less energy to raise the surface temperature of the urban area, whereas the TRN of forested regions has remained virtually unchanged. The global warming signal also has effects on the thermal response of the SJMA, where dryer current conditions generate lower TRN values. Differences due to global warming are more evident in the Bowen ratio pattern, mostly associated with the drier present conditions observed and its effects on sensible and latent heat fluxes. In terms of testing different mitigation strategies, the short-term simulations show that the urban area is more efficient in partitioning surface energy balance terms when green roofs are specified, as opposed to including vegetation inside the urban core.

  3. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  4. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  5. Can integrative catchment management mitigate future water quality issues caused by climate change and socio-economic development?

    Science.gov (United States)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Stamm, Christian

    2017-03-01

    The design and evaluation of solutions for integrated surface water quality management requires an integrated modelling approach. Integrated models have to be comprehensive enough to cover the aspects relevant for management decisions, allowing for mapping of larger-scale processes such as climate change to the regional and local contexts. Besides this, models have to be sufficiently simple and fast to apply proper methods of uncertainty analysis, covering model structure deficits and error propagation through the chain of sub-models. Here, we present a new integrated catchment model satisfying both conditions. The conceptual iWaQa model was developed to support the integrated management of small streams. It can be used to predict traditional water quality parameters, such as nutrients and a wide set of organic micropollutants (plant and material protection products), by considering all major pollutant pathways in urban and agricultural environments. Due to its simplicity, the model allows for a full, propagative analysis of predictive uncertainty, including certain structural and input errors. The usefulness of the model is demonstrated by predicting future surface water quality in a small catchment with mixed land use in the Swiss Plateau. We consider climate change, population growth or decline, socio-economic development, and the implementation of management strategies to tackle urban and agricultural point and non-point sources of pollution. Our results indicate that input and model structure uncertainties are the most influential factors for certain water quality parameters. In these cases model uncertainty is already high for present conditions. Nevertheless, accounting for today's uncertainty makes management fairly robust to the foreseen range of potential changes in the next decades. The assessment of total predictive uncertainty allows for selecting management strategies that show small sensitivity to poorly known boundary conditions. The identification

  6. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... in the future, then there is also moral reason to address these harms if they materialize now. We argue that these principles are applicable to climate change, and that given the commitment of wealthy countries to a "common but differentiated responsibility," they lead to a commitment to address or compensate...

  7. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  8. A combined mitigation/geoengineering approach to climate stabilization.

    Science.gov (United States)

    Wigley, T M L

    2006-10-20

    Projected anthropogenic warming and increases in CO2 concentration present a twofold threat, both from climate changes and from CO2 directly through increasing the acidity of the oceans. Future climate change may be reduced through mitigation (reductions in greenhouse gas emissions) or through geoengineering. Most geoengineering approaches, however, do not address the problem of increasing ocean acidity. A combined mitigation/geoengineering strategy could remove this deficiency. Here we consider the deliberate injection of sulfate aerosol precursors into the stratosphere. This action could substantially offset future warming and provide additional time to reduce human dependence on fossil fuels and stabilize CO2 concentrations cost-effectively at an acceptable level.

  9. RENEWABLE ENERGY SOURCES AND THEIR POTENTIAL ROLE IN MITIGATION OF CLIMATE CHANGES AND AS A SUSTAINABLE DEVELOPMENT DRIVER IN BOSNIA AND HERZEGOVINA

    Directory of Open Access Journals (Sweden)

    Petar M Gvero

    2010-01-01

    Full Text Available Bosnia and Herzegovina have significant physical potential regarding to renewable energy sources. Hydro, biomass, geothermal, wind, and solar potential can play important role in the whole state economy. Bosnia and Herzegovina is Non-Annex I country according to UNFCCC and according to that it is obligated to participate in the global efforts in order to reduce green house gases emission. This paper gives some analysis of the physical, technological, economic, and market potential of renewable energy sources in Bosnia and Herzegovina and their potential role in mitigation of climate changes. Paper also gives the analysis of the potential connections between renewable energy sources and sustainable development of the economy, taking in to consideration specific political structure of the state. Bosnia and Herzegovina is consisting from two entities: Republic of Srpska and Federation of Bosnia and Herzegovina, and Brcko District; energy sector and climate changes mitigation measures are under their jurisdiction. According to that some of this paper results can be useful for the improvement of entity and state strategies with the final aim to place renewable energy sources on the right position, as some of the major economy drivers, not only in Bosnia and Herzegovina, but in whole region.

  10. Fractured tenure, unaccountable authority, and benefit capture: Constraints to improving community benefits under climate change mitigation schemes in Ghana

    Directory of Open Access Journals (Sweden)

    Emmanuel Marfo

    2012-01-01

    Full Text Available The debate on climate change and ecosystem services has grown substantially over the past two decades. The post-Kyoto protocol period particularly has witnessed increased formulation of financial mechanisms to compensate for green efforts towards carbon sequestration and reduction in deforestation. In most cases, communities substantially depend on forests for their livelihoods or their actions have a direct bearing on the sustainability of the forests. Will the economic incentives from emerging initiatives offer new sources of income to support rural livelihoods and reduce poverty? There is some doubt about this potential, because there is enormous evidence across the world to show that forest exploitation and use has not substantially benefited local people and Ghana is no exception. This paper draws on existing evidence in Ghana to show that the lack of secure community tenure rights and the dominance of unaccountable authority-which leads to benefit capture by local elites-are critical constraints to equitable forest benefit sharing. Building on the evidence, this paper argues that unless these issues are addressed in policy and practice, the potential economic benefits from the various emerging mechanisms under climate change and ecosystem services may not benefit local people; they may even reinforce the gap between the rich and the poor.

  11. Participatory rural appraisal approaches: an overview and an exemplary application of focus group discussion in climate change adaptation and mitigation strategies

    Directory of Open Access Journals (Sweden)

    M.N. Uddin

    2013-12-01

    Full Text Available Different tools and techniques of participatory approaches are the basic way of conducting qualitative research especially in the field of applied social science. Focus Group Discussion (FGD is one of the main Participatory Rural Appraisal (PRA technique often used in combination with others to achieve desired goals. Considering this concept, this paper attempts to review the PRA approach and then application of FGD, in combination with matrix scoring and ranking to identify problems and causes of climate change along with possible mitigation and adaptation strategies. A group of 20 students at post graduate level under the faculty of Agriculture and Horticulture at Humboldt University of Berlin, Germany those from different corner of the world was considered as target people of the study. The results concluded that “unpredictable weather events” was ranked as the present outstanding visible climate change problem caused by “human activities”. However, it was noted that if alternative renewable energy sources are exploited, this could contribute to solving the present climate change problem. This finding might have the good reference for the policy makers in the same line not only for developing countries but also for developed countries.

  12. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).

    Science.gov (United States)

    Bogner, Jean; Pipatti, Riitta; Hashimoto, Seiji; Diaz, Cristobal; Mareckova, Katarina; Diaz, Luis; Kjeldsen, Peter; Monni, Suvi; Faaij, Andre; Gao, Qingxian; Zhang, Tianzhu; Ahmed, Mohammed Abdelrafie; Sutamihardja, R T M; Gregory, Robert

    2008-02-01

    Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints

  13. An integrated multi-parameter monitoring approach for the quantification and mitigation of the climate change impact on the coasts of Eastern Crete, S. Aegean Sea (Project AKTAIA)

    Science.gov (United States)

    Ghionis, George; Alexandrakis, George; Karditsa, Aikaterini; Sifnioti, Dafni; Vousdoukas, Michalis; Andreadis, Olympos; Petrakis, Stelios; Poulos, Serafim; Velegrakis, Adonis; Kampanis, Nikolaos; Lipakis, Michalis

    2014-05-01

    associated sediment transport and beach morphodynamics, calibrated with in situ data, is used to predict beach response and vulnerability to different climate change scenarios. Finally, the socio-economic impact of the climate change on the coastal zone will be assessed and a management protocol for the coastal zone and for the mitigation of the climate change impact will be developed. The ultimate scope of the project is to benefit the society by providing current and high quality information on the consequences of the climate change, especially those related to sea-level rise, and on the available protection and mitigation measures. In addition, the technological product will help in the proper planning of the required actions and technical interventions, reducing the need for costly, incomplete and frequently redundant localized studies and the risk of unsuccessful interventions. Acknowledgements The project is supported by the Action "Cooperation 2007-2013" (09SYN-31-711 "AKTAIA") of the Operational Program "Competitiveness and Entrepreneurship" co-funded by the European Regional Development Fund (ERDF) and the General Secretariat for Research and Technology (Hellenic Ministry of Education).

  14. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    Science.gov (United States)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  15. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  16. Climate Mitigation Versus Agriculture in the Tropics

    Science.gov (United States)

    McAfee, K.

    2011-12-01

    Significant new drivers of land-use change in the tropics are market-based strategies for climate-change mitigation and biodiversity conservation. These strategies are based on the putative monetary values of new commodities: genetic resources and ecosystem services, especially carbon sequestration services by forests. Payments for Ecosystem Services projects are expanding in Latin America, Asia, and some parts of Africa, promising a 'triple-win' for nature, the private sector, and the poor. Analysis of Mexico's national PES program and review of a growing body of PES case studies, however, reveal a pattern of conflict between poverty alleviation and other social goals, on the one hand, and the market-efficiency criteria that frame many PES projects, on the other hand. This poses a warning for more ambitious, global schemes based on similar principles, such as Reduced Emissions from Deforestation and Degradation (REDD). Additionally, transnational trade in carbon offsets, seen as a source of finance for PES and for REDD, puts climate policy on a collision course with agriculture, particularly given the context of closing land frontiers and international 'land-grabbing' claims on land for food-export plantations. Because market-based PES and REDD tend to target small- and medium-scale farmers, they are likely to constrain agriculture for domestic needs in regions where food security is already weak. Land-use governance based on conservation-by-commercialization can be compared to alternative approaches that link greening, food production, and social equity in a more integrated way, by combining scientific and local ecological and agroecological knowledge with strategies for rural revitalization and development.

  17. Renewable Energies and Enhanced Energy Efficiencies: Mitigation/Adaptation Measures to Climate Change Impacts on Cyprus and in the Eastern Mediterranean

    Science.gov (United States)

    Lange, Manfred

    2010-05-01

    The Eastern Mediterranean in general and Cyprus in particular are considered "hot spots" of future climate change. This will become manifest through an increase in the number and duration of drought events and extended hot-spells. The need to cope with the impacts of climate change will lead to enhanced requirements for cooling of private and public housing and growing demands for potable water derived from seawater desalination. This in turn will cause increasing pressures on electricity production and will result in additional strain on the energy sector in the region. For Cyprus, the current electricity production is entirely based on fossil-fuel fired power plants. However, the use of conventional energy sources is clearly an undesirable option. It enhances the economic burden on energy consumers and at the same time increases Cyprus' dependency on external providers of petroleum products. Moreover, it leads to growing emissions of carbon dioxide and thereby worsens Cyprus' already challenged greenhouse gas emission budget. While current emissions amount to about 9.9 Mill. t of CO2, the total allowance according to EU regulations lies at 5.5 Mill. t. The current building stock on Cyprus lacks basic measures for energy efficiency. This is particularly noteworthy with regard to insufficient insulation of buildings, which causes significant amounts of energy to be expanded for cooling. In light of these facts, an increased use of renewable energies and measures to enhance energy efficiencies in the built environment constitute important elements of a stringent and effective mitigation/adaptation strategy to climate change. The Eastern Mediterranean is among the most suitable location for the utilization of solar energy in Europe. A global direct normal irradiance of more than 1 800 kWh/m2 on Cyprus offers a renewable electricity potential of app. 20 to 23 TWh/yr when concentrated solar power (CSP) technology is employed. With regard to enhanced energy efficiency

  18. Biochar as a Strategy for Sustainable Land Management, Poverty Reduction and Climate Change Mitigation/Adaptation? Thermolysis of lignin for value-added products

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Tejerina, V.M.

    2010-08-15

    In the context of current concerns about food security, energy security and environmental degradation, the characteristics of biochar are analyzed to determine if biochar systems are a possible solution to these interlinked global issues. With this purpose, the mechanisms by which biochar can affect global biogeochemical cycles are revised. Feasibility of biochar production and application to soil, among other options, is then examined under the criteria of energy, greenhouse gas emissions and financial performance. This is carried out by using life-cycle assessments (LCA) from the literature and by performing a cost-benefit analysis, in the context of a developing country. It is determined that, under certain conditions detailed in the body of the work, biochar can be well suited as a strategy for promoting sustainable land management, climate change mitigation and adaptation, and subsequently, poverty reduction. Among the relevant variables that determine the feasibility of biochar systems are: feedstock; production conditions; geographic context; and current management of biomass.

  19. GETTING INDIGENOUS PEOPLES AND MARGINALIZED POPULATIONS TO SHARE TRADITIONAL KNOWLEDGE FOR CLIMATE CHANGE ADAPTATION AND MITIGATION: CHALLENGES AND OPPORTUNITIES TO WATER AND FOOD SECURITY

    Directory of Open Access Journals (Sweden)

    Kwasi Frimpong-Mensah

    2013-06-01

    Full Text Available The depth of traditional knowledge found in indigenous and marginalized communities dictates the extent to which their populations adapt to and mitigates climate change much as the intactness of biodiversity of the agro-ecosystems on which they depend does. Often, a lot more is done to ensure the intactness of biodiversity than the effective sharing of traditional knowledge in a quest to empower indigenous and marginalized populations to adapt to and mitigate climate change. But the latter is equally important as the former, and the two ought to go close together in empowering indigenous and marginalized populations. Nonetheless, the effective sharing of a dynamic commodity as traditional knowledge requires an all inclusive approach which involves consultation with all groups as the leaving out or the limited participation of any group could undermine the sharing process. However, there are issues that arise in ensuring an all-inclusive traditional knowledge sharing process. Issues may be viewed as challenges or opportunities to the effective sharing of traditional knowledge, and arise as a result of cultural, political, economic, legal, geographical, technical, historical, and institutional differences (subtle as they may be within/among indigenous and marginalized groups. Thus, this paper captures these challenges and opportunities that characterize the all-inclusive sharing of traditional knowledge within/among the different groups in indigenous and marginalized populations. And, recommends the best way forward by using competent actors who are self-motivated to bring all their competences to the facilitation of all-inclusive traditional knowledge sharing within/among the different groups for oneness of voice of indigenous and marginalized communities.

  20. Effects of agricultural management on productivity, soil quality and climate change mitigation - evaluations within the EU Project (FP 7) CATCH-C

    Science.gov (United States)

    Spiegel, Heide; Schlatter, Norman; Haslmayr, Hans-Peter; Baumgarten, Andreas; ten Berge, Hein

    2014-05-01

    Soils are the main basis for the production of food and feed. Furthermore, the production of biomass for energy and material use is becoming increasingly important. Goals for an optimal management of agricultural soils are, on the one hand, the maintenance or improvement of soil quality and, on the other hand, high productivity and climate change mitigation (reduction of GHG emissions and C sequestration). Thus, the EU project CATCH-C aims to evaluate current management practices concerning these three goals based on indicators derived from long-term field experiments of the project partners and from literature data. A maximum of 72 indicators for productivity, soil quality and the potential for carbon storage in the soil and the reduction of greenhouse gas emissions were selected by the project partners. As indicators for productivity, crop yields are determined in almost all field trials. The content of soil organic carbon (SOC) is an indicator for chemical, physical and biological soil quality and was analysed in the topsoil in all field trials. Less data exist for SOC contents in the subsoil. An important physical soil quality indicator is the bulk density, however, it is not determined in all field trials of the project partners. Therefore, information on SOC stocks, with relevance to carbon storage and climate change mitigation, is not available in all field experiments. Other physical indicators, such as penetration resistance, runoff coefficient and soil losses are evaluated. Essential biological indicators are microbial biomass and the number and weight of earthworms, which have been tested in several field trials. The evaluation of all these indicators will help to select "best management practices" and to address trade-offs and synergies for all indicators under consideration of major European farm type zones. CATCH-C is funded within the 7th Framework Programme for Research, Technological Development and Demonstration, Theme 2 - Biotechnologies

  1. Reduced emissions from deforestation and forest degradation (REDD: a climate change mitigation strategy on a critical track

    Directory of Open Access Journals (Sweden)

    Plugge Daniel

    2009-11-01

    Full Text Available Abstract Background Following recent discussions, there is hope that a mechanism for reduction of emissions from deforestation and forest degradation (REDD will be agreed by the Parties of the UNFCCC at their 15th meeting in Copenhagen in 2009 as an eligible action to prevent climate changes and global warming in post-2012 commitment periods. Countries introducing a REDD-regime in order to generate benefits need to implement sound monitoring and reporting systems and specify the associated uncertainties. The principle of conservativeness addresses the problem of estimation errors and requests the reporting of reliable minimum estimates (RME. Here the potential to generate benefits from applying a REDD-regime is proposed with reference to sampling and non-sampling errors that influence the reliability of estimated activity data and emission factors. Results A framework for calculating carbon benefits by including assessment errors is developed. Theoretical, sample based considerations as well as a simulation study for five selected countries with low to high deforestation and degradation rates show that even small assessment errors (5% and less may outweigh successful efforts to reduce deforestation and degradation. Conclusion The generation of benefits from REDD is possible only in situations where assessment errors are carefully controlled.

  2. Energy Subsidy Policies and Their Reform: Providing economic incentives for climate change mitigation%能源补贴政策及其改革——为减排提供经济激励

    Institute of Scientific and Technical Information of China (English)

    庄贵阳

    2007-01-01

    The subsidy, as a measure, is widely applied by governments at all levels around the world as a way of policy interventions. However, there are two completely opposite opinions of subsidies on energy and environmental protection. The only reason for subsidy in existence is the internalization of external benefit. The paper firstly examines the energy subsidy policies relevant to climate change mitigation in China and their effectiveness, then points out the deficiency existing in energy conservation policies and renewable energy development policies, and finally suggests that China should exert positive role of subsidy policies and reduce negative effects in promoting climate change mitigation.

  3. Grazing lands in Sub-Saharan Africa and their potential role in climate change mitigation: What we do and don't know

    NARCIS (Netherlands)

    Milne, E.; Aynekulu, E.; Bationo, A.; Batjes, N.H.; Boone, R.; Conant, R.; Davies, J.; Hanan, N.; Hoag, D.; Herrick, J.E.; Knausenberger, W.; Neely, C.; Njoka, J.; Ngugi, M.; Parton, B.; Paustian, K.; Reid, K.; Said, M.; Shepherd, K.; Swift, D.; Thornton, P.; Williams, S.; Miller, S.; Nkonya, Ephraim

    2016-01-01

    In 2014, the USAID project ‘Grazing lands, livestock and climate resilient mitigation in Sub-Saharan Africa’ held two workshops, hosted by the Colorado State University, which brought together experts from around the world. Two reports resulted from these workshops, one an assessment of the state of

  4. Climate adaptation as mitigation: the case of agricultural investments

    Science.gov (United States)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply

  5. Climate change and developing country interests

    DEFF Research Database (Denmark)

    Arndt, Channing; Chinowsky, Paul; Fant, Charles;

    We consider the interplay of climate change impacts, global mitigation policies, and the interests of developing countries to 2050. Focusing on Malawi, Mozambique, and Zambia, we employ a structural approach to biophysical and economic modeling that incorporates climate uncertainty and allows...... developing countries in effective global mitigation policies, even in the relatively near term, with the likelihood of much larger benefits post 2050....... for rigorous comparison of climate, biophysical, and economic outcomes across global mitigation regimes. We find that effective global mitigation policies generate two sources of benefit. First, less distorted climate outcomes result in typically more favourable economic outcomes. Second, successful global...

  6. How Can the Context Affect Policy Decision-Making: The Case of Climate Change Mitigation Policies in the Greek Building Sector

    Directory of Open Access Journals (Sweden)

    Niki-Artemis Spyridaki

    2016-04-01

    Full Text Available The influence of context dynamics in the course of the climate change mitigation policy instruments’ (PIs deployment cycle, usually causes a need for policy adaptation mechanisms to ensure that policies can meet the sector needs efficiently and effectively. In this paper, we argue that important contextual factors are the ones that are perceived to have a great impact over policy effectiveness by key related actors. By examining more thoroughly those effects over PIs, as perceived by policy and market actors, useful feedback on observed policy adaptations can be highlighted. In this context, the aim of this paper is to present a conceptual framework which seeks to investigate the impact of key external factors on policy decision-making. This framework is then applied to policies intended to foster sustainability in the Greek building sector. Contextual parameters that are influential over the effectiveness of the national energy conservation measures are identified through a stakeholder survey. Cluster analysis is then employed for the elicitation of three distinct decision-making priorities’ scenarios. General macroeconomic trends, energy costs, characteristics of the building sector and socio-institutional factors are prioritized differently from various types of actors and induce certain types of PI changes. Distinguishing among the different types of PI change can help explain better under which contextual circumstances policy adaptations occur and provide guidance to other policy makers when found in similar decisional contexts.

  7. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  8. Climate change mitigation by recovery of energy from the water cycle: a new challenge for water management.

    Science.gov (United States)

    van der Hoek, J P

    2012-01-01

    Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.

  9. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bojda, Nicholas; Ke, Jing; de la Rue du Can, Stephane; E. Letschert, Virginie; E. McMahon, James; McNeil, Michael A.

    2011-06-01

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption in the most cost-effective way. A major difference between the current study and some others is that we focus on individual equipment types that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. The approach of the study is to assess the impact of short-term actions on long-term impacts. “Short term” market transformation is assumed to occur by 2015, while “long-term” energy demand reduction impacts are assessed in 2030. In the intervening years, most but not all of the equipment studied will turn over completely. The 15-year time frame is significant for many products however, indicating that delay of implementation postpones impacts such as net economic savings and mitigation of emissions of carbon dioxide. Such delays would result in putting in place energy-wasting technologies, postponing improvement until the end of their service life, or potentially resulting in expensive investment either in additional energy supplies or in early replacement to achieve future energy or emissions reduction targets.

  10. The monitoring, evaluation, reporting, and verification of climate change mitigation projects: Discussion of issues and methodologies and review of existing protocols and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Vine, E.; Sathaye, J.

    1997-12-01

    Because of concerns with the growing threat of global climate change from increasing emissions of greenhouse gases, the US and other countries are implementing, by themselves or in cooperation with one or more other nations (i.e., joint implementation), climate change mitigation projects. These projects will reduce greenhouse gas (GHG) emissions or sequester carbon, and will also result in non-GHG impacts (i.e., environmental, economic, and social impacts). Monitoring, evaluating, reporting, and verifying (MERV) guidelines are needed for these projects in order to accurately determine their net GHG, and other, benefits. Implementation of MERV guidelines is also intended to: (1) increase the reliability of data for estimating GHG benefits; (2) provide real-time data so that mid-course corrections can be made; (3) introduce consistency and transparency across project types and reporters; and (4) enhance the credibility of the projects with stakeholders. In this paper, the authors review the issues and methodologies involved in MERV activities. In addition, they review protocols and guidelines that have been developed for MERV of GHG emissions in the energy and non-energy sectors by governments, nongovernmental organizations, and international agencies. They comment on their relevance and completeness, and identify several topics that future protocols and guidelines need to address, such as (1) establishing a credible baseline; (2) accounting for impacts outside project boundaries through leakage; (3) net GHG reductions and other impacts; (4) precision of measurement; (5) MERV frequency; (6) persistence (sustainability) of savings, emissions reduction, and carbon sequestration; (7) reporting by multiple project participants; (8) verification of GHG reduction credits; (9) uncertainty and risk; (10) institutional capacity in conducting MERV; and (11) the cost of MERV.

  11. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions.

  12. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and

  13. Business Case for Energy Efficiency in Support of Climate Change Mitigation, Economic and Societal Benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Bojda, Nicholas; Ke, Jing; Qin, Yining; de la Rue du Can, Stephane; Fridley, David; Letschert, Virginie E.; McMahon, James E.

    2011-08-18

    This study seeks to provide policymakers and other stakeholders with actionable information towards a road map for reducing energy consumption cost-effectively. We focus on individual end use equipment types (hereafter referred to as appliance groups) that might be the subject of policies - such as labels, energy performance standards, and incentives - to affect market transformation in the short term, and on high-efficiency technology options that are available today. As the study title suggests, the high efficiency or Business Case scenario is constructed around a model of cost-effective efficiency improvement. Our analysis demonstrates that a significant reduction in energy consumption and emissions is achievable at net negative cost, that is, as a profitable investment for consumers. Net savings are calculated assuming no additional costs to energy consumption such as carbon taxes. Savings relative to the base case as calculated in this way is often referred to as 'economic savings potential'. Chinese energy demand has grown dramatically over the last few decades. While heavy industry still plays a dominant role in greenhouse gas emissions, demand from residential and commercial buildings has also seen rapid growth in percentage terms. In the residential sector this growth is driven by internal migration from the countryside to cities. Meanwhile, income in both urban and rural subsectors allows ownership of major appliances. While residences are still relatively small by U.S. or European standards, nearly all households own a refrigerator, a television and an air conditioner. In the future, ownership rates are not expected to grow as much as in other developing countries, because they are already close to saturation. However, the gradual turnover of equipment in the world's largest consumer market provides a huge opportunity for greenhouse gas mitigation. In addition to residences, commercial floor space has expanded rapidly in recent years, and

  14. Climate Change and Collective Violence.

    Science.gov (United States)

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and

  15. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  16. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  17. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  18. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  19. Calibration, uncertainties and use of soybean crop simulation models for evaluating strategies to mitigate the effects of climate change in Southern Brazil

    OpenAIRE

    Rafael Battisti

    2016-01-01

    The water deficit is a major factor responsible for the soybean yield gap in Southern Brazil and tends to increase under climate change. Crop models are a tool that differ on levels of complexity and performance and can be used to evaluate strategies to manage crops, according the climate conditions. Based on that, the aims of this study were: to assess five soybean crop models and their ensemble; to evaluate the sensitivity of these models to systematic changes in climate; to assess soybean ...

  20. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  1. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  2. Early action on HFCs mitigates future atmospheric change

    Science.gov (United States)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-11-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 K at 80 hPa. The HFC mitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  3. Which role for methane emissions reduction in climate change mitigation policies; Quel role pour les reductions d'emission de methane dans la lutte contre le changement climatique?

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, O. [Met Office-Hadley Centre (United Kingdom)

    2010-02-15

    Various arguments have been put forward to justify a rapid action to mitigate climate change through reductions in methane emissions. As part of a multi-gas emission reduction approach this requires defining an equivalence between methane and carbon dioxide. In this article, we discuss the physical and economical basis for a quantitative estimate of such an equivalence. Although this equivalence depends on a parameter which involves a value judgement on the most appropriate timescale for climate change, we show that it is difficult to justify a methane weight that is much different from the 100-year global warming potential that is currently used in the framework of the Kyoto protocol. (author)

  4. Smallholder Irrigation and Crop Diversification under Climate Change in sub-Saharan Africa: Evidence and Potential for Simultaneous Food Security, Adaptation, and Mitigation

    Science.gov (United States)

    Naylor, R.; Burney, J. A.; Postel, S.

    2011-12-01

    The poorest populations in sub-Saharan Africa live in rural areas and depend on smallholder agricultural production for their livelihoods. Over 90% of all farmed area in Sub-Saharan Africa is rainfed, with crop production centering on 3-5 months of rainfall. Rapid population growth is reducing land per capita ratios, and low yields for staple crops make food security an increasingly challenging goal. Malnutrition, most noticeable among children, peaks during the dry season. Recent data on aggregate economic growth and investment in Africa hide these patterns of seasonal hunger and income disparity. Perhaps most perversely, smallholder farmers in the dry tropical regions of sub-Saharan Africa are (and will continue to be) some of the earliest and hardest hit by climate change. Our research focuses on the role distributed, small-scale irrigation can play in food security and climate change adaptation in sub-Saharan Africa. As Asia's agricultural success has demonstrated, irrigation, when combined with the availability of inputs (fertilizer) and improved crop varieties, can enable year-round production, growth in rural incomes, and a dramatic reduction in hunger. The situation in Africa is markedly different: agroecological conditions are far more heterogeneous than in Asia and evaporation rates are relatively high; most smallholders lack access to fertilizers; and market integration is constrained by infrastructure, information, and private sector incentives. Yet from a resource perspective, national- and regional-level estimates suggest that Internal Renewable Water Resources (IRWR) are nowhere near fully exploited in Sub-Saharan Africa -- even in the Sudano-Sahel, which is considered to be one of the driest regions of the continent. Irrigation can thus be implemented on a much larger scale sustainably. We will present (a) results from controlled, experimental field studies of solar-powered drip irrigation systems in the rural Sudano-Sahel region of West Africa. We

  5. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    Science.gov (United States)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  6. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  7. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  8. The impact of climate mitigation on projections of future drought

    Directory of Open Access Journals (Sweden)

    I. H. Taylor

    2013-06-01

    Full Text Available Drought is a cumulative event, often difficult to define and involving wide-reaching consequences for agriculture, ecosystems, water availability, and society. Understanding how the occurrence of drought may change in the future and which sources of uncertainty are dominant can inform appropriate decisions to guide drought impacts assessments. Our study considers both climate model uncertainty associated with future climate projections, and future emissions of greenhouse gases (future scenario uncertainty. Four drought indices (the Standardised Precipitation Index (SPI, Soil Moisture Anomaly (SMA, the Palmer Drought Severity Index (PDSI and the Standardised Runoff Index (SRI are calculated for the A1B and RCP2.6 future emissions scenarios using monthly model output from a 57-member perturbed parameter ensemble of climate simulations of the HadCM3C Earth System model, for the baseline period 1961–1990, and the period 2070–2099 ("the 2080s". We consider where there are statistically significant increases or decreases in the proportion of time spent in drought in the 2080s compared to the baseline. Despite the large range of uncertainty in drought projections for many regions, projections for some regions have a clear signal, with uncertainty associated with the magnitude of change rather than direction. For instance, a significant increase in time spent in drought is generally projected for the Amazon, Central America and South Africa whilst projections for northern India consistently show significant decreases in time spent in drought. Whilst the patterns of changes in future drought were similar between scenarios, climate mitigation, represented by the RCP2.6 scenario, tended to reduce future changes in drought. In general, climate mitigation reduced the area over which there was a significant increase in drought but had little impact on the area over which there was a significant decrease in time spent in drought.

  9. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  10. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  11. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  12. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  13. Eight years of Conservation Agriculture-based cropping systems research in Eastern Africa to conserve soil and water and mitigate effects of climate change

    Science.gov (United States)

    Araya, Tesfay; Nyssen, Jan; Govaerts, Bram; Lanckriet, Sil; Baudron, Frédéric; Deckers, Jozef; Cornelis, Wim

    2014-05-01

    at large scale in a 180 ha catchment, would reduce to 581 t y-1, instead of 1109 t y-1 under the current farmer practice. Using NASA/GISS Model II precipitation projections of IPCC scenario A1FI, CA is estimated to reduce soil loss and runoff and mitigate the effect of increased rainfall due to climate change. For smallholder farmers in semi-arid agro-ecosystems, CA-based systems constitute a field rainwater and soil conservation improvement strategy that enhances crop and economic productivity and reduces siltation of reservoirs, especially under changing climate. The reduction in draught power requirement would enable a reduction in oxen density and crop residue demand for livestock feed, which would encourage smallholder farmers to increase biomass return to the soil. Adoption of CA-based systems in the study area requires further work to improve smallholder farmers' awareness on benefits, to guarantee high standards during implementation and to design appropriate weed management strategies.

  14. The Climate Change Challenge for Land Professionals

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    monitoring systems and systems for land administration and management should serve as a basis for climate change mitigation and adaptation as well as prevention and management of natural disasters. In facing the climate change challenge the role of land professionals is twofold: • Monitoring change...... such as sea level rise and environmental degradation through global positioning infrastructures and data interpretation and presentation; • Implementing climate change adaptation and mitigation measures into land administration systems and systems for disaster risk management. This paper provides an overall...... understanding of the climate change challenge and looks at land governance as a key means of contributing to climate change adaptation as well disaster risk prevention and management. More specifically the paper looks at identifying the role of land professionals in addressing the climate change challenge...

  15. Harnessing Homophily to Improve Climate Change Education

    Science.gov (United States)

    Monroe, Martha C.; Plate, Richard R.; Adams, Damian C.; Wojcik, Deborah J.

    2015-01-01

    The Cooperative Extension Service (Extension) in the United States is well positioned to educate the public, particularly farmers and foresters, about climate change and to encourage responsible adoption of adaptation and mitigation strategies. However, the climate change attitudes and perceptions of Extension professionals have limited…

  16. Climate Change and Health

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  17. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, "Coastal Risk...... Management in a Changing Climate" provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...

  18. The optimal combined design of climate mitigation and geoengineering

    CERN Document Server

    Liang, Wang

    2010-01-01

    Combined climate mitigation/geoengineering approach has better economic utility, less emission control rate and temperature increase than mitigation alone. If setting the 50% reduction rate and 2^\\circC temperature increase as constrains, we find there is no a feasible solution for emission control, but combined design is still available.

  19. Cross-scale modelling of the climate-change mitigation potential of biochar systems: Global implications of nano-scale processes

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes

    2014-05-01

    With CO2 emissions still tracking the upper bounds of projected emissions scenarios, it is becoming increasingly urgent to reduce net greenhouse gas (GHG) emissions, and increasingly likely that restricting future atmospheric GHG concentrations to within safe limits will require an eventual transition towards net negative GHG emissions. Few measures capable of providing negative emissions at a globally-significant scale are currently known. Two that are most often considered include carbon sequestration in biomass and soil, and biomass energy with carbon capture and storage (BECCS). In common with these two approaches, biochar also relies on the use of photosynthetically-bound carbon in biomass. But, because biomass and land are limited, it is critical that these resources are efficiently allocated between biomass/soil sequestration, bioenergy, BECCS, biochar, and other competing uses such as food, fiber and biodiversity. In many situations, biochar can offer advantages that may make it the preferred use of a limited biomass supply. These advantages include that: 1) Biochar can provide valuable benefits to agriculture by improving soil fertility and crop production, and reducing fertlizer and irrigation requirements. 2) Biochar is significantly more stable than biomass or other forms of soil carbon, thus lowering the risk of future losses compared to sequestration in biomass or soil organic carbon. 3) Gases and volatiles produced by pyrolysis can be combusted for energy (which may offset fossil fuel emissions). 4) Biochar can further lower GHG emissions by reducing nitrous oxide emissions from soil and by enhancing net primary production. Determining the optimal use of biomass requires that we are able to model not only the climate-change mitigation impact of each option, but also their economic and wider environmental impacts. Thus, what is required is a systems modelling approach that integrates components representing soil biogeochemistry, hydrology, crop

  20. Environmental law and climate change : Volumes I & II

    NARCIS (Netherlands)

    Verschuuren, Jonathan

    2015-01-01

    Two volume set that brings together 54 of the most influential and important scientific journal articles in the field of climate law, thematically grouped together as follows: introducing climate law, theories and approaches, climate change mitigation, climate change adaptation, climate justice, lia

  1. The Nanchang communication about the potential for the implementation of conservation practices for climate change mitigation and adaptation to achieve food security in the 21st century

    Science.gov (United States)

    Several recent peer reviewed manuscripts have reported on the great challenges humanity is confronting during the XXI century, including a changing climate, depletion of water resources from groundwater and/or snow caps sources that are needed for agricultural production, deforestation, desertificat...

  2. The Guanajuato Communication about the Potential for Implementation of Conservation Practices for Climate Change Mitigation and Adaptation to Achieve Food Security in Mexico During the 21st Century

    Science.gov (United States)

    The scientific literature reports that climate change will impact weather in North America, with projections for a drier and hotter southeastern United States and northwestern Mexico. The areas of Mexico that are projected to be impacted cover important grain areas of the country. Additionally, seve...

  3. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...... health, comfort and convenience. Conceived as pleasurable, easy to approach, and good for the body, low-carbon life comes to be seen as a series of hobby-like activities that residents can engage in as part of their quests for good and meaningful lives in old age. Campaigners engage engage in trans-historical...

  4. Climate change and game theory.

    Science.gov (United States)

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely.

  5. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  6. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  7. Acid rain recovery may help to mitigate the impacts of climate change on thermally sensitive fish in lakes across eastern North America.

    Science.gov (United States)

    Warren, Dana R; Kraft, Clifford E; Josephson, Daniel C; Driscoll, Charles T

    2016-12-15

    From the 1970s to 1990s, more stringent air quality regulations were implemented across North America and Europe to reduce chemical emissions that contribute to acid rain. Surface water pH slowly increased during the following decades, but biological recovery lagged behind chemical recovery. Fortunately, this situation is changing. In the past few years, northeastern US fish populations have begun to recover in lakes that were historically incapable of sustaining wild fish due to acidic conditions. As lake ecosystems across the eastern United States recover from acid deposition, the stress to the most susceptible populations of native coldwater fish appears to be shifting from acidification effects to thermal impacts associated with changing climate. Extreme summer temperature events - which are expected to occur with increasing frequency in the coming century - can stress and ultimately kill native coldwater fish in lakes where thermal stratification is absent or highly limited. Based on data from northeastern North America, we argue that recovery from acid deposition has the potential to improve the resilience of coldwater fish populations in some lakes to impacts of climate change. This will occur as the amount of dissolved organic carbon (DOC) in the water increases with increasing lake pH. Increased DOC will reduce water clarity and lead to shallower and more persistent lake thermoclines that can provide larger areas of coldwater thermal refuge habitat. Recovery from acidification will not eliminate the threat of climate change to coldwater fish, but secondary effects of acid recovery may improve the resistance of coldwater fish populations in lakes to the effects of elevated summer temperatures in historically acidified ecosystems. This analysis highlights the importance of considering the legacy of past ecosystem impacts and how recovery or persistence of those effects may interact with climate change impacts on biota in the coming decades.

  8. Financing climate change adaptation.

    Science.gov (United States)

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  9. EXPLORING CLIMATE CHANGE EFFECTS ON WATERSHED SEDIMENT YIELD AND LAND COVER-BASED MITIGATION MEASURES USING SWAT MODEL, RS AND GIS: CASE OF CAGAYAN RIVER BASIN, PHILIPPINES

    OpenAIRE

    J. A. Principe

    2012-01-01

    The impact of climate change in the Philippines was examined in the country's largest basin–the Cagayan River Basin–by predicting its sediment yield for a long period of time. This was done by integrating the Soil and Water Assessment Tool (SWAT) model, Remote Sensing (RS) and Geographic Information System (GIS). A set of Landsat imageries were processed to include an atmospheric correction and a filling procedure for cloud and cloud-shadow infested pixels was used to maximize eac...

  10. Geoengineering: Direct Mitigation of Climate Warming

    Science.gov (United States)

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earth’s climate system appears to be rapidly shifting into a warmer regime....

  11. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  12. Financing Sustainable Agriculture Under Climate Change

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-kun; WANG Yang-jie

    2014-01-01

    Agriculture is facing great challenge in meeting global food security and is expected to face even greater challenge under climate change. The overall goal of this paper is to examine how ifnance can be used to achieve the joint objectives of development, mitigation of and adaptation to climate change in agriculture in developing world based on literature review. The results show that agriculture is much under invested and foreign aid also has not increased appropriately to assist developing countries to maintain sustainable agriculture under climate change. There are a wide range of areas in mitigation of and adaptation to climate change that need substantial investment. Major areas and successful cases mitigation of and adaptation to climate change in agriculture that have worked in developing countries are examined. A list of areas that have worked, could work and be scaled up or transferred is identiifed and discussed. This study concludes that mainstreaming agricultural mitigation and adaptation into agricultural development programs, enhancing local capacity, and considering different stakeholders’ needs are major experiences for successfully ifnancing sustainable agriculture under climate change.

  13. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  14. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  15. The Environmental Justice Dimensions of Climate Change

    OpenAIRE

    Miranda, Marie Lynn; Hastings, Douglas Andrew; Aldy, Joseph Edgar; Schlesinger, William H.

    2011-01-01

    Nations around the world are considering strategies to mitigate the severe impacts of climate change predicted to occur in the twenty-first century. Many countries, however, lack the wealth, technology, and government institutions to effectively cope with climate change. This study investigates the varying degrees to which developing and developed nations will be exposed to changes in three key variables: temperature, precipitation, and runoff. We use Geographic Information Systems (GIS) anal...

  16. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  17. Climate Change and Vietnam

    Science.gov (United States)

    2013-11-01

    expansion of large hydropower and reservoir construction can increase social resilience through associated economic development . However, the same...of the most vulnerable countries globally to the consequences of climate change, Vietnam is highly likely to experience a variety of negative...iii ABSTRACT Climate Change and Vietnam As one of the most vulnerable countries globally to the consequences

  18. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  19. Research activities related to the role of forests and forestry in climate change mitigation in Austria. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Weiss P.

    2000-01-01

    Full Text Available Forests and forestry play important roles in Austria with its close to 50/ forest cover. This paper provides details about the Austrian forest carbon inventory, discusses briefly the sources and sinks accounted under the land use, land use change and forestry articles of the Kyoto Protocol, and presents an integrated carbon model (Austrian C-Balance Model that was developed to include not only the forest sector, but other sectors that are greenhouse-gas relevant. Improvements in forest management practices are seen as important possibilities of increasing the carbon sink strength of Austrian forests, but also of pursuing other goals such as increased biodiversity and resistance to future climate-change impacts. This paper presents a process model and a carbon accounting model that are applicable for evaluating carbon impacts of changes in forest management.

  20. Nursing and climate change: An emerging connection.

    Science.gov (United States)

    Adlong, William; Dietsch, Elaine

    2015-01-01

    Awareness of the importance of climate change to public health has been growing. Calls for health professionals, including nurses, to take action to prepare for, and mitigate, climate change have been coming from a number of credible sources. This paper will assist nurses to recognise the health consequences of climate change, to generate and disseminate knowledge about these health consequences, to be active in mitigating emissions locally and within their organisations and to advocate and have input into policy processes. It is valuable for nurses to understand the health co-benefits of emission mitigation and the current health costs of fossil fuels. As advocates for evidence-based public health initiatives, nurses have a role to play in communicating to the public and to policy makers accurate information, including about the health costs of fossil fuel policies and the affordability of renewable energy technologies.

  1. India's National Action Plan on Climate Change.

    Science.gov (United States)

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  2. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting......This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  3. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  4. Green cities, smart people and climate change

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Harrison, T.

    2014-12-01

    Climate change will require substantial changes to urban environments. Cities are huge sources of greenhouse gases. Further, cities will suffer tremendously under climate change due to heat stresses, urban flooding, energy and water supply and demand changes, transportation problems, resource supply and demand and a host of other trials and tribulations. Cities that evolve most quickly and efficiently to deal with climate change will likely take advantage of the changes to create enjoyable, healthy and safer living spaces for families and communities. Technology will provide much of the capability to both mitigate and adapt our cities BUT education and coordination of citizen and community lifestyle likely offers equal opportunities to make our cities more sustainable and more enjoyable places to live. This work is the first phase of a major project evaluating urban mitigation and adaptation policies, programs and technologies. All options are considered, from changes in engineering, planning and management; and including a range of citizen and population-based lifestyle practices.

  5. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  6. Basic research on energy conservation in developing countries. Report of the International Conference on Adaptation and Mitigation Technologies for Climate Change; Hatten tojokoku energy shohi koritsuka kiso chosanado jigyo. Kiko hendo ni kansuru tekio kanwa gijutsu kokusai kaigi hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The International Conference on Adaptation and Mitigation Technologies for Climate Change was held based on the 1st Conference of the Parties in 1995 of the United Nations Framework Convention on Climate Change, and the 2nd evaluation report of the Intergovernmental Panel on Climate Change (IPCC). This report carries the outline of this conference and minutes. Japanese government had studied the framework of activities implemented jointly (AIJ) for emission control of greenhouse gases by voluntary workers jointly with developing countries. The government decided the basis of the AIJ Japan program in 1995, and approved the evaluation guidelines of this program including confirmed and considered matters which are necessary for government offices related to this program to evaluate and approve each project. IPCC approved the 2nd evaluation report in its general meeting in 1995. This conference was thus held to discuss strategic technology and international cooperation with participation of writers of the 2nd IPCC report, policy planners of Asian countries, Japanese industries, governmental offices and NGO.

  7. How nature copes with climate change.

    Science.gov (United States)

    Gross, Michael

    2015-11-16

    As the world is about to find out whether or not our civilisation is up to the challenge of dealing with climate change, research shows a wide range of responses from other species, which may benefit or suffer from the change, and mitigate it or make it worse. Michael Gross reports.

  8. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  9. Biological approaches to global environment change mitigation and remediation.

    Science.gov (United States)

    Woodward, F Ian; Bardgett, Richard D; Raven, John A; Hetherington, Alistair M

    2009-07-28

    One of the most pressing and globally recognized challenges is how to mitigate the effects of global environment change brought about by increasing emissions of greenhouse gases, especially CO(2). In this review we evaluate the potential contribution of four biological approaches to mitigating global environment change: reducing atmospheric CO(2) concentrations through soil carbon sequestration and afforestation; reducing predicted increases in global surface temperatures through increasing the albedo of crop plants; and fertilizing the oceans to increase primary productivity and CO(2) drawdown. We conclude that none of these biological approaches are 'magic bullets' capable of reversing environmental changes brought about by increasing emissions of greenhouse gases. However, it is possible that increasing crop albedo and soil carbon sequestration might contribute towards mitigation on a regional scale. In the absence of legally binding international agreements to reduce CO(2) emissions, we propose that: increased efforts are made to identify novel biological mitigatory strategies; further research is conducted to minimise the uncertainties present in all four of the biological approaches described; and pilot-level field work is conducted to examine the feasibility of the most promising strategies. Finally, it is essential to engage with the public concerning strategies for mitigating the effects of climate change because the majority of the biological approaches have effects, quite possibly of a negative nature, on ecosystem services and land usage.

  10. Assessing the observed impact of anthropogenic climate change

    NARCIS (Netherlands)

    Hansen, G.E.

    2015-01-01

    Assessing the observed impact of anthropogenic climate change Gerrit Hansen Global climate change is unequivocal, and greenhouse gas emissions continue rising despite international mitigation efforts. Hence whether and to what extent the impacts of human induced climate change are a

  11. The Paris Agreement on Climate Change: Agriculture and Food Security

    NARCIS (Netherlands)

    Verschuuren, Jonathan

    2016-01-01

    Climate change has a profound impact on agriculture and on food security. At the same time agriculture contributes to climate change to a considerable extent. Fortunately there is also much to gain since the agricultural sector holds significant climate change mitigation potential through reductions

  12. Changes in Climate Driving Changes in Architectural Education

    Directory of Open Access Journals (Sweden)

    Maibritt Pedersen Zari

    2012-09-01

    Full Text Available Sustainability issues, in particular climate change, have become significant drivers of change in architectural education. It is posited that engaging in the reduction and offsetting of greenhouse gas emissions in academic institutions, particularly those responsible for the education of new generations of built environment professionals, could become an important part of creating built environments that can more effectively contribute to mitigating the causes of climate change.

  13. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  14. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  15. The potential of pyrolysis technology in climate change mitigation - influence of process design and - parameters, simulated in SuperPro Designer software

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, T.; Hauggaard-Nielsen, H.; Bruun, E.W.; Ahrenfeldt, J.

    2011-01-15

    This report investigates whether or not it would be possible to produce carbon-negative energy from pyrolysis of wheat straw in a series of Danish agricultural scenarios. A combination of process simulation in SuperPro Designer software, correlations derived from literature studies and experimental work, and overall balance calculations has been applied in the process. The study deviates from other studies of pyrolysis and biochar production by the inclusion of substitution energy impact on the overall carbon-balance. Substitution energy is integrated to account for the gap between the energy production from the pyrolysis and the full energy potential of the biomass, quantified by complete conversion in either combustion or gasification systems. It was concluded that it is feasible to produce carbon-negative energy under a variation of different settings, but also that the negative carbon-balance is only robust for the slow pyrolysis scenario. The CO{sub 2} benefit of the most carbon-negative slow pyrolysis process is estimated to be around 10 % of the atmospheric carbon stored in the original biomass when natural gas is applied for energy substitution. This process avoids the emission of around 150-200 kg CO{sub 2}/ton wheat straw with substitution energy with a Denmark 2007 average carbon-intensity. This result is weighted against the net emissions of the carbon-'neutral' process of conventional combustion. This emission is in this report estimated to be around 50 - 150 kg CO{sub 2}/ton straw depending on scenario settings. The final results of the study have been compared to another study with convincing results. Results concluded that the primary force of the pyrolysis technology is the recalcitrant char product and not the pyrolysis oil. Based on this, the study suggests that despite the trend in commercial pyrolysis technology that focuses on fast pyrolysis processes with maximized bio-oil production, the twin challenge of climate mitigation and

  16. Situating Climate Security, The Department of Defense's Role in Mitigating Climate Change's Causes and Dealing with its Effects; Strategic Insights; v. 9, issue 2 (Fall 2010) pp. 13-25.

    OpenAIRE

    CLAUSEN, Daniel; Clausen, Michael

    2010-01-01

    This article appeared in Strategic Insights, v.9, issue 2 (Fall 2010) pp. 13-25. Approved for public display, distribution unlimited An Emerging Security Focus: Climate Security. A new concern is circulating among policymakers, think tanks, and scholars: securing the planet’s climate. For those who debate what counts as “national security,” the question over whether climate change should be framed as a security issue has been argued along well-worn lines. For those who seek a more expan...

  17. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    OpenAIRE

    Kaul, M; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories (forest land and non-forest land) for two management practices (short rotation vs. long rotation) to study mitigation potential of afforestation and fossil fuel substitution as compared to carbon ...

  18. The “New” Environmental Policy of the European Union: A Path to Development of a Circular Economy and Mitigation of the Negative Effects of Climate Change

    Directory of Open Access Journals (Sweden)

    Wysokińska Zofia

    2016-06-01

    Full Text Available This paper analyses the evolution of the new environmental policy of the European Union in the context of the efforts undertaken to moderate the negative effects of climate change. It describes all the activities in the European Union designed to implement new tools of the EU environmental policy, such as low carbon economy technologies, tools that improve the efficiency of managing the limited natural resources, the environmentally friendly transport package, etc. All of them are aimed at laying the foundations of the circular economy, which may also be referred to as a closed-loop economy, i.e., an economy that does not generate excessive waste and whereby any waste becomes a resource.

  19. Alleviating inequality in climate policy costs: an integrated perspective on mitigation, damage and adaptation

    Science.gov (United States)

    De Cian, E.; Hof, A. F.; Marangoni, G.; Tavoni, M.; van Vuuren, D. P.

    2016-07-01

    Equity considerations play an important role in international climate negotiations. While policy analysis has often focused on equity as it relates to mitigation costs, there are large regional differences in adaptation costs and the level of residual damage. This paper illustrates the relevance of including adaptation and residual damage in equity considerations by determining how the allocation of emission allowances would change to counteract regional differences in total climate costs, defined as the costs of mitigation, adaptation, and residual damage. We compare emission levels resulting from a global carbon tax with two allocations of emission allowances under a global cap-and-trade system: one equating mitigation costs and one equating total climate costs as share of GDP. To account for uncertainties in both mitigation and adaptation, we use a model-comparison approach employing two alternative modeling frameworks with different damage, adaptation cost, and mitigation cost estimates, and look at two different climate goals. Despite the identified model uncertainties, we derive unambiguous results on the change in emission allowance allocation that could lessen the unequal distribution of adaptation costs and residual damages through the financial transfers associated with emission trading.

  20. Population and Climate Change

    Science.gov (United States)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  1. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  2. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  3. Climate change and cities

    Energy Technology Data Exchange (ETDEWEB)

    Satterthwaite, David

    2006-10-15

    What is done, or not done, in cities in relation to climate change over the next 5-10 years will affect hundreds of millions of people, because their lives and livelihoods are at risk from global warming. What is done in cities will also have a major influence on whether the escalating risks for the whole planet will be reduced or eliminated. Climate change needs to be considered in all development plans and investments - local, regional, national and international. Urban growth must be made more climate-resilient and help reduce, rather than increase, greenhouse gas emissions. This will not be done by the market; it can only be done by governments.

  4. Climate change and trace gases.

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  5. The deep ocean under climate change

    Science.gov (United States)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  6. The deep ocean under climate change.

    Science.gov (United States)

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  7. In Brief: Action on climate change urged

    Science.gov (United States)

    Showstack, Randy

    2008-06-01

    The science academies of the G8 countries-along with those in China, India, Brazil, Mexico, and South Africa-on 10 June issued a joint statement urging leaders at July's G8 Summit in Japan to take action on climate change. The statement indicates, ``Responding to climate change requires both mitigation and adaptation to achieve a transition to a low carbon society and our global sustainability objectives.'' In the statement, the academies urge all nations, and particularly those participating in the summit, to take a series of actions to deal with climate change. The statement is available at http://www.nationalacademies.org/includes/climatechangestatement.pdf.

  8. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report

    DEFF Research Database (Denmark)

    Bogner, J.P.; Pipatti, R.; Hashimoto, S.

    2008-01-01

    through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste...... quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints. Existing studies on mitigation potentials and costs for the waste sector tend to focus on landfill CH4 as the baseline...

  9. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems

    DEFF Research Database (Denmark)

    del Prado, A; Crosson, P; Olesen, Jørgen E;

    2013-01-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quant......The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed...

  10. Climate change in EIA - Inspiration from practice

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2013-01-01

    taking place. For exploring the praxis of integrating climate change in practice a document study of 100 Danish EIA reports is carried out. From these reports, statistics and examples are drawn. The study shows an emphasis on integration of climate change mitigation, using various quantitative tools......Climate change integration has been a topic of much interest in the field of impact assessment for a period, and thus far quite some emphasis has been put on discussions of purpose, relevance and overall approaches in both Environmental Impact Assessment of projects (EIA) and Strategic...... Environmental Assessments of plans and programmes (SEA). However, EIAs and SEAs are already being made, which integrate climate change, and for some aspects this practice has evolved over a long period. This paper seeks to explore this practice and find inspiration from the work with climate change already...

  11. Mesocosms Reveal Ecological Surprises from Climate Change.

    Science.gov (United States)

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  12. Global climate change and international security.

    Energy Technology Data Exchange (ETDEWEB)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  13. Effective Strategies for Talking about Climate Change in the Classroom

    Science.gov (United States)

    Busch, K. C.; Osborne, Jonathan

    2014-01-01

    Teaching about climate science presents some unique challenges. Unlike many other science topics, mitigation and adaptation to climate change will require students to take action. This article outlines five major challenges to communicating about climate change in the classroom, drawing on research in environmental psychology: scepticism,…

  14. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories

  15. Energy measures report: Government response and summary of responses to consultation on guidance to local authorities in England and Wales on climate change mitigation and fuel poverty

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-11-15

    In accordance with the Climate Change and Sustainable Energy Act 2006, the Government is required to produce an 'energy measures report' that must contain information on measures that local authorities can take in order to: a) improve energy efficiency; b) increase the levels of microgeneration and low carbon technologies; c) reduce greenhouse gas emissions; and d) reduce the number of households living in fuel poverty. The Government published a consultation document on 9 May 2007, with a deadline for all responses by 1 August 2007. The consultation sought views on the approach that the government should take towards the report. This document provides a summary of consultation responses to the consultation on the energy measures report URN 07/977). The consultation was carried out in three ways, written responses were invited, a half-day workshop was held in July 2007 and telephone interviews were also conducted. Impetus Consulting Limited was contracted to analyse the responses and produce a report of the responses. The Government published the Energy Measures Report on 18 September 2007.

  16. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  17. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valerie; Swingedouw, D.; Landais, A.

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...

  18. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  19. How can small hydro energy and other renewable energy mitigate impact of climate change in remote Central Africa: Cameroon case study.

    Science.gov (United States)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Central Africa owns important renewable energy potential, namely hydro, solar and biomass. This important potential is still suffering from poor development up to the point where the sub region is still abundantly using the fossil energy and biomass as main power source. This is harmful to the climate and the situation is still ongoing. The main cause of the poor use of renewable energy is the poor management of resources by governments who have not taken the necessary measures to boost the renewable energy sector. Since the region is experiencing power shortage, thermal plants are among other solutions planned or under construction. Firewood is heavily used in remote areas without a sustainability program behind. This solution is not environment friendly and hence is not a long term solution. Given the fact that the region has the highest hydro potential of the continent, up to one-quarter of the world's tropical forest, important oil production with poor purchase power, the aim of this paper is to identify actions for improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure in Central Africa and the promotion of small hydro and other renewable energy. The work will show at first the potential for the three primary energy sources which are solar, biomass and hydro while showing where available the level of development, with an emphasis on small hydro. Then identified obstacles for the promotion of clean energy will be targeted. From lessons learned, suggestions will be made to help the countries develop an approach aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon has a great renewable energy potential and some data are available on energy. From the overview of institutional structure reform of the Cameroon power sector and assessments, specific suggestions based on the weaknesses

  20. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  1. Abrupt climate change: can society cope?

    Science.gov (United States)

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  2. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  3. Importance of food-demand management for climate mitigation

    Science.gov (United States)

    Bajželj, Bojana; Richards, Keith S.; Allwood, Julian M.; Smith, Pete; Dennis, John S.; Curmi, Elizabeth; Gilligan, Christopher A.

    2014-10-01

    Recent studies show that current trends in yield improvement will not be sufficient to meet projected global food demand in 2050, and suggest that a further expansion of agricultural area will be required. However, agriculture is the main driver of losses of biodiversity and a major contributor to climate change and pollution, and so further expansion is undesirable. The usual proposed alternative--intensification with increased resource use--also has negative effects. It is therefore imperative to find ways to achieve global food security without expanding crop or pastureland and without increasing greenhouse gas emissions. Some authors have emphasized a role for sustainable intensification in closing global `yield gaps' between the currently realized and potentially achievable yields. However, in this paper we use a transparent, data-driven model, to show that even if yield gaps are closed, the projected demand will drive further agricultural expansion. There are, however, options for reduction on the demand side that are rarely considered. In the second part of this paper we quantify the potential for demand-side mitigation options, and show that improved diets and decreases in food waste are essential to deliver emissions reductions, and to provide global food security in 2050.

  4. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  5. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  6. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  7. Climate Change and Future World

    Science.gov (United States)

    2013-03-01

    fresh water. Movements of migrants from northern Africa and the Middle-East are already a security problem for Europe . This phenomenon is likely to be...Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http://library.globalchange.gov/climate...06/2013. 21 U.S. Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http

  8. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  9. Linkages between development and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K. [UNEP, Roskilde (Denmark); Verhagen, J. [Plant Res. International, Wageningen (Netherlands); Rovere, E. La [Centro Clima. Centre for Integrated Studies on Climate Change and Environment, Rio de Janeiro (Brazil); Klein, R. [Potsdam Inst. for Climate Impacts Res., PIK, Potsdam (DE); Huq, S. [International Inst. for Environment and Development, IIED, London (United Kingdom)

    2003-11-01

    This paper aims at assessing how the development and climate change literature has considered potential linkages and synergies between general development policies and climate change adaptation and mitigation policies. The starting point for this review is to give an overview of how alternative economic development paradigms can be used as a background for understanding and assessing development and climate linkages. In this way, it is demonstrated how climate change issues are related to basic factors in economic and social development processes, as an introduction to a discussion about how alternative policy recommendations for integrated development and climate policies can be understood in the context of different development paradigms. The last part of the paper returns to the climate change and sustainable development discussion that in recent years has been running in parallel to the Third Assessment of IPCC. This discussion, to a large extent has been dominated by the climate change agenda rather than a broader development policy perspectives, and the paper finally suggests a number of areas where integrated development and climate studies could anchor climate change studies more in the development agenda. (au)

  10. The role of biomass and CCS in China in a climate mitigation perspective

    DEFF Research Database (Denmark)

    Lüthje, Mikael; Karlsson, Kenneth Bernard; Gregg, Jay Sterling

    2011-01-01

    As the world’s largest emitter of greenhouse gasses (GHGs), China plays a central role in the suite of options for climate change mitigation. To analyze the importance of biomass and carbon capture and storage (CCS) availability in China, varying levels of these parameters are created...... and then global climate scenarios are simulated using TIAM (TIMES Integrated Assessment Model). TIAM is a 16-region global energy system optimization model that includes a climate module that calculates the global concentrations of GHGs in the atmosphere. We analyze the potential for using biomass, CCS......, and bioenergy CCS (BECCS) in China under the constraint of meeting a climate stabilization target such that dangerous climate change (as defined by the Copenhagen Accord) is avoided. When considering hypothetical scenarios where GHG emissions are constrained, China consumes all available domestic biomass...

  11. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  12. Adaptation to climate change

    NARCIS (Netherlands)

    Carmin, J.; Tierney, K.; Chu, E.; Hunter, L.M.; Roberts, J.T.; Shi, L.; Dunlap, R.E.; Brulle, R.J.

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  13. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  14. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  15. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7.......4 billion during 2003–2050. Our analysis identifies improved road design and agricultural sector investments as key ‘no-regret’ adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management...

  16. Climate modelling, uncertainty and responses to predictions of change

    Energy Technology Data Exchange (ETDEWEB)

    Henderson-Sellers, A. [Climatic Impacts Centre, Macquarie University, Sydney (Australia)

    1996-12-31

    Article 4.1(F) of the Framework Convention on Climate Change commits all parties to take climate change considerations into account, to the extent feasible, in relevant social, economic and environmental policies and actions and to employ methods such as impact assessments to minimize adverse effects of climate change. This could be achieved by, inter alia, incorporating climate change risk assessment into development planning processes, i.e. relating climatic change to issues of habitability and sustainability. Adaptation is an ubiquitous and beneficial natural and human strategy. Future adaptation (adjustment) to climate is inevitable at the least to decrease the vulnerability to current climatic impacts. An urgent issue is the mismatch between the predictions of global climatic change and the need for information on local to regional change in order to develop adaptation strategies. Mitigation efforts are essential since the more successful mitigation activities are, the less need there will be for adaptation responses. And, mitigation responses can be global (e.g. a uniform percentage reduction in greenhouse gas emissions) while adaptation responses will be local to regional in character and therefore depend upon confident predictions of regional climatic change. The dilemma facing policymakers is that scientists have considerable confidence in likely global climatic changes but virtually zero confidence in regional changes. Mitigation and adaptation strategies relevant to climatic change can most usefully be developed in the context of sound understanding of climate, especially the near-surface continental climate, permitting discussion of societally relevant issues. But, climate models can`t yet deliver this type of regionally and locationally specific prediction and some aspects of current research even seem to indicate increased uncertainty. These topics are explored in this paper using the specific example of the prediction of land-surface climate changes.

  17. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  18. Climate for Culture : assessing the impact of climate change on the future indoor climate in historic buildings using simulations

    OpenAIRE

    2015-01-01

    Background The present study reports results from the large-scale integrated EU project "Climate for Culture". The full name, or title, of the project is Climate for Culture: damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in times of climate change. This paper focusses on implementing high resolution regional climate models together with new building simulation tools in order to predict future outdoor and indoor climate cond...

  19. Lutte contre le changement climatique. Local, global : intégrer atténuation et adaptation ----- Fighting climate change. Local, global: integrating mitigation and adaptation

    OpenAIRE

    LOCATELLI, Bruno

    2010-01-01

    N°3 - Les forêts illustrent comment articuler atténuation du changement climatique et adaptation.; Depuis la prise de conscience des impacts présents et potentiels du changement climatique, les réponses se sont davantage focalisées sur la réduction des gaz à effet de serre (GES) dans l'atmosphère, l'" atténuation " (mitigation en anglais), que sur la réduction de la vulnérabilité des sociétés et des écosystèmes face au changement climatique, " l'adaptation ". Aujourd'hui, le changement du cli...

  20. Fragmentation in the Public Administration for Climate Change Mitigation: A Major Institutional Constraint for Energy Policy in the Transportation Sector of Thailand

    Directory of Open Access Journals (Sweden)

    Ratchaphong Klinsrisuk

    2013-07-01

    Full Text Available This paper focuses on how fragmentation in public administration has become a major institutional constraint on CO2 emission mitigation policies in Thailand, particularly for energy policy in the transportation sector. Most of our data are narratives and descriptions derived from in-depth interviews with various governmental agencies and academics. It was found that in practice, the environmental policy link between separated sectors continues to be weak because of the lack of appropriate institutional structure for integration. We conclude that the institutions tend to be independent, fragmented, and working on relatively narrow mandates. The closed decision-making processes and the organizational structures strongly bias the different administrative units towards their respective interests.

  1. A multi-criteria evaluation of policy instruments for climate change mitigation in the power generation sector of Trinidad and Tobago

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich Blechinger, Philipp Friedrich, E-mail: p.blechinger@gmx.de [Department of Environmental and Economic Policy, Berlin Institute of Technology, H 50, Strasse des 17. Juni 135, Berlin 10623 (Germany); Shah, Kalim U., E-mail: kalim_shah@hotmail.com [Arthur Lok-Jack Graduate School of Business, University of the West Indies, P.O. Box 4874, Max Richards Drive, Uriah Butler Highway N.W., Mount Hope (Trinidad and Tobago); Faculty of Environmental Studies, York University, HNES 109, 4700 Keele St., Toronto, Ontario, M3J 1P3 (Canada)

    2011-10-15

    Even as small island developing states (SIDS) like Trinidad and Tobago (T and T) increase industrialization and grapple with the challenges of increased pollution, few studies provide guidance to policy makers of such countries on appropriate policy measures and instruments that can be implemented to mitigate greenhouse gas emissions. Here we apply a multi-criteria evaluation methodology to ascertain preferences for policy measures and instruments in the power generation sector. Four broad policy measures and twelve policy instruments are assessed on criteria of environmental performance, feasibility of implementation and political acceptability. This method proves useful in T and T, since typical to many SIDS, the intensive data required by other policy assessment methods is unavailable. Results indicate little difference in preference among the four policy measures thereby indicating that a multi-pronged approach on several policy fronts is required. The most preferred policy instruments to operationalize measures included provision of subsidies for energy saving technologies, creating an industry wide carbon trading scheme and implementing a feed-in tariff to increase the use of renewable energy sources. This study therefore provides specific insights for policy makers in Trinidad and Tobago while also providing power generation sector specific guidance to other rapidly industrializing small island developing states. - Highlights: > Application of the MCA as research method to evaluate policy instruments for SIDS. > Evaluation of the importance of evaluation criteria for greenhouse gas policy. > Difference in policy preferences among industry, academic and policy experts. > Results of panel evaluation of twelve greenhouse gas mitigation policy instruments. > Planning a way forward for greenhouse gas policy in Trinidad and Tobago.

  2. The importance of contrail ice formation for mitigating the climate impact of aviation

    Science.gov (United States)

    Kärcher, B.

    2016-04-01

    Aircraft contrails and the cirrus clouds arising from them contribute substantially to aviation-induced climate forcing. The share of aviation in anthropogenic climate change can be reduced by avoiding contrail cirrus formation. The mitigation potential of altering the contrail formation stage is explored using a microphysical model to show how reductions in soot particle number emissions from jet engines, reductions in mean soot particle size, and a decrease in the supersaturation of aircraft exhaust plumes substantially lowers the optical depth of young contrails thereby decreasing the occurrence, lifetime, and radiative impact of contrail cirrus. The improved scientific understanding of initial ice formation processes allows atmospheric effects of mitigation options related to contrail cirrus to be investigated in unprecedented detail, especially those associated with the use of alternative aviation fuels. This study will enable a leap forward toward more reliable simulations addressing global climatic effects of contrail-induced cloudiness.

  3. Hantaviruses and climate change.

    Science.gov (United States)

    Klempa, B

    2009-06-01

    Most hantaviruses are rodent-borne emerging viruses. They cause two significant human diseases, haemorrhagic fever with renal syndrome in Asia and Europe, and hantavirus cardiopulmonary syndrome in the Americas. Very recently, sever