WorldWideScience

Sample records for climate change ecological

  1. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    Contemporary impacts of anthropogenic climate change on ecosystems are increasingly being recognized. Documenting the extent of these impacts requires quantitative tools for analyses of ecological observations to distinguish climate impacts in noisy data and to understand interactions between...... climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...

  2. Designing ecological climate change impact assessments to reflect key climatic drivers.

    Science.gov (United States)

    Sofaer, Helen R; Barsugli, Joseph J; Jarnevich, Catherine S; Abatzoglou, John T; Talbert, Marian K; Miller, Brian W; Morisette, Jeffrey T

    2017-07-01

    Identifying the climatic drivers of an ecological system is a key step in assessing its vulnerability to climate change. The climatic dimensions to which a species or system is most sensitive - such as means or extremes - can guide methodological decisions for projections of ecological impacts and vulnerabilities. However, scientific workflows for combining climate projections with ecological models have received little explicit attention. We review Global Climate Model (GCM) performance along different dimensions of change and compare frameworks for integrating GCM output into ecological models. In systems sensitive to climatological means, it is straightforward to base ecological impact assessments on mean projected changes from several GCMs. Ecological systems sensitive to climatic extremes may benefit from what we term the 'model space' approach: a comparison of ecological projections based on simulated climate from historical and future time periods. This approach leverages the experimental framework used in climate modeling, in which historical climate simulations serve as controls for future projections. Moreover, it can capture projected changes in the intensity and frequency of climatic extremes, rather than assuming that future means will determine future extremes. Given the recent emphasis on the ecological impacts of climatic extremes, the strategies we describe will be applicable across species and systems. We also highlight practical considerations for the selection of climate models and data products, emphasizing that the spatial resolution of the climate change signal is generally coarser than the grid cell size of downscaled climate model output. Our review illustrates how an understanding of how climate model outputs are derived and downscaled can improve the selection and application of climatic data used in ecological modeling. © 2017 John Wiley & Sons Ltd.

  3. Climate change and ecological public health.

    Science.gov (United States)

    Goodman, Benny

    2015-02-17

    Climate change has been identified as a serious threat to human health, associated with the sustainability of current practices and lifestyles. Nurses should expand their health promotion role to address current and emerging threats to health from climate change and to address ecological public health. This article briefly outlines climate change and the concept of ecological public health, and discusses a 2012 review of the role of the nurse in health promotion.

  4. Ecological responses to recent climate change

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Gian-Reto [Hannover Univ., Inst. of Geobotany, Hannover (Germany); Post, Eric [Pennsylvania State Univ., Dept. of Biology, University Park, PA (United States); Convey, Peter [British Antarctic Survey, Natural Environment Research Council, Cambridge (United Kingdom); Menzel, Annette [Technical Univ. Munich, Dept. of Ecology, Freising (Germany); Parmesan, Camille [Texas Univ., Patterson Labs., Integrative Biology Dept., Austin, TX (United States); Beebee, Trevor J.C. [Sussex Univ., School of Biological Sciences, Brighton (United Kingdom); Fromentin, Jean-Marc [IFREMER, Centre Halieutique Mediterraneen et Tropical, Sete, 34 (France); Hoegh-Guldberg, Ove [Queensland Univ., Centre for Marine Studies, St Lucia, QLD (Australia); Bairlein, Franz [Institute for Avian Research ' Vogelwarte Helgoland' , Wilhelmshaven (Germany)

    2002-03-28

    There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organisational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible. (Author)

  5. Political economy of climate change, ecological destruction and uneven development

    International Nuclear Information System (INIS)

    O'Hara, Phillip Anthony

    2009-01-01

    The purpose of this paper is to analyze climate change and ecological destruction through the prism of the core general principles of political economy. The paper starts with the principle of historical specificity, and the various waves of climate change through successive cooler and warmer periods on planet Earth, including the most recent climate change escalation through the open circuit associated with the treadmill of production. Then we scrutinize the principle of contradiction associated with the disembedded economy, social costs, entropy and destructive creation. The principle of uneven development is then explored through core-periphery dynamics, ecologically unequal exchange, metabolic rift and asymmetric global (in)justice. The principles of circular and cumulative causation (CCC) and uncertainty are then related to climate change dynamics through non-linear transformations, complex interaction of dominant variables, and threshold effects. Climate change and ecological destruction are impacting on most areas, especially the periphery, earlier and more intensely than previously thought likely. A political economy approach to climate change is able to enrich the analysis of ecological economics and put many critical themes in a broad context. (author)

  6. The biological consequences of climate changes: An ecological and economic assessment

    International Nuclear Information System (INIS)

    Batie, S.S.; Shugart, H.H.

    1991-01-01

    The following subject areas are covered: (1) the level of climate change; (2) impacts of climate change on ecological systems (short-term (decadal), medium term (centenary), and long-term (millennial) effects); and (3) ecological consequences of climate change - evaluating the social costs (the problem of valuing consequences, intergenerational problem, and safe minimum standard strategies and policies)

  7. Climate change: Implications for water and ecological resources

    International Nuclear Information System (INIS)

    Wall, G.; Sanderson, M.

    1990-01-01

    A conference was held to discuss the implications of climate change on water and ecological resources. The meeting consisted of a number of plenary sessions, luncheon speeches, an open forum, and five workshops. Presentations concerned regional and global issues, climate modelling, international aspects of climate change, water resources supply and demand, wetlands, wildlife and fisheries, agriculture and forests, and conservation strategies. Separate abstracts have been prepared for 32 presentations from the conference

  8. Ecological Footprint in relation to Climate Change Strategy in Cities

    Science.gov (United States)

    Belčáková, Ingrid; Diviaková, Andrea; Belaňová, Eliška

    2017-10-01

    Ecological footprint determines how much natural resources are consumed by an individual, city, region, state or all inhabitants of our planet in order to ensure their requirements and needs. It includes all activities, from food consumption, housing, transport to waste produced and allows us to compare particular activities and their impacts on the environment and natural resources. Ecological footprint is important issue for making sustainable development concept more popular using simplifications, which provide the public with basic information on situation on our planet. Today we know calculations of global (worldwide), national and local ecological footprints. During our research in cities, we were concentrated on calculation of city’s ecological footprint. The article tries to outline theoretical and assumptions and practical results of climate change consequences in cities of Bratislava and Nitra (Slovakia), to describe potential of mitigating adverse impacts of climate change and to provide information for general and professional public on theoretical assumptions in calculating ecological footprint. The intention is to present innovation of ecological footprint calculation, taking into consideration ecological stability of a city (with a specific focus on micro-climate functions of green areas). Present possibilities to reduce ecological footprint are presented.

  9. Political Ecology, Island Tourism Planning, and Climate Change Adaptation on Boracay, Philippines

    Directory of Open Access Journals (Sweden)

    Virgilio Maguigad

    2015-12-01

    Full Text Available This research paper presents a case study of the island of Boracay, Philippines, utilising a political ecology approach to climate change adaptation. The research finds that the island’s political ecology, especially the relationships among stakeholders, is strained. This creates challenges for various urban planning processes that require good working relationships. Climate change is expected to highlight these divisions as interactions among stakeholders (fulfilling zoning ordinance obligations, climate change adaptation- compliant land use plans, etc. are dependent on good stakeholder relations. Stakeholders realise that climate change is real and that sea level rise is already challenging existing zoning ordinances on urban beach development. However, this realisation must be integrated into political decision-making processes involving tourism stakeholders. The research also shows that the political ecology approach and methodology is applicable to studying the dynamics of climate change adaptation and tourism urbanisation on small islands.

  10. Vulnerability of social-ecological system to climate change in Mongolia

    Science.gov (United States)

    Kakinuma, K.; Yanagawa, A.; Sasaki, T.; Kanae, S.

    2017-12-01

    Coping with future climate changes are one of the most important issues in the world. IPCC (2014) suggested that vulnerability and exposure of social-ecological systems to extreme climatic events (hazard) determine the impact of climate changes. Although the schematic framework is widely accepted, there are high uncertainty of vulnerability of social and ecological systems and it makes difficult to examine it in empirical researches. Our objective is to assess the climate change impact on the social-ecological system in Mongolia. We review researches about trends of climate (Hazard), vegetation, pastoral mobility (Vulnerability) and livestock distribution (Exposure) across Mongolia Climate trends are critical for last several decades and thus hazard may be increasing in Mongolia. Temperature is increasing with high confidence in all regions. Precipitation are slightly decreasing with medium confidence across the country, especially in northern and central regions. Exposure would also be increasing especially in northern, central and western regions, because livestock population are concentrating these regions after 1990. Generally, less productive ecosystems (e.g. few plant productivity and less species richness) are vulnerable to extreme climatic events such as drought. In that sense, southern region may be more vulnerable to climate changes than other regions. However, if we focus on pastoral mobility forms for drought, we get contractive conclusions. Pastoralists in southern region keep mobility to variable and scarce vegetation while pastoralists in northern region less mobile because of stable and much vegetation. Exclusive managements in northern region is able to maximized the number of livestock only under stable precipitation regimes. But at the same time, it is difficult to escape from hazardous areas when it is drought. Thus, in term of rangeland management, northern region would be more vulnerable to increase of drought intensity. Although northern and

  11. Ecological and evolutionary impacts of changing climatic variability.

    Science.gov (United States)

    Vázquez, Diego P; Gianoli, Ernesto; Morris, William F; Bozinovic, Francisco

    2017-02-01

    While average temperature is likely to increase in most locations on Earth, many places will simultaneously experience higher variability in temperature, precipitation, and other climate variables. Although ecologists and evolutionary biologists widely recognize the potential impacts of changes in average climatic conditions, relatively little attention has been paid to the potential impacts of changes in climatic variability and extremes. We review the evidence on the impacts of increased climatic variability and extremes on physiological, ecological and evolutionary processes at multiple levels of biological organization, from individuals to populations and communities. Our review indicates that climatic variability can have profound influences on biological processes at multiple scales of organization. Responses to increased climatic variability and extremes are likely to be complex and cannot always be generalized, although our conceptual and methodological toolboxes allow us to make informed predictions about the likely consequences of such climatic changes. We conclude that climatic variability represents an important component of climate that deserves further attention. © 2015 Cambridge Philosophical Society.

  12. Climate-driven changes in the ecological stoichiometry of aquatic ecosystems

    NARCIS (Netherlands)

    van de Waal, D.B.; Verschoor, A.M.; Verspagen, J.M.H.; van Donk, E.; Huisman, J.

    2010-01-01

    Advances in ecological stoichiometry, a rapidly expanding research field investigating the elemental composition of organisms and their environment, have shed new light on the impacts of climate change on freshwater and marine ecosystems. Current changes in the Earth's climate alter the availability

  13. Ecological and methodological drivers of species’ distribution and phenology responses to climate change

    KAUST Repository

    Brown, Christopher J.

    2015-12-10

    Climate change is shifting species’ distribution and phenology. Ecological traits, such as mobility or reproductive mode, explain variation in observed rates of shift for some taxa. However, estimates of relationships between traits and climate responses could be influenced by how responses are measured. We compiled a global dataset of 651 published marine species’ responses to climate change, from 47 papers on distribution shifts and 32 papers on phenology change. We assessed the relative importance of two classes of predictors of the rate of change, ecological traits of the responding taxa and methodological approaches for quantifying biological responses. Methodological differences explained 22% of the variation in range shifts, more than the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses from traits was hindered by poor representation of species from the tropics, where temperature isotherms are moving most rapidly. Thus, the mean rate of distribution change may be underestimated by this and other global syntheses. Our analyses indicate that methodological approaches should be explicitly considered when designing, analysing and comparing results among studies. To improve climate impact studies, we recommend that: (1) re-analyses of existing time-series state how the existing datasets may limit the inferences about possible climate responses; (2) qualitative comparisons of species’ responses across different studies be limited to studies with similar methodological approaches; (3) meta-analyses of climate responses include methodological attributes as covariates and; (4) that new time series be designed to include detection of early warnings of change or ecologically relevant change. Greater consideration of methodological attributes will improve the

  14. Ecological grief as a mental health response to climate change-related loss

    Science.gov (United States)

    Cunsolo, Ashlee; Ellis, Neville R.

    2018-04-01

    Climate change is increasingly understood to impact mental health through multiple pathways of risk, including intense feelings of grief as people suffer climate-related losses to valued species, ecosystems and landscapes. Despite growing research interest, ecologically driven grief, or `ecological grief', remains an underdeveloped area of inquiry. We argue that grief is a natural and legitimate response to ecological loss, and one that may become more common as climate impacts worsen. Drawing upon our own research in Northern Canada and the Australian Wheatbelt, combined with a synthesis of the literature, we offer future research directions for the study of ecological grief.

  15. National parks, ecological integrity and climatic change

    International Nuclear Information System (INIS)

    Lopoukhine, N.

    1990-01-01

    The potential impacts of climate change on the national parks of Canada are discussed. There is a requirement to protect and manage national parks to maintain a functioning ecosystem with all its parts and processes. An active management regime is necessary, with objectives of ecological diversity/integrity clearly stated. The national parks located in the Canadian Prairie provinces are on or near transitions from forest to tundra and grasslands, and are likely to exhibit the most dramatic changes. The change in vegetation of such parks and in others will not manifest itself simply as a shift of zones but will be accompanied by a flora with new dominants. The boreal forest within the Prairie provinces is fire dependent and has the potential of being transformed into remnant units should post-fire germination be hampered by climatic change. A rapid change in climate would render national parks unable to provide protection of representative elements of Canada's landscapes as presently known. A threefold increase in the area dedicated to protection is a basic component of the sustainable development prescription. All government and private lands dedicated to protection should be forged into a network, to provide core protection for immigrating and emigrating communities and individual species displaced by a changing climate. 20 refs., 2 figs

  16. Morphological evolution, ecological diversification and climate change in rodents.

    Science.gov (United States)

    Renaud, Sabrina; Michaux, Jacques; Schmidt, Daniela N; Aguilar, Jean-Pierre; Mein, Pierre; Auffray, Jean-Christophe

    2005-03-22

    Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of morphological evolution along both lineages and compare them to environmental trends. Climatic changes do not have a direct influence on evolution, but they open new ecological opportunities by changing vegetation and allow the evolution of a specialist like Stephanomys. On the other hand, environmental changes are not dramatic enough to destroy the habitat of a long-term generalist like Apodemus. Hence, our results exemplify a case of an influence of climate on the evolution of specialist species, although a generalist species may persist without change.

  17. Using large-scale climate indices in climate change ecology studies

    DEFF Research Database (Denmark)

    Forchhammer, Mads Cedergreen; Post, Eric

    2004-01-01

    Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns......Ecological responses, El Niño 3.4, Long-term climate variability, North Atlantic Oscillation, North Pacific Oscillation, Teleconnection patterns...

  18. Predicting ecological responses in a changing ocean: the effects of future climate uncertainty.

    Science.gov (United States)

    Freer, Jennifer J; Partridge, Julian C; Tarling, Geraint A; Collins, Martin A; Genner, Martin J

    2018-01-01

    Predicting how species will respond to climate change is a growing field in marine ecology, yet knowledge of how to incorporate the uncertainty from future climate data into these predictions remains a significant challenge. To help overcome it, this review separates climate uncertainty into its three components (scenario uncertainty, model uncertainty, and internal model variability) and identifies four criteria that constitute a thorough interpretation of an ecological response to climate change in relation to these parts (awareness, access, incorporation, communication). Through a literature review, the extent to which the marine ecology community has addressed these criteria in their predictions was assessed. Despite a high awareness of climate uncertainty, articles favoured the most severe emission scenario, and only a subset of climate models were used as input into ecological analyses. In the case of sea surface temperature, these models can have projections unrepresentative against a larger ensemble mean. Moreover, 91% of studies failed to incorporate the internal variability of a climate model into results. We explored the influence that the choice of emission scenario, climate model, and model realisation can have when predicting the future distribution of the pelagic fish, Electrona antarctica . Future distributions were highly influenced by the choice of climate model, and in some cases, internal variability was important in determining the direction and severity of the distribution change. Increased clarity and availability of processed climate data would facilitate more comprehensive explorations of climate uncertainty, and increase in the quality and standard of marine prediction studies.

  19. Exploring the role of traditional ecological knowledge in climate change initiatives

    Science.gov (United States)

    Kirsten Vinyeta; Kathy. Lynn

    2013-01-01

    Indigenous populations are projected to face disproportionate impacts as a result of climate change in comparison to nonindigenous populations. For this reason, many American Indian and Alaska Native tribes are identifying and implementing culturally appropriate strategies to assess climate impacts and adapt to projected changes. Traditional ecological knowledge (TEK...

  20. Community ecology, climate change and ecohydrology in desert grassland and shrubland

    Science.gov (United States)

    Mathew Daniel Petrie

    2014-01-01

    This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...

  1. Adaptation to Climate Change in Panchase Mountain Ecological Regions of Nepal

    OpenAIRE

    Shankar Adhikari; Himlal Baral; Craig Nitschke

    2018-01-01

    Rural mountain communities in developing countries are considered particularly vulnerable to environmental change, including climate change. Forests and agriculture provide numerous ecosystem goods and services (EGS) to local communities and can help people adapt to the impacts of climate change. There is however poor documentation on the role of EGS in people’s livelihood and adaptation practices. This study in the rural Panchase Mountain Ecological Region of Nepal identifies practices being...

  2. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  3. Biological diversity, ecology and global climate change

    International Nuclear Information System (INIS)

    Jutro, P.R.

    1991-01-01

    Worldwide climate change and loss of biodiversity are issues of global scope and importance that have recently become subjects of considerable public concern. Their perceived threat lies in their potential to disrupt ecological functioning and stability rather than from any direct threat they may pose to human health. Over the last 5 years, the international scientific community and the general public have become aware of the implications that atmospheric warming might have for world climate patterns and the resulting changes in the persistence, location, and composition of ecosystems worldwide. Human activities are currently responsible for a species loss rate that is the most extreme in millions of years, and an alarmingly increasing rate of transformation and fragmentation of natural landscapes. In the case of both global warming and reduction of biological diversity, man is affecting nature in an unprecedented fashion, on a global scale, and with unpredictable and frequently irreversible results

  4. Elucidation of circulation mechanism on climatic changing vapor caused by water field ecology system

    International Nuclear Information System (INIS)

    Harada, Shigeki; Doi, Taeko; Watanabe, Masataka; Inamori, Yuhei

    1999-01-01

    As climatic change caused by increase of carbon dioxide amounts emitted by industrial development is much anxious, it is well-known that water field ecology system relaxes change of carbon dioxide in atmosphere. Carbon dioxide, which is a climatic changing gas and has a closed relationship to the earth warming, is caught from atmosphere in the water field ecology system to be fixed as organic carbon and constitutes a starting point of food chains thereafter. In this study, in order to examine change of carbon dioxide, which is one of climatic changing gas or greenhouse effect gas caused by water field ecology system, 14-C was added to microcosm, which constructs a water field ecology system model, to measure 14-C amounts in each organism. As a result, it was found that carbon transfer in the system could be examined. And, it was also found that it was possible to understand more precise flow of substances and to elucidate quantitatively absorption of carbon dioxide and flow of carbon thereafter under different conditions, by future attempts on upgrading precision such as changing amounts of adding RI, and so forth. (G.K.)

  5. Development of ecological indicators of climate change based on lichen functional diversity

    OpenAIRE

    Matos, Paula Sofia Antunes

    2016-01-01

    Growing evidence shows us that climate has changed in the recent decades, and the scenario for the future will most likely worsen. A set of climate variables is being developed to monitor climate change, but this is not enough to keep track its effects on ecosystems. It’s imperative to understand and quantify how ecosystems functioning are affected by and respond to these changes, and ecological indicators based on biodiversity metrics are one of the tools to do this. The...

  6. Evaluating social and ecological vulnerability of coral reef fisheries to climate change.

    Directory of Open Access Journals (Sweden)

    Joshua E Cinner

    Full Text Available There is an increasing need to evaluate the links between the social and ecological dimensions of human vulnerability to climate change. We use an empirical case study of 12 coastal communities and associated coral reefs in Kenya to assess and compare five key ecological and social components of the vulnerability of coastal social-ecological systems to temperature induced coral mortality [specifically: 1 environmental exposure; 2 ecological sensitivity; 3 ecological recovery potential; 4 social sensitivity; and 5 social adaptive capacity]. We examined whether ecological components of vulnerability varied between government operated no-take marine reserves, community-based reserves, and openly fished areas. Overall, fished sites were marginally more vulnerable than community-based and government marine reserves. Social sensitivity was indicated by the occupational composition of each community, including the importance of fishing relative to other occupations, as well as the susceptibility of different fishing gears to the effects of coral bleaching on target fish species. Key components of social adaptive capacity varied considerably between the communities. Together, these results show that different communities have relative strengths and weaknesses in terms of social-ecological vulnerability to climate change.

  7. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    Science.gov (United States)

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  8. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.

    Directory of Open Access Journals (Sweden)

    Britta L Timpane-Padgham

    Full Text Available Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9, population- (6, community- (7, ecosystem- (7, or process-level attributes (16. Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1 including resilience as an explicit planning objective could increase the success of restoration projects, (2 considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3 certain ecological attributes, such as diversity and connectivity, are more commonly considered to

  9. A systematic review of ecological attributes that confer resilience to climate change in environmental restoration.

    Science.gov (United States)

    Timpane-Padgham, Britta L; Beechie, Tim; Klinger, Terrie

    2017-01-01

    Ecological restoration is widely practiced as a means of rehabilitating ecosystems and habitats that have been degraded or impaired through human use or other causes. Restoration practices now are confronted by climate change, which has the potential to influence long-term restoration outcomes. Concepts and attributes from the resilience literature can help improve restoration and monitoring efforts under changing climate conditions. We systematically examined the published literature on ecological resilience to identify biological, chemical, and physical attributes that confer resilience to climate change. We identified 45 attributes explicitly related to climate change and classified them as individual- (9), population- (6), community- (7), ecosystem- (7), or process-level attributes (16). Individual studies defined resilience as resistance to change or recovery from disturbance, and only a few studies explicitly included both concepts in their definition of resilience. We found that individual and population attributes generally are suited to species- or habitat-specific restoration actions and applicable at the population scale. Community attributes are better suited to habitat-specific restoration at the site scale, or system-wide restoration at the ecosystem scale. Ecosystem and process attributes vary considerably in their type and applicability. We summarize these relationships in a decision support table and provide three example applications to illustrate how these classifications can be used to prioritize climate change resilience attributes for specific restoration actions. We suggest that (1) including resilience as an explicit planning objective could increase the success of restoration projects, (2) considering the ecological context and focal scale of a restoration action is essential in choosing appropriate resilience attributes, and (3) certain ecological attributes, such as diversity and connectivity, are more commonly considered to confer

  10. Key ecological responses to nitrogen are altered by climate change

    Science.gov (United States)

    Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A. F.; Weaver, C.P.; Band, L.E.; Baron, Jill S.; Davidson, E.A.; Tague, C.L.; Felker-Quinn, E.; Lynch, J.A.; Herrick, J.D.; Liu, L.; Goodale, C.L.; Novak, K. J.; Haeuber, R. A.

    2016-01-01

    Climate change and anthropogenic nitrogen deposition are both important ecological threats. Evaluating their cumulative effects provides a more holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions aimed to protect the sustainability of ecosystems. Our knowledge of the cumulative effects of these stressors is growing, but we lack an integrated understanding. In this Review, we describe how climate change alters key processes in terrestrial and freshwater ecosystems related to nitrogen cycling and availability, and the response of ecosystems to nitrogen addition in terms of carbon cycling, acidification and biodiversity.

  11. Climate change forces new ecological states in tropical Andean lakes.

    Directory of Open Access Journals (Sweden)

    Neal Michelutti

    Full Text Available Air temperatures in the tropical Andes have risen at an accelerated rate relative to the global average over recent decades. However, the effects of climate change on Andean lakes, which are vital to sustaining regional biodiversity and serve as an important water resource to local populations, remain largely unknown. Here, we show that recent climate changes have forced alpine lakes of the equatorial Andes towards new ecological and physical states, in close synchrony to the rapid shrinkage of glaciers regionally. Using dated sediment cores from three lakes in the southern Sierra of Ecuador, we record abrupt increases in the planktonic thalassiosiroid diatom Discostella stelligera from trace abundances to dominance within the phytoplankton. This unprecedented shift occurs against the backdrop of rising temperatures, changing atmospheric pressure fields, and declining wind speeds. Ecological restructuring in these lakes is linked to warming and/or enhanced water column stratification. In contrast to seasonally ice-covered Arctic and temperate alpine counterparts, aquatic production has not increased universally with warming, and has even declined in some lakes, possibly because enhanced thermal stability impedes the re-circulation of hypolimnetic nutrients to surface waters. Our results demonstrate that these lakes have already passed important ecological thresholds, with potentially far-reaching consequences for Andean water resources.

  12. The political ecology of climate change adaptation livelihoods, agrarian change and the conflicts of development

    CERN Document Server

    Taylor, Marcus

    2014-01-01

    This book provides the first systematic critique of the concept of climate change adaptation within the field of international development. Drawing on a reworked political ecology framework, it argues that climate is not something 'out there' that we adapt to. Instead, it is part of the social and biophysical forces through which our lived environments are actively yet unevenly produced. From this original foundation, the book challenges us to rethink the concepts of climate change, vulnerability, resilience and adaptive capacity in transformed ways. With case studies drawn from Pakistan, Indi

  13. Effects of climate change on ecological disturbance in the northern Rockies

    Science.gov (United States)

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Disturbances alter ecosystem, community, or population structure and change elements of the biological and/or physical environment. Climate changes can alter the timing, magnitude, frequency, and duration of disturbance events, as well as the interactions of disturbances on a landscape, and climate change may already be affecting disturbance events and regimes. Interactions among disturbance regimes, such as the cooccurrence in space and time of bark beetle outbreaks and wildfires, can result in highly visible, rapidly occurring, and persistent changes in landscape composition and structure. Understanding how altered disturbance patterns and multiple disturbance interactions might result in novel and emergent landscape behaviors is critical for addressing climate change impacts and for designing land management strategies that are appropriate for future climates This chapter describes the ecology of important disturbance regimes in the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. We summarize five disturbance types present in the Northern Rockies that are sensitive to a changing climate--wildfires, bark beetles, white pine blister rust (Cronartium ribicola), other forest diseases, and nonnative plant invasions—and provide information that can help managers anticipate how, when, where, and why climate changes may alter the characteristics of disturbance regimes.

  14. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    Science.gov (United States)

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.

  15. Functional group, biomass, and climate change effects on ecological drought in semiarid grasslands

    Science.gov (United States)

    Wilson, Scott D.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Duniway, Michael C.; Hall, Sonia A.; Jamiyansharav, Khishigbayar; Jia, Gensuo; Lkhagva, Ariuntsetseg; Munson, Seth M.; Pyke, David A.; Tietjen, Britta

    2018-01-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses, shrubs) and by climate change via complex effects on interception, uptake and transpiration. We modelled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30‐year periods. Relative to control vegetation (climate and site‐determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally‐increased biomass (i.e. the effects of invasions that increase community biomass, or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration, and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought both in current and future climates.

  16. Climate change on Twitter: Content, media ecology and information sharing behaviour.

    Science.gov (United States)

    Veltri, Giuseppe A; Atanasova, Dimitrinka

    2017-08-01

    This article presents a study of the content, use of sources and information sharing about climate change analysing over 60,000 tweets collected using a random week sample. We discuss the potential for studying Twitter as a communicative space that is rich in different types of information and presents both new challenges and opportunities. Our analysis combines automatic thematic analysis, semantic network analysis and text classification according to psychological process categories. We also consider the media ecology of tweets and the external web links that users shared. In terms of content, the network of topics uncovered presents a multidimensional discourse that accounts for complex causal links between climate change and its consequences. The media ecology analysis revealed a narrow set of sources with a major role played by traditional media and that emotionally arousing text was more likely to be shared.

  17. Climate and streamflow trends in the Columbia River Basin: evidence for ecological and engineering resilience to climate change

    Science.gov (United States)

    K.L. Hatcher; J.A. Jones

    2013-01-01

    Large river basins transfer the water signal from the atmosphere to the ocean. Climate change is widely expected to alter streamflow and potentially disrupt water management systems. We tested the ecological resilience—capacity of headwater ecosystems to sustain streamflow under climate change—and the engineering resilience—capacity of dam and reservoir management to...

  18. Climate change as an ecosystem architect: implications to rare plant ecology, conservation, and restoration

    Science.gov (United States)

    Constance I. Millar

    2003-01-01

    Recent advances in earth system sciences have revealed significant new information relevant to rare plant ecology and conservation. Analysis of climate change at high resolution with new and precise proxies of paleotemperatures reveals a picture over the past two million years of oscillatory climate change operating simultaneously at multiple timescales. Low-frequency...

  19. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  20. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  1. Ecological risk assessment in the context of global climate change.

    Science.gov (United States)

    Landis, Wayne G; Durda, Judi L; Brooks, Marjorie L; Chapman, Peter M; Menzie, Charles A; Stahl, Ralph G; Stauber, Jennifer L

    2013-01-01

    Changes to sources, stressors, habitats, and geographic ranges; toxicological effects; end points; and uncertainty estimation require significant changes in the implementation of ecological risk assessment (ERA). Because of the lack of analog systems and circumstances in historically studied sites, there is a likelihood of type III error. As a first step, the authors propose a decision key to aid managers and risk assessors in determining when and to what extent climate change should be incorporated. Next, when global climate change is an important factor, the authors recommend seven critical changes to ERA. First, develop conceptual cause-effect diagrams that consider relevant management decisions as well as appropriate spatial and temporal scales to include both direct and indirect effects of climate change and the stressor of management interest. Second, develop assessment end points that are expressed as ecosystem services. Third, evaluate multiple stressors and nonlinear responses-include the chemicals and the stressors related to climate change. Fourth, estimate how climate change will affect or modify management options as the impacts become manifest. Fifth, consider the direction and rate of change relative to management objectives, recognizing that both positive and negative outcomes can occur. Sixth, determine the major drivers of uncertainty, estimating and bounding stochastic uncertainty spatially, temporally, and progressively. Seventh, plan for adaptive management to account for changing environmental conditions and consequent changes to ecosystem services. Good communication is essential for making risk-related information understandable and useful for managers and stakeholders to implement a successful risk-assessment and decision-making process. Copyright © 2012 SETAC.

  2. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  3. Climate change: biological and human aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cowie

    2007-07-15

    The textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. Contents are: 1. An introduction to climate change; 2. Principal indicators of past climates; 3. Past climate change; 4. The Oligocene to the Quaternary: climate and biology; 5. Present climate and biological change; 6. Current warming and likely future impacts; 7. Human ecology of climate change; 8. Sustainability and policy; Appendix 1. Glossary and acronyms; Appendix 2. Bio-geological timescale; Appendix 3. Calculations of energy demand/supply, and orders of magnitude; Index. 69 figs.

  4. Ecological forecasting under climate change: the case of Baltic cod

    DEFF Research Database (Denmark)

    Lindegren, Martin; Möllmann, Christian; Nielsen, Anders

    2010-01-01

    Good decision making for fisheries and marine ecosystems requires a capacity to anticipate the consequences of management under different scenarios of climate change. The necessary ecological forecasting calls for ecosystem-based models capable of integrating multiple drivers across trophic levels...... and properly including uncertainty. The methodology presented here assesses the combined impacts of climate and fishing on marine food-web dynamics and provides estimates of the confidence envelope of the forecasts. It is applied to cod (Gadus morhua) in the Baltic Sea, which is vulnerable to climate......-related decline in salinity owing to both direct and indirect effects (i.e. through species interactions) on early-life survival. A stochastic food web-model driven by regional climate scenarios is used to produce quantitative forecasts of cod dynamics in the twenty-first century. The forecasts show how...

  5. Move it or lose it? The ecological ethics of relocating species under climate change.

    Science.gov (United States)

    Minteer, Ben A; Collins, James P

    2010-10-01

    Managed relocation (also known as assisted colonization, assisted migration) is one of the more controversial proposals to emerge in the ecological community in recent years. A conservation strategy involving the translocation of species to novel ecosystems in anticipation of range shifts forced by climate change, managed relocation (MR) has divided many ecologists and conservationists, mostly because of concerns about the potential invasion risk of the relocated species in their new environments. While this is indeed an important consideration in any evaluation of MR, moving species across the landscape in response to predicted climate shifts also raises a number of larger and important ethical and policy challenges that need to be addressed. These include evaluating the implications of a more aggressive approach to species conservation, assessing MR as a broader ecological policy and philosophy that departs from longstanding scientific and management goals focused on preserving ecological integrity, and considering MR within a more comprehensive ethical and policy response to climate change. Given the complexity and novelty of many of the issues at stake in the MR debate, a more dynamic and pragmatic approach to ethical analysis and debate is needed to help ecologists, conservationists, and environmental decision makers come to grips with MR and the emerging ethical challenges of ecological policy and management under global environmental change.

  6. Ecological mechanisms underpinning climate adaptation services.

    Science.gov (United States)

    Lavorel, Sandra; Colloff, Matthew J; McIntyre, Sue; Doherty, Michael D; Murphy, Helen T; Metcalfe, Daniel J; Dunlop, Michael; Williams, Richard J; Wise, Russell M; Williams, Kristen J

    2015-01-01

    Ecosystem services are typically valued for their immediate material or cultural benefits to human wellbeing, supported by regulating and supporting services. Under climate change, with more frequent stresses and novel shocks, 'climate adaptation services', are defined as the benefits to people from increased social ability to respond to change, provided by the capability of ecosystems to moderate and adapt to climate change and variability. They broaden the ecosystem services framework to assist decision makers in planning for an uncertain future with new choices and options. We present a generic framework for operationalising the adaptation services concept. Four steps guide the identification of intrinsic ecological mechanisms that facilitate the maintenance and emergence of ecosystem services during periods of change, and so materialise as adaptation services. We applied this framework for four contrasted Australian ecosystems. Comparative analyses enabled by the operational framework suggest that adaptation services that emerge during trajectories of ecological change are supported by common mechanisms: vegetation structural diversity, the role of keystone species or functional groups, response diversity and landscape connectivity, which underpin the persistence of function and the reassembly of ecological communities under severe climate change and variability. Such understanding should guide ecosystem management towards adaptation planning. © 2014 John Wiley & Sons Ltd.

  7. Landscape ecological impact of climatic change some preliminary findings of the LICC Project

    International Nuclear Information System (INIS)

    Boer, M.M.

    1991-01-01

    The main objectives of the LICC project are to address the potential effects of a future climatic change on (semi-) natural terrestrial ecosystems and landscapes in Europe; six case studies are covered: alpine regions, boreal and subartic regions, Mediterranean region, fluvial systems, wetlands and coastal dunes. Preliminary findings showed a serious lack in fundamental ecological knowledge. Assessment of potential effects involved changes in water and sediment fluxes, changes in the vegetation cover, species response, dispersal and migration in a fragmented landscape and modification of climate impacts by man

  8. Climate change and an invasive, tropical milkweed: an ecological trap for monarch butterflies.

    Science.gov (United States)

    Faldyn, Matthew J; Hunter, Mark D; Elderd, Bret D

    2018-05-01

    While it is well established that climate change affects species distributions and abundances, the impacts of climate change on species interactions has not been extensively studied. This is particularly important for specialists whose interactions are tightly linked, such as between the monarch butterfly (Danaus plexippus) and the plant genus Asclepias, on which it depends. We used open-top chambers (OTCs) to increase temperatures in experimental plots and placed either nonnative Asclepias curassavica or native A. incarnata in each plot along with monarch larvae. We found, under current climatic conditions, adult monarchs had higher survival and mass when feeding on A. curassavica. However, under future conditions, monarchs fared much worse on A. curassavica. The decrease in adult survival and mass was associated with increasing cardenolide concentrations under warmer temperatures. Increased temperatures alone reduced monarch forewing length. Cardenolide concentrations in A. curassavica may have transitioned from beneficial to detrimental as temperature increased. Thus, the increasing cardenolide concentrations may have pushed the larvae over a tipping point into an ecological trap; whereby past environmental cues associated with increased fitness give misleading information. Given the ubiquity of specialist plant-herbivore interactions, the potential for such ecological traps to emerge as temperatures increase may have far-reaching consequences. © 2018 by the Ecological Society of America.

  9. Overview of climate information needs for ecological effects models

    Energy Technology Data Exchange (ETDEWEB)

    Peer, R.L.

    1990-01-01

    Atmospheric scientists engaged in climate change research require a basic understanding of how ecological effects models incorporate climate. The report provides an overview of existing ecological models that might be used to model climate change effects on vegetation. Some agricultural models and statistical methods are also discussed. The weather input data requirements, weather simulation methods, and other model characteristics relevant to climate change research are described for a selected number of models. The ecological models are classified as biome, ecosystem, or tree models; the ecosystem models are further subdivided into species dynamics or process models. In general, ecological modelers have had to rely on readily available meteorological data such as temperature and rainfall. Although models are becoming more sophisticated in their treatment of weather and require more kinds of data (such as wind, solar radiation, or potential evapotranspiration), modelers are still hampered by a lack of data for many applications. Future directions of ecological effects models and the climate variables that will be required by the models are discussed.

  10. Climate and Land Use Change Effects on Ecological Resources in Three Watersheds: A Synthesis Report (Final Report)

    Science.gov (United States)

    EPA announced the availability of the final report, Climate and Land-Use Change Effects on Ecological Resources in Three Watersheds: A Synthesis Report. This report provides a summary of climate change impacts to selected watersheds and recommendations for how to improv...

  11. Climate change adaptation strategies for federal forests of the Pacific Northwest, USA: ecological, policy, and socio-economic perspectives

    Science.gov (United States)

    Thomas A. Spies; Thomas W. Giesen; Frederick J. Swanson; Jerry F. Franklin; Denise Lach; K. Norman. Johnson

    2010-01-01

    Conserving biological diversity in a changing climate poses major challenges for land managers and society. Effective adaptive strategies for dealing with climate change require a socioecological systems perspective. We highlight some of the projected ecological responses to climate change in the Pacific Northwest, U.S.A and identify possible adaptive actions that...

  12. Beyond exposure, sensitivity and adaptive capacity: A response based ecological framework to assess species climate change vulnerability

    Science.gov (United States)

    Fortini, Lucas B.; Schubert, Olivia

    2017-01-01

    As the impacts of global climate change on species are increasingly evident, there is a clear need to adapt conservation efforts worldwide. Species vulnerability assessments (VAs) are increasingly used to summarize all relevant information to determine a species’ potential vulnerability to climate change and are frequently the first step in informing climate adaptation efforts. VAs commonly integrate multiple sources of information by utilizing a framework that distinguishes factors relevant to species exposure, sensitivity, and adaptive capacity. However, this framework was originally developed for human systems, and its use to evaluate species vulnerability has serious practical and theoretical limitations. By instead defining vulnerability as the degree to which a species is unable to exhibit any of the responses necessary for persistence under climate change (i.e., toleration of projected changes, migration to new climate-compatible areas, enduring in microrefugia, and evolutionary adaptation), we can bring VAs into the realm of ecological science without applying borrowed abstract concepts that have consistently challenged species-centric research and management. This response-based framework to assess species vulnerability to climate change allows better integration of relevant ecological data and past research, yielding results with much clearer implications for conservation and research prioritization.

  13. Adaptation to Climate Change in Panchase Mountain Ecological Regions of Nepal

    Directory of Open Access Journals (Sweden)

    Shankar Adhikari

    2018-03-01

    Full Text Available Rural mountain communities in developing countries are considered particularly vulnerable to environmental change, including climate change. Forests and agriculture provide numerous ecosystem goods and services (EGS to local communities and can help people adapt to the impacts of climate change. There is however poor documentation on the role of EGS in people’s livelihood and adaptation practices. This study in the rural Panchase Mountain Ecological Region of Nepal identifies practices being used to adapt to a changing environment through key informant interviews and focus group discussions. At the household level, livelihood diversification, changes in cropping patterns and farming practices, use of multipurpose plant species and income-generation activities were identified as adaptation strategies. Among major strategies at the community level were community forestry-based climate adaptation plans of action for forest and water resource management. Landscape-level adaptation strategies were large-scale collaborative projects and programs, such as Ecosystem-based Adaptation and Chitwan Annapurna Landscape conservation; which had implications at both the local and landscape-level. A proper blending and integration of adaptation strategies from individual households through to the community and to the landscape level is needed for implementing effective adaptation in the region.

  14. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    Science.gov (United States)

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  15. The Ecological consequences of global climate change

    National Research Council Canada - National Science Library

    Woodward, F. I

    1992-01-01

    ... & land use - modeling potential responses of vegetation to global climate change - effects of climatic change on population dynamics of crop pests - responses of soils to climate change - predicting...

  16. Ecological risk Evaluation and Green Infrastructure planning for coping with global climate change, a case study of Shanghai, China

    Science.gov (United States)

    Li, Pengyao; Xiao, He; Li, Xiang; Hu, Wenhao; Gu, Shoubai; Yu, Zhenrong

    2018-01-01

    Coping with various ecological risks caused by extreme weather events of global climate change has become an important issue in regional planning, and storm water management for sustainable development. In this paper, taking Shanghai, China as a case study, four potential ecological risks were identified including flood disaster, sea-source disaster, urban heat island effect, and land subsidence. Based on spatial database, the spatial variation of these four ecological risks was evaluated, and the planning area was divided into seven responding regions with different green infrastructure strategy. The methodology developed in this study combining ecological risk evaluation with spatial regionalization planning could contribute to coping with global climate change.

  17. Using a Multi-Method Approach to Examine Social-Ecological Vulnerability to Climate Change and Natural Resource Policies on the Tibetan Plateau

    Science.gov (United States)

    Klein, J.; Hopping, K. A.; Yeh, E.; Nyima, Y.; Galvin, K.; Boone, R.; Dorje, T.; Ojima, D. S.

    2012-12-01

    Pastoralists and ecosystems on the Tibetan Plateau are facing a suite of novel stresses. Temperatures are increasing several times more than the global average. The frequency and severity of severe snowstorms, which lead to critical losses of livestock, are also increasing. Pastoralists are also experiencing changes to their livelihood activities, including reduced mobility and severe grazing restrictions. We are using interdisciplinary frameworks and methods that integrate results from a multifactor ecological experiment, household interviews, remote sensing, and a coupled ecosystem and household decision-making model to examine herder and ecosystem vulnerability to climate change and extreme weather events (snow disasters) within the context of changing natural resource management policies in China. The fully factorial ecological experiment includes two climate changes (warming and spring snow additions) and two types of grazing (yak and pika) that are being affected by current policy. We established the experiment in 2008 within the Tibet Autonomous Region. We are monitoring microclimate, vegetation, nutrient availability, ecosystem carbon fluxes and stable isotope signatures of select plant species. Through this experiment, we are investigating the sensitivity of the system, whether it can cross critical thresholds, and how resilient this system may be to predicted future climate and land use changes. Semi-structured, in-depth interviews on indigenous knowledge and vulnerability complement the ecological experimental work. We are asking herders about climate and ecological change and their drivers and are also conducting interviews on vulnerability to snow disasters across a three site, 300-500mm precipitation gradient. We are using remote sensing to identify biophysical landscape change over time. To integrate our ecological and social findings, we are coupling the Savanna ecosystem model to the DECUMA agent-based pastoral household model. Our results to date

  18. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  19. Predicting phenology by integrating ecology, evolution and climate science

    Science.gov (United States)

    Pau, Stephanie; Wolkovich, Elizabeth M.; Cook, Benjamin I.; Davies, T. Jonathan; Kraft, Nathan J.B.; Bolmgren, Kjell; Betancourt, Julio L.; Cleland, Elsa E.

    2011-01-01

    Forecasting how species and ecosystems will respond to climate change has been a major aim of ecology in recent years. Much of this research has focused on phenology — the timing of life-history events. Phenology has well-demonstrated links to climate, from genetic to landscape scales; yet our ability to explain and predict variation in phenology across species, habitats and time remains poor. Here, we outline how merging approaches from ecology, climate science and evolutionary biology can advance research on phenological responses to climate variability. Using insight into seasonal and interannual climate variability combined with niche theory and community phylogenetics, we develop a predictive approach for species' reponses to changing climate. Our approach predicts that species occupying higher latitudes or the early growing season should be most sensitive to climate and have the most phylogenetically conserved phenologies. We further predict that temperate species will respond to climate change by shifting in time, while tropical species will respond by shifting space, or by evolving. Although we focus here on plant phenology, our approach is broadly applicable to ecological research of plant responses to climate variability.

  20. Vulnerability of ecological systems for nuclear war climatic consequences

    International Nuclear Information System (INIS)

    Kharuehll, M.; Khatchinson, T.; Kropper, U.; Kharuehll, K.

    1988-01-01

    Vulnerability of ecological systems of Northern hemisphere (terrestrial, aquatic and tropical) as well as Southern one in relation to climatic changes following large nuclear war is considered. When analyzing potential sensitivity of ecological systems to climatic changes, possible consequences are considered for different stress categories under various war scenarios. The above-mentioned stresses correspond to those adopted in published work by Pittok and others. To estimate the less important climatic disturbances a few additional computer-simulated models are developed

  1. Mitigation of climate change impacts on raptors by behavioural adaptation: ecological buffering mechanisms

    Science.gov (United States)

    Wichmann, Matthias C.; Groeneveld, Jürgen; Jeltsch, Florian; Grimm, Volker

    2005-07-01

    The predicted climate change causes deep concerns on the effects of increasing temperatures and changing precipitation patterns on species viability and, in turn, on biodiversity. Models of Population Viability Analysis (PVA) provide a powerful tool to assess the risk of species extinction. However, most PVA models do not take into account the potential effects of behavioural adaptations. Organisms might adapt to new environmental situations and thereby mitigate negative effects of climate change. To demonstrate such mitigation effects, we use an existing PVA model describing a population of the tawny eagle ( Aquila rapax) in the southern Kalahari. This model does not include behavioural adaptations. We develop a new model by assuming that the birds enlarge their average territory size to compensate for lower amounts of precipitation. Here, we found the predicted increase in risk of extinction due to climate change to be much lower than in the original model. However, this "buffering" of climate change by behavioural adaptation is not very effective in coping with increasing interannual variances. We refer to further examples of ecological "buffering mechanisms" from the literature and argue that possible buffering mechanisms should be given due consideration when the effects of climate change on biodiversity are to be predicted.

  2. Climate Change and Agricultural Vulnerability

    International Nuclear Information System (INIS)

    Fischer, G.; Shah, M.; Van Velthuizen, H.

    2002-08-01

    After the introduction Chapter 2 presents details of the ecological-economic analysis based on the FAO/IIASA agro-ecological zones (AEZ) approach for evaluation of biophysical limitations and agricultural production potentials, and IIASA's Basic Linked System (BLS) for analyzing the world's food economy and trade system. The BLS is a global general equilibrium model system for analyzing agricultural policies and food system prospects in an international setting. BLS views national agricultural systems as embedded in national economies, which interact with each other through trade at the international level. The combination of AEZ and BLS provides an integrated ecological-economic framework for the assessment of the impact of climate change. We consider climate scenarios based on experiments with four General Circulation Models (GCM), and we assess the four basic socioeconomic development pathways and emission scenarios as formulated by the Intergovernmental Panel on Climate Change (IPCC) in its Third Assessment Report. Chapter 3 presents the main AEZ results of the impact of climate change on agriculture. Results comprise environmental constraints to crop agriculture; climate variability and the variability of rain-fed cereal production; changes in potential agricultural land; changes in crop-production patterns; and the impact of climate change on cereal-production potential. Chapter 4 discusses the AEZ-BLS integrated ecological-economic analysis of climate change on the world food system. This includes quantification of scale and location of hunger, international agricultural trade, prices, production, land use, etc. It assesses trends in food production, trade, and consumption, and the impact on poverty and hunger of alternative development pathways and varying levels of climate change. Chapter 5 presents the main conclusions and policy implications of this study

  3. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now...... variability in temperature are ecologically important. Embracing complexity in future climate change experiments in general is therefore crucial......., precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies...

  4. Will Climate Change Affect Parasite- Host Relationship? | Okolo ...

    African Journals Online (AJOL)

    Research examining the causal relationships between climate, climate change and parasite ecology is the focus of increased attention. Understanding how parasites are likely to be affected by climate change requires an examination of the interactions between climate and parasite ecology and transmission.

  5. Shifts in the ecological niche of Lutzomyia peruensis under climate change scenarios in Peru.

    Science.gov (United States)

    Moo-Llanes, D A; Arque-Chunga, W; Carmona-Castro, O; Yañez-Arenas, C; Yañez-Trujillano, H H; Cheverría-Pacheco, L; Baak-Baak, C M; Cáceres, A G

    2017-06-01

    The Peruvian Andes presents a climate suitable for many species of sandfly that are known vectors of leishmaniasis or bartonellosis, including Lutzomyia peruensis (Diptera: Psychodidae), among others. In the present study, occurrences data for Lu. peruensis were compiled from several items in the scientific literature from Peru published between 1927 and 2015. Based on these data, ecological niche models were constructed to predict spatial distributions using three algorithms [Support vector machine (SVM), the Genetic Algorithm for Rule-set Prediction (GARP) and Maximum Entropy (MaxEnt)]. In addition, the environmental requirements of Lu. peruensis and three niche characteristics were modelled in the context of future climate change scenarios: (a) potential changes in niche breadth; (b) shifts in the direction and magnitude of niche centroids, and (c) shifts in elevation range. The model identified areas that included environments suitable for Lu. peruensis in most regions of Peru (45.77%) and an average altitude of 3289 m a.s.l. Under climate change scenarios, a decrease in the distribution areas of Lu. peruensis was observed for all representative concentration pathways. However, the centroid of the species' ecological niche showed a northwest direction in all climate change scenarios. The information generated in this study may help health authorities responsible for the supervision of strategies to control leishmaniasis to coordinate, plan and implement appropriate strategies for each area of risk, taking into account the geographic distribution and potential dispersal of Lu. peruensis. © 2017 The Royal Entomological Society.

  6. Ecological performance of construction materials subject to ocean climate change.

    Science.gov (United States)

    Davis, Kay L; Coleman, Melinda A; Connell, Sean D; Russell, Bayden D; Gillanders, Bronwyn M; Kelaher, Brendan P

    2017-10-01

    Artificial structures will be increasingly utilized to protect coastal infrastructure from sea-level rise and storms associated with climate change. Although it is well documented that the materials comprising artificial structures influence the composition of organisms that use them as habitat, little is known about how these materials may chemically react with changing seawater conditions, and what effects this will have on associated biota. We investigated the effects of ocean warming, acidification, and type of coastal infrastructure material on algal turfs. Seawater acidification resulted in greater covers of turf, though this effect was counteracted by elevated temperatures. Concrete supported a greater cover of turf than granite or high-density polyethylene (HDPE) under all temperature and pH treatments, with the greatest covers occurring under simulated ocean acidification. Furthermore, photosynthetic efficiency under acidification was greater on concrete substratum compared to all other materials and treatment combinations. These results demonstrate the capacity to maximise ecological benefits whilst still meeting local management objectives when engineering coastal defense structures by selecting materials that are appropriate in an ocean change context. Therefore, mitigation efforts to offset impacts from sea-level rise and storms can also be engineered to alter, or even reduce, the effects of climatic change on biological assemblages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change.

    Science.gov (United States)

    Levine, Naomi M; Zhang, Ke; Longo, Marcos; Baccini, Alessandro; Phillips, Oliver L; Lewis, Simon L; Alvarez-Dávila, Esteban; Segalin de Andrade, Ana Cristina; Brienen, Roel J W; Erwin, Terry L; Feldpausch, Ted R; Monteagudo Mendoza, Abel Lorenzo; Nuñez Vargas, Percy; Prieto, Adriana; Silva-Espejo, Javier Eduardo; Malhi, Yadvinder; Moorcroft, Paul R

    2016-01-19

    Amazon forests, which store ∼ 50% of tropical forest carbon and play a vital role in global water, energy, and carbon cycling, are predicted to experience both longer and more intense dry seasons by the end of the 21st century. However, the climate sensitivity of this ecosystem remains uncertain: several studies have predicted large-scale die-back of the Amazon, whereas several more recent studies predict that the biome will remain largely intact. Combining remote-sensing and ground-based observations with a size- and age-structured terrestrial ecosystem model, we explore the sensitivity and ecological resilience of these forests to changes in climate. We demonstrate that water stress operating at the scale of individual plants, combined with spatial variation in soil texture, explains observed patterns of variation in ecosystem biomass, composition, and dynamics across the region, and strongly influences the ecosystem's resilience to changes in dry season length. Specifically, our analysis suggests that in contrast to existing predictions of either stability or catastrophic biomass loss, the Amazon forest's response to a drying regional climate is likely to be an immediate, graded, heterogeneous transition from high-biomass moist forests to transitional dry forests and woody savannah-like states. Fire, logging, and other anthropogenic disturbances may, however, exacerbate these climate change-induced ecosystem transitions.

  8. Placing lochs in their landscapes: linking landscape ecology, ecohydrology and conservation interest in a changing climate

    Science.gov (United States)

    Muir, M. C.; Spray, C. J.; Rowan, J. S.

    2011-12-01

    Scotland is a country with outstanding freshwater systems providing multiple social, economic and cultural functions as well as ecological services of international importance. Scotland's lakes (locally termed lochs) occupy approximately 3% of the country's land mass and contain more than 90% of Great Britain's total freshwater resource. With over 25,000 lochs (surface area greater than 0.1 hectares) standing freshwaters are an iconic part of Scotland's landscape and they come in a myriad of forms and sizes contributing outstanding geodiversity as well as habitats of international importance for numerous species of conservation interest. There is undoubtedly a need to protect the conservation interests of designated sites in the face of changing loch and catchment pressures - which include diffuse pollutants, morphological modification, recreation and invasive species. Climate change presents a new set of challenges with potential impacts across the entire standing water resource base and predicting how these systems might respond to these changes greatly amplifies uncertainties implicit in their environmental management. Global climate change is predicted to be a major cause of change across all ecosystems and there are particular concerns about impacts on freshwater systems due to the coupling of impacts to both hydrology and ecology. Climate change is likely to affect the hydrological cycle in a number of ways, most significantly through changing temperature and precipitation patterns, intensities and extremes. These changes, coupled with reduced snow and ice cover, frequency and duration, will lead to changes in soil moisture conditions and subsequently runoff. This is turn will impact on river flow, loch water levels, epilimnic temperatures, nutrient availability and, subsequently, the ecological structure and function of the entire standing water system. For some species these habitat changes will push them to the very limits of their natural tolerances and a

  9. Integrating research tools to support the management of social-ecological systems under climate change

    Science.gov (United States)

    Miller, Brian W.; Morisette, Jeffrey T.

    2014-01-01

    Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.

  10. Herdsmen’s Adaptation to Climate Changes and Subsequent Impacts in the Ecologically Fragile Zone, China

    Directory of Open Access Journals (Sweden)

    Yingcheng Liu

    2013-01-01

    Full Text Available The change of land surface can exert significant influence on the future climate change. This study analyzed the effects of herdsmen’s adaptation to climate changes on the livestock breeding, income, and land surface dynamics with a land surface parameterization scheme. The empirical analysis was first carried out on the impacts of the adaptation measures of herdsmen on their income in the context of the climate change with the positive mathematical programming (PMP model on the basis of the household survey data in the Three-River Source Region, an ecologically fragile area in Qinghai Province, China. Then, the land surface parameterization process is analyzed based on the agent-based model (ABM, which involves the herdsmen’s adaptation measures on climate change, and it also provides reference for the land surface change projection. The result shows that the climate change adaptation measures will have a positive effect on the increasing of the amount of herdsman’s livestock and income as well as future land surface dynamics. Some suggestions on the land use management were finally proposed, which can provide significant reference information for the land use planning.

  11. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  12. Food-web dynamics under climate change

    DEFF Research Database (Denmark)

    Zhang, L.; Takahashi, M.; Hartvig, Martin

    2017-01-01

    Climate change affects ecological communities through its impact on the physiological performance of individuals. However, the population dynamic of species well inside their thermal niche is also determined by competitors, prey and predators, in addition to being influenced by temperature changes....... We use a trait-based food-web model to examine how the interplay between the direct physiological effects from temperature and the indirect effects due to changing interactions between populations shapes the ecological consequences of climate change for populations and for entire communities. Our...... climatically well-adapted species may be brought to extinction by the changed food-web topology. Our results highlight that the impact of climate change on specific populations is largely unpredictable, and apparently well-adapted species may be severely impacted...

  13. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    Science.gov (United States)

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquatic habitats and freshwater taxa (fishes and aquatic invertebrates) in arid Australia. We also identify methods of recognizing likely future refugia and approaches to assessing the vulnerability of arid-adapted freshwater biota to a warming and drying climate. Evolutionary refugia in arid areas are characterized as permanent, groundwater-dependent habitats (subterranean aquifers and springs) supporting vicariant relicts and short-range endemics. Ecological refuges can vary across space and time, depending on the dispersal abilities of aquatic taxa and the geographical proximity and hydrological connectivity of aquatic habitats. The most important are the perennial waterbodies (both groundwater and surface water fed) that support obligate aquatic organisms. These species will persist where suitable habitats are available and dispersal pathways are maintained. For very mobile species (invertebrates with an aerial dispersal phase) evolutionary refugia may also act as ecological refuges. Evolutionary refugia are likely future refugia because their water source (groundwater) is decoupled from local precipitation. However, their biota is extremely vulnerable to changes in local conditions because population extinction risks cannot be abated by the dispersal of individuals from other sites. Conservation planning must incorporate a high level of protection for aquifers that support refugial sites. Ecological refuges are vulnerable to changes in regional climate because they have little

  14. A Synergistic Approach for Evaluating Climate Model Output for Ecological Applications

    Directory of Open Access Journals (Sweden)

    Rachel D. Cavanagh

    2017-09-01

    Full Text Available Increasing concern about the impacts of climate change on ecosystems is prompting ecologists and ecosystem managers to seek reliable projections of physical drivers of change. The use of global climate models in ecology is growing, although drawing ecologically meaningful conclusions can be problematic. The expertise required to access and interpret output from climate and earth system models is hampering progress in utilizing them most effectively to determine the wider implications of climate change. To address this issue, we present a joint approach between climate scientists and ecologists that explores key challenges and opportunities for progress. As an exemplar, our focus is the Southern Ocean, notable for significant change with global implications, and on sea ice, given its crucial role in this dynamic ecosystem. We combined perspectives to evaluate the representation of sea ice in global climate models. With an emphasis on ecologically-relevant criteria (sea ice extent and seasonality we selected a subset of eight models that reliably reproduce extant sea ice distributions. While the model subset shows a similar mean change to the full ensemble in sea ice extent (approximately 50% decline in winter and 30% decline in summer, there is a marked reduction in the range. This improved the precision of projected future sea ice distributions by approximately one third, and means they are more amenable to ecological interpretation. We conclude that careful multidisciplinary evaluation of climate models, in conjunction with ongoing modeling advances, should form an integral part of utilizing model output.

  15. Adaptation of reproductive phenology to climate change with ecological feedback via dominance hierarchies.

    Science.gov (United States)

    Johansson, Jacob; Smith, Henrik G; Jonzén, Niclas

    2014-03-01

    and demographic trends in a changing climate. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  16. Changing the Ecology of Climate Communication in Your Organization (Invited)

    Science.gov (United States)

    Chambliss, L.; Lewenstein, B.

    2013-12-01

    After decades of frustration, scientists have an exciting opportunity to provide the research-based insights necessary for us all to foster a more sustainable future. Yet, individual scientists and researchers are more effective in their communication and public engagement to the extent their organization supports and facilitates such outreach. This presentation will offer strategies for enhancing multi-disciplinary organizational capabilities in climate change communication and public engagement that go beyond the traditional force-feeding of information and data to a largely unreceptive public. Two essential components of a healthy ecology of climate communication at the organizational level are 1) a multi-disciplinary approach and 2) direct engagement with external audiences and stakeholders so that information is flowing in multiple directions. The traditional flow of fact-based information- from scientist through organization/institution to the public - is rarely effective. We will discuss a New York state-focused, research-based effort that is a workable model for how scientists can engage local and state agencies, corporations, NGOs, business leaders, and other actors. In this case, researches collaborated with diverse stakeholders to create a suite of community events, products and online tools with science-based information carefully crafted and targeted to avoid politicization. This effort facilitated education and planning for community, agricultural and business planners who are making decisions now with 20-to 50-year time frames. As an example of a responsive information flow, a community conference 'Climate Smart and Climate Ready' targeted to local and regional planners included sessions on grief and fear, in addition to assessments of regional impact by sector, after input from stakeholders indicated a strong need to blend science delivery with acknowledgment of the emotional field. We will also examine successful ways science-based organizations

  17. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  18. The economics of climate change in agriculture

    International Nuclear Information System (INIS)

    Zilberman, D.; Liu, Xuemei; Roland-Holst, D.; Sunding, D.

    2004-01-01

    This paper presents a conceptual framework of the impact of climate change on agriculture. It assumes that climate change will result in a fertilization effect and a shift of agro-ecological conditions away from the Equator towards the Poles. The agro-ecological shift is likely to reduce yield because of reduced acreage and the fertilization effect will increase yield. The aggregate effect depends on whichever of the two dominates. The overall effect of climate change may be less significant than its distributional effects and the results are consistent with previous empirical studies. The impact of climate change depends on its pace. Faster changes in climate will result in higher cost. The assessment of the cost has to consider that climate change is a dynamic phenomenon that may require continuous adjustment. Environmental regulation that emphasizes conservation may increase cost of adjustment and environmental policies should emphasize adaptation and flexibility

  19. Climate change and nesting behaviour in vertebrates: a review of the ecological threats and potential for adaptive responses.

    Science.gov (United States)

    Mainwaring, Mark C; Barber, Iain; Deeming, Denis C; Pike, David A; Roznik, Elizabeth A; Hartley, Ian R

    2017-11-01

    Nest building is a taxonomically widespread and diverse trait that allows animals to alter local environments to create optimal conditions for offspring development. However, there is growing evidence that climate change is adversely affecting nest-building in animals directly, for example via sea-level rises that flood nests, reduced availability of building materials, and suboptimal sex allocation in species exhibiting temperature-dependent sex determination. Climate change is also affecting nesting species indirectly, via range shifts into suboptimal nesting areas, reduced quality of nest-building environments, and changes in interactions with nest predators and parasites. The ability of animals to adapt to sustained and rapid environmental change is crucial for the long-term persistence of many species. Many animals are known to be capable of adjusting nesting behaviour adaptively across environmental gradients and in line with seasonal changes, and this existing plasticity potentially facilitates adaptation to anthropogenic climate change. However, whilst alterations in nesting phenology, site selection and design may facilitate short-term adaptations, the ability of nest-building animals to adapt over longer timescales is likely to be influenced by the heritable basis of such behaviour. We urgently need to understand how the behaviour and ecology of nest-building in animals is affected by climate change, and particularly how altered patterns of nesting behaviour affect individual fitness and population persistence. We begin our review by summarising how predictable variation in environmental conditions influences nest-building animals, before highlighting the ecological threats facing nest-building animals experiencing anthropogenic climate change and examining the potential for changes in nest location and/or design to provide adaptive short- and long-term responses to changing environmental conditions. We end by identifying areas that we believe warrant the

  20. Classical Ecological Restoration and its Current Challenges: Assisted Migration as an Adaptation Strategy to Climate Change

    Directory of Open Access Journals (Sweden)

    Pilar A. Gómez-Ruiz

    2017-06-01

    Full Text Available Ecological restoration is a very active area in ecology and of great importance for ecosystems management. Despite of being a relatively young discipline, the classical concepts of restoration seem, at present, impractical considering the great challenges generated by modification and destruction of ecosystems. This is due to anthropic activities (deforestation, change of land use, pollution and global climate change. In the classic definition of restoration, the objective is to recover the degraded ecosystem to the same conditions of a historical reference state. However, nowadays the ecosystems return to a state prior to the disturbances seems unviable, because the thresholds of resilience have already been overcome. Additionally, climate change is causing environmental changes at an unprecedented rate. For this reason, ecological restoration needs to unite efforts of diverse actors to recover ecosystems that can be sustainable and functional in the future, where the species could be able to tolerate the environmental conditions that will exist in the long term. Assisted migration has been proposed as a conservation strategy; it is defined as the translocation of species to new locations outside their known range of distribution. In the current context of loss of diversity and ecosystems, this strategy could be fundamental for the formation of new communities that can later become novel ecosystems where species that are fundamental to the dynamics of ecosystems can persist and, at the same time, recover function, structure and resilience.

  1. The ecology of climate change and infectious diseases

    Science.gov (United States)

    Lafferty, Kevin D.

    2009-01-01

    The projected global increase in the distribution and prevalence of infectious diseases with climate change suggests a pending societal crisis. The subject is increasingly attracting the attention of health professionals and climate-change scientists, particularly with respect to malaria and other vector-transmitted human diseases. The result has been the emergence of a crisis discipline, reminiscent of the early phases of conservation biology. Latitudinal, altitudinal, seasonal, and interannual associations between climate and disease along with historical and experimental evidence suggest that climate, along with many other factors, can affect infectious diseases in a nonlinear fashion. However, although the globe is significantly warmer than it was a century ago, there is little evidence that climate change has already favored infectious diseases. While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area. Many factors can affect infectious disease, and some may overshadow the effects of climate.

  2. "My worries are rational, climate change is not": habitual ecological worrying is an adaptive response.

    Directory of Open Access Journals (Sweden)

    Bas Verplanken

    Full Text Available Qualifications such as "global warming hysteria" and "energy policy schizophrenia" put forward by some climate change skeptics, usually outside the academic arena, may suggest that people who seriously worry about the environment suffer from psychological imbalance. The present study aimed to refute this thesis. While habitual worrying in general is strongly associated with psychopathological symptoms, in a survey a near-zero correlation was found between habitual ecological worrying and pathological worry. Instead, habitual ecological worrying was associated with pro-environmental attitudes and behaviors, and with a personality structure characterized by imagination and an appreciation for new ideas. The study had sufficient statistical power and measures were valid and reliable. The results confirm that those who habitually worry about the ecology are not only lacking in any psychopathology, but demonstrate a constructive and adaptive response to a serious problem. In the public domain, these findings may contribute to a more rational and less emotional debate on climate change and to the prevention of stigmatization of people who are genuinely concerned about our habitat and are prepared to do something about it ("habitual worriers are not crazy". In the academic arena this study may contribute to environmental psychology ("habitual worrying is part of a green identity", as well as to the literature on worry and anxiety ("habitual worrying can be a constructive response".

  3. "My worries are rational, climate change is not": habitual ecological worrying is an adaptive response.

    Science.gov (United States)

    Verplanken, Bas; Roy, Deborah

    2013-01-01

    Qualifications such as "global warming hysteria" and "energy policy schizophrenia" put forward by some climate change skeptics, usually outside the academic arena, may suggest that people who seriously worry about the environment suffer from psychological imbalance. The present study aimed to refute this thesis. While habitual worrying in general is strongly associated with psychopathological symptoms, in a survey a near-zero correlation was found between habitual ecological worrying and pathological worry. Instead, habitual ecological worrying was associated with pro-environmental attitudes and behaviors, and with a personality structure characterized by imagination and an appreciation for new ideas. The study had sufficient statistical power and measures were valid and reliable. The results confirm that those who habitually worry about the ecology are not only lacking in any psychopathology, but demonstrate a constructive and adaptive response to a serious problem. In the public domain, these findings may contribute to a more rational and less emotional debate on climate change and to the prevention of stigmatization of people who are genuinely concerned about our habitat and are prepared to do something about it ("habitual worriers are not crazy"). In the academic arena this study may contribute to environmental psychology ("habitual worrying is part of a green identity"), as well as to the literature on worry and anxiety ("habitual worrying can be a constructive response").

  4. Macrophyte growth module for the SWAT model – impact of climate change and management on stream ecology

    DEFF Research Database (Denmark)

    Lu, Shenglan; Trolle, Dennis; Erfurt, Jytte

    To access how multiple stressors affect the water quantity and quality and stream ecology at catchment scale under various management and climate change scenarios, we implemented macrophyte growth modules for the Soil and Water Assessment Tool version 2012 (SWAT). The macrophyte growth module...

  5. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  6. Bayesian change-point analyses in ecology

    Science.gov (United States)

    Brian Bekcage; Lawrence Joseph; Patrick Belisle; David B. Wolfson; William J. Platt

    2007-01-01

    Ecological and biological processes can change from one state to another once a threshold has been crossed in space or time. Threshold responses to incremental changes in underlying variables can characterize diverse processes from climate change to the desertification of arid lands from overgrazing.

  7. Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change

    OpenAIRE

    Davis, Jenny; Pavlova, Alexandra; Thompson, Ross; Sunnucks, Paul

    2013-01-01

    Refugia have been suggested as priority sites for conservation under climate change because of their ability to facilitate survival of biota under adverse conditions. Here, we review the likely role of refugial habitats in conserving freshwater biota in arid Australian aquatic systems where the major long-term climatic influence has been aridification. We introduce a conceptual model that characterizes evolutionary refugia and ecological refuges based on our review of the attributes of aquati...

  8. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network.

    Science.gov (United States)

    Couture, Raoul-Marie; Moe, S Jannicke; Lin, Yan; Kaste, Øyvind; Haande, Sigrid; Lyche Solheim, Anne

    2018-04-15

    Excess nutrient inputs and climate change are two of multiple stressors affecting many lakes worldwide. Lake Vansjø in southern Norway is one such eutrophic lake impacted by blooms of toxic blue-green algae (cyanobacteria), and classified as moderate ecological status under the EU Water Framework Directive. Future climate change may exacerbate the situation. Here we use a set of chained models (global climate model, hydrological model, catchment phosphorus (P) model, lake model, Bayesian Network) to assess the possible future ecological status of the lake, given the set of climate scenarios and storylines common to the EU project MARS (Managing Aquatic Ecosystems and Water Resources under Multiple Stress). The model simulations indicate that climate change alone will increase precipitation and runoff, and give higher P fluxes to the lake, but cause little increase in phytoplankton biomass or changes in ecological status. For the storylines of future management and land-use, however, the model results indicate that both the phytoplankton biomass and the lake ecological status can be positively or negatively affected. Our results also show the value in predicting a biological indicator of lake ecological status, in this case, cyanobacteria biomass with a BN model. For all scenarios, cyanobacteria contribute to worsening the status assessed by phytoplankton, compared to using chlorophyll-a alone. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Climate change and the EU Water Framework Directive: how to deal with indirect effects of changes in hydrology on water quality and ecology?

    Science.gov (United States)

    Heerdt, G N J Ter; Schep, S A; Janse, J H; Ouboter, M

    2007-01-01

    In order to set ecological goals and determine measures for the European Water Framework Directive, the effects of climate change on lake ecosystems should be estimated. It is thought that the complexity of lake ecosystems makes this effect inherently unpredictable. However, models that deal with this complexity are available and well calibrated and tested. In this study we use the ecosystem model PCLake to demonstrate how climate change might affect the ecological status of a shallow peaty lake in 2050. With the model PCLake, combined with a long-term water and nutrient balance, it is possible to describe adequately the present status of the lake. Simulations of future scenarios with increasing precipitation, evaporation and temperature, showed that climate change will lead to higher nutrient loadings. At the same time, it will lead to lower critical loadings. Together this might cause the lake to shift easier from a clear water to a turbid state. The amount of algae, expressed as the concentration Chl-a, will increase, as a consequence turbidity will increase. The outcome of this study; increasing stability of the turbid state of the lake, and thus the need for more drastic measures, is consistent with some earlier studies.

  10. How will climate novelty influence ecological forecasts? Using the Quaternary to assess future reliability.

    Science.gov (United States)

    Fitzpatrick, Matthew C; Blois, Jessica L; Williams, John W; Nieto-Lugilde, Diego; Maguire, Kaitlin C; Lorenz, David J

    2018-03-23

    Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co-occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage-level information. © 2018 John Wiley & Sons Ltd.

  11. Forest disturbances under climate change

    Czech Academy of Sciences Publication Activity Database

    Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, Jan; Ascoli, D.; Petr, M.; Honkaniemi, J.; Lexer, M. J.; Trotsiuk, V.; Mairota, P.; Svoboda, M.; Fabrika, M.; Nagel, T.A.; Reyer, C. P. O.

    2017-01-01

    Roč. 7, č. 6 (2017), s. 395-402 ISSN 1758-678X R&D Projects: GA MŠk(CZ) LD15158 Institutional support: RVO:67985939 Keywords : climate change * disturbance * forest Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 19.304, year: 2016

  12. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  13. Maintaining resilience in the face of climate change: Chapter 8

    Science.gov (United States)

    Camacho, Alejandro E.; Beard, T. Douglas

    2014-01-01

    Climate change, when combined with more conventional stress from human exploitation, calls into question the capacity of both existing ecological communities and resource management institutions to experience disturbances while substantially retaining their same functions and identities (Zellmer and Gunderson 2009; Ruhl 2011). In other words, the physical and biological effects of climate change raise fundamental challenges to the resilience of natural ecosystems (Gunderson and Holling 2002). Perhaps more importantly, the projected scope of ecological shifts from global climate change-and uncertainty about such changes-significantly stresses the capacity of legal institutions to manage ecosystem change (Camacho 2009). Existing governmental institutions lack the adaptive capacity to manage such substantial changes to ecological and legal systems. In particular, regulators and managers lack information about ecological effects and alternative management strategies for managing the effects of climate change (Karkkainen 2008; Camacho 2009), as well as the institutional infrastructure for obtaining such information (Peters 2008).A number of recent initiatives have been proposed to address the effects of climate change on ecological systems. However, these nascent programs do not fully meet the needs for developing adaptive capacity. A federal, publicly accessible, and system-wide portal and clearinghouse will help regulators at all levels of government manage the effects and uncertainty from climate change (DiMento and Ingram 2005; Farber 2007). Such an information infrastructure, combined with a range of incentives that encourage regulators to engage in adaptive management and programmatic adjustment over time (Baron et al. 2009), will help governmental and private institutions become more resilient and capable of managing the physical and human institutional effects of changing climate (Camacho 2009).

  14. Fisheries regulatory regimes and resilience to climate change.

    Science.gov (United States)

    Ojea, Elena; Pearlman, Isaac; Gaines, Steven D; Lester, Sarah E

    2017-05-01

    Climate change is already producing ecological, social, and economic impacts on fisheries, and these effects are expected to increase in frequency and magnitude in the future. Fisheries governance and regulations can alter socio-ecological resilience to climate change impacts via harvest control rules and incentives driving fisher behavior, yet there are no syntheses or conceptual frameworks for examining how institutions and their regulatory approaches can alter fisheries resilience to climate change. We identify nine key climate resilience criteria for fisheries socio-ecological systems (SES), defining resilience as the ability of the coupled system of interacting social and ecological components (i.e., the SES) to absorb change while avoiding transformation into a different undesirable state. We then evaluate the capacity of four fisheries regulatory systems that vary in their degree of property rights, including open access, limited entry, and two types of rights-based management, to increase or inhibit resilience. Our exploratory assessment of evidence in the literature suggests that these regulatory regimes vary widely in their ability to promote resilient fisheries, with rights-based approaches appearing to offer more resilience benefits in many cases, but detailed characteristics of the regulatory instruments are fundamental.

  15. “My Worries Are Rational, Climate Change Is Not”: Habitual Ecological Worrying Is an Adaptive Response

    Science.gov (United States)

    Verplanken, Bas; Roy, Deborah

    2013-01-01

    Qualifications such as “global warming hysteria” and “energy policy schizophrenia” put forward by some climate change skeptics, usually outside the academic arena, may suggest that people who seriously worry about the environment suffer from psychological imbalance. The present study aimed to refute this thesis. While habitual worrying in general is strongly associated with psychopathological symptoms, in a survey a near-zero correlation was found between habitual ecological worrying and pathological worry. Instead, habitual ecological worrying was associated with pro-environmental attitudes and behaviors, and with a personality structure characterized by imagination and an appreciation for new ideas. The study had sufficient statistical power and measures were valid and reliable. The results confirm that those who habitually worry about the ecology are not only lacking in any psychopathology, but demonstrate a constructive and adaptive response to a serious problem. In the public domain, these findings may contribute to a more rational and less emotional debate on climate change and to the prevention of stigmatization of people who are genuinely concerned about our habitat and are prepared to do something about it (“habitual worriers are not crazy”). In the academic arena this study may contribute to environmental psychology (“habitual worrying is part of a green identity”), as well as to the literature on worry and anxiety (“habitual worrying can be a constructive response”). PMID:24023958

  16. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  17. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R; Bradford, John B; Lauenroth, William K; Hall, Sonia A; Duniway, Michael C; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M; Pyke, David A; Wilson, Scott D

    2017-07-01

    Drylands occur worldwide and are particularly vulnerable to climate change because dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability and change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding. We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation. Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change-induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, that is, leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  18. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands

    Science.gov (United States)

    Tietjen, Britta; Schlaepfer, Daniel R.; Bradford, John B.; Laurenroth, William K.; Hall, Sonia A.; Duniway, Michael C.; Hochstrasser, Tamara; Jia, Gensuo; Munson, Seth M.; Pyke, David A.; Wilson, Scott D.

    2017-01-01

    Drylands occur world-wide and are particularly vulnerable to climate change since dryland ecosystems depend directly on soil water availability that may become increasingly limited as temperatures rise. Climate change will both directly impact soil water availability, and also change plant biomass, with resulting indirect feedbacks on soil moisture. Thus, the net impact of direct and indirect climate change effects on soil moisture requires better understanding.We used the ecohydrological simulation model SOILWAT at sites from temperate dryland ecosystems around the globe to disentangle the contributions of direct climate change effects and of additional indirect, climate change-induced changes in vegetation on soil water availability. We simulated current and future climate conditions projected by 16 GCMs under RCP 4.5 and RCP 8.5 for the end of the century. We determined shifts in water availability due to climate change alone and due to combined changes of climate and the growth form and biomass of vegetation.Vegetation change will mostly exacerbate low soil water availability in regions already expected to suffer from negative direct impacts of climate change (with the two RCP scenarios giving us qualitatively similar effects). By contrast, in regions that will likely experience increased water availability due to climate change alone, vegetation changes will counteract these increases due to increased water losses by interception. In only a small minority of locations, climate change induced vegetation changes may lead to a net increase in water availability. These results suggest that changes in vegetation in response to climate change may exacerbate drought conditions and may dampen the effects of increased precipitation, i.e. leading to more ecological droughts despite higher precipitation in some regions. Our results underscore the value of considering indirect effects of climate change on vegetation when assessing future soil moisture conditions in water

  19. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness.

    Science.gov (United States)

    Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy

    2018-06-01

    Climate change has been scientifically documented, and its effects on wildlife have been prognosticated. We sought to predict the overall impact of climate change on venomous terrestrial species. We hypothesize that given the close relationship between terrestrial venomous species and climate, a changing global environment may result in increased species migration, geographical redistribution, and longer seasons for envenomation, which would have repercussions on human health. A retrospective analysis of environmental, ecological, and medical literature was performed with a focus on climate change, toxinology, and future modeling specific to venomous terrestrial creatures. Species included venomous reptiles, snakes, arthropods, spiders, and Hymenoptera (ants and bees). Animals that are vectors of hemorrhagic infectious disease (eg, mosquitos, ticks) were excluded. Our review of the literature indicates that changes to climatic norms will have a potentially dramatic effect on terrestrial venomous creatures. Empirical evidence demonstrates that geographic distributions of many species have already shifted due to changing climatic conditions. Given that most terrestrial venomous species are ectotherms closely tied to ambient temperature, and that climate change is shifting temperature zones away from the equator, further significant distribution and population changes should be anticipated. For those species able to migrate to match the changing temperatures, new geographical locations may open. For those species with limited distribution capabilities, the rate of climate change may accelerate faster than species can adapt, causing population declines. Specifically, poisonous snakes and spiders will likely maintain their population numbers but will shift their geographic distribution to traditionally temperate zones more often inhabited by humans. Fire ants and Africanized honey bees are expected to have an expanded range distribution due to predicted warming trends

  20. ?My Worries Are Rational, Climate Change Is Not?: Habitual Ecological Worrying Is an Adaptive Response

    OpenAIRE

    Verplanken, Bas; Roy, Deborah

    2013-01-01

    Qualifications such as "global warming hysteria" and "energy policy schizophrenia" put forward by some climate change skeptics, usually outside the academic arena, may suggest that people who seriously worry about the environment suffer from psychological imbalance. The present study aimed to refute this thesis. While habitual worrying in general is strongly associated with psychopathological symptoms, in a survey a near-zero correlation was found between habitual ecological worrying and path...

  1. Species-specific ecological niche modelling predicts different range contractions for Lutzomyia intermedia and a related vector of Leishmania braziliensis following climate change in South America.

    Science.gov (United States)

    McIntyre, Shannon; Rangel, Elizabeth F; Ready, Paul D; Carvalho, Bruno M

    2017-03-24

    Before 1996 the phlebotomine sand fly Lutzomyia neivai was usually treated as a synonym of the morphologically similar Lutzomyia intermedia, which has long been considered a vector of Leishmania braziliensis, the causative agent of much cutaneous leishmaniasis in South America. This report investigates the likely range changes of both sand fly species in response to a stabilisation climate change scenario (RCP4.5) and a high greenhouse gas emissions one (RCP8.5). Ecological niche modelling was used to identify areas of South America with climates currently suitable for each species, and then the future distributions of these climates were predicted based on climate change scenarios. Compared with the previous ecological niche model of L. intermedia (sensu lato) produced using the GARP algorithm in 2003, the current investigation modelled the two species separately, making use of verified presence records and additional records after 2001. Also, the new ensemble approach employed ecological niche modelling algorithms (including Maximum Entropy, Random Forests and Support Vector Machines) that have been widely adopted since 2003 and perform better than GARP, as well as using a more recent climate change model (HadGEM2) considered to have better performance at higher resolution than the earlier one (HadCM2). Lutzomyia intermedia was shown to be the more tropical of the two species, with its climatic niche defined by higher annual mean temperatures and lower temperature seasonality, in contrast to the more subtropical L. neivai. These different latitudinal ranges explain the two species' predicted responses to climate change by 2050, with L. intermedia mostly contracting its range (except perhaps in northeast Brazil) and L. neivai mostly shifting its range southwards in Brazil and Argentina. This contradicts the findings of the 2003 report, which predicted more range expansion. The different findings can be explained by the improved data sets and modelling methods. Our

  2. Adapting to climate change on Western public lands: addressing the ecological effects of domestic, wild, and feral ungulates.

    Science.gov (United States)

    Beschta, Robert L; Donahue, Debra L; DellaSala, Dominick A; Rhodes, Jonathan J; Karr, James R; O'Brien, Mary H; Fleischner, Thomas L; Deacon Williams, Cindy

    2013-02-01

    Climate change affects public land ecosystems and services throughout the American West and these effects are projected to intensify. Even if greenhouse gas emissions are reduced, adaptation strategies for public lands are needed to reduce anthropogenic stressors of terrestrial and aquatic ecosystems and to help native species and ecosystems survive in an altered environment. Historical and contemporary livestock production-the most widespread and long-running commercial use of public lands-can alter vegetation, soils, hydrology, and wildlife species composition and abundances in ways that exacerbate the effects of climate change on these resources. Excess abundance of native ungulates (e.g., deer or elk) and feral horses and burros add to these impacts. Although many of these consequences have been studied for decades, the ongoing and impending effects of ungulates in a changing climate require new management strategies for limiting their threats to the long-term supply of ecosystem services on public lands. Removing or reducing livestock across large areas of public land would alleviate a widely recognized and long-term stressor and make these lands less susceptible to the effects of climate change. Where livestock use continues, or where significant densities of wild or feral ungulates occur, management should carefully document the ecological, social, and economic consequences (both costs and benefits) to better ensure management that minimizes ungulate impacts to plant and animal communities, soils, and water resources. Reestablishing apex predators in large, contiguous areas of public land may help mitigate any adverse ecological effects of wild ungulates.

  3. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  4. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  5. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    International Nuclear Information System (INIS)

    Erickson, R A; Presley, S M; Cox, S B; Hayhoe, K; Allen, L J S; Long, K R

    2012-01-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems. (letter)

  6. Potential impacts of climate change on the ecology of dengue and its mosquito vector the Asian tiger mosquito (Aedes albopictus)

    Science.gov (United States)

    Erickson, R. A.; Hayhoe, K.; Presley, S. M.; Allen, L. J. S.; Long, K. R.; Cox, S. B.

    2012-09-01

    Shifts in temperature and precipitation patterns caused by global climate change may have profound impacts on the ecology of certain infectious diseases. We examine the potential impacts of climate change on the transmission and maintenance dynamics of dengue, a resurging mosquito-vectored infectious disease. In particular, we project changes in dengue season length for three cities: Atlanta, GA; Chicago, IL and Lubbock, TX. These cities are located on the edges of the range of the Asian tiger mosquito within the United States of America and were chosen as test cases. We use a disease model that explicitly incorporates mosquito population dynamics and high-resolution climate projections. Based on projected changes under the Special Report on Emissions Scenarios (SRES) A1fi (higher) and B1 (lower) emission scenarios as simulated by four global climate models, we found that the projected warming shortened mosquito lifespan, which in turn decreased the potential dengue season. These results illustrate the difficulty in predicting how climate change may alter complex systems.

  7. Research on climate effects. Effects of climate changes. Proceedings

    International Nuclear Information System (INIS)

    Fischer, W.; Stein, G.

    1991-01-01

    Global changes affecting the earth are at the forefront of public interest, possibly caused by climate alterations amongst other things. The public expects appropriate measures from politics to successfully adapt to unavoidable climate changes. As well as an investigation into the causes of climatic changes and the corollaries between the different scientific phenomena, the effects on the economy and society must also be examined. The Federal Minister for Research and Technology aims to make a valuable German contribution to international Global Change Research with the focal point ''Effects of Climate Changes on the Ecological and Civil System''. The aim of the workshop was to give an outline of current scientific knowledge, sketch out research requirements and give recommendations on the focal point with regard to the BMFT. (orig.) [de

  8. Microbial ecology of mountain glacier ecosystems: biodiversity, ecological connections and implications of a warming climate.

    Science.gov (United States)

    Hotaling, Scott; Hood, Eran; Hamilton, Trinity L

    2017-08-01

    Glacier ecosystems are teeming with life on, beneath, and to a lesser degree, within their icy masses. This conclusion largely stems from polar research, with less attention paid to mountain glaciers that overlap environmentally and ecologically with their polar counterparts in some ways, but diverge in others. One difference lies in the susceptibility of mountain glaciers to the near-term threat of climate change, as they tend to be much smaller in both area and volume. Moreover, mountain glaciers are typically steeper, more dependent upon basal sliding for movement, and experience higher seasonal precipitation. Here, we provide a modern synthesis of the microbial ecology of mountain glacier ecosystems, and particularly those at low- to mid-latitudes. We focus on five ecological zones: the supraglacial surface, englacial interior, subglacial bedrock-ice interface, proglacial streams and glacier forefields. For each, we discuss the role of microbiota in biogeochemical cycling and outline ecological and hydrological connections among zones, underscoring the interconnected nature of these ecosystems. Collectively, we highlight the need to: better document the biodiversity and functional roles of mountain glacier microbiota; describe the ecological implications of rapid glacial retreat under climate change and resolve the relative contributions of ecological zones to broader ecosystem function. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  9. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    Science.gov (United States)

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  10. The human dimensions of climate change: A micro-level assessment of views from the ecological modernization, political economy and human ecology perspectives.

    Science.gov (United States)

    Adua, Lazarus; York, Richard; Schuelke-Leech, Beth-Anne

    2016-03-01

    Understanding the manifold human and physical dimensions of climate change has become an area of great interest to researchers in recent decades. Using a U.S. nationally-representative data set and drawing on the ecological modernization, political economy, and human ecology perspectives, this study examines the impacts of energy efficiency technologies, affluence, household demographics, and biophysical characteristics on residential CO2 emissions. Overall, the study provides mixed support for the ecological modernization perspective. While several findings are consistent with the theory's expectation that modern societies can harness technology to mitigate human impacts on the environment, others directly contradict it. Also, the theory's prediction of an inverted U-shaped relationship between affluence and environmental impacts is contradicted. The evidence is somewhat more supportive of the political economy and human ecology perspectives, with affluence, some indicators of technology, household demographics, and biophysical characteristics emerging as important drivers of residential CO2 emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Transient ecotone response to climatic change - some conceptual and modelling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, R.P. (Pacific Northwest Research Station, Corvallis, OR (United States))

    1993-08-01

    Accurate prediction of the ecological impacts of climatic change is a pressing challenge to the science of ecology. The current state of the art for broad-scale estimates of change in biomes and ecotones between biomes is limited to equilibrium estimates of ecological change under some future equilibrium climate. Uncertainties in these estimates abound Ecotones between biomes have been suggested as sensitive areas of change that could be effectively modelled and monitored for future change. Ecotones are also important in influencing local and regional biodiversity patterns and ecological flows. The ecological processes that could affect change at ecotones and within biomes are discussed; they include internal ecosystem processes, and external abiotic processes. Drought followed by infestations and fire appears to be the most likely process that could mediate ecological change under a rapidly changing climate. The impacts would be apparent across all biomes. Specific predictions about the dynamics of ecotones can be made qualitatively. Under current conditions, the size of homogeneous patches is expected to be small at ecotones, but to enlarge with distance from the ecotone. Directional climatic change should promote a coalescence of patches on one side of the ecotone and increased fragmentation on the other side. Ecotones should begin to blur as viewed from a satellite only to re-form at some later date in a new location.

  12. Insurance Sector and Climate Changes in Serbia

    Directory of Open Access Journals (Sweden)

    Tatjana Piljan

    2017-06-01

    Full Text Available Climate changes have a strong negative impact on the insurance sector, which is reflected in the slow development of the insurance sector and in the transfer of the greater part of risk on the state and individuals. The difference between collected and paid premiums on the basis of incurred losses is rapidly decreasing, which leads to the fact that insurance market is less and less capable of absorbing the losses associated with climate changes, which then has negative repercussions on the availability of insurance services at an affordable premium. The question of establishing potential long and short-term effects of climate changes on business activities of insurance and reinsurance companies represents a priority and its ultimate objective is to find ways to minimize risks and losses. The problem of climate changes represents an important social problem in today’s civilization. At the same time, it is also an ecological problem, but also economic, political, social, cultural, health, etc. It is a global ecological problem, hence we can speak about global climate changes which affect states, nations, continents regardless of where they are and how responsible they are for creating and sustaining these changes.

  13. Facing climate change in forests and fields

    Science.gov (United States)

    Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland

    2014-01-01

    As a growing body of science shows, climate change impacts on wildlife are already profound - from shifting species' ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...

  14. Projecting Marine Mammal Distribution in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Gregory K. Silber

    2017-12-01

    Full Text Available Climate-related shifts in marine mammal range and distribution have been observed in some populations; however, the nature and magnitude of future responses are uncertain in novel environments projected under climate change. This poses a challenge for agencies charged with management and conservation of these species. Specialized diets, restricted ranges, or reliance on specific substrates or sites (e.g., for pupping make many marine mammal populations particularly vulnerable to climate change. High-latitude, predominantly ice-obligate, species have experienced some of the largest changes in habitat and distribution and these are expected to continue. Efforts to predict and project marine mammal distributions to date have emphasized data-driven statistical habitat models. These have proven successful for short time-scale (e.g., seasonal management activities, but confidence that such relationships will hold for multi-decade projections and novel environments is limited. Recent advances in mechanistic modeling of marine mammals (i.e., models that rely on robust physiological and ecological principles expected to hold under climate change may address this limitation. The success of such approaches rests on continued advances in marine mammal ecology, behavior, and physiology together with improved regional climate projections. The broad scope of this challenge suggests initial priorities be placed on vulnerable species or populations (those already experiencing declines or projected to undergo ecological shifts resulting from climate changes that are consistent across climate projections and species or populations for which ample data already exist (with the hope that these may inform climate change sensitivities in less well observed species or populations elsewhere. The sustained monitoring networks, novel observations, and modeling advances required to more confidently project marine mammal distributions in a changing climate will ultimately

  15. Feframing Climate Change for Environmental Health.

    Science.gov (United States)

    Weems, Caitlin; Subramaniam, Prithwi Raj

    2017-04-01

    Repeated warnings by the scientific community on the dire consequences of climate change through global warming to the ecology and sustenance of our planet have not been give appropriate attention by the U.S. public. Research has shown that climate change is responsible for catastrophic weather occurrences--such as floods, tornadoes, hurricanes, and heat waves--resulting in environmental and public health issues. The purpose of this report is to examine factors influencing public views on climate change. Theoretical and political perspectives are examined to unpack opinions held by the public in the U.S. on climate change. The Health Belief Model is used as an example to showcase the efficacy of an individual behavior change program in providing the synergy to understand climate change at the microlevel. The concept of reframing is discussed as a strategy to alter how the public views climate change.

  16. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers.

    Science.gov (United States)

    Ponti, Luigi; Gutierrez, Andrew Paul; Ruti, Paolo Michele; Dell'Aquila, Alessandro

    2014-04-15

    The Mediterranean Basin is a climate and biodiversity hot spot, and climate change threatens agro-ecosystems such as olive, an ancient drought-tolerant crop of considerable ecological and socioeconomic importance. Climate change will impact the interactions of olive and the obligate olive fruit fly (Bactrocera oleae), and alter the economics of olive culture across the Basin. We estimate the effects of climate change on the dynamics and interaction of olive and the fly using physiologically based demographic models in a geographic information system context as driven by daily climate change scenario weather. A regional climate model that includes fine-scale representation of the effects of topography and the influence of the Mediterranean Sea on regional climate was used to scale the global climate data. The system model for olive/olive fly was used as the production function in our economic analysis, replacing the commonly used production-damage control function. Climate warming will affect olive yield and fly infestation levels across the Basin, resulting in economic winners and losers at the local and regional scales. At the local scale, profitability of small olive farms in many marginal areas of Europe and elsewhere in the Basin will decrease, leading to increased abandonment. These marginal farms are critical to conserving soil, maintaining biodiversity, and reducing fire risk in these areas. Our fine-scale bioeconomic approach provides a realistic prototype for assessing climate change impacts in other Mediterranean agro-ecosystems facing extant and new invasive pests.

  17. Extreme weather and climate events with ecological relevance: a review.

    Science.gov (United States)

    Ummenhofer, Caroline C; Meehl, Gerald A

    2017-06-19

    Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events

  18. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework.

    Science.gov (United States)

    Alava, Juan José; Cheung, William W L; Ross, Peter S; Sumaila, U Rashid

    2017-10-01

    Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the

  19. Evaluation of the impacts of climate change on disease vectors through ecological niche modelling.

    Science.gov (United States)

    Carvalho, B M; Rangel, E F; Vale, M M

    2017-08-01

    Vector-borne diseases are exceptionally sensitive to climate change. Predicting vector occurrence in specific regions is a challenge that disease control programs must meet in order to plan and execute control interventions and climate change adaptation measures. Recently, an increasing number of scientific articles have applied ecological niche modelling (ENM) to study medically important insects and ticks. With a myriad of available methods, it is challenging to interpret their results. Here we review the future projections of disease vectors produced by ENM, and assess their trends and limitations. Tropical regions are currently occupied by many vector species; but future projections indicate poleward expansions of suitable climates for their occurrence and, therefore, entomological surveillance must be continuously done in areas projected to become suitable. The most commonly applied methods were the maximum entropy algorithm, generalized linear models, the genetic algorithm for rule set prediction, and discriminant analysis. Lack of consideration of the full-known current distribution of the target species on models with future projections has led to questionable predictions. We conclude that there is no ideal 'gold standard' method to model vector distributions; researchers are encouraged to test different methods for the same data. Such practice is becoming common in the field of ENM, but still lags behind in studies of disease vectors.

  20. Perceptions of severe storms, climate change, ecological structures and resiliency three years post-hurricane Sandy in New Jersey.

    Science.gov (United States)

    Burger, Joanna; Gochfeld, Michael

    2017-12-01

    Global warming is leading to increased frequency and severity of storms that are associated with flooding, increasing the risk to urban, coastal populations. This study examined perceptions of the relationship between severe storms, sea level rise, climate change and ecological barriers by a vulnerable environmental justice population in New Jersey. Patients using New Jersey's Federally Qualified Health Centers were interviewed after Hurricane [Superstorm] Sandy because it is essential to understand the perceptions of uninsured, underinsured, and economically challenged people to better develop a resiliency strategy for the most vulnerable people. Patients ( N = 355) using 6 centers were interviewed using a structured interview form. Patients were interviewed in the order they entered the reception area, in either English or Spanish. Respondents were asked to rate their agreement with environmental statements. Respondents 1) agreed with experts that "severe storms were due to climate change", "storms will come more often", and that "flooding was due to sea level rise", 2) did not agree as strongly that "climate change was due to human activity", 3) were neutral for statements that " Sandy damages were due to loss of dunes or salt marshes". 4) did not differ as a function of ethnic/racial categories, and 5) showed few gender differences. It is imperative that the public understand that climate change and sea level rise are occurring so that they support community programs (and funding) to prepare for increased frequency of storms and coastal flooding. The lack of high ratings for the role of dunes and marshes in preventing flooding indicates a lack of understanding that ecological structures protect coasts, and suggests a lack of support for management actions to restore dunes as part of a coastal preparedness strategy. Perceptions that do not support a public policy of coastal zone management to protect coastlines can lead to increased flooding, extensive property

  1. Climate change impacts on the temperature of recharge water in a temporate climate

    Science.gov (United States)

    Murdock, E. A.

    2015-12-01

    Groundwater outflows into headwater streams play an important role in controlling local stream temperature and maintaining habitat for cool and cold water fisheries. Because of the ecological and economic importance of these fisheries, there is significant concern about the impacts of climate change on these habitats. Many studies of stream temperature changes under climate change assume that groundwater outflows will vary with long-term mean air temperature, perhaps with a temporal lag to account for the relatively slow rate of heat diffusion through soils. This assumption, however, ignores the fact that climate change will also impact the temporal patterns of recharge in some regions. In Southern Wisconsin, much of the annual recharge comes from the spring snowmelt event, as a large amount of meltwater is released onto saturated soils with little to no active transpiration. Using the Simultaneous Heat and Water (SHAW) model populated with climate date from the North American Regional Climate Change Assessment Program (NARCCAP), we show that the temperature of water passing below the rooting zone in a simulated corn planting in Southern Wisconsin will change significantly less than the air temperature by midcentury. This finding highlights the importance of understanding the variability of heat flow mechanisms in the subsurface while assessing climate change impacts on surface water resources. In landscapes such as Wisconsin's driftless area, where deep aquifers feed numerous localized headwater streams, meltwater-driven recharge may provide a buffer against rising air temperatures for some time into the future. Fully understanding this dynamic will allow for targeted conservation efforts in those streams that are likely to show higher than average resilience to rising temperatures, but which remain vulnerable to development, stormwater runoff, agricultural pollution and other ecological threats. In a world with dwindling coldwater resources, identifying and

  2. Global Climate Change and Children's Health.

    Science.gov (United States)

    Ahdoot, Samantha; Pacheco, Susan E

    2015-11-01

    Rising global temperature is causing major physical, chemical, and ecological changes across the planet. There is wide consensus among scientific organizations and climatologists that these broad effects, known as climate change, are the result of contemporary human activity. Climate change poses threats to human health, safety, and security. Children are uniquely vulnerable to these threats. The effects of climate change on child health include physical and psychological sequelae of weather disasters, increased heat stress, decreased air quality, altered disease patterns of some climate-sensitive infections, and food, water, and nutrient insecurity in vulnerable regions. Prompt implementation of mitigation and adaptation strategies will protect children against worsening of the problem and its associated health effects. This technical report reviews the nature of climate change and its associated child health effects and supports the recommendations in the accompanying policy statement on climate change and children's health. Copyright © 2015 by the American Academy of Pediatrics.

  3. The Importance of Considering the Temporal Distribution of Climate Variables for Ecological-Economic Modeling to Calculate the Consequences of Climate Change for Agriculture

    Science.gov (United States)

    Plegnière, Sabrina; Casper, Markus; Hecker, Benjamin; Müller-Fürstenberger, Georg

    2014-05-01

    The basis of many models to calculate and assess climate change and its consequences are annual means of temperature and precipitation. This method leads to many uncertainties especially at the regional or local level: the results are not realistic or too coarse. Particularly in agriculture, single events and the distribution of precipitation and temperature during the growing season have enormous influences on plant growth. Therefore, the temporal distribution of climate variables should not be ignored. To reach this goal, a high-resolution ecological-economic model was developed which combines a complex plant growth model (STICS) and an economic model. In this context, input data of the plant growth model are daily climate values for a specific climate station calculated by the statistical climate model (WETTREG). The economic model is deduced from the results of the plant growth model STICS. The chosen plant is corn because corn is often cultivated and used in many different ways. First of all, a sensitivity analysis showed that the plant growth model STICS is suitable to calculate the influences of different cultivation methods and climate on plant growth or yield as well as on soil fertility, e.g. by nitrate leaching, in a realistic way. Additional simulations helped to assess a production function that is the key element of the economic model. Thereby the problems when using mean values of temperature and precipitation in order to compute a production function by linear regression are pointed out. Several examples show why a linear regression to assess a production function based on mean climate values or smoothed natural distribution leads to imperfect results and why it is not possible to deduce a unique climate factor in the production function. One solution for this problem is the additional consideration of stress indices that show the impairment of plants by water or nitrate shortage. Thus, the resulting model takes into account not only the ecological

  4. Climate change-related migration and infectious disease.

    Science.gov (United States)

    McMichael, Celia

    2015-01-01

    Anthropogenic climate change will have significant impacts on both human migration and population health, including infectious disease. It will amplify and alter migration pathways, and will contribute to the changing ecology and transmission dynamics of infectious disease. However there has been limited consideration of the intersections between migration and health in the context of a changing climate. This article argues that climate-change related migration - in conjunction with other drivers of migration - will contribute to changing profiles of infectious disease. It considers infectious disease risks for different climate-related migration pathways, including: forced displacement, slow-onset migration particularly to urban-poor areas, planned resettlement, and labor migration associated with climate change adaptation initiatives. Migration can reduce vulnerability to climate change, but it is critical to better understand and respond to health impacts - including infectious diseases - for migrant populations and host communities.

  5. A paradigm analysis of ecological sustainability: The emerging polycentric climate change publics

    Science.gov (United States)

    Taminiau, Job B.

    Climate change poses significant complications to the development model employed by modern societies. Using paradigm analysis, the dissertation explains why, after 21 years, policy failure haunts the field: a key impediment is the unquestioned assumption that policy must adhere to an economic optimality principle. This results in policy models which fail to uphold sustainability, justice, and equality due to an emphasis on economic growth, technology, and technical and bureaucratic expertise. Unable to build consensus among low- and high-carbon economies, and searching for what one economist has called an oxymoron -- "sustainable growth" (Daly, 1997) -- the policy process has foundered with its only international convention (the Kyoto Protocol) having lost relevance. In the midst of this policy failure, the dissertation offers and defends the premise that alternative strategies have emerged which signal the prospect of a paradigm shift to ecological sustainability -- a paradigm in which social change takes places through commons-based management and community authorship in the form of network governance and where sustainability serves as governor of growth -- something unavailable in an optimality-guided world. Especially, a strategy of polycentricity is discussed in detail in order to elucidate the potential for a paradigm shift. This discussion is followed by an evaluation of two innovative concepts -- the Sustainable Energy Utility and the Solar City -- that might fit the polycentricity strategy and bring forth transformative change. The dissertation finds considerable potential rests in these two concepts and argues the critical importance of further development of innovative approaches to implement the ecological sustainability paradigm.

  6. Education for climate changes, environmental health and environmental justice

    International Nuclear Information System (INIS)

    Hens, L.; Stoyanov, S.

    2013-01-01

    Full text: The climates changes-health effects-environmental justice nexus is analyzed. The complex issue of climate changes needs to be approached from an interdisciplinary point of view. The nature of the problem necessitates dealing with scientific uncertainty. The health effects caused by climate changes are described and analyzed from a twofold inequalities point of view: health inequalities between rich and poor within countries, and inequalities between northern and southern countries. It is shown thai although the emission of greenhouse gasses is to a large extent caused by the industrialized countries, the effects, including the health effects, will merely impact the South. On the other hand, the southern countries have the highest potential to respond to and offer sustainable energy solutions to counteract climate changes. These inequalities are at the basis to call for environmental justice, of which climate justice is part. This movement calls for diversification of ecologists and their subject of study, more attention for urban ecology, more comprehensive human ecological analyses of complex environmental issues and more participation of stakeholders in the debate and the solution options. The movement advocates a more inclusive ecology targeted to management, sodo-ecological restoration, and comprehensive policies. The fundamental aspects of complexity, inter-disciplinary approaches, uncertainty, and social and natural inequalities should be core issues in environmental health programs. Training on these issues for muitidisciplinary groups of participants necessitates innovative approaches including self-directed, collaborative, and problem oriented learning in which tacit knowledge is important. It is advocated that quality assessments of environmental health programs should take these elements into account. key words: environmental justice, climate changes, sustainable energy solutions

  7. Vulnerability of southern plains agriculture to climate change

    Science.gov (United States)

    Climate is a key driver for all ecological and economic systems; therefore, climate change introduces additional uncertainty and vulnerability into these systems. Agriculture represents a major land use that is critical to the survival of human societies and it is highly vulnerable to climate. Clima...

  8. Nonlinear dynamics in ecosystem response to climatic change: Case studies and policy implications

    Science.gov (United States)

    Burkett, Virginia R.; Wilcox, Douglas A.; Stottlemyer, Robert; Barrow, Wylie; Fagre, Dan; Baron, Jill S.; Price, Jeff; Nielsen, Jennifer L.; Allen, Craig D.; Peterson, David L.; Ruggerone, Greg; Doyle, Thomas

    2005-01-01

    Many biological, hydrological, and geological processes are interactively linked in ecosystems. These ecological phenomena normally vary within bounded ranges, but rapid, nonlinear changes to markedly different conditions can be triggered by even small differences if threshold values are exceeded. Intrinsic and extrinsic ecological thresholds can lead to effects that cascade among systems, precluding accurate modeling and prediction of system response to climate change. Ten case studies from North America illustrate how changes in climate can lead to rapid, threshold-type responses within ecological communities; the case studies also highlight the role of human activities that alter the rate or direction of system response to climate change. Understanding and anticipating nonlinear dynamics are important aspects of adaptation planning since responses of biological resources to changes in the physical climate system are not necessarily proportional and sometimes, as in the case of complex ecological systems, inherently nonlinear.

  9. Regional-Scale Climate Change: Observations and Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Raymond S; Diaz, Henry F

    2010-12-14

    This collaborative proposal addressed key issues in understanding the Earth's climate system, as highlighted by the U.S. Climate Science Program. The research focused on documenting past climatic changes and on assessing future climatic changes based on suites of global and regional climate models. Geographically, our emphasis was on the mountainous regions of the world, with a particular focus on the Neotropics of Central America and the Hawaiian Islands. Mountain regions are zones where large variations in ecosystems occur due to the strong climate zonation forced by the topography. These areas are particularly susceptible to changes in critical ecological thresholds, and we conducted studies of changes in phonological indicators based on various climatic thresholds.

  10. Effects of climate change on ecological disturbance in the Northern Rockies Region [Chapter 8

    Science.gov (United States)

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.

    2018-01-01

    This chapter describes the ecology of important disturbance regimes in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area, hereafter called the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term disturbance regime describes the general temporal and spatial characteristics of a disturbance agent - insect, disease, fire, weather, even human activity - and the effects of that agent on the landscape (table 8.1). More specifically, a disturbance regime is the cumulative effect of multiple disturbance events over space and time (Keane 2013). Disturbances disrupt an ecosystem, community, or population structure and change elements of the biological environment, physical environment, or both (White and Pickett 1985). The resulting shifting mosaic of diverse ecological patterns and structures in turn affects future patterns of disturbance, in a reciprocal, linked relationship that shapes the fundamental character of landscapes and ecosystems. Disturbance creates and maintains biological diversity in the form of shifting, heterogeneous mosaics of diverse communities and habitats across a landscape (McKinney and Drake 1998), and biodiversity is generally highest when disturbance is neither too rare nor too frequent on the landscape (Grime 1973).

  11. Global Climate Change and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    EK Shuman

    2010-12-01

    Full Text Available Climate change is occurring as a result of warming of the earth’s atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  12. Behavioural, ecological and evolutionary responses to extreme climatic events : Challenges and directions

    NARCIS (Netherlands)

    Van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H.C.; Visser, Marcel E.

    2017-01-01

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and

  13. Ecological forecasting under climatic data uncertainty: a case study in phenological modeling

    International Nuclear Information System (INIS)

    Cook, Benjamin I; Terando, Adam; Steiner, Allison

    2010-01-01

    Forecasting ecological responses to climate change represents a challenge to the ecological community because models are often site-specific and climate data are lacking at appropriate spatial and temporal resolutions. We use a case study approach to demonstrate uncertainties in ecological predictions related to the driving climatic input data. We use observational records, derived observational datasets (e.g. interpolated observations from local weather stations and gridded data products) and output from general circulation models (GCM) in conjunction with site based phenology models to estimate the first flowering date (FFD) for three woody flowering species. Using derived observations over the modern time period, we find that cold biases and temperature trends lead to biased FFD simulations for all three species. Observational datasets resolved at the daily time step result in better FFD predictions compared to simulations using monthly resolution. Simulations using output from an ensemble of GCM and regional climate models over modern and future time periods have large intra-ensemble spreads and tend to underestimate observed FFD trends for the modern period. These results indicate that certain forcing datasets may be missing key features needed to generate accurate hindcasts at the local scale (e.g. trends, temporal resolution), and that standard modeling techniques (e.g. downscaling, ensemble mean, etc) may not necessarily improve the prediction of the ecological response. Studies attempting to simulate local ecological processes under modern and future climate forcing therefore need to quantify and propagate the climate data uncertainties in their simulations.

  14. The regional impacts of climate change: an assessment of vulnerability

    National Research Council Canada - National Science Library

    Zinyowera, Marufu C; Moss, Richard H; Watson, R. T

    1998-01-01

    .... The Regional Impacts of Climate Change: An Assessment of Vulnerability reviews state-of-the-art information on potential impacts of climate change for ecological systems, water supply, food production, coastal infrastructure, human health...

  15. Impact Assessment of Climate Change on Forestry Development in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Forestry and forest ecosystem are highly sensitive to climate change.At present,studies about the responses of forests to climate change in China are more focused on physical influences of climate change.This paper firstly divided the key impact factors of climate change on forest and forestry developing into direct factors and indirect factors,and then made an assessment on climate change affecting future forestry development from the aspect of forest products and ecological services.On this basis,the adap...

  16. The deep ocean under climate change

    Science.gov (United States)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  17. Climate change, fire management, and ecological services in the southwestern US

    Science.gov (United States)

    Hurteau, Matthew D.; Bradford, John B.; Fulé, Peter Z.; Taylor, Alan H.; Martin, Katherine L.

    2014-01-01

    The diverse forest types of the southwestern US are inseparable from fire. Across climate zones in California, Nevada, Arizona, and New Mexico, fire suppression has left many forest types out of sync with their historic fire regimes. As a result, high fuel loads place them at risk of severe fire, particularly as fire activity increases due to climate change. A legacy of fire exclusion coupled with a warming climate has led to increasingly large and severe wildfires in many southwest forest types. Climate change projections include an extended fire season length due to earlier snowmelt and a general drying trend due to rising temperatures. This suggests the future will be warmer and drier regardless of changes in precipitation. Hotter, drier conditions are likely to increase forest flammability, at least initially. Changes in climate alone have the potential to alter the distribution of vegetation types within the region, and climate-driven shifts in vegetation distribution are likely to be accelerated when coupled with stand-replacing fire. Regardless of the rate of change, the interaction of climate and fire and their effects on Southwest ecosystems will alter the provisioning of ecosystem services, including carbon storage and biodiversity. Interactions between climate, fire, and vegetation growth provide a source of great uncertainty in projecting future fire activity in the region, as post-fire forest recovery is strongly influenced by climate and subsequent fire frequency. Severe fire can be mitigated with fuels management including prescribed fire, thinning, and wildfire management, but new strategies are needed to ensure the effectiveness of treatments across landscapes. We review the current understanding of the relationship between fire and climate in the Southwest, both historical and projected. We then discuss the potential implications of climate change for fire management and examine the potential effects of climate change and fire on ecosystem

  18. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Takemoto

    Full Text Available Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming, whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  19. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    Science.gov (United States)

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  20. Microbial contributions to climate change through carbon cycle feedbacks.

    Science.gov (United States)

    Bardgett, Richard D; Freeman, Chris; Ostle, Nicholas J

    2008-08-01

    There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land-atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land-atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

  1. Climate change damage functions in LCA

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Beier, Claus; Bagger Jørgensen, Rikke

    , their properties, goods and services. In: Climate change 2007. Cambridge, Cambridge University Press, p. 211-272. [2] Mikkelsen TN, Beier C, et al. (2008) Experimental design of multifactor climate change experiments with elevated CO2, warming and drought – the CLIMAITE project. Functional Ecology, 22, 185-195. [3...... will be variable (2). Modeling exercises suggest large-scale range shifts of the major biomes of the world (1). The unknown magnitude of future GHG emissions and the complexity of the climate-carbon system induce large uncertainties in the projected changes. A changed climate may result in new interactions and new...... directions of ecosystem change due to differing adaptive capacities and new species assemblages. Within the framework ‘ecosystem services’ both marketed and non-marketed utilities of the natural environment are formulated (3). Provisioning, cultural, supporting, and regulating ecosystem services have been...

  2. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Directory of Open Access Journals (Sweden)

    Lucas B. Fortini

    2017-07-01

    Full Text Available For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also found other (but not all anthropogenic threats are also similarly associated with more threats. Our findings serve as a reminder that ecological research should seriously consider these potential threat interactions, especially for species under elevated conservation concern.

  3. Social and health dimensions of climate change in the Amazon.

    Science.gov (United States)

    Brondízio, Eduardo S; de Lima, Ana C B; Schramski, Sam; Adams, Cristina

    2016-07-01

    The Amazon region has been part of climate change debates for decades, yet attention to its social and health dimensions has been limited. This paper assesses literature on the social and health dimensions of climate change in the Amazon. A conceptual framework underscores multiple stresses and exposures created by interactions between climate change and local social-environmental conditions. Using the Thomson-Reuter Web of Science, this study bibliometrically assessed the overall literature on climate change in the Amazon, including Physical Sciences, Social Sciences, Anthropology, Environmental Science/Ecology and Public, Environmental/Occupational Health. From this assessment, a relevant sub-sample was selected and complemented with literature from the Brazilian database SciELO. This sample discusses three dimensions of climate change impacts in the region: livelihood changes, vector-borne diseases and microbial proliferation, and respiratory diseases. This analysis elucidates imbalance and disconnect between ecological, physical and social and health dimensions of climate change and between continental and regional climate analysis, and sub-regional and local levels. Work on the social and health implications of climate change in the Amazon falls significantly behind other research areas, limiting reliable information for analytical models and for Amazonian policy-makers and society at large. Collaborative research is called for.

  4. Climate change as a business and human rights issue?

    DEFF Research Database (Denmark)

    Toft, Kristian Høyer

    a forward-looking and positive human rights duty exemplified by good corporate ecological citizenship (Crane, Matten and Moon 2008) carrying the following duties: a) to mitigate climate change by cutting GHG emissions in the future, b) to promote institutions that prevent climate change to further...

  5. Climate change scenarios of precipitation extremes in Central Europe from ENSEMBLES regional climate models

    Czech Academy of Sciences Publication Activity Database

    Gaál, Ľ.; Beranová, R.; Hlavčová, K.; Kyselý, Jan

    2014-01-01

    Roč. 2014, č. 943487 (2014), s. 1-14 ISSN 1687-9309 Institutional support: RVO:67179843 ; RVO:68378289 Keywords : precipitation extremes * regional climate models * climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 0.946, year: 2014

  6. Ecological public health and climate change policy.

    Science.gov (United States)

    Morris, George P

    2010-01-01

    The fact that health and disease are products of a complex interaction of factors has long been recognized in public health circles. More recently, the term 'ecological public health' has been used to characterize an era underpinned by the paradigm that, when it comes to health and well-being, 'everything matters'. The challenge for policy makers is one of navigating this complexity to deliver better health and greater equality in health. Recent work in Scotland has been concerned to develop a strategic approach to environment and health. This seeks to embrace complexity within that agenda and recognize a more subtle relationship between health and place but remain practical and relevant to a more traditional hazard-focused environmental health approach. The Good Places, Better Health initiative is underpinned by a new problem-framing approach using a conceptual model developed for that purpose. This requires consideration of a wider social, behavioural etc, context. The approach is also used to configure the core systems of the strategy which gather relevant intelligence, subject it to a process of evaluation and direct its outputs to a broad policy constituency extending beyond health and environment. This paper highlights that an approach, conceived and developed to deliver better health and greater equality in health through action on physical environment, also speaks to a wider public health agenda. Specifically it offers a way to help bridge a gap between paradigm and policy in public health. The author considers that with development, a systems-based approach with close attention to problem-framing/situational modelling may prove useful in orchestrating what is a necessarily complex policy response to mitigate and adapt to climate change.

  7. Climate Change Vulnerability of Agro-Ecosystems: Does socio-economic factors matters?

    Science.gov (United States)

    Surendran Nair, S.; Preston, B. L.; King, A. W.; Mei, R.; Post, W. M.

    2013-12-01

    Climate variability and change has direct impacts on agriculture. Despite continual adaptation to climate as well as gains in technology innovation and adoption, agriculture is still vulnerable to changes in temperature and precipitation expected in coming decades. Generally, researchers use two major methodologies to understand the vulnerability of agro-ecosystems to climate change: process-based crop models and empirical models. However, these models are not yet designed to capture the influence of socioeconomic systems on agro-ecosystem processes and outcomes.. However, socioeconomic processes are an important factor driving agro-ecological responses to biophysical processes (climate, topography and soil), because of the role of human agency in mediating the response of agro-ecosystems to climate. We have developed a framework that integrates socioeconomic and biophysical characteristics of agro-ecosystems using cluster analysis and GIS tools. This framework has been applied to the U.S. Southeast to define unique socio-ecological domains for agriculture. The results demonstrate that socioeconomic characteristics are an important factor influencing agriculture production. These results suggest that the lack of attention to socioeconomic conditions and human agency in agro-ecological modeling creates a potential bias with respect to the representation of climate change impacts.

  8. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions.

    Science.gov (United States)

    Zhang, Ling; Nan, Zhuotong; Yu, Wenjun; Ge, Yingchun

    2016-02-01

    This study quantified the hydrological responses to land-use change scenarios in the upper and middle Heihe River basin (HRB), northwest China, under constant and changed climatic conditions by combining a land-use/cover change model (dynamic conversion of land use and its effects, Dyna-CLUE) and a hydrological model (soil and water assessment tool, SWAT). Five land-use change scenarios, i.e., historical trend (HT), ecological protection (EP), strict ecological protection (SEP), economic development (ED), and rapid economic development (RED) scenarios, were established. Under constant climatic condition, hydrological variations are only induced by land-use changes in different scenarios. The changes in mean streamflow at the outlets of the upper and the middle HRB are not pronounced, although the different scenarios produce different outcomes. However, more pronounced changes are observed on a subbasin level. The frequency of extreme flood is projected to decrease under the SEP scenario, while under the other scenarios, no changes can be found. Two emission scenarios (A1B and B1) of three general circulation models (HadCM3, CGCM3, and CCSM3) were employed to generate future possible climatic conditions. Under changed climatic condition, hydrological variations are induced by the combination of land-use and climatic changes. The results indicate that the impacts of land-use changes become secondary when the changed climatic conditions have been considered. The frequencies of extreme flood and drought are projected to decrease and increase, respectively, under all climate scenarios. Although some agreements can be reached, pronounced difference of hydrological responses can be observed for different climate scenarios of different GCMs.

  9. How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations

    Science.gov (United States)

    Beaugrand, Grégory; Kirby, Richard R.

    2018-01-01

    In this review, we show how climate affects species, communities, and ecosystems, and why many responses from the species to the biome level originate from the interaction between the species’ ecological niche and changes in the environmental regime in both space and time. We describe a theory that allows us to understand and predict how marine species react to climate-induced changes in ecological conditions, how communities form and are reconfigured, and so how biodiversity is arranged and may respond to climate change. Our study shows that the responses of species to climate change are therefore intelligible—that is, they have a strong deterministic component and can be predicted.

  10. Hydrologic Alterations from Climate Change Inform Assessment of Ecological Risk to Pacific Salmon in Bristol Bay, Alaska.

    Directory of Open Access Journals (Sweden)

    Cameron Wobus

    Full Text Available We developed an integrated hydrologic model of the upper Nushagak and Kvichak watersheds in the Bristol Bay region of southwestern Alaska, a region under substantial development pressure from large-scale copper mining. We incorporated climate change scenarios into this model to evaluate how hydrologic regimes and stream temperatures might change in a future climate, and to summarize indicators of hydrologic alteration that are relevant to salmon habitat ecology and life history. Model simulations project substantial changes in mean winter flow, peak flow dates, and water temperature by 2100. In particular, we find that annual hydrographs will no longer be dominated by a single spring thaw event, but will instead be characterized by numerous high flow events throughout the winter. Stream temperatures increase in all future scenarios, although these temperature increases are moderated relative to air temperatures by cool baseflow inputs during the summer months. Projected changes to flow and stream temperature could influence salmon through alterations in the suitability of spawning gravels, changes in the duration of incubation, increased growth during juvenile stages, and increased exposure to chronic and acute temperature stress. These climate-modulated changes represent a shifting baseline in salmon habitat quality and quantity in the future, and an important consideration to adequately assess the types and magnitude of risks associated with proposed large-scale mining in the region.

  11. [Lake eutrophication modeling in considering climatic factors change: a review].

    Science.gov (United States)

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  12. Effects of Climate Change on Wildlife and Tourism

    International Nuclear Information System (INIS)

    Ongara, W.A; Awuor, V.O

    1997-01-01

    Kenya is well endowed with large variety of wild terrestrial and aquatic fauna and flora whose distribution traverses various ecological zone with variety of landscape. The landscape consists of mountains, plains and platues which provide a wealthy ecological base for the tourism industry. The development of tourism infrastructure has been influenced by the distribution of animals that popularly attract tourists. The spatial and temporal distribution of such animals have to large extent been influenced by climate change and other environmental factors. Lately, there has arisen concern that, climate change resulting from the green-house induced global warming would alter wildlife habitat conditions and lead to changes in species composition and dominance. One of the most challenging tasks of managing and planning for the development of tourism is the uncertainty associated with future wildlife in Kenya. The influence of climate is a major determinant of species distribution of both mammalian and avifauna in Kenya. For instance, elephants and buffaloes are usually found in Afro-Alpine glacier and moorlands, highlands moist forests, the grasslands, the coastal forest and woodland habitats. The type of vegetation in a certain geographical region is determined by climate which in turn determines the distribution of fauna considering that, different faunas survive adopt to different ecological zones

  13. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  14. Climate change and human health: a One Health approach.

    Science.gov (United States)

    Patz, Jonathan A; Hahn, Micah B

    2013-01-01

    Climate change adds complexity and uncertainty to human health issues such as emerging infectious diseases, food security, and national sustainability planning that intensify the importance of interdisciplinary and collaborative research. Collaboration between veterinary, medical, and public health professionals to understand the ecological interactions and reactions to flux in a system can facilitate clearer understanding of climate change impacts on environmental, animal, and human health. Here we present a brief introduction to climate science and projections for the next century and a review of current knowledge on the impacts of climate-driven environmental change on human health. We then turn to the links between ecological and evolutionary responses to climate change and health. The literature on climate impacts on biological systems is rich in both content and historical data, but the connections between these changes and human health is less understood. We discuss five mechanisms by which climate changes impacts on biological systems will be felt by the human population: Modifications in Vector, Reservoir, and Pathogen Lifecycles; Diseases of Domestic and Wild Animals and Plants; Disruption of Synchrony Between Interacting Species; Trophic Cascades; and Alteration or Destruction of Habitat. Each species responds to environmental changes differently, and in order to predict the movement of disease through ecosystems, we have to rely on expertise from the fields of veterinary, medical, and public health, and these health professionals must take into account the dynamic nature of ecosystems in a changing climate.

  15. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  16. How landscape ecology informs global land-change science and policy

    Science.gov (United States)

    Audrey L. Mayer; Brian Buma; Am??lie Davis; Sara A. Gagn??; E. Louise Loudermilk; Robert M. Scheller; Fiona K.A. Schmiegelow; Yolanda F. Wiersma; Janet Franklin

    2016-01-01

    Landscape ecology is a discipline that explicitly considers the influence of time and space on the environmental patterns we observe and the processes that create them. Although many of the topics studied in landscape ecology have public policy implications, three are of particular concern: climate change; land use–land cover change (LULCC); and a particular type of...

  17. Pesticide leaching in a changing climate

    DEFF Research Database (Denmark)

    Rasmussen, Signe Bonde

    There is a widespread consensus among scientists that the climate will change in the future, and that this change has already begun. These climatic changes will undoubtedly challenge the use of pesticides, which has been proposed to increase in the future. Accordingly, the primary aim of this Ph......D-project was to contribute to the knowledge of how climate change will effect pesticide leaching in the future, which was done by use of mathematical modelling. The agro-ecological model Daisy, was used in all simulations, as well as the 2 model soils: a coarse sand and a subsurface drained sandy loam containing......, resulting in 3000-year long weather series of statistically stationary climate. Effects of pesticide properties (sorption and degradation), pesticide application dates, and soil properties were included. The synthetic weather series produced in relation to objective (II) were used to simulate future changes...

  18. The deep ocean under climate change.

    Science.gov (United States)

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  19. Biodiversity redistribution under climate change

    DEFF Research Database (Denmark)

    Pecl, Gretta T.; Bastos, Miguel; Bell, Johann D.

    2017-01-01

    Distributions of Earth’s species are changing at accelerating rates, increasingly driven by humanmediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that ...... by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation’s Sustainable Development Goals....

  20. Responses to climate and economic risks and opportunities across national and ecological boundaries: changing household strategies on the Mongolian plateau

    International Nuclear Information System (INIS)

    Brown, Daniel G; Agrawal, Arun; Wang, Jun; Sass, Daniel A; Hua, Jin; Xie, Yichun

    2013-01-01

    Climate changes on the Mongolian Plateau are creating new challenges for the households and communities of the region. Much of the existing research on household choices in response to climate variability and change focuses on environmental risks and stresses. In contrast, our analysis highlights the importance of taking into account environmental and economic opportunities in explaining household adaptation choices. We surveyed over 750 households arrayed along an ecological gradient and matched across the national border in Mongolia and the Inner Mongolia Autonomous Region, China, asking what changes in livelihoods strategies households made over the last ten years, and analyzed these choices in two broad categories of options: diversification and livestock management. We combined these data with remotely sensed information about vegetation growth and self-reported exposure to price fluctuations. Our statistical results showed that households experiencing lower ecological and economic variability, higher average levels of vegetation growth, and with greater levels of material wealth, were often those that undertook more actions to improve their conditions in the face of variability. The findings have implications both for how interventions aimed at supporting ongoing choices might be targeted and for theory construction related to social adaptation. (letter)

  1. The climatic water balance in an ecological context

    Science.gov (United States)

    Stephenson, N. L.

    2011-12-01

    Because the climatic water balance describes the seasonal interactions of energy (heat and solar radiation) and water in biologically meaningful ways, it provides a powerful tool for understanding and predicting the effects of climatic changes on the terrestrial biosphere. I begin with a brief overview of the definitions and interpretations of the biologically most important water balance parameters -- actual evapotranspiration (AET) and climatic water deficit (Deficit) -- and how the particular approach used to calculate these parameters depends both on the goals of the study and on the available climatic data. Some authors have attempted to represent aspects of the climatic water balance with indices based on annual potential evapotranspiration (PET) and precipitation (P), such at P/PET or PET - P. However, these and related indices do not reflect soil water dynamics, snow dynamics, or the seasonal interactions of energy and water, and therefore have no biological interpretation. Consequently, such indices are more poorly correlated with ecological patterns and processes than AET and Deficit. Of critical importance, the effects of changing energy and water supplies on the climatic water balance are nearly orthogonal. For example, a plant community growing on shallow soils on a shaded slope and one growing on deep soils on a sunward slope often may have the same amount of measured soil moisture available to them. However, the dynamics of energy and water that resulted in the identical soil moistures were fundamentally different (decreased evaporative demand on the shaded slope versus increased water supply on the deep soils); the associated differences in AET and Deficit will therefore result in different plant communities occupying the sites, in spite of identical soil moistures. In the context of climatic change, the orthogonal effects of energy and water mean that increasing precipitation cannot be expected to counteract the effects of increasing temperature

  2. Role of population genetics in guiding ecological responses to climate.

    Science.gov (United States)

    Rehfeldt, Gerald E; Leites, Laura P; Joyce, Dennis G; Weiskittel, Aaron R

    2018-02-01

    Population responses to climate were assessed using 3-7 years height growth data gathered for 266 populations growing in 12 common gardens established in the 1980s as part of five disparate studies of Pinus contorta var. latifolia. Responses are interpreted according to three concepts: the ecological optimum, the climate where a population is competitively exclusive and in which, therefore, it occurs naturally; the physiological optimum, the climate where a population grows best but is most often competitively excluded; and growth potential, the innate capacity for growth at the physiological optimum. Statistical analyses identified winter cold, measured by the square root of negative degree-days calculated from the daily minimum temperature (MINDD0 1/2 ), as the climatic effect most closely related to population growth potential; the colder the winter inhabited by a population, the lower its growth potential, a relationship presumably molded by natural selection. By splitting the data into groups based on population MINDD0 1/2 and using a function suited to skewed normal distributions, regressions were developed for predicting growth from the distance in climate space (MINDD0 1/2 ) populations had been transferred from their native location to a planting site. The regressions were skewed, showing that the ecological optimum of most populations is colder than the physiological optimum and that the discrepancy between the two increases as the ecological optimum becomes colder. Response to climate change is dependent on innate growth potential and the discrepancy between the two optima and, therefore, is population-specific, developing out of genotype-environment interactions. Response to warming in the short-term can be either positive or negative, but long term responses will be negative for all populations, with the timing of the demise dependent on the amount of skew. The results pertain to physiological modeling, species distribution models, and climate-change

  3. Challenging claims in the study of migratory birds and climate change

    NARCIS (Netherlands)

    Knudsen, Endre; Linden, Andreas; Both, Christiaan; Jonzen, Niclas; Pulido, Francisco; Saino, Nicola; Sutherland, William J.; Bach, Lars A.; Coppack, Timothy; Ergon, Torbjorn; Gienapp, Phillip; Gill, Jennifer A.; Gordo, Oscar; Hedenstrom, Anders; Lehikoinen, Esa; Marra, Peter P.; Moller, Anders P.; Nilsson, Anna L. K.; Peron, Guillaume; Ranta, Esa; Rubolini, Diego; Sparks, Tim H.; Spina, Fernando; Studds, Colin E.; Saether, Stein A.; Tryjanowski, Piotr; Stenseth, Nils Chr.; Ergon, Torbjørn; Hedenström, Anders; Møller, Anders P.

    2011-01-01

    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous

  4. Managing for multiple resources under climate change: national forests

    Science.gov (United States)

    Linda A. Joyce; Geoffrey M. Blate; Steven G. McNulty; Constance I. Millar; Susanne Moser; Ronald P. Neilson; David L. Peterson

    2009-01-01

    This study explores potential adaptation approaches in planning andmanagement that theUnited States Forest Servicemight adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-...

  5. Species interactions reverse grassland responses to changing climate.

    Science.gov (United States)

    Suttle, K B; Thomsen, Meredith A; Power, Mary E

    2007-02-02

    Predictions of ecological response to climate change are based largely on direct climatic effects on species. We show that, in a California grassland, species interactions strongly influence responses to changing climate, overturning direct climatic effects within 5 years. We manipulated the seasonality and intensity of rainfall over large, replicate plots in accordance with projections of leading climate models and examined responses across several trophic levels. Changes in seasonal water availability had pronounced effects on individual species, but as precipitation regimes were sustained across years, feedbacks and species interactions overrode autecological responses to water and reversed community trajectories. Conditions that sharply increased production and diversity through 2 years caused simplification of the food web and deep reductions in consumer abundance after 5 years. Changes in these natural grassland communities suggest a prominent role for species interactions in ecosystem response to climate change.

  6. Climate Change and Health: Transcending Silos to Find Solutions.

    Science.gov (United States)

    Machalaba, Catherine; Romanelli, Cristina; Stoett, Peter; Baum, Sarah E; Bouley, Timothy A; Daszak, Peter; Karesh, William B

    2015-01-01

    Climate change has myriad implications for the health of humans, our ecosystems, and the ecological processes that sustain them. Projections of rising greenhouse gas emissions suggest increasing direct and indirect burden of infectious and noninfectious disease, effects on food and water security, and other societal disruptions. As the effects of climate change cannot be isolated from social and ecological determinants of disease that will mitigate or exacerbate forecasted health outcomes, multidisciplinary collaboration is critically needed. The aim of this article was to review the links between climate change and its upstream drivers (ie, processes leading to greenhouse gas emissions) and health outcomes, and identify existing opportunities to leverage more integrated global health and climate actions to prevent, prepare for, and respond to anthropogenic pressures. We conducted a literature review of current and projected health outcomes associated with climate change, drawing on findings and our collective expertise to review opportunities for adaptation and mitigation across disciplines. Health outcomes related to climate change affect a wide range of stakeholders, providing ready collaborative opportunities for interventions, which can be differentiated by addressing the upstream drivers leading to climate change or the downstream effects of climate change itself. Although health professionals are challenged with risks from climate change and its drivers, the adverse health outcomes cannot be resolved by the public health community alone. A phase change in global health is needed to move from a passive responder in partnership with other societal sectors to drive innovative alternatives. It is essential for global health to step outside of its traditional boundaries to engage with other stakeholders to develop policy and practical solutions to mitigate disease burden of climate change and its drivers; this will also yield compound benefits that help address

  7. The causality analysis of climate change and large-scale human crisis.

    Science.gov (United States)

    Zhang, David D; Lee, Harry F; Wang, Cong; Li, Baosheng; Pei, Qing; Zhang, Jane; An, Yulun

    2011-10-18

    Recent studies have shown strong temporal correlations between past climate changes and societal crises. However, the specific causal mechanisms underlying this relation have not been addressed. We explored quantitative responses of 14 fine-grained agro-ecological, socioeconomic, and demographic variables to climate fluctuations from A.D. 1500-1800 in Europe. Results show that cooling from A.D. 1560-1660 caused successive agro-ecological, socioeconomic, and demographic catastrophes, leading to the General Crisis of the Seventeenth Century. We identified a set of causal linkages between climate change and human crisis. Using temperature data and climate-driven economic variables, we simulated the alternation of defined "golden" and "dark" ages in Europe and the Northern Hemisphere during the past millennium. Our findings indicate that climate change was the ultimate cause, and climate-driven economic downturn was the direct cause, of large-scale human crises in preindustrial Europe and the Northern Hemisphere.

  8. Historical climate-change influences modularity and nestedness of pollination networks

    DEFF Research Database (Denmark)

    Dalsgaard, Bo; Nielsen, Kristian Trøjelsgaard; González, Ana M. Martin

    2013-01-01

    The structure of species interaction networks is important for species coexistence, community stability and exposure of species to extinctions. Two widespread structures in ecological networks are modularity, i.e. weakly connected subgroups of species that are internally highly interlinked......, and nestedness, i.e. specialist species that interact with a subset of those species with which generalist species also interact. Modularity and nestedness are often interpreted as evolutionary ecological structures that may have relevance for community persistence and resilience against perturbations......, such as climate-change. Therefore, historical climatic fluctuations could influence modularity and nestedness, but this possibility remains untested. This lack of research is in sharp contrast to the considerable efforts to disentangle the role of historical climate-change and contemporary climate on species...

  9. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  10. Mandate for the Nursing Profession to Address Climate Change Through Nursing Education.

    Science.gov (United States)

    Leffers, Jeanne; Levy, Ruth McDermott; Nicholas, Patrice K; Sweeney, Casey F

    2017-11-01

    The adverse health effects from climate change demand action from the nursing profession. This article examines the calls to action, the status of climate change in nursing education, and challenges and recommendations for nursing education related to climate change and human health. Discussion paper. The integration of climate change into nursing education is essential so that knowledge, skills, and insights critical for clinical practice in our climate-changing world are incorporated in curricula, practice, research, and policy. Our Ecological Planetary Health Model offers a framework for nursing to integrate relevant climate change education into nursing curricula and professional nursing education. Nursing education can offer a leadership role to address the mitigation, adaptation, and resilience strategies for climate change. An ecological framework is valuable for nursing education regarding climate change through its consideration of political, cultural, economic, and environmental interrelationships on human health and the health of the planet. Knowledge of climate change is important for integration into basic and advanced nursing education, as well as professional education for nurses to address adverse health impacts, climate change responses policy, and advocacy roles. For current and future nurses to provide care within a climate-changing environment, nursing education has a mandate to integrate knowledge about climate change issues across all levels of nursing education. Competence in nursing practice follows from knowledge and skill acquisition gained from integration of climate change content into nursing education. © 2017 Sigma Theta Tau International.

  11. Climate change and disturbance interactions: Workshop on climate change and disturbance interactions in western North America, Tucson, Ariz., 12-15 February 2007

    Science.gov (United States)

    McKenzie, Don; Allen, Craig D.

    2007-01-01

    Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?Researchers in climatology, ecosystem science, fire and insect ecology, and landscape modeling from across western North America convened in Tucson, Ariz., for a 2 and a half day intensive workshop to identify new research directions in climate change and disturbance ecology. Four work groups focused on different aspects of the response of disturbance regimes to climate change: (1) extreme events and climatic variability (2) the effects of changing disturbance regimes on ecosystems, (3) disturbance interactions and cumulative effects, and (4) developing new landscape disturbance models. The workshop was structured with the analytic hierarchy process, a decision support method for achieving consensus from diverse groups of experts without sacrificing individual contributions.

  12. Climate Change and Socio-Hydrological Dynamics: Adaptations and Feedbacks

    Science.gov (United States)

    Woyessa, Yali E.; Welderufael, Worku A.

    2012-10-01

    A functioning ecological system results in ecosystem goods and services which are of direct value to human beings. Ecosystem services are the conditions and processes which sustain and fulfil human life, and maintain biodiversity and the production of ecosystem goods. However, human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threatens to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the provision of ecosystem services and how they change under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting landuse changes. Recently, the focus has shifted away from using mathematically oriented models to agent-based modeling (ABM) approach to simulate land use scenarios. The agent-based perspective, with regard to land-use cover change, is centered on the general nature and rules of land-use decision making by individuals. A conceptual framework is developed to investigate the possibility of incorporating the human dimension of land use decision and climate change model into a hydrological model in order to assess the impact of future land use scenario and climate change on the ecological system in general and water resources in particular.

  13. Climatic and ecological future of the Amazon: likelihood and causes of change

    OpenAIRE

    B. Cook; N. Zeng; J.-H. Yoon

    2010-01-01

    Some recent climate modeling results suggested a possible dieback of the Amazon rainforest under future climate change, a prediction that raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest...

  14. Effect of ecological restoration and climate change on ecosystems: a case study in the Three-Rivers Headwater Region, China.

    Science.gov (United States)

    Jiang, Chong; Zhang, Linbo

    2016-06-01

    The Three-Rivers Headwater Region (TRHR) is the headwater of the Yangtze River Basin (YARB), Yellow River Basin (YRB), and Lancang River Basin (LRB); it is known as China's 'Water Tower' owing to its important supply of freshwater. In order to assess ecosystem changes in the TRHR during 2000-2012, we systematically and comprehensively evaluated a combination of model simulation results and actual observational data. The results showed the following: (1) Ecosystem pattern was relatively stable during 2000-2010, with a slight decrease in farmland and desert areas, and a slight increase in grassland and wetland/water-body areas. (2) A warmer and wetter climate, and ecological engineering, caused the vegetation cover and productivity to significantly improve. (3) Precipitation was the main controlling factor for streamflow. A significant increase in precipitation during 2000-2012 resulted in an obvious increase in annual and seasonal streamflow. Glacier melting also contributed to the streamflow increase. (4) The total amount of soil conservation increased slightly from 2000 to 2012. The increase in precipitation caused rainfall erosivity to increase, which enhanced the intensity of soil erosion. The decrease in wind speed decreased wind erosion and the frequency of sandstorms. (5) The overall habitat quality in the TRHR was stable between 2000 and 2010, and the spatial pattern exhibited obvious heterogeneity. In some counties that included nature reserves, habitat quality was slightly higher in 2010 than in 2000, which reflected the effectiveness of the ecological restoration. Overall, the aforementioned ecosystem changes are the combined results of ecological restoration and climate change, and they are likely a local and temporary improvement, rather than a comprehensive and fundamental change. Therefore, more investments and efforts are needed to preserve natural ecosystems.

  15. Climate-Induced Boreal Forest Change: Predictions versus Current Observations

    Science.gov (United States)

    Soja, Amber J.; Tchebakova, Nadezda M.; French, Nancy H. F.; Flannigan, Michael D.; Shugart, Herman H.; Stocks, Brian J.; Sukhinin, Anatoly I.; Parfenova, E. I.; Chapin, F. Stuart, III; Stackhouse, Paul W., Jr.

    2007-01-01

    For about three decades, there have been many predictions of the potential ecological response in boreal regions to the currently warmer conditions. In essence, a widespread, naturally occurring experiment has been conducted over time. In this paper, we describe previously modeled predictions of ecological change in boreal Alaska, Canada and Russia, and then we investigate potential evidence of current climate-induced change. For instance, ecological models have suggested that warming will induce the northern and upslope migration of the treeline and an alteration in the current mosaic structure of boreal forests. We present evidence of the migration of keystone ecosystems in the upland and lowland treeline of mountainous regions across southern Siberia. Ecological models have also predicted a moisture-stress-related dieback in white spruce trees in Alaska, and current investigations show that as temperatures increase, white spruce tree growth is declining. Additionally, it was suggested that increases in infestation and wildfire disturbance would be catalysts that precipitate the alteration of the current mosaic forest composition. In Siberia, five of the last seven years have resulted in extreme fire seasons, and extreme fire years have also been more frequent in both Alaska and Canada. In addition, Alaska has experienced extreme and geographically expansive multi-year outbreaks of the spruce beetle, which had been previously limited by the cold, moist environment. We suggest that there is substantial evidence throughout the circumboreal region to conclude that the biosphere within the boreal terrestrial environment has already responded to the transient effects of climate change. Additionally, temperature increases and warming-induced change are progressing faster than had been predicted in some regions, suggesting a potential non-linear rapid response to changes in climate, as opposed to the predicted slow linear response to climate change.

  16. Hydrologic refugia, plants, and climate change.

    Science.gov (United States)

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  17. Assessment of the Impacts of Climate Change on Maize Production in the Southern and Western Highlands Sub-agro Ecological Zones of Tanzania

    Directory of Open Access Journals (Sweden)

    Philbert M. Luhunga

    2017-08-01

    Full Text Available The Intergovernmental Panel on Climate Change (IPCC fourth assessment report confirmed that climate change is unequivocal. It is coming to us faster with larger impacts and bigger risks than even most climate scientists expected as recently as a few years ago. One particular worry is the disastrous consequence to agriculture and food security sectors in many parts of the world, particularly in developing countries. Adaptation is the only option to reduce the impacts of climate change. However, before planning adaptation policies or strategies to climate change, it is important to assess the impacts of climate change at regional and local scale to have scientific evidence that would guide the formulation of such policies or strategies. In this study the impacts of climate change on rain-fed maize (Zea Mays production in the southern and western highlands sub-agro ecological zones of Tanzania are evaluated. High resolution climate simulations from the Coordinated Regional Climate Downscaling Experiment_Regional Climate Models (CORDEX_RCMs were used as input into the Decision Support System for Agro-technological Transfer (DSSAT to simulate maize yield in the historical climate condition (1971–2000, present (2010–2039, mid (2040–2069, and end (2070–2099 centuries. Daily rainfall, solar radiations, minimum and maximum temperatures for the historical (1971–2000 climate condition and future climate projections (2010–2099 under two Representative Concentration Pathways (RCPs RCP4.5 and RCP 8.5 were used to drive DSSAT. The impacts of climate change were assessed by comparing the average maize yields in historical climate condition against the average of simulated maize yields in the present, mid and end centuries under RCP4.5 and RCP8.5. Results of future maize yields estimates from DSSAT driven by individual RCMs under both RCP scenarios (RCP 4.5 and RCP 8.5 differs from one RCM to another and from one scenario to another. This highlight

  18. New ecology, global change, and forest politics

    International Nuclear Information System (INIS)

    Sampson, N.

    1993-01-01

    Ecosystems constantly change. Some changes are caused by natural conditions that evolve at a very slow pace including climate change, species evolution and migration, and soil formation. Forests don't always respond to gradual changes in gradual ways, though gradual change may be hidden for years within the normal variation in the ecosystem. The industrial age has resulted in a rapid and continuing buildup of atmospheric gases such as carbon dioxide, methane, and chlorofluorocarbons which trap heat in the greenhouse effect. Industrial processes also emit oxides of nitrogen and sulfur that change atmospheric chemistry and alter the nutrient input into ecosystems. Natural forests face a hard time adjusting to a rate of climatic change that is 3 to 10 times faster than species can migrate and that increases the occurrence of major windstorms. In the forest ecosystem where trees are removed or destroyed under rapid climatic change, conditions may not return to their original state, even if we try to restore it. When the ecosystem changes faster than the bureaucracy of the management agency, a serious problem exists. New understandings of ecology and global change may force new ways of thinking in these situations

  19. Means and extremes: building variability into community-level climate change experiments.

    Science.gov (United States)

    Thompson, Ross M; Beardall, John; Beringer, Jason; Grace, Mike; Sardina, Paula

    2013-06-01

    Experimental studies assessing climatic effects on ecological communities have typically applied static warming treatments. Although these studies have been informative, they have usually failed to incorporate either current or predicted future, patterns of variability. Future climates are likely to include extreme events which have greater impacts on ecological systems than changes in means alone. Here, we review the studies which have used experiments to assess impacts of temperature on marine, freshwater and terrestrial communities, and classify them into a set of 'generations' based on how they incorporate variability. The majority of studies have failed to incorporate extreme events. In terrestrial ecosystems in particular, experimental treatments have reduced temperature variability, when most climate models predict increased variability. Marine studies have tended to not concentrate on changes in variability, likely in part because the thermal mass of oceans will moderate variation. In freshwaters, climate change experiments have a much shorter history than in the other ecosystems, and have tended to take a relatively simple approach. We propose a new 'generation' of climate change experiments using down-scaled climate models which incorporate predicted changes in climatic variability, and describe a process for generating data which can be applied as experimental climate change treatments. © 2013 John Wiley & Sons Ltd/CNRS.

  20. Regional Highlights of Climate Change

    Science.gov (United States)

    David L. Peterson; J.M. Wolken; Teresa Hollingsworth; Christian Giardina; J.S. Littell; Linda Joyce; Chris Swanston; Stephen Handler; Lindsey Rustad; Steve McNulty

    2014-01-01

    Climatic extremes, ecological disturbance, and their interactions are expected to have major effects on ecosystems and social systems in most regions of the United States in the coming decades. In Alaska, where the largest temperature increases have occurred, permafrost is melting, carbon is being released, and fire regimes are changing, leading to a...

  1. Do Community-based Institutions Build Resilience to Climate Change in Mongolia?

    Science.gov (United States)

    Fernandez-Gimenez, M.

    2012-12-01

    Climate change impacts are inherently local, yet relatively little is known about the role of local people and institutions in adapting to climate change. Mongolia has experienced one of the strongest warming trends on Earth over the past 40 years, associated declines in streamflow, and increases in the frequency of extreme winter weather events. Environmental changes are compounded by rapid political, economic and social transformations beginning in 1990. We investigate the complex interactions of social, ecological and climate changes across multiple levels from local to regional to national. We hypothesize that community-based institutions increase resilience by strengthening self-regulating feedbacks between social and ecological systems through development and enforcement of formal management rules, implementation of innovative management practices, strengthening of social networks and information exchange within and across levels of social organization, and enhanced monitoring. These result in better ecological and socio-economic conditions and greater adaptive capacity in areas under formal community-based management compared to adjacent areas without formal community management institutions. Evaluation of this hypothesis involves integrated collection and analysis of quantitative and qualitative ecological, social and hydro-climatic data at household, community and regional levels of spatial and social organization. Here, we present preliminary results evaluating these hypotheses from 10 counties (soum) in 3 provinces (aimag) in the Gobi desert-steppe of southern Mongolia based on household-level social data and plot-level ecological data representing. Our initial findings support the hypothesis that community-based institutions are associated with greater household adaptive capacity and healthier pasture ecological conditions, characterized by greater perennial vegetation cover and biomass, especially in the functional group most important for livestock

  2. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  3. Climate change and the ecology and evolution of Arctic vertebrates

    DEFF Research Database (Denmark)

    Gilg, Olivier; Kovacs, Kit M.; Aars, J.

    2012-01-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation......, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have...... already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is increasing via...

  4. A climate for development. Climate change policy options for Africa

    International Nuclear Information System (INIS)

    Okoth-Ogendo, H.W.O.; Ojwang, J.B.

    1995-01-01

    The seriousness of the potential impacts of climate change on development in Africa is now well recognized within, and increasingly outside, scientific circles. The United Nations Framework Convention on Climate Change is a landmark in international environmental governance, providing a mechanism for exchange, negotiation and institution-building to re-direct development towards more efficient use of resources, especially energy. The message of 'A climate for Development' is that unless policy-makers fully understand both the international commitments made under the Convention and the essential national development priorities of their own countries, effective action on climate change is unlikely to be realized. The action needed, however, can at the same time stimulate capacity-building, planning and policy change which would strengthen the economic and ecological base of African countries. The climate change issue has hence brought us face to face with the urgency of the basic issues of sustainable development in Africa. The book discusses key issues that cut across all African countries, such as emissions and their impacts, financial resources and technology transfer for emissions abatement strategies. It then provides a sectoral analysis of greenhouse gas emissions and abatement options focusing on energy, industry, agriculture, forestry and transportation. The book concludes with guidelines for options which may be considered by African countries to ensure that climate change concerns are effectively dealt with in the context of their development priorities. 113 refs

  5. Adapting to climate change at Olympic National Forest and Olympic National Park

    Science.gov (United States)

    Jessica E. Halofsky; David L. Peterson; Kathy A. O’Halloran; Catherine Hawkins Hoffman

    2011-01-01

    Climate change presents a major challenge to natural resource managers both because of the magnitude of potential effects of climate change on ecosystem structure, processes, and function, and because of the uncertainty associated with those potential ecological effects. Concrete ways to adapt to climate change are needed to help natural resource managers take the...

  6. High-latitude tree-ring data: Records of climatic change and ecological response

    International Nuclear Information System (INIS)

    Graumlich, L.J.

    1991-01-01

    Tree-ring data provide critical information regarding two fundamental questions as to the role of the polar regions in global change: (1) what is the nature of climatic variability? and (2) what is the response of vegetation to climatic variability? Tree-ring-based climatic reconstructions document the variability of the climate system on time scales of years to centuries. Dendroclimatic reconstructions indicate that the climatic episodes defined on the basis of documentary evidence in western Europe (i.e., Medieval Warm Episode, ca. A.D. 1000-1300; Little Ice Age, ca. A.D. 1550-1850) can be observed at some high-latitude sites (ex., Polar Urals). Spatial variation in long-term temperature trends (ex., northern Fennoscandia vs. Polar Urals) demonstrates the importance of regional-scale climatic controls. When collated into global networks, proxy-based climatic reconstructions can be used to test hypotheses as to the relative importance of external forcing vs. internal variation in governing climatic variation. Specifically, such a global network would allow the quantification of the climatic response to various permutations of factors thought to be important in governing decadal- to centennial-scale climatic variation. Tree populations respond to annual- to centennial-scale climatic variation through changes in rates of growth, establishment, and mortality. Tree-ring studies that document multiple aspects of high-latitude treeline dynamics (i.e., the timing of tree establishment, mortality, and changes from krummholz to upright growth) indicate a complex interaction between growth form, population processes, and environmental variability. Such interactions result in varying sensitivities of high-latitude trees to climatic change

  7. Adapting California’s ecosystems to a changing climate

    Science.gov (United States)

    Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart

    2017-01-01

    Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.

  8. The sociological imagination in a time of climate change

    Science.gov (United States)

    Norgaard, Kari Marie

    2018-04-01

    Despite rising calls for social science knowledge in the face of climate change, too few sociologists have been engaged in the conversations about how we have arrived at such perilous climatic circumstances, or how society can change course. With its attention to the interactive dimensions of social order between individuals, social norms, cultural systems and political economy, the discipline of sociology is uniquely positioned to be an important leader in this conversation. In this paper I suggest that in order to understand and respond to climate change we need two kinds of imagination: 1) to see the relationships between human actions and their impacts on earth's biophysical system (ecological imagination) and 2) to see the relationships within society that make up this environmentally damaging social structure (sociological imagination). The scientific community has made good progress in developing our ecological imagination but still need to develop a sociological imagination. The application of a sociological imagination allows for a powerfully reframing of four key problems in the current interdisciplinary conversation on climate change: why climate change is happening, how we are being impacted, why we have failed to successfully respond so far, and how we might be able to effectively do so. I visit each of these four questions describing the current understanding and show the importance of the sociological imagination and other insights from the field of sociology. I close with reflections on current limitations in sociology's potential to engage climate change and the Anthropocene.

  9. Avoiding maladaptation to climate change: towards guiding principles

    International Nuclear Information System (INIS)

    Magnan, Alexandre

    2013-08-01

    The recent publication of the Physical Science Basis volume of IPCC's Fifth Assessment Report reaffirms an already known conclusion: even drastic reductions of global greenhouse gas emissions will be insufficient to avoid some of the impacts of climate change, and is becoming increasingly clear that the temperature increase by the end of the century is likely to exceed the official target of +2 deg. C. Urgent efforts are thus more than ever needed to support socio-ecological systems threatened by climate change, but how to make adaptation happen on the ground remains vague. Consequently, there is a real risk that climate funding may support initiatives that are actually harmful for the socio-ecological systems, i.e. that foster adaptation in the short-term but insidiously affect systems' long-term vulnerability and/or adaptive capacity to climate change. This generally defines 'mal-adaptation', and this paper affirms that avoiding mal-adaptation is a first key concrete step towards adaptation in a broader sense. Focusing on coastal areas at a local scale and with the aim of providing insights to help avoiding mal-adaptation to climate change on the ground, this paper develops eleven practice-oriented guidelines that address the environmental, socio-cultural and economic dimensions of adaptation initiatives (policies, plans, projects). Based upon this, it affirms that the more guidelines an initiative addresses, the lower will be the risk of mal-adaptation. Together, these guidelines and this assumption constitute the 'Assessment framework' for approaching mal-adaptation to climate change at a local level. (author)

  10. Fine-resolution conservation planning with limited climate-change information.

    Science.gov (United States)

    Shah, Payal; Mallory, Mindy L; Ando, Amy W; Guntenspergen, Glenn R

    2017-04-01

    Climate-change induced uncertainties in future spatial patterns of conservation-related outcomes make it difficult to implement standard conservation-planning paradigms. A recent study translates Markowitz's risk-diversification strategy from finance to conservation settings, enabling conservation agents to use this diversification strategy for allocating conservation and restoration investments across space to minimize the risk associated with such uncertainty. However, this method is information intensive and requires a large number of forecasts of ecological outcomes associated with possible climate-change scenarios for carrying out fine-resolution conservation planning. We developed a technique for iterative, spatial portfolio analysis that can be used to allocate scarce conservation resources across a desired level of subregions in a planning landscape in the absence of a sufficient number of ecological forecasts. We applied our technique to the Prairie Pothole Region in central North America. A lack of sufficient future climate information prevented attainment of the most efficient risk-return conservation outcomes in the Prairie Pothole Region. The difference in expected conservation returns between conservation planning with limited climate-change information and full climate-change information was as large as 30% for the Prairie Pothole Region even when the most efficient iterative approach was used. However, our iterative approach allowed finer resolution portfolio allocation with limited climate-change forecasts such that the best possible risk-return combinations were obtained. With our most efficient iterative approach, the expected loss in conservation outcomes owing to limited climate-change information could be reduced by 17% relative to other iterative approaches. © 2016 Society for Conservation Biology.

  11. Four cultures: new synergies for engaging society on climate change

    Science.gov (United States)

    Matthew C. Nisbet; Mark A. Hixon; Kathleen Dean Moore; Michael. Nelson

    2010-01-01

    The scientific community has largely reached consensus that climate change is real, is exacerbated by human activities, and is causing detectable shifts in both living and non-living components of the biosphere. Yet, documenting and predicting the ecological, economic, social, and cultural consequences of climate change have not yet stimulated an appropriately strong...

  12. Climate Change Impacts on Waterborne Diseases: Moving Toward Designing Interventions.

    Science.gov (United States)

    Levy, Karen; Smith, Shanon M; Carlton, Elizabeth J

    2018-06-01

    Climate change threatens progress achieved in global reductions of infectious disease rates over recent decades. This review summarizes literature on potential impacts of climate change on waterborne diseases, organized around a framework of questions that can be addressed depending on available data. A growing body of evidence suggests that climate change may alter the incidence of waterborne diseases, and diarrheal diseases in particular. Much of the existing work examines historical relationships between weather and diarrhea incidence, with a limited number of studies projecting future disease rates. Some studies take social and ecological factors into account in considerations of historical relationships, but few have done so in projecting future conditions. The field is at a point of transition, toward incorporating social and ecological factors into understanding the relationships between climatic factors and diarrheal diseases and using this information for future projections. The integration of these components helps identify vulnerable populations and prioritize adaptation strategies.

  13. Predicting vulnerabilities of North American shorebirds to climate change.

    Directory of Open Access Journals (Sweden)

    Hector Galbraith

    Full Text Available Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90% taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  14. Managing uncertainty in climate-driven ecological models to inform adaptation to climate change

    Science.gov (United States)

    Jeremy S. Littell; Donald McKenzie; Becky K. Kerns; Samuel Cushman; Charles G. Shaw

    2011-01-01

    The impacts of climate change on forest ecosystems are likely to require changes in forest planning and natural resource management. Changes in tree growth, disturbance extent and intensity, and eventually species distributions are expected. In natural resource management and planning, ecosystem models are typically used to provide a "best estimate" about how...

  15. Forest succession and climate change: Coupling land-surface processes and ecological dynamics

    International Nuclear Information System (INIS)

    Martin, P.

    1990-01-01

    Growing evidence supports the hypothesis that humans are in the process of inadvertently modifying the Earth's climate by increasing the atmospheric concentrations of carbon dioxide and other radiatively active trace gas. The present man-induced climate change, often referred to as the greenhouse effect, is different from natural changes because of its unprecedented pace and the incomplete knowledge of its consequences. As some scientists put it, humanity is performing on itself a 'global experiment' which may entail a number of surprises. The potential changes in the behavior of atmosphere/biosphere interactions are of particular importance. Such changes could affect atmospheric dynamics, the local and regional hydrology, the global bio-geochemistry, and therefore, human societies. Five distinct aspects of climate/vegetation interactions are examined. First, the climatically and physiologically mediated impacts of increases in the concentration of carbon dioxide on the evaporation from agricultural crops, grassland, and forests are investigated using the Penman-Monteith combination equation. Second, the degree of coupling between the vegetation and the atmosphere, as defined by Jarvis and McNaughton, is reexamined taking radiative losses from the vegetation to the atmosphere into account. Third, the effects of changes in the mean vs. the variance of climatic variables are investigated using a modified version of the forest dynamics model developed by Pastor and Post, LINK-AGES. Fourth, using the same model, changes in the production of non-methane hydrocarbons are estimated as climate and/or vegetation change. Finally, the main focus is on the response of forests to climatic changes using a model treating the physics of energy and water exchange in detail

  16. Lattice-work corridors for climate change: a conceptual framework for biodiversity conservation and social-ecological resilience in a tropical elevational gradient

    Directory of Open Access Journals (Sweden)

    Patricia A. Townsend

    2015-06-01

    Full Text Available Rapid climate change poses complex challenges for conservation, especially in tropical developing countries where biodiversity is high while financial and technical resources are limited. The complexity is heightened by uncertainty in predicted effects, both for ecological systems and human communities that depend heavily on natural resource extraction and use. Effective conservation plans and measures must be inexpensive, fast-acting, and able to increase the resilience of both the ecosystem and the social-ecological system. We present conservation practitioners with a framework that strategically integrates climate change planning into connectivity measures for tropical mountain ecosystems in Costa Rica. We propose a strategy for doubling the amount of habitat currently protected in riparian corridors using measures that are relatively low cost and fast-acting, and will employ and expand human capital. We argue that habitat connectivity must be enhanced along latitudinal gradients, but also within the same elevational bands, via a lattice-work corridor system. This is needed to facilitate range shifts for mobile species and evolutionary adaptation for less mobile species. We think that conservation measures within the elevational bands must include conservation-friendly land uses that improve current and future human livelihoods under dynamic conditions. Key components include community involvement, habitat priority-setting, forest landscape restoration, and environmental services payments. Our approach is fundamentally adaptive in that the conservation measures employed are informed by on-the-ground successes and failures and modified accordingly, but are relatively low risk and fast-acting. Our proposal, if implemented, would satisfy tenets of climate-smart conservation, improve the resilience of human and ecological communities, and be a model for other locations facing similar challenges.

  17. Latest Cretaceous climatic and environmental change in the South Atlantic region

    NARCIS (Netherlands)

    Woelders, L.; Vellekoop, J.; Kroon, D.; Smit, J.; Casadío, S.; Prámparo, M. B.; Dinarès-Turell, J.; Peterse, F.; Sluijs, A.; Lenaerts, J.T.M.; Speijer, R. P.

    Latest Maastrichtian climate change caused by Deccan volcanism has been invoked as a cause of mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (~66.0 Ma). Yet late Maastrichtian climate and ecological changes are poorly documented, in particular on the Southern Hemisphere. Here we present

  18. Latest Cretaceous climatic and environmental change in the South Atlantic region

    NARCIS (Netherlands)

    Woelders, L.; Vellekoop, J.; Kroon, D.; Smit, J.; Casadío, S.; Prámparo, M. B.; Dinarès-Turell, J.; Peterse, F.; Sluijs, A.; Lenaerts, J. T.M.; Speijer, R. P.

    2017-01-01

    Latest Maastrichtian climate change caused by Deccan volcanism has been invoked as a cause of mass extinction at the Cretaceous-Paleogene (K-Pg) boundary (~66.0 Ma). Yet late Maastrichtian climate and ecological changes are poorly documented, in particular on the Southern Hemisphere. Here we present

  19. From GCM Output to Local Hydrologic and Ecological Impacts: Integrating Climate Change Projections into Conservation Lands

    Science.gov (United States)

    Weiss, S. B.; Micheli, L.; Flint, L. E.; Flint, A. L.; Thorne, J. H.

    2014-12-01

    Assessment of climate change resilience, vulnerability, and adaptation options require downscaling of GCM outputs to local scales, and conversion of temperature and precipitation forcings into hydrologic and ecological responses. Recent work in the San Francisco Bay Area, and California demonstrate a practical approach to this process. First, climate futures (GCM x Emissions Scenario) are screened using cluster analysis for seasonal precipitation and temperature, to select a tractable subset of projections that still represent the range of climate projections. Second, monthly climate projections are downscaled to 270m and the Basin Characterization Model (BCM) applied, to generate fine-scale recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) accounting for soils, bedrock geology, topography, and local climate. Third, annual time-series are used to derive 30-year climatologies and recurrence intervals of extreme events (including multi-year droughts) at the scale of small watersheds and conservation parcels/networks. We take a "scenario-neutral" approach where thresholds are defined for system "failure," such as water supply shortfalls or drought mortality/vegetation transitions, and the time-window for hitting those thresholds is evaluated across all selected climate projections. San Francisco Bay Area examples include drought thresholds (CWD) for specific vegetation-types that identify leading/trailing edges and local refugia, evaluation of hydrologic resources (recharge and runoff) provided by conservation lands, and productivity of rangelands (AET). BCM outputs for multiple futures are becoming available to resource managers through on-line data extraction tools. This approach has wide applicability to numerous resource management issues.

  20. Climate change and population health in Africa: where are the scientists?

    Science.gov (United States)

    Byass, Peter

    2009-01-01

    Despite a growing awareness of Africans’ vulnerability to climate change, there is relatively little empirical evidence published about the effects of climate on population health in Africa. This review brings together some of the generalised predictions about the potential continent-wide effects of climate change with examples of the relatively few locally documented population studies in which climate change and health interact. Although ecologically determined diseases such as malaria are obvious candidates for susceptibility to climate change, wider health effects also need to be considered, particularly among populations where adequacy of food and water supplies may already be marginal. PMID:20052421

  1. Ecological Assimilation of Land and Climate Observations - the EALCO model

    Science.gov (United States)

    Wang, S.; Zhang, Y.; Trishchenko, A.

    2004-05-01

    Ecosystems are intrinsically dynamic and interact with climate at a highly integrated level. Climate variables are the main driving factors in controlling the ecosystem physical, physiological, and biogeochemical processes including energy balance, water balance, photosynthesis, respiration, and nutrient cycling. On the other hand, ecosystems function as an integrity and feedback on the climate system through their control on surface radiation balance, energy partitioning, and greenhouse gases exchange. To improve our capability in climate change impact assessment, a comprehensive ecosystem model is required to address the many interactions between climate change and ecosystems. In addition, different ecosystems can have very different responses to the climate change and its variation. To provide more scientific support for ecosystem impact assessment at national scale, it is imperative that ecosystem models have the capability of assimilating the large scale geospatial information including satellite observations, GIS datasets, and climate model outputs or reanalysis. The EALCO model (Ecological Assimilation of Land and Climate Observations) is developed for such purposes. EALCO includes the comprehensive interactions among ecosystem processes and climate, and assimilates a variety of remote sensing products and GIS database. It provides both national and local scale model outputs for ecosystem responses to climate change including radiation and energy balances, water conditions and hydrological cycles, carbon sequestration and greenhouse gas exchange, and nutrient (N) cycling. These results form the foundation for the assessment of climate change impact on ecosystems, their services, and adaptation options. In this poster, the main algorithms for the radiation, energy, water, carbon, and nitrogen simulations were diagrammed. Sample input data layers at Canada national scale were illustrated. Model outputs including the Canada wide spatial distributions of net

  2. Climate Change Impacts on the Built Environment in Nigeria ...

    African Journals Online (AJOL)

    The populations, infrastructure and ecology of cities are at risk from the impacts of climate change which affect urban ventilation and cooling, urban drainage and flood risk and water resources. Built areas exert considerable influence over their local climate and environment, and urban populations are already facing a ...

  3. Expansion Under Climate Change: The Genetic Consequences.

    Science.gov (United States)

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  4. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    Science.gov (United States)

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  5. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States

    Science.gov (United States)

    Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.

    2012-12-01

    Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.

  6. Vulnerabilities of macrophytes distribution due to climate change

    Science.gov (United States)

    Hossain, Kaizar; Yadav, Sarita; Quaik, Shlrene; Pant, Gaurav; Maruthi, A. Y.; Ismail, Norli

    2017-08-01

    The rise in the earth's surface and water temperature is part of the effect of climatic change that has been observed for the last decade. The rates of climate change are unprecedented, and biological responses to these changes have also been prominent in all levels of species, communities and ecosystems. Aquatic-terrestrial ecotones are vulnerable to climate change, and degradation of the emergent aquatic macrophyte zone would have contributed severe ecological consequences for freshwater, wetland and terrestrial ecosystems. Most researches on climate change effects on biodiversity are contemplating on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have been detected in response to climate change. This is unfortunate, given the importance of aquatic systems for providing ecosystem goods and services. Thus, if researchers were able to identify early-warning indicators of anthropogenic environmental changes on aquatic species, communities and ecosystems, it would certainly help to manage and conserve these systems in a sustainable way. One of such early-warning indicators concerns the expansion of emergent macrophytes in aquatic-terrestrial ecotones. Hence, this review highlights the impact of climatic changes towards aquatic macrophytes and their possible environmental implications.

  7. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    Science.gov (United States)

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  8. Bringing an ecological view of change to Landsat-based remote sensing

    Science.gov (United States)

    Kennedy, Robert E.; Andrefouet, Serge; Cohen, Warren; Gomez, Cristina; Griffiths, Patrick; Hais, Martin; Healey, Sean; Helmer, Eileen H.; Hostert, Patrick; Lyons, Mitchell; Meigs, Garrett; Pflugmacher, Dirk; Phinn, Stuart; Powell, Scott; Scarth, Peter; Susmita, Sen; Schroeder, Todd A.; Schneider, Annemarie; Sonnenschein, Ruth; Vogelmann, James; Wulder, Michael A.; Zhu, Zhe

    2014-01-01

    When characterizing the processes that shape ecosystems, ecologists increasingly use the unique perspective offered by repeat observations of remotely sensed imagery. However, the concept of change embodied in much of the traditional remote-sensing literature was primarily limited to capturing large or extreme changes occurring in natural systems, omitting many more subtle processes of interest to ecologists. Recent technical advances have led to a fundamental shift toward an ecological view of change. Although this conceptual shift began with coarser-scale global imagery, it has now reached users of Landsat imagery, since these datasets have temporal and spatial characteristics appropriate to many ecological questions. We argue that this ecologically relevant perspective of change allows the novel characterization of important dynamic processes, including disturbances, long-term trends, cyclical functions, and feedbacks, and that these improvements are already facilitating our understanding of critical driving forces, such as climate change, ecological interactions, and economic pressures.

  9. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges

    Science.gov (United States)

    Mangabeira Albernaz, Ana Luisa

    2016-01-01

    Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map’s coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions. PMID:27618445

  10. Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges.

    Directory of Open Access Journals (Sweden)

    Marina Zanin

    Full Text Available Climate change is a driver for diverse impacts on global biodiversity. We investigated its impacts on native landcover distribution in South America, seeking to predict its effect as a new force driving habitat loss and population isolation. Moreover, we mapped potential future climatic refuges, which are likely to be key areas for biodiversity conservation under climate change scenarios. Climatically similar native landcovers were aggregated using a decision tree, generating a reclassified landcover map, from which 25% of the map's coverage was randomly selected to fuel distribution models. We selected the best geographical distribution models among twelve techniques, validating the predicted distribution for current climate with the landcover map and used the best technique to predict the future distribution. All landcover categories showed changes in area and displacement of the latitudinal/longitudinal centroid. Closed vegetation was the only landcover type predicted to expand its distributional range. The range contractions predicted for other categories were intense, even suggesting extirpation of the sparse vegetation category. The landcover refuges under future climate change represent a small proportion of the South American area and they are disproportionately represented and unevenly distributed, predominantly occupying five of 26 South American countries. The predicted changes, regardless of their direction and intensity, can put biodiversity at risk because they are expected to occur in the near future in terms of the temporal scales of ecological and evolutionary processes. Recognition of the threat of climate change allows more efficient conservation actions.

  11. Climate Change and TESOL: Language, Literacies, and the Creation of Eco-Ethical Consciousness

    Science.gov (United States)

    Goulah, Jason

    2017-01-01

    This article calls on the field of TESOL to respond to the planet's growing climatic and ecological crisis, conceptualizing climate change beyond just standards-based language and content curriculum. Climate change is also "cultural" and "religious," and thus warrants broader consideration in TESOL. Drawing on theories of value…

  12. Effects of Climate Change in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    The report analyzes the vulnerability of Swedish ecological and technical systems to predicted changes in the global climate. The analysis shows, for example, that plant ecosystems will be shifted northward and that their species composition will change. Technical systems, which are normally adapted to local conditions, may have to be modified to satisfy different design parameters. The report examines a few selected systems, with no attempt at being comprehensive. 44 refs

  13. Choice of baseline climate data impacts projected species' responses to climate change.

    Science.gov (United States)

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  14. At a global scale, do climate change threatened species also face a greater number of non-climatic threats?

    Science.gov (United States)

    Fortini, Lucas B.; Dye, Kaipo

    2017-01-01

    For many species the threats of climate change occur in a context of multiple existing threats. Given the current focus of global change ecology in identifying and understanding species vulnerable to climate change, we performed a global analysis to characterize the multi-threat context for species threatened by climate change. Utilizing 30,053 species from the International Union for Conservation of Nature’s (IUCN) Red List of Threatened Species, we sought to evaluate if species threatened by climate change are more likely threatened by a greater number of non-climatic threats than species not threatened by climate change. Our results show that species threatened by climate change are generally impacted by 21% more non-climatic threats than species not threatened by climate change. Across all species, this pattern is related to IUCN risk status, where endangered species threatened by climate change face 33% more non-climatic threats than endangered species not threatened by climate change. With the clear challenges of assessing current and projected impacts of climate change on species and ecosystems, research often requires reductionist approaches that result in downplaying this multi-threat context. This cautionary note bears relevance beyond climate change threatened species as we also

  15. Can Microbial Ecology and Mycorrhizal Functioning Inform Climate Change Models?

    Energy Technology Data Exchange (ETDEWEB)

    Hofmockel, Kirsten; Hobbie, Erik

    2017-07-31

    Our funded research focused on soil organic matter dynamics and plant-microbe interactions by examining the role of belowground processes and mechanisms across scales, including decomposition of organic molecules, microbial interactions, and plant-microbe interactions associated with a changing climate. Research foci included mycorrhizal mediated priming of soil carbon turnover, organic N use and depolymerization by free-living microbes and mycorrhizal fungi, and the use of isotopes as additional constraints for improved modeling of belowground processes. This work complemented the DOE’s mandate to understand both the consequences of atmospheric and climatic change for key ecosystems and the feedbacks on C cycling.

  16. New directions in climate change vulnerability, impacts, and adaptation assessment: summary of a workshop

    National Research Council Canada - National Science Library

    National Research Council (U.S.). Subcommittee for a Workshop on New Directions in Vulnerability, Impacts, and Adaptation Assessment; National Academies Press (U.S.); National Research Council (U.S.). Division of Behavioral and Social Sciences and Education; National Research Council (U.S.). Committee on the Human Dimensions of Global Change; Brewer, Jennifer F

    ...; adaptation is inevitable. The remaining question is to what extent humans will anticipate and reduce undesired consequences of climate change, or postpone response until after climate change impacts have altered ecological...

  17. Global climate change and biodiversity in forests of the southern United States

    Energy Technology Data Exchange (ETDEWEB)

    Devall, M.S.; Parresol, B.R. (Forest Service, New Orleans, LA (United States). Inst. for Quantitative Studies)

    1994-09-01

    This paper examines the effects of projected future climate change scenarios on biodiversity in forests of the southern US. Global climate change will probably influence biodiversity of southern forests as it was affected during periods in the past, with added problems caused by high human population density, development, air pollution, and rising sea levels. Although the increased level of CO[sub 2] could have beneficial effects on plants, climate change could cause serious changes to many ecological systems, for example inducing plants to bloom before their pollinators are available, and could precipitate modifications that few scientists have considered. Certainly many ecological systems will be seriously altered by climate change. Large northward shifts in species' ranges are expected, causing communities and ecosystems to change in composition. Loss of or movement of a dominant tree species may influence many other plant and animal species in the southern forest, bringing about large increases in the numbers of threatened and endangered species, as well as extinctions. Predictions about the effects of global climate change to southern forests and suggestions for detecting and preparing for them are included.

  18. Anthropogenic range contractions bias species climate change forecasts

    Science.gov (United States)

    Faurby, Søren; Araújo, Miguel B.

    2018-03-01

    Forecasts of species range shifts under climate change most often rely on ecological niche models, in which characterizations of climate suitability are highly contingent on the species range data used. If ranges are far from equilibrium under current environmental conditions, for instance owing to local extinctions in otherwise suitable areas, modelled environmental suitability can be truncated, leading to biased estimates of the effects of climate change. Here we examine the impact of such biases on estimated risks from climate change by comparing models of the distribution of North American mammals based on current ranges with ranges accounting for historical information on species ranges. We find that estimated future diversity, almost everywhere, except in coastal Alaska, is drastically underestimated unless the full historical distribution of the species is included in the models. Consequently forecasts of climate change impacts on biodiversity for many clades are unlikely to be reliable without acknowledging anthropogenic influences on contemporary ranges.

  19. Global climate change and above- belowground insect herbivore interactions.

    Directory of Open Access Journals (Sweden)

    Scott Wesley McKenzie

    2013-10-01

    Full Text Available Predicted changes to the Earth’s climate are likely to affect above-belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above-belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above-belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions.

  20. Dynamic reserve design in the face of climate change and urbanization

    Science.gov (United States)

    Romañach, Stephanie; Johnson, Fred A.; Stith, Bradley M.; Bonneau, Mathieu

    2015-01-01

    Reserve design is a process that must address many ecological, social, and political factors to successfully identify parcels of land in need of protection to sustain wildlife populations and other natural resources. Making land acquisition choices for a large, terrestrial protected area is difficult because it occurs over a long timeframe and may involve consideration future conditions such as climate and urbanization changes. Decision makers need to consider factors including: order of parcel purchasing given budget constraints, future uncertainty, potential future landscape‐scale changes from urbanization and climate. In central Florida, two new refuges and the expansion of a third refuge are in various stages of USFWS planning. The Everglades Headwaters National Wildlife Refuge (EHNWR) has recently been established, is at the top of the Presidential Administration’s priority conservation areas, and is cited by the Secretary of DOI routinely in the context of conservation. The new refuges were strategically located for both for species adaptation from climate change impacts as well as currently being host to a number of important threatened and endangered species and habitats. We plan to combine a structured decision making framework, optimal solution theory, and output from ecological and sociological models (these modeling efforts were previously funded by DOI partners) that incorporate climate change to provide guidance for EHNWR reserve design. Utilizing a SDM approach and optimal solution theory, decision support tools will be developed that will incorporate stakeholder and agency objectives into targeting conservation lands both through fee simple purchase and other incentives such as easements based on ecological and socioeconomic modeling outputs driven by climate change.

  1. Climate change and North American rangelands: Assessment of mitigation and adaptation strategies

    Science.gov (United States)

    Linda A. Joyce; David D. Briske; Joel R. Brown; H. Wayne Polley; Bruce A. McCarl; Derek W. Bailey

    2013-01-01

    Recent climatic trends and climate model projections indicate that climate change will modify rangeland ecosystem functions and the services and livelihoods that they provision. Recent history has demonstrated that climatic variability has a strong influence on both ecological and social components of rangeland systems and that these systems possess substantial...

  2. Ecological impacts and management strategies for western larch in the face of climate-change

    Science.gov (United States)

    Gerald E. Rehfeldt; Barry C. Jaquish

    2010-01-01

    Approximately 185,000 forest inventory and ecological plots from both USA and Canada were used to predict the contemporary distribution of western larch (Larix occidentalis Nutt.) from climate variables. The random forests algorithm, using an 8-variable model, produced an overall error rate of about 2.9 %, nearly all of which consisted of predicting presence at...

  3. Mapping vulnerability to climate change and its repercussions on human health in Pakistan.

    Science.gov (United States)

    Malik, Sadia Mariam; Awan, Haroon; Khan, Niazullah

    2012-09-03

    Pakistan is highly vulnerable to climate change due to its geographic location, high dependence on agriculture and water resources, low adaptive capacity of its people, and weak system of emergency preparedness. This paper is the first ever attempt to rank the agro-ecological zones in Pakistan according to their vulnerability to climate change and to identify the potential health repercussions of each manifestation of climate change in the context of Pakistan. A climate change vulnerability index is constructed as an un-weighted average of three sub-indices measuring (a) the ecological exposure of each region to climate change, (b) sensitivity of the population to climate change and (c) the adaptive capacity of the population inhabiting a particular region. The regions are ranked according to the value of this index and its components. Since health is one of the most important dimensions of human wellbeing, this paper also identifies the potential health repercussions of each manifestations of climate change and links it with the key manifestations of climate change in the context of Pakistan. The results indicate that Balochistan is the most vulnerable region with high sensitivity and low adaptive capacity followed by low-intensity Punjab (mostly consisting of South Punjab) and Cotton/Wheat Sindh. The health risks that each of these regions face depend upon the type of threat that they face from climate change. Greater incidence of flooding, which may occur due to climate variability, poses the risk of diarrhoea and gastroenteritis; skin and eye Infections; acute respiratory infections; and malaria. Exposure to drought poses the potential health risks in the form of food insecurity and malnutrition; anaemia; night blindness; and scurvy. Increases in temperature pose health risks of heat stroke; malaria; dengue; respiratory diseases; and cardiovascular diseases. The study concludes that geographical zones that are more exposed to climate change in ecological and

  4. Roundtable on health and climate change : Strategic plan on health and climate change : a framework for collaborative action, final report

    International Nuclear Information System (INIS)

    2001-03-01

    Climate change will have a significant impact on human health, arising from direct effects such as increased extreme weather events, and indirect effects resulting from changes in ecological systems on which humans depend. This paper is a compilation of discussions and input from the many stakeholders and representatives that contributed to the Roundtable on Health and Climate Change held in September 2000. The goal of the Roundtable was to raise the profile and inform policy makers of the health issues associated with climate change and to engage the health sector in the National Implementation Strategy on Climate Change. The strategic framework for collaborative action in addressing the health implications of climate change were presented. The strategic plan is based on the following key principles: (1) incorporating both mitigation and adaptation in all aspects of the plan, (2) maximizing co-benefits, associated with climate change and other key health priorities, (3) building on existing capacity within governments and non-governmental organizations, (4) forming multi-disciplinary alliances, (5) emphasizing collaboration and cooperation, and (6) recognizing the shared responsibility for action on climate change. The major recommendation from the Roundtable was to urge governments to place a high priority on the implementation of measures that will reduce greenhouse gas emissions in Canada, thereby improving health of Canadians. It was recommended that governments should insist that all analyses and modeling of climate change policy options include the assessment and consideration of health implications. 1 tab

  5. Climate change and climate variability: personal motivation for adaptation and mitigation.

    Science.gov (United States)

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  6. Holocene Substrate Influences on Plant and Fire Response to Climate Change

    Science.gov (United States)

    Briles, C.; Whitlock, C. L.

    2011-12-01

    The role of substrates in facilitating plant responses to climate change in the past has received little attention. Ecological studies, documenting the relative role of fertile and infertile substrates in mediating the effects of climate change, lack the temporal information that paleoecological lake studies provide on how plants have responded under equal, larger and more rapid past climate events than today. In this paper, pollen and macroscopic charcoal preserved in the sediments of eight lakes surrounded by infertile ultramafic soils and more fertile soils in the Klamath Mountains of northern California were analyzed. Comparison of late-Quaternary paleoecological sites suggests that infertile and fertile substrates supported distinctly different plant communities. Trees and shrubs on infertile substrates were less responsive to climate change than those on fertile substrates, with the only major compositional change occurring at the glacial/interglacial transition (~11.5ka), when temperature rose 5oC. Trees and shrubs on fertile substrates were more responsive to climate changes, and tracked climate by moving along elevational gradients, including during more recent climate events such as the Little Ice Age and Medieval Climate Anomaly. Fire regimes were similar until 4ka on both substrate types. After 4ka, understory fuels on infertile substrates became sparse and fire activity decreased, while on fertile substrates forests became increasingly denser and fire activity increased. The complacency of plant communities on infertile sites to climate change contrasts with the individualistic and rapid adjustments of species on fertile sites. The findings differ from observations on shorter time scales that show the most change in herb cover and richness in the last 60 years on infertile substrates. Thus, the paleorecord provides unique long-term ecological data necessary to evaluate the response of plants to future climate change under different levels of soil

  7. Integrating plant ecological responses to climate extremes from individual to ecosystem levels.

    Science.gov (United States)

    Felton, Andrew J; Smith, Melinda D

    2017-06-19

    Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  8. Climate Change and Malaria in Canada: A Systems Approach

    Directory of Open Access Journals (Sweden)

    L. Berrang-Ford

    2009-01-01

    Full Text Available This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change.

  9. Ecological and methodological drivers of species’ distribution and phenology responses to climate change

    KAUST Repository

    Brown, Christopher J.; O'Connor, Mary I.; Poloczanska, Elvira S.; Schoeman, David S.; Buckley, Lauren B.; Burrows, Michael T.; Duarte, Carlos M.; Halpern, Benjamin S.; Pandolfi, John M.; Parmesan, Camille; Richardson, Anthony J.

    2015-01-01

    the 7.8% of the variation explained by ecological traits. For phenology change, methodological approaches accounted for 4% of the variation in measurements, whereas 8% of the variation was explained by ecological traits. Our ability to predict responses

  10. Climate change

    International Nuclear Information System (INIS)

    1998-01-01

    The indicators in this bulletin are part of a national set of environmental indicators designed to provide a profile of the state of Canada's environment and measure progress towards sustainable development. A review of potential impacts on Canada shows that such changes would have wide-ranging implications for its economic sectors, social well-being including human health, and ecological systems. This document looks at the natural state of greenhouse gases which help regulate the Earth's climate. Then it looks at human influence and what is being done about it. The document then examines some indicators: Carbon dioxide emissions from fossil fuel use; global atmospheric concentrations of greenhouse gases; and global and Canadian temperature variations

  11. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Directory of Open Access Journals (Sweden)

    Nicolas Casajus

    Full Text Available An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  12. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Science.gov (United States)

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  13. Temporal variance reverses the impact of high mean intensity of stress in climate change experiments.

    Science.gov (United States)

    Benedetti-Cecchi, Lisandro; Bertocci, Iacopo; Vaselli, Stefano; Maggi, Elena

    2006-10-01

    Extreme climate events produce simultaneous changes to the mean and to the variance of climatic variables over ecological time scales. While several studies have investigated how ecological systems respond to changes in mean values of climate variables, the combined effects of mean and variance are poorly understood. We examined the response of low-shore assemblages of algae and invertebrates of rocky seashores in the northwest Mediterranean to factorial manipulations of mean intensity and temporal variance of aerial exposure, a type of disturbance whose intensity and temporal patterning of occurrence are predicted to change with changing climate conditions. Effects of variance were often in the opposite direction of those elicited by changes in the mean. Increasing aerial exposure at regular intervals had negative effects both on diversity of assemblages and on percent cover of filamentous and coarsely branched algae, but greater temporal variance drastically reduced these effects. The opposite was observed for the abundance of barnacles and encrusting coralline algae, where high temporal variance of aerial exposure either reversed a positive effect of mean intensity (barnacles) or caused a negative effect that did not occur under low temporal variance (encrusting algae). These results provide the first experimental evidence that changes in mean intensity and temporal variance of climatic variables affect natural assemblages of species interactively, suggesting that high temporal variance may mitigate the ecological impacts of ongoing and predicted climate changes.

  14. Assessing Impacts of Climate Change on Forests: The State of Biological Modeling

    Science.gov (United States)

    Dale, V. H.; Rauscher, H. M.

    1993-04-06

    Models that address the impacts to forests of climate change are reviewed by four levels of biological organization: global, regional or landscape, community, and tree. The models are compared as to their ability to assess changes in greenhouse gas flux, land use, maps of forest type or species composition, forest resource productivity, forest health, biodiversity, and wildlife habitat. No one model can address all of these impacts, but landscape transition models and regional vegetation and land-use models consider the largest number of impacts. Developing landscape vegetation dynamics models of functional groups is suggested as a means to integrate the theory of both landscape ecology and individual tree responses to climate change. Risk assessment methodologies can be adapted to deal with the impacts of climate change at various spatial and temporal scales. Four areas of research development are identified: (1) linking socioeconomic and ecologic models, (2) interfacing forest models at different scales, (3) obtaining data on susceptibility of trees and forest to changes in climate and disturbance regimes, and (4) relating information from different scales.

  15. Integrating climate change considerations into forest management tools and training

    Science.gov (United States)

    Linda M. Nagel; Christopher W. Swanston; Maria K. Janowiak

    2010-01-01

    Silviculturists are currently facing the challenge of developing management strategies that meet broad ecological and social considerations in spite of a high degree of uncertainty in future climatic conditions. Forest managers need state-of-the-art knowledge about climate change and potential impacts to facilitate development of silvicultural objectives and...

  16. Physical, Ecological, and Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert; Baptista, Sandra R.; Quattrochi, Dale; O'Brien, Sheila

    2011-01-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. The current NCA (http://globalchange.gov/what-we-do/assessment/) differs in multiple ways from previous U.S. climate assessment efforts, being: (1) more focused on supporting the Nation s activities in adaptation and mitigation and on evaluating the current state of scientific knowledge relative to climate impacts and trends; (2) a long-term, consistent process for evaluation of climate risks and opportunities and providing information to support decision-making processes within regions and sectors; and (3) establishing a permanent assessment capacity both inside and outside of the federal government. As a part of ongoing, long-term assessment activities, the NCA intends to develop an integrated strategic framework and deploy climate-relevant physical, ecological, and societal indicators. The NCA indicators framework is underdevelopment by the NCA Development and Advisory Committee Indicators Working Group and are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The potential questions that could be addressed by these indicators include: How do we know that there is a changing climate and how is it expected to change in the future? Are important climate impacts and opportunities occurring or predicted to occur in the future? Are we adapting successfully? What are the vulnerabilities and resiliencies given a changing climate? Are we preparing adequately for extreme events? It is not expected that the NCA societal indicators would be linked directly to a single decision or portfolio of

  17. Climate Change and Flooding in an Ecologically Fragile Zone of Nigerian Coastal Areas: A Case Study of Ilaje Settlement in Lagos, Nigeria

    Science.gov (United States)

    Oni, A. F.

    2017-12-01

    Climate change exacerbates the environmental condition directly or indirectly. The frequency of climate-related disasters worldwide has been on the increase with their amplitude growing. The consequences of climate-related disaster are not limited to loss of lives and properties alone, but also serious repercussions on post-disaster reconstruction, as well as the cost implications for resilience of the infrastructure and natural environment. In developing countries, the low-income group whose income is below the world poverty line is the most vulnerable to the dangers of climate change. To worsen the case, the political and economic strength of these countries in terms of economic resources, technological development and urban planning management necessary for adapting to climate change are relatively weak. This study takes an inventory of the study area environment to establish its environmental state in terms of the extent of its vulnerability and economic strength. It was found that the study area is vulnerable being a coastal area and could be described as a slum settlement. Also, information on frequency and extent of flooding in association with change in temperature was collected. The results show that the frequency of flood occurrence within the period has increased and the increase was attributed to rise in sea level alongside a significant increase in temperature within the period of study. The implications of the findings on loss of lives/properties and continuous decline in the area economic strength as it relates to resilience of the area was discussed. The study suggests an effective urban land use management and control, as well as redevelopment of resilient infrastructure in the area. The study concludes that the increase in temperature for the period as an indicator of climate change causes rise in sea level and the subsequent increase in flooding occurrence. Key Words: Ecologically Fragile Zone, Climate Change, Flooding and Vulnerability.

  18. Biotic and Biogeochemical Feedbacks to Climate Change

    Science.gov (United States)

    Torn, M. S.; Harte, J.

    2002-12-01

    Feedbacks to paleoclimate change are evident in ice core records showing correlations of temperature with carbon dioxide, nitrous oxide, and methane. Such feedbacks may be explained by plant and microbial responses to climate change, and are likely to occur under impending climate warming, as evidenced by results of ecosystem climate manipulation experiments and biometeorological observations along ecological and climate gradients. Ecosystems exert considerable influence on climate, by controlling the energy and water balance of the land surface as well as being sinks and sources of greenhouse gases. This presentation will focus on biotic and biogeochemical climate feedbacks on decadal to century time scales, emphasizing carbon storage and energy exchange. In addition to the direct effects of climate on decomposition rates and of climate and CO2 on plant productivity, climate change can alter species composition; because plant species differ in their surface properties, productivity, phenology, and chemistry, climate-induced changes in plant species composition can exert a large influence on the magnitude and sign of climate feedbacks. We discuss the effects of plant species on ecosystem carbon storage that result from characteristic differences in plant biomass and lifetime, allocation to roots vs. leaves, litter quality, microclimate for decomposition and the ultimate stabilization of soil organic matter. We compare the effect of species transitions on transpiration, albedo, and other surface properties, with the effect of elevated CO2 and warming on single species' surface exchange. Global change models and experiments that investigate the effect of climate only on existing vegetation may miss the biggest impacts of climate change on biogeochemical cycling and feedbacks. Quantification of feedbacks will require understanding how species composition and long-term soil processes will change under global warming. Although no single approach, be it experimental

  19. Forests, fire, floods and fish: nonlinear biophysical responses to changing climate

    Science.gov (United States)

    Pierce, J. L.; Baxter, C.; Yager, E. M.; Fremier, A. K.; Crosby, B. T.; Smith, A. M.; Kennedy, B.; Hicke, J. A.; Feris, K.

    2009-12-01

    One goal of interdisciplinarity is to develop a more holistic understanding of a set of interlinked, complex system processes. Studies rarely couple both a mechanistic understanding of individual processes with their coupled influence on the entire system structure, yet the prospects for climate driven changes in western river systems provide justification for such an effort. We apply such a mechanistic and systems approach to understanding the effects of climate on fire frequency, plant-soil infiltration, sediment transport and stream community and ecosystem dynamics in a large wilderness setting that is likely to experience shifts in the timing or intensity of physical forces if projected climate change scenarios are realized. The Middle Fork Salmon River in central Idaho runs through the Frank Church Wilderness area and is the largest roadless area in the conterminous United States. The relatively southern continental position, complex mountain terrain and wealth of long-term landscape and ecological data in this region make it a tractable system to study the multifaceted and potentially non-linear processes of system change. This presents a unique opportunity to study the effects of climate change in the absence of substantial management effects in a system on the cusp of change. This collection of studies investigates the effects of climate-driven changes in hillslope processes on stream geomorphic and ecologic processes. We investigate 1) how wildfire alters the magnitude, timing and size of sediment delivered to stream channels, 2) how climate-driven changes in the proportion of rain vs. snow dominated basins alter stream hydrology, 3) how wildfire and insect disturbances modify aquatic ecosystems through inputs of nutrients and changes to habitat, 4) how paleo-records of drought, fire, and fire-related debris flows compare with recent data, 5) how fire-related inputs of sediment and wood influence the structure and dynamics of aquatic habitats, and their

  20. Effects of climate change on ecological disturbances [Chapter 8

    Science.gov (United States)

    Danielle M. Malesky; Barbara J. Bentz; Gary R. Brown; Andrea R. Brunelle; John M. Buffington; Linda M. Chappell; R. Justin DeRose; John C. Guyon; Carl L. Jorgensen; Rachel A. Loehman; Laura L. Lowrey; Ann M. Lynch; Marek Matyjasik; Joel D. McMillin; Javier E. Mercado; Jesse L. Morris; Jose F. Negron; Wayne G. Padgett; Robert A. Progar; Carol B. Randall

    2018-01-01

    This chapter describes disturbance regimes in the Intermountain Adaptation Partnership (IAP) region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term "disturbance regime" describes the general temporal and spatial characteristics of a disturbance agent (e.g., insects, disease, fire, weather, human...

  1. Community Perspectives on the On-Farm Diversity of Six Major Cereals and Climate Change in Bhutan

    Directory of Open Access Journals (Sweden)

    Tirtha Bdr. Katwal

    2015-01-01

    Full Text Available Subsistence Bhutanese farmers spread across different agro-ecological zones maintain large species and varietal diversity of different crops in their farm. However, no studies have been undertaken yet to assess why farmers conserve and maintain large agro-biodiversity, the extent of agro-ecological richness, species richness, estimated loss of traditional varieties and threats to the loss of on-farm agro-biodiversity. Information on the number of varieties cultivated by the farmers for six important staple crops were collected from nine districts and twenty sub-districts spread across six different agro-ecological zones of the country to understand farmers reasons for maintaining on-farm crop diversity, estimate agro-ecological richness, species richness and the overall loss of traditional varieties, to know the famers’ level of awareness on climate change and the different threats to crop diversity. The results from this study indicated that an overwhelming 93% of the respondents manage and use agro-biodiversity for household food security and livelihood. The average agro-ecological richness ranged from 1.17 to 2.26 while the average species richness ranged from 0.50 to 2.66. The average agro-ecological richness indicates a large agro-ecological heterogeneity in terms of the different species of staple crops cultivated. The average species richness on the other hand shows that agro-ecological heterogeneity determines the type and extent of the cultivation of the six different staple cereals under consideration. The overall loss of traditional varieties in a time period of 20 years stands at 28.57%. On climate change, 94% of the farmers recognize that local climate is changing while 86% responded that they are aware of the potential impacts of climate change on their livelihoods. Climate change and associated factors was considered the most imminent threat to the management and loss of on-farm agro-biodiversity. The results from this study

  2. Signal to noise : listening for democracy and environment in climate change discourse

    Energy Technology Data Exchange (ETDEWEB)

    Glover, L. [Delaware Univ., Newark, DE (United States)

    2000-06-01

    This paper discussed the importance of active involvement by civic society in achieving long term greenhouse gas (GHG) emission reduction targets to stabilize atmospheric GHG gas concentrations. On the basis of the attempted GHG reductions by Annex I nations in the first reporting period under the UN Framework Convention on Climate Change (FCCC), climate change policy was generally a failure. Few developed nations managed to return annual emissions to anywhere near 1990 levels. This paper focused on the failures in national climate change policy in the United States and Australia in reducing GHG emissions. The author stated that the cause of these failures was not due to communication inadequacies between governments and the general public. National policy formulation processes have been characterized by minimal community input and low discourse over the ethical and practical implications of ecological justice. It was emphasized that civic society should be engaged in longer-term policy formulations to effectively overcome the limitations currently imposed by liberal-democratic nation states and ecological modernisation policy approaches. It was cautioned that until civic society is involved, progress will be bound by the contradictions of seeking to create ecologically-minded communities through governance that fails to explain the relationships between social behaviour and global ecology. 45 refs.

  3. Ecological response to climate change and human activities indicated by n-alkane proxy during the mid- to late Holocene: a case study from an alpine lake

    Science.gov (United States)

    Zhang, C.; Zhao, C.

    2017-12-01

    Paleolimonological records provide long-term dynamics information of past climate, environment, human activities and ecological variations and give evolutionary perspectives to understand responses process of ecological shift to internal or external trigger. In this study, a powerful biomarkers, n-alkanes, was used to reconstruct the past 5000 years organic matter sources and ecological evolution history of Beilianchi Lake in the southwestern of Loess Plateau after preliminary investigation of modern samples. Climate-environment change and human activities were also traced by total organic matter (TOC), magnetic susceptibility (MS) and relevant proxies. The results showed that the ecosystem related to organic matter composition in Beilianchi Lake might be mainly controlled by climate change before 1400 cal B.P., whereas after that, it was significantly influenced by soil erosion induced by increasing population and enhanced human activities. Lake ecosystem experienced periodical change from relatively stable stage with combination of allochthonous-autochthonous organic sources prior to 1400 cal B.P. to extremely instability and final return to steady state with allochthonous-dominant organic source since 300 cal B.P.. During the period of instability, organic matter composition during 1400-800 cal B.P. indicated a obvious bimodal distribution based on probability density distribution analysis, which reflected the lake ecosystem might stay at bistable state and switched repeatedly from more-macrophytes state (regime A with low ACL) towards less-macrophytes state (regime B with high ACL) controlled by disturbance of soil erosion. The flickering during this period could serve as the early warning signal of transition towards more-macrophytes state or less-macrophytes state in lake ecosystems.

  4. Schools, climate change and health promotion: a vital alliance.

    Science.gov (United States)

    Boon, Helen; Brown, Lawrence; Clark, Brenton; Pagliano, Paul; Tsey, Komla; Usher, Kim

    2011-12-01

    Through an ongoing project, we have been reviewing the literature addressing school planning for climate change related ecological disruptions and disasters, particularly for the special needs of children with disabilities. We have also examined related state education department policies from across Australia. Our preliminary results suggest scant attention has been paid either by researchers or educational policy makers to the needs of children with disabilities and their caregivers in response to climate change induced disaster scenarios. Here, we advocate for better preparedness among institutions serving children with disabilities to support their health in the context of climate change, and describe how health promotion principles can be brought to bear on this issue.

  5. [Simulation study on the effects of climate change on aboveground biomass of plantation in southern China: Taking Moshao forest farm in Huitong Ecological Station as an example].

    Science.gov (United States)

    Dai, Er Fu; Zhou, Heng; Wu, Zhuo; Wang, Xiao-Fan; Xi, Wei Min; Zhu, Jian Jia

    2016-10-01

    Global climate warming has significant effect on territorial ecosystem, especially on forest ecosystem. The increase in temperature and radiative forcing will significantly alter the structure and function of forest ecosystem. The southern plantation is an important part of forests in China, its response to climate change is getting more and more intense. In order to explore the responses of southern plantation to climate change under future climate scenarios and to reduce the losses that might be caused by climate change, we used climatic estimated data under three new emission scenarios, representative concentration pathways (RCPs) scenarios (RCP2.6 scenario, RCP4.5 scenario, and RCP8.5 scenario). We used the spatially dynamic forest landscape model LANDIS-2, coupled with a forest ecosystem process model PnET-2, to simulate the impact of climate change on aboveground net primary production (ANPP), species' establishment probability (SEP) and aboveground biomass of Moshao forest farm in Huitong Ecological Station, which located in Hunan Province during the period of 2014-2094. The results showed that there were obvious differences in SEP and ANPP among different forest types under changing climate. The degrees of response of SEP to climate change for different forest types were shown as: under RCP2.6 and RCP4.5, artificial coniferous forest>natural broadleaved forest>artificial broadleaved forest. Under RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The degrees of response of ANPP to climate change for different forest types were shown as: under RCP2.6, artificial broadleaved forest> natural broadleaved forest>artificial coniferous forest. Under RCP4.5 and RCP8.5, natural broadleaved forest>artificial broadleaved forest>artificial coniferous forest. The aboveground biomass of the artificial coniferous forest would decline at about 2050, but the natural broadleaved forest and artificial broadleaved forest showed a

  6. Climate-driven disparities among ecological interactions threaten kelp forest persistence.

    Science.gov (United States)

    Provost, Euan J; Kelaher, Brendan P; Dworjanyn, Symon A; Russell, Bayden D; Connell, Sean D; Ghedini, Giulia; Gillanders, Bronwyn M; Figueira, WillIAM; Coleman, Melinda A

    2017-01-01

    The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs. © 2016 John Wiley & Sons Ltd.

  7. Research frontiers in climate change: Effects of extreme meteorological events on ecosystems

    International Nuclear Information System (INIS)

    Jentsch, A.; Jentsch, A.; Beierkuhnlein, C.

    2008-01-01

    Climate change will increase the recurrence of extreme weather events such as drought and heavy rainfall. Evidence suggests that modifications in extreme weather events pose stronger threats to ecosystem functioning than global trends and shifts in average conditions. As ecosystem functioning is connected with ecological services, this has far-reaching effects on societies in the 21. century. Here, we: (i) present the rationale for the increasing frequency and magnitude of extreme weather events in the near future; (ii) discuss recent findings on meteorological extremes and summarize their effects on ecosystems and (iii) identify gaps in current ecological climate change research. (authors)

  8. The Rate of Seasonal Changes in Temperature Alters Acclimation of Performance under Climate Change.

    Science.gov (United States)

    Nilsson-Örtman, Viktor; Johansson, Frank

    2017-12-01

    How the ability to acclimate will impact individual performance and ecological interactions under climate change remains poorly understood. Theory predicts that the benefit an organism can gain from acclimating depends on the rate at which temperatures change relative to the time it takes to induce beneficial acclimation. Here, we present a conceptual model showing how slower seasonal changes under climate change can alter species' relative performance when they differ in acclimation rate and magnitude. To test predictions from theory, we performed a microcosm experiment where we reared a mid- and a high-latitude damselfly species alone or together under the rapid seasonality currently experienced at 62°N and the slower seasonality predicted for this latitude under climate change and measured larval growth and survival. To separate acclimation effects from fixed thermal responses, we simulated growth trajectories based on species' growth rates at constant temperatures and quantified how much and how fast species needed to acclimate to match the observed growth trajectories. Consistent with our predictions, the results showed that the midlatitude species had a greater capacity for acclimation than the high-latitude species. Furthermore, since acclimation occurred at a slower rate than seasonal temperature changes, the midlatitude species had a small growth advantage over the high-latitude species under the current seasonality but a greater growth advantage under the slower seasonality predicted for this latitude under climate change. In addition, the two species did not differ in survival under the current seasonality, but the midlatitude species had higher survival under the predicted climate change scenario, possibly because rates of cannibalism were lower when smaller heterospecifics were present. These findings highlight the need to incorporate acclimation rates in ecological models.

  9. GREEN ECONOMY AND CLIMATE CHANGE PREVENTION CYCLE

    Directory of Open Access Journals (Sweden)

    Andreea CONSTANTINESCU

    2014-12-01

    Full Text Available While experts in economics place transition to green economy on two directions - reducing ecological footprint and increasing human welfare - climate change specialists warn that effects of global warming will have a much greater impact in the future. It is natural to join scientific contributions in these two areas because both perspectives recognize the ravages made by industrialization, which triggered a serie of abrupt climate changes. For example, the average temperature in Europe has increased about 1oC. Based on these evidences, this article will show the usefulness of introducing a concept of full cycle to prevent climate change in the new paradigm that seeks to solve problems related to the fundamentals of sustainable development through transition to green economy. Using this method, this approach intends to be a new theoretical contribution which can act as support to efficiency of new clean technologies.

  10. Climate change and vector-borne diseases of public health significance.

    Science.gov (United States)

    Ogden, Nicholas H

    2017-10-16

    There has been much debate as to whether or not climate change will have, or has had, any significant effect on risk from vector-borne diseases. The debate on the former has focused on the degree to which occurrence and levels of risk of vector-borne diseases are determined by climate-dependent or independent factors, while the debate on the latter has focused on whether changes in disease incidence are due to climate at all, and/or are attributable to recent climate change. Here I review possible effects of climate change on vector-borne diseases, methods used to predict these effects and the evidence to date of changes in vector-borne disease risks that can be attributed to recent climate change. Predictions have both over- and underestimated the effects of climate change. Mostly under-estimations of effects are due to a focus only on direct effects of climate on disease ecology while more distal effects on society's capacity to control and prevent vector-borne disease are ignored. There is increasing evidence for possible impacts of recent climate change on some vector-borne diseases but for the most part, observed data series are too short (or non-existent), and impacts of climate-independent factors too great, to confidently attribute changing risk to climate change. © Crown copyright 2017.

  11. Climate change and climate variability: personal motivation for adaptation and mitigation

    Directory of Open Access Journals (Sweden)

    Ploubidis George B

    2011-05-01

    Full Text Available Abstract Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622 acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility, Odds Ratio (OR = 2.4 (95% Confidence Interval (CI: 1.4 - 4.0, endanger their life (perceived severity, OR = 1.9 (95% CI: 1.1 - 3.1, or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5. Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1 or plan, OR = 2.2 (95% CI: 1.5 -3.2 for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4 or an emergency plan OR = 1.5 (95%CI: 1.0 - 2

  12. Climatic ecology of charismatic leadership ideals

    NARCIS (Netherlands)

    van de Vliert, Evert

    2006-01-01

    On the basis of the ecological leadership theory (van de Vliert & Smith, 2004), the perceived effectiveness of charismatic leadership in a country's organizations is conceptualized as an adaptation to two interacting characteristics of the environment-cold, temperate, or hot climate, and national

  13. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  14. Morphological evolution, ecological diversification and climate change in rodents

    OpenAIRE

    Renaud, Sabrina; Michaux, Jacques; Schmidt, Daniela N; Aguilar, Jean-Pierre; Mein, Pierre; Auffray, Jean-Christophe

    2005-01-01

    Among rodents, the lineage from Progonomys hispanicus to Stephanomys documents a case of increasing size and dental specialization during an approximately 9 Myr time-interval. On the contrary, some contemporaneous generalist lineages like Apodemus show a limited morphological evolution. Dental shape can be related to diet and can be used to assess the ecological changes along the lineages. Consequently, size and shape of the first upper molar were measured in order to quantify the patterns of...

  15. Ecological niche models reveal the importance of climate variability for the biogeography of protosteloid amoebae.

    Science.gov (United States)

    Aguilar, María; Lado, Carlos

    2012-08-01

    Habitat availability and environmental preferences of species are among the most important factors in determining the success of dispersal processes and therefore in shaping the distribution of protists. We explored the differences in fundamental niches and potential distributions of an ecological guild of slime moulds-protosteloid amoebae-in the Iberian Peninsula. A large set of samples collected in a north-east to south-west transect of approximately 1000 km along the peninsula was used to test the hypothesis that, together with the existence of suitable microhabitats, climate conditions may determine the probability of survival of species. Although protosteloid amoebae share similar morphologies and life history strategies, canonical correspondence analyses showed that they have varied ecological optima, and that climate conditions have an important effect in niche differentiation. Maxent environmental niche models provided consistent predictions of the probability of presence of the species based on climate data, and they were used to generate maps of potential distribution in an 'everything is everywhere' scenario. The most important climatic factors were, in both analyses, variables that measure changes in conditions throughout the year, confirming that the alternation of fruiting bodies, cysts and amoeboid stages in the life cycles of protosteloid amoebae constitutes an advantage for surviving in a changing environment. Microhabitat affinity seems to be influenced by climatic conditions, which suggests that the micro-environment may vary at a local scale and change together with the external climate at a larger scale.

  16. Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity.

    Science.gov (United States)

    Seidl, Rupert; Lexer, Manfred J

    2013-01-15

    The unabated continuation of anthropogenic greenhouse gas emissions and the lack of an international consensus on a stringent climate change mitigation policy underscore the importance of adaptation for coping with the all but inevitable changes in the climate system. Adaptation measures in forestry have particularly long lead times. A timely implementation is thus crucial for reducing the considerable climate vulnerability of forest ecosystems. However, since future environmental conditions as well as future societal demands on forests are inherently uncertain, a core requirement for adaptation is robustness to a wide variety of possible futures. Here we explicitly address the roles of climatic and social uncertainty in forest management, and tackle the question of robustness of adaptation measures in the context of multi-objective sustainable forest management (SFM). We used the Austrian Federal Forests (AFF) as a case study, and employed a comprehensive vulnerability assessment framework based on ecosystem modeling, multi-criteria decision analysis, and practitioner participation. We explicitly considered climate uncertainty by means of three climate change scenarios, and accounted for uncertainty in future social demands by means of three societal preference scenarios regarding SFM indicators. We found that the effects of climatic and social uncertainty on the projected performance of management were in the same order of magnitude, underlining the notion that climate change adaptation requires an integrated social-ecological perspective. Furthermore, our analysis of adaptation measures revealed considerable trade-offs between reducing adverse impacts of climate change and facilitating adaptive capacity. This finding implies that prioritization between these two general aims of adaptation is necessary in management planning, which we suggest can draw on uncertainty analysis: Where the variation induced by social-ecological uncertainty renders measures aiming to

  17. Integrated Assessment of Climate Change, Land-Use Changes, and Regional Carbon Dynamics in United States

    Science.gov (United States)

    Mu, J. E.; Sleeter, B. M.; Abatzoglou, J. T.

    2015-12-01

    The fact that climate change is likely to accelerate throughout this century means that climate-sensitive sectors such as agriculture will need to adapt increasingly to climate change. This fact also means that understanding the potential for agricultural adaptation, and how it could come about, is important for ongoing technology investments in the public and private sectors, for infrastructure investments, and for the various policies that address agriculture directly or indirectly. This paper is an interdisciplinary study by collaborating with climate scientist, agronomists, economists, and ecologists. We first use statistical models to estimate impacts of climate change on major crop yields (wheat, corn, soybeans, sorghum, and cotton) and predict changes in crop yields under future climate condition using downscaled climate projections from CMIP5. Then, we feed the predicted yield changes to a partial equilibrium economic model (FASOM-GHG) to evaluate economic and environmental outcomes including changes in land uses (i.e., cropland, pastureland, forest land, urban land and land for conservation) in United States. Finally, we use outputs from FASOM-GHG as inputs for the ST-SIM ecological model to simulate future carbon dynamics through changes in land use under future climate conditions and discuss the rate of adaptation through land-use changes. Findings in this paper have several merits compared to previous findings in the literature. First, we add economic components to the carbon calculation. It is important to include socio-economic conditions when calculating carbon emission and/or carbon sequestration because human activities are the major contribution to atmosphere GHG emissions. Second, we use the most recent downscaled climate projections from CMIP5 to capture uncertainties from climate model projections. Instead of using all GCMs, we select five GCMs to represent the ensemble. Third, we use a bottom-up approach because we start from micro-level data

  18. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    Algal blooms are new emerging hazards that have had important social impacts in recent years. However, it was not very clear whether future climate change causing warming waters and stronger storm events would exacerbate the algal bloom problem. The goal of this dissertation was to evaluate the sensitivity of algal biomass to climate change in the continental United States. Long-term large-scale observations of algal biomass in inland lakes are challenging, but are necessary to relate climate change to algal blooms. To get observations at this scale, this dissertation applied machine-learning algorithms including boosted regression trees (BRT) in remote sensing of chlorophyll-a with Landsat TM/ETM+. The results show that the BRT algorithm improved model accuracy by 15%, compared to traditional linear regression. The remote sensing model explained 46% of the total variance of the ground-measured chlorophyll- a in the first National Lake Assessment conducted by the US Environmental Protection Agency. That accuracy was ecologically meaningful to study climate change impacts on algal blooms. Moreover, the BRT algorithm for chlorophyll- a would not have systematic bias that is introduced by sediments and colored dissolved organic matter, both of which might change concurrently with climate change and algal blooms. This dissertation shows that the existing atmospheric corrections for Landsat TM/ETM+ imagery might not be good enough to improve the remote sensing of chlorophyll-a in inland lakes. After deriving long-term algal biomass estimates from Landsat TM/ETM+, time series analysis was used to study the relations of climate change and algal biomass in four Missouri reservoirs. The results show that neither temperature nor precipitation was the only factor that controlled temporal variation of algal biomass. Different reservoirs, even different zones within the same reservoir, responded differently to temperature and precipitation changes. These findings were further

  19. Ecological contingency in the effects of climatic warming on forest herb communities

    Science.gov (United States)

    Harrison, Susan; Damschen, Ellen Ingman; Grace, James B.

    2010-01-01

    Downscaling from the predictions of general climate models is critical to current strategies for mitigating species loss caused by climate change. A key impediment to this downscaling is that we lack a fully developed understanding of how variation in physical, biological, or land-use characteristics mediates the effects of climate change on ecological communities within regions. We analyzed change in understory herb communities over a 60-y period (1949/1951–2007/2009) in a complex montane landscape (the Siskiyou Mountains, Oregon) where mean temperatures have increased 2 °C since 1948, similar to projections for other terrestrial communities. Our 185 sites included primary and secondary-growth lower montane forests (500–1.200 m above sea level) and primary upper montane to subalpine forests (1,500–2,100 m above sea level). In lower montane forests, regardless of land-use history, we found multiple herb-community changes consistent with an effectively drier climate, including lower mean specific leaf area, lower relative cover by species of northern biogeographic affinity, and greater compositional resemblance to communities in southerly topographic positions. At higher elevations we found qualitatively different and more modest changes, including increases in herbs of northern biogeographic affinity and in forest canopy cover. Our results provide community-level validation of predicted nonlinearities in climate change effects.

  20. Change: Threat or opportunity for human progress V. 5. Ecological change: Environment, development and poverty linkages

    Energy Technology Data Exchange (ETDEWEB)

    Kirdar, U [ed.

    1992-01-01

    This volume consists of 18 articles that examine the changing ecological balance of the world and its effect on human prosperity. The problems caused by global warning, climate change and environmental degradation will have serious effects in both the short and the long term. Two of the 18 articles fall within INIS scope: these have been indexed separately. Tabs.

  1. Change: Threat or opportunity for human progress? V. 5. Ecological change: Environment, development and poverty linkages

    International Nuclear Information System (INIS)

    Kirdar, U.

    1992-01-01

    This volume consists of 18 articles that examine the changing ecological balance of the world and its effect on human prosperity. The problems caused by global warning, climate change and environmental degradation will have serious effects in both the short and the long term. Two of the 18 articles fall within INIS scope: these have been indexed separately. Tabs

  2. Increased sensitivity to climate change in disturbed ecosystems

    DEFF Research Database (Denmark)

    Kroël-Dulay, György; Ransijn, Johannes; Schmidt, Inger Kappel

    2015-01-01

    Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relatio......Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports...... this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem...

  3. Ecological complexity buffers the impacts of future climate on marine consumers

    Science.gov (United States)

    Goldenberg, Silvan U.; Nagelkerken, Ivan; Marangon, Emma; Bonnet, Angélique; Ferreira, Camilo M.; Connell, Sean D.

    2018-03-01

    Ecological complexity represents a network of interacting components that either propagate or counter the effects of environmental change on individuals and communities1-3. Yet, our understanding of the ecological imprint of ocean acidification (elevated CO2) and climate change (elevated temperature) is largely based on reports of negative effects on single species in simplified laboratory systems4,5. By combining a large mesocosm experiment with a global meta-analysis, we reveal the capacity of consumers (fish and crustaceans) to resist the impacts of elevated CO2. While individual behaviours were impaired by elevated CO2, consumers could restore their performances in more complex environments that allowed for compensatory processes. Consequently, consumers maintained key traits such as foraging, habitat selection and predator avoidance despite elevated CO2 and sustained their populations. Our observed increase in risk-taking under elevated temperature, however, predicts greater vulnerability of consumers to predation. Yet, CO2 as a resource boosted the biomass of consumers through species interactions and may stabilize communities by countering the negative effects of elevated temperature. We conclude that compensatory dynamics inherent in the complexity of nature can buffer the impacts of future climate on species and their communities.

  4. Shifts in frog size and phenology: Testing predictions of climate change on a widespread anuran using data from prior to rapid climate warming.

    Science.gov (United States)

    Sheridan, Jennifer A; Caruso, Nicholas M; Apodaca, Joseph J; Rissler, Leslie J

    2018-01-01

    Changes in body size and breeding phenology have been identified as two major ecological consequences of climate change, yet it remains unclear whether climate acts directly or indirectly on these variables. To better understand the relationship between climate and ecological changes, it is necessary to determine environmental predictors of both size and phenology using data from prior to the onset of rapid climate warming, and then to examine spatially explicit changes in climate, size, and phenology, not just general spatial and temporal trends. We used 100 years of natural history collection data for the wood frog, Lithobates sylvaticus with a range >9 million km 2 , and spatially explicit environmental data to determine the best predictors of size and phenology prior to rapid climate warming (1901-1960). We then tested how closely size and phenology changes predicted by those environmental variables reflected actual changes from 1961 to 2000. Size, phenology, and climate all changed as expected (smaller, earlier, and warmer, respectively) at broad spatial scales across the entire study range. However, while spatially explicit changes in climate variables accurately predicted changes in phenology, they did not accurately predict size changes during recent climate change (1961-2000), contrary to expectations from numerous recent studies. Our results suggest that changes in climate are directly linked to observed phenological shifts. However, the mechanisms driving observed body size changes are yet to be determined, given the less straightforward relationship between size and climate factors examined in this study. We recommend that caution be used in "space-for-time" studies where measures of a species' traits at lower latitudes or elevations are considered representative of those under future projected climate conditions. Future studies should aim to determine mechanisms driving trends in phenology and body size, as well as the impact of climate on population

  5. Capturing subregional variability in regional-scale climate change vulnerability assessments of natural resources

    Science.gov (United States)

    Polly C. Buotte; David L. Peterson; Kevin S. McKelvey; Jeffrey A. Hicke

    2016-01-01

    Natural resource vulnerability to climate change can depend on the climatology and ecological conditions at a particular site. Here we present a conceptual framework for incorporating spatial variability in natural resource vulnerability to climate change in a regional-scale assessment. The framework was implemented in the first regional-scale vulnerability...

  6. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  7. Climate change and health in Earth's future

    Science.gov (United States)

    Bowles, Devin C.; Butler, Colin D.; Friel, Sharon

    2014-02-01

    Threats to health from climate change are increasingly recognized, yet little research into the effects upon health systems is published. However, additional demands on health systems are increasingly documented. Pathways include direct weather impacts, such as amplified heat stress, and altered ecological relationships, including alterations to the distribution and activity of pathogens and vectors. The greatest driver of demand on future health systems from climate change may be the alterations to socioeconomic systems; however, these "tertiary effects" have received less attention in the health literature. Increasing demands on health systems from climate change will impede health system capacity. Changing weather patterns and sea-level rise will reduce food production in many developing countries, thus fostering undernutrition and concomitant disease susceptibility. Associated poverty will impede people's ability to access and support health systems. Climate change will increase migration, potentially exposing migrants to endemic diseases for which they have limited resistance, transporting diseases and fostering conditions conducive to disease transmission. Specific predictions of timing and locations of migration remain elusive, hampering planning and misaligning needs and infrastructure. Food shortages, migration, falling economic activity, and failing government legitimacy following climate change are also "risk multipliers" for conflict. Injuries to combatants, undernutrition, and increased infectious disease will result. Modern conflict often sees health personnel and infrastructure deliberately targeted and disease surveillance and eradication programs obstructed. Climate change will substantially impede economic growth, reducing health system funding and limiting health system adaptation. Modern medical care may be snatched away from millions who recently obtained it.

  8. Eco-innovation, international trade, WTO and climate: Key issues for an ecological industrial policy. Documentation of a workshop on March 12, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Hoppe, Jutta; Kahlenborn, Walter [Adelphi Research, Berlin (Germany); Gather, Corinna (eds.) [Umweltbundesamt, Dessau (Germany)

    2009-01-15

    Within the meeting of the German Federal Environment Agency (Dessau, Federal Republic of Germany) and the German Federal Ministry for the Environment, Nature Conservation and Natural Safety (Berlin, Federal Republic of Germany) at 12th March, 2008, the following reports were held: (a) Trade Policy and Climate Change - An overview from the perspective of an ecological industrial policy (Jutta Hoppe et al.); (b) Kyoto, Post-Kyoto and the WTO (Malena Sell); (c) Climate change, trade and competitiveness (Aaron Cosby, John Drexhage); (d) Unilateral climate policy and implications for trade policy (Susanne Droege); (e) Trade in environmental goods and services relevant to climate-change mitigation: Opportunities and challenges for new industries in the European Union (Mahesh Sugathan); (f) The relevance of WTO activities and rules in the climate change debate (Ludivine Tamiotti); (g) Like-products, energy standards and labelling (Roland Ismer); (h) EC Trade policy and climate challenges: An overview of EC trade policy approaches to climate change (Ditte Juul-Joergensen); (i) Opportunities and constraints for an integrated European climate and trade policy (Ulrich Hoffmann); (j) Climate change, eco-innovation, and EU trade policy: a critical assessment (Daniel Mittler); (k) Resume: Key Issues for an Ecological Industrial policy (Jutta Hoppe, Walter Kahlenborn).

  9. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate

    DEFF Research Database (Denmark)

    Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien

    2016-01-01

    to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies......Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out innatural field conditions. We examined the evolutionary response...... associated to changes in soil temperature and soil moisture. This shows an evolutionaryresponse to realistic climate change happening over short-time scale, and calls for incorporating evolution into modelspredicting future response of species to climate change. It also shows that designed climate change...

  10. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    International Nuclear Information System (INIS)

    Nautiyal, Sunil; Raju, K.V.; Rao, K.S.; Kaechele, Harald; Schaldach, Ruediger

    2013-01-01

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  11. Climate change and the invasion of California by grasses

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Dangremond, Emily

    2012-01-01

    Over the next century, changes in the global climate are expected to have major consequences for plant communities, possibly including the exacerbation of species invasions. We evaluated this possibility in the grass flora of California, which is economically and ecologically important and heavily...... invaded. We used a novel, trait-based approach involving two components: identifying differences in trait composition between native and exotic components of the grass flora and evaluating contemporary trait–climate relationships across the state. The combination of trait–climate relationships and trait...

  12. Managing for multiple resources under climate change: national forests.

    Science.gov (United States)

    Joyce, Linda A; Blate, Geoffrey M; McNulty, Steven G; Millar, Constance I; Moser, Susanne; Neilson, Ronald P; Peterson, David L

    2009-12-01

    This study explores potential adaptation approaches in planning and management that the United States Forest Service might adopt to help achieve its goals and objectives in the face of climate change. Availability of information, vulnerability of ecological and socio-economic systems, and uncertainties associated with climate change, as well as the interacting non-climatic changes, influence selection of the adaptation approach. Resource assessments are opportunities to develop strategic information that could be used to identify and link adaptation strategies across planning levels. Within a National Forest, planning must incorporate the opportunity to identify vulnerabilities to climate change as well as incorporate approaches that allow management adjustments as the effects of climate change become apparent. The nature of environmental variability, the inevitability of novelty and surprise, and the range of management objectives and situations across the National Forest System implies that no single approach will fit all situations. A toolbox of management options would include practices focused on forestalling climate change effects by building resistance and resilience into current ecosystems, and on managing for change by enabling plants, animals, and ecosystems to adapt to climate change. Better and more widespread implementation of already known practices that reduce the impact of existing stressors represents an important "no regrets" strategy. These management opportunities will require agency consideration of its adaptive capacity, and ways to overcome potential barriers to these adaptation options.

  13. Behavioural, ecological and evolutionary responses to extreme climatic events: challenges and directions.

    Science.gov (United States)

    van de Pol, Martijn; Jenouvrier, Stéphanie; Cornelissen, Johannes H C; Visser, Marcel E

    2017-06-19

    More extreme climatic events (ECEs) are among the most prominent consequences of climate change. Despite a long-standing recognition of the importance of ECEs by paleo-ecologists and macro-evolutionary biologists, ECEs have only recently received a strong interest in the wider ecological and evolutionary community. However, as with many rapidly expanding fields, it lacks structure and cohesiveness, which strongly limits scientific progress. Furthermore, due to the descriptive and anecdotal nature of many ECE studies it is still unclear what the most relevant questions and long-term consequences are of ECEs. To improve synthesis, we first discuss ways to define ECEs that facilitate comparison among studies. We then argue that biologists should adhere to more rigorous attribution and mechanistic methods to assess ECE impacts. Subsequently, we discuss conceptual and methodological links with climatology and disturbance-, tipping point- and paleo-ecology. These research fields have close linkages with ECE research, but differ in the identity and/or the relative severity of environmental factors. By summarizing the contributions to this theme issue we draw parallels between behavioural, ecological and evolutionary ECE studies, and suggest that an overarching challenge is that most empirical and theoretical evidence points towards responses being highly idiosyncratic, and thus predictability being low. Finally, we suggest a roadmap based on the proposition that an increased focus on the mechanisms behind the biological response function will be crucial for increased understanding and predictability of the impacts of ECE.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).

  14. Wildlife as biological indicators for assessing impacts of climate change

    International Nuclear Information System (INIS)

    Diamond, A.W.

    1990-01-01

    Estimates of the impacts of climate change on wildlife are necessarily constrained by knowledge of the effects of climate on wildlife. A review is presented of the better-known impacts of climate on wildlife, examining their utility as ecological indicators. The most obvious feature of any species is its geographic distribution, or range. Climate may affect distribution indirectly through effects on habitat, directly through physiological effects, or most probably, through both. Impacts can include changes in distribution of habitat, changes in distribution of species, and changes in migration routes. Direct effects of climate include timing and success of breeding, timing and success of migration, winter survival, and extreme events. Distribution changes are powerful integrators of ecosystem-level events, but poor indicators of particular changes. Changes in the timing of migration, and the phenology of breeding, are more directly determined by weather events and hence will be better indicators of changing climate. Detailed knowledge of effects of climate on timing and success of breeding is available for only a few species, and has not been carefully synthesized with a view to using such variables as climatic indicators. Temperature maxima and minima, frost-free and degree days, and estimates of precipitation on finer scales, both temporal and geographic, are needed to predict the effects of climate change on wildlife. 48 refs

  15. Potential ecological and economic consequences of climate-driven agricultural and silvicultural transformations in central Siberia

    Science.gov (United States)

    Tchebakova, Nadezhda M.; Zander, Evgeniya V.; Pyzhev, Anton I.; Parfenova, Elena I.; Soja, Amber J.

    2014-05-01

    Increased warming predicted from general circulation models (GCMs) by the end of the century is expected to dramatically impact Siberian forests. Both natural climate-change-caused disturbance (weather, wildfire, infestation) and anthropogenic disturbance (legal/illegal logging) has increased, and their impact on Siberian boreal forest has been mounting over the last three decades. The Siberian BioClimatic Model (SiBCliM) was used to simulate Siberian forests, and the resultant maps show a severely decreased forest that has shifted northwards and a changed composition. Predicted dryer climates would enhance the risks of high fire danger and thawing permafrost, both of which challenge contemporary ecosystems. Our current goal is to evaluate the ecological and economic consequences of climate warming, to optimise economic loss/gain effects in forestry versus agriculture, to question the relative economic value of supporting forestry, agriculture or a mixed agro-forestry at the southern forest border in central Siberia predicted to undergo the most noticeable landcover and landuse changes. We developed and used forest and agricultural bioclimatic models to predict forest shifts; novel tree species and their climatypes are introduced in a warmer climate and/or potential novel agriculture are introduced with a potential variety of crops by the end of the century. We applied two strategies to estimate climate change effects, motivated by forest disturbance. One is a genetic means of assisting trees and forests to be harmonized with a changing climate by developing management strategies for seed transfer to locations that are best ecologically suited to the genotypes in future climates. The second strategy is the establishment of agricultural lands in new forest-steppe and steppe habitats, because the forests would retreat northwards. Currently, food, forage, and biofuel crops primarily reside in the steppe and forest-steppe zones which are known to have favorable

  16. Impacts of the Climate Change on Agricultural Food Security, Traditional Knowledge and Agroecology

    Directory of Open Access Journals (Sweden)

    Murat Türkeş

    2014-02-01

    Full Text Available This paper focuses mainly on both impacts of the climate change on agriculture and food security, and multidisciplinary scientific assessment and recommendations for sustainable agro ecological solutions including traditional knowledge responding to these impacts. The climate change will very likely affect four key dimensions of the food security including availability, accessibility, utilization and sustainability of the food, due to close linkage between food and water security and climate change. In one of the most comprehensive model studies simulating impacts of global climate change on agriculture to date, it was estimated that by 2080, in a business-as-usual scenario, climate change will reduce the potential output of global agriculture by more than 3.2 per cent. Furthermore, developing countries will suffer the most with a potential 9.1 per cent decline in agricultural output, for example with a considerable decrease of 16.6 per cent in Africa. Some comprehensive studies pointed out also that all regions may experience significant decreases in crop yields as well as significant increases, depending on emission scenarios and the assumptions on effectiveness of carbon dioxide (CO2 fertilization. One of the tools that would ensure the food security by making use of local sources and traditional knowledge is agroecology. Agroecology would contribute to mitigation of the anthropogenic climate change and cooling down the Earth’s increasing surface and lower atmospheric air temperatures, because it is mainly labour-intensive and requires little uses of fossil fuels, energy and artificial fertilisers. It is also necessary to understand the ecological mechanisms underlying sustainability of traditional farming systems, and to translate them into ecological principles that make locally available and appropriate approaches and techniques applicable to a large number of farmers.

  17. Climatically-mediated landcover change: impacts on Brazilian territory

    Directory of Open Access Journals (Sweden)

    MARINA ZANIN

    Full Text Available ABSTRACT In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.

  18. Climatically-mediated landcover change: impacts on Brazilian territory.

    Science.gov (United States)

    Zanin, Marina; Tessarolo, Geiziane; Machado, Nathália; Albernaz, Ana Luisa M

    2017-01-01

    In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.

  19. The feasibility of implementing an ecological network in The Netherlands under conditions of global change

    NARCIS (Netherlands)

    Bakker, M.M.; Alam, S.J.; Dijk, van J.; Rounsevell, T.; Spek, T.; Brink, van den A.

    2015-01-01

    Context Both global change and policy reform will affect the implementation of the National Ecological Network (NEN) in the Netherlands. Global change refers to a combination of changing groundwater tables arising from climate change and improved economic prospects for farming. Policy reform refers

  20. The feasibility of implementing an ecological network in The Netherlands under conditions of global change

    NARCIS (Netherlands)

    Bakker, Martha; Alam, Shah Jamal; van Dijk, Jerry; Rounsevell, Mark; Spek, Teun; van den Brink, Adri

    2015-01-01

    Context: Both global change and policy reform will affect the implementation of the National Ecological Network (NEN) in the Netherlands. Global change refers to a combination of changing groundwater tables arising from climate change and improved economic prospects for farming. Policy reform refers

  1. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations.

    Science.gov (United States)

    Jeppesen, Erik; Kronvang, Brian; Meerhoff, Mariana; Søndergaard, Martin; Hansen, Kristina M; Andersen, Hans E; Lauridsen, Torben L; Liboriussen, Lone; Beklioglu, Meryem; Ozen, Arda; Olesen, Jørgen E

    2009-01-01

    Climate change may have profound effects on phosphorus (P) transport in streams and on lake eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and arid climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In lakes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankton biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm arid lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation.

  2. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: Introduction

    Science.gov (United States)

    Aumen, Nicholas G.; Havens, Karl E; Best, G. Ronnie; Berry, Leonard

    2015-01-01

    Florida’s Everglades stretch from the headwaters of the Kissimmee River near Orlando to Florida Bay. Under natural conditions in this flat landscape, water flowed slowly downstream as broad, shallow sheet flow. The ecosystem is markedly different now, altered by nutrient pollution and construction of canals, levees, and water control structures designed for flood control and water supply. These alterations have resulted in a 50 % reduction of the ecosystem’s spatial extent and significant changes in ecological function in the remaining portion. One of the world’s largest restoration programs is underway to restore some of the historic hydrologic and ecological functions of the Everglades, via a multi-billion dollar Comprehensive Everglades Restoration Plan. This plan, finalized in 2000, did not explicitly consider climate change effects, yet today we realize that sea level rise and future changes in rainfall (RF), temperature, and evapotranspiration (ET) may have system-wide impacts. This series of papers describes results of a workshop where a regional hydrologic model was used to simulate the hydrology expected in 2060 with climate changes including increased temperature, ET, and sea level, and either an increase or decrease in RF. Ecologists with expertise in various areas of the ecosystem evaluated the hydrologic outputs, drew conclusions about potential ecosystem responses, and identified research needs where projections of response had high uncertainty. Resource managers participated in the workshop, and they present lessons learned regarding how the new information might be used to guide Everglades restoration in the context of climate change.

  3. Potential impacts of climate change on birds and trees of the eastern United States: newest climate scenarios and species abundance modelling techniques

    Science.gov (United States)

    L.R. Iverson; A.M. Prasad; S.N. Matthews; M.P. Peters

    2007-01-01

    Climate change is affecting an increasing number of species the world over, and evidence is mounting that these changes will continue to accelerate. There have been many studies that use a modelling approach to predict the effects of future climatic change on ecological systems, including by us (Iverson et al. 1999, Matthews et al. 2004); this modelling approach uses a...

  4. Adapting inland fisheries management to a changing climate

    Science.gov (United States)

    Paukert, Craig P.; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.

    2016-01-01

    Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.

  5. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  6. Agroclimatic conditions in Europe under climate change

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Olesen, J. E.; Kersebaum, K. C.; Skjelvag, A. O.; Eitzinger, J.; Seguin, B.; Peltonen-Sainio, P.; Rotter, R.; Iglesias, A.; Orlandini, S.; Dubrovský, Martin; Hlavinka, P.; Balek, J.; Eckersten, H.; Cloppet, E.; Calanca, P.; Vucetic, V.; Nejedlík, P.; Kumar, S.; Lalic, B.; Mestre, A.; Rossi, F.; Kozyra, J.; Alexandrov, V.; Semerádová, D.; Žalud, Z.

    2011-01-01

    Roč. 17, č. 7 (2011), s. 2298-2318 ISSN 1354-1013 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520; CEZ:AV0Z30420517 Keywords : agroclimatic extremes * agroclimatic index * climate- change impacts * crop production * environmental zones Subject RIV: EH - Ecology, Behaviour Impact factor: 6.862, year: 2011

  7. Livelihoods and climate change : combining disaster risk reduction, natural resource management and climate change adaptation in a new approach to the reduction of vulnerability and poverty

    International Nuclear Information System (INIS)

    Burton, I.; Soussan, J.; Hammill, A.

    2003-01-01

    This paper provides a framework for researchers and policy-makers that are taking action on climate change adaptation. It presents innovative and sustainable ways to respond to the changing global climate. It focuses, in particular, on international research and policy initiatives on climate change, vulnerable communities and adaptation. The international and multi-disciplinary task force that put the framework together includes experts from the fields of disaster risk reduction, climate change, conservation and poverty reduction. The report emphasizes that successful climate change adaptation should be accomplished through actions that reduce the vulnerabilities of poor people and poor countries because people's livelihoods shape poverty and their ability to move out of poverty. The task force identifies the need to integrate a climate change adaptation approach based on the livelihoods of vulnerable communities in different parts of the world. The examples cited in this report include: (1) mangrove rehabilitation in Vietnam, (2) community-based rang eland rehabilitation for carbon sequestration in Sudan, (3) agro-ecological roots of resilience in Honduras, Nicaragua and Guatemala, and (4) watershed restoration and development in Maharashtra State, India. refs., figs

  8. Consistent response of bird populations to climate change on two continents.

    Science.gov (United States)

    Stephens, Philip A; Mason, Lucy R; Green, Rhys E; Gregory, Richard D; Sauer, John R; Alison, Jamie; Aunins, Ainars; Brotons, Lluís; Butchart, Stuart H M; Campedelli, Tommaso; Chodkiewicz, Tomasz; Chylarecki, Przemysław; Crowe, Olivia; Elts, Jaanus; Escandell, Virginia; Foppen, Ruud P B; Heldbjerg, Henning; Herrando, Sergi; Husby, Magne; Jiguet, Frédéric; Lehikoinen, Aleksi; Lindström, Åke; Noble, David G; Paquet, Jean-Yves; Reif, Jiri; Sattler, Thomas; Szép, Tibor; Teufelbauer, Norbert; Trautmann, Sven; van Strien, Arco J; van Turnhout, Chris A M; Vorisek, Petr; Willis, Stephen G

    2016-04-01

    Global climate change is a major threat to biodiversity. Large-scale analyses have generally focused on the impacts of climate change on the geographic ranges of species and on phenology, the timing of ecological phenomena. We used long-term monitoring of the abundance of breeding birds across Europe and the United States to produce, for both regions, composite population indices for two groups of species: those for which climate suitability has been either improving or declining since 1980. The ratio of these composite indices, the climate impact indicator (CII), reflects the divergent fates of species favored or disadvantaged by climate change. The trend in CII is positive and similar in the two regions. On both continents, interspecific and spatial variation in population abundance trends are well predicted by climate suitability trends. Copyright © 2016, American Association for the Advancement of Science.

  9. Rethinking Social Contracts: Building Resilience in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Karen O'Brien

    2009-12-01

    Full Text Available Social contracts play an important role in defining the reciprocal rights, obligations, and responsibilities between states and citizens. Climate change is creating new challenges for both states and citizens, inevitably forcing a rethinking of existing and evolving social contracts. In particular, the social arrangements that enhance the well-being and security of both present and future generations are likely to undergo dramatic transformations in response to ecosystem changes, more extreme weather events, and the consequences of social-ecological changes in distant locations. The types of social contracts that evolve in the face of a changing climate will have considerable implications for adaptation policies and processes. We consider how a resilience approach can contribute to new social contracts in the face of uncertainty and change. Examples from Norway, New Zealand, and Canada show how resilience thinking provides a new way of looking at social contracts, emphasizing the dynamics, links, and complexity of coupled social-ecological systems. Resilience thinking provides valuable insights on the characteristics of a new social contract, and social contract theory provides some insights on creating resilience and human security in a warming world.

  10. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  11. Climate change is advancing spring onset across the U.S. national park system

    Science.gov (United States)

    Monahan, William B.; Rosemartin, Alyssa; Gerst, Katharine L.; Fisichelli, Nicholas A.; Ault, Toby R.; Schwartz, Mark D.; Gross, John E.; Weltzin, Jake F.

    2016-01-01

    Many U.S. national parks are already at the extreme warm end of their historical temperature distributions. With rapidly warming conditions, park resource management will be enhanced by information on seasonality of climate that supports adjustments in the timing of activities such as treating invasive species, operating visitor facilities, and scheduling climate-related events (e.g., flower festivals and fall leaf-viewing). Seasonal changes in vegetation, such as pollen, seed, and fruit production, are important drivers of ecological processes in parks, and phenology has thus been identified as a key indicator for park monitoring. Phenology is also one of the most proximate biological responses to climate change. Here, we use estimates of start of spring based on climatically modeled dates of first leaf and first bloom derived from indicator plant species to evaluate the recent timing of spring onset (past 10–30 yr) in each U.S. natural resource park relative to its historical range of variability across the past 112 yr (1901–2012). Of the 276 high latitude to subtropical parks examined, spring is advancing in approximately three-quarters of parks (76%), and 53% of parks are experiencing “extreme” early springs that exceed 95% of historical conditions. Our results demonstrate how changes in climate seasonality are important for understanding ecological responses to climate change, and further how spatial variability in effects of climate change necessitates different approaches to management. We discuss how our results inform climate change adaptation challenges and opportunities facing parks, with implications for other protected areas, by exploring consequences for resource management and planning.

  12. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  13. Final Report: Synthesis of aquatic climate change vulnerability assessments for the Interior West

    Science.gov (United States)

    Megan M. Friggens; Carly K. Woodlief

    2015-01-01

    Water is a critical resource for humans and ecological systems in the western United States. Aquatic ecosystems including lakes, rivers, riparian areas and wetlands, are at high risk of climate impacts because they experience relatively high exposure to climate fluctuations and extremes. In turn, impacts arising from climate change are far reaching because these...

  14. Climate change and protected area policy and planning in Canada

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D. [Canada Research Chairs, Ottawa, ON (Canada); Waterloo Univ., ON (Canada). Dept. of Geography; Lemieux, C. [Waterloo Univ., ON (Canada). Dept. of Geography

    2005-10-01

    Challenges concerning climate change for agencies involved the management of Canada's protected areas were reviewed. Most protected areas have been designed to represent specific natural features, species and ecological communities, and are the most common and most important strategy for biodiversity conservation. It remains undecided whether adaptation should be a matter of responding to climate change as it manifests, or whether initiatives should be taken in advance to anticipate the potential effects of climate change. There are growing concerns that emergency adaptation will be less effective and more costly than anticipatory or precautionary adaptation over the long-term. Species extinction could result. It was noted that the northward shift of species from the United States will meet Parks Canada's existing definition of alien species in need of management interventions. The conservation objectives of individual protected areas would also be affected by projected biome and species changes, particularly as each of Canada's national parks is responsible for protecting ecosystems representative of the natural region within which it is located. All 6 vegetation change scenarios examined in a recent study projected the eventual loss of boreal forest in the Prince Albert National Park, suggesting that the park's current mandate to protect the ecological integrity of the area would no longer be viable. An overview of the policy and planning implications of climate change for protected areas in Canada was presented using examples from national and provincial park systems. A portfolio of climate change adaptation options in conservation literature was reviewed. Recommended strategies included system planning and policy development; active, adaptive ecosystem management; research and monitoring; and capacity building and awareness. It was concluded that governments will need to make major new investments in protected area establishment, personnel

  15. Climate change likely to reduce orchid bee abundance even in climatic suitable sites.

    Science.gov (United States)

    Faleiro, Frederico Valtuille; Nemésio, André; Loyola, Rafael

    2018-06-01

    Studies have tested whether model predictions based on species' occurrence can predict the spatial pattern of population abundance. The relationship between predicted environmental suitability and population abundance varies in shape, strength and predictive power. However, little attention has been paid to the congruence in predictions of different models fed with occurrence or abundance data, in particular when comparing metrics of climate change impact. Here, we used the ecological niche modeling fit with presence-absence and abundance data of orchid bees to predict the effect of climate change on species and assembly level distribution patterns. In addition, we assessed whether predictions of presence-absence models can be used as a proxy to abundance patterns. We obtained georeferenced abundance data of orchid bees (Hymenoptera: Apidae: Euglossina) in the Brazilian Atlantic Forest. Sampling method consisted in attracting male orchid bees to baits of at least five different aromatic compounds and collecting the individuals with entomological nets or bait traps. We limited abundance data to those obtained by similar standard sampling protocol to avoid bias in abundance estimation. We used boosted regression trees to model ecological niches and project them into six climate models and two Representative Concentration Pathways. We found that models based on species occurrences worked as a proxy for changes in population abundance when the output of the models were continuous; results were very different when outputs were discretized to binary predictions. We found an overall trend of diminishing abundance in the future, but a clear retention of climatically suitable sites too. Furthermore, geographic distance to gained climatic suitable areas can be very short, although it embraces great variation. Changes in species richness and turnover would be concentrated in western and southern Atlantic Forest. Our findings offer support to the ongoing debate of suitability

  16. Assessing Ecological Flow Needs and Risks for Springs and Baseflow Streams With Growth and Climate Change

    Science.gov (United States)

    Springer, A. E.; Stevens, L. E.

    2008-12-01

    Ecological flow needs assessments are beginning to become an important part of regulated river management, but are more challenging for unregulated rivers. Water needs for ecosystems are greater than just consumptive use by riparian and aquatic vegetation and include the magnitude, frequency, duration and timing of flows and the depth and annual fluctuations of groundwater levels of baseflow supported streams. An ecological flow needs assessment was adapted and applied to an unregulated, baseflow dependent river in the arid to semi-arid Southwestern U.S. A separate process was developed to determine groundwater sources potentially at risk from climate, land management, or groundwater use changes in a large regional groundwater basin in the same semi-arid region. In 2007 and 2008, workshops with ecological, cultural, and physical experts from agencies, universities, tribes, and other organizations were convened. Flow-ecology response functions were developed with either conceptual or actual information for a baseflow dependent river, and scoring systems were developed to assign values to categories of risks to groundwater sources in a large groundwater basin. A reduction of baseflow to the river was predicted to lead to a decline in cottonwood and willow tree abundance, decreases in riparian forest diversity, and increases in non-native tree species, such as tamarisk. These types of forest vegetation changes would likely cause reductions or loss of some bird species. Loss of riffle habitat through declines in groundwater discharge and the associated river levels would likely lead to declines in native fish and amphibian species. A research agenda was developed to develop techniques to monitor, assess and hopefully better manage the aquifers supporting the baseflow dependent river to prevent potential threshold responses of the ecosystems. The scoring system for categories of risk was applied to four systems (aquifers, springs, standing water bodies, and streams) in

  17. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  18. Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile.

    Science.gov (United States)

    Castillo, Andrea G; Alò, Dominique; González, Benito A; Samaniego, Horacio

    2018-01-01

    The main goal of this contribution was to define the ecological niche of the guanaco ( Lama guanicoe ), to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species ( L.g. cacsilensis and L.g. guanicoe ). We used maximum entropy to model lineage's climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5). We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. We show that: (a) the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b) future distribution models predict a decrease in the distribution surface under both scenarios; (c) a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d) current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution area is expected, this may come with an important

  19. Change of niche in guanaco (Lama guanicoe: the effects of climate change on habitat suitability and lineage conservatism in Chile

    Directory of Open Access Journals (Sweden)

    Andrea G. Castillo

    2018-05-01

    Full Text Available Background The main goal of this contribution was to define the ecological niche of the guanaco (Lama guanicoe, to describe potential distributional changes, and to assess the relative importance of niche conservatism and divergence processes between the two lineages described for the species (L.g. cacsilensis and L.g. guanicoe. Methods We used maximum entropy to model lineage’s climate niche from 3,321 locations throughout continental Chile, and developed future niche models under climate change for two extreme greenhouse gas emission scenarios (RCP2.6 and RCP8.5. We evaluated changes of the environmental niche and future distribution of the largest mammal in the Southern Cone of South America. Evaluation of niche conservatism and divergence were based on identity and background similarity tests. Results We show that: (a the current geographic distribution of lineages is associated with different climatic requirements that are related to the geographic areas where these lineages are located; (b future distribution models predict a decrease in the distribution surface under both scenarios; (c a 3% decrease of areal protection is expected if the current distribution of protected areas is maintained, and this is expected to occur at the expense of a large reduction of high quality habitats under the best scenario; (d current and future distribution ranges of guanaco mostly adhere to phylogenetic niche divergence hypotheses between lineages. Discussion Associating environmental variables with species ecological niche seems to be an important aspect of unveiling the particularities of, both evolutionary patterns and ecological features that species face in a changing environment. We report specific descriptions of how these patterns may play out under the most extreme climate change predictions and provide a grim outlook of the future potential distribution of guanaco in Chile. From an ecological perspective, while a slightly smaller distribution

  20. Climate change and mountain Grouse: recent evidences from alpine habitats

    Directory of Open Access Journals (Sweden)

    Brugnoli A

    2013-02-01

    Full Text Available Current climate change, referring as well to the observed rain and temperature patterns as to the increased frequency and intensity of extreme weather conditions, has a deep influence on biotic communities and, in particular, on mountain Grouse. These species show great adaptation to coldness, are highly sedentary and have quite “strict” ecological requirements, when it deals with habitat selection. Moreover, their alpine ranges are dangerously marginal to the main distribution areas, which increases the risk of dramatic changes in occurrence, demography and ecology. However, not all the species will predictably be exposed in the same way to the menace of climate change over the next 50-100 years. This article gives a brief review of the main data acquired in the alpine environment in this matter. It also underlines the utmost need to proceed with research and monitoring activities, in order to effectively adapt and manage conservation strategies on mid-long terms.

  1. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Sunil; Raju, K.V. [Institute for Social and Economic Change, Bangalore (India). Centre for Ecological Economics and Natural Resources; Rao, K.S. [Delhi Univ. (India). Dept. of Botany; Kaechele, Harald [Leibniz Centre for Agricultural Landscape Research, Muencheberg (Germany). Inst. of Socioeconomics; Schaldach, Ruediger (ed.) [Kassel Univ. (Germany). Centre for Environmental System Research

    2013-07-01

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  2. Behavioral flexibility as a mechanism for coping with climate change

    Science.gov (United States)

    Beever, Erik; Hall, L. Embere; Varner, Johanna; Loosen, Anne E.; Dunham, Jason B.; Gahl, Megan K.; Smith, Felisa A.; Lawler, Joshua J.

    2017-01-01

    Of the primary responses to contemporary climate change – “move, adapt, acclimate, or die” – that are available to organisms, “acclimate” may be effectively achieved through behavioral modification. Behavioral flexibility allows animals to rapidly cope with changing environmental conditions, and behavior represents an important component of a species’ adaptive capacity in the face of climate change. However, there is currently a lack of knowledge about the limits or constraints on behavioral responses to changing conditions. Here, we characterize the contexts in which organisms respond to climate variability through behavior. First, we quantify patterns in behavioral responses across taxa with respect to timescales, climatic stimuli, life-history traits, and ecology. Next, we identify existing knowledge gaps, research biases, and other challenges. Finally, we discuss how conservation practitioners and resource managers can incorporate an improved understanding of behavioral flexibility into natural resource management and policy decisions.

  3. Global climate change and introduced species in United States forests

    Energy Technology Data Exchange (ETDEWEB)

    Simberloff, D. [Department of Ecology and Evolutionary Biology, University of Tennessee, 37996 Knoxville, TN (United States)

    2000-11-15

    Introduced species already cause billions of dollars of damage annually in United States forests, plus massive ecological damage whose economic value has often not been estimated. The variety of impacts is staggering and includes herbivory, predation, disease, parasitism, competition, habitat destruction, hybridization, and changed disturbance regimes and nutrient cycles. How global climate change will affect these impacts has scarcely been assessed. Range changes of existing introduced species will be prominent, as many species' biogeographic ranges are set primarily by climate. Similarly, some species that might otherwise not have survived will be able to establish populations in a changed climate. It is more difficult to predict what the impacts of the introduced species will be. What is most needed are studies of the combined impacts of changing climate, CO{sub 2}, and nutrients. Certain aspects of the biology of introduced species, such as evolution and autonomous dispersal, greatly complicate the prediction of spread and impact of introduced species.

  4. Forests in a water limited world under climate change

    International Nuclear Information System (INIS)

    Mátyás, Csaba; Sun, Ge

    2014-01-01

    The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses. (paper)

  5. Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change

    Science.gov (United States)

    Carroll, Carlos; Lawler, Joshua J.; Roberts, David R.; Hamann, Andreas

    2015-01-01

    Metrics that synthesize the complex effects of climate change are essential tools for mapping future threats to biodiversity and predicting which species are likely to adapt in place to new climatic conditions, disperse and establish in areas with newly suitable climate, or face the prospect of extirpation. The most commonly used of such metrics is the velocity of climate change, which estimates the speed at which species must migrate over the earth’s surface to maintain constant climatic conditions. However, “analog-based” velocities, which represent the actual distance to where analogous climates will be found in the future, may provide contrasting results to the more common form of velocity based on local climate gradients. Additionally, whereas climatic velocity reflects the exposure of organisms to climate change, resultant biotic effects are dependent on the sensitivity of individual species as reflected in part by their climatic niche width. This has motivated development of biotic velocity, a metric which uses data on projected species range shifts to estimate the velocity at which species must move to track their climatic niche. We calculated climatic and biotic velocity for the Western Hemisphere for 1961–2100, and applied the results to example ecological and conservation planning questions, to demonstrate the potential of such analog-based metrics to provide information on broad-scale patterns of exposure and sensitivity. Geographic patterns of biotic velocity for 2954 species of birds, mammals, and amphibians differed from climatic velocity in north temperate and boreal regions. However, both biotic and climatic velocities were greatest at low latitudes, implying that threats to equatorial species arise from both the future magnitude of climatic velocities and the narrow climatic tolerances of species in these regions, which currently experience low seasonal and interannual climatic variability. Biotic and climatic velocity, by approximating

  6. Climate change is catchy – but when will it really hurt? | Sweijd ...

    African Journals Online (AJOL)

    Concern and general awareness about the impacts of climate change in all sectors of the social- ecological-economic system is growing as a result of improved climate science products and information, as well as increased media coverage of the apparent manifestations of the phenomenon in our society. However, scales ...

  7. Climate change and the past, present, and future of biotic interactions.

    Science.gov (United States)

    Blois, Jessica L; Zarnetske, Phoebe L; Fitzpatrick, Matthew C; Finnegan, Seth

    2013-08-02

    Biotic interactions drive key ecological and evolutionary processes and mediate ecosystem responses to climate change. The direction, frequency, and intensity of biotic interactions can in turn be altered by climate change. Understanding the complex interplay between climate and biotic interactions is thus essential for fully anticipating how ecosystems will respond to the fast rates of current warming, which are unprecedented since the end of the last glacial period. We highlight episodes of climate change that have disrupted ecosystems and trophic interactions over time scales ranging from years to millennia by changing species' relative abundances and geographic ranges, causing extinctions, and creating transient and novel communities dominated by generalist species and interactions. These patterns emerge repeatedly across disparate temporal and spatial scales, suggesting the possibility of similar underlying processes. Based on these findings, we identify knowledge gaps and fruitful areas for research that will further our understanding of the effects of climate change on ecosystems.

  8. Impact of climate change on Taiwanese power market determined using linear complementarity model

    International Nuclear Information System (INIS)

    Tung, Ching-Pin; Tseng, Tze-Chi; Huang, An-Lei; Liu, Tzu-Ming; Hu, Ming-Che

    2013-01-01

    Highlights: ► Impact of climate change on average temperature is estimated. ► Temperature elasticity of demand is measured. ► Impact of climate change on Taiwanese power market determined. -- Abstract: The increase in the greenhouse gas concentration in the atmosphere causes significant changes in climate patterns. In turn, this climate change affects the environment, ecology, and human behavior. The emission of greenhouse gases from the power industry has been analyzed in many studies. However, the impact of climate change on the electricity market has received less attention. Hence, the purpose of this research is to determine the impact of climate change on the electricity market, and a case study involving the Taiwanese power market is conducted. First, the impact of climate change on temperature is estimated. Next, because electricity demand can be expressed as a function of temperature, the temperature elasticity of demand is measured. Then, a linear complementarity model is formulated to simulate the Taiwanese power market and climate change scenarios are discussed. Therefore, this paper establishes a simulation framework for calculating the impact of climate change on electricity demand change. In addition, the impact of climate change on the Taiwanese market is examined and presented.

  9. Latest Cretaceous climatic and environmental change in the South Atlantic region

    Science.gov (United States)

    Woelders, L.; Vellekoop, J.; Kroon, D.; Smit, J.; Casadío, S.; Prámparo, M. B.; Dinarès-Turell, J.; Peterse, F.; Sluijs, A.; Lenaerts, J. T. M.; Speijer, R. P.

    2017-05-01

    Latest Maastrichtian climate change caused by Deccan volcanism has been invoked as a cause of mass extinction at the Cretaceous-Paleogene (K-Pg) boundary ( 66.0 Ma). Yet late Maastrichtian climate and ecological changes are poorly documented, in particular on the Southern Hemisphere. Here we present upper Maastrichtian-lower Danian climate and biotic records from the Bajada del Jagüel (BJ) shelf site (Neuquén Basin, Argentina), employing the TEX86 paleothermometer, marine palynology (dinoflagellate cysts), and micropaleontology (foraminifera). These records are correlated to the astronomically tuned Ocean Drilling Program Site 1262 (Walvis Ridge). Collectively, we use these records to assess climatic and ecological effects of Deccan volcanism in the Southern Atlantic region. Both the TEX86-based sea surface temperature (SST) record at BJ and the bulk carbonate δ18O-based SST record of Site 1262 show a latest Maastrichtian warming of 2.5-4°C, at 450 to 150 kyr before the K-Pg boundary, coinciding with the a large Deccan outpouring phase. Benthic foraminiferal and dinocyst assemblage changes indicate that this warming resulted in enhanced runoff and stratification of the water column, likely resulting from more humid climate conditions in the Neuquén Basin. These climate conditions could have been caused by an expanding and strengthening thermal low over the South American continent. Biotic changes in response to late Maastrichtian environmental changes are rather limited, when compared to the major turnovers observed at many K-Pg boundary sites worldwide. This suggests that environmental perturbations during the latest Maastrichtian warming event were less severe than those following the K-Pg boundary impact.

  10. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems.

    Science.gov (United States)

    Hewitt, Judi E; Ellis, Joanne I; Thrush, Simon F

    2016-08-01

    Global climate change will undoubtedly be a pressure on coastal marine ecosystems, affecting not only species distributions and physiology but also ecosystem functioning. In the coastal zone, the environmental variables that may drive ecological responses to climate change include temperature, wave energy, upwelling events and freshwater inputs, and all act and interact at a variety of spatial and temporal scales. To date, we have a poor understanding of how climate-related environmental changes may affect coastal marine ecosystems or which environmental variables are likely to produce priority effects. Here we use time series data (17 years) of coastal benthic macrofauna to investigate responses to a range of climate-influenced variables including sea-surface temperature, southern oscillation indices (SOI, Z4), wind-wave exposure, freshwater inputs and rainfall. We investigate responses from the abundances of individual species to abundances of functional traits and test whether species that are near the edge of their tolerance to another stressor (in this case sedimentation) may exhibit stronger responses. The responses we observed were all nonlinear and some exhibited thresholds. While temperature was most frequently an important predictor, wave exposure and ENSO-related variables were also frequently important and most ecological variables responded to interactions between environmental variables. There were also indications that species sensitive to another stressor responded more strongly to weaker climate-related environmental change at the stressed site than the unstressed site. The observed interactions between climate variables, effects on key species or functional traits, and synergistic effects of additional anthropogenic stressors have important implications for understanding and predicting the ecological consequences of climate change to coastal ecosystems. © 2015 John Wiley & Sons Ltd.

  11. Resilience of Athabascan subsistence systems to interior Alaska's changing climate

    Science.gov (United States)

    Gary P. Kofinas; F. Stuart Chapin; Shauna BurnSilver; Jennifer I. Schmidt; Nancy L. Fresco; Knut Kielland; Stephanie Martin; Anna Springsteen; T. Scott Rupp

    2010-01-01

    Subsistence harvesting and wild food production by Athabascan peoples is part of an integrated social-ecological system of interior Alaska. We describe effects of recent trends and future climate change projections on the boreal ecosystem of interior Alaska and relate changes in ecosystem services to Athabascan subsistence. We focus primarily on moose, a keystone...

  12. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  13. Consequences of ecological, evolutionary and biogeochemical uncertainty for coral reef responses to climatic stress.

    Science.gov (United States)

    Mumby, Peter J; van Woesik, Robert

    2014-05-19

    Coral reefs are highly sensitive to the stress associated with greenhouse gas emissions, in particular ocean warming and acidification. While experiments show negative responses of most reef organisms to ocean warming, some autotrophs benefit from ocean acidification. Yet, we are uncertain of the response of coral reefs as systems. We begin by reviewing sources of uncertainty and complexity including the translation of physiological effects into demographic processes, indirect ecological interactions among species, the ability of coral reefs to modify their own chemistry, adaptation and trans-generational plasticity. We then incorporate these uncertainties into two simple qualitative models of a coral reef system under climate change. Some sources of uncertainty are far more problematic than others. Climate change is predicted to have an unambiguous negative effect on corals that is robust to several sources of uncertainty but sensitive to the degree of biogeochemical coupling between benthos and seawater. Macroalgal, zoanthid, and herbivorous fish populations are generally predicted to increase, but the ambiguity (confidence) of such predictions are sensitive to the source of uncertainty. For example, reversing the effect of climate-related stress on macroalgae from being positive to negative had no influence on system behaviour. By contrast, the system was highly sensitive to a change in the stress upon herbivorous fishes. Minor changes in competitive interactions had profound impacts on system behaviour, implying that the outcomes of mesocosm studies could be highly sensitive to the choice of taxa. We use our analysis to identify new hypotheses and suggest that the effects of climatic stress on coral reefs provide an exceptional opportunity to test emerging theories of ecological inheritance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Review: The impact of changing human environment and climate ...

    African Journals Online (AJOL)

    The impact of human-induced climate change through industrialization with the consequent depletion of the ozone layer of the environment is now observed to compromise the sustainability of human development as it threatens the ecological support system on which life depends in addition to encouraging the emergence ...

  15. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia flaviscutellata (Diptera: Psychodidae: Phlebotominae, Vector of Leishmania (Leishmania amazonensis in South America, under Climate Change.

    Directory of Open Access Journals (Sweden)

    Bruno M Carvalho

    Full Text Available Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia flaviscutellata and the parasite it transmits, Leishmania (Leishmania amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector's climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest. Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: "stabilization" and "high increase". Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador

  16. Ecological Niche Modelling Predicts Southward Expansion of Lutzomyia (Nyssomyia) flaviscutellata (Diptera: Psychodidae: Phlebotominae), Vector of Leishmania (Leishmania) amazonensis in South America, under Climate Change.

    Science.gov (United States)

    Carvalho, Bruno M; Rangel, Elizabeth F; Ready, Paul D; Vale, Mariana M

    2015-01-01

    Vector borne diseases are susceptible to climate change because distributions and densities of many vectors are climate driven. The Amazon region is endemic for cutaneous leishmaniasis and is predicted to be severely impacted by climate change. Recent records suggest that the distributions of Lutzomyia (Nyssomyia) flaviscutellata and the parasite it transmits, Leishmania (Leishmania) amazonensis, are expanding southward, possibly due to climate change, and sometimes associated with new human infection cases. We define the vector's climatic niche and explore future projections under climate change scenarios. Vector occurrence records were compiled from the literature, museum collections and Brazilian Health Departments. Six bioclimatic variables were used as predictors in six ecological niche model algorithms (BIOCLIM, DOMAIN, MaxEnt, GARP, logistic regression and Random Forest). Projections for 2050 used 17 general circulation models in two greenhouse gas representative concentration pathways: "stabilization" and "high increase". Ensemble models and consensus maps were produced by overlapping binary predictions. Final model outputs showed good performance and significance. The use of species absence data substantially improved model performance. Currently, L. flaviscutellata is widely distributed in the Amazon region, with records in the Atlantic Forest and savannah regions of Central Brazil. Future projections indicate expansion of the climatically suitable area for the vector in both scenarios, towards higher latitudes and elevations. L. flaviscutellata is likely to find increasingly suitable conditions for its expansion into areas where human population size and density are much larger than they are in its current locations. If environmental conditions change as predicted, the range of the vector is likely to expand to southeastern and central-southern Brazil, eastern Paraguay and further into the Amazonian areas of Bolivia, Peru, Ecuador, Colombia and Venezuela

  17. Communication and marketing as climate change-intervention assets a public health perspective.

    Science.gov (United States)

    Maibach, Edward W; Roser-Renouf, Connie; Leiserowitz, Anthony

    2008-11-01

    The understanding that global climate change represents a profound threat to the health and well-being of human and nonhuman species worldwide is growing. This article examines the potential of communication and marketing interventions to influence population behavior in ways consistent with climate change prevention and adaptation objectives. Specifically, using a framework based on an ecologic model of public health, the paper examines: (1) the potential of communication and marketing interventions to influence population behaviors of concern, including support for appropriate public policies; (2) potential target audiences for such programs; and (3) the attributes of effective climate change messages. Communication and marketing interventions appear to have considerable potential to promote important population behavior change objectives, but there is an urgent need for additional translational research to effectively harvest this potential to combat climate change.

  18. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  19. Coping with climate change. Principles and Asian context

    Energy Technology Data Exchange (ETDEWEB)

    Chandrappa, Ramesha [Karnataka State Pollution, Bangalore (India). Control Board, Biomedical Waste Section; Gupta, Sushil [Risk Management Solutions India, Noida (India); Kulshrestha, Umesh Chandra [Jawaharlal Nehru Univ., New Dehli (India). School of Environmental Sciences

    2011-07-01

    The Environmental and climatic issues varies from continent to continent and is unique to Asia. Understanding the issues does need lot of research and study material which students may not be able to gather due to shortage of time and resources. Hence an effort is made by authors gathering there experience and academic input from renowned universities of world. Climate change is real and coping with it is major concern in coming days. Most of the books written and sold in the past need updating and customizing. The general description of climate change and world will not help the professionals and students. It needs to seen area wise as a professional will work in specific geographic area. Hence an effort is made to collect data from Asia which host most populated countries along with ecological hot spots. (orig.)

  20. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  1. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  2. Organismal responses to habitat change: herbivore performance, climate and leaf traits in regenerating tropical dry forests.

    Science.gov (United States)

    Agosta, Salvatore J; Hulshof, Catherine M; Staats, Ethan G

    2017-05-01

    The ecological effects of large-scale climate change have received much attention, but the effects of the more acute form of climate change that results from local habitat alteration have been less explored. When forest is fragmented, cut, thinned, cleared or otherwise altered in structure, local climates and microclimates change. Such changes can affect herbivores both directly (e.g. through changes in body temperature) and indirectly (e.g. through changes in host plant traits). We advance an eco-physiological framework to understand the effects of changing forests on herbivorous insects. We hypothesize that if tropical forest caterpillars are climate and resource specialists, then they should have reduced performance outside of mature forest conditions. We tested this hypothesis with a field experiment contrasting the performance of Rothschildia lebeau (Saturniidae) caterpillars feeding on the host plant Casearia nitida (Salicaceae) in two different aged and structured tropical dry forests in Area de Conservación Guanacaste, Costa Rica. Compared to more mature closed-canopy forest, in younger secondary forest we found that: (1) ambient conditions were hotter, drier and more variable; (2) caterpillar growth and development were reduced; and (3) leaves were tougher, thicker and drier. Furthermore, caterpillar growth and survival were negatively correlated with these leaf traits, suggesting indirect host-mediated effects of climate on herbivores. Based on the available evidence, and relative to mature forest, we conclude that reduced herbivore performance in young secondary forest could have been driven by changes in climate, leaf traits (which were likely climate induced) or both. However, additional studies will be needed to provide more direct evidence of cause-and-effect and to disentangle the relative influence of these factors on herbivore performance in this system. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  3. Response of salt-marsh carbon accumulation to climate change.

    Science.gov (United States)

    Kirwan, Matthew L; Mudd, Simon M

    2012-09-27

    About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon-climate feedbacks are likely to diminish over time.

  4. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    Science.gov (United States)

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  5. Indigenous experiences in the U.S. with climate change and environmental stewardship in the Anthropocene

    Science.gov (United States)

    Karletta Chief; John J. Daigle; Kathy Lynn; Kyle Powys Whyte

    2014-01-01

    The recognition of climate change issues facing tribal communities and indigenous peoples in the United States is growing, and understanding its impacts is rooted in indigenous ethical perspectives and systems of ecological knowledge. This foundation presents a context and guide for contemporary indigenous approaches to address climate change impacts that are...

  6. The North Cascadia Adaptation Partnership: A Science-Management Collaboration for Responding to Climate Change

    Directory of Open Access Journals (Sweden)

    Crystal L. Raymond

    2013-01-01

    Full Text Available The U.S. Forest Service (USFS and National Park Service (NPS have highlighted climate change as an agency priority and issued direction to administrative units for responding to climate change. In response, the USFS and NPS initiated the North Cascadia Adaptation Partnership (NCAP in 2010. The goals of the NCAP were to build an inclusive partnership, increase climate change awareness, assess vulnerability, and develop science-based adaptation strategies to reduce these vulnerabilities. The NCAP expanded previous science-management partnerships on federal lands to a larger, more ecologically and geographically complex region and extended the approach to a broader range of stakeholders. The NCAP focused on two national forests and two national parks in the North Cascades Range, Washington (USA, a total land area of 2.4 million ha, making it the largest science-management partnership of its kind. The NCAP assessed climate change vulnerability for four resource sectors (hydrology and access; vegetation and ecological disturbance; wildlife; and fish and developed adaptation options for each sector. The NCAP process has proven to be a successful approach for implementing climate change adaptation across a region and can be emulated by other land management agencies in North America and beyond.

  7. Ecological risk caused by land use change in the coastal zone: a case study in the Yellow River Delta High-Efficiency Ecological Economic Zone

    International Nuclear Information System (INIS)

    Di, X H; Wang, Y D; Hou, X Y

    2014-01-01

    China's coastal zone plays an important role in ecological services production and social-economic development; however, extensive and intensive land resource utilization and land use change have lead to high ecological risk in this area during last decade. Regional ecological risk assessment can provide fundamental knowledge and scientific basis for better understanding of the relationship between regional landscape ecosystem and human activities or climate changes, facilitating the optimization strategy of land use structure and improving the ecological risk prevention capability. In this paper, the Yellow River Delta High-Efficiency Ecological Economic Zone is selected as the study site, which is undergoing a new round of coastal zone exploitation and has endured substantial land use change in the past decade. Land use maps of 2000, 2005 and 2010 were generated based on Landsat images by visual interpretation method, and the ecological risk index was then calculated. The index was 0.3314, 0.3461 and 0.3176 in 2000, 2005 and 2010 respectively, which showed a positive transition of regional ecological risk in 2005

  8. [Responses of vegetation changes to climatic variations in Panxi area based on the MODIS multispectral data].

    Science.gov (United States)

    Shao, Huai-Yong; Wu, Jin-Hui; Liu, Meng; Yang, Wu-Nian

    2014-01-01

    It is an important research area to quantitatively studying the relationship between global climatic change and vegetation change based on the remote sensing technology. Panxi area is the ecological barrier of the upper reaches of the Yangtze River, and it is essential for the stability of the ecological environment of Sichuan as well as that of the whole China. The present article analyzes the vegetation change in 2001-2008 and the relationship between vegetation change and climatic variations of Panxi area, based on MODIS multispectral data and meteorological data. The results indicate that NDVI is positively correlated with temperature and precipitation. The precipitation is the major factor that affects the change of vegetation in the Panxi region and the trend of NDVI is similar with autumn precipitation; while at the same time the influence of climate has a one-month-time-lag.

  9. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  10. Coastal Wetland Ecosystem Responses to Climate Change: the Role of Macroclimatic Drivers along the Northern Gulf of Mexico

    Science.gov (United States)

    Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.

    2014-12-01

    Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.

  11. Ecological change on California's Channel Islands from the Pleistocene to the Anthropocene

    Science.gov (United States)

    Rick, Torben C.; Sillett, T. Scott; Ghalambor, Cameron K.; Hofman, Courtney A.; Ralls, Katherine; Anderson, R. Scott; Boser, Christina L.; Braje, Todd J.; Cayan, Daniel R.; Chesser, R. Terry; Collins, Paul W.; Erlandson, Jon M.; Faulkner, Kate R.; Fleischer, Robert; Funk, W. Chris; Galipeau, Russell; Huston, Ann; King, Julie; Laughrin, Lyndal L.; Maldonado, Jesus; McEachern, Kathryn; Muhs, Daniel R.; Newsome, Seth D.; Reeder-Myers, Leslie; Still, Christopher; Morrison, Scott A.

    2014-01-01

    Historical ecology is becoming an important focus in conservation biology and offers a promising tool to help guide ecosystem management. Here, we integrate data from multiple disciplines to illuminate the past, present, and future of biodiversity on California's Channel Islands, an archipelago that has undergone a wide range of land-use and ecological changes. Our analysis spans approximately 20,000 years, from before human occupation and through Native American hunter–gatherers, commercial ranchers and fishers, the US military, and other land managers. We demonstrate how long-term, interdisciplinary research provides insight into conservation decisions, such as setting ecosystem restoration goals, preserving rare and endemic taxa, and reducing the impacts of climate change on natural and cultural resources. We illustrate the importance of historical perspectives for understanding modern patterns and ecological change and present an approach that can be applied generally in conservation management planning.

  12. Climatic and ecological future of the Amazon: likelihood and causes of change

    Science.gov (United States)

    Cook, B.; Zeng, N.; Yoon, J.-H.

    2010-05-01

    Some recent climate modeling results suggested a possible dieback of the Amazon rainforest under future climate change, a prediction that raised considerable interest as well as controversy. To determine the likelihood and causes of such changes, we analyzed the output of 15 models from the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC/AR4) and a dynamic vegetation model VEGAS driven by these climate output. Our results suggest that the core of the Amazon rainforest should remain largely stable as rainfall is projected to increase in nearly all models. However, the periphery, notably the southern edge of the Amazon and further south in central Brazil, are in danger of drying out, driven by two main processes. Firstly, a decline in precipitation of 22% in the southern Amazon's dry season (May-September) reduces soil moisture, despite an increase in precipitation during the wet season, due to nonlinear responses in hydrology and ecosystem dynamics. Two dynamical mechanisms may explain the lower dry season rainfall: (1) a general subtropical drying under global warming when the dry season southern Amazon is under the control of the subtropical high pressure; (2) a stronger north-south tropical Atlantic sea surface temperature gradient, and to lesser degree a warmer eastern equatorial Pacific. Secondly, evaporation demand will increase due to the general warming, further reducing soil moisture. In terms of ecosystem response, higher maintenance cost and reduced productivity under warming may also have additional adverse impact. The drying corresponds to a lengthening of the dry season by 11 days. As a consequence, the median of the models projects a reduction of 20% in vegetation carbon stock in the southern Amazon, central Brazil, and parts of the Andean Mountains. Further, VEGAS predicts enhancement of fire risk by 10-15%. The increase in fire is primarily due to the reduction in soil moisture, and the decrease in dry season rainfall, which

  13. Causal Chains Arising from Climate Change in Mountain Regions: the Core Program of the Mountain Research Initiative

    Science.gov (United States)

    Greenwood, G. B.

    2014-12-01

    Mountains are a widespread terrestrial feature, covering from 12 to 24 percent of the world's terrestrial surface, depending of the definition. Topographic relief is central to the definition of mountains, to the benefits and costs accruing to society and to the cascade of changes expected from climate change. Mountains capture and store water, particularly important in arid regions and in all areas for energy production. In temperate and boreal regions, mountains have a great range in population densities, from empty to urban, while tropical mountains are often densely settled and farmed. Mountain regions contain a wide range of habitats, important for biodiversity, and for primary, secondary and tertiary sectors of the economy. Climate change interacts with this relief and consequent diversity. Elevation itself may accentuate warming (elevationi dependent warming) in some mountain regions. Even average warming starts complex chains of causality that reverberate through the diverse social ecological mountain systems affecting both the highlands and adjacent lowlands. A single feature of climate change such as higher snow lines affect the climate through albedo, the water cycle through changes in timing of release , water quality through the weathering of newly exposed material, geomorphology through enhanced erosion, plant communities through changes in climatic water balance, and animal and human communities through changes in habitat conditions and resource availabilities. Understanding these causal changes presents a particular interdisciplinary challenge to researchers, from assessing the existence and magnitude of elevation dependent warming and monitoring the full suite of changes within the social ecological system to climate change, to understanding how social ecological systems respond through individual and institutional behavior with repercussions on the long-term sustainability of these systems.

  14. Climate Change and Variability in Ghana: Stocktaking

    Directory of Open Access Journals (Sweden)

    Felix A. Asante

    2014-12-01

    Full Text Available This paper provides a holistic literature review of climate change and variability in Ghana by examining the impact and projections of climate change and variability in various sectors (agricultural, health and energy and its implication on ecology, land use, poverty and welfare. The findings suggest that there is a projected high temperature and low rainfall in the years 2020, 2050 and 2080, and desertification is estimated to be proceeding at a rate of 20,000 hectares per annum. Sea-surface temperatures will increase in Ghana’s waters and this will have drastic effects on fishery. There will be a reduction in the suitability of weather within the current cocoa-growing areas in Ghana by 2050 and an increase evapotranspiration of the cocoa trees. Furthermore, rice and rooted crops (especially cassava production are expected to be low. Hydropower generation is also at risk and there will be an increase in the incidence rate of measles, diarrheal cases, guinea worm infestation, malaria, cholera, cerebro-spinal meningitis and other water related diseases due to the current climate projections and variability. These negative impacts of climate change and variability worsens the plight of the poor, who are mostly women and children.

  15. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  16. Climate change and protection: Recent experiences within planning of the area of cultural and natural heritage

    Directory of Open Access Journals (Sweden)

    Crnčević Tijana

    2015-01-01

    Full Text Available The aim of the paper is to provide an insight into the current legal and other regulatory frameworks that introduces problems of climate change into planning practice of natural and cultural heritage, with special emphasis on the situation in the Republic of Serbia. Further, an overview of the selected case studies of natural and cultural heritage from the UNESCO World Heritage List for which were done studies of the impacts of climate change is included. The results indicate that the legal frameworks as well as actual practice are promoting the development of the ecological networks (the network of areas NATURA 2000 and landscape protection. This applies also to the planning practice in Serbia, where the planning of ecological corridors, habitat networking and other measures, provide responses to climate change. One of the conclusions of this paper is pointing out the necessity of increasing the level of protection of natural and cultural heritage within preserving the authenticity and improving flexibility or adaptability to climate change.

  17. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  18. Past climate change on Sky Islands drives novelty in a core developmental gene network and its phenotype.

    Science.gov (United States)

    Favé, Marie-Julie; Johnson, Robert A; Cover, Stefan; Handschuh, Stephan; Metscher, Brian D; Müller, Gerd B; Gopalan, Shyamalika; Abouheif, Ehab

    2015-09-04

    A fundamental and enduring problem in evolutionary biology is to understand how populations differentiate in the wild, yet little is known about what role organismal development plays in this process. Organismal development integrates environmental inputs with the action of gene regulatory networks to generate the phenotype. Core developmental gene networks have been highly conserved for millions of years across all animals, and therefore, organismal development may bias variation available for selection to work on. Biased variation may facilitate repeatable phenotypic responses when exposed to similar environmental inputs and ecological changes. To gain a more complete understanding of population differentiation in the wild, we integrated evolutionary developmental biology with population genetics, morphology, paleoecology and ecology. This integration was made possible by studying how populations of the ant species Monomorium emersoni respond to climatic and ecological changes across five 'Sky Islands' in Arizona, which are mountain ranges separated by vast 'seas' of desert. Sky Islands represent a replicated natural experiment allowing us to determine how repeatable is the response of M. emersoni populations to climate and ecological changes at the phenotypic, developmental, and gene network levels. We show that a core developmental gene network and its phenotype has kept pace with ecological and climate change on each Sky Island over the last ~90,000 years before present (BP). This response has produced two types of evolutionary change within an ant species: one type is unpredictable and contingent on the pattern of isolation of Sky lsland populations by climate warming, resulting in slight changes in gene expression, organ growth, and morphology. The other type is predictable and deterministic, resulting in the repeated evolution of a novel wingless queen phenotype and its underlying gene network in response to habitat changes induced by climate warming. Our

  19. Latest Achievements on Climate Change and Forest Interactions in a Polluted Environment

    Czech Academy of Sciences Publication Activity Database

    Carriero, G.; Tuovinen, J.-P.; Clarke, N.; Matteucci, G.; Matyssek, R.; Wieser, G.; Mikkelsen, J. D.; Fischer, R.; Cudlín, Pavel; Serengil, Y.; Boscaleri, F.; Calfapietra, Carlo; Feng, Z.; Paoletti, E.

    2014-01-01

    Roč. 4, č. 3 (2014), s. 197-207 ISSN 2163-0429 Institutional support: RVO:67179843 Keywords : air pollution * climate change * forests * supersites * COST * FP0903 Action Subject RIV: EH - Ecology, Behaviour

  20. Modeling socioeconomic and ecologic aspects of land-use change

    International Nuclear Information System (INIS)

    Dale, V.H.; Pedlowski, M.A.; O'Neill, R.V.; Southworth, F.

    1992-01-01

    Land use change is one of the major factors affecting global environmental conditions. Prevalent types of land-use change include replacing forests with agriculture, mines or ranches; forest degradation from collection of firewood; and forest logging. A global effect of wide-scale deforestation is an increase in atmospheric carbon dioxide concentration, which may affect climate. Regional effects include loss of biodiversity and disruption of hydrologic regimes. Local effects include soil erosion, siltation and decreases in soil fertility, loss of extractive reserves, and disruption of indigenous people. Modeling land use change requires combining socioeconomic and ecological factors because socioeconomic forces frequently initiate land-use change and are affected by the subsequent ecological degradation. This paper describes a modeling system that integrates submodels of human colonization and impacts to estimate patterns and rates of deforestation under different immigration and land use scenarios. Immigration which follows road building or paving is a major factor in the rapid deforestation of previously inaccessible areas. Roads facilitate colonization, allow access for large machines, and provide transportation routes for mort of raw materials and produce

  1. AEDT: A new concept for ecological dynamics in the ever-changing world.

    Science.gov (United States)

    Chesson, Peter

    2017-05-01

    The important concept of equilibrium has always been controversial in ecology, but a new, more general concept, an asymptotic environmentally determined trajectory (AEDT), overcomes many concerns with equilibrium by realistically incorporating long-term climate change while retaining much of the predictive power of a stable equilibrium. A population or ecological community is predicted to approach its AEDT, which is a function of time reflecting environmental history and biology. The AEDT invokes familiar questions and predictions but in a more realistic context in which consideration of past environments and a future changing profoundly due to human influence becomes possible. Strong applications are also predicted in population genetics, evolution, earth sciences, and economics.

  2. Brownfield redevelopment as a measure for climate changes mitigation

    Directory of Open Access Journals (Sweden)

    Cizler Jasna

    2013-01-01

    Full Text Available This paper explores brownfield renewal as a measure of sustainable land use. The aim was to highlight the brownfield redevelopment as a strategy for mitigation of negative effects of climate changes. Emphasis was put on innovative concepts in brownfield redevelopment, which involve land recycling, application of ecological and sustainable solutions. Main case studies are from Austria. Their analysis and evaluation show which concepts and strategies are used in successful redevelopment projects, and which strategies give the best results. This shows that brownfield renewal can have positive effects on regulation and mitigation of climate changes. Finally, guidelines for climate changes accountable and redevelopment will be derived. Research methodology is qualitative and combined, comprising of data analysis, case studies (field work, interviews with relevant actors, analysis of case studies and evaluation according to previously defined criteria, synthesis of results and generalisation and interpretation of results.

  3. Global change and marine communities: Alien species and climate change

    International Nuclear Information System (INIS)

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  4. Usage of virtual research laboratory "Climate" prototype for Northern Eurasia climatic and ecological studies

    Science.gov (United States)

    Gordov, Evgeny; Okladnikov, Igor; Titov, Alexander; Shulgina, Tamara

    2015-04-01

    Reported are some results of Northern Eurasia regional climatic and ecological monitoring and modeling obtained using recently developed prototype of thematic virtual research laboratory (VRL) Climate (http://climate.scert.ru/). The prototype integrates distributed thematic data storage, processing and analysis systems and set of models of complex climatic and environmental processes run on supercomputers. Its specific tools are aimed at high resolution rendering on-going climatic processes occurring in Northern Eurasia and reliable and found prognoses of their dynamics for selected sets of future mankind activity scenario. Currently VRL integrates on the base of geoportal the WRF and «Planet Simulator» models, basic reanalysis, meteorological stations data and support profound statistical analysis of storage and modeled on demand data. In particular, one can run the integrated models, preprocess modeling results data, using dedicated modules for numerical processing perform analysys and visualize obtained results. The prototype can provide specialists involved into multidisciplinary research projects with reliable and practical instruments for integrated research of climate and ecosystems changes on global and regional scales. With its help even a user without programming skills would be able to process and visualize multidimensional observational and model data through unified web-interface using a web-browser. Location, frequency and magnitude of observed in Siberia extremes has been studied using recently added prototype functionality allowing detailed statistical analysis studies of regional climatic extremes. Firstly it was shown that ECMWF ERA Interim Reanalysis data are closest to near surface temperature time series measured at regional meteorological stations. Statistical analysis of ERA Interim daily temperature time series (1979-2012) indicates the asymmetric changes in distribution tails of such extreme indices as warm/cold days/nights. Namely, the

  5. Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests

    International Nuclear Information System (INIS)

    Dale, V.H.; Fogel, J.

    2009-01-01

    The mixed mesophytic forests of the Cumberland Plateau and Mountains in Tennessee and Kentucky are among the most diverse forests in North America. However, land use changes and climatic warming will have a significant impact on the forest biomass and composition in the region, which currently experiences mild winters and hot, humid summers. In this study, 3 general circulation models projected climatic warming throughout 2030 to 2080 as well as changes in precipitation patterns. Predicted changes from 1980 to 2100 were used in a forest ecosystem model to estimate transient changes in forest biomass and species composition over time. Results of the study demonstrated that climatic warning will cause an initial decline in forest stand biomass before a recovery period caused by forest species composition shifts. A landscape model showed that forest composition will change as a result of the spread of hemlock adelgid. Loss of the hemlocks will cause changes in soil nutrients and moisture conditions in mesic forests of the region. Land cover changes will be large and cause declines in forested lands as well as in a number of large, contiguous forest patches that provide a necessary habitat for species particular to the Cumberland area. 53 refs., 2 tabs., 8 figs

  6. Effects of climate change, land-use change, and invasive species on the ecology of the Cumberland forests

    Energy Technology Data Exchange (ETDEWEB)

    Dale, V.H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Environmental Sciences Div.; Lannom, K.O.; Hodges, D.G. [Tennessee Univ., Knoxville, TN (United States). Natural Resource Policy Center; Tharp, M.L. [CompSci Consulting LLC, McRae, GA (United States); Fogel, J. [Virginia Tech Univ., Richmond, VA (United States). Virginia Cooperative Extension, Northeast District Office

    2009-02-15

    The mixed mesophytic forests of the Cumberland Plateau and Mountains in Tennessee and Kentucky are among the most diverse forests in North America. However, land use changes and climatic warming will have a significant impact on the forest biomass and composition in the region, which currently experiences mild winters and hot, humid summers. In this study, 3 general circulation models projected climatic warming throughout 2030 to 2080 as well as changes in precipitation patterns. Predicted changes from 1980 to 2100 were used in a forest ecosystem model to estimate transient changes in forest biomass and species composition over time. Results of the study demonstrated that climatic warning will cause an initial decline in forest stand biomass before a recovery period caused by forest species composition shifts. A landscape model showed that forest composition will change as a result of the spread of hemlock adelgid. Loss of the hemlocks will cause changes in soil nutrients and moisture conditions in mesic forests of the region. Land cover changes will be large and cause declines in forested lands as well as in a number of large, contiguous forest patches that provide a necessary habitat for species particular to the Cumberland area. 53 refs., 2 tabs., 8 figs.

  7. Misconceptions Surrounding Climate Change: A Review of the Literature

    Science.gov (United States)

    Templeton, C. M.; McNeal, K. S.; Libarkin, J.

    2011-12-01

    Misconceptions about climate change abound in every corner of society. The result manifests itself ranging from apprehension to total disregard for climate change conditions. According to several sources, however, a large percentage of the U. S. population do, indeed indicate some concern over global warming and climate change in general. These climate change misconceptions are numerous and include, to name a few; confusion between weather and climate, how greenhouse gases are affecting the earth, the effects of ozone depletion, earth's natural cycles, volcanic activity, nuclear waste and a host of other anthropogenic influences. This paper is a review of the current research literature relating to climate change misconceptions. These errant views will be addressed, cataloged, enumerated, and ranked to get a grasp on where the general population, politicians, scientists, and educators as well as students stand on informed climate change information. The categories where misconceptions arise have been identified in this literature review study and include the following: Natural cycles of the earth, ecological which include deforestation, urban development and any human intervention on the environment, educational - including teacher strategies, student understanding and textbook updates, emotional, ozone layer and its interactions, polar ice, political regulations, mandates and laws, pollution from human sources as well as from nature, religious beliefs and dogma and social beliefs. We suggest appropriate solutions for addressing these misconceptions, especially in the classroom setting, and broadly include available funding sources for work in climate change education. Some solutions include need for compilation of appropriate education resources and materials for public use, need for the development of educational materials that appropriately address the variety of publics, and need for programs that are conducting climate change education research and EPO work to

  8. Managing consequences of climate-driven species redistribution requires integration of ecology, conservation and social science.

    Science.gov (United States)

    Bonebrake, Timothy C; Brown, Christopher J; Bell, Johann D; Blanchard, Julia L; Chauvenet, Alienor; Champion, Curtis; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Dell, Anthony I; Donelson, Jennifer M; Evengård, Birgitta; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Jarzyna, Marta A; Lee, Emma; Lenoir, Jonathan; Linnetved, Hlif; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; McDonald-Madden, Eve; Mitchell, Nicola; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Possingham, Hugh; Pulsifer, Peter; Reynolds, Mark; Scheffers, Brett R; Sorte, Cascade J B; Strugnell, Jan M; Tuanmu, Mao-Ning; Twiname, Samantha; Vergés, Adriana; Villanueva, Cecilia; Wapstra, Erik; Wernberg, Thomas; Pecl, Gretta T

    2018-02-01

    Climate change is driving a pervasive global redistribution of the planet's species. Species redistribution poses new questions for the study of ecosystems, conservation science and human societies that require a coordinated and integrated approach. Here we review recent progress, key gaps and strategic directions in this nascent research area, emphasising emerging themes in species redistribution biology, the importance of understanding underlying drivers and the need to anticipate novel outcomes of changes in species ranges. We highlight that species redistribution has manifest implications across multiple temporal and spatial scales and from genes to ecosystems. Understanding range shifts from ecological, physiological, genetic and biogeographical perspectives is essential for informing changing paradigms in conservation science and for designing conservation strategies that incorporate changing population connectivity and advance adaptation to climate change. Species redistributions present challenges for human well-being, environmental management and sustainable development. By synthesising recent approaches, theories and tools, our review establishes an interdisciplinary foundation for the development of future research on species redistribution. Specifically, we demonstrate how ecological, conservation and social research on species redistribution can best be achieved by working across disciplinary boundaries to develop and implement solutions to climate change challenges. Future studies should therefore integrate existing and complementary scientific frameworks while incorporating social science and human-centred approaches. Finally, we emphasise that the best science will not be useful unless more scientists engage with managers, policy makers and the public to develop responsible and socially acceptable options for the global challenges arising from species redistributions. © 2017 Cambridge Philosophical Society.

  9. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  10. Methodologies for assessing socio-economic impacts of climate change

    International Nuclear Information System (INIS)

    Smit, B.

    1993-01-01

    Much of the studies on climate change impacts have focused on physical and biological impacts, yet a knowledge of the social and economic impacts of climate change is likely to have a greater impact on the public and on policymakers. A conventional assessment of the impacts of climate change begins with scenarios of future climate, commonly derived from global climate models translated to a regional scale. Estimates of biophysical conditions provided by such scenarios provide a basis for analyses of human impacts, usually considered sector by sector. The scenario approach, although having considerable merit and appeal, has some noteworthy limitations. It encourages consideration of only a small set of scenarios, requires bold assumptions to be made about adjustments in human systems, provides little direct analysis of sensitivities of human social and economic systems to climate perturbations, and usually invokes the assumption that all factors other than climate are stable and have no synergistic effects on human systems. Conventional studies concentrate on average climate, yet climate is inherently variable. A common response to this situation is to propose further development of climate models, but this is not a sufficient or necessary condition for good and useful assessments of impacts on human activities. Different approaches to socioeconomic impact analysis are needed, and approaches should be considered that include identification of sensitivities in a social or ecological system, identification of critical threshold levels or critical speeds of change in variables, and exploration of alternative methodologies such as process studies, spatial and temporal analogues, and socio-economic systems modelling. 5 refs., 3 figs

  11. Economic Consequences Of Climate Change

    Science.gov (United States)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  12. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  13. Successfully Integrating Climate Change Education into School System Curriculum

    Science.gov (United States)

    Scallion, M.

    2017-12-01

    include climate change education as part of a larger ecological exploration, giving students and teachers local context to this global issue and memorable outdoor hands-on experiences and student driven adaptation projects.

  14. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  15. Widespread climate change in the Himalayas and associated changes in local ecosystems.

    Science.gov (United States)

    Shrestha, Uttam Babu; Gautam, Shiva; Bawa, Kamaljit S

    2012-01-01

    Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ~20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index) values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5 °C with an average increase of 0.06 °C yr(-1). The average annual precipitation has increased by 163 mm or 6.52 mmyr(-1). Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS) seems to have advanced by 4.7 days or 0.19 days yr(-1) and the length of growing season (LOS) appears to have advanced by 4.7 days or 0.19 days yr(-1), but there has been no change in the end of the growing season (EOS). There is considerable spatial and seasonal variation in changes in climate and phenological parameters. This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change.

  16. Barriers in Local Climate Change Adaptation Planning in Nepal

    Czech Academy of Sciences Publication Activity Database

    Dhungana, N.; Chiranjeewee, Khadka; Bhatta, B. P.; Regmi, S.

    2017-01-01

    Roč. 62, jun (2017), s. 20-24 ISSN 2224-3240 Institutional support: RVO:67179843 Keywords : Local Adaptation Plan for Action Framework * Barriers * Climate Change Adaptation * Village Development Committees Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) http://www.iiste.org/Journals/index.php/JLPG/article/view/37535

  17. A climate-change adaptation framework to reduce continental-scale vulnerability across conservation reserves

    Science.gov (United States)

    D.R. Magness; J.M. Morton; F. Huettmann; F.S. Chapin; A.D. McGuire

    2011-01-01

    Rapid climate change, in conjunction with other anthropogenic drivers, has the potential to cause mass species extinction. To minimize this risk, conservation reserves need to be coordinated at multiple spatial scales because the climate envelopes of many species may shift rapidly across large geographic areas. In addition, novel species assemblages and ecological...

  18. Adapting to Climate Change. A question for our societies

    International Nuclear Information System (INIS)

    Euzen, Agathe; Thiebault, Stephanie; Laville, Bettina; Fuchs, Alain; Barbut, Monique; Zaccai, Edwin; Schoenfeld, Sarah; Jouzel, Jean; Magnan, Alexandre K.; Duvat, Virginie K.E.; Banks, William E.; Errico, Francesco d'; Garnier, Emmanuel; Grunau, Christoph; Joly, Dominique; Gibert, Patricia; Till-Bottraud, Irene; Vlassopoulos, Chloe Anne; Chenorkian, Robert; Abbadie, Luc; Courtois, Elodie A.; Chave, Jerome; Hossaert-Mckey, Martine; Boeuf, Gilles; Gardel, Antoine; Fromard, Francois; Anthony, Edward J.; Bretagnolle, Vincent; Gaill, Francoise; Courchamp, Franck; Bellard, Celine; Guegan, Jean-Francois; Torre-Schaub, Marta; Mathy, Sandrine; Weikmans, Romain; Bonduelle, Antoine; Berdoulay, Vincent; Soubeyran, Olivier; Brun, Eric; Duvernoy, Jerome; Mondon, Sylvain; Schafferer, Frederic; Girault, Anne; Francoise, Yann; Bertrand, Francois; Heulin, Thierry; Hatte, Christine; Abbadie, Luc; Dubost, Christian; Cochran, Ian; Depoues, Vivian; Hubert, Romain; Nicol, Morgane; Dutertre, Philippe; Garreau, Francois; Nahon, Claude; Maucort, Eric; Torres, Javier; Slaoui, Abdelilah; Brault, Pascal; Flamant, Gilles; David, Sylvain; Bouzeghoub, Mokrane; Sultan, Benjamin; Lalou, Richard; Sanni, Mouftaou Amadou; Oumarou, Amadou; Soumare, Mame Arame; Quenol, Herve; Yiou, Pascal; Jezequel, Aglae; Buclet, Nicolas; Simonet, Guillaume; Maris, Virginie

    2017-01-01

    Adapting to climate change and global change have become vital goals for all societies. These same societies are faced at times with unexpected meteorological phenomena that are becoming increasingly frequent and intense, including flooding, droughts and tornadoes. They are also having to wrestle with rising temperatures and the follow-on effects on the balance of ecosystems, the evolution of species, and animal and plant life, not to mention the development of human populations, their living conditions and social organisation. Although the capacity of ecosystems to adapt or convert has been demonstrated by studies on climate variations over time, the growing pace of some phenomena may well lead to a point of no return. In fact, with the global rise in temperature - caused by human activities in particular - we might already have reached this stage. This book, which consists of some fifty articles by scientists and experts, is unique. It makes us think about what lies behind the notions of adaptation and mal-adaptation, drawing on several disciplines, sectors and regional fields. It also highlights the checks and limitations of adaptation, as well as reflecting and suggesting ways of acting and adjusting. The contributions made to this work serve to reinforce the implementation of the Paris Climate Agreement (2015), especially the COP 23 climate conference (23. Conference of the Parties to the United Nations Framework Convention on Climate Change, Bonn, 2017), where adaptation, its objectives and financing, are some of the priorities. This book is the result of a partnership between the CNRS and Comite 21. It was jointly edited by Agathe Euzen (deputy scientific director at the CNRS Ecology and Environment Institute); Bettina Laville (state councillor and Comite 21 chair); and Stephanie Thiebault (director of the CNRS Ecology and Environment Institute)

  19. Hydrologic Responses to Projected Climate Change in Ecologically-Vulnerable Watersheds of the Gulf Coast, USA

    Science.gov (United States)

    Neupane, R. P.; Ficklin, D. L.; Knouft, J.

    2017-12-01

    Climate change is likely to have significant effects on the water cycle of the Gulf Coast watersheds in the United States, which contain some of the highest levels of biodiversity of all freshwater systems in North America. Understanding potential hydrologic responses to continued climate change in these watersheds is important for management of water resources and to sustain ecological diversity. We used the Soil and Water Assessment Tool (SWAT) to simulate hydrologic processes and estimate the potential hydrological changes for the mid-21st century (2050s) and the late-21st century (2080s) in the Mobile River, Apalachicola River, and Suwannee River watersheds located in the Gulf Coast, USA. These estimates were based on downscaled future climate projections from 20 Global Circulation Models (GCMs) under two Representative Concentration Pathways (RCPs 4.5 and 8.5). Models were calibrated and validated using observed data from 58, 19, and 14 streamflow gauges in the Mobile River, Apalachicola River, and Suwannee River watersheds, respectively. Evaluation indices including the Nash-Sutcliffe efficiency (NSE), coefficient of determination (R2), and refined index of agreement (dr) were used to assess model quality. The mean values derived during calibration (NSE=0.68, R2=0.77, and dr=0.73) and validation (NSE=0.70, R2=0.78, and dr=0.74) of all watersheds indicated that the models performed well at simulating monthly streamflow. Our simulation results indicated an overall increase in mean annual streamflow for all the watersheds with a maximum increase in discharge of 28.6% for the Suwannee River watershed for RCP 4.5 during the 2080s, which is associated with a 6.8% increase in precipitation during the same time period. We observed an overall warming (4.2oC) with an increase in future precipitation (3.8%) in all watersheds during the 2080s under the worst-case RCP 8.5 scenario compared to the historical time period. Despite an increase in future precipitation, surface

  20. Climate Change Literacy across the Critical Zone Observatory Network

    Science.gov (United States)

    Moore, A.; Derry, L. A.; Zabel, I.; Duggan-Haas, D.; Ross, R. M.

    2017-12-01

    Earth's Critical Zone extends from the top of the tree canopy to the base of the groundwater lens. Thus the Critical Zone is examined as a suite of interconnected systems and study of the CZ is inherently interdisciplinary. Climate change is an important driver of CZ processes. The US Critical Zone Observatory Network comprises nine observatories and a coordinating National Office. Educational programs and materials developed at each CZO and the National Office have been collected, reviewed, and presented on-line at the CZONO (criticalzone.org/national/education-outreach/resources). Because the CZOs are designed to observe and measure a suite of common parameters on varying geological substrates and within different ecological contexts, educational resources reflect the diversity of processes represented across the network. As climate change has a network-wide impact, the fundamental building blocks of climate change literacy are key elements in many activities within the CZONO resource collection. Carbon-cycle and hydrologic cycle processes are well-represented, with emphasis on human interactions with these resources, as well as the impact of extreme events and the changing climate. Current work on the resource collection focuses on connecting individual resources to "Teach Climate Science" project and the Teacher-Friendly Guide to Climate Change (teachclimatescience.wordpress.com). The Teacher-Friendly Guide is a manual for K-12 teachers that presents both the fundamentals of climate science alongside resources for effective teaching of this controversial topic. Using the reach of the CZO network we hope to disseminate effective climate literacy resources and support to the K-12 community.

  1. Experimental Forests and climate change: views of long-term employees on ecological change and the role of Experimental Forests and Ranges in understanding and adapting to climate change

    Science.gov (United States)

    Laurie Yung; Mason Bradbury; Daniel R. Williams

    2012-01-01

    In this project, we examined the views of 21 long-term employees on climate change in 14 Rocky Mountain Research Station Experimental Forests and Ranges (EFRs). EFRs were described by employees as uniquely positioned to advance knowledge of climate change impacts and adaptation strategies due to the research integrity they provide for long-term studies, the ability to...

  2. Implications of climatic change for tourism and recreation in Ontario

    International Nuclear Information System (INIS)

    Wall, G.; Harrison, R.; Kinnaird, V.; McBoyle, G.; Quinland, C.

    1988-01-01

    Scenarios for climatic change associated with a doubling of atmospheric carbon dioxide were employed in an assessment of the impacts of climate change on tourism and recreation in Ontario. A warmer climate resulting from such change may mean declining lake levels with associated changes in the ecological interest and recreational potential of wetlands, as shown by case studies on two parks near Great Lakes shorelines. In the skiing industry, the length of ski seasons will be reduced in the northern part of the province, but the key holiday periods (when a large portion of total business is conducted) should still fall within the reliable ski season. Further south, the ski season in the South Georgian Bay region could be eliminated. Summer recreational activities are likely to have extended seasons, and the viability of summer recreational enterprises may increase, with associated positive benefits to neighboring communities. 2 refs., 6 figs., 3 tabs

  3. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    Science.gov (United States)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production

  4. Five potential consequences of climate change for invasive species.

    Science.gov (United States)

    Hellmann, Jessica J; Byers, James E; Bierwagen, Britta G; Dukes, Jeffrey S

    2008-06-01

    Scientific and societal unknowns make it difficult to predict how global environmental changes such as climate change and biological invasions will affect ecological systems. In the long term, these changes may have interacting effects and compound the uncertainty associated with each individual driver. Nonetheless, invasive species are likely to respond in ways that should be qualitatively predictable, and some of these responses will be distinct from those of native counterparts. We used the stages of invasion known as the "invasion pathway" to identify 5 nonexclusive consequences of climate change for invasive species: (1) altered transport and introduction mechanisms, (2) establishment of new invasive species, (3) altered impact of existing invasive species, (4) altered distribution of existing invasive species, and (5) altered effectiveness of control strategies. We then used these consequences to identify testable hypotheses about the responses of invasive species to climate change and provide suggestions for invasive-species management plans. The 5 consequences also emphasize the need for enhanced environmental monitoring and expanded coordination among entities involved in invasive-species management.

  5. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures (Invited)

    Science.gov (United States)

    Nativi, S.; Santoro, M.

    2009-12-01

    Currently, one of the major challenges for scientific community is the study of climate change effects on life on Earth. To achieve this, it is crucial to understand how climate change will impact on biodiversity and, in this context, several application scenarios require modeling the impact of climate change on distribution of individual species. In the context of GEOSS AIP-2 (Global Earth Observation System of Systems, Architecture Implementation Pilot- Phase 2), the Climate Change & Biodiversity thematic Working Group developed three significant user scenarios. A couple of them make use of a GEOSS-based framework to study the impact of climate change factors on regional species distribution. The presentation introduces and discusses this framework which provides an interoperability infrastructures to loosely couple standard services and components to discover and access climate and biodiversity data, and run forecast and processing models. The framework is comprised of the following main components and services: a)GEO Portal: through this component end user is able to search, find and access the needed services for the scenario execution; b)Graphical User Interface (GUI): this component provides user interaction functionalities. It controls the workflow manager to perform the required operations for the scenario implementation; c)Use Scenario controller: this component acts as a workflow controller implementing the scenario business process -i.e. a typical climate change & biodiversity projection scenario; d)Service Broker implementing Mediation Services: this component realizes a distributed catalogue which federates several discovery and access components (exposing them through a unique CSW standard interface). Federated components publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access

  6. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  7. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  8. Wildfire Suppression Costs for Canada under a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Emily S Hope

    Full Text Available Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980-2009 fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC climate projections. Area burned was modelled as a function of a climate moisture index (CMI, and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs; these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980-2009 period under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years are projected to become commonplace (i.e., occur once every two years or more often as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses.

  9. Climate change and Public health: vulnerability, impacts, and adaptation

    Science.gov (United States)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  10. Entangled judgments: expert preferences for adapting biodiversity conservation to climate change.

    Science.gov (United States)

    Hagerman, Shannon M; Satterfield, Terre

    2013-11-15

    A major challenge facing conservation experts is how to adapt biodiversity planning and practice to the impacts of climate change. To date, most commonly advocated adaptation actions mirror conventional approaches (e.g. protected areas) despite decades of concern regarding their efficacy and widespread discussion of less conventional, interventionist actions. This survey of 160 experts (scientists and practitioners with specialized knowledge of the implications of climate change for biodiversity conservation) seeks to explain this deep incongruity. Specifically, we quantify current preferences for a diverse set of adaptation actions, and examine the choice logics that underpin them. We find near unanimous agreement in principle with the need for extensive active management and restoration interventions given climate change. However, when interventionist actions are provided as options alongside conventional actions, experts overwhelming prefer the latter. Four hypotheses, developed by linking the conservation adaptation literature with that of preference formation and risk and decision making, explore enduring preferences for conventional actions. They are (1) judged most ecologically effective, least risky and best understood; (2) linked with pro-ecological worldviews, marked by positive affective feelings, and an aversion to the hubris of managing nature; (3) a function of trust in biodiversity governance; and/or (4) driven by demographic factors such as gender. Overall, we find that experts prefer conventional over unconventional actions because they are viewed as relatively more effective and less risky from an ecological point of view, and because they are linked with positive affect ratings, and worldviews that are strongly pro-ecological. We discuss the roles of value-based and affective cues in shaping policy outcomes for adaptation specifically, and sustainable resource management more broadly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Integrating scientific, economic, and ecological aspects of global change

    International Nuclear Information System (INIS)

    Jacoby, H.D.; Yang, Z.

    1994-01-01

    The MIT Joint Program on the Science and Policy of Global Change is conducting research on methods for integrating the science of potential global change with economic analysis of litigation policies and quantification of economic and environmental impacts. The paper describes this work, with a focus on the way that research within the various contributing disciplines, and the design of their associated models, are influenced by the process of inclusion in an integrated framework for policy analysis. The results should contribute new insight into the relative importance of key feedbacks within the economy-climate-ecology system

  12. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate.

    Science.gov (United States)

    Hoberg, E P; Cook, J A; Agosta, S J; Boeger, W; Galbreath, K E; Laaksonen, S; Kutz, S J; Brooks, D R

    2017-07-01

    Climate oscillations and episodic processes interact with evolution, ecology and biogeography to determine the structure and complex mosaic that is the biosphere. Parasites and parasite-host assemblages are key components in a general explanatory paradigm for global biodiversity. We explore faunal assembly in the context of Quaternary time frames of the past 2.6 million years, a period dominated by episodic shifts in climate. Climate drivers cross a continuum from geological to contemporary timescales and serve to determine the structure and distribution of complex biotas. Cycles within cycles are apparent, with drivers that are layered, multifactorial and complex. These cycles influence the dynamics and duration of shifts in environmental structure on varying temporal and spatial scales. An understanding of the dynamics of high-latitude systems, the history of the Beringian nexus (the intermittent land connection linking Eurasia and North America) and downstream patterns of diversity depend on teasing apart the complexity of biotic assembly and persistence. Although climate oscillations have dominated the Quaternary, contemporary dynamics are driven by tipping points and shifting balances emerging from anthropogenic forces that are disrupting ecological structure. Climate change driven by anthropogenic forcing has supplanted a history of episodic variation and is eliminating ecological barriers and constraints on development and distribution for pathogen transmission. A framework to explore interactions of episodic processes on faunal structure and assembly is the Stockholm Paradigm, which appropriately shifts the focus from cospeciation to complexity and contingency in explanations of diversity.

  13. The effects of climate change on terrestrial birds of North America

    Science.gov (United States)

    David King; Deborah M. Finch

    2013-01-01

    A discussion of avian responses to climate change is of interest for a number of reasons. First, because birds are relatively easy to identify and measure and their responses to environmental perturbation are relatively well known, they are useful as indicators of ecological change (1). Furthermore, birds are of conservation interest in their own right. Bird...

  14. Streamflow responses to past and projected future changes in climate at the Hubbard Brook Experimental Forest, New Hampshire, USA

    Science.gov (United States)

    John L. Campbell; Charles T. Driscoll; Afshin Pourmokhtarian; Katharine. Hayhoe

    2011-01-01

    Climate change has the potential to alter streamflow regimes, having ecological, economic, and societal implications. In the northeastern United States, it is unclear how climate change may affect surface water supply, which is of critical importance in this densely populated region. The objective of this study was to evaluate the impact of climate change on the timing...

  15. High fitness costs of climate change-induced camouflage mismatch.

    Science.gov (United States)

    Zimova, Marketa; Mills, L Scott; Nowak, J Joshua

    2016-03-01

    Anthropogenic climate change has created myriad stressors that threaten to cause local extinctions if wild populations fail to adapt to novel conditions. We studied individual and population-level fitness costs of a climate change-induced stressor: camouflage mismatch in seasonally colour molting species confronting decreasing snow cover duration. Based on field measurements of radiocollared snowshoe hares, we found strong selection on coat colour molt phenology, such that animals mismatched with the colour of their background experienced weekly survival decreases up to 7%. In the absence of adaptive response, we show that these mortality costs would result in strong population-level declines by the end of the century. However, natural selection acting on wide individual variation in molt phenology might enable evolutionary adaptation to camouflage mismatch. We conclude that evolutionary rescue will be critical for hares and other colour molting species to keep up with climate change. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Climate change and functional traits affect population dynamics of a long-lived seabird.

    Science.gov (United States)

    Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal

    2018-07-01

    change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd oxn behalf of British Ecological Society.

  17. Facing climate change in forests and fields: U.S. Forest Service taps into science-management partnerships

    Science.gov (United States)

    Amy Daniels; Nancy Shaw; Dave Peterson; Keith Nislow; Monica Tomosy; Mary Rowland

    2014-01-01

    As a growing body of science shows, climate change impacts on wildlife are already profound—from shifting species’ ranges and altering the synchronicity of food sources to changing the availability of water. Such impacts are only expected to increase in the coming decades. As climate change shapes complex, interwoven ecological processes, novel conditions and...

  18. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success.

    Science.gov (United States)

    Auer, Sonya K; Martin, Thomas E

    2013-02-01

    Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant-herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant-herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant-herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community. © 2012 Blackwell Publishing Ltd.

  19. Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success

    Science.gov (United States)

    Martin, Thomas E.; Auer, Sonya K.

    2013-01-01

    Climate change can modify ecological interactions, but whether it can have cascading effects throughout ecological networks of multiple interacting species remains poorly studied. Climate-driven alterations in the intensity of plant–herbivore interactions may have particularly profound effects on the larger community because plants provide habitat for a wide diversity of organisms. Here we show that changes in vegetation over the last 21 years, due to climate effects on plant–herbivore interactions, have consequences for songbird nest site overlap and breeding success. Browsing-induced reductions in the availability of preferred nesting sites for two of three ground nesting songbirds led to increasing overlap in nest site characteristics among all three bird species with increasingly negative consequences for reproductive success over the long term. These results demonstrate that changes in the vegetation community from effects of climate change on plant–herbivore interactions can cause subtle shifts in ecological interactions that have critical demographic ramifications for other species in the larger community.

  20. Scale-dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change.

    Science.gov (United States)

    Carroll, Carlos; Roberts, David R; Michalak, Julia L; Lawler, Joshua J; Nielsen, Scott E; Stralberg, Diana; Hamann, Andreas; Mcrae, Brad H; Wang, Tongli

    2017-11-01

    As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at

  1. Best practices for reporting climate data in ecology

    Science.gov (United States)

    Morueta-Holme, Naia; Oldfather, Meagan F.; Olliff-Yang, Rachael L.; Weitz, Andrew P.; Levine, Carrie R.; Kling, Matthew M.; Riordan, Erin C.; Merow, Cory; Sheth, Seema N.; Thornhill, Andrew H.; Ackerly, David D.

    2018-01-01

    A large number of published ecological studies fail to include basic information about the climate data used. In the interest of reproducibility and transparency, we offer recommendations for best practices that we urge Editors, authors, and reviewers to adopt in future publications.

  2. Biotic response to late Quaternary rapid climate switches in Santa Barbara Basin: Ecological and evolutionary implications

    International Nuclear Information System (INIS)

    Cannariato, K.G.; Kennett, J.P.; Behl, R.J.

    1999-01-01

    Benthic foraminiferal assemblages from Santa Barbara Basin exhibit major faunal and ecological switches associated with late Quaternary millennial- to decadal-scale global climate oscillations. Repeated turnovers of entire faunas occurred rapidly (<40--400 yr) without extinction or speciation in conjunction with Dansgaard-Oeschger shifts in thermohaline circulation, ventilation, and climate, confirming evolutionary model predictions of Roy et al. Consistent faunal successions of dysoxic taxa during successive interstadials reflect the extreme sensitivity and adaptation of the benthic ecosystem to the rapid environmental changes that marked the late Quaternary and possibly other transitional intervals in the history of the Earth's ocean-atmosphere-cryosphere system. These data support the hypothesis that broad segments of the biosphere are well adapted to rapid climate change

  3. Ecology of Land Cover Change in Glaciated Tropical Mountains

    Directory of Open Access Journals (Sweden)

    Kenneth R. Young

    2014-12-01

    Full Text Available Tropical mountains contain unique biological diversity, and are subject to many consequences of global climate change, exasperated by concurrent socioeconomic shifts. Glaciers are in a negative mass balance, exposing substrates to primary succession and altering downslope wetlands and streams. A review of recent trends and future predictions suggests a likely reduction in areas of open habitat for species of high mountains due to greater woody plant cover, accompanied by land use shifts by farmers and pastoralists along the environmental gradients of tropical mountains. Research is needed on the biodiversity and ecosystem consequences of successional change, including the direct effects of retreating glaciers and the indirect consequences of combined social and ecological drivers in lower elevations. Areas in the high mountains that are protected for nature conservation or managed collectively by local communities represent opportunities for integrated research and development approaches that may provide ecological spaces for future species range shifts.

  4. Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas.

    Science.gov (United States)

    García Molinos, Jorge; Takao, Shintaro; Kumagai, Naoki H; Poloczanska, Elvira S; Burrows, Michael T; Fujii, Masahiko; Yamano, Hiroya

    2017-10-01

    Conservation efforts strive to protect significant swaths of terrestrial, freshwater and marine ecosystems from a range of threats. As climate change becomes an increasing concern, these efforts must take into account how resilient-protected spaces will be in the face of future drivers of change such as warming temperatures. Climate landscape metrics, which signal the spatial magnitude and direction of climate change, support a convenient initial assessment of potential threats to and opportunities within ecosystems to inform conservation and policy efforts where biological data are not available. However, inference of risk from purely physical climatic changes is difficult unless set in a meaningful ecological context. Here, we aim to establish this context using historical climatic variability, as a proxy for local adaptation by resident biota, to identify areas where current local climate conditions will remain extant and future regional climate analogues will emerge. This information is then related to the processes governing species' climate-driven range edge dynamics, differentiating changes in local climate conditions as promoters of species range contractions from those in neighbouring locations facilitating range expansions. We applied this approach to assess the future climatic stability and connectivity of Japanese waters and its network of marine protected areas (MPAs). We find 88% of Japanese waters transitioning to climates outside their historical variability bounds by 2035, resulting in large reductions in the amount of available climatic space potentially promoting widespread range contractions and expansions. Areas of high connectivity, where shifting climates converge, are present along sections of the coast facilitated by the strong latitudinal gradient of the Japanese archipelago and its ocean current system. While these areas overlap significantly with areas currently under significant anthropogenic pressures, they also include much of the MPA

  5. The impacts of climate and land-use change scenarios on river ecology: the case of Margaritifera margaritifera

    Science.gov (United States)

    Santos, Regina; Fernandes, Luís; Varandas, Simone; Pereira, Mário; Sousa, Ronaldo; Teixeira, Amilcar; Lopes-Lima, Manuel; Cortes, Rui; Pacheco, Fernando

    2015-04-01

    Climate change is one of the most important causes of biodiversity loss in freshwater ecosystems and it is expected to cause extinctions in many species in the future. Freshwater ecosystems are also highly affected by anthropogenic pressures such as land use/land cover changes, water abstractions and impoundments. The aim of this study is to assess the impacts of future climate and land-use in the Beça River (northern Portugal) namely on the conservation status of the endangered pearl mussel Margaritifera margaritifera (Linnaeus, 1758). This is an environmental indicator and endangered species currently present in several stretches of the Beça River that still hold adequate ecological conditions. However, the species is threatened by the precipitation decrease projected for the 21st century and the deviation of a significant portion of the river water to an adjacent watershed (since 1998). This decrease in river water can be especially acute during the summer months, forming small pools dispersed along the water course where M. margaritifera, and its host (Salmo trutta), barely find biological conditions for survival. The materials and methods used in this study include; (i) the assessment of water quality based on minimum, maximum and average values of relevant physicochemical parameters within the period 2000-2009; (ii) assessment of future climate change settings based on air temperature and precipitation projected by Regional and Global Circulation Models for recent past (1961 - 1990) and future climate scenarios (2071 - 2099); (iii) data processing to remove the model biases; and, (iv) integrated watershed modelling with river-planning (Mike Basin) and broad GIS (ArcMap) computer packages. Our findings comprise: (i); a good relationship between current wildfire incidence and river water quality; (ii) an increase in the future air temperature throughout the year; (iii) increases in future precipitations during winter and decreases during the other seasons

  6. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    Science.gov (United States)

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands necessitates caution when interpreting model results. Recent changes in weather patterns throughout much of the Prairie Pothole Region have been in increased precipitation that results in increased water inputs to wetlands above losses associated with warmer temperatures. However, observed precipitation increases are within the range of natural climate variability and therefore, may not persist. Identifying management techniques with the potential to affect water inputs to prairie pothole wetlands would provide increased options for managers when dealing with the uncertainties associated with a changing climate. Several grassland management techniques (for example, grazing and burning) have the potential to affect water levels and hydroperiods of prairie pothole by affecting infiltration, evapotranspiration, and snow deposition.

  7. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    Science.gov (United States)

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and

  8. Gathering storm. The human cost of climate change

    International Nuclear Information System (INIS)

    Cowell, O.; Chang, I.

    2000-09-01

    Friends of the Earth International demonstrates the urgency of action needed to halt climate change (Part 1). Personal testimonies from survivors of Hurricane Mitch, the Mozambique floods and other events give a chilling insight of what may lie ahead for more of us in the future (Part 2). Extreme high-temperature events, droughts, floods, cyclones and storm surges with knock-on effects for ecosystems, fires, pest outbreaks, human health, our settlements and food security (Part 3). Part 4 looks at which countries are blocking action on climate change and proposes solutions for the way forward. Much deeper cuts in greenhouse gas emissions, based on an equitable sharing of the atmosphere, are needed if dangerous climate change is to be averted. Global protection will only happen when all parties at the climate summit acknowledge the real risks of climate change and their own responsibilities in improving the situation through emissions reductions. Industrialised countries must make much deeper cuts in their greenhouse gas emissions of as much as 80-90% to keep climate change within acceptable limits while allowing developing countries space to develop, Friends of the Earth International calls on governments to ensure that decisions taken at the CoP-6 in The Hague, Netherlands (1) Ensure that the Kyoto Protocol results in real and permanent emissions reductions through the development of renewable energy sources and energy efficiency measures; (2) Commit industrialised countries to achieving 80% of their Kyoto objective through emissions reductions at home; and (3) Enshrine principles of equity in the framework for emission reductions in the next and future commitment periods based on an equal per capita approach and ecological limits [nl

  9. Can We Consume Our Way Out of Climate Change? A Call for Analysis

    OpenAIRE

    Grant, Lyle K

    2011-01-01

    The problem of climate change is analyzed as a manifestation of economic growth, and the steady-state economy of ecological economics is proposed as a system-wide solution. Four classes of more specific solutions are described. In the absence of analysis, cultural inertia will bias solutions in favor of green consumption as a generalized solution strategy. By itself, green consumption is a flawed solution to climate change because it perpetuates or even accelerates economic growth that is inc...

  10. Contributions of climate change to the boundary shifts in the farming-pastoral ecotone in northern China since 1970

    Science.gov (United States)

    Shi, W.; Liu, Y.; Shi, X.

    2017-12-01

    Critical transitions of farming-pastoral ecotone (FPE) boundaries can be affected by climate change and human activities, yet current studies have not adequately analyzed the spatially explicit contributions of climate change to FPE boundary shifts, particularly those in different regions and periods. In this study, we present a series of analyses at the point (gravity center analysis), line (boundary shifts detected using two methods) and area (spatial analysis) levels to quantify climate contributions at the 1 km scale in each ecological functional region during three study periods from the 1970s to the 2000s using climate and land use data. Both gravity center analysis and boundary shift detection reveal similar spatial patterns, with more extensive boundary shifts in the northeastern and southeastern parts of the FPE in northern China, especially during the 1970s-1980s and 1990s-2000s. Climate contributions in the X- and Y-coordinate directions and in the directions of transects along boundaries show that significant differences in climate contributions to FPE boundary shifts exist in different ecological regions during the three periods. Additionally, the results in different directions exhibit good agreement in most of the ecological functional regions during most of the periods. However, the contribution values in the directions of transects along the boundaries (with 1-17%) were always smaller than those in the X-and Y-coordinate directions (4-56%), which suggests that the analysis in the transect directions is more stable and reasonable. Thus, this approach provides an alternative method for detecting the climate contributions to boundary shifts associated with land use changes. Spatial analysis of the relationship between climate change and land use change in the context of FPE boundary shifts in northern China provides further evidence and explanation of the driving forces of climate change. Our findings suggest that an improved understanding of the

  11. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  12. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  13. The potential impacts of climate change in Denmark

    International Nuclear Information System (INIS)

    Fenger, J.; Joergensen, A.M.K.

    1993-01-01

    If the human influence on the atmosphere proceeds unchanged, it may result in climate changes, for Denmark comprising a temperature rise by the end of next century of about 3 deg. C as a yearly average. The precipitation may increase slightly, and the relative sea level rise between 30 and 50 cm. Generally the immediate consequences for Denmark within the next century may be so modest, that they can be managed through planned adjustment supported by an expected technological development. A possible exception is the natural ecosystems, where climate changes may be too rapid for adjustment of some animals and plants; this may cause temporary instability and in the long run changes in the composition of species. Denmark is however - ecologically as well as politically and economically - a small, open system. The development in the rest of the world may therefore in many cases be decisive. (au)

  14. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment

    Science.gov (United States)

    Rockström, Johan; Brasseur, Guy; Hoskins, Brian; Lucht, Wolfgang; Schellnhuber, John; Kabat, Pavel; Nakicenovic, Nebojsa; Gong, Peng; Schlosser, Peter; Máñez Costa, Maria; Humble, April; Eyre, Nick; Gleick, Peter; James, Rachel; Lucena, Andre; Masera, Omar; Moench, Marcus; Schaeffer, Roberto; Seitzinger, Sybil; van der Leeuw, Sander; Ward, Bob; Stern, Nicholas; Hurrell, James; Srivastava, Leena; Morgan, Jennifer; Nobre, Carlos; Sokona, Youba; Cremades, Roger; Roth, Ellinor; Liverman, Diana; Arnott, James

    2014-12-01

    The development of human civilisations has occurred at a time of stable climate. This climate stability is now threatened by human activity. The rising global climate risk occurs at a decisive moment for world development. World nations are currently discussing a global development agenda consequent to the Millennium Development Goals (MDGs), which ends in 2015. It is increasingly possible to envisage a world where absolute poverty is largely eradicated within one generation and where ambitious goals on universal access and equal opportunities for dignified lives are adopted. These grand aspirations for a world population approaching or even exceeding nine billion in 2050 is threatened by substantial global environmental risks and by rising inequality. Research shows that development gains, in both rich and poor nations, can be undermined by social, economic and ecological problems caused by human-induced global environmental change. Climate risks, and associated changes in marine and terrestrial ecosystems that regulate the resilience of the climate system, are at the forefront of these global risks. We, as citizens with a strong engagement in Earth system science and socio-ecological dynamics, share the vision of a more equitable and prosperous future for the world, yet we also see threats to this future from shifts in climate and environmental processes. Without collaborative action now, our shared Earth system may not be able to sustainably support a large proportion of humanity in the decades ahead.

  15. Socio-economic changes, social capital and implications for climate change in a changing rural Nepal

    DEFF Research Database (Denmark)

    Byg, Anja; Herslund, Lise Byskov

    2016-01-01

    We investigate the use of social capital in the form of social ties in the face of commercialization, urbanization and climate change. While discussions of social capital often focus on whether people possess certain social ties or not our study shows that it is also necessary to consider under...... people have engaged in high-input agriculture, business and paid employment. Diversification of livelihoods has made many people less sensitive to climate change, but this does not translate into decreased vulnerability for the community. Intensive agriculture and lower community cohesion seems...... unsustainable in the long run. Thus, decreased vulnerability at the household level may come at the price of increased vulnerability at higher levels and negative consequences for the wider social–ecological system. Evaluating vulnerability and the role of social ties depends on the unit and sector of analysis...

  16. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia.

    Science.gov (United States)

    Coe, Michael T; Marthews, Toby R; Costa, Marcos Heil; Galbraith, David R; Greenglass, Nora L; Imbuzeiro, Hewlley M A; Levine, Naomi M; Malhi, Yadvinder; Moorcroft, Paul R; Muza, Michel Nobre; Powell, Thomas L; Saleska, Scott R; Solorzano, Luis A; Wang, Jingfeng

    2013-06-05

    A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south-southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms.

  17. [Effects of climate change on forest succession].

    Science.gov (United States)

    Wang, Jijun; Pei, Tiefan

    2004-10-01

    Forest regeneration is an important process driven by forest ecological dynamic resources. More and more concern has been given to forest succession issues since the development of forest succession theory during the early twentieth century. Scientific management of forest ecosystem entails the regulations and research models of forest succession. It is of great practical and theoretical significance to restore and reconstruct forest vegetation and to protect natural forest. Disturbances are important factors affecting regeneration structure and ecological processes. They result in temporal and spatial variations of forest ecosystem, and change the efficiencies of resources. In this paper, some concepts about forest succession and disturbances were introduced, and the difficulties of forest succession were proposed. Four classes of models were reviewed: Markov model, GAP model, process-based equilibrium terrestrial biosphere models (BIOME series models), and non-linear model. Subsequently, the effects of climate change on forest succession caused by human activity were discussed. At last, the existing problem and future research directions were proposed.

  18. Life politics, nature and the state: Giddens' sociological theory and The Politics of Climate Change.

    Science.gov (United States)

    Thorpe, Charles; Jacobson, Brynna

    2013-03-01

    Anthony Giddens' The Politics of Climate Change represents a significant shift in the way in which he addresses ecological politics. In this book, he rejects the relevance of environmentalism and demarcates climate-change policy from life politics. Giddens addresses climate change in the technocratic mode of simple rather than reflexive modernization. However, Giddens' earlier sociological theory provides the basis for a more reflexive understanding of climate change. Climate change instantiates how, in high modernity, the existential contradiction of the human relationship with nature returns in new form, expressed in life politics and entangled with the structural contradictions of the capitalist state. The interlinking of existential and structural contradiction is manifested in the tension between life politics and the capitalist nation-state. This tension is key for understanding the failures so far of policy responses to climate change. © London School of Economics and Political Science 2013.

  19. Toward Operationalizing Resilience Concepts in Australian Marine Sectors Coping with Climate Change

    Directory of Open Access Journals (Sweden)

    Julie L. Davidson

    2013-09-01

    Full Text Available We seek to contribute to the scholarship on operationalizing resilience concepts via a working resilience indicator framework. Although it requires further refinement, this practical framework provides a useful baseline for generating awareness and understanding of the complexity and diversity of variables that impinge on resilience. It has potential value for the evaluation, benchmarking, monitoring, and reporting of marine system resilience. The necessity for such a framework is a consequence of the levels of complexity and uncertainty associated with climate change and other global change stressors in marine social-ecological systems, and the problems involved in assessing their resilience. There is a need for: (1 methodologies that bring together knowledge from diverse sources and disciplines to investigate the complexity and uncertainty of interactions between climate, ocean, and human systems and (2 frameworks to facilitate the evaluation and monitoring of the social-ecological resilience of marine-dependent sectors. Accordingly, our main objective is to demonstrate the virtues of combining a case study methodology with complex adaptive systems approaches as a means to improve understanding of the multifaceted dynamics of marine sectors experiencing climate change. The resilience indicator framework, the main product of the methodology, is developed using four case studies across key Australian marine biodiversity and resource sectors already experiencing impacts from climate and other global changes. It comprises a set of resilience dimensions with a candidate set of abstract and concrete resilience indicators. Its design ensures an integrated approach to resilience evaluation.

  20. Changes in composition, ecology and structure of high-mountain vegetation: a re-visitation study over 42 years.

    Science.gov (United States)

    Evangelista, Alberto; Frate, Ludovico; Carranza, Maria Laura; Attorre, Fabio; Pelino, Giovanni; Stanisci, Angela

    2016-01-27

    High-mountain ecosystems are increasingly threatened by climate change, causing biodiversity loss, habitat degradation and landscape modifications. However, very few detailed studies have focussed on plant biodiversity in the high mountains of the Mediterranean. In this study, we investigated the long-term changes that have occurred in the composition, structure and ecology of high-mountain vegetation in the central Apennines (Majella) over the last 42 years. We performed a re-visitation study, using historical and newly collected vegetation data to explore which ecological and structural features have been the most successful in coping with climatic changes. Vegetation changes were analysed by comparing geo-referenced phytosociological relevés collected in high-mountain habitats (dolines, gentle slopes and ridges) on the Majella massif in 1972 and in 2014. Composition analysis was performed by detrended correspondence analysis, followed by an analysis of similarities for statistical significance assessment and by similarity percentage procedure (SIMPER) for identifying which species indicate temporal changes. Changes in ecological and structural indicators were analysed by a permutational multivariate analysis of variance, followed by a post hoc comparison. Over the last 42 years, clear floristic changes and significant ecological and structural variations occurred. We observed a significant increase in the thermophilic and mesonitrophilic plant species and an increment in the frequencies of hemicryptophytes. This re-visitation study in the Apennines agrees with observations in other alpine ecosystems, providing new insights for a better understanding of the effects of global change on Mediterranean high-mountain biodiversity. The observed changes in floristic composition, the thermophilization process and the shift towards a more nutrient-demanding vegetation are likely attributable to the combined effect of higher temperatures and the increase in soil nutrients

  1. Millennial-scale vegetation changes in the tropical Andes using ecological grouping and ordination methods

    NARCIS (Netherlands)

    Urrego, D.H.; Hooghiemstra, H.; Rama-Corredor, O.; Martrat, B.; Grimalt, J.O.; Thompson, L.; Bush, M.B.; González-Carranza, Z.; Hanselman, J.; Valencia, B.; Velásquez-Ruiz, C.

    2016-01-01

    We compare eight pollen records reflecting climatic and environmental change from northern and southern sites in the tropical Andes. Our analysis focuses on the last 30 000 years, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore

  2. Fens As Ecohydrologic Gauges of Climate Change in California

    Science.gov (United States)

    Drexler, J. Z.; Flint, L. E.; Flint, A. L.; Knifong, D. L.

    2014-12-01

    The purpose of this study was to demonstrate the use of montane groundwater-fed peatlands called fens as gauges for changes in groundwater recharge through time. Due to their consistent groundwater flows, fens remain saturated during the growing season, thus serving as ecological refugia for a range of sensitive biota including the federally threatened Yosemite toad (Anaxyrus canorus). In this project, five fens in the Sierra Nevada and two in the southern Cascade Mountains were studied over a 50-80 year period using historic aerial photography and GIS analysis. Fen areas were delineated using vegetation distributions and site wetness as visual keys to fen areal extent. In addition, a climate analysis of precipitation, snowpack, evapotranspiration, and mean minimum monthly temperature (Tmin) was carried out for the years 1950 - 2010 using a distributed parameter water-balance model called the Basin Characterization Model. Over the study period, all five Sierra fens decreased by 10-15% in delineated area, but little change occurred in the Cascade fens. The climate analysis revealed major changes through time in Tmin and the frequency of June months with zero snowpack (snowpack longevity) at the five Sierra sites. At the Cascade sites, increases in Tmin occurred more recently and decreases in snowpack longevity were more subtle. The different behavior of fens in the Cascades versus the Sierra Nevada suggests that underlying geology, particularly hydraulic conductivity, rock porosity, and size of groundwater reservoirs, may be an important buffer to change. These results show that fens in the Sierra Nevada are highly responsive ecohydrologic gauges that can be used to track reductions in groundwater recharge due to climate change. Further studies using isotopic and/or geochemical approaches are needed to quantify the changes in groundwater recharge that were identified with fens. Because fens provide critical habitat for sensitive species, major changes in hydrology

  3. Vulnerability of Oyster Resource Users to Ecological Change: Case Study from Terrebonne Parish, Louisiana

    Science.gov (United States)

    Humphries, A.; La Peyre, M.; Hall, S.; Dowty Beech, R.

    2016-02-01

    Knowledge of vulnerability provides the foundation for developing actions that minimize impacts on people while maximizing the sustainability of ecosystem goods and services including fisheries. As a result, it is becoming increasingly important to determine if resource-dependent people are vulnerable to ecological change as anthropogenic and climate-induced stressors affect resources in different ways. In coastal Louisiana, the current era of rapid marsh loss and abrupt environmental variation (e.g., sediment diversions) has the potential to undermine oyster-associated livelihoods for those most vulnerable. To evaluate vulnerability, we examined dimensions of social sensitivity and adaptive capacity using semi-structured interviews with three stakeholder groups in the oyster fishery of Terrebonne Parish, Louisiana. Results indicate that oyster owners/operators are highly dependent, and thus sensitive, to changes in the ecological conditions of the fishery due to high levels of occupational identity; however they are likely adaptable, reflected in their willingness to learn about new practices and evolve over time. In contrast, oyster fishers that do not own any portion of the business in which they operate are bad at coping with change and frequently hold negative or fatalistic views on financial planning. Overall, oyster resource users most vulnerable to ecological change will be those with high levels of stewardship, open-minded values, and a balanced perception of environment, as well as low to moderate levels of personal and financial buffers and trust. These results suggest that resource users with higher sensitivity to change are not necessarily most vulnerable because sensitivity may be offset by adaptive capacity. In other words, while sensitivity may determine the potential impact of a climate- or human-induced ecological change to the oyster fishery, adaptive capacity can be a major influence on what impacts actually eventuate.

  4. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  5. Developmental change in social responsibility during adolescence: An ecological perspective.

    Science.gov (United States)

    Wray-Lake, Laura; Syvertsen, Amy K; Flanagan, Constance A

    2016-01-01

    Social responsibility can be defined as a set of prosocial values representing personal commitments to contribute to community and society. Little is known about developmental change-and predictors of that change-in social responsibility during adolescence. The present study used an accelerated longitudinal research design to investigate the developmental trajectory of social responsibility values and ecological assets across family, school, community, and peer settings that predict these values. Data come from a 3-year study of 3,683 U.S. adolescents enrolled in upper-level elementary, middle, and high schools in rural, semiurban, and urban communities. Social responsibility values significantly decreased from age 9 to 16 before leveling off in later adolescence. Family compassion messages and democratic climate, school solidarity, community connectedness, and trusted friendship, positively predicted within-person change in adolescents' social responsibility values. These findings held after accounting for other individual-level and demographic factors and provide support for the role of ecological assets in adolescents' social responsibility development. In addition, fair society beliefs and volunteer experience had positive between- and within-person associations with social responsibility values. The manuscript discusses theoretical and practical implications of the conclusion that declines in ecological assets may partly explain age-related declines in social responsibility values. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  6. Climate change will increase the naturalization risk from garden plants in Europe

    Czech Academy of Sciences Publication Activity Database

    Dullinger, Y.; Wessely, J.; Bossdorf, O.; Dawson, W.; Essl, F.; Gattringer, A.; Klonner, G.; Kreft, H.; Kuttner, M.; Moser, D.; Pergl, Jan; Pyšek, Petr; Thuiller, W.; van Kleunen, M.; Weigelt, P.; Winter, M.; Dullinger, S.

    2017-01-01

    Roč. 26, č. 1 (2017), s. 43-53 ISSN 1466-822X R&D Projects: GA ČR(CZ) GAP504/11/1028; GA ČR GB14-36079G Grant - others:AV ČR(CZ) AP1002 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:67985939 Keywords : future invasions * ornamental plants * climate change Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 6.045, year: 2016

  7. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  8. The dynamics of belief in climate change and its risks in business organisations

    International Nuclear Information System (INIS)

    Bleda, Mercedes; Shackley, Simon

    2008-01-01

    This paper presents a simulation model of the formation of the belief in climate change of a business organisation using a systems dynamics approach. Understanding how businesses form their belief on the issue of climate change is of paramount importance given the key role of beliefs and cognitive characteristics in the triggering and shaping of organisational adaptation processes. The main assumption of the model is that the dynamics of belief is driven by the perceived actual and potential changes in competitiveness as a consequence of climate impacts rather than by the growth of an ecological 'business conscience'. The model has been built using the STELLA software program, and it is based upon theoretical hypotheses drawn from behavioural studies of organisations and evolutionary theories of economic change. (author)

  9. Climate change and coral reef bleaching: An ecological assessment of long-term impacts, recovery trends and future outlook

    Science.gov (United States)

    Baker, Andrew C.; Glynn, Peter W.; Riegl, Bernhard

    2008-12-01

    Since the early 1980s, episodes of coral reef bleaching and mortality, due primarily to climate-induced ocean warming, have occurred almost annually in one or more of the world's tropical or subtropical seas. Bleaching is episodic, with the most severe events typically accompanying coupled ocean-atmosphere phenomena, such as the El Niño-Southern Oscillation (ENSO), which result in sustained regional elevations of ocean temperature. Using this extended dataset (25+ years), we review the short- and long-term ecological impacts of coral bleaching on reef ecosystems, and quantitatively synthesize recovery data worldwide. Bleaching episodes have resulted in catastrophic loss of coral cover in some locations, and have changed coral community structure in many others, with a potentially critical influence on the maintenance of biodiversity in the marine tropics. Bleaching has also set the stage for other declines in reef health, such as increases in coral diseases, the breakdown of reef framework by bioeroders, and the loss of critical habitat for associated reef fishes and other biota. Secondary ecological effects, such as the concentration of predators on remnant surviving coral populations, have also accelerated the pace of decline in some areas. Although bleaching severity and recovery have been variable across all spatial scales, some reefs have experienced relatively rapid recovery from severe bleaching impacts. There has been a significant overall recovery of coral cover in the Indian Ocean, where many reefs were devastated by a single large bleaching event in 1998. In contrast, coral cover on western Atlantic reefs has generally continued to decline in response to multiple smaller bleaching events and a diverse set of chronic secondary stressors. No clear trends are apparent in the eastern Pacific, the central-southern-western Pacific or the Arabian Gulf, where some reefs are recovering and others are not. The majority of survivors and new recruits on

  10. A Review of the Integrated Effects of Changing Climate, Land Use, and Dams on Mekong River Hydrology

    Directory of Open Access Journals (Sweden)

    Yadu Pokhrel

    2018-03-01

    Full Text Available The ongoing and proposed construction of large-scale hydropower dams in the Mekong river basin is a subject of intense debate and growing international concern due to the unprecedented and potentially irreversible impacts these dams are likely to have on the hydrological, agricultural, and ecological systems across the basin. Studies have shown that some of the dams built in the tributaries and the main stem of the upper Mekong have already caused basin-wide impacts by altering the magnitude and seasonality of flows, blocking sediment transport, affecting fisheries and livelihoods of downstream inhabitants, and changing the flood pulse to the Tonle Sap Lake. There are hundreds of additional dams planned for the near future that would result in further changes, potentially causing permanent damage to the highly productive agricultural systems and fisheries, as well as the riverine and floodplain ecosystems. Several studies have examined the potential impacts of existing and planned dams but the integrated effects of the dams when combined with the adverse hydrologic consequences of climate change remain largely unknown. Here, we provide a detailed review of the existing literature on the changes in climate, land use, and dam construction and the resulting impacts on hydrological, agricultural, and ecological systems across the Mekong. The review provides a basis to better understand the effects of climate change and accelerating human water management activities on the coupled hydrological-agricultural-ecological systems, and identifies existing challenges to study the region’s Water, Energy, and Food (WEF nexus with emphasis on the influence of future dams and projected climate change. In the last section, we synthesize the results and highlight the urgent need to develop integrated models to holistically study the coupled natural-human systems across the basin that account for the impacts of climate change and water infrastructure development

  11. Late Quaternary climate change shapes island biodiversity.

    Science.gov (United States)

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  12. Predicting Impact of Climate Change on Water Temperature and Dissolved Oxygen in Tropical Rivers

    Directory of Open Access Journals (Sweden)

    Al-Amin Danladi Bello

    2017-07-01

    include in this study. This study demonstrates the potential impact of climate and future land-use changes on tropical rivers and how they might affect the future ecological systems. Most rivers in suburban areas will be ecologically unsuitable to some aquatic species. In comparison, rivers surrounded by agricultural and forestlands are less affected by the projected climate and land-uses changes. The results from this study provide a basis in which resource management and mitigation actions can be developed.

  13. Adapting to Climate Change: Reconsidering the Role of Protected Areas and Protected Organisms in Western North America

    Science.gov (United States)

    Graumlich, L. J.; Cross, M. S.; Hilty, J.; Berger, J.

    2007-12-01

    With the recent publication of the 2007 Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), little doubt remains among scientists that the global climate system is changing due to human influence and that climate change will have far-reaching and fundamental impacts on ecosystems and biodiversity. Arguably the best-documented evidence linking 20th Century warming trends to changes in physical and biological systems comes from the mountains of western North America (e.g., Figure SPM1 in Summary of Working Group 11 Report). In the West, ecosystem impacts include changes in the distribution of species as well as changing functional linkages between species such as the synchrony between flower emergence and pollinating insects. These climate impacts, when combined with other environmental stressors (e.g., altered disturbance regimes, land-use change and habitat fragmentation) portend an amplification of species extinction rates. One of the great challenges in adapting to climate change is developing and implementing policies that enhance ecological resilience in the face of these change. Clearly, the current system of nature reserves in Western North America is a fundamental asset for maintaining biodiversity and ecosystem services. However, the fixed- boundary nature of these protected areas presents a problem as species' ranges shift with future climate change. The loss of species whose ranges move outside of fixed park boundaries and the arrival of other species that move into protected areas could lead to significant turnover of species diversity, new species assemblages, and altered functionality. In short, reserves that were designed to protect particular species or communities may no longer serve their intended purpose under a changing climate. In this talk, we use case studies from the Greater Yellowstone Ecosystem and the Sonoran Desert Ecosystem to define strategies for enhancing ecological resilience to climate change at

  14. Economy-wide Estimates of the Implications of Climate Change - A Rejoinder

    NARCIS (Netherlands)

    Bosello, F.; Roson, R.; Tol, R.S.J.

    2008-01-01

    [Ackermann, F., Stanton, E., 2008-this issue. A comment on economy-wide estimates of the implications of climate change: human health. Ecological Economics. doi:10.1016/j.ecolecon.2007.10.006] criticise our recent paper [Bosello, F., Roson, R., Tol, R.S.J., 2006. Economy-wide estimates of the

  15. Linking human health, climate change, and food security through ecological-based sanitation systems

    Science.gov (United States)

    Ryals, R.; Kramer, S.; Porder, S.; Andersen, G. L.

    2015-12-01

    Ensuring access to clean, safe sanitation for the world's population remains a challenging, yet critical, global sustainability goal. Ecological-based sanitation (EcoSan) technology is a promising strategy for improving sanitation, particularly in areas where financial resources and infrastructure are limiting. The composting of human waste and its use as an agricultural soil amendment can tackle three important challenges in developing countries - providing improved sanitation for vulnerable communities, reducing the spread of intestinal-born pathogens, and returning nutrients and organic matter to degraded agricultural soils. The extent of these benefits and potential tradeoffs are not well known, but have important implications for the widespread adoption of this strategy to promote healthy communities and enhance food security. We quantified the effects of EcoSan on the climate and human health in partnership with Sustainable Organic Integrated Livelihoods (SOIL) in Haiti. We measured greenhouse gas emissions (nitrous oxide, methane, and carbon dioxide) from compost piles that ranged in age from 0 to 14 months (i.e. finished) from two compost facilities managed with or without cement lining. We also measured emissions from a government-operated waste treatment pond and a grass field where waste has been illegally dumped. The highest methane emissions were observed from the anaerobic waste pond, whereas the dump site and compost piles had higher nitrous oxide emissions. Net greenhouse gases (CO2-equivalents) from unlined compost piles were 8x lower than lined compost piles and 20 and 30x lower than the dump and waste pond, respectively. We screened finished compost for fecal pathogens using bacterial 16S sequencing. Bacterial pathogens were eliminated regardless of the type of composting process. Pilot trials indicate that the application of compost to crops has a large potential for increasing food production. This research suggests that EcoSan systems are

  16. Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes.

    Directory of Open Access Journals (Sweden)

    Olivier Dangles

    Full Text Available While the impacts of climate change on individual species and communities have been well documented there is little evidence on climate-mediated changes for entire ecosystems. Pristine alpine environments can provide unique insights into natural, physical and ecological response to climate change yet broad scale and long-term studies on these potential 'ecosystem sentinels' are scarce. We addressed this issue by examining cover changes of 1689 high-elevation wetlands (temporarily or perennial water-saturated grounds in the Bolivian Cordillera Real, a region that has experienced significant warming and glacier melting over the last 30 years. We combined high spatial resolution satellite images from PLEIADES with the long-term images archive from LANDSAT to 1 examine environmental factors (e.g., glacier cover, wetland and watershed size that affected wetland cover changes, and 2 identify wetlands' features that affect their vulnerability (using habitat drying as a proxy in the face of climate change. Over the (1984-2011 period, our data showed an increasing trend in the mean wetland total area and number, mainly related to the appearance of wet grassland patches during the wetter years. Wetland cover also showed high inter-annual variability and their area for a given year was positively correlated to precipitation intensities in the three months prior to the image date. Also, round wetlands located in highly glacierized catchments were less prone to drying, while relatively small wetlands with irregularly shaped contours suffered the highest rates of drying over the last three decades. High Andean wetlands can therefore be considered as ecosystem sentinels for climate change, as they seem sensitive to glacier melting. Beyond the specific focus of this study, our work illustrates how satellite-based monitoring of ecosystem sentinels can help filling the lack of information on the ecological consequences of current and changing climate conditions

  17. Climate Change Impacts on the Organic Carbon Cycle at the Land-Ocean Interface

    Science.gov (United States)

    Canuel, Elizabeth A.; Cammer, Sarah S.; McIntosh, Hadley A.; Pondell, Christina R.

    2012-05-01

    Estuaries are among the most altered and vulnerable marine ecosystems. These ecosystems will likely continue to deteriorate owing to increased population growth in coastal regions, expected temperature and precipitation changes associated with climate change, and their interaction with each other, leading to serious consequences for the ecological and societal services they provide. A key function of estuaries is the transfer, transformation, and burial of carbon and other biogenic elements exchanged between the land and ocean systems. Climate change has the potential to influence the carbon cycle through anticipated changes to organic matter production in estuaries and through the alteration of carbon transformation and export processes. This review discusses the effects of climate change on processes influencing the cycling of organic carbon in estuaries, including examples from three temperate estuaries in North America. Our goal is to evaluate the impact of climate change on the connectivity of terrestrial, estuarine, and coastal ocean carbon cycles.

  18. Phenological plasticity will not help all species adapt to climate change.

    Science.gov (United States)

    Duputié, Anne; Rutschmann, Alexis; Ronce, Ophélie; Chuine, Isabelle

    2015-08-01

    Concerns are rising about the capacity of species to adapt quickly enough to climate change. In long-lived organisms such as trees, genetic adaptation is slow, and how much phenotypic plasticity can help them cope with climate change remains largely unknown. Here, we assess whether, where and when phenological plasticity is and will be adaptive in three major European tree species. We use a process-based species distribution model, parameterized with extensive ecological data, and manipulate plasticity to suppress phenological variations due to interannual, geographical and trend climate variability, under current and projected climatic conditions. We show that phenological plasticity is not always adaptive and mostly affects fitness at the margins of the species' distribution and climatic niche. Under current climatic conditions, phenological plasticity constrains the northern range limit of oak and beech and the southern range limit of pine. Under future climatic conditions, phenological plasticity becomes strongly adaptive towards the trailing edges of beech and oak, but severely constrains the range and niche of pine. Our results call for caution when interpreting geographical variation in trait means as adaptive, and strongly point towards species distribution models explicitly taking phenotypic plasticity into account when forecasting species distribution under climate change scenarios. © 2015 John Wiley & Sons Ltd.

  19. Sensitivity of the carbon cycle in the Arctic to climate change

    Science.gov (United States)

    A.D. McGuire; L.G. Anderson; T.R. Christensen; S. Dallimore; L. Guo; D.J. Hayes; M. Heimann; T.D. Lorenson; R.W. Macdonald; N. Roulet

    2009-01-01

    The recent warming in the Arctic is affecting a broad spectrum of physical, ecological, and human/cultural systems that may be irreversible on century time scales and have the potential to cause rapid changes in the earth system. The response of the carbon cycle of the Arctic to changes in climate is a major issue of global concern, yet there has not been a...

  20. Life history and spatial traits predict extinction risk due to climate change

    Science.gov (United States)

    Pearson, Richard G.; Stanton, Jessica C.; Shoemaker, Kevin T.; Aiello-Lammens, Matthew E.; Ersts, Peter J.; Horning, Ned; Fordham, Damien A.; Raxworthy, Christopher J.; Ryu, Hae Yeong; McNees, Jason; Akçakaya, H. Reşit

    2014-03-01

    There is an urgent need to develop effective vulnerability assessments for evaluating the conservation status of species in a changing climate. Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change based on the expectation that established assessments such as the IUCN Red List need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened, no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally different from other threats in terms of assessing extinction risks.

  1. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    Science.gov (United States)

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-04-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate related events and due to overgrazing. The peat degradation causes significant losses of carbon store, GHG emissions and is followed by changes in water balance and water composition. The issue arises if such a type of ecosystems as peatlands could be a subject for ecosystem restoration in this arid and subhumid climate. Could it be considered as measure for climate change mitigation and adaptation? With funding opportunities from the Asian Development Bank a pilot project for peatland restoration had been launched in 2016 in Khashaat soum, Arkhangai aimag in Central Mongolia. The pilot aimed to merge local interests of herders with global targets of climate change mitigation. The following questions are addressed: what are the losses of natural functions and ecosystem services of peatland; what are expectations and demands of local communities and incentives for their involvement; how should and could look the target ecosystem; what are the technical solutions in order to achieve the target ecosystem characteristics; and what are the parameters for monitoring to assess the success of the project? The comprehensive baseline study addressed both natural and social aspects. The conclusions are: most of peat in the study area had been mineralised and has turned to organic rich soil with carbon content between 20 to 40 %, the key sources of water - small springs - are partly destroyed by cattle; the permafrost disappeared in this area and could not be the subject for restoration; local herders understand the value of peatland as water source and had carried out some voluntary activities for water storage and regulation such as dam construction; nevertheless there is no

  2. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  3. Proceedings of the clean air and climate change summit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  4. Proceedings of the clean air and climate change summit

    International Nuclear Information System (INIS)

    2010-01-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  5. Visualizing and communicating climate change using the ClimateWizard: decision support and education through web-based analysis and mapping

    Science.gov (United States)

    Girvetz, E. H.; Zganjar, C.; Raber, G. T.; Maurer, E. P.; Duffy, P.

    2009-12-01

    Virtually all fields of study and parts of society—from ecological science and nature conservation, to global development, multinational corporations, and government bodies—need to know how climate change has and may impact specific locations of interest. Our ability to respond to climate change depends on having convenient tools that make past and projected climate trends available to planners, managers, scientists and the general public, at scales ranging from global to local scales. Web-mapping applications provide an effective platform for communicating climate change impacts in specific geographic areas of interest to the public. Here, we present one such application, the ClimateWizard, that allows users to analyze, visualize and explore climate change maps for specific geographic areas of interest throughout the world (http://ClimateWizard.org). Built on Web 2.0 web-services (SOAP), Google Maps mash-up, and cloud computing technologies, the ClimateWizard analyzes large databases of climate information located on remote servers to create synthesized information and useful products tailored to geographic areas of interest (e.g. maps, graphs, tables, GIS layers). We demonstrate how the ClimateWizard can be used to assess projected changes to temperature and precipitation across all states in the contiguous United States and all countries of the world using statistically downscaled general circulation models from the CMIP3 dataset. We then go on to show how ClimateWizard can be used to analyze changes to other climate related variables, such as moisture stress and water production. Finally, we discuss how this tool can be adapted to develop a wide range of web-based tools that are targeted at informing specific audiences—from scientific research and natural resource management, to K-12 and higher education—about how climate change may affect different aspects of human and natural systems.

  6. Functional integrity of freshwater forested wetlands, hydrologic alteration, and climate change

    Science.gov (United States)

    Middleton, Beth A.; Souter, Nicholas J.;

    2016-01-01

    Climate change will challenge managers to balance the freshwater needs of humans and wetlands. The Intergovernmental Panel on Climate Change predicts that most regions of the world will be exposed to higher temperatures, CO2, and more erratic precipitation, with some regions likely to have alternating episodes of intense flooding and mega-drought. Coastal areas will be exposed to more frequent saltwater inundation as sea levels rise. Local land managers desperately need intra-regional climate information for site-specific planning, management, and restoration activities. Managers will be challenged to deliver freshwater to floodplains during climate change-induced drought, particularly within hydrologically altered and developed landscapes. Assessment of forest health, both by field and remote sensing techniques, will be essential to signal the need for hydrologic remediation. Studies of the utility of the release of freshwater to remediate stressed forested floodplains along the Murray and Mississippi Rivers suggest that brief episodes of freshwater remediation for trees can have positive health benefits for these forests. The challenges of climate change in forests of the developing world will be considered using the Tonle Sap of Cambodia as an example. With little ecological knowledge of the impacts, managing climate change will add to environmental problems already faced in the developing world with new river engineering projects. These emerging approaches to remediate stressed trees will be of utmost importance for managing worldwide floodplain forests with predicted climate changes.

  7. Patterns and biases of climate change threats in the IUCN Red List.

    Science.gov (United States)

    Trull, Nicholas; Böhm, Monika; Carr, Jamie

    2018-02-01

    International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species' biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change-threatened species on the IUCN Red List concur with those of climate change-threatened species identified with the trait-based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change-threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait-based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List

  8. Managing for climate change on protected areas: An adaptive management decision making framework.

    Science.gov (United States)

    Tanner-McAllister, Sherri L; Rhodes, Jonathan; Hockings, Marc

    2017-12-15

    Current protected area management is becoming more challenging with advancing climate change and current park management techniques may not be adequate to adapt for effective management into the future. The framework presented here provides an adaptive management decision making process to assist protected area managers with adapting on-park management to climate change. The framework sets out a 4 step process. One, a good understanding of the park's context within climate change. Secondly, a thorough understanding of the park management systems including governance, planning and management systems. Thirdly, a series of management options set out as an accept/prevent change style structure, including a systematic assessment of those options. The adaptive approaches are defined as acceptance of anthropogenic climate change impact and attempt to adapt to a new climatic environment or prevention of change and attempt to maintain current systems under new climatic variations. Last, implementation and monitoring of long term trends in response to ecological responses to management interventions and assessing management effectiveness. The framework addresses many issues currently with park management in dealing with climate change including the considerable amount of research focussing on 'off-reserve' strategies, and threats and stress focused in situ park management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Global climate change and vector-borne diseases

    Science.gov (United States)

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  10. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  11. Attenuating initial beliefs: increasing the acceptance of anthropogenic climate change information by reflecting on values.

    Science.gov (United States)

    van Prooijen, Anne-Marie; Sparks, Paul

    2014-05-01

    Anthropogenic climate change information tends to be interpreted against the backdrop of initial environmental beliefs, which can lead to some people being resistant toward the information. In this article (N = 88), we examined whether self-affirmation via reflection on personally important values could attenuate the impact of initial beliefs on the acceptance of anthropogenic climate change evidence. Our findings showed that initial beliefs about the human impact on ecological stability influenced the acceptance of information only among nonaffirmed participants. Self-affirmed participants who were initially resistant toward the information showed stronger beliefs in the existence of climate change risks and greater acknowledgment that individual efficacy has a role to play in reducing climate change risks than did their nonaffirmed counterparts. © 2013 Society for Risk Analysis.

  12. Agroforestry solutions to address climate change and food security challenges in Africa

    NARCIS (Netherlands)

    Mbow, C.; Neufeldt, H.; Noordwijk, van M.; Minang, P.A.; Kowero, G.; Luedeling, E.

    2014-01-01

    Trees inside and outside forests contribute to food security in Africa in the face of climate variability and change. They also provide environmental and social benefits as part of farming livelihoods. Varied ecological and socio-economic conditions have given rise to specific forms of agroforestry

  13. Comparative study on Climate Change Policies in the EU and China

    Science.gov (United States)

    Bray, M.; Han, D.

    2012-04-01

    Both the EU and China are among the largest CO2 emitters in the world; their climate actions and policies have profound impacts on global climate change and may influence the activities in other countries. Evidence of climate change has been observed across Europe and China. Despite the many differences between the two regions, the European Commission and Chinese government support climate change actions. The EU has three priority areas in climate change: 1) understanding, monitoring and predicting climate change and its impact; 2) providing tools to analyse the effectiveness, cost and benefits of different policy options for mitigating climate change and adapting to its impacts; 3) improving, demonstrating and deploying existing climate friendly technologies and developing the technologies of the future. China is very vulnerable to climate change, because of its vast population, fast economic development, and fragile ecological environment. The priority policies in China are: 1) Carbon Trading Policy; 2) Financing Loan Policy (Special Funds for Renewable Energy Development); 3) Energy Efficiency Labelling Policy; 4) Subsidy Policy. In addition, China has formulated the "Energy Conservation Law", "Renewable Energy Law", "Cleaner Production Promotion Law" and "Circular Economy Promotion Law". Under the present EU Framework Programme FP7 there is a large number of funded research activities linked to climate change research. Current climate change research projects concentrate on the carbon cycle, water quality and availability, climate change predictors, predicting future climate and understanding past climates. Climate change-related scientific and technological projects in China are mostly carried out through national scientific and technological research programs. Areas under investigation include projections and impact of global climate change, the future trends of living environment change in China, countermeasures and supporting technologies of global

  14. Using fuzzy logic to determine the vulnerability of marine species to climate change.

    Science.gov (United States)

    Jones, Miranda C; Cheung, William W L

    2018-02-01

    Marine species are being impacted by climate change and ocean acidification, although their level of vulnerability varies due to differences in species' sensitivity, adaptive capacity and exposure to climate hazards. Due to limited data on the biological and ecological attributes of many marine species, as well as inherent uncertainties in the assessment process, climate change vulnerability assessments in the marine environment frequently focus on a limited number of taxa or geographic ranges. As climate change is already impacting marine biodiversity and fisheries, there is an urgent need to expand vulnerability assessment to cover a large number of species and areas. Here, we develop a modelling approach to synthesize data on species-specific estimates of exposure, and ecological and biological traits to undertake an assessment of vulnerability (sensitivity and adaptive capacity) and risk of impacts (combining exposure to hazards and vulnerability) of climate change (including ocean acidification) for global marine fishes and invertebrates. We use a fuzzy logic approach to accommodate the variability in data availability and uncertainties associated with inferring vulnerability levels from climate projections and species' traits. Applying the approach to estimate the relative vulnerability and risk of impacts of climate change in 1074 exploited marine species globally, we estimated their index of vulnerability and risk of impacts to be on average 52 ± 19 SD and 66 ± 11 SD, scaling from 1 to 100, with 100 being the most vulnerable and highest risk, respectively, under the 'business-as-usual' greenhouse gas emission scenario (Representative Concentration Pathway 8.5). We identified 157 species to be highly vulnerable while 294 species are identified as being at high risk of impacts. Species that are most vulnerable tend to be large-bodied endemic species. This study suggests that the fuzzy logic framework can help estimate climate vulnerabilities and risks

  15. How is climate change impacting precipitation?

    Science.gov (United States)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  16. Warming Climate and Changing Societies - a Challenge or an Opportunity for Reindeer Herding?

    Science.gov (United States)

    Käyhkö, J.; Horstkotte, T.; Kivinen, S.; Vehmas, J.; Oksanen, L.; Forbes, B. C.; Johansen, B.; Jepsen, J. U.; Markkola, A.; Pulliainen, J.; Olofsson, J.; Oksanen, T.; Utsi, T. A.; Korpimäki, E.; Menard, C.; Ericson, L.

    2015-12-01

    The Arctic region will warm more rapidly than the global mean, influencing dramatically the northern ecosystems. Simultaneously, our societies transform towards urbanized, highly educated, service-based culture, where a decreasing population will gain its livelihood from primary production. We study various ecosystem interactions in a changing climate and integrate these with reindeer husbandry and the indigenous Sámi culture dependent on it1. Potential climate impacts include the transformation of arctic-alpine tundra to dense scrubland with conceivable consequences to reindeer husbandry, but also global warming due to decreasing albedo. The social-ecological system (SES) of reindeer husbandry includes administrative and ecological processes that do not always correspond (Figure 1). Consequently, management priorities and administration may conflict with local social and ecological processes, bringing about risks of environmental degradation, loss of biodiversity and defeat of traditional livelihoods. We hypothesize the plausibility to support the indigenous reindeer herding livelihood against rapid external changes by utilizing the migratory reindeer grazing system of the Sámi as a management tool for sustaining the high-albedo tundra and mitigating global warming. Our first-of-a-kind satellite-based high resolution vegetation map covering Northern Fennoscandia allows detailed management plans. Our ecological research demonstrates the important role of herbivory on arctic vegetation communities. Interactive workshops with reindeer herders offer indigenous knowledge of state and changes of the ecosystems, and reflect the threats and expectations of the herders. We are currently building models of the complex social-ecological system of Northern Fennoscandia and will report the first findings of the exercise. 1 www.ncoetundra.utu.fi Figure 1. The scales of administrative and ecological processes do not always coincide. This may bring about challenges in managing

  17. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  18. Impacts and adaptation for climate change in urban forests

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M. [Saskatchewan Research Council, Saskatoon, SK (Canada)

    2006-07-01

    Changes to urban trees as a result of climate change were reviewed in order to aid urban forest managers in the development of adaptive climate change strategies. Various climate change models have predicted that winter and spring temperatures will increase. Higher amounts of precipitation are also anticipated. Higher temperatures will results in evapotranspiration, which will cause soil moisture levels to decline. Climatologists have also suggested that very hot days, winter storms and high rainfall events will increase in frequency. In addition, higher levels of atmospheric carbon dioxide (CO{sub 2}) will affect photosynthesis, with associated impacts on urban tree growth. Higher temperatures and longer growing seasons will allow insect populations to build up to higher levels, and warmer and dryer summers are likely to bring longer fire seasons and more severe fires. Urban trees under stress from drought and higher temperatures will be increasingly vulnerable to existing urban stressors such as air pollution and soil compaction. However, the ecological services provided by trees will become more valuable under future climate change regimes, particularly for shading and space cooling, as well as soil aeration and stabilization and the uptake of storm water. It was suggested that future tree growth may be enhanced on sites with adequate water and nutrients, but will probably decline in areas that are already marginal. It was recommended that urban forest managers assess the present vulnerability of trees to climate-related events in order to prepare for future change. Managers should also assess their capacity to implement various strategies through municipal and provincial partnerships. It was observed that decisions taken now about forest management will play out over several decades. It was concluded that maintaining a flexible and resilient urban forest management system is the best defence, as specific climate change impacts cannot be predicted. 18 refs., 4

  19. Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe

    Czech Academy of Sciences Publication Activity Database

    Liancourt, Pierre; Boldgiv, B.; Song, D. S.; Spence, L. A.; Helliker, B. R.; Petrais, P. S.; Casper, B. B.

    2015-01-01

    Roč. 21, č. 9 (2015), s. 3489-3498 ISSN 1354-1013 EU Projects: European Commission(XE) 267243 Institutional support: RVO:67985939 Keywords : climate change * drought * functional traits Subject RIV: EH - Ecology, Behaviour Impact factor: 8.444, year: 2015

  20. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    DEFF Research Database (Denmark)

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects...... to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation...

  1. How arguments are justified in the media debate on climate change in the USA and France

    OpenAIRE

    Ylä-Anttila, Tuomas; Kukkonen, Anna

    2014-01-01

    This paper examines the differences in the values that are evoked to justify arguments in the media debate on climate change in USA and France from 1997 to 2011. We find that climate change is more often discussed in terms of justice, democracy, and legal regulation in France, while monetary value plays a more important role as a justification for climate policy arguments in the USA. Technological and scientific arguments are more often made in France, and ecological arguments equally in both...

  2. Icarus's discovery: Acting on global climate change in the face of uncertainty

    International Nuclear Information System (INIS)

    Brooks, D.G.; Maracas, K.B.; Hayslip, R.M.

    1994-01-01

    The mythological character Icarus had the misfortune of learning the consequences of his decision to fly too near the sun at the same time he employed his decision. Although Daedalus tried to reduce the uncertainties of his son's decision by warning Icarus of the possible outcome, Icarus had no empirical knowledge of what would actually happen until his waxen wings melted and he fell to the sea. Like Icarus, man has no empirical knowledge or conclusive evidence today of the possible effects of global climate change. And though the consequences of policy decisions toward global climate change may not be as catastrophic as falling into the sea, the social and economic impacts of those decisions will be substantial. There are broad uncertainties related to the scientific and ecological aspects of global climate change. But clearly the ''politics'' of global climate change issues are moving at a faster rate than the science. There is a public outcry for action now, in the face of uncertainty. This paper profiles a case study of a southwestern utility's use of multi-attribute preference theory to reduce uncertainties and analyze its options for addressing global climate change issues

  3. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  4. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  5. Climate change and ocean acidification-interactions with aquatic toxicology.

    Science.gov (United States)

    Nikinmaa, Mikko

    2013-01-15

    The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Contemplating the Future: Building Student Resilience in Climate Change Education

    Science.gov (United States)

    Allison, E.

    2015-12-01

    Climate change research has largely focused on the biophysical, economic, and political aspects of the phenomenon, its projected impacts, and the possibilities for adaptation (Carey et al. 2014; Castree et al. 2014). In the classroom, too, climate change is generally presented as a scientific, technological, political, and economic challenge. However, defining climate change as physical challenge, divorced from its cultural causes and responses, forecloses some pathways of inquiry and limits the possibilities for adaptation (Adger et al. 2013). Recent perspectives by the environmental historian Mark Carey and colleagues (2014) and by the geographer Noel Castree and colleagues (2014) contend that ethnographic, narrative, social scientific, and humanistic insights are necessary additions to the climate change policy process and can contribute to deliberate, resilient responses to climate change. Among the humanistic insights needed are strategies and practices to maintain fortitude and persistence in the midst of dispiriting ecological trends. Students facing the "gloom and doom" of climate change data in environmental studies courses can experience negative states of mind such as denial, despair, burnout, and grief. Emerging research, however, demonstrates how contemplative practice can shift consciousness and promote resilience. Contemplative practices are those that consciously direct calm, focused attention. Such practices can build internal resilience, by promoting a greater sense of calm and well-being, decreasing stress, and sharpening focus and concentration. In addition, contemplative practices improve relationships with other people, through increasing compassion and flexibility in thinking. They also strengthen relationships with the surrounding world by increasing our ability to question, explore, and cope with rapid change and complexity. This presentation provides a context for incorporating contemplative practices, including mindfulness exercises

  7. Community-level climate change vulnerability research: trends, progress, and future directions

    Science.gov (United States)

    McDowell, Graham; Ford, James; Jones, Julie

    2016-03-01

    This study systematically identifies, characterizes, and critically evaluates community-level climate change vulnerability assessments published over the last 25 years (n = 274). We find that while the field has advanced considerably in terms of conceptual framing and methodological approaches, key shortcomings remain in how vulnerability is being studied at the community-level. We argue that vulnerability research needs to more critically engage with the following: methods for evaluating future vulnerability, the relevance of vulnerability research for decision-making, interdependencies between social and ecological systems, attention to researcher / subject power dynamics, critical interpretation of key terms, and consideration of the potentially positive opportunities presented by a changing climate. Addressing these research needs is necessary for generating knowledge that supports climate-affected communities in navigating the challenges and opportunities ahead.

  8. A Conversation with Jessica Hellmann: Reducing the Impact of Climate Change

    Directory of Open Access Journals (Sweden)

    Riane Eisler

    2017-10-01

    Full Text Available IJPS Editor-in-Chief Riane Eisler talks with Jessica Hellmann, Director of the University of Minnesota Institute on the Environment, Russell M. and Elizabeth M. Bennett Chair in Excellence in the Department of Ecology, Evolution, and Behavior, and a pioneer in the field of reducing the impact of climate change.

  9. Rural Households’ Adaptation to Climate Change and its Implications for Policy Designs in Lijiang, China

    DEFF Research Database (Denmark)

    Zheng, Yuan

    changes in social-ecological systems. The PhD research demonstrates 1) the interwoven impacts of co-evolving socio-economic, political and environmental changes in shaping livelihood changes and households’ vulnerability; 2) the usefulness to accommodate key cognitive processes, such as risk perception...... to assist climate risk management are essential....

  10. Influence of Flow Sequencing Attributed to Climate Change and Climate Variability on the Assessment of Water-dependent Ecosystem Outcomes

    Science.gov (United States)

    Wang, J.; Nathan, R.; Horne, A.

    2017-12-01

    Traditional approaches to characterize water-dependent ecosystem outcomes in response to flow have been based on time-averaged hydrological indicators, however there is increasing recognition for the need to characterize ecological processes that are highly dependent on the sequencing of flow conditions (i.e. floods and droughts). This study considers the representation of flow regimes when considering assessment of ecological outcomes, and in particular, the need to account for sequencing and variability of flow. We conducted two case studies - one in the largely unregulated Ovens River catchment and one in the highly regulated Murray River catchment (both located in south-eastern Australia) - to explore the importance of flow sequencing to the condition of a typical long-lived ecological asset in Australia, the River Red Gum forests. In the first, the Ovens River case study, the implications of representing climate change using different downscaling methods (annual scaling, monthly scaling, quantile mapping, and weather generator method) on the sequencing of flows and resulting ecological outcomes were considered. In the second, the Murray River catchment, sequencing within a historic drought period was considered by systematically making modest adjustments on an annual basis to the hydrological records. In both cases, the condition of River Red Gum forests was assessed using an ecological model that incorporates transitions between ecological conditions in response to sequences of required flow components. The results of both studies show the importance of considering how hydrological alterations are represented when assessing ecological outcomes. The Ovens case study showed that there is significant variation in the predicted ecological outcomes when different downscaling techniques are applied. Similarly, the analysis in the Murray case study showed that the drought as it historically occurred provided one of the best possible outcomes for River Red Gum

  11. The role of NGOs in promoting climate change : an EU perspective

    Energy Technology Data Exchange (ETDEWEB)

    Biliouri, D.

    2000-06-01

    In recent years, environmentalists and non-governmental organizations (NGOs) have been challenged to address the issue of climate change, a topic of controversy and scientific uncertainty. Climate change is a global issue of transboundary nature and therefore requires global responses and actions that will have major economic and social impacts. NGOs such as Friends of the Earth, Greenpeace, World Wild Life Fund for Nature, and the Climate Action Network in Europe have played major roles in lobbying governments to take action to limit climate change to ecologically sustainable levels through policy options. This paper emphasized the need for joint implementation between NGOs and the European Union (EU) decision making bodies to ensure emissions reduction and a compliance with the Kyoto Protocol targets. The EU has been lobbying many international environmental NGOs and it has set itself a strong environmental policy addressing climate change and the integration of the environment within other policies. Specific teams consisting of scientific experts, researchers and policy analysts have been created within the European Union to address major environmental issues, including climate change. The teams purpose is to clarify any misconceptions regarding the issue by providing extensive evidence on the effects of climate change on the planet and to minimise the scientific uncertainty that surrounds the issue. The topic of climate change is introduced to the public and decision making bodies by the team through regular press releases to the media and the publication of articles by academics that have been contracted by the NGOs to provide well-supported and objective evidence. However, the efforts of NGOs have often proved insufficient and there is a general lack of co-operation and co-ordination amongst environmental NGOs themselves. It was suggested that a new framework of action needs to be established and implemented to ensure a unified approach in addressing climate

  12. Cumulative effects of climate and landscape change drive spatial distribution of Rocky Mountain wolverine (Gulo gulo L.).

    Science.gov (United States)

    Heim, Nicole; Fisher, Jason T; Clevenger, Anthony; Paczkowski, John; Volpe, John

    2017-11-01

    Contemporary landscapes are subject to a multitude of human-derived stressors. Effects of such stressors are increasingly realized by population declines and large-scale extirpation of taxa worldwide. Most notably, cumulative effects of climate and landscape change can limit species' local adaptation and dispersal capabilities, thereby reducing realized niche space and range extent. Resolving the cumulative effects of multiple stressors on species persistence is a pressing challenge in ecology, especially for declining species. For example, wolverines ( Gulo gulo L.) persist on only 40% of their historic North American range. While climate change has been shown to be a mechanism of range retractions, anthropogenic landscape disturbance has been recently implicated. We hypothesized these two interact to effect declines. We surveyed wolverine occurrence using camera trapping and genetic tagging at 104 sites at the wolverine range edge, spanning a 15,000 km 2 gradient of climate, topographic, anthropogenic, and biotic variables. We used occupancy and generalized linear models to disentangle the factors explaining wolverine distribution. Persistent spring snow pack-expected to decrease with climate change-was a significant predictor, but so was anthropogenic landscape change. Canid mesocarnivores, which we hypothesize are competitors supported by anthropogenic landscape change, had comparatively weaker effect. Wolverine population declines and range shifts likely result from climate change and landscape change operating in tandem. We contend that similar results are likely for many species and that research that simultaneously examines climate change, landscape change, and the biotic landscape is warranted. Ecology research and species conservation plans that address these interactions are more likely to meet their objectives.

  13. Vulnerability of birds to climate change in California's Sierra Nevada

    Directory of Open Access Journals (Sweden)

    Rodney B. Siegel

    2014-06-01

    Full Text Available In a rapidly changing climate, effective bird conservation requires not only reliable information about the current vulnerability of species of conservation concern, but also credible projections of their future vulnerability. Such projections may enable managers to preempt or reduce emerging climate-related threats through appropriate habitat management. We used NatureServe's Climate Change Vulnerability Index (CCVI to predict vulnerability to climate change of 168 bird species that breed in the Sierra Nevada mountains of California, USA. The CCVI assesses species-specific exposure and sensitivity to climate change within a defined geographic area, through the integration of (a species' range maps, (b information about species' natural history traits and ecological relationships, (c historic and current climate data, and (d spatially explicit climate change projections. We conducted the assessment under two different downscaled climate models with divergent projections about future precipitation through the middle of the 21st century. Assessments differed relatively little under the two climate models. Of five CCVI vulnerability ranking categories, only one species, White-tailed Ptarmigan (Lagopus leucura, received the most vulnerable rank, Extremely Vulnerable. No species received the second-highest vulnerability ranking, Highly Vulnerable. Sixteen species scored as Moderately Vulnerable using one or both climate models: Common Merganser (Mergus merganser, Osprey (Pandion haliaetus, Bald Eagle (Haliaeetus leucocephalus, Northern Goshawk (Accipiter gentilis, Peregrine Falcon (Falco peregrinus, Prairie Falcon (Falco mexicanus, Spotted Sandpiper (Actitis macularius, Great Gray Owl (Strix nebulosa, Black Swift (Cypseloides niger, Clark's Nutcracker (Nucifraga columbiana, American Dipper (Cinclus mexicanus, Swainson's Thrush (Catharus ustulatus, American Pipit (Anthus rubescens, Gray-crowned Rosy-Finch (Leucosticte tephrocotis, Pine Grosbeak

  14. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  15. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  16. Is Climate Change Shifting the Poleward Limit of Mangroves?

    KAUST Repository

    Hickey, Sharyn M.

    2017-02-01

    Ecological (poleward) regime shifts are a predicted response to climate change and have been well documented in terrestrial and more recently ocean species. Coastal zones are amongst the most susceptible ecosystems to the impacts of climate change, yet studies particularly focused on mangroves are lacking. Recent studies have highlighted the critical ecosystem services mangroves provide, yet there is a lack of data on temporal global population response. This study tests the notion that mangroves are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent of the mangrove population. Our findings indicate that whilst temperature (land and air) have both increased across the analysed time periods, the data we located showed that mangroves were not consistently extending their latitudinal range across the globe. Mangroves, unlike other marine and terrestrial taxa, do not appear to be experiencing a poleward range expansion despite warming occurring at the present distributional limits. Understanding failure for mangroves to realise the global expansion facilitated by climate warming may require a focus on local constraints, including local anthropogenic pressures and impacts, oceanographic, hydrological, and topographical conditions.

  17. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  18. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  19. Climate change, species-area curves and the extinction crisis.

    Science.gov (United States)

    Lewis, Owen T

    2006-01-29

    An article published in the journal Nature in January 2004-in which an international team of biologists predicted that climate change would, by 2050, doom 15-37% of the earth's species to extinction-attracted unprecedented, worldwide media attention. The predictions conflict with the conventional wisdom that habitat change and modification are the most important causes of current and future extinctions. The new extinction projections come from applying a well-known ecological pattern, the species-area relationship (SAR), to data on the current distributions and climatic requirements of 1103 species. Here, I examine the scientific basis to the claims made in the Nature article. I first highlight the potential and pitfalls of using the SAR to predict extinctions in general. I then consider the additional complications that arise when applying SAR methods specifically to climate change. I assess the extent to which these issues call into question predictions of extinctions from climate change relative to other human impacts, and highlight a danger that conservation resources will be directed away from attempts to slow and mitigate the continuing effects of habitat destruction and degradation, particularly in the tropics. I suggest that the most useful contributions of ecologists over the coming decades will be in partitioning likely extinctions among interacting causes and identifying the practical means to slow the rate of species loss.

  20. Climate change alters the optimal wind-dependent flight routes of an avian migrant.

    Science.gov (United States)

    Nourani, Elham; Yamaguchi, Noriyuki M; Higuchi, Hiroyoshi

    2017-05-17

    Migratory birds can be adversely affected by climate change as they encounter its geographically uneven impacts in various stages of their life cycle. While a wealth of research is devoted to the impacts of climate change on distribution range and phenology of migratory birds, the indirect effects of climate change on optimal migratory routes and flyways, through changes in air movements, are poorly understood. Here, we predict the influence of climate change on the migratory route of a long-distant migrant using an ensemble of correlative modelling approaches, and present and future atmospheric data obtained from a regional climate model. We show that changes in wind conditions by mid-century will result in a slight shift and reduction in the suitable areas for migration of the study species, the Oriental honey-buzzard, over a critical section of its autumn journey, followed by a complete loss of this section of the traditional route by late century. Our results highlight the need for investigating the consequences of climate change-induced disturbance in wind support for long-distance migratory birds, particularly species that depend on the wind to cross ecological barriers, and those that will be exposed to longer journeys due to future range shifts. © 2017 The Author(s).

  1. Introduction. Antarctic ecology: from genes to ecosystems. Part 2. Evolution, diversity and functional ecology.

    Science.gov (United States)

    Rogers, Alex D; Murphy, Eugene J; Johnston, Nadine M; Clarke, Andrew

    2007-12-29

    The Antarctic biota has evolved over the last 100 million years in increasingly isolated and cold conditions. As a result, Antarctic species, from micro-organisms to vertebrates, have adapted to life at extremely low temperatures, including changes in the genome, physiology and ecological traits such as life history. Coupled with cycles of glaciation that have promoted speciation in the Antarctic, this has led to a unique biota in terms of biogeography, patterns of species distribution and endemism. Specialization in the Antarctic biota has led to trade-offs in many ecologically important functions and Antarctic species may have a limited capacity to adapt to present climate change. These include the direct effects of changes in environmental parameters and indirect effects of increased competition and predation resulting from altered life histories of Antarctic species and the impacts of invasive species. Ultimately, climate change may alter the responses of Antarctic ecosystems to harvesting from humans. The unique adaptations of Antarctic species mean that they provide unique models of molecular evolution in natural populations. The simplicity of Antarctic communities, especially from terrestrial systems, makes them ideal to investigate the ecological implications of climate change, which are difficult to identify in more complex systems.

  2. Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment

    Science.gov (United States)

    Kenney, Melissa A.; Chen, Robert S.; Maldonado, Julie; Quattrochi, Dale

    2011-01-01

    The Climate Change Impacts and Responses: Societal Indicators for the National Climate Assessment workshop, sponsored by the National Aeronautics and Space Administration (NASA) for the National Climate Assessment (NCA), was held on April 28-29, 2011 at The Madison Hotel in Washington, DC. A group of 56 experts (see list in Appendix B) convened to share their experiences. Participants brought to bear a wide range of disciplinary expertise in the social and natural sciences, sector experience, and knowledge about developing and implementing indicators for a range of purposes. Participants included representatives from federal and state government, non-governmental organizations, tribes, universities, and communities. The purpose of the workshop was to assist the NCA in developing a strategic framework for climate-related physical, ecological, and socioeconomic indicators that can be easily communicated with the U.S. population and that will support monitoring, assessment, prediction, evaluation, and decision-making. The NCA indicators are envisioned as a relatively small number of policy-relevant integrated indicators designed to provide a consistent, objective, and transparent overview of major variations in climate impacts, vulnerabilities, adaptation, and mitigation activities across sectors, regions, and timeframes. The workshop participants were asked to provide input on a number of topics, including: (1) categories of societal indicators for the NCA; (2) alternative approaches to constructing indicators and the better approaches for NCA to consider; (3) specific requirements and criteria for implementing the indicators; and (4) sources of data for and creators of such indicators. Socioeconomic indicators could include demographic, cultural, behavioral, economic, public health, and policy components relevant to impacts, vulnerabilities, and adaptation to climate change as well as both proactive and reactive responses to climate change. Participants provided

  3. Vulnerability and adaptation of ecologically sensitive mangrove habitats to the changing climate

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Kulkarni, V.A.; Verlekar, X.N.

    has risen 10-20cm during the Twentieth century. General Circulation Models (GCM) projected a 9.88cm rise in sea level, increased extreme weather events and precipitation over the Asian region (UNEP / UNESCO, 1992, IPPC, 2001). However a lot... Scientific Assessment. Cambridge University Press, Cambridge, UK, 578 pp. INQUA, 2000. Homepage of the Commission on Sea Level Changes and Coastal Evolution, www.pog.su.se/sea. Sea level changes, News and Views, The Maldives Project IPPC, 2001. Climate...

  4. Ecology for a changing earth

    International Nuclear Information System (INIS)

    Brown, J.H.; Roughgarden, J.

    1990-01-01

    To forecast the ecological impact of global change, research initiatives are needed on the explicit role of humans in ecological systems, and on how ecological processes functioning at different spatial and temporal scales are coupled. Furthermore, to synthesize the results of ecological research for Congress, policymakers, and the general public, a new agency, called the United States Ecological Survey (USES) is urgently required. Also, a national commitment to environmental health, as exemplified by establishing a National Institutes of the Environment (NIE), should be a goal

  5. The roles of natural areas in a changing climate

    International Nuclear Information System (INIS)

    Pollard, D.F.W.

    1991-01-01

    Natural areas are protected sites which are integral parts of a systematic network representing the diversity of natural environments. They are relatively undisturbed by man, selected according to ecological criteria, have assured permanency, are set aside mainly for scientific and educational purposes, and harbor genetic materials of value to society. In the Pacific Northwest, natural areas have been established by the United States Forest Service and the British Columbia Ministry of the Environment and include national parks, wilderness areas, wildlife refuges, and wild rivers. A change in climate will undoubtedly create a mismatch between climatic regions and vegetation and wildlife occupying them. The distribution of plant and animal species will change. Species and communities that will be most affected by climatic change include those at the contracting periphery of the species range, genetically impoverished or highly sensitive species, annual plants, and Arctic and coastal communities. Most species will disperse from existing locations, with variable and unpredictable results. It is conceivable that natural areas will evolve from their current role as refuges to a new role as centers of diversity from which genes migrate into a changing world. Natural areas also serve as a base for biomonitoring of long-term environmental changes and for assessing effects of interventions such as acid precipitation. 32 refs

  6. Perceptions of climate change by highland communities in the Nepal Himalaya

    Czech Academy of Sciences Publication Activity Database

    Uprety, Y.; Shrestha, U. B.; Rokaya, Maan Bahadur; Shrestha, S.; Chaudhary, R. P.; Thakali, A.; Cockfield, G.; Asselin, H.

    2017-01-01

    Roč. 9, č. 7 (2017), s. 649-661 ISSN 1756-5529 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:86652079 Keywords : climate change * local communities * Himalaya * Nepal * traditional knowledge Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 2.051, year: 2016

  7. Greening Australia's public health system: the role of public hospitals in responding to climate change.

    Science.gov (United States)

    Primozic, Lauren

    2010-05-01

    Climate change is one of the most important social, economic, ecological and ethical issues of the 21st century. The effects of climate change on human health are now widely accepted as a genuine threat and the Australian Government has initiated policy and legislative responses. In addition, in the 2009-2010 budget the Australian Government has committed A$64 billion to public health and hospital reform. But will this Commonwealth funding support--and should it support--the government's high-profile climate change policy? Does Commonwealth funding translate to an obligation to support Commonwealth policies? This article explores the role of public hospitals as champions and role models of the Australian Government's climate change policy and how this might be done without detracting from the primary purpose of public hospital funding: improving patient care.

  8. A Novel Modelling Approach for Predicting Forest Growth and Yield under Climate Change.

    Directory of Open Access Journals (Sweden)

    M Irfan Ashraf

    Full Text Available Global climate is changing due to increasing anthropogenic emissions of greenhouse gases. Forest managers need growth and yield models that can be used to predict future forest dynamics during the transition period of present-day forests under a changing climatic regime. In this study, we developed a forest growth and yield model that can be used to predict individual-tree growth under current and projected future climatic conditions. The model was constructed by integrating historical tree growth records with predictions from an ecological process-based model using neural networks. The new model predicts basal area (BA and volume growth for individual trees in pure or mixed species forests. For model development, tree-growth data under current climatic conditions were obtained using over 3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect tree growth under a changing climatic regime were projected with JABOWA-3 (an ecological process-based model. Model validation with designated data produced model efficiencies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is a relative index of model performance, where 1 indicates an ideal fit, while values lower than zero means the predictions are no better than the average of the observations. Overall mean prediction error (BIAS of basal area and volume growth predictions was nominal (i.e., for BA: -0.0177 cm(2 5-year(-1 and volume: 0.0008 m(3 5-year(-1. Model variability described by root mean squared error (RMSE in basal area prediction was 40.53 cm(2 5-year(-1 and 0.0393 m(3 5-year(-1 in volume prediction. The new modelling approach has potential to reduce uncertainties in growth and yield predictions under different climate change scenarios. This novel approach provides an avenue for forest managers to generate required information for the management of forests in transitional periods of climate change. Artificial intelligence

  9. [Research on climatic factors of ecology suitability regionalization of atractylodis].

    Science.gov (United States)

    Tan, Zhe-tian; Wang, Hao; Zhu, Shou-dong; Yan, Yu-ping; Guo, Lan-ping; Zheng, Yu-guang

    2015-11-01

    Through study on the correlation between atractylodis lactones ingredient content and climatic factors, we research regionalization from climatic of five main producing provinces of the country, in order to provide a scientific basis for atractylodis' conscious cultivation. By sampling from 40 origins which from five main producing provinces of the country, we use SPSS to analysis variation of atractylodis lactones ingredient content in different conditions of climatic factors and the effect of each factors. Then according to the relationship between atractylodis lactones ingredient content and climatic factors, we use ArcGIS to conduct ecological suitability regionalization based on climatic factors. The most suitable climatic condition for cultivation of atractylodis: the wettest month precipitation 220-230 mm, the warmest average temperature 25 degrees C, the average temperature of driest season 10 degrees C.

  10. A synthesis of ecological and fish-community changes in Lake Ontario, 1970-2000

    Science.gov (United States)

    Mills, E.L.; Casselman, J.M.; Dermott, R.; Fitzsimons, J.D.; Gal, G.; Holeck, K. T.; Hoyle, J.A.; Johannsson, O.E.; Lantry, B.F.; Makarewicz, J.C.; Millard, E.S.; Munawar, I.F.; Munawar, M.; O'Gorman, R.; Owens, R.W.; Rudstam, L. G.; Schaner, T.; Stewart, T.J.

    2005-01-01

    We assessed stressors associated with ecological and fishcommunity changes in Lake Ontario since 1970, when the first symposium on Salmonid Communities in Oligotrophic Lakes (SCOL I) was held (J. Fish. Res. Board Can. 29: 613-616). Phosphorus controls implemented in the early 1970s were undeniably successful; lower food-web studies showed declines in algal abundance and epilimnetic zooplankton production and a shift in pelagic primary productivity toward smaller organisms. Stressors on the fish community prior to 1970 such as exploitation, sea lamprey (Petromyzon marinus) predation, and effects of nuisance populations of alewife (Alosa pseudoharengus) were largely ameliorated by the 1990s. The alewife became a pivotal species supporting a multi-million-dollar salmonid sport fishery, but alewife-induced thiamine deficiency continued to hamper restoration and sustainability of native lake trout (Salvelinus namaycush). Expanding salmonine populations dependent on alewife raised concerns about predator demand and prey supply, leading to reductions in salmonine stocking in the early 1990s. Relaxation of the predation impact by alewives and their shift to deeper water allowed recovery of native fishes such as threespine stickleback (Gasterosteus aculeatus) and emerald shiner (Notropis atherinoides). The return of the Lake Ontario ecosystem to historical conditions has been impeded by unplanned introductions. Establishment of Dreissena spp. led to increased water clarity and increased vectoring of lower trophic-level production to benthic habitats and contributed to the collapse of Diporeia spp. populations, behavioral modifications of key fish species, and the decline of native lake whitefish (Coregonus clupeaformis). Despite reduced productivity, exotic-species introductions, and changes in the fish community, offshore Mysis relicta populations remained relatively stable. The effects of climate and climate change on the population abundance and dynamics of Lake Ontario

  11. Insular ecosystems of the southeastern United States—A regional synthesis to support biodiversity conservation in a changing climate

    Science.gov (United States)

    Cartwright, Jennifer M.; Wolfe, William J.

    2016-08-11

    In the southeastern United States, insular ecosystems—such as rock outcrops, depression wetlands, high-elevation balds, flood-scoured riparian corridors, and insular prairies and barrens—occupy a small fraction of land area but constitute an important source of regional and global biodiversity, including concentrations of rare and endemic plant taxa. Maintenance of this biodiversity depends upon regimes of abiotic stress and disturbance, incorporating factors such as soil surface temperature, widely fluctuating hydrologic conditions, fires, flood scouring, and episodic droughts that may be subject to alteration by climate change. Over several decades, numerous localized, site-level investigations have yielded important information about the floristics, physical environments, and ecological dynamics of these insular ecosystems; however, the literature from these investigations has generally remained fragmented. This report consists of literature syntheses for eight categories of insular ecosystems of the southeastern United States, concerning (1) physical geography, (2) ecological determinants of community structures including vegetation dynamics and regimes of abiotic stress and disturbance, (3) contributions to regional and global biodiversity, (4) historical and current anthropogenic threats and conservation approaches, and (5) key knowledge gaps relevant to conservation, particularly in terms of climate-change effects on biodiversity. This regional synthesis was undertaken to discern patterns across ecosystems, identify knowledge gaps, and lay the groundwork for future analyses of climate-change vulnerability. Findings from this synthesis indicate that, despite their importance to regional and global biodiversity, insular ecosystems of the southeastern United States have been subjected to a variety of direct and indirect human alterations. In many cases, important questions remain concerning key determinants of ecosystem function. In particular, few

  12. Climate change, food systems and population health risks in their eco-social context.

    Science.gov (United States)

    McMichael, A J; Butler, C D; Dixon, J

    2015-10-01

    The establishment of ecological public health as crucial to modern public health is overdue. While the basic concepts have been gestating for decades, receptivity within broader public health has been limited. This position is changing, not least as the population-level impacts of climate change and, more broadly, of limits to growth are emerging from theory and forecasting into daily reality. This paper describes several key elements of ecological public health thinking. These include the 'environmental' risks to human health (often systemic and disruptive, rather than local and toxic) posed by climate change and other forms of adverse global environmental change. Closer recognition of the links between social and environmental factors has been urged--an 'eco-social' approach--and, relatedly, for greater co-operation between social and natural sciences. The authors revisit critics of capitalism who foresaw the global capture and transformation of ecosystems for material human ends, and their resultant despoliation. The perennial call within public health to reduce vulnerability by lessening poverty is more important than ever, given the multifactored threat to the health of the poor which is anticipated, assuming no radical strategies to alleviate these pressures. But enhanced health security for the poor requires more than the reconfiguring of social determinants; it also requires, as the overarching frame, ecological public health. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  13. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality.

    Science.gov (United States)

    Wen, Xin; Liu, Zhehua; Lei, Xiaohui; Lin, Rongjie; Fang, Guohua; Tan, Qiaofeng; Wang, Chao; Tian, Yu; Quan, Jin

    2018-08-15

    The eco-hydrological system in southwestern China is undergoing great changes in recent decades owing to climate change and extensive cascading hydropower exploitation. With a growing recognition that multiple drivers often interact in complex and nonadditive ways, the purpose of this study is to predict the potential future changes in streamflow and fish habitat quality in the Yuan River and quantify the individual and cumulative effect of cascade damming and climate change. The bias corrected and spatial downscaled Coupled Model Intercomparison Project Phase 5 (CMIP5) General Circulation Model (GCM) projections are employed to drive the Soil and Water Assessment Tool (SWAT) hydrological model and to simulate and predict runoff responses under diverse scenarios. Physical habitat simulation model is established to quantify the relationship between river hydrology and fish habitat, and the relative change rate is used to assess the individual and combined effects of cascade damming and climate change. Mean annual temperature, precipitation and runoff in 2015-2100 show an increasing trend compared with that in 1951-2010, with a particularly pronounced difference between dry and wet years. The ecological habitat quality is improved under cascade hydropower development since that ecological requirement has been incorporated in the reservoir operation policy. As for middle reach, the runoff change from January to August is determined mainly by damming, and climate change influence becomes more pronounced in dry seasons from September to December. Cascade development has an effect on runoff of lower reach only in dry seasons due to the limited regulation capacity of reservoirs, and climate changes have an effect on runoff in wet seasons. Climate changes have a less significant effect on fish habitat quality in middle reach than damming, but a more significant effect in lower reach. In addition, the effect of climate changes on fish habitat quality in lower reach is high

  14. Climatic servitude: climate change, business and politics

    International Nuclear Information System (INIS)

    Belouve, J.M.

    2009-01-01

    This book is together a contemporary history book and a global dossier about a topic of prime importance in our civilization. It treats of the history of science, of ideas and events put in the modern civilization context, of science situation and scientific controversies, of the media aspects, of carbon economy and its related business, of Al Gore's and Maurice Strong's biographies, and finally, it makes a critical geopolitical analysis and makes proposals for a renovated ecology. In the conclusion, the author shows how climate change has become the hobbyhorse of a new thinking trend, namely the New World Order, aiming at conducting people to the acceptance of constraining policies encompassing the energy security of nations, new taxes, a worldwide economic disruption, the limitation of the World's population, and a World governance supported by the United Nations and not constrained by classical democratic rules. (J.S.)

  15. Microhabitat and Climatic Niche Change Explain Patterns of Diversification among Frog Families.

    Science.gov (United States)

    Moen, Daniel S; Wiens, John J

    2017-07-01

    A major goal of ecology and evolutionary biology is to explain patterns of species richness among clades. Differences in rates of net diversification (speciation minus extinction over time) may often explain these patterns, but the factors that drive variation in diversification rates remain uncertain. Three important candidates are climatic niche position (e.g., whether clades are primarily temperate or tropical), rates of climatic niche change among species within clades, and microhabitat (e.g., aquatic, terrestrial, arboreal). The first two factors have been tested separately in several studies, but the relative importance of all three is largely unknown. Here we explore the correlates of diversification among families of frogs, which collectively represent ∼88% of amphibian species. We assemble and analyze data on phylogeny, climate, and microhabitat for thousands of species. We find that the best-fitting phylogenetic multiple regression model includes all three types of variables: microhabitat, rates of climatic niche change, and climatic niche position. This model explains 67% of the variation in diversification rates among frog families, with arboreal microhabitat explaining ∼31%, niche rates ∼25%, and climatic niche position ∼11%. Surprisingly, we show that microhabitat can have a much stronger influence on diversification than climatic niche position or rates of climatic niche change.

  16. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  17. Space can substitute for time in predicting climate-change effects on biodiversity

    Science.gov (United States)

    Blois, Jessica L.; Williams, John W.; Fitzpatrick, Matthew C.; Jackson, Stephen T.; Ferrier, Simon

    2013-01-01

    “Space-for-time” substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption—that drivers of spatial gradients of species composition also drive temporal changes in diversity—rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as “time-for-time” predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  18. Space can substitute for time in predicting climate-change effects on biodiversity.

    Science.gov (United States)

    Blois, Jessica L; Williams, John W; Fitzpatrick, Matthew C; Jackson, Stephen T; Ferrier, Simon

    2013-06-04

    "Space-for-time" substitution is widely used in biodiversity modeling to infer past or future trajectories of ecological systems from contemporary spatial patterns. However, the foundational assumption--that drivers of spatial gradients of species composition also drive temporal changes in diversity--rarely is tested. Here, we empirically test the space-for-time assumption by constructing orthogonal datasets of compositional turnover of plant taxa and climatic dissimilarity through time and across space from Late Quaternary pollen records in eastern North America, then modeling climate-driven compositional turnover. Predictions relying on space-for-time substitution were ∼72% as accurate as "time-for-time" predictions. However, space-for-time substitution performed poorly during the Holocene when temporal variation in climate was small relative to spatial variation and required subsampling to match the extent of spatial and temporal climatic gradients. Despite this caution, our results generally support the judicious use of space-for-time substitution in modeling community responses to climate change.

  19. Modelling of the carbon sequestration and its prediction under climate change

    Czech Academy of Sciences Publication Activity Database

    Pechanec, V.; Purkyt, Jan; Benc, A.; Nwaogu, C.; Štěrbová, Lenka; Cudlín, Pavel

    (2018) ISSN 1574-9541 R&D Projects: GA MŠk(CZ) LO1415 Grant - others:EHP,MF ČR(CZ) EHP-CZ02-OV-1-014-2014 Program:CZ02 Institutional support: RVO:86652079 Keywords : Carbon sequestration * Climate change * gis * InVEST * Land use modelling Subject RIV: EH - Ecology, Behaviour Impact factor: 2.020, year: 2016

  20. On the Vulnerability of Water Limited Ecosystems to Climate Change

    Directory of Open Access Journals (Sweden)

    Kelly K. Caylor

    2013-06-01

    Full Text Available Society is facing growing environmental problems that require new research efforts to understand the way ecosystems operate and survive, and their mutual relationships with the hydrologic cycle. In this respect, ecohydrology suggests a renewed interdisciplinary approach that aims to provide a better comprehension of the effects of climatic changes on terrestrial ecosystems. With this aim, a coupled hydrological/ecological model is adopted to describe simultaneously vegetation pattern evolution and hydrological water budget at the basin scale using as test site the Upper Rio Salado basin (Sevilleta, NM, USA. The hydrological analyses have been carried out using a recently formulated framework for the water balance at the daily level linked with a spatial model for the description of the spatial organization of vegetation. This enables quantitatively assessing the effects on soil water availability on future climatic scenarios. Results highlighted that the relationship between climatic forcing (water availability and vegetation patterns is strongly non-linear. This implies, under some specific conditions which depend on the ecosystem characteristics, small changes in climatic conditions may produce significant transformation of the vegetation patterns.

  1. Western Regional Center of the National Institute for Climatic Change Research

    Energy Technology Data Exchange (ETDEWEB)

    Hungate, Bruce A. [Northern Arizona Univ., Flagstaff, AZ (United States)

    2013-05-02

    The major goal of this project was fostering, integrating, synthesizing, and disseminating experimental, observational, and modeling research on predicted climate change in the western region of the U.S. and the impacts of that change on the structure, productivity, and climatic interactions of the region's natural and managed ecological systems. This was accomplished through administering a competitive grants program developed in collaboration with the other four regional centers of the NICCR. The activities supported included efforts to synthesize research on climate change in the western U.S. through meta-analysis studies, model comparisons, and data synthesis workshops. Results from this work were disseminated to the scientific and public media. This project also supported the development of the NICCR web site, hosted at NAU, which was used as the means to accept pre-proposal and proposal submissions for each funding cycle, and served as a clearing house for public outreach for results from NICCR-funded research

  2. An Agent-Based Reasoning of Impacts of Regional Climate Changes on Land Use Changes in the Three-River Headwaters Region of China

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-01-01

    Full Text Available The land surface in Three-River Headwaters Region (TRHR, a typical ecological fragile zone of China, is quite sensitive to the climate changes which will destabilize certain ecosystem services valuable to the entire nation and neighboring countries. This study aimed to analyze the impacts of climate changes and agents’ adaptive behaviors on the regional land use changes with the agent based model (ABM. First, the main agents were extracted according to the production resources endowments and socioeconomic background. Then the agents’ land use behaviors were analyzed and parameterized. Thereafter, the ABM model was built to simulate the impacts of the climate changes on the regional land use changes and agents’ economic benefits. The results showed that the land use changes were mainly characterized by the increase of grassland and decrease of unused land area. Besides, the agents would get more wealth under the scenario without climate changes in the long term, even though the total income is lower than that under the scenario with climate changes. In addition, the sensitivity analysis indicated that the model is sensitive to the climatic conditions, market price of agricultural and animal husbandry products, government subsidies, and cost control.

  3. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  4. Keeping up with a warming world; assessing the rate of adaptation to climate change

    NARCIS (Netherlands)

    Visser, M.E.

    2008-01-01

    The pivotal question in the debate on the ecological effects of climate change is whether species will be able to adapt fast enough to keep up with their changing environment. If we establish the maximal rate of adaptation, this will set an upper limit to the rate at which temperatures can increase

  5. Northern Great Basin Seasonal Lakes: Vulnerability to Climate Change.

    Science.gov (United States)

    Russell, M.; Eitel, J.

    2017-12-01

    Seasonal alkaline lakes in southeast Oregon, northeast California, and northwest Nevada serve as important habitat for migrating birds utilizing the Pacific Flyway, as well as local plant and animal communities. Despite their ecological importance, and anecdotal suggestions that these lakes are becoming less reliable, little is known about the vulnerability of these lakes to climate change. Our research seeks to understand the vulnerability of Northern Great Basin seasonal lakes to climate change. For this, we will be using historical information from the European Space Agency's Global Surface Water Explorer and the University of Idaho's gridMET climate product, to build a model that allows estimating surface water extent and timing based on climate variables. We will then utilize downscaled future climate projections to model surface water extent and timing in the coming decades. In addition, an unmanned aerial system (UAS) will be utilized at a subset of dried basins to obtain precise 3D bathymetry and calculate water volume hypsographs, a critical factor in understanding the likelihood of water persistence and biogeochemical habitat suitability. These results will be incorporated into decision support tools that land managers can utilize in water conservation, wildlife management, and climate mitigation actions. Future research may pair these forecasts with animal movement data to examine fragmentation of migratory corridors and species-specific impacts.

  6. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  7. Reservoir operations under climate change: Storage capacity options to mitigate risk

    Science.gov (United States)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  8. Carrion--It's What's for Dinner: Wolves Reduce the Impact of Climate Change

    Science.gov (United States)

    Consitble, Juanita M.; Sandro, Luke H.; Lee, Richard E., Jr.

    2008-01-01

    The restoration of wolves to Yellowstone National park after a 7-year absence created a natural experiment on the ecological effects of top predators. In this activity, students use mathematical models to explore how carrion from wolf kills can reduce negative effects of climate change on scavengers in the park.

  9. Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences.

    Science.gov (United States)

    Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Pacific Islands Regional Climate Assessment: Building a Framework to Track Physical and Social Indicators of Climate Change Across Pacific Islands

    Science.gov (United States)

    Grecni, Z. N.; Keener, V. W.

    2016-12-01

    Assessments inform regional and local climate change governance and provide the critical scientific basis for U.S. climate policy. Despite the centrality of scientific information to public discourse and decision making, comprehensive assessments of climate change drivers, impacts, and the vulnerability of human and ecological systems at regional or local scales are often conducted on an ad hoc basis. Methods for sustained assessment and communication of scientific information are diverse and nascent. The Pacific Islands Regional Climate Assessment (PIRCA) is a collaborative effort to assess climate change indicators, impacts, and adaptive capacity of the Hawaiian archipelago and the US-Affiliated Pacific Islands (USAPI). In 2012, PIRCA released the first comprehensive report summarizing the state of scientific knowledge about climate change in the region as a technical input to the U.S. National Climate Assessment. A multi-method evaluation of PIRCA outputs and delivery revealed that the vast majority of key stakeholders view the report as extremely credible and use it as a resource. The current study will present PIRCA's approach to establishing physical and social indicators to track on an ongoing basis, starting with the Republic of the Marshall Islands as an initial location of focus for providing a cross-sectoral indicators framework. Identifying and tracking useful indicators is aimed at sustaining the process of knowledge coproduction with decision makers who seek to better understand the climate variability and change and its impacts on Pacific Island communities.

  11. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  12. Climate and dengue transmission: evidence and implications.

    Science.gov (United States)

    Morin, Cory W; Comrie, Andrew C; Ernst, Kacey

    2013-01-01

    Climate influences dengue ecology by affecting vector dynamics, agent development, and mosquito/human interactions. Although these relationships are known, the impact climate change will have on transmission is unclear. Climate-driven statistical and process-based models are being used to refine our knowledge of these relationships and predict the effects of projected climate change on dengue fever occurrence, but results have been inconsistent. We sought to identify major climatic influences on dengue virus ecology and to evaluate the ability of climate-based dengue models to describe associations between climate and dengue, simulate outbreaks, and project the impacts of climate change. We reviewed the evidence for direct and indirect relationships between climate and dengue generated from laboratory studies, field studies, and statistical analyses of associations between vectors, dengue fever incidence, and climate conditions. We assessed the potential contribution of climate-driven, process-based dengue models and provide suggestions to improve their performance. Relationships between climate variables and factors that influence dengue transmission are complex. A climate variable may increase dengue transmission potential through one aspect of the system while simultaneously decreasing transmission potential through another. This complexity may at least partly explain inconsistencies in statistical associations between dengue and climate. Process-based models can account for the complex dynamics but often omit important aspects of dengue ecology, notably virus development and host-species interactions. Synthesizing and applying current knowledge of climatic effects on all aspects of dengue virus ecology will help direct future research and enable better projections of climate change effects on dengue incidence.

  13. Climate change - New directions for the Northeast: background paper

    International Nuclear Information System (INIS)

    2001-01-01

    This background paper was developed in preparation for a workshop to bring forward action options to be used for developing an action plan for the consideration of the next meeting of New England Governors/ Eastern Canadian Premiers Conference in September 2001. The background paper is the product of the cooperative effort of all eleven jurisdictions. The paper examines climate science in its global and regional aspects; climate changes impacts, identifying environmental, natural resources and infrastructure issues; monitoring of emission levels and progress in reductions; policy processes, such as leadership, cooperation, emission trading and Kyoto mechanisms; mitigation action options to reduce emissions in the Northeast context, adaptation options and their effects on the natural environment, such a coastal and forestry concerns; infrastructure development; and common Northeast issues and opportunities. A series of options in each of these areas have been identified, including gaps in options. Attention is drawn to the need to consider social and ecological objectives which will become more acute as more climate change policies and programs are implemented. 45 refs

  14. GEOSS AIP-2 Climate Change and Biodiversity Use Scenarios: Interoperability Infrastructures

    Science.gov (United States)

    Nativi, Stefano; Santoro, Mattia

    2010-05-01

    publish climate, environmental and biodiversity datasets; e)Ecological Niche Model Server: this component is able to run one or more Ecological Niche Models (ENM) on selected biodiversity and climate datasets; f)Data Access Transaction server: this component publishes the model outputs. This framework was assessed in two use scenarios of GEOSS AIP-2 Climate Change and Biodiversity WG. Both scenarios concern the prediction of species distributions driven by climatological change forecasts. The first scenario dealt with the Pikas specie regional distribution in the Great Basin area (North America). While, the second one concerned the modeling of the Arctic Food Chain species in the North Pole area -the relationships between different environmental parameters and Polar Bears distribution was analyzed. The scientific patronage was provided by the University of Colorado and the University of Alaska, respectively. Results are published in the GEOSS AIP-2 web site: http://www.ogcnetwork.net/AIP2develop.

  15. The influence of climate variability and change on the science and practice of restoration ecology

    Science.gov (United States)

    Donald A. Falk; Connie Millar

    2016-01-01

    Variation in Earth’s climate system has always been a primary driver of ecosystem processes and biological evolution. In recent decades, however, the prospect of anthropogenically driven change to the climate system has become an increasingly dominant concern for scientists and conservation biologists. Understanding how ecosystems may...

  16. UNEP-IOC-ASPEI global task team on the implications of climate change on coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The first meeting of the Global Task Team on the Implications of Climate Change on Coral Reefs was held to develop an authoritative scientific and technical review of the implications of climate change for coral reefs and their ecologically sustainable use. The Task Team is expected to provide expert advice and guidance in the implementation of the pilot activity on coral reef monitoring as part of the UNEP-IOC-WMO Long-Term Global Monitoring System of coastal and near-shore phenomena related to climate change. This would ensure coordination of various activities aimed at assessing the scale of impacts on natural environments and socio-economic systems particularly in the case of low-lying islands and other areas vulnerable to climate change and sea level rise. The work of the Task Team should ultimately assist the Governments concerned in mitigating the impacts of such changes.

  17. Options for national parks and reserves for adapting to climate change

    Science.gov (United States)

    Baron, Jill S.; Gunderson, Lance; Allen, Craig D.; Fleishman, Erica; McKenzie, Donald; Meyerson, Laura A.; Oropeza, Jill; Stephenson, Nathan L.

    2009-01-01

    Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.

  18. Options for national parks and reserves for adapting to climate change.

    Science.gov (United States)

    Baron, Jill S; Gunderson, Lance; Allen, Craig D; Fleishman, Erica; McKenzie, Donald; Meyerson, Laura A; Oropeza, Jill; Stephenson, Nate

    2009-12-01

    Past and present climate has shaped the valued ecosystems currently protected in parks and reserves, but future climate change will redefine these conditions. Continued conservation as climate changes will require thinking differently about resource management than we have in the past; we present some logical steps and tools for doing so. Three critical tenets underpin future management plans and activities: (1) climate patterns of the past will not be the climate patterns of the future; (2) climate defines the environment and influences future trajectories of the distributions of species and their habitats; (3) specific management actions may help increase the resilience of some natural resources, but fundamental changes in species and their environment may be inevitable. Science-based management will be necessary because past experience may not serve as a guide for novel future conditions. Identifying resources and processes at risk, defining thresholds and reference conditions, and establishing monitoring and assessment programs are among the types of scientific practices needed to support a broadened portfolio of management activities. In addition to the control and hedging management strategies commonly in use today, we recommend adaptive management wherever possible. Adaptive management increases our ability to address the multiple scales at which species and processes function, and increases the speed of knowledge transfer among scientists and managers. Scenario planning provides a broad forward-thinking framework from which the most appropriate management tools can be chosen. The scope of climate change effects will require a shared vision among regional partners. Preparing for and adapting to climate change is as much a cultural and intellectual challenge as an ecological challenge.

  19. Prerequisites for understanding climate-change impacts on northern prairie wetlands

    Science.gov (United States)

    Anteau, Michael J.; Wiltermuth, Mark T.; Post van der Burg, Max; Pearse, Aaron T.

    2016-01-01

    The Prairie Pothole Region (PPR) contains ecosystems that are typified by an extensive matrix of grasslands and depressional wetlands, which provide numerous ecosystem services. Over the past 150 years the PPR has experienced numerous landscape modifications resulting in agricultural conversion of 75–99 % of native prairie uplands and drainage of 50–90 % of wetlands. There is concern over how and where conservation dollars should be spent within the PPR to protect and restore wetland basins to support waterbird populations that will be robust to a changing climate. However, while hydrological impacts of landscape modifications appear substantial, they are still poorly understood. Previous modeling efforts addressing impacts of climate change on PPR wetlands have yet to fully incorporate interacting or potentially overshadowing impacts of landscape modification. We outlined several information needs for building more informative models to predict climate change effects on PPR wetlands. We reviewed how landscape modification influences wetland hydrology and present a conceptual model to describe how modified wetlands might respond to climate variability. We note that current climate projections do not incorporate cyclical variability in climate between wet and dry periods even though such dynamics have shaped the hydrology and ecology of PPR wetlands. We conclude that there are at least three prerequisite steps to making meaningful predictions about effects of climate change on PPR wetlands. Those evident to us are: 1) an understanding of how physical and watershed characteristics of wetland basins of similar hydroperiods vary across temperature and moisture gradients; 2) a mechanistic understanding of how wetlands respond to climate across a gradient of anthropogenic modifications; and 3) improved climate projections for the PPR that can meaningfully represent potential changes in climate variability including intensity and duration of wet and dry periods. Once

  20. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything