WorldWideScience

Sample records for climate change annual

  1. Full annual cycle climate change vulnerability assessment for migratory birds

    Science.gov (United States)

    Culp, Leah A.; Cohen, Emily B.; Scarpignato, Amy L.; Thogmartin, Wayne E.; Marra, Peter P.

    2017-01-01

    Climate change is a serious challenge faced by all plant and animal species. Climate change vulnerability assessments (CCVAs) are one method to assess risk and are increasingly used as a tool to inform management plans. Migratory animals move across regions and continents during their annual cycles where they are exposed to diverse climatic conditions. Climate change during any period and in any region of the annual cycle could influence survival, reproduction, or the cues used to optimize timing of migration. Therefore, CCVAs for migratory animals best estimate risk when they include climate exposure during the entire annual cycle. We developed a CCVA incorporating the full annual cycle and applied this method to 46 species of migratory birds breeding in the Upper Midwest and Great Lakes (UMGL) region of the United States. Our methodology included background risk, climate change exposure × climate sensitivity, adaptive capacity to climate change, and indirect effects of climate change. We compiled information about migratory connectivity between breeding and stationary non-breeding areas using literature searches and U.S. Geological Survey banding and re-encounter data. Climate change exposure (temperature and moisture) was assessed using UMGL breeding season climate and winter climate from non-breeding regions for each species. Where possible, we focused on non-breeding regions known to be linked through migratory connectivity. We ranked 10 species as highly vulnerable to climate change and two as having low vulnerability. The remaining 34 species were ranked as moderately vulnerable. In general, including non-breeding data provided more robust results that were highly individualistic by species. Two species were found to be highly vulnerable throughout their annual cycle. Projected drying will have the greatest effect during the non-breeding season for species overwintering in Mexico and the Caribbean. Projected temperature increases will have the greatest

  2. Derivation of climate elasticity of runoff to assess the effects of climate change on annual runoff

    Science.gov (United States)

    Yang, Hanbo; Yang, Dawen

    2011-07-01

    Climate elasticity of runoff is an important indicator for evaluating the effects of climate change on runoff. Consequently, this paper proposes an analytical derivation of climate elasticity. Based on the mean annual water-energy balance equation, two dimensionless numbers (the elasticities of runoff to precipitation and potential evaporation) were derived. Combining the first-order differential of the Penman equation, the elasticities of runoff to precipitation, net radiation, air temperature, wind speed, and relative humidity were derived to separate the contributions of different climatic variables. The case study was carried out in the Futuo River catchment in the Hai River basin, as well as in 89 catchments of the Hai River and the Yellow River basins of China. Based on the mean annual of climatic variables, the climate elasticity in the Futuo River basin was estimated as follows: precipitation elasticity ?, net radiation elasticity ?, air temperature elasticity ?, wind speed elasticity ?, and relative humidity elasticity ?. In this catchment, precipitation decrease was mainly responsible for runoff decline, and wind speed decline had the second greatest effect on runoff. In the 89 catchments of the Hai River and the Yellow River basins of China, climate elasticity was estimated as follows: ? ranging from 1.6 to 3.9, ? ranging from -1.9 to -0.3, ? ranging from -0.11 to -0.02°C-1, ? ranging from -0.8 to -0.1, and ? ranging from 0.2 to 1.9. Additional analysis shows that climate elasticity was sensitive to catchment characteristics.

  3. Dominant climatic factor driving annual runoff change at catchments scale over China

    Directory of Open Access Journals (Sweden)

    Z. Huang

    2015-12-01

    Full Text Available With global climate changes intensifying, the hydrological response to climate changes has attracted more attentions. It is beneficial not only for hydrology and ecology but also for water resources planning and management to reveal the impacts of climate change on runoff. It is of great significance of climate elasticity of runoff to estimate the impacts of climatic factors on runoff. In addition, there are large spatial variations in climate type and geography characteristics over China. To get a better understanding the spatial variation of runoff response to climate variables change and detect the dominant climatic factor driving annual runoff change, we chose the climate elasticity method proposed by Yang and Yang (2011, where the impact of the catchment characteristics on runoff was represented by a parameter n. The results show that the dominant climatic factor driving annual runoff is precipitation in the most part of China, net radiation in the lower reach of Yangtze River Basin, the Pearl River Basin, the Huai River Basin and the southeast area, and wind speed in part of the northeast China.

  4. The Effect of Hurricanes on Annual Precipitation in Maryland and the Connection to Global Climate Change

    Science.gov (United States)

    Liu, Jackie; Liu, Zhong

    2015-01-01

    Precipitation is a vital aspect of our lives droughts, floods and other related disasters that involve precipitation can cause costly damage in the economic system and general society. Purpose of this project is to determine what, if any effect do hurricanes have on annual precipitation in Maryland Research will be conducted on Marylands terrain, climatology, annual precipitation, and precipitation contributed from hurricanes Possible connections to climate change

  5. Adjustment of the annual cycle to climatic change in a long-lived migratory bird species

    Institute of Scientific and Technical Information of China (English)

    A.P.M(φ)LLER; E.FLENSTED-JENSEN; W.MARDAL

    2009-01-01

    Climate change has advanced the phenology of many organisms. Migratory animals face particular problems because climate change in the breeding and the wintering range may be asynchronous, preventing rapid response to changing conditions. Advancement in timing of spring migration may have carry-over effects to other parts of the annual cycle, simply because advancement of one event in the annual cycle also advances subsequent events, gradually causing a general shift in the timing of the entire annual cycle. Such a phenotypic shift could generate accumulating effects over the years for individuals, but also across generations. Here we test this novel hypothesis of phenotypic response to climate change by using long-term data on the Arctic tern Sterna paradisaea. Mean breeding date advanced by almost three weeks during the last 70 years. Annual arrival date at the breeding grounds during a period of 47 years was predicted by environmental conditions in the winter quarters in the Southern Ocean near the Antarctic and by mean breeding date the previous year. Annual mean breeding date was only marginally determined by timing of arrival the current year, but to a larger extent by arrival date and breeding date the previous year. Learning affected arrival date as shown by a positive correlation between arrival date in year (i+1) relative to breeding date in year (i) and the selective advantage of early breeding in year (i). This provides a mechanism for changes in arrival date being adjusted to changing environmental conditions. This study suggests that adaptation to changing climatic conditions can be achieved through learning from year to year[Current Zoology 55(2):92-101,2009].

  6. Climate change influences on the annual onset of Lyme disease in the United States.

    Science.gov (United States)

    Monaghan, Andrew J; Moore, Sean M; Sampson, Kevin M; Beard, Charles B; Eisen, Rebecca J

    2015-07-01

    Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (pStates exhibit larger shifts (1.0-3.5 weeks) compared to the Northeastern and upper Midwestern States (0.2-2.3 weeks) by 2065-2080. Winter and spring temperature increases primarily cause the earlier onset. Greater spring precipitation and changes in humidity partially counteract the temperature effects. The model does not account for the possibility that abrupt shifts in the life cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.

  7. The National Climate Change and Wildlife Science Center annual report for 2012

    Science.gov (United States)

    Varela-Acevedo, Elda; O'Malley, Robin

    2013-01-01

    Welcome to the inaugural edition of the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) annual report. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $70 million in cutting-edge climate change research and, in response to Secretarial Order No. 3289,established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). The mission of the NCCWSC is to provide natural resource managers with the tools and information they need to develop and execute management strategies that address the impacts of climate and other ongoing global changes on fish and wildlife and their habitats. The DOI CSCs are joint Federal-university partnerships that focus their scientific work on regional priorities identified by DOI Landscape Conservation Cooperatives (LCCs) as well as Federal, State, Tribal, and other resource managers. The CSCs provide access to a wide range of scientific capabilities through their network of university partners along with the USGS and other Federal agency scientists. The focus of the NCCWSC on multiregion and national priorities complements the regionally focused agendas of the CSCs.

  8. Climate change influences on the annual onset of Lyme disease in the United States

    Science.gov (United States)

    Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.

    2015-12-01

    Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (plife cycle of Ixodes scapularis, the primary vector of the Lyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.

  9. Annual variations in wet-deposition chemistry related to changes in climate

    Science.gov (United States)

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-02-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979-2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°-48.782° north latitude and 124°-68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4-6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10-21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2-35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  10. Impact assessment of climate change and human activities on annual highest water level of Taihu Lake

    Institute of Scientific and Technical Information of China (English)

    Qing-fang HU; Yin-tang WANG

    2009-01-01

    The annual highest water level of Taihu Lake (Zm) is very significant for flood management in the Taihu Basin. This paper first describes the inter-annual and intra-annual traits of Zm from 1956 to 2000. Then, using the Mann-Kenall (MK) and Spearman (SP) nonparametric tests, the long-term change trends of area precipitation and pan evaporation in the Taihu Basin are determined. Meanwhile, using the Morlet wavelet transformation, the fluctuation patterns and change points of precipitation and pan evaporation are analyzed. Also, human activities in the Taihu Basin are described, including land use change and hydraulic project construction. Finally, the relationship between Zm, the water level of Taihu Lake 30 days prior to the day of Zm (Z0), and the 30-day total precipitation and pan evaporation prior to the day of Zm (P and E0, respectively) is described based on multi-linear regression equations. The relative influence of climate change and human activities on the change of Zm is quantitatively ascertained. The results demonstrate that: (1) Zm was distinctly higher during the 1980-2000 period than during the 1956-1979 period, and the 30 days prior to the day of Zm are the key phase influencing Zm every year; (2) P increased significantly at a confidence level of 95% during the 1956-2000 period, while the reverse was true for E0; (3) The relationship between Zm, P and E0 distinctly changed after 1980; (4) Climate change and human activities together caused frequent occurrences of high Zm after 1980; (5) Climate change caused a substantially greater Zm difference between the 1956-1979 and 1980-2000 periods than human activities. Climate change, as represented by P and E0, was the dominant factor raising Zm, with a relative influence ratio of 83.6%, while human activities had a smaller influence ratio of 16.4%.

  11. Impacts of land use change and climate variations on annual inflow into Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Zheng, J. K.; Sun, G.; Li, W. H.; Yu, X. X.; Zhang, C.; Gong, Y. B.; Tu, L. H.

    2015-08-01

    Miyun reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contributes the changes of water supply in this critical watershed. However, the specific causes of the decline in Miyun reservoir are debatable in a non-stationary climate in the past four decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into Miyun reservoir during 1961-2008. Different from previous studies, this work objectively identified breakpoints by analyzing the long-term historical hydrometeorology and land cover records. To effectively study the different impacts of the climate variation and land cover change during different sub-periods, annual water balance model (AWB), climate elasticity model (CEM), and rainfall-runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant decrease in annual streamflow (p 0.1) during 1961-2008. Combined with historical records, we identified two breakpoints as in 1983 and 1999 for the period 1961-2008 by the sequential Mann-Kendall Test and Double Mass Curve. Climate variability alone did not explain the decrease in inflow to Miyun reservoir. Reduction of water yield was closely related to increase in evapotranspiration rates due to the expansion of forestlands and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. Our study found that the contribution to the observed streamflow decline from land use change fell from 64-92 % during 1984-1999 to 36-58 % during 2000-2008, whereas the contribution from climate variation climbed from 8-36 % during the 1984-1999 to 42-64 % during 2000-2008. Model uncertainty analysis further demonstrated that climate warming played a dominant role in

  12. Changes in the temperature annual cycle in China and their implications for studying climate variability and change

    Science.gov (United States)

    Qian, C.; Fu, C.; Wu, Z.

    2011-12-01

    Climate changes in the amplitude and phase of the annual cycle (seasonality) of surface air temperature (SAT) in China are presented. The ensemble empirical mode decomposition (EEMD) method is applied to adaptively extract the annual cycle (the yearly period component, which contributes 96% of the total variance of China mean SAT) from homogenized daily mean SAT. (1)Changes in the amplitude of the annual cycle of China mean SAT for the period 1961-2007 are investigated. The results show that variation and change in the amplitude are significant, with a peak-to-peak annual amplitude variation of 13% (1.8degC) of its mean amplitude and a significant linear decrease in amplitude by 4.6% (0.63degC) for this period. Also identified is a multidecadal change in amplitude from significant decreasing (-1.7%/decade or -0.23degC/decade) to significant increasing (2.2%/decade or 0.29dedC/decade) occurring around 1993 that overlaps the systematic linear trend. This multidecadal change can be attributed mainly to the change in surface solar radiation, from dimming to brightening, rather than to warming or an enhanced greenhouse effect. We further propose that the combined effect of the global dimming/brightening transition and a gradual increase in greenhouse warming has led to a perceived warming trend that is much larger in winter than in summer and to a perceived accelerated warming in the annual mean since the early 1990s in China. We also note that the deseasonalization method (considering either the conventional repetitive climatological annual cycle or the time-varying annual cycle) can also affect trend estimation. (2)Trends in the spring phase of the annual cycle of SAT and their contributions to the earlier onset of climatic spring in northern China are investigated. Variations in the spring phase of the annual cycle could cause as much as a 20-day shift in the spring onset from one year to another at Beijing station. The change in the spring phase of annual cycle

  13. Global water resources assessment at a sub-annual timescale: Application to climate change impact assessment

    Science.gov (United States)

    Yamamoto, T.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2010-12-01

    Several reports have assessed water scarcity globally using the widely accepted withdrawal-to-water resources ratio (hereafter WWR). This index is defined as the ratio of annual withdrawal to the annual renewable water resources (runoff). The index has also been used widely to assess the impact of climate change on global water resources. Here, we ask whether it is appropriate to use the WWR to assess the impact of climate change. Global warming is projected to increase the mean annual runoff in many parts of the world. Therefore, in these regions, the WWR decreases, by definition. However, water scarcity may not always be alleviated in these regions. Global warming is also projected to increase the temporal and spatial variability of precipitation, decrease snowfall, and change the timing of snowmelt. These phenomena may increase the temporal gap between water availability and water demand, which might worsen local water scarcity, even if the mean annual runoff is increased. To assess the impact of climate change on global water resources incorporating subannual time-scale phenomena, this study applies a new water scarcity index, the cumulative withdrawal-to-demand ratio (hereafter CWD). This index is defined as the ratio of the accumulation of daily water withdrawal from local water resources to the accumulation of daily water demand. To estimate daily water withdrawal and water demand, we used the state-of-the-art H08 global water resources model. Our results indicated that global warming increased the mean annual runoff in 52% of the total land area globally. However, in 22% of the area where runoff increased, the CWD showed increased water stress. Those regions included India, northern China, and northern Europe. For India, the increase in water stress was attributed to the seasonal gap between runoff increase and water demand. The increased runoff was concentrated in a few months, while the high water demand months differed and were much longer. For Europe

  14. Climate change and the optimal flowering time of annual plants in seasonal environments.

    Science.gov (United States)

    Johansson, Jacob; Bolmgren, Kjell; Jonzén, Niclas

    2013-01-01

    Long-term phenology monitoring has documented numerous examples of changing flowering dates during the last century. A pivotal question is whether these phenological responses are adaptive or not under directionally changing climatic conditions. We use a classic dynamic growth model for annual plants, based on optimal control theory, to find the fitness-maximizing flowering time, defined as the switching time from vegetative to reproductive growth. In a typical scenario of global warming, with advanced growing season and increased productivity, optimal flowering time advances less than the start of the growing season. Interestingly, increased temporal spread in production over the season may either advance or delay the optimal flowering time depending on overall productivity or season length. We identify situations where large phenological changes are necessary for flowering time to remain optimal. Such changes also indicate changed selection pressures. In other situations, the model predicts advanced phenology on a calendar scale, but no selection for early flowering in relation to the start of the season. We also show that the optimum is more sensitive to increased productivity when productivity is low than when productivity is high. All our results are derived using a general, graphical method to calculate the optimal flowering time applicable for a large range of shapes of the seasonal production curve. The model can thus explain apparent maladaptation in phenological responses in a multitude of scenarios of climate change. We conclude that taking energy allocation trade-offs and appropriate time scales into account is critical when interpreting phenological patterns.

  15. Influence of seaway changes during the Pliocene on tropical Pacific climate in the Kiel climate model: mean state, annual cycle, ENSO, and their interactions

    Science.gov (United States)

    Song, Zhaoyang; Latif, Mojib; Park, Wonsun; Krebs-Kanzow, Uta; Schneider, Birgit

    2016-08-01

    The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. Here we investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and also of atmospheric carbon dioxide (CO2) on the tropical Pacific mean climate and annual cycle, and their combined impact on ENSO during the Pliocene. To this end the Kiel Climate Model), a global climate model, is employed to study the influences of the changing geometry and CO2-concentration. We find that ENSO is sensitive to the closing of the Panama Seaway, with ENSO amplitude being reduced by about 15-20 %. The narrowing of the Indonesian Passages enhances ENSO strength but only by about 6 %. ENSO period changes are modest and the spectral ENSO peak stays rather broad. Annual cycle changes are more prominent. An intensification of the annual cycle by about 50 % is simulated in response to the closing of the Panama Seaway, which is largely attributed to the strengthening of meridional wind stress. In comparison to the closing of the Panama Seaway, the narrowing of the Indonesian Passages only drives relatively weak changes in the annual cycle. A robust relationship is found such that ENSO amplitude strengthens when the annual cycle amplitude weakens.

  16. Influences of Seaway and CO2 Changes during the Pliocene on Tropical Pacific Sector Climate in the Kiel Climate Model: Mean Sate, Annual Cycle, ENSO, and their Interactions

    Science.gov (United States)

    Song, Zhaoyang; Park, Wonsun; Latif, Mojib; Krebs-Kanzow, Uta; Schneider, Birgit

    2016-04-01

    The opening and closing of seaways can have a profound impact on global and regional climate. The El Niño/Southern Oscillation (ENSO) is the leading mode of tropical Pacific interannual variability in the present-day climate. Available proxy evidence suggests that ENSO also existed during past climates, for example during the Pliocene extending from about 5.3 million to about 2.6 million years BP. We investigate the influences of the Panama Seaway closing and Indonesian Passages narrowing, and of carbon dioxide (CO2) changes during the Pliocene on tropical Pacific mean climate, annual cycle and ENSO. The Kiel Climate Model (KCM) is employed to study the influences of the changing geometry and CO2-concentration. We find that ENSO is sensitive to the closing of the Panama Seaway, with ENSO amplitude being reduced by about 15% - 20%. The narrowing of the Indonesian Passages marginally enhances ENSO strength by about 6%. ENSO period changes are modest in all experiments. Annual cycle changes are prominent. The annual cycle in the eastern tropical Pacific intensifies by about 50% in response to the closing of the Panama Seaway, which is largely attributed to the strengthening of meridional wind stress. Bjerknes stability index (BSI) analysis suggests that the growth rate of the ENSO mode does not significantly change due to compensating changes in ocean-atmosphere feedbacks, especially dynamical damping and thermocline feedback. A robust inverse relationship is found between ENSO strength and the strength of the annual cycle.

  17. The National Climate Change and Wildlife Science Center annual report for 2013

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  18. Population dynamics of Agriophyllum squarrosum, a pioneer annual plant endemic to mobile sand dunes, in response to global climate change.

    Science.gov (United States)

    Qian, Chaoju; Yin, Hengxia; Shi, Yong; Zhao, Jiecai; Yin, Chengliang; Luo, Wanyin; Dong, Zhibao; Chen, Guoxiong; Yan, Xia; Wang, Xiao-Ru; Ma, Xiao-Fei

    2016-05-23

    Climate change plays an important role in the transition of ecosystems. Stratigraphic investigations have suggested that the Asian interior experienced frequent transitions between grassland and desert ecosystems as a consequence of global climate change. Using maternally and bi-parentally inherited markers, we investigated the population dynamics of Agriophyllum squarrosum (Chenopodiaceae), an annual pioneer plant endemic to mobile sand dunes. Phylogeographic analysis revealed that A. squarrosum could originate from Gurbantunggut desert since ~1.6 Ma, and subsequently underwent three waves of colonisation into other deserts and sandy lands corresponding to several glaciations. The rapid population expansion and distribution range shifts of A. squarrosum from monsoonal climate zones suggested that the development of the monsoonal climate significantly enhanced the population growth and gene flow of A. squarrosum. These data also suggested that desertification of the fragile grassland ecosystems in the Qinghai-Tibetan Plateau was more ancient than previously suggested and will be aggravated under global warming in the future. This study provides new molecular phylogeographic insights into how pioneer annual plant species in desert ecosystems respond to global climate change, and facilitates evaluation of the ecological potential and genetic resources of future crops for non-arable dry lands to mitigate climate change.

  19. The influence of climate change and anthropogenic activities on annual runoff of Huangfuchuan basin in northwest China

    Science.gov (United States)

    Zhou, Yuanyuan; Shi, Changxing; Fan, Xiaoli; Shao, Wenwei

    2015-04-01

    In recent years, climate change and anthropogenic activities have threatened the water supply in the middle reaches of the Yellow River, prompting this study into the variation of water resources and the influencing factors, taking the Huangfuchuan basin as an example. Firstly, changes in climatic aridity and annual runoff in the Huangfuchuan basin from 1956 to 2009 were analysed. Then, the influence of changes in climatic aridity, water use for irrigation and soil conservation measures were calculated using an analysis of principal components regression. The results show that climatic aridity has increased in the recent three decades with two abrupt changes around 1961 and 1998, and that annual runoff has decreased continually with two abrupt changes around 1979 and 1999. The rapid development of sediment check dams in the 1970s could be the reason for the abrupt change around 1979. The abrupt change around 1999 could be the result of both the intensification of changes in climatic aridity and the large-scale construction of water and soil conservation measures after 1983, the further improvement of these measures after 1993 and ecological restoration measures of converting cropland to forest implemented since 1997. By quantifying the effects of those factors that influence runoff variation, it was found that anthropogenic activities were more important than climate change in the two periods between 1979-1998 and 1999-2006, but the influence of changes in climatic aridity increased from the first to the second period. For the runoff reduction related to anthropogenic activities, the primary cause was water diversion for irrigation in the first period, and it was soil conservation measures in the second period.

  20. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate......This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...

  1. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  2. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    Science.gov (United States)

    Basso, Bruno; Hyndman, David W; Kendall, Anthony D; Grace, Peter R; Robertson, G Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability.

  3. Climate Change Effects on Annual Average Concentrations of Fine Particulate Matter (PM2.5) in California

    Science.gov (United States)

    Kleeman, M.; Mahmud, A.

    2008-12-01

    California has one of the worst particulate air pollution problems in the nation with some estimates predicting more than 5000 premature deaths each year attributed to air pollution. Climate change will modify weather patterns in California with unknown consequences for PM2.5. Previous down-scaling exercises carried out for the entire United States have typically not resolved the details associated with California's mountain-valley topography and mixture of urban-rural emissions characteristics. Detailed studies carried out for California have identified strong effects acting in opposite directions on PM2.5 concentrations making the net prediction for climate effects on PM2.5 somewhat uncertain. More research is needed to reduce this uncertainty so that we can truly understand climate impacts on PM2.5 and public health. The objective of this research is to predict climate change effects on annual average concentrations of particulate matter (PM2.5) in California with sufficient resolution to capture the details of California's air basins. Business-as-usual scenarios generated by the Parallel Climate Model (PCM) will be down-scaled to 4km meteorology using the Weather Research Forecast (WRF) model. The CIT/UCD source-oriented photochemical air quality model will be employed to predict PM2.5 concentrations throughout the entire state of California. The modeled annual average total and speciated PM2.5 concentrations for the future (2047-2049) and the present-day (2004-2006) periods will be compared to determine climate change effects. The results from this study will improve our understanding of global climate change effects on PM2.5 concentrations in California.

  4. Impacts of land use change and climate variations on annual inflow into the Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Zheng, Jiangkun; Sun, Ge; Li, Wenhong; Yu, Xinxiao; Zhang, Chi; Gong, Yuanbo; Tu, Lihua

    2016-04-01

    The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate in the past 4 decades. The central objective of this study was to quantify the separate and collective contributions of land use change and climate variability to the decreasing inflow into the Miyun Reservoir during 1961-2008. Different from previous studies on this watershed, we used a comprehensive approach to quantify the timing of changes in hydrology and associated environmental variables using the long-term historical hydrometeorology and remote-sensing-based land use records. To effectively quantify the different impacts of the climate variation and land use change on streamflow during different sub-periods, an annual water balance model (AWB), the climate elasticity model (CEM), and a rainfall-runoff model (RRM) were employed to conduct attribution analysis synthetically. We found a significant (p 0.1) negative trend in annual precipitation during 1961-2008. We identified two streamflow breakpoints, 1983 and 1999, by the sequential Mann-Kendall test and double-mass curve. Climate variability alone did not explain the decrease in inflow to the Miyun Reservoir. Reduction of water yield was closely related to increase in actual evapotranspiration due to the expansion of forestland and reduction in cropland and grassland, and was likely exacerbated by increased water consumption for domestic and industrial uses in the basin. The contribution to the observed streamflow decline from land use change fell from 64-92 % during 1984-1999 to 36-58 % during 2000-2008, whereas the contribution from climate variation climbed from 8-36 % during the 1984-1999 to 42-64 % during 2000-2008. Model uncertainty

  5. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth pathwa

  6. Climate Change

    Science.gov (United States)

    ... events, such as hurricanes and wildfires. These can cause death, injuries, stress, and mental health problems. Researchers are studying the best ways to lessen climate change and reduce its impact on our health. NIH: ...

  7. The mechanism and scenarios of how mean annual runoff varies with climate change in Asian monsoon areas

    Science.gov (United States)

    Chen, Junxu; Xia, Jun; Zhao, Changsen; Zhang, Shifeng; Fu, Guobin; Ning, Like

    2014-09-01

    Understanding the effects of climate change on runoff is important for the sustainable management of water resources. However, the mechanism of such effects in the Asian monsoon region remains unclear. This study revisits Fu's two-parameter climate elasticity index and enhances it by using the Gardner function to strengthen the former's prediction reliability when the future climate condition is beyond the historical range. Then the improved method was applied to study the elasticity change with temperature and precipitation in the eastern monsoon basins of China, whereas to explore the mechanism of climate change on runoff. Furthermore, the runoff change and the elasticity of the study area from 2020 to 2050 under representative concentration pathways (RCPs) were predicted. Results show that the trend of elasticity change assumes a centrosymmetric picture with the symmetric point (0, 0). Different catchments respond differently to the same climate change scenario: the sensitivity of the Haihe Basin is the highest; those of Yellow, Huaihe, Liaohe, Songhua, Pearl, Yangtze, and Southeast Rivers are lower, in descending order. The changing mode of precipitation and temperature differs greatly to keep the runoff unchanged. For semi-humid regions in which the mean annual temperature ranges from 0.71 °C to 9.0 °C, such as the basins of Songhua, Liaohe, Haihe, and Yellow, a 1 °C increase in temperature requires a corresponding 3.2-4.0% increase in precipitation to keep the runoff unchanged. However, in wet regions, such as the basins of Yangtze, Southeast Rivers, and Pearl, the same change in temperature requires a less than 2.8% increase in precipitation to keep the runoff unchanged. In the future, the runoff in most basins may decrease in different degrees. The decreasing velocity of the runoff is the fastest in the RCP8.5 scenario and the decreasing trend of the runoff slows down under the RCP4.5 and RCP2.6 scenarios. The proposed method can be applied to other

  8. Climatic changes

    DEFF Research Database (Denmark)

    Majgaard Krarup, Jonna

    2014-01-01

    According to Cleo Paskal climatic changes are environmental changes. They are global, but their impact is local, and manifests them selves in the landscape, in our cities, in open urban spaces, and in everyday life. The landscape and open public spaces will in many cases be the sites where...... measurements to handle climatic changes will be positioned and enacted. Measurements taken are mostly adaptive or aimed to secure and protect existing values, buildings, infrastructure etc., but will in many cases also affects functions, meaning and peoples identification with the landscape and the open urban...... be addressed in order to develop and support social sustainability and identification. This paper explore and discuss how the handling of climatic changes in landscape and open urban spaces might hold a potential for them to become common goods....

  9. Sensitivity of annual mass balance gradient and Hypsometry to the changing climate: the case of Dokriani Glacier, central Himalaya, India

    Science.gov (United States)

    Pratap, B.

    2015-12-01

    The glacier mass balance is undelayed, unfiltered and direct method to assess the impact of climate change on the glaciers. Many studies suggest that some of the Himalayan glaciers have lost their mass at an increased rate during the past few decades. Furthermore, the mass balance gradient and hypsometric analysis are important to understand the glacier response towards climatic perturbations. Our long term in-situ monitoring on the Dokriani Glacier provides great insights to understand the variability in central Himalayan glaciers. We report the relationship between glacier hypsometry and annual mass balance gradient (12 years) to understand the glacier's response towards climate change. Dokriani Glacier in the Bhagirathi basin is a small (7 km2) NNW exposed glacier in the western part of central Himalaya, India. The study analysed the annual balance, mass balance gradient and length changes observed during first decade of 21st century (2007-2013) and compare with the previous observations of 1990s (1992-2000). A large spatial variability in the mass balance gradients of two different periods has been observed. The equilibrium-line altitude (ELA) was fluctuated between 5000 and 5100 m a.s.l. and the derived time averaged ELA (ELAn) and balance budget ELA (ELA0) were 5075 and 4965 m a.s.l respectively during 1992-2013. The observed time-averaged accumulation-area ratio (AARn) and balance budget AAR (AAR0) were 0.67 and 0.72 respectively during 1992-2013. The higher value of AAR comprises due to flat and broader accumulation area (4.50 km2) of the glacier. Although, having larger accumulation area, the glacier has faced strong mass wasting with average annual ablation of -1.82 m w.e. a-1 in the ablation zone as compare to residual average annual accumulation of 0.41 m w.e. a-1. Based on the annual mass balance series (12 years) Dokriani Glacier has continuous negative annual balances with monotonically negative cumulative mass loss of -3.86 m w.e with the average

  10. The Use of Oceanic Indices Variations Due to Climate Change to Predict Annual Discharge Variations in Northeastern United States

    Science.gov (United States)

    Berton, R.; Shaw, S. B.; Chandler, D. G.; Driscoll, C. T.

    2014-12-01

    Climatic change affects streamflow in watersheds with winter snowpack and an annual snowmelt hydrograph. In the northeastern US, changes in streamflow are driven by both the advanced timing of snowmelt and increasing summer precipitation. Projections of climate for the region in the 21st century is for warmer winters and wetter summers. Water planners need to understand future changes in flow metrics to determine if the current water resources are capable of fulfilling future demands or adapting to future changes in climate. The study of teleconnection patterns between oceanic indices variations and hydrologic variables may help improve the understanding of future water resources conditions in a watershed. The purpose of this study is to evaluate the correlation between oceanic indices and discharge variations in the Merrimack Watershed. The Merrimack Watershed is the fourth largest basin in New England which drains much of New Hampshire and northeastern portions of Massachusetts, USA. Variations in sea surface temperature (SST) and sea level pressure (SLP) are defined by the Atlantic Multi-decadal Oscillation (AMO) and the North Atlantic Oscillation (NAO), respectively. We hypothesize that temporal changes in discharge are related to AMO and NAO variations since precipitation and discharge are highly correlated in the Merrimack. The Merrimack Watershed consists of undisturbed (reference) catchments and disturbed (developed) basins with long stream gauge records (> 100 years). Developed basins provide an opportunity to evaluate the impacts of river regulation and land development on teleconnection patterns as well as changing climate. Time series of AMO and NAO indices over the past 150 years along with Merrimack annual precipitation and discharge time series have shown a 1 to 2-year watershed hydrologic memory; higher correlation between Merrimack‎ annual precipitation and discharge with AMO and NAO are observed when a 1 to 2-year lag is given to AMO and NAO

  11. The Role of Changes in the Annual Cycle in Earlier Onset of Climatic Spring in Northern China

    Institute of Scientific and Technical Information of China (English)

    QIAN Cheng; FU Congbin; Zhaohua WU; YAN Zhongwei

    2011-01-01

    Climatic changes in the onset of spring in northern China associated with changes in the annual cycle and with a recent warming trend were quantified using a recently developed adaptive data analysis tool,the Ensemble Empirical Mode Decomposition. The study was based on a homogenized daily surface air temperature (SAT) dataset for the period 1955-2003. The annual cycle here is referred to as a refined modulated annual cycle (MAC). The results show that spring at Beijing has arrived significantly earlier by about 2.98 d (10 yr)-1, of which about 1.85 d (10 yr)-1 is due to changes in the annual cycle and 1.13 d (10 yr)-1 due to the long-term warming trend. Variations in the MAC component explain about 92.5% of the total variance in the Beijing daily SAT series and could cause as much as a 20-day shift in the onset of spring from one year to another. The onset of spring has been advancing all over northern China, but more significant in the east than in the west part of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40%-60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55°-80°N,50°-110°E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.

  12. Simulated annual changes in plant functional types and their responses to climate change on the northern Tibetan Plateau

    Science.gov (United States)

    Cuo, Lan; Zhang, Yongxin; Piao, Shilong; Gao, Yanhong

    2016-06-01

    Changes in plant functional types (PFTs) have important implications for both climate and water resources. Still, little is known about whether and how PFTs have changed over the past decades on the northern Tibetan Plateau (NTP) where several of the top largest rivers in the world are originated. Also, the relative importance of atmospheric conditions vs. soil physical conditions in affecting PFTs is unknown on the NTP. In this study, we used the improved Lund-Potsdam-Jena Dynamic Global Vegetation Model to investigate PFT changes through examining the changes in foliar projective coverages (FPCs) during 1957-2009 and their responses to changes in root zone soil temperature, soil moisture, air temperature, precipitation and CO2 concentrations. The results show spatially heterogeneous changes in FPCs across the NTP during 1957-2009, with 34 % (13 %) of the region showing increasing (decreasing) trends. Dominant drivers responsible for the observed FPC changes vary with regions and vegetation types, but overall, precipitation is the major factor in determining FPC changes on the NTP with positive impacts. Soil temperature increase exhibits small but negative impacts on FPCs. Different responses of individual FPCs to regionally varying climate change result in spatially heterogeneous patterns of vegetation changes on the NTP. The implication of the study is that fresh water resources in one of the world's largest and most important headwater basins and the onset and intensity of Asian monsoon circulations could be affected because of the changes in FPCs on the NTP.

  13. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    Science.gov (United States)

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies.

  14. Correlation between Increases of the Annual Global Solar Radiation and the Ground Albedo Solar Radiation due to Desertification—A Possible Factor Contributing to Climatic Change

    Directory of Open Access Journals (Sweden)

    Emanuele Calabrò

    2016-12-01

    Full Text Available Background: This study investigates the connection between annual global solar radiation and ground albedo solar radiation due to desertification in line with previous research on the correlation between climatic changes and desertification. Methods: A simulation study was performed using an algorithm formulated by the authors and the typical albedo coefficient values of forested ground, green grass and desert sand. Results: It is shown that changing the albedo coefficients from values corresponding to forested ground or green grass to values corresponding to the desert sand causes a significant increase in the annual global solar radiation acquired at different latitudes, leading one to hypothesize a mechanism of reduction of convective overturning and precipitation decreases due to desertification. Conclusion: In this scenario, modifications of local and global climate can be connected to changes of ground solar albedo induced by desertification.

  15. Climate Change

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    According to the National Academy of Sciences in American,the Earth's surface temperature has risen by about 1 degree Fahrenheit in the past century, with accelerated warming during the past two decades. There is new and stronger evidence that most of the warming over the last 50 years is attributable to human activities.Human activities have altered the chemical composition of the atmosphere through the buildup of greenhouse gases-primarily carbon dioxide, methane, and nitrous oxide. The heat-trapping property of these gases is undisputed although uncertainties exist about exactly how earth's climate responds to them.

  16. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2015

    Science.gov (United States)

    Varela Minder, Elda; Padgett, Holly A.

    2016-04-07

    2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.

  17. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools Project…

  18. Climate Change Schools Project...

    Science.gov (United States)

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  19. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  20. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  1. The role of climate and human changes on inter-annual variation in stream nitrate fluxes and concentrations

    Science.gov (United States)

    Philippe, M.; Gascuel, C.; Pierre, A.; Patrick, D.; Laurent, R.; Jérome, M.

    2010-12-01

    In recent decades, temporal variations in nitrate fluxes and concentrations in temperate rivers have resulted from the interaction of anthropogenic and climatic factors. The effect of climatic drivers remains unclear, while the relative importance of the drivers seems to be highly site dependent. This paper focuses on 2-6 years variations called meso-scale variations, and analyses the climatic drivers of these variations in a study site characterized by high N inputs from intensive animal farming systems and shallow aquifers with impervious bedrock in a temperate climate. Three approaches are developed: 1) an analysis of long-term records (30-40 years) of nitrate fluxes and nitrate concentrations in 30 coastal rivers of Western France, which were well-marked by meso-scale cycles in the fluxes and concentration with a slight hysteresis; 2) a test of the climatic control using a lumped two box model, which demonstrates that hydrological assumptions are sufficient to explain these meso-scale cycles; and 3) a model of nitrate fluxes and concentrations in two contrasted catchments subjected to recent mitigation measures, which analyses nitrate fluxes and concentrations in relation to N stored in groundwater. In coastal rivers, hydrological drivers (i.e., effective rainfall), and particularly the dynamics of the water table and rather stable nitrate concentration, explain the meso-scale cyclic patterns. In the headwater catchment, agricultural and hydrological drivers can interact according their settings. The requirements to better distinguish the effect of climate and human changes in integrated water management are addressed: long term monitoring, coupling the analysis and the modelling of large sets of catchments incorporating different sizes, land uses and environmental factors. (Figure : Discharge, nitrate concentrations and fluxes in the Aulne river from 1973 to 2007.)

  2. Climate Change and Health

    Science.gov (United States)

    ... sheets Fact files Questions & answers Features Multimedia Contacts Climate change and health Fact sheet Reviewed June 2016 Key ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  3. Climate Change Law

    NARCIS (Netherlands)

    Farber, D.A.; Peeters, Marjan

    2016-01-01

    This book brings together over seventy fifty authors for a comprehensive examination of the emerging global regime of climate change law. Despite the relative youth of climate change law, we can already begin to see the outlines of legal regimes addressing climate change mitigation and adaptation (a

  4. Western water and climate change

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northernmost West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent.

  5. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...... and on vulnerability and adaptation strategies in a particular region or community. But how do we research the ways in which people experience changing climatic conditions, the processes of decision-making, the actual adaptation strategies carried out and the consequences of these for actors living and dealing...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork...

  6. Financing climate change adaptation.

    Science.gov (United States)

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  7. Climate Change in Prehistory

    Science.gov (United States)

    Burroughs, William James

    2005-06-01

    How did humankind deal with the extreme challenges of the last Ice Age? How have the relatively benign post-Ice Age conditions affected the evolution and spread of humanity across the globe? By setting our genetic history in the context of climate change during prehistory, the origin of many features of our modern world are identified and presented in this illuminating book. It reviews the aspects of our physiology and intellectual development that have been influenced by climatic factors, and how features of our lives - diet, language and the domestication of animals - are also the product of the climate in which we evolved. In short: climate change in prehistory has in many ways made us what we are today. Climate Change in Prehistory weaves together studies of the climate with anthropological, archaeological and historical studies, and will fascinate all those interested in the effects of climate on human development and history.

  8. Climate Change and Roads

    DEFF Research Database (Denmark)

    Chinowsky, P.; Arndt, Channing

    2012-01-01

    Decision-makers who are responsible for determining when and where infrastructure should be developed and/or enhanced are facing a new challenge with the emerging topic of climate change. The paper introduces a stressor–response methodology where engineering-based models are used as a basis...... four climate projection scenarios, the paper details how climate change response decisions may cost the Mozambican government in terms of maintenance costs and long-term roadstock inventory reduction. Through this approach the paper details how a 14% reduction in inventory loss can be achieved through...... the adoption of a proactive, design standard evolution approach to climate change....

  9. Climate Change and Vietnam

    Science.gov (United States)

    2013-11-01

    expansion of large hydropower and reservoir construction can increase social resilience through associated economic development . However, the same...of the most vulnerable countries globally to the consequences of climate change, Vietnam is highly likely to experience a variety of negative...iii ABSTRACT Climate Change and Vietnam As one of the most vulnerable countries globally to the consequences

  10. Climate Change Crunch Time

    Institute of Scientific and Technical Information of China (English)

    Xie Zhenhua

    2011-01-01

    CLIMATE change is a severe challenge facing humanity in the 21st century and thus the Chinese Government always attaches great importance to the problem.Actively dealing with climate change is China's important strategic policy in its social and economic development.China will make a positive contribution to the world in this regard.

  11. Western water and climate change.

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris

    2015-12-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northern-most West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent. In this context, four iconic river basins offer glimpses into specific challenges that climate change may bring to the West. The Colorado River is a system in which overuse and growing demands are projected to be even more challenging than climate-change-induced flow reductions. The Rio Grande offers the best example of how climate-change-induced flow declines might sink a major system into permanent drought. The Klamath is currently projected to face the more benign precipitation future, but fisheries and irrigation management may face dire straits due to warming air temperatures, rising irrigation demands, and warming waters in a basin already hobbled by tensions between endangered fisheries

  12. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  13. Cuba confronts climate change.

    Science.gov (United States)

    Alonso, Gisela; Clark, Ismael

    2015-04-01

    Among environmental problems, climate change presents the greatest challenges to developing countries, especially island nations. Changes in climate and the resulting effects on human health call for examination of the interactions between environmental and social factors. Important in Cuba's case are soil conditions, food availability, disease burden, ecological changes, extreme weather events, water quality and rising sea levels, all in conjunction with a range of social, cultural, economic and demographic conditions.

  14. Climate change and skin.

    Science.gov (United States)

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  15. Olivine and climate change

    NARCIS (Netherlands)

    Schuiling, R.D.

    2012-01-01

    The greenhouse effect, thanks mainly to the water vapor in our atmosphere, has created a livable climate on Earth. Climate change, however, may potentially have dire consequences. It is generally assumed that the rise in CO2 levels in the atmosphere is the main culprit, although several other greenh

  16. Mixing it Up: A Record of Holocene Climate Change in Non-Annually Laminated Sediment of Seneca Lake, NY

    Science.gov (United States)

    Rogers, C. E.; Curtin, T. M.

    2005-12-01

    The mid to late Holocene climate record was examined in two cores that represent distal sedimentation in Seneca Lake, one of 11 Finger Lakes in western New York. Laminated sediments, ~5 m thick, were collected from the middle of the lake at 131-137 m water depths. These sites were selected because they preserve a continuous record of changes in the hydrologic balance and sedimentary processes. Variations in grain size and fabric at 50-100-cm intervals were observed and represent time periods of hundreds to thousands of years. The combination of magnetic susceptibility, loss-on-ignition, grain size analysis by laser diffraction, and grain fabric analysis using thin sections allow us to reconstruct the evolution of the lake since deglaciation and to compare and contrast paleoclimate indicator data. Variations in the type of sedimentary fabrics preserved are coincident with variations in geochemical and sedimentological indicators of environmental conditions that may have occurred in response to fluctuations in the hydrologic balance and circulation and/or overturn. Laterally continuous, thin, black laminae rich in organic matter and possibly minute grains of iron sulfides accumulated during the mid Holocene Hypsithermal (~9-7 ka). Presence of black laminae may signify a steady supply of organic matter and an absence of oxygen, at least below the sediment-water interface if not in the lower part of the water column. Coincident with finely laminated sediment are the coarsest mean grain sizes. Three 2-6 cm thick sand beds occur in one core, suggesting that an influx of water and sediment occurred during intense storms. A combination of warmer surface water and influx of freshwater from storms during the Hypsithermal may have influenced the turnover history of the lake by stabilizing the water column. Absence of overturn would result in depletion of nutrients in surface waters, a decrease in primary productivity, and a decrease in oxygen at the bottom of the lake as a

  17. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... in the future, then there is also moral reason to address these harms if they materialize now. We argue that these principles are applicable to climate change, and that given the commitment of wealthy countries to a "common but differentiated responsibility," they lead to a commitment to address or compensate...

  18. Population and Climate Change

    Science.gov (United States)

    O'Neill, Brian C.; Landis MacKellar, F.; Lutz, Wolfgang

    2000-11-01

    Population and Climate Change provides the first systematic in-depth treatment of links between two major themes of the 21st century: population growth (and associated demographic trends such as aging) and climate change. It is written by a multidisciplinary team of authors from the International Institute for Applied Systems Analysis who integrate both natural science and social science perspectives in a way that is comprehensible to members of both communities. The book will be of primary interest to researchers in the fields of climate change, demography, and economics. It will also be useful to policy-makers and NGOs dealing with issues of population dynamics and climate change, and to teachers and students in courses such as environmental studies, demography, climatology, economics, earth systems science, and international relations.

  19. Criminality and climate change

    Science.gov (United States)

    White, Rob

    2016-08-01

    The impacts of climate change imply a reconceptualization of environment-related criminality. Criminology can offer insight into the definitions and dynamics of this behaviour, and outline potential areas of redress.

  20. Climate change and compensation

    DEFF Research Database (Denmark)

    Jensen, Karsten Klint; Flanagan, Tine Bech

    2013-01-01

    This paper presents a case for compensation of actual harm from climate change in the poorest countries. First, it is shown that climate change threatens to reverse the fight to eradicate poverty. Secondly, it is shown how the problems raised in the literature for compensation to some extent...... are based on misconceptions and do not apply to compensation of present actual harm. Finally, two arguments are presented to the effect that, in so far as developed countries accept a major commitment to mitigate climate change, they should also accept a commitment to address or compensate actual harm from...... climate change. The first argument appeals to the principle that if it is an injustice to cause risk of incurring harm in the future, then it is also an injustice to cause a similar harm now. The second argument appeals to the principle that if there is moral reason to reduce the risk of specific harms...

  1. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    -operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery....... The research was carried out between January 2000 and March 2012. One of the biggest challenges that mankind has to face is the prospect of climate change resulting from emissions of greenhouse gases. These gases trap energy in the atmosphere and cause global surface temperatures to rise. This warming in turn...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  2. Climate change and cities

    Energy Technology Data Exchange (ETDEWEB)

    Satterthwaite, David

    2006-10-15

    What is done, or not done, in cities in relation to climate change over the next 5-10 years will affect hundreds of millions of people, because their lives and livelihoods are at risk from global warming. What is done in cities will also have a major influence on whether the escalating risks for the whole planet will be reduced or eliminated. Climate change needs to be considered in all development plans and investments - local, regional, national and international. Urban growth must be made more climate-resilient and help reduce, rather than increase, greenhouse gas emissions. This will not be done by the market; it can only be done by governments.

  3. Climate change, zoonoses and India.

    Science.gov (United States)

    Singh, B B; Sharma, R; Gill, J P S; Aulakh, R S; Banga, H S

    2011-12-01

    Economic trends have shaped our growth and the growth of the livestock sector, but atthe expense of altering natural resources and systems in ways that are not always obvious. Now, however, the reverse is beginning to happen, i.e. environmental trends are beginning to shape our economy and health status. In addition to water, air and food, animals and birds play a pivotal role in the maintenance and transmission of important zoonotic diseases in nature. It is generally considered that the prevalence of vector-borne and waterborne zoonoses is likely to increase in the coming years due to the effects of global warming in India. In recent years, vector-borne diseases have emerged as a serious public health problem in countries of the South-East Asia region, including India. Vector-borne zoonoses now occur in epidemic form almost on an annual basis, causing considerable morbidity and mortality. New reservoir areas of cutaneous leishmaniosis in South India have been recognised, and the role of climate change in its re-emergence warrants further research, as does the role of climate change in the ascendancy of waterborne and foodborne illness. Similarly, climate change that leads to warmer and more humid conditions may increase the risk of transmission of airborne zoonoses, and hot and drier conditions may lead to a decline in the incidence of disease(s). The prevalence of these zoonotic diseases and their vectors and the effect of climate change on important zoonoses in India are discussed in this review.

  4. Poverty and Climate Change

    Science.gov (United States)

    van der Vink, G.; Franco, E.; Fuckar, N. S.; Kalmbach, E. R.; Kayatta, E.; Lankester, K.; Rothschild, R. E.; Sarma, A.; Wall, M. L.

    2008-05-01

    The poor are disproportionately vulnerable to environmental change because they have the least amount of resources with which to adapt, and they live in areas (e.g. flood plains, low-lying coastal areas, and marginal drylands) that are particularly vulnerable to the manifestations of climate change. By quantifying the various environmental, economic, and social factors that can contribute to poverty, we identify populations that are most vulnerable to poverty and poverty traps due to environmental change. We define vulnerability as consisting of risk (probability of event and exposed elements), resiliency, and capacity to respond. Resiliency captures the social system's ability to absorb a natural disaster while retaining the same basic structure, organization, and ways of functioning, as well as its general capacity to adapt to stress and change. Capacity to respond is a surrogate for technical skills, institutional capabilities, and efficacy within countries and their economies. We use a "climate change multiplier" to account for possible increases in the frequency and severity of natural events due to climate change. Through various analytical methods, we quantify the social, political, economic, and environmental factors that contribute to poverty or poverty traps. These data sets are then used to determine vulnerability through raster multiplication in geospatial analysis. The vulnerability of a particular location to climate change is then mapped, with areas of high vulnerability clearly delineated. The success of this methodology indicates that it is indeed possible to quantify the effects of climate change on global vulnerability to natural disasters, and can be used as a mechanism to identify areas where proactive measures, such as improving adaptation or capacity to respond, can reduce the humanitarian and economic impacts of climate change.

  5. Climate change adaptation strategy for the Folk Communities

    DEFF Research Database (Denmark)

    Abdul-Al-Pavel, Muha.; Khan, Mohammed Abu Sayed Arfin; Rahman, Syed Ajijur

    2013-01-01

    In Bangladesh, impacts on agriculture from extreme climate are increasingly vulnerable. On the other hand, folk communities are intensely depending on agriculture for their livelihoods. Climate change has already negatively affected the vegetable production by annual recurrent flood in Bangladesh...

  6. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valerie; Swingedouw, D.; Landais, A.

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...

  7. Topologies of climate change

    DEFF Research Database (Denmark)

    Blok, Anders

    2010-01-01

    Climate change is quickly becoming a ubiquitous socionatural reality, mediating extremes of sociospatial scale from the bodily to the planetary. Although environmentalism invites us to ‘think globally and act locally', the meaning of these scalar designations remains ambiguous. This paper explores...... the topological presuppositions of social theory in the context of global climate change, asking how carbon emissions ‘translate' into various sociomaterial forms. Staging a meeting between Tim Ingold's phenomenology of globes and spheres and the social topologies of actor-network theory (ANT), the paper advances...... a ‘relational-scalar' analytics of spatial practices, technoscience, and power. As technoscience gradually constructs a networked global climate, this ‘grey box' comes to circulate within fluid social spaces, taking on new shades as it hybridizes knowledges, symbols, and practices. Global climates thus come...

  8. Evaporation and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the influence of climate change on evaporation is discussed. The emphasis is on open water evaporation. Three methods for calculating evaporation are compared considering only changes in temperature and factors directly dependent on temperature. The Penman-method is used to investiga

  9. Climate Change: Good for Us?

    Science.gov (United States)

    Oblak, Jackie

    2000-01-01

    Presents an activity with the objective of encouraging students to think about the effects of climate change. Explains background information on dependence to climate and discuses whether climate change is important. Provides information for the activity, extensions, and evaluation. (YDS)

  10. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  11. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  12. Climate Change and Future World

    Science.gov (United States)

    2013-03-01

    fresh water. Movements of migrants from northern Africa and the Middle-East are already a security problem for Europe . This phenomenon is likely to be...Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http://library.globalchange.gov/climate...06/2013. 21 U.S. Climate Change Science Program , Climate Literacy – The Essential Principles of Climate Sciences, 3. (http

  13. Climate change and amphibians

    Directory of Open Access Journals (Sweden)

    Corn, P. S.

    2005-01-01

    Full Text Available Amphibian life histories are exceedingly sensitive to temperature and precipitation, and there is good evidence that recent climate change has already resulted in a shift to breeding earlier in the year for some species. There are also suggestions that the recent increase in the occurrence of El Niño events has caused declines of anurans in Central America and is linked to elevated mortality of amphibian embryos in the northwestern United States. However, evidence linking amphibian declines in Central America to climate relies solely on correlations, and the mechanisms underlying the declines are not understood. Connections between embryo mortality and declines in abundance have not been demonstrated. Analyses of existing data have generally failed to find a link between climate and amphibian declines. It is likely, however, that future climate change will cause further declines of some amphibian species. Reduced soil moisture could reduce prey species and eliminate habitat. Reduced snowfall and increased summer evaporation could have dramatic effects on the duration or occurrence of seasonal wetlands, which are primary habitat for many species of amphibians. Climate change may be a relatively minor cause of current amphibian declines, but it may be the biggest future challenge to the persistence of many species

  14. Energy and Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-06-15

    Climate change, and more specifically the carbon emissions from energy production and use, is one of the more vexing problems facing society today. The Intergovernmental Panel on Climate Change (IPCC) has just completed its latest assessment on the state of the science of climate change, on the potential consequences related to this change, and on the mitigation steps that could be implemented beginning now, particularly in the energy sector. Few people now doubt that anthropogenic climate change is real or that steps must be taken to deal with it. The World Energy Council has long recognized this serious concern and that in its role as the world's leading international energy organization, it can address the concerns of how to provide adequate energy for human well-being while sustaining our overall quality of life. It has now performed and published 15 reports and working papers on this subject. This report examines what has worked and what is likely to work in the future in this regard and provides policymakers with a practical roadmap to a low-carbon future and the steps needed to achieve it.

  15. Corporate Climate Change

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The American Chamber of Commerce, the People's Republic of China (AmCham-China) and the American Chamber of Commerce in Shanghai recently released "American Corporate Experience in a Changing China: Insights From AmCham Business Climate Surveys, 1999-2005." Excerpts of the report follow:

  16. Adaptation to climate change

    NARCIS (Netherlands)

    Carmin, J.; Tierney, K.; Chu, E.; Hunter, L.M.; Roberts, J.T.; Shi, L.; Dunlap, R.E.; Brulle, R.J.

    2015-01-01

    Climate change adaptation involves major global and societal challenges such as finding adequate and equitable adaptation funding and integrating adaptation and development programs. Current funding is insufficient. Debates between the Global North and South center on how best to allocate the financ

  17. Tackling Climate Change

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Representatives from nearly 200 countries and regions have gathered in Durban,South Africa,for the 17th session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC) and the 7th session of the Meeting of the Parties to the Kyoto Protocol.The meeting is the follow-up conference to tacklin

  18. Learning Progressions & Climate Change

    Science.gov (United States)

    Parker, Joyce M.; de los Santos, Elizabeth X.; Anderson, Charles W.

    2015-01-01

    Our society is currently having serious debates about sources of energy and global climate change. But do students (and the public) have the requisite knowledge to engage these issues as informed citizenry? The learning-progression research summarized here indicates that only 10% of high school students typically have a level of understanding…

  19. DTU Climate Change Technologies

    DEFF Research Database (Denmark)

    During 2008 and 2009, DTU held a workshop series focusing on assessment of and adaption to climate changes as well as on mitigation of green house gasses. In the workshops, a total of 1500 scientists, government officials and business leaders have outlined scenarios for technology development...

  20. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7.......4 billion during 2003–2050. Our analysis identifies improved road design and agricultural sector investments as key ‘no-regret’ adaptation measures, alongside intensified efforts to develop a more flexible and resilient society. Our findings also support the need for cooperative river basin management...

  1. Hantaviruses and climate change.

    Science.gov (United States)

    Klempa, B

    2009-06-01

    Most hantaviruses are rodent-borne emerging viruses. They cause two significant human diseases, haemorrhagic fever with renal syndrome in Asia and Europe, and hantavirus cardiopulmonary syndrome in the Americas. Very recently, several novel hantaviruses with unknown pathogenic potential have been identified in Africa and in a variety of insectivores (shrews and a mole). Because there is very limited information available on the possible impact of climate change on all of these highly dangerous pathogens, it is timely to review this aspect of their epidemiology. It can reasonably be concluded that climate change should influence hantaviruses through impacts on the hantavirus reservoir host populations. We can anticipate changes in the size and frequency of hantavirus outbreaks, the spectrum of hantavirus species and geographical distribution (mediated by changes in population densities), and species composition and geographical distribution of their reservoir hosts. The early effects of global warming have already been observed in different geographical areas of Europe. Elevated average temperatures in West-Central Europe have been associated with more frequent Puumala hantavirus outbreaks, through high seed production (mast year) and high bank vole densities. On the other hand, warm winters in Scandinavia have led to a decline in vole populations as a result of the missing protective snow cover. Additional effects can be caused by increased intensity and frequency of extreme climatic events, or by changes in human behaviour leading to higher risk of human virus exposure. Regardless of the extent of climate change, it is difficult to predict the impact on hantavirus survival, emergence and epidemiology. Nevertheless, hantaviruses will undoubtedly remain a significant public health threat for several decades to come.

  2. Teaching Climate Change

    Science.gov (United States)

    O'Donoghue, A.

    2011-09-01

    In giving public presentations about climate change, we face the barriers of mis-information in the political debate and lack of science literacy that extends to science phobia for some. In climate issues, the later problem is compounded by the fact that the science - reconstruction of past climate through the use of proxy sources, such as isotopes of oxygen and hydrogen - is complex, making it more challenging for general audiences. Also, the process of science, particularly peer review, is suspected by some to be a way of keeping science orthodox instead of keeping it honest. I approach these barriers by focusing on the data and the fact that the data have been carefully acquired over decades and centuries by dedicated people with no political agenda. I have taught elderhostel courses twice and have given many public talks on this topic. Thus I have experience in this area to share with others. I would also like to learn of others' approaches to the vast amount of scientific information and getting past the politics. A special interest group on climate change will allow those of us to speak on this important topic to share how we approach both the science and the politics of this issue.

  3. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... and to investigate the institutional dynamics new institutional theory is used with an emphasis on examining institutional mechanisms in relation to building legitimacy for action. The concept of mechanisms can help explain how and why constraints on action occur, and the concept of legitimacy is useful to clarify...... the strategies used by officials to enable climate change action. A long running criticism of institutional theory is the emphasis on how institutions constrain actions rather than act as productive phenomena that facilitate action. Emergent strands within new institutional theory emphasise the role of agency...

  4. Climate Change Justice

    OpenAIRE

    Sunstein, Cass R.; Posner, Eric A.

    2007-01-01

    Greenhouse gas reductions would cost some nations much more than others and benefit some nations far less than others. Significant reductions would impose especially large costs on the United States, and recent projections suggest that the United States has relatively less to lose from climate change. In these circumstances, what does justice require the United States to do? Many people believe that the United States is required to reduce its greenhouse gas emissions beyond the point that is ...

  5. Confronting Climate Change

    Science.gov (United States)

    Mintzer, Irving M.

    1992-06-01

    This book, which was published in time for the Earth Summit in Brazil in June 1992, is likely to make a huge impact on the political and economic agendas of international policy makers. It summarizes the scientific findings of Working Group I of the IPCC in the first part of the book. While acknowledging the uncertainties in subsequent chapters, it challenges and expands upon the existing views on how we should tackle the problems of climate change.

  6. Managing Climate Change Risks

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R. [CSIRO Atmospheric Research, PMB1 Aspendale, Victoria 3195 (Australia)

    2003-07-01

    Issues of uncertainty, scale and delay between action and response mean that 'dangerous' climate change is best managed within a risk assessment framework that evolves as new information is gathered. Risk can be broadly defined as the combination of likelihood and consequence; the latter measured as vulnerability to greenhouse-induced climate change. The most robust way to assess climate change damages in a probabilistic framework is as the likelihood of critical threshold exceedance. Because vulnerability is dominated by local factors, global vulnerability is the aggregation of many local impacts being forced beyond their coping ranges. Several case studies, generic sea level rise and temperature, coral bleaching on the Great Barrier Reef and water supply in an Australian catchment, are used to show how local risk assessments can be assessed then expressed as a function of global warming. Impacts treated thus can be aggregated to assess global risks consistent with Article 2 of the UNFCCC. A 'proof of concept' example is then used to show how the stabilisation of greenhouse gases can constrain the likelihood of exceeding critical thresholds at both the both local and global scale. This analysis suggests that even if the costs of reducing greenhouse gas emissions and the benefits of avoiding climate damages can be estimated, the likelihood of being able to meet a cost-benefit target is limited by both physical and socio-economic uncertainties. In terms of managing climate change risks, adaptation will be most effective at reducing vulnerability likely to occur at low levels of warming. Successive efforts to mitigate greenhouse gases will reduce the likelihood of reaching levels of global warming from the top down, with the highest potential temperatures being avoided first, irrespective of contributing scientific uncertainties. This implies that the first cuts in emissions will always produce the largest economic benefits in terms of avoided

  7. Climate change and disaster management.

    Science.gov (United States)

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  8. Climate Change, Wildland Fires and Public Health

    Science.gov (United States)

    Climate change is contributing to an increase in the severity of wildland fires. The annual acreage burned in the U.S. has risen steadily since 1985, and the fire season has lengthened. Wildland fires impair air quality by producing massive quantities of particulate air polluta...

  9. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-01-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulation seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse in the 21st century of the thermohaline circulation is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  10. Abrupt change in climate and climate models

    Directory of Open Access Journals (Sweden)

    A. J. Pitman

    2006-07-01

    Full Text Available First, we review the evidence that abrupt climate changes have occurred in the past and then demonstrate that climate models have developing capacity to simulate many of these changes. In particular, the processes by which changes in the ocean circulation drive abrupt changes appear to be captured by climate models to a degree that is encouraging. The evidence that past changes in the ocean have driven abrupt change in terrestrial systems is also convincing, but these processes are only just beginning to be included in climate models. Second, we explore the likelihood that climate models can capture those abrupt changes in climate that may occur in the future due to the enhanced greenhouse effect. We note that existing evidence indicates that a major collapse of the thermohaline circulate seems unlikely in the 21st century, although very recent evidence suggests that a weakening may already be underway. We have confidence that current climate models can capture a weakening, but a collapse of the thermohaline circulation in the 21st century is not projected by climate models. Worrying evidence of instability in terrestrial carbon, from observations and modelling studies, is beginning to accumulate. Current climate models used by the Intergovernmental Panel on Climate Change for the 4th Assessment Report do not include these terrestrial carbon processes. We therefore can not make statements with any confidence regarding these changes. At present, the scale of the terrestrial carbon feedback is believed to be small enough that it does not significantly affect projections of warming during the first half of the 21st century. However, the uncertainties in how biological systems will respond to warming are sufficiently large to undermine confidence in this belief and point us to areas requiring significant additional work.

  11. Climate change regional review: Russia

    OpenAIRE

    Sharmina, Maria; Anderson, Kevin; Bows-Larkin, Alice

    2013-01-01

    With climate change, an increasingly important focus of scientific and policy discourse, the Russian government has aimed to position the country as one of the leaders of the global process for addressing climate change. This article reviews a breadth of literature to analyze the politico-economic situation in Russia with regard to international climate change negotiations, related domestic policies, societal attitudes, and climatic change impacts on Russia's territory. The analysis demonstra...

  12. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    The absence of a global agreement on the reduction of greenhouse gas emissions calls for adaptation to climate change. The associated paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change...

  13. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come the

  14. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  15. Climate Changes around the world

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, J.

    2009-07-01

    This presentation addresses several important aspects of the climate changes that are occurring around the globe. the causes of climate change are first reviewed, with illustrations of orbital oscillations, the atmospheric greenhouse effect, and aerosol effects. Observed changes in climate are next reviewed, both thought many millenia and during the past century. Distinctions are made between global warming and regional changes in temperature and precipitation. Changes in the frequency of weather extremes, including heat waves and tropical storms, are also discussed. (Author)

  16. Climate change and health

    Energy Technology Data Exchange (ETDEWEB)

    Last, J.M. [Ottawa Univ., ON (Canada); Chiotti, Q.P. [Environment Canada, Ottawa, ON (Canada)

    2001-12-31

    Adverse effects such as heat-related illnesses are felt on human health as a result of climate change. Those effects can also be the increased frequency and severity of extreme weather resulting in injury and death, a wider array of insect vectors for diseases, as well as increased risk of allergic, food-borne and water-borne diseases. Coastal ecosystems are altered, sea levels are rising and millions of people will need to relocate in the next century as a result of global warming. Keeping disaster plans, maintaining epidemiological monitoring and surveillance, and issuing advisory messages concerning the risks to human health are some of the responses required from public health officials. The establishment of standards, the development of policies on food and nutrition and the defining of priorities for research are important aspects that must be kept in mind. The authors indicated that multidisciplinary approaches are better suited to find solutions to the challenges encountered due to climate change than the narrow methods used in the past. refs., 4 tabs.

  17. Communicating Climate Change (Invited)

    Science.gov (United States)

    Mann, M. E.

    2009-12-01

    I will discuss the various challenges scientists must confront in efforts to communicate the science and implications of climate change to the public. Among these challenges is the stiff headwind we must fight of a concerted disinformation effort designed to confuse the public about the nature of our scientific understanding of the problem and the reality of the underlying societal threat. We also must fight the legacy of the public’s perception of the scientist. That is to say, we must strive to communicate in plainspoken language that neither insults the intelligence of our audience, nor hopelessly loses them in jargon and science-speak. And through all of this, we must maintain our composure and good humor even in the face of what we might consider the vilest of tactics by our opposition. When it comes to how best to get our message out to the broader public, I don’t pretend to have all of the answers. But I will share some insights and anecdotes that I have accumulated over the course of my own efforts to inform the public about the reality of climate change and the potential threat that it represents.

  18. Politics of climate change belief

    Science.gov (United States)

    2017-01-01

    Donald Trump's actions during the election and his first weeks as US president-elect send a strong message about his belief in climate change, or lack thereof. However, these actions may reflect polarization of climate change beliefs, not climate mitigation behaviour.

  19. Climate change science compendium 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMullen, C.P.; Jabbour, J.

    2009-09-15

    In a matter of a few weeks' time, governments will gather in Copenhagen, Denmark, for a crucial UN climate convention meeting. Many governments and stakeholders have requested an annual snapshot of how the science has been evolving since the publication of the IPCC's landmark fourth assessment in advance of the panel's next one in 2014. This Climate Change Science Compendium, based on the wealth of peerreviewed research published by researchers and institutions since 2006, has been compiled by UNEP in response to that request. The findings indicate that ever more rapid environmental change is underway with the pace and the scale of climate change accelerating, along with the confidence among researchers in their forecasts. The Arctic, with implications for the globe, is emerging as an area of major concern. There is growing evidence that the ice there is melting far faster than had been previously supposed. Mountains glaciers also appear to be retreating faster. Scientists now suggest that the Arctic could be virtually ice free in September of 2037 and that a nearly ice-free September by 2028 is well within the realms of possibility. Recent findings also show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. The impact on the Earth's multi-trillion dollar ecosystems is also a key area of concern. Under a high emission scenario-the one that most closely matches current trends-12-39 per cent of the planet's terrestrial surface could experience novel climate conditions and 10-48 per cent could suffer disappearing climates by 2100. Rising levels of aridity are also concentrating scientific minds. New research indicates that by the end of the 21st century the Mediterranean region will also experience much more severe increases in aridity than previously estimated rendering the entire region, but particularly the southern Mediterranean

  20. Climate Change and Water Tools

    Science.gov (United States)

    EPA tools and workbooks guide users to mitigate and adapt to climate change impacts. Various tools can help manage risks, others can visualize climate projections in maps. Included are comprehensive tool kits hosted by other federal agencies.

  1. Climate Change and Water Training

    Science.gov (United States)

    To take action on climate impacts, practitioners must understand how climate change will effect their region, and the country. Training provided here by EPA and partners allow users to better grasp the issues and make decisions based on current science.

  2. Lima Climate Change Conference: Compromise Lirrrits Achievements

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    THE annual United Nations Cli- mate Change Conference, held in Lima, capital of Peru, finally concluded in the small hours of December 14, 2014, after running more than 32 hours over schedule. There were gaps in the General As- sembly's adoption of a final resolution, but it reached a consensus on elements of the draft agreement expected to be passed at the Paris climate change con- ference in December 2015.

  3. Climate Change and Poverty Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Simon

    2011-08-15

    Climate change will make it increasingly difficult to achieve and sustain development goals. This is largely because climate effects on poverty remain poorly understood, and poverty reduction strategies do not adequately support climate resilience. Ensuring effective development in the face of climate change requires action on six fronts: investing in a stronger climate and poverty evidence base; applying the learning about development effectiveness to how we address adaptation needs; supporting nationally derived, integrated policies and programmes; including the climate-vulnerable poor in developing strategies; and identifying how mitigation strategies can also reduce poverty and enable adaptation.

  4. ARM Climate Research Facility Annual Report 2004

    Energy Technology Data Exchange (ETDEWEB)

    Voyles, J.

    2004-12-31

    Like a rock that slowly wears away beneath the pressure of a waterfall, planet earth?s climate is almost imperceptibly changing. Glaciers are getting smaller, droughts are lasting longer, and extreme weather events like fires, floods, and tornadoes are occurring with greater frequency. Why? Part of the answer is clouds and the amount of solar radiation they reflect or absorb. These two factors clouds and radiative transfer represent the greatest source of error and uncertainty in the current generation of general circulation models used for climate research and simulation. The U.S. Global Change Research Act of 1990 established an interagency program within the Executive Office of the President to coordinate U.S. agency-sponsored scientific research designed to monitor, understand, and predict changes in the global environment. To address the need for new research on clouds and radiation, the U.S. Department of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. As part of the DOE?s overall Climate Change Science Program, a primary objective of the ARM Program is improved scientific understanding of the fundamental physics related to interactions between clouds and radiative feedback processes in the atmosphere.

  5. Philosophy of climate science part I: observing climate change

    OpenAIRE

    Frigg, Roman; Thompson, Erica; Werndl, Charlotte

    2015-01-01

    This is the first of three parts of an introduction to the philosophy of climate science. In this first part about observing climate change, the topics of definitions of climate and climate change, data sets and data models, detection of climate change, and attribution of climate change will be discussed.

  6. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  7. Climate Changes in Northeastern China During Last Four Decades

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The northeastern China is a sensitive region of climate change, whose detailed trend of climate changes is highly interesting. In this study, this kind of variation trend was analyzed. Potential evapotranspiration (PE) and moisture index (MI) were modeled by using Thornthwaite scheme based on the observation data of 1961-2004 from 94 meteorological stations. To describe the climate fluctuation in the northeastern China in 1961-2000, the linear regression method was used to analyze the variation trends of mean annual temperature, mean annual precipitation, PE and MI. Mann-Kendall method was used to test the significant difference. The results show a general increasing tendency in mean annual temperature, mean annual precipitation, PE and MI. However increasing tendency was more significant in mean annual temperature and PE than in mean annual precipitation and MI. Analysis of seasonal climate variation indicates that there showed positive trends in winter and in spring, while the positive trend was more significant in winter than in spring. Furthermore, the relations between climate changes and geographical factors were analyzed, the results show that both climate factors and their interannual variability were correlated to latitude, longitude and altitude,suggesting that latitude is the most climate factor affecting climate changes, followed by altitude and longitude.

  8. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  9. Preparing for climate change.

    Science.gov (United States)

    Holdgate, M

    1989-01-01

    There is a distinct probability that humankind is changing the climate and at the same time raising the sea level of the world. The most plausible projections we have now suggest a rise in mean world temperature of between 1 degree Celsius and 2 degrees Celsius by 2030--just 40 years hence. This is a bigger change in a smaller period than we know of in the experience of the earth's ecosystems and human societies. It implies that by 2030 the earth will be warmer than at any time in the past 120,000 years. In the same period, we are likely to see a rise of 15-30 centimeters in sea level, partly due to the melting of mountain glaciers and partly to the expansion of the warmer seas. This may not seem much--but it comes on top of the 12-centimeter rise in the past century and we should recall that over 1/2 the world's population lives in zones on or near coasts. A quarter meter rise in sea level could have drastic consequences for countries like the Maldives or the Netherlands, where much of the land lies below the 2-meter contour. The cause of climate change is known as the 'greenhouse effect'. Greenhouse glass has the property that it is transparent to radiation coming in from the sun, but holds back radiation to space from the warmed surfaces inside the greenhouse. Certain gases affect the atmosphere in the same way. There are 5 'greenhouse gases' and we have been roofing ourselves with them all: carbon dioxide concentrations in the atmosphere have increased 25% above preindustrial levels and are likely to double within a century, due to tropical forest clearance and especially to the burning of increasing quantities of coal and other fossil fuels; methane concentrations are now twice their preindustrial levels as a result of releases from agriculture; nitrous oxide has increased due to land clearance for agriculture, use of fertilizers, and fossil fuel combustion; ozone levels near the earth's surface have increased due mainly to pollution from motor vehicles; and

  10. Conflict in a changing climate

    Science.gov (United States)

    Carleton, T.; Hsiang, S. M.; Burke, M.

    2016-05-01

    A growing body of research illuminates the role that changes in climate have had on violent conflict and social instability in the recent past. Across a diversity of contexts, high temperatures and irregular rainfall have been causally linked to a range of conflict outcomes. These findings can be paired with climate model output to generate projections of the impact future climate change may have on conflicts such as crime and civil war. However, there are large degrees of uncertainty in such projections, arising from (i) the statistical uncertainty involved in regression analysis, (ii) divergent climate model predictions, and (iii) the unknown ability of human societies to adapt to future climate change. In this article, we review the empirical evidence of the climate-conflict relationship, provide insight into the likely extent and feasibility of adaptation to climate change as it pertains to human conflict, and discuss new methods that can be used to provide projections that capture these three sources of uncertainty.

  11. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  12. Adapting agriculture to climate change

    NARCIS (Netherlands)

    Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H.B.

    2007-01-01

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of exi

  13. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions.

  14. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  15. Sewer Systems and Climate Change

    OpenAIRE

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain insight into the relevant meteorological variables that are important with respect to climate change. A reservoir model is used to assess the impact of climate change on several combinations of st...

  16. How does climate change influence Arctic mercury?

    Science.gov (United States)

    Stern, Gary A; Macdonald, Robie W; Outridge, Peter M; Wilson, Simon; Chételat, John; Cole, Amanda; Hintelmann, Holger; Loseto, Lisa L; Steffen, Alexandra; Wang, Feiyue; Zdanowicz, Christian

    2012-01-01

    Recent studies have shown that climate change is already having significant impacts on many aspects of transport pathways, speciation and cycling of mercury within Arctic ecosystems. For example, the extensive loss of sea-ice in the Arctic Ocean and the concurrent shift from greater proportions of perennial to annual types have been shown to promote changes in primary productivity, shift foodweb structures, alter mercury methylation and demethylation rates, and influence mercury distribution and transport across the ocean-sea-ice-atmosphere interface (bottom-up processes). In addition, changes in animal social behavior associated with changing sea-ice regimes can affect dietary exposure to mercury (top-down processes). In this review, we address these and other possible ramifications of climate variability on mercury cycling, processes and exposure by applying recent literature to the following nine questions; 1) What impact has climate change had on Arctic physical characteristics and processes? 2) How do rising temperatures affect atmospheric mercury chemistry? 3) Will a decrease in sea-ice coverage have an impact on the amount of atmospheric mercury deposited to or emitted from the Arctic Ocean, and if so, how? 4) Does climate affect air-surface mercury flux, and riverine mercury fluxes, in Arctic freshwater and terrestrial systems, and if so, how? 5) How does climate change affect mercury methylation/demethylation in different compartments in the Arctic Ocean and freshwater systems? 6) How will climate change alter the structure and dynamics of freshwater food webs, and thereby affect the bioaccumulation of mercury? 7) How will climate change alter the structure and dynamics of marine food webs, and thereby affect the bioaccumulation of marine mercury? 8) What are the likely mercury emissions from melting glaciers and thawing permafrost under climate change scenarios? and 9) What can be learned from current mass balance inventories of mercury in the Arctic? The

  17. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  18. Vegetation zones shift in changing climate

    Science.gov (United States)

    Belda, Michal; Halenka, Tomas; Kalvova, Jaroslava; Holtanova, Eva

    2016-04-01

    The analysis of climate patterns can be performed for each climate variable separately or the data can be aggregated using e.g. some kind of climate classification. These classifications usually correspond to vegetation distribution in the sense that each climate type is dominated by one vegetation zone or eco-region. In case of the Köppen-Trewartha classification it is integrated assessment of temperature and precipitation together with their annual cycle as well. This way climate classifications also represent a convenient tool for the assessment and validation of climate models and for the analysis of simulated future climate changes. The Köppen-Trewartha classification is used on full CMIP5 family of more than 40 GCM simulations and CRU dataset for comparison. This evaluation provides insight on the GCM performance and errors for simulations of the 20th century climate. Common regions are identified, such as Australia or Amazonia, where many state-of-the-art models perform inadequately. Furthermore, the analysis of the CMIP5 ensemble for RCP 4.5 and 8.5 is performed to assess the climate change for future. There are significant changes for some types in most models e.g. increase of savanna and decrease of tundra for the future climate. For some types significant shifts in latitude can be seen when studying their geographical location in selected continental areas, e.g. toward higher latitudes for boreal climate. For Europe, EuroCORDEX results for both 0.11 and 0.44 degree resolution are validated using Köppen-Trewartha types in comparison to E-OBS based classification. ERA-Interim driven simulations are compared to both present conditions of CMIP5 models as well as their downscaling by EuroCORDEX RCMs. Finally, the climate change signal assessment is provided using the individual climate types. In addition to the changes assessed similarly as for GCMs analysis in terms of the area of individual types, in the continental scale some shifts of boundaries

  19. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  20. Regional Climate Change Hotspots over Africa

    Science.gov (United States)

    Anber, U.; Zakey, A.; Abd El Wahab, M.

    2009-04-01

    annual variability, which is critical for many activity sectors, such as agriculture and water management. The RCCI is calculated for the above mentioned set of global climate change simulations and is inter compared across regions to identify climate change, Hot- Spots, that is regions with the largest values of RCCI. It is important to stress that, as will be seen, the RCCI is a comparative index, that is a small RCCI value does not imply a small absolute change, but only a small climate response compared to other regions. The models used are: CCMA-3-T47 CNRM-CM3 CSIRO-MK3 GFDL-CM2-0 GISS-ER INMCM3 IPSL-CM4 MIROC3-2M MIUB-ECHO-G MPI-ECHAM5 MRI-CGCM2 NCAR-CCSM3 NCAR-PCM1 UKMO-HADCM3

  1. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  2. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Energy Technology Data Exchange (ETDEWEB)

    Karmalkar, Ambarish V. [University of Oxford, School of Geography and the Environment, Oxford (United Kingdom); Bradley, Raymond S. [University of Massachusetts, Department of Geosciences, Amherst, MA (United States); Diaz, Henry F. [NOAA/ESRL/CIRES, Boulder, CO (United States)

    2011-08-15

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Nino events in recent decades that adversely affected species in the region. (orig.)

  3. Climate change in Central America and Mexico: regional climate model validation and climate change projections

    Science.gov (United States)

    Karmalkar, Ambarish V.; Bradley, Raymond S.; Diaz, Henry F.

    2011-08-01

    Central America has high biodiversity, it harbors high-value ecosystems and it's important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it's unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Niño events in recent decades that adversely affected species in the region.

  4. Climate Change and Collective Violence.

    Science.gov (United States)

    Levy, Barry S; Sidel, Victor W; Patz, Jonathan A

    2017-03-20

    Climate change is causing increases in temperature, changes in precipitation and extreme weather events, sea-level rise, and other environmental impacts. It is also causing or contributing to heat-related disorders, respiratory and allergic disorders, infectious diseases, malnutrition due to food insecurity, and mental health disorders. In addition, increasing evidence indicates that climate change is causally associated with collective violence, generally in combination with other causal factors. Increased temperatures and extremes of precipitation with their associated consequences, including resultant scarcity of cropland and other key environmental resources, are major pathways by which climate change leads to collective violence. Public health professionals can help prevent collective violence due to climate change (a) by supporting mitigation measures to reduce greenhouse gas emissions, (b) by promoting adaptation measures to address the consequences of climate change and to improve community resilience, and

  5. Climate variability and change

    CERN Document Server

    Grassl, H

    1998-01-01

    Many factors influence climate. The present knowledge concerning the climate relevance of earth orbital parameters, solar luminosity, volcanoes, internal interactions, and human activities will be reported as well as the vulnerability of emission scenarios for given stabilization goals for greenhouse gas concentrations and the main points of the Kyoto Protocol

  6. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  7. Ground Water and Climate Change

    Science.gov (United States)

    Taylor, Richard G.; Scanlon, Bridget; Doell, Petra; Rodell, Matt; van Beek, Rens; Wada, Yoshihide; Longuevergne, Laurent; Leblanc, Marc; Famiglietti, James S.; Edmunds, Mike; Konikow, Leonard; Green, Timothy R.; Chen, Jianyao; Taniguchi, Makoto; Bierkens, Marc F. P.; MacDonald, Alan; Fan, Ying; Maxwell, Reed M.; Yechieli, Yossi; Gurdak, Jason J.; Allen, Diana M.; Shamsudduha, Mohammad; Hiscock, Kevin; Yeh, Pat J. -F; Holman, Ian; Treidel, Holger

    2013-01-01

    As the world's largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate change as more frequent and intense climate extremes (droughts and floods) increase variability in precipitation, soil moisture and surface water. Here we critically review recent research assessing the impacts of climate on ground water through natural and human-induced processes as well as through groundwater-driven feedbacks on the climate system. Furthermore, we examine the possible opportunities and challenges of using and sustaining groundwater resources in climate adaptation strategies, and highlight the lack of groundwater observations, which, at present, limits our understanding of the dynamic relationship between ground water and climate.

  8. Sewer Systems and Climate Change

    NARCIS (Netherlands)

    Brandsma, T.

    1993-01-01

    In this article the impact of climate change on the overflows of sewer systems is assessed. The emphasis is on the overflows of combined sewer systems. The purpose is twofold: first, to obtain a first-order estimate of the impact of climate change on overflows of sewer systems; and second, to obtain

  9. Ground water and climate change

    NARCIS (Netherlands)

    Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Beek, R. van; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; Konikow, L.; Green, T.R.; Chen, J.; Taniguchi, M.; Bierkens, M.F.P.; MacDonald, A.; Fan, Y.; Maxwell, R.M.; Yechieli, Y.; Gurdak, J.J.; Allen, D.M.; Shamsudduha, M.; Hiscock, K.; Yeh, Pat J.-F.; Holman, Ian; Treidel, Holger

    2012-01-01

    As the world’s largest distributed store of fresh water, ground water plays a central part in sustaining ecosystems and enabling human adaptation to climate variability and change. The strategic importance of ground water for global water and food security will probably intensify under climate chang

  10. Dune erosion under climate change

    NARCIS (Netherlands)

    de Winter, R.C.

    2014-01-01

    This PhD-thesis investigated the effect of future climate change on dune erosion in the Netherlands. At present, dune erosion occurs under a combination of large storm surge and high waves, which are both generated by a storm event. Therefore to investigate the affect of future climate change on dun

  11. Generating Arguments about Climate Change

    Science.gov (United States)

    Golden, Barry; Grooms, Jonathon; Sampson, Victor; Oliveri, Robin

    2012-01-01

    This unit is a different and fun way to engage students with an extremely important topic, climate change, which cuts across scientific and nonscientific disciplines. While climate change itself may not be listed in the curriculum of every science class, the authors contend that such a unit is appropriate for virtually any science curriculum.…

  12. Climate change, responsibility, and justice.

    Science.gov (United States)

    Jamieson, Dale

    2010-09-01

    In this paper I make the following claims. In order to see anthropogenic climate change as clearly involving moral wrongs and global injustices, we will have to revise some central concepts in these domains. Moreover, climate change threatens another value ("respect for nature") that cannot easily be taken up by concerns of global justice or moral responsibility.

  13. Teaching about Global Climate Change

    Science.gov (United States)

    Heffron, Susan Gallagher; Valmond, Kharra

    2011-01-01

    Students are exposed to many different media reports about global climate change. Movies such as "The Day After Tomorrow" and "Ice Age" are examples of instances when movie producers have sought to capture the attention of audiences by augmenting the challenges that climate change poses. Students may receive information from a wide range of media…

  14. Climate change challenges for SEA

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    This paper takes a theoretical perspective on the challenges that climate changes pose for SEA. The theoretical framework used is the sociologist Ulrich Beck’s theory of risk society and the aspects that characterise this society. Climate change is viewed as a risk, and the theory is used to derive...

  15. Global Megacities Differing Adaptation Responses to Climate Change: an Analysis of Annual Spend of Ten Major cities on the adaptation economy

    Science.gov (United States)

    Maslin, M. A.; Georgeson, L.

    2015-12-01

    Urban areas are increasingly at risk from climate change with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities, to improve the resilience of their infrastructure, economy and environment to climate change. Policymakers need to understand what is already being spent on adaptation so that they can make more effective and comprehensive adaptation plans. Through the measurement of spend in the newly defined 'Adaptation Economy' we analysis the current efforts of 10 global megacities in adapting to climate change. These cities were chosen based on their size, geographical location and their developmental status. The cities are London, Paris, New York, Mexico City, Sao Paulo, Beijing, Mumbai, Jakarta, Lagos and Addis Ababa. It is important to study a range of cities in different regions of the world, with different climates and at different states of socio-economic development. While in economic terms, disaster losses from weather, climate and geophysical events are greater in developed countries, fatalities and economic losses as a proportion of GDP are higher in developing countries. In all cities examined the Adaptation Economy is still a small part of the overall economy accounting for a maximum of 0.3% of the Cities total GDP (GDPc). The differences in total spend are significant between cities in developed and rapidly emerging countries, compared to those in developing countries with a spend ranging from £16 million to £1,500 million. Comparing key sub sectors, we demonstrate that there are distinctive adaptation profiles with developing cities having a higher relative spend on health, while developed cities have a higher spend on disaster preparedness, ICT and professional services. Comparing spend per capita and as a percentage of GDPc demonstrates even more clearly disparities between the cities in the study; developing country cities spend half as much as a proportion of GPCc in some cases, and

  16. Climate Change and Political Action: the Citizens' Climate Lobby

    Science.gov (United States)

    Nelson, P. H.; Secord, S.

    2014-12-01

    Recognizing the reality of global warming and its origin in greenhouse gas emissions, what does one do about it? Individual action is commendable, but inadequate. Collective action is necessary--Citizens' Climate Lobby proposes a "fee-and-dividend" approach in which a fee is imposed on carbon-based fuel at its sources of production. The fee increases annually in a predictable manner. The funds collected are paid out to consumers as monthly dividends. The approach is market-based, in that the cost of the fee to producers is passed on to consumers in the cost of carbon-based fuels. Downstream energy providers and consumers then make their choices regarding investments and purchases. Citizens' Climate Lobby (CCL) builds national consensus by growing local Chapters, led and populated by volunteers. The Chapters are charged with public education and presenting the fee-and-dividend proposal to their respective Representatives and Senators. CCL builds trust by its non-partisan approach, meeting with all members of Congress regardless of party affiliation and stance on climate-related issues. CCL also builds trust by a non-confrontational approach, seeking to understand rather than to oppose. CCL works both locally, through its local Chapters, and nationally, with an annual conference in Washington DC during which all Congressional offices are visited. CCL recognizes that a long-term, sustained effort is necessary to address climate change.

  17. Malaria ecology and climate change

    Science.gov (United States)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  18. Fire and Climate Change in Boreal Forests

    Science.gov (United States)

    Flannigan, M. D.; Logan, K. A.; Stocks, S. J.; Wotton, B. M.; Amiro, B. D.

    2004-12-01

    Fire is the major stand-renewing agent for much of the circumboreal forest, and greatly influences the structure and function of boreal ecosystems from regeneration through mortality. Current estimates are that an average of 5-15 million hectares burn annually in boreal forests, almost exclusively in Siberia, Canada and Alaska. There is a growing global awareness of the importance and vulnerability of the boreal region to projected future climate change. Fire activity is strongly influenced by four factors - weather/climate, vegetation \\(fuels\\), natural ignition agents and humans. Climate and weather are strongly linked to fire activity which suggests that the fire regime will respond rapidly to changes in climate. Recent results suggest that area burned by fire is related to temperature and fuel moisture. The climate of the northern hemisphere has been warming due to an influx of radiatively active gases \\(carbon dioxide, methane etc.\\) as a result of human activities. This altered climate, modelled by General Circulation Models \\(GCMs\\), indicates a profound impact on fire activity in the circumboreal forest. Recent results using GCMs suggest that in many regions fire weather/fire danger conditions will be more severe, area burned will increase, people-caused and lightning-caused ignitions will increase, fire seasons will be longer and the intensity and severity of fires will increase. This increase in fire activity may lead to a positive feedback cycle with the increased release of greenhouse gases. Although a run away scenario is unlikely as changes in vegetation would limit the positive feedback cycle. Changes in fire activity as a result of climate change could have a greater and more immediate impact on vegetation distribution and abundance as compared to the direct impact of climate change.

  19. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  20. Climate change or variable weather

    DEFF Research Database (Denmark)

    Baron, Nina; Kjerulf Petersen, Lars

    2015-01-01

    Climate scenarios predict that an effect of climate change will be more areas at risk of extensive flooding. This article builds on a qualitative case study of homeowners in the flood-prone area of Lolland in Denmark and uses the theories of Tim Ingold and Bruno Latour to rethink the way we...... understand homeowners’ perception of climate change and local flood risk. Ingold argues that those perceptions are shaped by people’s experiences with and connections to their local landscape. People experience the local variability of the weather, and not global climate change as presented in statistical...... data and models. This influences the way they understand the future risks of climate change. Concurrently, with the theory of Latour, we can understand how those experiences with the local landscape are mediated by the existing water-managing technologies such as pumps and dikes. These technologies...

  1. Risk communication on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Wardekker, J.A.

    2004-10-01

    For the title study use has been made of available scientific literature, results of new surveys and interviews. In the first part of the study attention is paid to the exchange of information between parties involved in climate change and differences in supply and demand of information. In the second part citizens' views on climate change, problems with communication on climate change, and the resulting consequences and options for communication are dealt with. In this second part also barriers to action that are related or influenced by communication are taken into consideration.

  2. Climatic change; Le Changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Perthuis, Ch. de [Universite de Paris-Dauphine, 75 - Paris (France); Caisse des depots, Mission climat, 75 - Paris (France); Delbosc, A. [Caisse des depots, Mission climat, 75 - Paris (France)

    2009-07-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  3. Inhalation anaesthetics and climate change

    DEFF Research Database (Denmark)

    Andersen, Mads Peter Sulbæk; Sander, S P; Nielsen, O J

    2010-01-01

    Although the increasing abundance of CO(2) in our atmosphere is the main driver of the observed climate change, it is the cumulative effect of all forcing agents that dictate the direction and magnitude of the change, and many smaller contributors are also at play. Isoflurane, desflurane......, and sevoflurane are widely used inhalation anaesthetics. Emissions of these compounds contribute to radiative forcing of climate change. To quantitatively assess the impact of the anaesthetics on the forcing of climate, detailed information on their properties of heat (infrared, IR) absorption and atmospheric...

  4. Coping with climate change

    DEFF Research Database (Denmark)

    Zheng, Yuan; Byg, Anja

    2014-01-01

    found across villages regarding the degree of perceived sensitivity and responses despite similar exposure to climate extremes. These differences are partly related to the nature of events and varied socio-economic characteristics of households, which influence their vulnerability and ability to cope...

  5. Deliberating Climate Change

    DEFF Research Database (Denmark)

    Agger, Annika; Jelsøe, Erling; Jæger, Birgit

    to include the voice of the citizens into complex scientific and technological issues. The purpose of WWV was to pass on the opinions of ordinary citizens to political decision-makers at The United Nations Climate Summit, COP15, in Copenhagen in December 2009. The authors made a study of the Danish WWV event...

  6. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    ) a study on the effects of elevated atmospheric CO2-concentration, warming and drought on the photosynthetic capacity and phenology of C. vulgaris and D. flexuosa in an outdoor climate change experiment on a grassy heathland in Denmark; 4) a study on climate change impacts on the competitive interactions...... and flexibly reduces its green biomass under drought conditions. C. vulgaris is less flexible and hardly adjusts photosynthetic capacity or green biomass to drought or warming. Despite these differential responses, competitive interactions were robust. C. vulgaris, in the building phase, outcompetes D...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...

  7. Impact of Climate Change on Riverbank Erosion

    Directory of Open Access Journals (Sweden)

    Most. Nazneen Aktar

    2014-04-01

    Full Text Available Bangladesh is one of the most climate vulnerable countries in the world. This country is highly vulnerable to climate change because of a number of hydro-geological and socio-economic factors such as geographical location, topography, extreme climate variability, high population density, poverty incidence and dependency of agriculture on climate. Presently this country has been experiencing different hydro-meteorological disastrous events that have never been experienced before. Along with other natural disasters, floods are expected to be impacted by climate change in the future. Since floods are always associated with riverbank erosion, it is essential to assess the impact of climate change on bank erosion. Riverbank erosion is also a serious hazard that directly or indirectly causes the suffering of millions of people. Beyond that, most of the old cities and important infrastructures in this country are situated on riverbanks since once upon a time waterway transportation was the main mode of travel. Moreover, people like to reside near rivers because of their dependency on river water for irrigation purposes. So a major part of the total population of this country lives near riverbanks, which frequently makes them victims of riverbank erosion. The major rivers, the Jamuna, the Ganges and the Padma, annually erode thousand hectares of floodplain land and damage or destroy infrastructures. Consequently, this natural disaster has become a major social hazard. This study aims to find out the relationship between floods and bank erosion; and hence the impact of climate changes on riverbank erosion. Since there is no record on riverbank erosion, this study attempts to measure it with the help of satellite images. It has been found in this study that climate change will play a significant role in riverbank erosion. On an average, the riverbank erosion along the major three rivers will be increased by 13% by 2050 and it will be increased by 18% by

  8. Ensuring sustainable development within a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Meltofte Traerup, S.L. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Systems Analysis Div., Roskilde (Denmark))

    2010-09-15

    The research in this thesis focuses on the impacts of and adaptation to present variations in climate and to projected future changes. The research has dealt with different levels, i.e. household/community, national/policymaking, and sectoral level, to show different perspectives of the implications of climate variability and change to development. In particular, it focuses on how present variations in rainfall patterns affect rural households, ways to strengthen households' resilience to climate variability, and the costs and benefits of adaptation measures. The research attempts to contribute to the knowledge that informs the development community and national governments for policy-making on the implications of climate change on development planning and strategies. It is argued in the thesis that it is essential for sustainable development to mainstream climate change into strategies and planning where relevant. To do this a knowledge of the costs and benefits of diverse adaptation measures is essential. Fluctuations in annual and seasonal rainfall, both in terms of modest and excessive rains, are found to cause negative shocks to rural household incomes in the Kagera a region of Tanzania. An analysis of rainfall and household data for the region shows large local discrepancies in the distribution of rainfall, as well as in households reporting shocks to income caused by harvest failure. It is also evident from the research results that the timing of rainfall seems to play a greater role than the level of annual precipitation. The coping strategies that households report following subsequent to a harvest failure further show local divergence in the choice of, for example, taking casual employment and relying on support from others in the form of informal networks. These results support earlier work which points in the same direction and emphasizes that policies should be targeted to local specificities. This provides a great motivation for targeted

  9. Can Climate Change Negotiations Succeed?

    Directory of Open Access Journals (Sweden)

    Jon Hovi

    2013-09-01

    Full Text Available More than two decades of climate change negotiations have produced a series of global climate agreements, such as the Kyoto Protocol and the Copenhagen Accords, but have nevertheless made very limited progress in curbing global emissions of greenhouse gases. This paper considers whether negotiations can succeed in reaching an agreement that effectively addresses the climate change problem. To be effective, a climate agreement must cause substantial emissions reductions either directly (in the agreement's own lifetime or indirectly (by paving the way for a future agreement that causes substantial emissions reductions directly. To reduce global emissions substantially, an agreement must satisfy three conditions. Firstly, participation must be both comprehensive and stable. Secondly, participating countries must accept deep commitments. Finally, the agreement must obtain high compliance rates. We argue that three types of enforcement will be crucial to fulfilling these three conditions: (1 incentives for countries to ratify with deep commitments, (2 incentives for countries that have ratified with deep commitments to abstain from withdrawal, and (3 incentives for countries having ratified with deep commitments to comply with them. Based on assessing the constraints that characterize the climate change negotiations, we contend that adopting such three-fold potent enforcement will likely be politically infeasible, not only within the United Nations Framework Convention on Climate Change, but also in the framework of a more gradual approach. Therefore, one should not expect climate change negotiations to succeed in producing an effective future agreement—either directly or indirectly.

  10. Climate change; Le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Based on contributions on 120 French and foreign scientists representing different disciplines (mathematics, physics, mechanics, chemistry, biology, medicine, and so on), this report proposes an overview of the scientific knowledge and debate about climate change. It discusses the various indicators of climate evolution (temperatures, ice surfaces, sea level, biological indicators) and the various factors which may contribute to climate evolution (greenhouse gases, solar radiation). It also comments climate evolutions in the past as they can be investigated through some geological, thermal or geochemical indicators. Then, the authors describe and discuss the various climate mechanisms: solar activity, oceans, ice caps, greenhouse gases. In a third part, the authors discuss the different types of climate models which differ by the way they describe processes, and the current validation process for these models

  11. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1993-02-01

    Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost, which is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost, and is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. Depending on the nature, rate, and magnitude of global environmental change, the arctic may have a positive or negative feedback on global change. Results from the DOE- funded research efforts of 1990 and 1991 indicate that the arctic has become a source of CO{sub 2} to the atmosphere. Measurements made in the Barrow, Alaska region during 1992 support these results. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. There are obvious potential errors in scaling plot level measurements to landscape, mesoscale, and global spatial scales. In light of the results from the recent DOE-funded research, and the remaining uncertainties regarding the change in arctic ecosystem function due to high latitude warming, a revised set of research goals is proposed for the 1993--94 year. The research proposed in this application has four principal aspects: (A) Long- term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}. (B) Circumpolar patterns of net ecosystem CO{sub 2} flux. (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux. (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales.

  12. Climate change and group dynamics

    NARCIS (Netherlands)

    Postmes, Tom

    2015-01-01

    The characteristics and views of people sceptical about climate change have been analysed extensively. A study now confirms that sceptics in the US have some characteristics of a social movement, but shows that the same group dynamics propel believers

  13. Cities lead on climate change

    Science.gov (United States)

    Pancost, Richard D.

    2016-04-01

    The need to mitigate climate change opens up a key role for cities. Bristol's year as a Green Capital led to great strides forward, but it also revealed that a creative and determined partnership across cultural divides will be necessary.

  14. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  15. Climate Change Science Program Collection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Change Science Program (CCSP) Collection consists of publications and other resources produced between 2007 and 2009 by the CCSP with the intention of...

  16. Climate change: Unattributed hurricane damage

    Science.gov (United States)

    Hallegatte, Stéphane

    2015-11-01

    In the United States, hurricanes have been causing more and more economic damage. A reanalysis of the disaster database using a statistical method that accounts for improvements in resilience opens the possibility that climate change has played a role.

  17. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change......, as a point of departure for an examination of what happens when a requirement to save energy and resources, as a response to global climate change, encounters local ways of knowing the world. Developed through meetings, workshops, competitions and the promotion of exemplary individuals, the campaign...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...

  18. Welfare impacts of climate change

    NARCIS (Netherlands)

    Hof, Andries F.

    2015-01-01

    Climate change can affect well-being in poor economies more than previously shown if its effect on economic growth, and not only on current production, is considered. But this result does not necessarily suggest greater mitigation efforts are required.

  19. Climatic change due to land surface alterations

    Energy Technology Data Exchange (ETDEWEB)

    Franchito, S.H.; Rao, V.B.

    1992-01-01

    A primitive equations global zonally averaged climate model is developed. The model includes biofeedback mechanisms. For the Northern Hemisphere the parameterization of biofeedback mechanisms is similar to that used by Gutman et al. For the Southern Hemisphere new parameterizations are derived. The model simulates reasonably well the mean annual zonally averaged climate and geobotanic zones. Deforestation, desertification, and irrigation experiments are performed. In the case of deforestation and desertification there is a reduction in the surface net radiation, evaporation, and precipitation and an increase in the surface temperature. In the case of irrigation experiment opposite changes occurred. In all the cases considered the changes in evapotranspiration overcome the effect of surface albedo modification. In all the experiments changes are smaller in the Southern Hemisphere.

  20. Responsible Reaction To Climate Change

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    China calls for turning UNFCCC provisions into concrete actions Never before has climate change been as prominent on the public agenda as it is today.Its rele- vance was highlighted once again when more than 10,000 delegates from over 180 countries flocked to Bali early this month to discuss the topic.Environment officials as well as representatives from intergovernmental and nongovernmental organizations gath- ered on the Indonesian island on December 3-14 for the UN Climate Change Conference.

  1. Climate Change and National Security

    Science.gov (United States)

    2013-02-01

    atmosphere, which is causing warming of global temperatures as well as more extreme and less predictable weather patterns. While this issue is debated in...develop unique, policy-relevant solutions to complex global challenges. About the CCAPS Program The Climate Change and African Political Stability...political circles, scientists overwhelmingly agree that human-induced or anthropogenic climate change is real. Given the complexity of the issue, there

  2. Social protection and climate change

    DEFF Research Database (Denmark)

    Johnson, Craig; Bansha Dulal, Hari; Prowse, Martin Philip

    2013-01-01

    This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject.......This article lays the foundation for this special issue on social protection and climate change, introducing and evaluating the ways in which the individual articles contribute to our understanding of the subject....

  3. Climate Change in Developing Countries

    Energy Technology Data Exchange (ETDEWEB)

    Van Drunen, M.A.; Lasage, R.; Dorlands, C. (eds.) [Free University, Amsterdam (Netherlands)

    2006-09-15

    This book presents an overview of the studies conducted by the Netherlands Climate Change Studies Assistance programme. The programme was set up in recognition of the need for developing countries, in particular, to face the challenges confronting all countries under the UN Framework Convention on Climate Change. The book presents an overview of the main results in 13 countries: Bolivia, Colombia, Ecuador, Egypt, Ghana, Kazakhstan, Mali, Mongolia, Senegal, Surinam, Vietnam, Yemen and Zimbabwe. It provides a critical evaluation of the methodologies and approaches used, a cross-country synthesis and recommendations for further studies. Subjects dealt with include not only impact studies, but also vulnerability and adaptation, mitigation and climate related policy.

  4. Update on global climate change.

    Science.gov (United States)

    Weber, Carol J

    2010-01-01

    Global climate change brings new challenges to the control of infectious diseases. Since many waterborne and vector-borne pathogens are highly sensitive to temperature and rainfall, health risks resulting from a warming and more variable climate are potentially huge. Global climate change involves the entire world, but the poorest countries will suffer the most. Nations are coming together to address what can be done to reduce greenhouse gas emissions and cope with inevitable temperature increases. A key component of any comprehensive mitigation and adaptation plan is a strong public health infrastructure across the world. Nothing less than global public health security is at stake.

  5. Annually resolved North Atlantic marine climate over the last millennium

    Science.gov (United States)

    Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.

    2016-12-01

    Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.

  6. CLIMATE CHANGES: CAUSES AND IMPACT

    Directory of Open Access Journals (Sweden)

    Camelia Slave

    2013-07-01

    Full Text Available Present brings several environmental problems for people. Many of these are closely related, but by far the most important problem is the climate change. In the course of Earth evolution, climate has changed many times, sometimes dramatically. Warmer eras always replaced and were in turn replaced by glacial ones. However, the climate of the past almost ten thousand years has been very stable. During this period human civilization has also developed. In the past nearly 100 years - since the beginning of industrialization - the global average temperature has increased by approx. 0.6 ° C (after IPCC (Intergovernmental Panel on Climate Change, faster than at any time in the last 1000 years.

  7. Response of a tundra ecosystem to elevated atmospheric carbon dioxide and CO{sub 2}-induced climate change. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Oechel, W.C.

    1992-04-01

    Northern ecosystems contain up to 455 Gt of C in the soil active layer and upper permafrost. The soil carbon in these layers is equivalent to approximately 60% of the carbon currently in the atmosphere as CO{sub 2}. Much of this carbon is stored in the soil as dead organic matter. Its fate is subject to the net effects of global change on the plant and soil systems of northern ecosystems. The arctic alone contains about 60 Gt C, 90% of which is present in the soil active layer and upper permafrost. The arctic is assumed to have been a sink for CO{sub 2} during the historic and recent geologic past. The arctic has the potential to be a very large, long-term source or sink of CO{sub 2} with respect to the atmosphere. In situ experimental manipulations of atmospheric CO{sub 2}, indicated that there is little effect of elevated atmospheric CO{sub 2} on leaf level photosynthesis or whole-ecosystem CO{sub 2} flux over the course of weeks to years, respectively. However, there may be longer- term ecosystem responses to elevated CO{sub 2} that could ultimately affect ecosystem CO{sub 2} balance. In addition to atmospheric CO{sub 2}, climate may affect net ecosystem carbon balance. Recent results indicate that the arctic has become a source of CO{sub 2} to the atmosphere. This change coincides with recent climatic variation in the arctic, and suggests a positive feedback of arctic ecosystems on atmospheric CO{sub 2} and global change. The research proposed in this application has four principal aspects: (A) Long-term response of arctic plants and ecosystems to elevated atmospheric CO{sub 2}; (B) Circumpolar patterns of net ecosystem CO{sub 2} flux; (C) In situ controls by temperature and moisture on net ecosystem CO{sub 2} flux; (D) Scaling of CO{sub 2} flux from plot, to landscape, to regional scales (In conjunction with research proposed for NSF support).

  8. Late Quaternary changes in climate

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, K.; Karlen, W. [Stockholm Univ. (Sweden). Dept. of Physical Geography

    1998-12-01

    This review concerns the Quaternary climate with an emphasis on the last 200 000 years. The present state of art in this field is described and evaluated. The review builds on a thorough examination of classic and recent literature. General as well as detailed patterns in climate are described and the forcing factors and feed-back effects are discussed. Changes in climate occur on all time-scales. During more than 90% of the Quaternary period earth has experienced vast ice sheets, i.e. glaciations have been more normal for the period than the warm interglacial conditions we face today. Major changes in climate, such as the 100 000 years glacial/interglacial cycle, are forced by the Milankovitch three astronomical cycles. Because the cycles have different length climate changes on earth do not follow a simple pattern and it is not possible to find perfect analogues of a certain period in the geological record. Recent discoveries include the observation that major changes in climate seem to occur at the same time on both hemispheres, although the astronomical theory implies a time-lag between latitudes. This probably reflects the influence of feed-back effects within the climate system. Another recent finding of importance is the rapid fluctuations that seem to be a normal process. When earth warmed after the last glaciation temperature jumps of up to 10 deg C occurred within less than a decade and precipitation more than doubled within the same time. The forcing factors behind these rapid fluctuations are not well understood but are believed to be a result of major re-organisations in the oceanic circulation. Realizing that nature, on its own, can cause rapid climate changes of this magnitude put some perspective on the anthropogenic global warming debate, where it is believed that the release of greenhouse gases will result in a global warming of a few C. To understand the forcing behind natural rapid climate changes appears as important as to understand the role

  9. Projected changes in the annual wind-wave cycle

    Science.gov (United States)

    Stopa, Justin; Hemer, Mark

    2016-04-01

    The uneven distribution of the sun's energy directly and indirectly drives physical atmosphere and ocean processes. This creates intricate spatial patterns within the seasonal cycle where higher order harmonics are seen to play an important role in regional climates. The annual cycle and associated harmonics are the strongest oscillations within the climate system and describe the majority of variance across the oceans. Consequently when studying climate oscillations, it is common practice to remove the seasonal cycle in order to elucidate inter-annual cycles. Furthermore the annual cycle plays an important role in the evolution of other inter-annual oscillations through non-linear coupling (e.g ENSO). Despite the important role of the seasons within the climate system very few studies describe the seasonality with any rigor. Therefore our focus is to describe the higher harmonics linked to the annual cycle and how they are expected to evolve in a changing climate. Using simulations from the Coordinated Ocean Wave Climate Project, the seasonality of multiple mid and end of the 21st century wind-wave climate projections are analyzed relative to historical experiment forced simulations. A comparison of various GCM forced wave simulations to reanalysis datasets reveals that a multi-model ensemble best describes the seasons. This ensemble is used to describe the changes within the wave seasonality. A systematic analysis reveals the primary mode of the seasons is relatively unchanged in the mid and end century. The largest changes occur in the second and third modes. The second mode defines the shift or translation within the seasons while the third mode characterizes relative change between the seasonal extremes (ie sharpening or flattening of the waveform). The relative changes in the second and third modes are not homogeneous and intricate patterns are revealed. Certain regions have sharper contrast in seasonality while other regions have a longer strong season. In

  10. Ocean Observations of Climate Change

    Science.gov (United States)

    Chambers, Don

    2016-01-01

    The ocean influences climate by storing and transporting large amounts of heat, freshwater, and carbon, and exchanging these properties with the atmosphere. About 93% of the excess heat energy stored by the earth over the last 50 years is found in the ocean. More than three quarters of the total exchange of water between the atmosphere and the earth's surface through evaporation and precipitation takes place over the oceans. The ocean contains 50 times more carbon than the atmosphere and is at present acting to slow the rate of climate change by absorbing one quarter of human emissions of carbon dioxide from fossil fuel burning, cement production, deforestation and other land use change.Here I summarize the observational evidence of change in the ocean, with an emphasis on basin- and global-scale changes relevant to climate. These include: changes in subsurface ocean temperature and heat content, evidence for regional changes in ocean salinity and their link to changes in evaporation and precipitation over the oceans, evidence of variability and change of ocean current patterns relevant to climate, observations of sea level change and predictions over the next century, and biogeochemical changes in the ocean, including ocean acidification.

  11. Climate change characteristics of Amur River

    Directory of Open Access Journals (Sweden)

    Lan-lan YU

    2013-04-01

    Full Text Available Unusually severe weather is occurring more frequently due to global climate change. Heat waves, rainstorms, snowstorms, and droughts are becoming increasingly common all over the world, threatening human lives and property. Both temperature and precipitation are representative variables usually used to directly reflect and forecast the influences of climate change. In this study, daily data (from 1953 to 1995 and monthly data (from 1950 to 2010 of temperature and precipitation in five regions of the Amur River were examined. The significance of changes in temperature and precipitation was tested using the Mann-Kendall test method. The amplitudes were computed using the linear least-squares regression model, and the extreme temperature and precipitation were analyzed using hydrological statistical methods. The results show the following: the mean annual temperature increased significantly from 1950 to 2010 in the five regions, mainly due to the warming in spring and winter; the annual precipitation changed significantly from 1950 to 2010 only in the lower mainstream of the Amur River; the frequency of extremely low temperature events decreased from 1953 to 1995 in the mainstream of the Amur River; the frequency of high temperature events increased from 1953 to 1995 in the mainstream of the Amur River; and the frequency of extreme precipitation events did not change significantly from 1953 to 1995 in the mainstream of the Amur River. This study provides a valuable theoretical basis for settling disputes between China and Russia on sustainable development and utilization of water resources of the Amur River.

  12. Climate change characteristics of Amur River

    Institute of Scientific and Technical Information of China (English)

    Lan-lan YU; Zi-qiang XIA; Jing-ku LI; Tao CAI

    2013-01-01

    Unusually severe weather is occurring more frequently due to global climate change. Heat waves, rainstorms, snowstorms, and droughts are becoming increasingly common all over the world, threatening human lives and property. Both temperature and precipitation are representative variables usually used to directly reflect and forecast the influences of climate change. In this study, daily data (from 1953 to 1995) and monthly data (from 1950 to 2010) of temperature and precipitation in five regions of the Amur River were examined. The significance of changes in temperature and precipitation was tested using the Mann-Kendall test method. The amplitudes were computed using the linear least-squares regression model, and the extreme temperature and precipitation were analyzed using hydrological statistical methods. The results show the following:the mean annual temperature increased significantly from 1950 to 2010 in the five regions, mainly due to the warming in spring and winter;the annual precipitation changed significantly from 1950 to 2010 only in the lower mainstream of the Amur River;the frequency of extremely low temperature events decreased from 1953 to 1995 in the mainstream of the Amur River;the frequency of high temperature events increased from 1953 to 1995 in the mainstream of the Amur River; and the frequency of extreme precipitation events did not change significantly from 1953 to 1995 in the mainstream of the Amur River. This study provides a valuable theoretical basis for settling disputes between China and Russia on sustainable development and utilization of water resources of the Amur River.

  13. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone

    OpenAIRE

    Gruber, Andreas; Zimmermann, Jolanda; Wieser, Gerhard; Oberhuber, Walter

    2009-01-01

    Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared wi...

  14. Mekong River flow and hydrological extremes under climate change

    Directory of Open Access Journals (Sweden)

    L. P. Hoang

    2015-11-01

    Full Text Available Climate change poses critical threats to water related safety and sustainability in the Mekong River basin. Hydrological impact signals derived from CMIP3 climate change scenarios, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the most recent CMIP5 climate change scenarios. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high flow and low flow conditions. Similar to earlier CMIP3-based assessments, the hydrological cycle also intensifies in the CMIP5 climate change scenarios. The scenarios ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location. Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. We further found that extremely high flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risk in the basin. The implications of climate change induced hydrological changes are critical and thus require special attention in climate change adaptation and disaster-risk reduction.

  15. Climate Change in New England | Energy and Global Climate ...

    Science.gov (United States)

    2017-04-10

    EPA Region 1's Energy and Climate Unit and Oceans and Coastal Unit provide information and technical assistance on climate change impacts and adaptation, resilience and preparedness to climate disruptions

  16. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene

    NARCIS (Netherlands)

    Goudeau, M-L. S.; Reichart, G.-J.; Wit, J.C.; de Nooijer, L.J.; Grauel, A.-L.; Bernasconi, S.M.; de Lange, G.J.

    2015-01-01

    Abstract Holocene rapid climate change (RCC) events, such as the Little Ice Age (LIA), are thought to have influenced average annual temperatures only marginally, but to have affected winter temperatures relatively strongly. With summer temperatures relatively unaffected, reconstructing climate chan

  17. Climate change adaptation in Ethiopia

    DEFF Research Database (Denmark)

    Weldegebriel, Zerihun Berhane; Prowse, Martin

    Ethiopia is vulnerable to climate change due to its limited development and dependence on agriculture. Social protection schemes like the Productive Safety Net Programme (PSNP) can play a positive role in promoting livelihoods and enhancing households’ risk management. This article examines......, they suggest the PSNP may not be helping smallholders diversify income sources in a positive manner for climate adaptation. The article concludes by arguing for further investigation of the PSNP’s influence on smallholders’ adaptation strategies....

  18. Climate Change: Meeting the Challenge

    Science.gov (United States)

    Chance, Paul; Heward, William L.

    2010-01-01

    In "Climate Change: Meeting the Challenge," we conclude the special section by assuming that you have been persuaded by Thompson's paper or other evidence that global warming is real and poses a threat that must be dealt with, and that for now the only way to deal with it is by changing behavior. Then we ask what you, as behavior analysts, can do…

  19. Health Effects of Climate Change

    Science.gov (United States)

    ... resulting health effects. Extreme weather events due to climate change may cause people to experience geographic displacement, damage to their property, loss of loved ones, and chronic stress—all of which can negatively affect ... change may be associated with staple food shortages, malnutrition, ...

  20. Dislocated interests and climate change

    Science.gov (United States)

    Davis, Steven J.; Diffenbaugh, Noah

    2016-06-01

    The predicted effects of climate change on surface temperatures are now emergent and quantifiable. The recent letter by Hansen and Sato (2016 Environ. Res. Lett. 11 034009) adds to a growing number of studies showing that warming over the past four decades has shifted the distribution of temperatures higher almost everywhere, with the largest relative effects on summer temperatures in developing regions such as Africa, South America, southeast Asia, and the Middle East (e.g., Diffenbaugh and Scherer 2011 Clim. Change 107 615-24 Anderson 2011 Clim. Change 108 581; Mahlstein et al 2012 Geophys. Res. Lett. 39 L21711). Hansen and Sato emphasize that although these regions are warming disproportionately, their role in causing climate change—measured by cumulative historical CO2 emissions produced—is small compared to the US and Europe, where the relative change in temperatures has been less. This spatial and temporal mismatch of climate change impacts and the burning of fossil fuels is a critical dislocation of interests that, as the authors note, has ‘substantial implications for global energy and climate policies.’ Here, we place Hansen and Sato’s ‘national responsibilities’ into a broader conceptual framework of problematically dislocated interests, and briefly discuss the related challenges for global climate mitigation efforts.

  1. Double Exposure: Photographing Climate Change

    Science.gov (United States)

    Arnold, D. P.; Wake, C. P.; Romanow, G. B.

    2008-12-01

    Double Exposure, Photographing Climate Change, is a fine-art photography exhibition that examines climate change through the prism of melting glaciers. The photographs are twinned shots of glaciers, taken in the mid-20th century by world-renowned photographer Brad Washburn, and in the past two years by Boston journalist/photographer David Arnold. Arnold flew in Washburn's aerial "footprints", replicating stunning black and white photographs, and documenting one irreversible aspect of climate change. Double Exposure is art with a purpose. It is designed to educate, alarm and inspire its audiences. Its power lies in its beauty and the shocking changes it has captured through a camera lens. The interpretive text, guided by numerous experts in the fields of glaciology, global warming and geology, helps convey the message that climate change has already forced permanent changes on the face of our planet. The traveling exhibit premiered at Boston's Museum of Science in April and is now criss-crossing the nation. The exhibit covers changes in the 15 glaciers that have been photographed as well as related information about global warming's effect on the planet today.

  2. Mekong River flow and hydrological extremes under climate change

    Science.gov (United States)

    Phi Hoang, Long; Lauri, Hannu; Kummu, Matti; Koponen, Jorma; van Vliet, Michelle T. H.; Supit, Iwan; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2016-07-01

    Climate change poses critical threats to water-related safety and sustainability in the Mekong River basin. Hydrological impact signals from earlier Coupled Model Intercomparison Project phase 3 (CMIP3)-based assessments, however, are highly uncertain and largely ignore hydrological extremes. This paper provides one of the first hydrological impact assessments using the CMIP5 climate projections. Furthermore, we model and analyse changes in river flow regimes and hydrological extremes (i.e. high-flow and low-flow conditions). In general, the Mekong's hydrological cycle intensifies under future climate change. The scenario's ensemble mean shows increases in both seasonal and annual river discharges (annual change between +5 and +16 %, depending on location). Despite the overall increasing trend, the individual scenarios show differences in the magnitude of discharge changes and, to a lesser extent, contrasting directional changes. The scenario's ensemble, however, shows reduced uncertainties in climate projection and hydrological impacts compared to earlier CMIP3-based assessments. We further found that extremely high-flow events increase in both magnitude and frequency. Extremely low flows, on the other hand, are projected to occur less often under climate change. Higher low flows can help reducing dry season water shortage and controlling salinization in the downstream Mekong Delta. However, higher and more frequent peak discharges will exacerbate flood risks in the basin. Climate-change-induced hydrological changes will have important implications for safety, economic development, and ecosystem dynamics and thus require special attention in climate change adaptation and water management.

  3. How Volcanism Controls Climate Change

    Science.gov (United States)

    Ward, P. L.

    2013-12-01

    km decrease in tropopause height. Changes in the rates and types of volcanism have been the primary cause of climate change throughout geologic time. Large explosive volcanoes erupting as frequently as once per decade increment the world into ice ages. Extensive, effusive basaltic volcanism warms the world out of ice ages. Twelve of the 13 dated basaltic table mountains in Iceland experienced their final eruptive phase during the last deglaciation when deposits of sulfate and volcanic ash fell over Greenland at their highest rates. Massive flood basalts are typically accompanied by extreme warming, ozone depletion, and major mass extinctions. The Paleocene-Eocene Thermal Maximum occurred when subaerial extrusion of basalts related to the opening of the Greenland-Norwegian Sea suddenly increased to rates greater than 3000 cubic km per km of rift per million years. Dansgaard-Oeschger sudden warming events are contemporaneous with increased volcanism especially in Iceland and last longer when that volcanism lasts longer. Sudden influxes of fresh water often observed in the North Atlantic during these events are most likely caused by extensive sub-glacial volcanism. The Medieval Warm Period, Little Ice Age, major droughts, and many sudden changes in human civilization began with substantial increases in volcanism. Extensive submarine volcanism does not affect climate directly but is linked with increases in ocean acidity and anoxic events.

  4. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  5. Assessing urban climate change resilience

    Science.gov (United States)

    Voskaki, Asimina

    2016-04-01

    Recent extreme weather events demonstrate that many urban environments are vulnerable to climate change impacts and as a consequence designing systems for future climate seems to be an important parameter in sustainable urban planning. The focus of this research is the development of a theoretical framework to assess climate change resilience in urban environments. The methodological approach used encompasses literature review, detailed analysis, and combination of data, and the development of a series of evaluation criteria, which are further analyzed into a list of measures. The choice of the specific measures is based upon various environmental, urban planning parameters, social, economic and institutional features taking into consideration key vulnerabilities and risk associated with climate change. The selected criteria are further prioritized to incorporate into the evaluation framework the level of importance of different issues towards a climate change resilient city. The framework could support decision making as regards the ability of an urban system to adapt. In addition it gives information on the level of adaptation, outlining barriers to sustainable urban planning and pointing out drivers for action and reaction.

  6. Making Sense of Climate Change

    DEFF Research Database (Denmark)

    Blichfeldt, Nikolaj Vendelbo

    The thesis is an ethnographic description of a climate change mitigation campaign among retirees in the urban residential community Dongping Lane in central Hangzhou, and an examination of local understandings of connections between everyday life in the community and global climate change...... is conceived as part of wider state-sponsored efforts to foster civilized behavior and a sense of belonging to the residential community among urban citizens in China. The campaigners connect unspectacular everyday consumer practices with climate change and citizenship by showing that among them, making...... health, comfort and convenience. Conceived as pleasurable, easy to approach, and good for the body, low-carbon life comes to be seen as a series of hobby-like activities that residents can engage in as part of their quests for good and meaningful lives in old age. Campaigners engage engage in trans-historical...

  7. Climate change and game theory.

    Science.gov (United States)

    Wood, Peter John

    2011-02-01

    This paper examines the problem of achieving global cooperation to reduce greenhouse gas emissions. Contributions to this problem are reviewed from noncooperative game theory, cooperative game theory, and implementation theory. We examine the solutions to games where players have a continuous choice about how much to pollute, as well as games where players make decisions about treaty participation. The implications of linking cooperation on climate change with cooperation on other issues, such as trade, are also examined. Cooperative and noncooperative approaches to coalition formation are investigated in order to examine the behavior of coalitions cooperating on climate change. One way to achieve cooperation is to design a game, known as a mechanism, whose equilibrium corresponds to an optimal outcome. This paper examines some mechanisms that are based on conditional commitments, and their policy implications. These mechanisms could make cooperation on climate change mitigation more likely.

  8. Climate Change: A Regional Perspective

    OpenAIRE

    Inter-American Development Bank (IDB); Economic Commission for Latin America and the Caribbean (ECLAC)

    2010-01-01

    The purpose of this document is to contribute to the ongoing discussion on climate change in light of the available evidence on the possible channels of transmission of the economic impact of this phenomenon and the results of the latest session of the Conference of the Parties to the United Nations Framework Convention on Climate Change (COP 15), held in Copenhagen from 7 to 18 December 2009. This document has been prepared, at the request of the Government of Mexico, by the Economic Commiss...

  9. [Air quality and climate change].

    Science.gov (United States)

    Loft, Steffen

    2009-10-26

    Air quality, health and climate change are closely connected. Ozone depends on temperature and the greenhouse gas methane from cattle and biomass. Pollen presence depends on temperature and CO2. The effect of climate change on particulate air pollution is complex, but the likely net effect is greater health risks. Reduction of greenhouse-gas emissions by reduced livestock production and use of combustion for energy production, transport and heating will also improve air quality. Energy savings in buildings and use of CO2 neutral fuels should not deteriorate indoor and outdoor air quality.

  10. Position Statement On Climate Change.

    Science.gov (United States)

    2016-05-01

    The North Carolina Environmental Justice Network (NCEJN), a coalition of grassroots organizations, developed a statement to explain our environmental justice perspective on climate change to predominantly white environmental groups that seek to partner with us. NCEJN opposes strategies that reduce greenhouse emissions while maintaining or magnifying existing social, economic, and environmental injustices. Wealthy communities that consume a disproportionate share of resources avoid the most severe consequences of their consumption by displacing pollution on communities of color and low income. Therefore, the success of climate change activism depends on building an inclusive movement based on principles of racial, social and economic justice, and self-determination for all people.

  11. Case grows for climate change

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, B.

    1999-08-09

    In the four years since the IPCC stated that 'the balance of evidence suggests a discernible human influence on global climate', evidence for anomalous warming has become more compelling, and as a result scientists have become more concerned that human-induced climate change has already arrived. The article summarises recent extra evidence on global temperatures, carbon dioxide measurements, ice shelf breakup, coral bleaching, unstable climates and improved climate models. At the time of the Kyoto conference, the US became keen on the idea that enhancing forest and soil carbon sequestration was a good way to offset emissions reduction targets. Congress is however under the opinion on that the Kyoto protocol presents a threat to the US economy, and senate is very unlikely to ratify the protocol during the Clinton Administration. The debate as to whether the US government should mandate major emission reduction or wait for more scientific certainty may continue for a number of years, but, growing concern of scientists and the public for the harmful effects of climate change may cause a change. 4 figs., 8 photos.

  12. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-12-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  13. Maritime Archaeology and Climate Change: An Invitation

    Science.gov (United States)

    Wright, Jeneva

    2016-08-01

    Maritime archaeology has a tremendous capacity to engage with climate change science. The field is uniquely positioned to support climate change research and the understanding of past human adaptations to climate change. Maritime archaeological data can inform on environmental shifts and submerged sites can serve as an important avenue for public outreach by mobilizing public interest and action towards understanding the impacts of climate change. Despite these opportunities, maritime archaeologists have not fully developed a role within climate change science and policy. Moreover, submerged site vulnerabilities stemming from climate change impacts are not yet well understood. This article discusses potential climate change threats to maritime archaeological resources, the challenges confronting cultural resource managers, and the contributions maritime archaeology can offer to climate change science. Maritime archaeology's ability to both support and benefit from climate change science argues its relevant and valuable place in the global climate change dialogue, but also reveals the necessity for our heightened engagement.

  14. Changing habits, changing climate : a foundation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Enright, W. [Canadian Inst. of Child Health, Ottawa, ON (Canada)

    2001-03-01

    If Canada intends to meet its greenhouse gas reduction target of 6 per cent below 1990 levels, a fundamental shift in energy use by Canadians is required. The health sector will also be required to change. Global climate change is expected to affect regions differently, some might get wetter, some might get warmer, and others still might get colder. Climate changes will influence a number of health determinants: the geographical range of disease organisms and vectors; temperature extremes and violent weather events; air, food and water quality; the stability of ecosystems. There is a requirement to strongly regulate the emissions of carbon dioxide, methane and other greenhouse gases to limit health risks. Increased air pollution could negatively affect large numbers of people, especially asthma sufferers and people suffering from chronic respiratory ailments and cardiovascular diseases. Changes in precipitation and temperature could increase insect-borne diseases. Water sources could be badly affected by drought, flooding or increased glacial runoff. The thinning of the ozone layer could result in additional skin cancers, impaired vision and other diseases. The document explores the various impacts resulting from climate change. A chapter is devoted to each topic: air pollution, temperature extremes, extreme weather events, vector borne diseases, drought and increased evaporation, food supply and ecosystem range, sea level rise, stratospheric ozone depletion and describes the health impacts. In addition, a chapter deals with aboriginal communities. The topic of environmental refugees is discussed, followed by an historical perspective into climate change policy in Canada. The author concludes with adaptation measures. Further emphasis must be placed on priority topics such as the estimation of future emissions and modelling of climate processes. refs., tabs., figs.

  15. Effects of climatic change on the Thornthwaite moisture index

    Science.gov (United States)

    McCabe, Gregory J.; Wolock, David M.; Hay, Lauren E.; Ayers, Mark A.

    1990-01-01

    The Thornthwaite moisture index is a useful indicator of the supply of water (precipitation) in an area relative to the demand for water under prevailing climatic conditions (potential evapotranspiration). This study examines the effects of changes in climate (temperature and precipitation) on the Thornthwaite moisture index in the conterminous United States. Estimates of changes in mean annual temperature and precipitation for doubled-atmospheric CO2 conditions derived from three general circulation models (GCMs) are used to study the response of the moisture index under steady-state doubled-CO2 conditions. Results indicate that temperature and precipitation changes under doubled-CO2 conditions generally will cause the Thornthwaite moisture index to decrease, implying a drier climate for most of the United States. The pattern of expected decrease is consistent among the three GCMs, although the amount of decrease depends on which GCM climatic-change scenario is used. Results also suggest that changes in the moisture index are related mainly to changes in the mean annual potential evapotranspiration as a result of changes in the mean annual temperature, rather than to changes in the mean annual precipitation.

  16. Climate change, soil health, and ecosystem goods and services

    Science.gov (United States)

    Worldwide, climate change is predicted to alter precipitation regimes, annual temperatures, and occurrence of severe weather events. These changes have important implications for soil health-- defined as the capacity of a soil to contribute to ecosystem function and sustain producers and consumers--...

  17. Arctic climate change in NORKLIMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The NORKLIMA programme is the national Norwegian initiative on climate research established for the period 2004-2013. The programme seeks to generate key knowledge about climate trends, the impacts of climate change, and how Norway can adapt to these changes. The NORKLIMA programme also encompasses research on instruments and policies for reducing emissions. Large-scale Programmes As part of the effort to meet national research-policy priorities, the Research Council has established a special funding instrument called the Large-scale Programmes. This initiative is designed to build long-term knowledge in order to encourage innovation and enhance value creation as well as to help find solutions to important challenges facing society.(Author)

  18. A Lesson on Climate Change.

    Science.gov (United States)

    Lewis, Jim

    This cooperative learning activity, for grades 7-12, promotes critical thinking skills within the context of learning about the causes and effects of climate change. Objectives include: (1) understanding factors that reduce greenhouse gases; (2) understanding the role of trees in reducing greenhouse gases; (3) identifying foods that produce…

  19. Hydrological response to climate change

    NARCIS (Netherlands)

    Yan, Dan; Werners, S.E.; Ludwig, Fulco; Huang, He Qing

    2015-01-01

    Study region: The Pearl River, located in the south of China, is the second largest river in China in terms of streamflow. Study focus: The study aims to assess the impact of climate change on seasonal discharge and extreme flows. For the assessment we use the variable infiltration capacity (VIC)

  20. Students' evaluations about climate change

    Science.gov (United States)

    Lombardi, Doug; Brandt, Carol B.; Bickel, Elliot S.; Burg, Colin

    2016-05-01

    Scientists regularly evaluate alternative explanations of phenomena and solutions to problems. Students should similarly engage in critical evaluation when learning about scientific and engineering topics. However, students do not often demonstrate sophisticated evaluation skills in the classroom. The purpose of the present study was to investigate middle school students' evaluations when confronted with alternative explanations of the complex and controversial topic of climate change. Through a qualitative analysis, we determined that students demonstrated four distinct categories of evaluation when writing about the connections between evidence and alternative explanations of climate change: (a) erroneous evaluation, (b) descriptive evaluation, (c) relational evaluation, and (d) critical evaluation. These categories represent different types of evaluation quality. A quantitative analysis revealed that types of evaluation, along with plausibility perceptions about the alternative explanations, were significant predictors of postinstructional knowledge about scientific principles underlying the climate change phenomenon. Specifically, more robust evaluations and greater plausibility toward the scientifically accepted model of human-induced climate change predicted greater knowledge. These findings demonstrate that instruction promoting critical evaluation and plausibility appraisal may promote greater understanding of socio-scientific topics and increased use of scientific thinking when considering alternative explanations, as is called for by recent science education reform efforts.

  1. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy…

  2. The Science of Climate Change

    Science.gov (United States)

    Oppenheimer, Michael; Anttila-Hughes, Jesse K.

    2016-01-01

    Michael Oppenheimer and Jesse Anttila-Hughes begin with a primer on how the greenhouse effect works, how we know that Earth is rapidly getting warmer, and how we know that the recent warming is caused by human activity. They explain the sources of scientific knowledge about climate change as well as the basis for the models scientists use to…

  3. Indigenous Peoples and Climate Change

    Directory of Open Access Journals (Sweden)

    Shelton H. Davis

    2010-05-01

    Full Text Available There has been a growing attention on the need to take into account the effects of global climate change. This is particularly so with respect to the increasing amount of green house gas emissions from the Untied States and Europe affecting poor peoples, especially those in developing countries. In 2003, for example, the experts of several international development agencies, including the World Bank, prepared a special report titled “Poverty and Climate Change: Reducing the Vulnerability of the Poor through Adaptation” (OECD 2003. This report followed the Eighth Session of the Conference of Parties (COP8 to the United Nations Framework Convention on Climate Change (UNFCCC in New Delhi, India in October 2002. It showed that poverty reduction is not only one of the major challenges of the 21st century, but also that climate change is taking place in many developing countries and is increasingly affecting, in a negative fashion, both the economic conditions and the health of poor people and their communities.

  4. The Whiteness of Climate Change

    DEFF Research Database (Denmark)

    Jensen, Lars

    2011-01-01

    This article examines two major debates in contemporary Australian discourses on the nation: climate change and whiteness studies. It is primarily concerned with establishing a framework for connecting the two discourses, and in that process it raises pivotal questions about how narratives about...

  5. Climate Change: Evidence and Causes

    Science.gov (United States)

    Wolff, Eric

    2014-01-01

    The fundamentals of climate change are well established: greenhouse gases warm the planet; their concentrations in the atmosphere are increasing; Earth has warmed, and is going to continue warming with a range of impacts. This article summarises the contents of a recent publication issued by the UK's Royal Society and the US National Academy of…

  6. Climate change and trace gases.

    Science.gov (United States)

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  7. Implications of spatial scale on climate change assessments

    Directory of Open Access Journals (Sweden)

    Pingale Santosh

    2015-09-01

    Full Text Available While assessing the effects of climate change at global or regional scales, local factors responsible for climate change are generalized, which results in the averaging of effects. However, climate change assessment is required at a micro-scale to determine the severity of climate change. To ascertain the impact of spatial scales on climate change assessments, trends and shifts in annual and seasonal (monsoon and non-monsoon, rainfall and temperature (minimum, average and maximum were determined at three different spatial resolutions in India (Ajmer city, Ajmer District and Rajasthan State. The Mann–Kendall (MK, MK test with pre-whitening of series (MK–PW, and Modified Mann–Kendall (MMK test, along with other statistical techniques were used for the trend analysis. The Pettitt–Mann–Whitney (PMW test was applied to detect the temporal shift in climatic parameters. The Sen’s slope and % change in rainfall and temperature were also estimated over the study period (35 years. The annual and seasonal average temperature indicates significant warming trends, when assessed at a fine spatial resolution (Ajmer city compared to a coarser spatial resolution (Ajmer District and Rajasthan State resolutions. Increasing trend was observed in minimum, mean and maximum temperature at all spatial scales; however, trends were more pronounced at a finer spatial resolution (Ajmer city. The PMW test indicates only the significant shift in non-monsoon season rainfall, which shows an increase in rainfall after 1995 in Ajmer city. The Kurtosis and coefficient of variation also revealed significant climate change, when assessed at a finer spatial resolution (Ajmer city compared to a coarser resolution. This shows the contribution of land use/land cover change and several other local anthropogenic activities on climate change. The results of this study can be useful for the identification of optimum climate change adaptation and mitigation strategies based on

  8. Relationships between energy consumption and climate change in China

    Institute of Scientific and Technical Information of China (English)

    QIANHuaisui; YUANShunquan; SUNJiulin; LIZehui

    2004-01-01

    Energy consumption has an inevitable connection with economic level and climate. Based on selected data covering annual total energy consumption and its composition and that of all kinds of energy in 1953-1999, the annual residential energy consumption and the coal and electricity consumption in 1980-1999 in China, the acreage of crops under cultivation suffered from drought and flood annually and gross domestic product (GDP) in 1953-1999 in the whole country, and mean daily temperature data from 29 provincial meteorological stations in the whole country from 1970 to 1999, this paper divides energy consumption into socio-economic energy consumption and climatic energy consumption in the way of multinomial. Itchanges between the climate energy consumption andalso goes further into the relations and their changes between the climate energy consumptionenergy consumption and the economic level inand climate factor and between the socio-economic energy between the climate energy level in China with the method of statistical analysis. At present, there are obvious transitions in the changing relationships of the energy consumption to economy and climate, which comprises the transition of economic system from resource-intensive industry to technology-intensive industry and the transition of climatic driving factors of the energy consumption from driven by the disasters of drought and flood to driven by temperature.

  9. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  10. Climate Change Dynamics and Imperatives for Food Security in Nigeria

    Directory of Open Access Journals (Sweden)

    Olumide D. Onafeso

    2016-02-01

    Full Text Available Decadal variability in African rainfall is projected from General Circulation Models (GCMs to continue under elevated greenhouse gas scenarios. Effects on rain intensity, spatio-temporal variability of growing seasons, flooding, drought, and land-use change impose feedbacks at regional-local scales. Yet, empirical knowledge of associated impacts on crop yield is limited; thus, we examined the imperatives for food security in Nigeria. Bivariate correlation and multiple regression suggests impending drought in the northern region where livestock farming is predominant. Relative contributions of climate independent variables in determining crop yield by backward selection procedures with stepwise approach indexed the impacts of annual climate variability by a parameter computed as annual yield minus mean annual yield divided by the standard deviation. Results show Z-distribution approximately 5 to + 5, when 3 indicate impacts significant at 95% confidence levels. In conclusion, we established the interwoven relationship between climatic change and food security.

  11. Climate Change and Intertidal Wetlands

    Directory of Open Access Journals (Sweden)

    Pauline M. Ross

    2013-03-01

    Full Text Available Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  12. SOILS AS INDICATORS OF CLIMATIC CHANGES

    Directory of Open Access Journals (Sweden)

    Yury Chendev

    2012-01-01

    Full Text Available A number of examples for the reaction of chernozems in the center of the East European Plain and their relation to different periodical climatic changes are examined. According to unequal-age chernozems properties, the transition from the Middle Holocene arid conditions to the Late Holocene wet conditions occurred at 4000 yr BP. Using data on changes of soil properties, the position of boundary between steppe and forest-steppe and the annual amount of precipitation at approximately 4000 yr BP were reconstructed. The change from warm-dry to cool-moist climatic phases, which occurred at the end of the XX century as a reflection of intra-age-long climatic cyclic recurrence, led to the strengthening of dehumification over the profile of automorphic chernozems and to the reduction of its content in the upper meter of the soils. The leaching of carbonates and of readily soluble salts contributed to the decrease in soil areas occupied by typical and solonetzic chernozems, and to the increase in areas occupied by leached chernozems.

  13. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  14. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N M; Parfenova, E [V N Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk, 660036 (Russian Federation); Soja, A J, E-mail: ncheby@forest.akadem.r, E-mail: Amber.J.Soja@nasa.go [National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Mail Stop 420, Hampton, VA 23681-2199 (United States)

    2009-10-15

    Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

  15. Climatic change controls productivity variation in global grasslands.

    Science.gov (United States)

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A; Li, Yue

    2016-05-31

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2-71.2% during 1982-2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms.

  16. A common-sense climate index: is climate changing noticeably?

    Science.gov (United States)

    Hansen, J.; Sato, M.; Glascoe, J.; Ruedy, R.

    1998-01-01

    We propose an index of climate change based on practical climate indicators such as heating degree days and the frequency of intense precipitation. We find that in most regions the index is positive, the sense predicted to accompany global warming. In a few regions, especially in Asia and western North America, the index indicates that climate change should be apparent already, but in most places climate trends are too small to stand out above year-to-year variability. The climate index is strongly correlated with global surface temperature, which has increased as rapidly as projected by climate models in the 1980s. We argue that the global area with obvious climate change will increase notably in the next few years. But we show that the growth rate of greenhouse gas climate forcing has declined in recent years, and thus there is an opportunity to keep climate change in the 21st century less than "business-as-usual" scenarios.

  17. Improving leadership on climate change

    Energy Technology Data Exchange (ETDEWEB)

    Chandani, Achala

    2011-03-15

    The upcoming UN conference on climate change in Durban, South Africa throws a spotlight on African climate policy. As part of a knowledge-sharing initiative in Southern Africa, we assessed parliamentarians' needs for more information on climate threats and responses, and ways to improve their capabilities as key stakeholders influencing national and global decisionmaking. Funded by the UK Foreign and Commonwealth Office and partnered with the Association of European Parliamentarians with Africa (AWEPA), IIED worked with parliamentarians in the Southern Africa Customs Union (SACU) — Botswana, Lesotho, Namibia, South Africa and Swaziland — through interviews, literature surveys, field trips and workshops. Similar studies in Malawi and Scotland also fed into this project.

  18. Precipitation extremes under climate change

    CERN Document Server

    O'Gorman, Paul A

    2015-01-01

    The response of precipitation extremes to climate change is considered using results from theory, modeling, and observations, with a focus on the physical factors that control the response. Observations and simulations with climate models show that precipitation extremes intensify in response to a warming climate. However, the sensitivity of precipitation extremes to warming remains uncertain when convection is important, and it may be higher in the tropics than the extratropics. Several physical contributions govern the response of precipitation extremes. The thermodynamic contribution is robust and well understood, but theoretical understanding of the microphysical and dynamical contributions is still being developed. Orographic precipitation extremes and snowfall extremes respond differently from other precipitation extremes and require particular attention. Outstanding research challenges include the influence of mesoscale convective organization, the dependence on the duration considered, and the need to...

  19. ARM Climate Research Facility Annual Report 2005

    Energy Technology Data Exchange (ETDEWEB)

    J. Voyles

    2005-12-31

    Through the ARM Program, the DOE funded the development of several highly instrumented ground stations for studying cloud formation processes and their influence on radiative transfer, and for measuring other parameters that determine the radiative properties of the atmosphere. This scientific infrastructure, and resultant data archive, is a valuable national and international asset for advancing scientific knowledge of Earth systems. In fiscal year (FY) 2003, the DOE designated ARM sites as a national scientific user facility: the ARM Climate Research (ACRF). The ACRF has enormous potential to contribute to a wide range interdisciplinary science in areas such as meteorology, atmospheric aerosols, hydrology, biogeochemical cycling, and satellite validation, to name only a few.

  20. Asia's changing role in global climate change.

    Science.gov (United States)

    Siddiqi, Toufiq A

    2008-10-01

    Asia's role in global climate change has evolved significantly from the time when the Kyoto Protocol was being negotiated. Emissions of carbon dioxide, the principal greenhouse gas, from energy use in Asian countries now exceed those from the European Union or North America. Three of the top five emitters-China, India, and Japan, are Asian countries. Any meaningful global effort to address global climate change requires the active cooperation of these and other large Asian countries, if it is to succeed. Issues of equity between countries, within countries, and between generations, need to be tackled. Some quantitative current and historic data to illustrate the difficulties involved are provided, and one approach to making progress is suggested.

  1. Climate Change and Civil Violence

    Science.gov (United States)

    van der Vink, G.; Plancherel, Y.; Hennet, C.; Jones, K. D.; Abdullah, A.; Bradshaw, J.; Dee, S.; Deprez, A.; Pasenello, M.; Plaza-Jennings, E.; Roseman, D.; Sopher, P.; Sung, E.

    2009-05-01

    The manifestations of climate change can result in humanitarian impacts that reverse progress in poverty- reduction, create shortages of food and resources, lead to migration, and ultimately result in civil violence and conflict. Within the continent of Africa, we have found that environmentally-related variables are either the cause or the confounding factor for over 80% of the civil violence events during the last 10 years. Using predictive climate models and land-use data, we are able to identify populations in Africa that are likely to experience the most severe climate-related shocks. Through geospatial analysis, we are able to overlay these areas of high risk with assessments of both the local population's resiliency and the region's capacity to respond to climate shocks should they occur. The net result of the analysis is the identification of locations that are becoming particularly vulnerable to future civil violence events (vulnerability hotspots) as a result of the manifestations of climate change. For each population group, over 600 social, economic, political, and environmental indicators are integrated statistically to measures the vulnerability of African populations to environmental change. The indicator time-series are filtered for data availability and redundancy, broadly ordered into four categories (social, political, economic and environmental), standardized and normalized. Within each category, the dominant modes of variability are isolated by principal component analysis and the loadings of each component for each variable are used to devise composite index scores. Comparisons of past vulnerability with known environmentally-related conflicts demonstrates the role that such vulnerability hotspot maps can play in evaluating both the potential for, and the significance of, environmentally-related civil violence events. Furthermore, the analysis reveals the major variables that are responsible for the population's vulnerability and therefore

  2. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  3. Climate change mitigation in China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Bo

    2012-07-01

    China has been experiencing great economic development and fast urbanisation since its reforms and opening-up policy in 1978. However, these changes are reliant on consumption of primary energy, especially coal, characterised by high pollution and low efficiency. China's greenhouse gas (GHG) emissions, with carbon dioxide (CO{sub 2}) being the most significant contributor, have also been increasing rapidly in the past three decades. Responding to both domestic challenges and international pressure regarding energy, climate change and environment, the Chinese government has made a point of addressing climate change since the early 2000s. This thesis provides a comprehensive analysis of China's CO{sub 2} emissions and policy instruments for mitigating climate change. In the analysis, China's CO{sub 2} emissions in recent decades were reviewed and the Environmental Kuznets Curve (EKC) hypothesis examined. Using the mostly frequently studied macroeconomic factors and time-series data for the period of 1980-2008, the existence of an EKC relationship between CO{sub 2} per capita and GDP per capita was verified. However, China's CO{sub 2} emissions will continue to grow over coming decades and the turning point in overall CO{sub 2} emissions will appear in 2078 according to a crude projection. More importantly, CO{sub 2} emissions will not spontaneously decrease if China continues to develop its economy without mitigating climate change. On the other hand, CO{sub 2} emissions could start to decrease if substantial efforts are made. China's present mitigation target, i.e. to reduce CO{sub 2} emissions per unit of GDP by 40-45 % by 2020 compared with the 2005 level, was then evaluated. Three business-as-usual (BAU) scenarios were developed and compared with the level of emissions according to the mitigation target. The calculations indicated that decreasing the CO{sub 2} intensity of GDP by 40-45 % by 2020 is a challenging but hopeful target. To

  4. Annual Change Report 2006/2007

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2007-11-16

    As part of continuing compliance, the U.S. Environmental Protection Agency (EPA) requires the U.S. Department of Energy (DOE) to provide information on any change in conditions or activities pertaining to the disposal system since the most recent compliance application. This requirement is identified in Title 40 Code of Federal Regulations (CFR), Section 194.4(b)(4), which states: "No later than six months after the administrator issues a certification, and at least annually thereafter, the Department shall report to the Administrator, in writing, any changes in conditions or activities pertaining to the disposal system that were not required to be reported by paragraph (b)(3) of this section and that differ from information contained in the most recent compliance application." In meeting the requirement, the DOE provides an annual report each November of all applicable changes under the above requirement. This annual report informs the EPA of changes to information in the most recent compliance recertification (the 2004 Compliance Recertification). Significant planned changes must be reported to the EPA prior to implementation by the DOE. In addition, Title 40 CFR, Section 194.4(b)(3) requires that significant unplanned changes be reported to the EPA within 24 hours or ten days, depending on the severity of the activity or condition. To date, there have been no significant unplanned changes to the certification basis. Planned changes have been submitted on an individual basis. All other changes are reported annually. Changes in activities or conditions are reviewed to determine if 40 CFR Section 194.4(b)(3) reporting is necessary. As indicated above, no significant unplanned changes were identified for the time period covered by this report. The enclosed tables list those items identified for reporting under 40 CFR Section 194.4(b)(4). The majority of the items described in this report are inspections, reports, and modifications to written plans and procedures for

  5. Climate change and zoonotic infections in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Boris Revich

    2012-07-01

    Full Text Available Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  6. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  7. Honey Bees, Satellites and Climate Change

    Science.gov (United States)

    Esaias, W.

    2008-05-01

    Life isn't what it used to be for honey bees in Maryland. The latest changes in their world are discussed by NASA scientist Wayne Esaias, a biological oceanographer with NASA Goddard Space Flight Center. At Goddard, Esaias has examined the role of marine productivity in the global carbon cycle using visible satellite sensors. In his personal life, Esaias is a beekeeper. Lately, he has begun melding his interest in bees with his professional expertise in global climate change. Esaias has observed that the period when nectar is available in central Maryland has shifted by one month due to local climate change. He is interested in bringing the power of global satellite observations and models to bear on the important but difficult question of how climate change will impact bees and pollination. Pollination is a complex, ephemeral interaction of animals and plants with ramifications throughout terrestrial ecosystems well beyond the individual species directly involved. Pollinators have been shown to be in decline in many regions, and the nature and degree of further impacts on this key interaction due to climate change are very much open questions. Honey bee colonies are used to quantify the time of occurrence of the major interaction by monitoring their weight change. During the peak period, changes of 5-15 kg/day per colony represent an integrated response covering thousands of hectares. Volunteer observations provide a robust metric for looking at spatial and inter-annual variations due to short term climate events, complementing plant phenology networks and satellite-derived vegetation phenology data. In central Maryland, the nectar flows are advancing by about -0.6 d/y, based on a 15 yr time series and a small regional study. This is comparable to the regional advancement in the spring green-up observed with MODIS and AVHRR. The ability to link satellite vegetation phenology to honey bee forage using hive weight changes provides a basis for applying satellite

  8. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  9. Challenges and Possibilities in Climate Change Education

    Science.gov (United States)

    Pruneau,, Diane; Khattabi, Abdellatif; Demers, Melanie

    2010-01-01

    Educating and communicating about climate change is challenging. Researchers reported that climate change concepts are often misunderstood. Some people do not believe that climate change will have impacts on their own life. Other challenges may include people's difficulty in perceiving small or gradual environmental changes, the fact that…

  10. Teaching Climate Change Through Music

    Science.gov (United States)

    Weiss, P. S.

    2007-12-01

    During 2006, Peter Weiss aka "The Singing Scientist" performed many music assemblies for elementary schools (K-5) in Santa Cruz County, California, USA. These assemblies were an opportunity for him to mix a discussion of climate change with rock n' roll. In one song called "Greenhouse Glasses", Peter and his band the "Earth Rangers" wear over-sized clown glasses with "molecules" hanging off them (made with Styrofoam balls and pipe cleaners). Each molecule is the real molecular structure of a greenhouse gas, and the song explains how when the wearer of these glasses looks up in the sky, he/she can see the "greenhouse gases floating by." "I've seen more of them this year than the last / 'Cuz fossil fuels are burning fast / I wish everyone could see through these frames / Then maybe we could prevent climate change" Students sing, dance and get a visual picture of something that is invisible, yet is part of a very real problem. This performance description is used as an example of an educational style that can reach a wide audience and provide a framework for the audience as learners to assimilate future information on climate change. The hypothesis is that complex socio-environmental issues like climate change that must be taught in order to achieve sustainability are best done so through alternative mediums like music. Students develop awareness which leads to knowledge about chemistry, physics, and biology. These kinds of experiences which connect science learning to fun activities and community building are seriously lacking in primary and secondary schools and are a big reason why science illiteracy is a current social problem. Science education is also paired with community awareness (including the local plant/animal community) and cooperation. The Singing Scientist attempts to create a culture where it is cool to care about the environment. Students end up gardening in school gardens together and think about their "ecological footprint".

  11. Complexity in Climate Change Manipulation Experiments

    DEFF Research Database (Denmark)

    Kreyling, Juergen; Beier, Claus

    2014-01-01

    Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now, precipi...... variability in temperature are ecologically important. Embracing complexity in future climate change experiments in general is therefore crucial.......Climate change goes beyond gradual changes in mean conditions. It involves increased variability in climatic drivers and increased frequency and intensity of extreme events. Climate manipulation experiments are one major tool to explore the ecological impacts of climate change. Until now......, precipitation experiments have dealt with temporal variability or extreme events, such as drought, resulting in a multitude of approaches and scenarios with limited comparability among studies. Temperature manipulations have mainly been focused only on warming, resulting in better comparability among studies...

  12. Aerosols, Clouds, and Precipitation as Scale Interactions in the Climate System and Controls on Climate Change

    Science.gov (United States)

    Donner, Leo

    Clouds are major regulators of atmospheric energy flows. Their character depends on atmospheric composition, dynamics, and thermodynamic state. Clouds can assume organized structures whose scales are planetary, while processes important for determining basic properties occur on the scale of microns. The range of processes, scales, and interactions among them has precluded the development of concise theories for the role of clouds in climate, and limitations in modeling clouds in complex climate models remain among the key uncertainties in understanding and projecting climate change. The distribution function of vertical velocities (updraft speeds) in clouds is an important control on climate forcing by clouds and possibly a strong correlate with climate sensitivity. (Climate forcing refers to the change in Earth's energy balance as atmospheric composition changes, in particular, due to human activity. Climate sensitivity is defined here as the equilibrium change in globally averaged annual surface temperature as a result of doubled carbon dioxide.) Vertical velocities are central because they determine the thermodynamic environment governing phase changes of water, with both equilibrium and non-equilibrium phenomena important. The spatial and temporal spectra of relevant vertical velocities includes scales both numerically resolved by climate models and below their resolution limit. The latter implies a requirement to parameterize these smaller scale motions in models. The scale dependence of vertical velocities and emerging observational constraints on their distribution provide new opportunities for representing aerosols, clouds, and precipitation in climate models. Success in doing so could provide important breakthroughs in understanding both climate forcing and sensitivity.

  13. NASA Nice Climate Change Education

    Science.gov (United States)

    Frink, K.; Crocker, S.; Jones, W., III; Marshall, S. S.; Anuradha, D.; Stewart-Gurley, K.; Howard, E. M.; Hill, E.; Merriweather, E.

    2013-12-01

    Authors: 1 Kaiem Frink, 4 Sherry Crocker, 5 Willie Jones, III, 7 Sophia S.L. Marshall, 6 Anuadha Dujari 3 Ervin Howard 1 Kalota Stewart-Gurley 8 Edwinta Merriweathe Affiliation: 1. Mathematics & Computer Science, Virginia Union University, Richmond, VA, United States. 2. Mathematics & Computer Science, Elizabeth City State Univ, Elizabeth City, NC, United States. 3. Education, Elizabeth City State University, Elizabeth City, NC, United States. 4. College of Education, Fort Valley State University , Fort Valley, GA, United States. 5. Education, Tougaloo College, Jackson, MS, United States. 6. Mathematics, Delaware State University, Dover, DE, United States. 7. Education, Jackson State University, Jackson, MS, United States. 8. Education, Alabama Agricultural and Mechanical University, Huntsville, AL, United States. ABSTRACT: In this research initiative, the 2013-2014 NASA NICE workshop participants will present best educational practices for incorporating climate change pedagogy. The presentation will identify strategies to enhance instruction of pre-service teachers to aligned with K-12 Science, Technology, Engineering and Mathematics (STEM) standards. The presentation of best practices should serve as a direct indicator to address pedagogical needs to include climate education within a K-12 curriculum Some of the strategies will include inquiry, direct instructions, and cooperative learning . At this particular workshop, we have learned about global climate change in regards to how this is going to impact our life. Participants have been charged to increase the scientific understanding of pre-service teachers education programs nationally to incorporate climate education lessons. These recommended practices will provide feasible instructional strategies that can be easily implemented and used to clarify possible misconceptions and ambiguities in scientific knowledge. Additionally, the presentation will promote an awareness to the many facets in which climate

  14. Climate Effects of Global Land Cover Change

    Energy Technology Data Exchange (ETDEWEB)

    Gibbard, S G; Caldeira, K; Bala, G; Phillips, T; Wickett, M

    2005-08-24

    There are two competing effects of global land cover change on climate: an albedo effect which leads to heating when changing from grass/croplands to forest, and an evapotranspiration effect which tends to produce cooling. It is not clear which effect would dominate in a global land cover change scenario. We have performed coupled land/ocean/atmosphere simulations of global land cover change using the NCAR CAM3 atmospheric general circulation model. We find that replacement of current vegetation by trees on a global basis would lead to a global annual mean warming of 1.6 C, nearly 75% of the warming produced under a doubled CO{sub 2} concentration, while global replacement by grasslands would result in a cooling of 0.4 C. These results suggest that more research is necessary before forest carbon storage should be deployed as a mitigation strategy for global warming. In particular, high latitude forests probably have a net warming effect on the Earth's climate.

  15. Drought and climatic change impact on streamflow in small watersheds.

    Science.gov (United States)

    Tigkas, Dimitris; Vangelis, Harris; Tsakiris, George

    2012-12-01

    The paper presents a comprehensive, thought simple, methodology, for forecasting the annual hydrological drought, based on meteorological drought indications available early during the hydrological year. The meteorological drought of 3, 6 and 9 months is estimated using the reconnaissance drought index (RDI), whereas the annual hydrological drought is represented by the streamflow drought index (SDI). Regression equations are derived between RDI and SDI, forecasting the level of hydrological drought for the entire year in real time. Further, using a wide range of scenarios representing possible climatic changes and drought events of varying severity, nomographs are devised for estimating the annual streamflow change. The Medbasin rainfall-runoff model is used to link meteorological data to streamflow. The later approach can be useful for developing preparedness plans to combat the consequences of drought and climate change. As a case study, the area of N. Peloponnese (Greece) was selected, incorporating several small river basins.

  16. Climate change mitigation in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Mackenzie, G.A.; Turkson, J.K.; Davidson, O.R. [eds.

    1998-10-01

    The UNEP Collaborating Centre on Energy and Environment (UCCEE) in conjunction with the Southern Centre for Energy and Environment (SCEE) hosted a conference on `Climate Change Mitigation in Africa` between 18 and 20 May. The Conference set out to address the following main objectives: to present to a wider audience the results of UNEP/GEF and related country studies; to present results of regional mitigation analysis; exchange of information with similar projects in the region; to expose countries to conceptual and methodological issues related to climate change mitigation; to provide input to national development using climate change related objectives. This volume contains reports of the presentations and discussions, which took place at the conference at Victoria Falls between 18 and 20 May 1998. Representatives of 11 country teams made presentations and in addition two sub-regions were discussed: the Maghreb region and SADC. The conference was attended by a total of 63 people, representing 22 African countries as well as international organisations. (EG)

  17. Climate Change: a Theoretical Review

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaq-ur Rahman

    2013-01-01

    Full Text Available Climate Change has been undoubtedly the most illustrious environmental issue since late 20th century. But neither the discourse merely emerged during that time, nor it was problematized in the same way since its onset. History of Climate Change discourse reveals that from a purely scientific concern it has turned into a public agenda that is nowadays more inclined to be development problem. Transformations have brought about a complete new paradigm every time. This article presents a theoretical analysis of the Climate Change discourse and to do so it captured the underlying philosophy of the issue using Thomas Kuhn’s well-known thesis of ‘paradigm shift’. In particular it discusses about the crisis that lead the issue towards transformations; explores key perspectives around the crisis thus representation of the issue in the environmental discourse over the time. While this paper establishes that with the beginning of the 21st century, the discourse entered into a new paradigm and will reach to a critical point by the end of 2012, it finally postulates some measures that the discourse might integrate with the existing to advance beyond that point.

  18. Past and Current Climate Change

    Science.gov (United States)

    Mercedes Rodríguez Ruibal, Ma

    2014-05-01

    In 1837 the Swiss geologist and palaeontologist Louis Agassiz was the first scientist to propose the existence of an ice age in the Earth's past. Nearly two centuries after discussing global glacial periods... while the average global temperature is rising very quickly because of our economic and industrial model. In tribute to these pioneers, we have selected a major climate change of the past as the Snowball Earth and, through various activities in the classroom, compared to the current anthropogenic climate change. First, we include multiple geological processes that led to a global glaciation 750 million years ago as the decrease in the atmospheric concentration of greenhouse gases such as CO2 and CH4, the effect of climate variations in solar radiation due to emissions of volcanic dust and orbital changes (Milankovitch cycles), being an essential part of this model the feedback mechanism of the albedo of the ice on a geological scale. Moreover, from simple experiments and studies in the classroom this time we can compare the past with the current anthropogenic global warming we are experiencing and some of its consequences, highlighting that affect sea level rise, increased extreme and effects on health and the biosphere weather.

  19. Insect overwintering in a changing climate.

    Science.gov (United States)

    Bale, J S; Hayward, S A L

    2010-03-15

    Insects are highly successful animals inhabiting marine, freshwater and terrestrial habitats from the equator to the poles. As a group, insects have limited ability to regulate their body temperature and have thus required a range of strategies to support life in thermally stressful environments, including behavioural avoidance through migration and seasonal changes in cold tolerance. With respect to overwintering strategies, insects have traditionally been divided into two main groups: freeze tolerant and freeze avoiding, although this simple classification is underpinned by a complex of interacting processes, i.e. synthesis of ice nucleating agents, cryoprotectants, antifreeze proteins and changes in membrane lipid composition. Also, in temperate and colder climates, the overwintering ability of many species is closely linked to the diapause state, which often increases cold tolerance ahead of temperature-induced seasonal acclimatisation. Importantly, even though most species can invoke one or both of these responses, the majority of insects die from the effects of cold rather than freezing. Most studies on the effects of a changing climate on insects have focused on processes that occur predominantly in summer (development, reproduction) and on changes in distributions rather than winter survival per se. For species that routinely experience cold stress, a general hypothesis would be that predicted temperature increases of 1 degree C to 5 degrees C over the next 50-100 years would increase winter survival in some climatic zones. However, this is unlikely to be a universal effect. Negative impacts may occur if climate warming leads to a reduction or loss of winter snow cover in polar and sub-polar areas, resulting in exposure to more severe air temperatures, increasing frequency of freeze-thaw cycles and risks of ice encasement. Likewise, whilst the dominant diapause-inducing cue (photoperiod) will be unaffected by global climate change, higher temperatures may

  20. Changes in Köppen-Geiger climate types under a future climate for Australia: hydrological implications

    Directory of Open Access Journals (Sweden)

    R. S. Crosbie

    2012-09-01

    Full Text Available The Köppen-Geiger climate classification has been used for over a century to delineate climate types across the globe. As it was developed to mimic the distribution of vegetation, it may provide a useful surrogate for making projections of the future distribution of vegetation, and hence resultant hydrological implications, under climate change scenarios. This paper developed projections of the Köppen-Geiger climate types covering the Australian continent for a 2030 and 2050 climate relative to a 1990 historical baseline climate using 17 Global Climate Models (GCMs and five global warming scenarios. At the highest level of classification for a +2.4 °C future climate (the upper limit projected for 2050 relative to the historical baseline, it was projected that the area of the continent covered by

    – tropical climate types would increase from 8.8% to 9.1%;
    – arid climate types would increase from 76.5% to 81.7%;
    – temperate climate types would decrease from 14.7% to 9.2%;
    – cold climate types would decrease from 0.016% to 0.001%.

    Previous climate change impact studies on water resources in Australia have assumed a static vegetation distribution. If the change in projected climate types is used as a surrogate for a change in vegetation, then the major transition in climate from temperate to arid in parts of Australia under a drier future climate could cause indirect effects on water resources. A transition from annual cropping to perennial grassland would have a compounding effect on the projected reduction in recharge. In contrast, a transition from forest to grassland would have a mitigating effect on the projected reduction in runoff.

  1. Changes in Köppen-Geiger climate types under a future climate for Australia: hydrological implications

    Directory of Open Access Journals (Sweden)

    R. S. Crosbie

    2012-06-01

    Full Text Available The Köppen-Geiger climate classification has been used for over a century to delineate climate types across the globe. As it was developed to mimic the distribution of vegetation it may provide a useful surrogate for making projections of the future distribution of vegetation, and hence resultant hydrological implications, under climate change scenarios. This paper developed projections of the Köppen-Geiger climate types covering the Australian continent for a 2030 and 2050 climate relative to a 1990 historical baseline climate using 17 Global Climate Models (GCMs and five global warming scenarios. At the highest level of classification for a +2.4 °C future climate (the upper limit projected for 2050 relative to the historical baseline, it was projected that the area of the continent covered by:
    – Tropical climate types would increase from 8.8% to 9.1%
    – Arid climate types would increase from 76.5% to 81.7%
    – Temperate climate types would decrease from 14.7% to 9.2%
    – Cold climate types would decrease from 0.016% to 0.001%.
    Previous climate change impact studies on water resources in Australia have assumed a static vegetation distribution. If the change in projected climate types is used as a surrogate for a change in vegetation, then the major transition in climate from Temperate to Arid in parts of Australia under a drier future climate could cause indirect effects on water resources. For a transition from annual cropping to perennial grassland this would have a compounding effect on the projected reduction in recharge. In contrast, a transition from forest to grassland would have a mitigating effect on the projected reduction in runoff.

  2. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  3. Climate change in Mediterranean mountains during the 21st century

    DEFF Research Database (Denmark)

    Nogués Bravo, David; Araújo, Miguel B; Lasanta, Teodoro;

    2008-01-01

    spring (-17% under Alfi and -4.8% under B1 for 2085). On the contrary, non-Mediterranean European mountains will not experience a reduction of annual and spring precipitation. Implications of predicted climate change for both human and physical features are coupled in an integrated framework to gain...

  4. Effects of historical land cover changes on climate

    Institute of Scientific and Technical Information of China (English)

    SHI ZhengGuo; YAN XiaoDong; YIN ChongHua; WANG ZhaoMin

    2007-01-01

    In order to explore the influence of anthropogenic land use on the climate system during the last millennium, a set of experiments is performed with an Earth system model of intermediate complexity--the McGill Paleoclimate Model (MPM-2). The present paper mainly focuses on biogeophysical effects of historical land cover changes. A dynamic scenario of deforestation is described based on changes in cropland fraction (RF99). The model simulates a decrease in global mean annual temperature in the range of 0.09-0.16℃, especially 0.14-0.22℃ in Northern Hemisphere during the last 300 years. The responses of climate system to GHGs concentration changes are also calculated for comparisons. Now, afforestation is becoming an important choice for the enhancement of terrestrial carbon sequestration and adjustment of regional climate. The results indicate that biogeophysical effects of land cover changes cannot be neglected in the assessments of climate change.

  5. Managing Climate Change Refugia for Biodiversity Conservation

    Science.gov (United States)

    Climate change threatens to create fundamental shifts in in the distributions and abundances of species. Given projected losses, increased emphasis on management for ecosystem resilience to help buffer fish and wildlife populations against climate change is emerging. Such effort...

  6. Mars Recent Climate Change Workshop

    Science.gov (United States)

    Haberle, Robert M.; Owen, Sandra J.

    2012-11-01

    Mars Recent Climate Change Workshop NASA/Ames Research Center May 15-17, 2012 Climate change on Mars has been a subject of great interest to planetary scientists since the 1970's when orbiting spacecraft first discovered fluvial landforms on its ancient surfaces and layered terrains in its polar regions. By far most of the attention has been directed toward understanding how "Early Mars" (i.e., Mars >~3.5 Gya) could have produced environmental conditions favorable for the flow of liquid water on its surface. Unfortunately, in spite of the considerable body of work performed on this subject, no clear consensus has emerged on the nature of the early Martian climate system because of the difficulty in distinguishing between competing ideas given the ambiguities in the available geological, mineralogical, and isotopic records. For several reasons, however, the situation is more tractable for "Recent Mars" (i.e., Mars during past 20 My or so). First, the geologic record is better preserved and evidence for climate change on this time scale has been building since the rejuvenation of the Mars Exploration Program in the late 1990's. The increasing coverage of the planet from orbit and the surface, coupled with accurate measurements of surface topography, increasing spatial resolution of imaging cameras, improved spectral resolution of infrared sensors, and the ability to probe the subsurface with radar, gamma rays, and neutron spectroscopy, has not only improved the characterization of previously known climate features such as polar layered terrains and glacier-related landforms, but has also revealed the existence of many new features related to recent climate change such as polygons, gullies, concentric crater fill, and a latitude dependent mantle. Second, the likely cause of climate change - spin axis/orbital variations - is more pronounced on Mars compared to Earth. Spin axis/orbital variations alter the seasonal and latitudinal distribution of sunlight, which can

  7. The science of climate change.

    Energy Technology Data Exchange (ETDEWEB)

    Doctor, R. D.

    1999-09-10

    A complex debate is underway on climate change linked to proposals for costly measures that would reshape our power grid. This confronts technical experts outside of the geophysical disciplines with extensive, but unfamiliar, data both supporting and refuting claims that serious action is warranted. For example, evidence is brought to the table from one group of astrophysicists concerned with sunspots--this group believes there is no issue man can manage; while another group of oceanographers concerned with the heat balance in the world's oceans are very alarmed at the loss of arctic ice. What is the evidence? In an effort to put some of these issues in perspective for a technical audience, without a background in geophysics, a brief survey will consider (1) an overview of the 300 years of scientific inquiry on man's relationship to climate; (2) a basic discussion of what is meant by the ''greenhouse'' and why there are concerns which include not only CO{sub 2}, but also CH{sub 4}, N{sub 2}O, and CFC's; (3) the geological record on CO{sub 2}--which likely was present at 1,000 times current levels when life began; (4) the solar luminosity and sunspot question; and (5) the current evidence for global climate change. We are at a juncture where we are attempting to understand the earth as an integrated dynamic system, rather than a collection of isolated components.

  8. Climate change risk analysis framework (CCRAF) a probabilistic tool for analyzing climate change uncertainties

    Science.gov (United States)

    Legget, J.; Pepper, W.; Sankovski, A.; Smith, J.; Tol, R.; Wigley, T.

    2003-04-01

    Potential risks of human-induced climate change are subject to a three-fold uncertainty associated with: the extent of future anthropogenic and natural GHG emissions; global and regional climatic responses to emissions; and impacts of climatic changes on economies and the biosphere. Long-term analyses are also subject to uncertainty regarding how humans will respond to actual or perceived changes, through adaptation or mitigation efforts. Explicitly addressing these uncertainties is a high priority in the scientific and policy communities Probabilistic modeling is gaining momentum as a technique to quantify uncertainties explicitly and use decision analysis techniques that take advantage of improved risk information. The Climate Change Risk Assessment Framework (CCRAF) presented here a new integrative tool that combines the probabilistic approaches developed in population, energy and economic sciences with empirical data and probabilistic results of climate and impact models. The main CCRAF objective is to assess global climate change as a risk management challenge and to provide insights regarding robust policies that address the risks, by mitigating greenhouse gas emissions and by adapting to climate change consequences. The CCRAF endogenously simulates to 2100 or beyond annual region-specific changes in population; GDP; primary (by fuel) and final energy (by type) use; a wide set of associated GHG emissions; GHG concentrations; global temperature change and sea level rise; economic, health, and biospheric impacts; costs of mitigation and adaptation measures and residual costs or benefits of climate change. Atmospheric and climate components of CCRAF are formulated based on the latest version of Wigley's and Raper's MAGICC model and impacts are simulated based on a modified version of Tol's FUND model. The CCRAF is based on series of log-linear equations with deterministic and random components and is implemented using a Monte-Carlo method with up to 5000

  9. The effect of climate and climate change on ammonia emissions in Europe

    DEFF Research Database (Denmark)

    Skjøth, Carsten Ambelas; Geels, Camilla

    2013-01-01

    to a standard Danish pig stable with 1000 animals and display how emissions from this source would vary geographically throughout central and northern Europe and from year to year. In view of future climate changes, we also evaluate the potential future changes in emission by including temperature projections...... from an ensemble of climate models. The results point towards four overall issues. (1) Emissions can easily vary by 20% for different geographical locations within a country due to overall variations in climate. The largest uncertainties are seen for large countries such as the UK, Germany and France....... (2) Annual variations in overall climate can at specific locations cause uncertainties in the range of 20 %. (3) Climate change may increase emissions by 0–40% in central to northern Europe. (4) Gradients in existing emission inventories that are seen between neighbour countries (e.g. between the UK...

  10. Changes in the annual range of precipitation under global warming

    Science.gov (United States)

    Chou, C.; Lan, C.

    2011-12-01

    The annual range of precipitation, which is the difference between maximum and minimum precipitation within a year, is examined in climate model simulations under global warming. For global averages, the annual range of precipitation tends to increase as the globe warms. On a regional basis, this enhancement is found over most areas of the world, except for the bands along 30°S and 30N°, respectively. The enhancement in the annual range of precipitation is mainly associated with larger upward trends of maximum precipitation and smaller upward trends or downward trends of minimum precipitation. Based on the moisture budget analysis, the dominant mechanism is vertical moisture advection, both on a global average and on a regional scale. The vertical moisture advection, moisture convergence induced by vertical motion, includes the thermodynamic component, which is associated with increased water vapor, and the dynamic component, which is associated with changes in circulation. Generally, the thermodynamic component enhances the annual range of precipitation, while the dynamic component tends to reduce it. Evaporation has a positive contribution to both maximum and minimum precipitation, but very little to the annual range of precipitation. Even though evaporation and horizontal moisture advection are small for a global average, they could be important on a regional basis.

  11. Forest Policies Addressing Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    As a developing country with a large population and a fragile ecological environment, China is particularly vulnerable to the adverse effects of climate change. Beginning with the Rio Conference of 1992 China has played a progressively enhanced role in combating climate change. A series of policies and measures to address climate change have been taken in the overall context of national sustainable development strategy, making positive contributions to the mitigation and adaptation to climate change, among ...

  12. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  13. Climate Change and Future Fire Regimes: Examples from California

    Directory of Open Access Journals (Sweden)

    Jon E. Keeley

    2016-08-01

    Full Text Available Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation

  14. Climate change and future fire regimes: Examples from California

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as

  15. Risk Communication, Moral Emotions and Climate Change.

    NARCIS (Netherlands)

    Roeser, Sabine

    2012-01-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt

  16. Climate Change Education for Mitigation and Adaptation

    Science.gov (United States)

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  17. Climate Change Ignorance: An Unacceptable Legacy

    Science.gov (United States)

    Boon, Helen J.

    2015-01-01

    Climate change effects will be most acutely felt by future generations. Recent prior research has shown that school students' knowledge of climate change science is very limited in rural Australia. The purpose of this study was to assess the capacity of preservice teachers and parents to transmit climate change information and understanding to…

  18. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  19. Climatic change and river ice breakup

    Energy Technology Data Exchange (ETDEWEB)

    Beltaos, S. [Environment Canada, National Water Research Institute, Burlington, ON (Canada); Burrell, B. C. [New Brunswick Dept. of the Environment and Local Government, Sciences and Planning Division, Fredericton, NB (Canada)

    2003-07-01

    An overview of climatic factors and impact relative to river ice engineering and science is presented. An explanation of the fundamentals of climatic change is followed by a review of direct and indirect climatic influences that govern river ice breakup and related trends. Known responses of river ice to climatic change and potential future changes to ice breakup processes are described along with the probable ecological and socio-economic consequences of these changes. Changes in engineering approaches to accommodate the present ice regime and predicted changes in climatic variables that affect river ice processes and reduce the vulnerability of infrastructure and ecosystems to climatic change are examined. Future research on the links between river ice and stream ecology is suggested to identify ecological concerns that may result from changes in river ice regimes induced by climatic change. 60 refs., 3 figs.

  20. Shaping the Public Dialogue on Climate Change

    Science.gov (United States)

    Spitzer, W.; Anderson, J. C.

    2012-12-01

    In order to broaden the public dialogue about climate change, climate scientists need to leverage the potential of informal science education and recent advances in social and cognitive science. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Given that we spend less than 5% of our lifetime in a classroom, and only a fraction of that is focused on science, informal science venues will continue to play a critical role in shaping public understanding of environmental issues in the years ahead. Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. The New England Aquarium is leading a national effort to enable informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine ecosystems. This NSF-funded partnership, the National Network for Ocean and Climate Change Interpretation (NNOCCI), involves the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. We believe that skilled interpreters can serve as "communication strategists" by

  1. Tropical deforestation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Ebeling, J.

    2006-08-15

    This dissertation evaluates recent proposals to include tropical deforestation into international climate change mitigation strategies. Deforestation is responsible for up to 25 percent of global greenhouse gas emissions. The research aim here is to evaluate implications of a range of policy options for the environmental effectiveness of a prospective agreement, as well as for its political and economic attractiveness for different countries and stakeholders. A literature review, 48 key stakeholder interviews, analyses of submissions to the United Nations Framework Convention on Climate Change (UNFCCC), modelling approaches and statistical analyses were carried out to answer these questions. On this basis the study identifies potential deal breakers and explores possible solutions to existing 'real' and perceived obstacles. Findings suggest that, given sufficient political will, an effective agreement between current UNFCCC Parties is feasible and that existing concerns can be addressed in pragmatic ways. Among the different policy alternatives, creating a new carbon trading mechanism under a post-2012 Kyoto regime is likely to deliver greatest economic and environmental benefits. Measuring emission reductions against national-level baselines based on historical base periods would increase the environmental integrity of resulting carbon credits. The study also finds that potential monetary benefits are distributed very unevenly between potential host countries, and that this may partly explain current negotiation positions. Complementary approaches, not based on emission trading, may have to be developed to foster broader support for an agreement. Finally, setting more ambitious emission reduction targets for industrialised countries would overcome concerns about 'flooding' of carbon markets, and would make the most of a unique opportunity to tackle both climate change and deforestation.

  2. Regional climate change mitigation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rowlands, Ian H. [UNEP Collaborating Centre on Energy and Environment, and Univ. of Waterloo (Canada)

    1998-10-01

    The purpose of this paper is to explore some of the key methodological issues that arise from an analysis of regional climate change mitigation options. The rationale for any analysis of regional mitigation activities, emphasising both the theoretical attractiveness and the existing political encouragement and the methodology that has been developed are reviewed. The differences arising from the fact that mitigation analyses have been taken from the level of the national - where the majority of the work has been completed to date - to the level of the international - that is, the `regional` - will be especially highlighted. (EG)

  3. Renewable energy and climate change

    CERN Document Server

    Quaschning, Volker

    2010-01-01

    This dazzling introductory textbook encompasses the full range of today's important renewable energy technologies. Solar thermal, photovoltaic, wind, hydro, biomass and geothermal energy receive balanced treatment with one exciting and informative chapter devoted to each. As well as a complete overview of these state-of-the-art technologies, the chapters provide: clear analysis on their development potentials; an evaluation of the economic aspects involved; concrete guidance for practical implementation; how to reduce your own energy waste. If we do not act now to stop climate change, the cons.

  4. Virgin's Knight tackles climate change

    Science.gov (United States)

    Banks, Michael

    2008-11-01

    "There is no greater or more immediate challenge than that posed by climate change," said Sir Richard Branson, chairman of the Virgin group, via video-link at the 59th International Astronautical Congress (IAC) held in Glasgow in the UK at the end of September. That grand statement may seem like a lot of hot air for the entrepreneur best known for his attempt to circumnavigate the globe by balloon. But Branson went on to reveal that Virgin Galactic, which aims to fly passengers 100 km into space for 200 000 per trip, will also provide room on its craft for a series of scientific experiments to study the Earth's atmosphere.

  5. A history of climate change

    DEFF Research Database (Denmark)

    Hastrup, Kirsten Blinkenberg

    2017-01-01

    they were first described and became known to outsiders, it is shown how flexibility and mobility were always preconditions for survival in this environment. Then, they were trapped in too much ice, while now they have to negotiate a rapidly melting environment. In both cases their response is deeply......This article presents a small community of High Arctic hunters (the Inughuit in North West Greenland) who have always had to negotiate climatic changes with great impact on their living conditions. This points us toward the natural-social entanglements implied in the notion of the Anthropocene...

  6. India's National Action Plan on Climate Change

    OpenAIRE

    Pandve, Harshal T.

    2009-01-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture – further endangering food security – to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate C...

  7. Climate Change and Corporate Environmental Responsibility

    OpenAIRE

    Dewan Mahboob HOSSAIN; Chowdhury, M. Jahangir Alam

    2012-01-01

    Climate change, as an international environmental issue, is getting a lot of attention. The negative effects of climate change have become one of the most talked about issues among Governments, scientists, environmentalists and others. It is said that business activities are affecting the climate negatively. In order to minimize the negative effects of climate change, the activities of the businesses should be controlled and encouraged to perform in a socially responsible manner. The article ...

  8. The challenges of communicating climate change

    Directory of Open Access Journals (Sweden)

    Emiliano Feresin

    2009-06-01

    Full Text Available The climate change issue has become increasingly present in our society in the last decade and central also to communication studies. In the e-book “Communicating Climate Change: Discourses, Mediations and Perceptions”, edited by Anabela Carvalho, various scholars investigate how climate change challenges communication by looking at three main aspects: the discourses of a variety of social actors on climate change; the reconstruction of those discourses in the media; the citizens’ perceptions, understandings and attitudes in relation to climate change.

  9. Adapting to climate change or to stakeholders?

    Science.gov (United States)

    Bruggeman, Adriana; Camera, Corrado; Giannakis, Elias; Zoumides, Christos; Eliades, Marinos; Djuma, Hakan

    2015-04-01

    The Tamassos dam protects the Pedieos watershed in Cyprus against floods. The waterbody behind the dam serves as a new biodiversity and recreational resource. Water from the dam is also used for domestic water supply for nearby rural communities. However, this peaceful picture is threatened by climate change. Regional Climate Models indicate a drier and warmer Pedieos watershed in the near future (2020-2050). Interviews and meetings with a wide variety of stakeholders, for the development of a climate change adaptation plan for the Pedieos watershed, has created even more uncertainties than climate change. Environmental-minded stakeholders suggested to demolish the dam and to return the watershed to its natural state and the water to downstream ecosystems. Agricultural producers would also like to see the return of stream flows, such that they can divert or impound the water for groundwater recharge and subsequent irrigation. Community leaders similarly prefer stream flows for the recharge of the alluvial river aquifers, to allow them to abstract more groundwater for community water supply. Downstream authorities have different concerns. Here the usually dry river bed serves as the drainage of the urban agglomeration of the capital of Nicosia; and has been identified as an area of potentially significant flood risk for the European Flood Directive (2007/60/EC). The largest storm event in the upstream area in the recent past occurred in January 1989, before the construction of the dam. The runoff totalled 3.1 million m3 in one day and 4.4 million m3 in two days. Thus, part of the runoff would have flown straight through the spillway of the 2.8 million m3 dam reservoir. Average annual precipitation in the highly sloping, forested upstream area is 500 mm, while stream flows average 4.7 million m3/yr (1981-2001). This results in an average runoff coefficient of 19% for the 45-km2 upstream area. Past observations, climate change projections and hydrologic models

  10. Sensitivity of Climate to Changes in NDVI

    Science.gov (United States)

    Bounoua, L.; Collatz, G. J.; Los, S. O.; Sellers, P. J.; Dazlich, D. A.; Tucker, C. J.; Randall, D. A.

    1999-01-01

    The sensitivity of global and regional climate to changes in vegetation density is investigated using a coupled biosphere-atmosphere model. The magnitude of the vegetation changes and their spatial distribution are based on natural decadal variability of the normalized difference vegetation index (ndvi). Different scenarios using maximum and minimum vegetation cover were derived from satellite records spanning the period 1982-1990. Albedo decreased in the northern latitudes and increased in the tropics with increased ndvi. The increase in vegetation density revealed that the vegetation's physiological response was constrained by the limits of the available water resources. The difference between the maximum and minimum vegetation scenarios resulted in a 46% increase in absorbed visible solar radiation and a similar increase in gross photosynthetic C02 uptake on a global annual basis. This caused the canopy transpiration and interception fluxes to increase, and reduced those from the soil. The redistribution of the surface energy fluxes substantially reduced the Bowen ratio during the growing season, resulting in cooler and moister near-surface climate, except when soil moisture was limiting. Important effects of increased vegetation on climate are : (1) A cooling of about 1.8 K in the northern latitudes during the growing season and a slight warming during the winter, which is primarily due to the masking of high albedo of snow by a denser canopy. and (2) A year round cooling of 0.8 K in the tropics. These results suggest that increases in vegetation density could partially compensate for parallel increases in greenhouse warming . Increasing vegetation density globally caused both evapotranspiration and precipitation to increase. Evapotranspiration, however increased more than precipitation resulting in a global soil-water deficit of about 15 %. A spectral analysis on the simulated results showed that changes in the state of vegetation could affect the low

  11. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  12. Adaptation to Climate Change in Developing Countries

    DEFF Research Database (Denmark)

    Mertz, Ole; Halsnæs, Kirsten; Olesen, Jørgen E.

    2009-01-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs...... of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature...... on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing...

  13. [Climate change and Kyoto protocol].

    Science.gov (United States)

    Ergasti, G; Pippia, V; Murzilli, G; De Luca D'Alessandro, E

    2009-01-01

    Due to industrial revolution and the heavy use of fossil fuels, the concentration of greenhouse gases in the atmosphere has increased dramatically during the last hundred years, and this has lead to an increase in mean global temperature. The environmental consequences of this are: the melting of the ice caps, an increase in mean sea-levels, catastrophic events such as floodings, hurricanes and earthquakes, changes to the animal and vegetable kingdoms, a growth in vectors and bacteria in water thus increasing the risk of infectious diseases and damage to agriculture. The toxic effects of the pollution on human health are both acute and chronic. The Kyoto Protocol is an important step in the campaign against climatic changes but it is not sufficient. A possible solution might be for the States which produce the most of pollution to adopt a better political stance for the environment and to use renewable resources for the production of energy.

  14. Contributions of Psychology to Limiting Climate Change

    Science.gov (United States)

    Stern, Paul C.

    2011-01-01

    Psychology can make a significant contribution to limiting the magnitude of climate change by improving understanding of human behaviors that drive climate change and human reactions to climate-related technologies and policies, and by turning that understanding into effective interventions. This article develops a framework for psychological…

  15. Climate change. Scientific background and process

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Fuglestvedt, Jan; Seip, Hans Martin; Skodvin, Tora

    1999-07-01

    The paper describes briefly the natural and man-made forces behind climate change and outlines climate variations in the past. It also discusses the future impact of anthropogenic emission of greenhouse gases, and the background, organisation and functioning of the Intergovernmental Panel on Climate Change (IPCC)

  16. Science Teachers' Perspectives about Climate Change

    Science.gov (United States)

    Dawson, Vaille

    2012-01-01

    Climate change and its effects are likely to present challenging problems for future generations of young people. It is important for Australian students to understand the mechanisms and consequences of climate change. If students are to develop a sophisticated understanding, then science teachers need to be well-informed about climate change…

  17. Climate Change Adaptation in the Water Sector

    NARCIS (Netherlands)

    Ludwig, F.; Kabat, P.; Schaik, van H.; Valk, van der M.

    2009-01-01

    Today’s climate variability already has a large impact on water supply and protection. Millions of people are affected every year by droughts and floods. Future climate change is likely to make things worse. Many people within the water sector are aware that climate change is affecting water resourc

  18. Climate change: believing and seeing implies adapting.

    Science.gov (United States)

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  19. Rethinking climate change as a security threat

    Energy Technology Data Exchange (ETDEWEB)

    Schoch, Corinne

    2011-10-15

    Once upon a time climate change was a strictly environment and development issue. Today it has become a matter of national and international security. Efforts to link climate change with violent conflict may not be based on solid evidence, but they have certainly captured the attention of governments. They have played a vital role in raising the much-needed awareness of climate change as an issue that deserves global action. But at what cost? Focusing on climate change as a security threat alone risks devolving humanitarian responsibilities to the military, ignoring key challenges and losing sight of those climate-vulnerable communities that stand most in need of protection.

  20. Quantitative approaches in climate change ecology

    DEFF Research Database (Denmark)

    Brown, Christopher J.; Schoeman, David S.; Sydeman, William J.

    2011-01-01

    climate variability and other drivers of change. To assist the development of reliable statistical approaches, we review the marine climate change literature and provide suggestions for quantitative approaches in climate change ecology. We compiled 267 peer‐reviewed articles that examined relationships...... between climate change and marine ecological variables. Of the articles with time series data (n = 186), 75% used statistics to test for a dependency of ecological variables on climate variables. We identified several common weaknesses in statistical approaches, including marginalizing other important non...

  1. Protected areas' role in climate-change mitigation.

    Science.gov (United States)

    Melillo, Jerry M; Lu, Xiaoliang; Kicklighter, David W; Reilly, John M; Cai, Yongxia; Sokolov, Andrei P

    2016-03-01

    Globally, 15.5 million km(2) of land are currently identified as protected areas, which provide society with many ecosystem services including climate-change mitigation. Combining a global database of protected areas, a reconstruction of global land-use history, and a global biogeochemistry model, we estimate that protected areas currently sequester 0.5 Pg C annually, which is about one fifth of the carbon sequestered by all land ecosystems annually. Using an integrated earth systems model to generate climate and land-use scenarios for the twenty-first century, we project that rapid climate change, similar to high-end projections in IPCC's Fifth Assessment Report, would cause the annual carbon sequestration rate in protected areas to drop to about 0.3 Pg C by 2100. For the scenario with both rapid climate change and extensive land-use change driven by population and economic pressures, 5.6 million km(2) of protected areas would be converted to other uses, and carbon sequestration in the remaining protected areas would drop to near zero by 2100.

  2. Challenging claims in the study of migratory birds and climate change

    NARCIS (Netherlands)

    Knudsen, Endre; Linden, Andreas; Both, Christiaan; Jonzen, Niclas; Pulido, Francisco; Saino, Nicola; Sutherland, William J.; Bach, Lars A.; Coppack, Timothy; Ergon, Torbjorn; Gienapp, Phillip; Gill, Jennifer A.; Gordo, Oscar; Hedenstrom, Anders; Lehikoinen, Esa; Marra, Peter P.; Moller, Anders P.; Nilsson, Anna L. K.; Peron, Guillaume; Ranta, Esa; Rubolini, Diego; Sparks, Tim H.; Spina, Fernando; Studds, Colin E.; Saether, Stein A.; Tryjanowski, Piotr; Stenseth, Nils Chr.; Ergon, Torbjørn; Hedenström, Anders; Møller, Anders P.

    2011-01-01

    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous con

  3. Pacific Islands Climate Change Virtual Library

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Virtual Library provides access to web based climate variability and climate change information and tools relevant to the Pacific Islands including case studies,...

  4. Climate Change, Health, and Populations of Concern

    Science.gov (United States)

    This page contains communication materials that summarize key points from the U.S. Climate and Health Assessment for eight different populations that are disproportionately affected by climate change impacts.

  5. Multi-hazard assessment in Europe under climate change

    Science.gov (United States)

    Forzieri, Giovanni; Feyen, Luc; Russo, Simone; Vousdoukas, Michalis; Alfieri, Lorenzo; Outten, Stephen; Migliavacca, Mirco; Bianchi, Alessandra; Rojas, Rodrigo; Cid, Alba

    2016-04-01

    While reported losses of climate-related hazards are at historically high levels, climate change is likely to enhance the risk posed by extreme weather events. Several regions are likely to be exposed to multiple climate hazards, yet their modeling in a joint scheme is still at the early stages. A multi-hazard framework to map exposure to multiple climate extremes in Europe along the twenty-first century is hereby presented. Using a coherent ensemble of climate projections, changes in the frequency of heat and cold waves, river and coastal flooding, streamflow droughts, wildfires and windstorms are evaluated. Corresponding variations in expected annual exposure allow for an objective comparison of hazards described by different process characteristics and metrics. Projected changes in exposure depict important variations in hazard scenarios, especially those linked to rising temperatures, and spatial patterns largely modulated by local climate conditions. Results show that Europe will likely face a progressive increase in overall climate hazard with a prominent spatial gradient towards south-western regions mainly driven by the rise of heat waves, droughts and wildfires. Key hotspots emerge particularly along coastlines and in floodplains, often highly populated and economically pivotal, where floods and windstorms could be critical in combination with other climate hazards. Projected increases in exposure will be larger for very extreme events due to their pronounced changes in frequency. Results of this appraisal provide useful input for forthcoming European disaster risk and adaptation policy.

  6. The human factor: climate change and climate communication

    DEFF Research Database (Denmark)

    2011-01-01

    Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)......Reprint and translation of the article: “Den menneskelige faktor” published in the magazine Klima&Tilpasning Publisher: “Coordination unit for Research in Climate Change Adaptation” (KFT)...

  7. Climate Cases: Learning about Student Conceptualizations of Global Climate Change

    Science.gov (United States)

    Tierney, Benjamin P.

    2013-01-01

    The complex topic of global climate change continues to be a challenging yet important topic among science educators and researchers. This mixed methods study adds to the growing research by investigating student conceptions of climate change from a system theory perspective (Von Bertalanffy, 1968) by asking the question, "How do differences…

  8. Abrupt climate change: can society cope?

    Science.gov (United States)

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  9. Implications of climate change for potamodromous fishes.

    Science.gov (United States)

    Beatty, Stephen J; Morgan, David L; Lymbery, Alan J

    2014-06-01

    There is little understanding of how climate change will impact potamodromous freshwater fishes. Since the mid 1970s, a decline in annual rainfall in south-western Australia (a globally recognized biodiversity hotspot) has resulted in the rivers of the region undergoing severe reductions in surface flows (ca. 50%). There is universal agreement amongst Global Climate Models that rainfall will continue to decline in this region. Limited data are available on the movement patterns of the endemic freshwater fishes of south-western Australia or on the relationship between their life histories and hydrology. We used this region as a model to determine how dramatic hydrological change may impact potamodromous freshwater fishes. Migration patterns of fishes in the largest river in south-western Australia were quantified over a 4 year period and were related to a number of key environmental variables including discharge, temperature, pH, conductivity and dissolved oxygen. Most of the endemic freshwater fishes were potamodromous, displaying lateral seasonal spawning migrations from the main channel into tributaries, and there were significant temporal differences in movement patterns between species. Using a model averaging approach, amount of discharge was clearly the best predictor of upstream and downstream movement for most species. Given past and projected reductions in surface flow and groundwater, the findings have major implications for future recruitment rates and population viabilities of potamodromous fishes. Freshwater ecosystems in drying climatic regions can only be managed effectively if such hydro-ecological relationships are considered. Proactive management and addressing existing anthropogenic stressors on aquatic ecosystems associated with the development of surface and groundwater resources and land use is required to increase the resistance and resilience of potamodromous fishes to ongoing flow reductions.

  10. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  11. Evaluation of annual resolution coral geochemical records as climate proxies in the Great Barrier Reef of Australia

    Science.gov (United States)

    Deng, Wenfeng; Wei, Gangjian; McCulloch, Malcolm; Xie, Luhua; Liu, Ying; Zeng, Ti

    2014-12-01

    Sampling of annually banded massive coral skeletons at annual (or higher) resolutions is increasingly being used to obtain replicate long-term time series of changing seawater conditions. However, few of these studies have compared and calibrated the lower annual resolution records based on coral geochemical tracers with the corresponding instrumental climate records, although some studies have inferred the climatic significance of annual coral series derived from averages of monthly or sub-annual records. Here, we present annual resolution analysis of coral records of elemental and stable isotopic composition that are approximately 70 years long. These records were preserved in two coexisting colonies of Porites sp. from Arlington Reef, on the Great Barrier Reef in Australia, and are used to evaluate the climatic significance of annually resolved coral geochemical proxies. The geochemical records of coral sample "10AR2," with its faster and relatively constant annual growth rate, appear to have been independent of skeletal growth rate and other vital effects. The annual resolution of Sr/Ca and Δδ18O time series was shown to be a good proxy for annual sea surface temperature (SST; r = -0.67, n = 73, p < 0.0000001) and rainfall records ( r = -0.34, n = 67, p < 0.01). However, a slower growing coral sample, "10AR1" showed significantly lower correlations ( r = -0.20, n = 71, p = 0.05 for Sr/Ca and SST; r = -0.19, n = 67, p = 0.06 for Δδ18O and rainfall), indicating its greater susceptibility to biological/metabolic effects. Our results suggest that while annually resolved coral records are potentially a valuable tool for determining, in particular, long timescale climate variability such as Pacific Decadal Oscillation, Interdecadal Pacific Oscillation, and other climatic factors, the selection of the coral sample is important, and replication is essential.

  12. Climate Change in Myanmar: Impacts and Adaptation

    Science.gov (United States)

    2014-12-01

    complex field of study developed from a rather simple idea. Climate, as described by Harun Rashid and Bimal Paul, can be defined as...Harun Rashid and Bimal Paul, Climate Change in Bangladesh: Confronting Impending Disasters (Lanham, MD: Lexington Books, 2014), 3–4. 43 “Climate...El Nino seasons, the warming trend has continued in a positive 44 Rashid and Paul, Climate Change

  13. IMPACT OF CLIMATE CHANGE ON AGRICULTURE

    Directory of Open Access Journals (Sweden)

    Kanchan Joshi

    2013-03-01

    Full Text Available Climate change has materialized as the leading global environmental concern. Agriculture is one of the zones most critically distressed by climate alteration. As global temperature rises and climate conditions become more erratic posing threat to the vegetation, biodiversity, biological progression and have enduring effect on food security as well as human health. The present review emphasizes multiple consequences of climate change on agricultural productivity.

  14. Economic Consequences Of Climate Change

    Science.gov (United States)

    Szlávik, János; Füle, Miklós

    2009-07-01

    Even though the climate conflict resulting from green houses gases (GHG) emissions was evident by the Nineties and the well-known agreements made, their enforcement is more difficult than that of other environmental agreements. That is because measures to reduce GHG emissions interfere with the heart of the economy and the market: energy (in a broader sense than the energy sector as defined by statistics) and economical growth. Analyzing the environmental policy responses to climate change the conclusion is that GHG emission reduction can only be achieved through intensive environmental policy. While extensive environmental protection complements production horizontally, intensive environmental protection integrates into production and the environment vertically. The latter eliminates the source of the pollution, preventing damage. It utilizes the biochemical processes and self-purification of the natural environment as well as technical development which not only aims to produce state-of-the-art goods, but to make production more environmentally friendly, securing a desired environmental state. While in extensive environmental protection the intervention comes from the outside for creating environmental balance, in intensive environmental protection the system recreates this balance itself. Instead of dealing with the consequences and the polluter pays principle, the emphasis is on prevention. It is important to emphasize that climate strategy decisions have complex effects regarding the aspects of sustainability (economical, social, ecological). Therefore, all decisions are political. At present, and in the near future, market economy decisions have little to do with sustainability values under normal circumstances. Taking social and ecological interests into consideration can only be successful through strategic political aims.

  15. Climate change and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M

    2000-04-01

    The nuclear industry has increased its efforts to have nuclear power plants integrated into the post- Kyoto negotiating process of the UN Framework Convention on Climate Change. The Nuclear Energy Institute (NEI) states: ''For many reasons, current and future nuclear energy projects are a superior method of generating emission credits that must be considered as the US expands the use of market- based mechanisms designed around emission credit creation and trading to achieve environmental goals ''. The NEI considers that nuclear energy should be allowed to enter all stages of the Kyoto ''flexibility Mechanisms'': emissions trading, joint implementation and the Clean Development Mechanism. The industry sees the operation of nuclear reactors as emission ''avoidance actions'' and believes that increasing the generation of nuclear power above the 1990 baseline year either through extension and renewal of operating licenses or new nuclear plant should be accepted under the flexibility mechanisms in the same way as wind, solar and hydro power. For the time being, there is no clear definition of the framework conditions for operating the flexibility mechanisms. However, eligible mechanisms must contribute to the ultimate objective of the Climate Convention of preventing ''dangerous anthropogenic interference with the climate system''. The information presented in the following sections of this report underlines that nuclear power is not a sustainable source of energy, for many reasons. In conclusion, an efficient greenhouse gas abatement strategy will be based on energy efficiency and not on the use of nuclear power. (author)

  16. CLIMATE CHANGE AND ITS IMPACT ON WHEAT PRODUCTION IN KANSAS

    Directory of Open Access Journals (Sweden)

    Joshua C. Howard

    2016-04-01

    Full Text Available This paper studies the effect of climate change on wheat production in Kansas using annual time series data from 1949 to 2014. For the study, an error correction model is developed in which the price of wheat, the price of oats (substitute good, average annual temperature and average annual precipitation are used as explanatory variables with total output of wheat being the dependent variable. Time series properties of the data series are diagnosed using unit root and cointegration tests. The estimated results suggest that Kansas farmers are supply responsive to both wheat as well as its substitute (oat prices in the short run as well as in the long run. Climate variables; temperature has a positive effect on wheat output in the short run but an insignificant effect in the long run. Precipitation has a positive effect in the short run but a negative effect in the long run.

  17. Climate change and temperature-dependent sex determination in reptiles.

    Science.gov (United States)

    Janzen, F J

    1994-08-02

    Despite increasing concern over the possible impact of global temperature change, there is little empirical evidence of direct temperature effects on biotic interactions in natural systems. Clear assessment of the ecological and evolutionary impact of changing climatic temperature requires a natural system in which populations exhibit a direct unambiguous fitness response to thermal fluctuation. I monitored nests of a population of painted turtles (Chrysemys picta) with temperature-dependent sex determination to investigate the causal relationship between local climatic variation in temperature and offspring sex ratio. Consistent with theoretical predictions, annual offspring sex ratio was highly correlated with mean July air temperature, validating concerns about the effect of climate change on population demography. This correlation implies that even modest increases in mean temperature (evolve rapidly enough to counteract the negative fitness consequences of rapid global temperature change. Populations of species with temperature-dependent sex determination may serve as ideal indicators of the biological impact of global temperature change.

  18. Responding to the Consequences of Climate Change

    Science.gov (United States)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  19. Responses of alpine biodiversity to climate change

    OpenAIRE

    Yang Liu; Jian Zhang; Wanqin Yang

    2009-01-01

    The alpine belt is the temperature-driven treeless region between the timberline and the snowline. Alpine belts are ideal sites for monitoring climate change because species in mountain habitats are especially sensitive to climate change. Global warming is shifting the distribution of alpine biodiversity and is leading to glacial retreat, implying that alterations in alpine biodiversity are indicators of climate change. Therefore, more attention has been given to changes in species compositio...

  20. Climate Change and Its Effects on Runoff of Kaidu River,Xinjiang, China: A Multiple Time-scale Analysis

    Institute of Scientific and Technical Information of China (English)

    XU Jianhua; CHEN Yaning; JI Minhe; LU Feng

    2008-01-01

    This paper applied an integrated method combining grey relation analysis, wavelet analysis and statistical analysis to study climate change and its effects on runoff of the Kaidu River at multi-time scales. Major findings are as follows: 1) Climatic factors were ranked in the order of importance to annual runoff as average annual temperature, average temperature in autumn, average temperature in winter, annual precipitation, precipitation in flood season, av-erage temperature in summer, and average temperature in spring. The average annual temperature and annual precipi-tation were selected as the two representative factors that impact the annual runoff. 2) From the 32-year time scale, the annual runoff and the average annual temperature presented a significantly rising trend, whereas the annual precipita-tion showed little increase over the period of 1957-2002. By changing the time scale from 32-year to 4-year, we ob-served nonlinear trends with increasingly obvious oscillations for annual runoff, average annual temperature, and an-nual precipitation. 3) The changes of the runoff and the regional climate are closely related, indicating that the runoff change is the result of the regional climate changes. With time scales ranging from 32-year, 16-year, 8-year and to 4-year, there are highly significant linear correlations between the annual runoff and the average annual temperature and the annual precipitation.

  1. Covering Climate Change in Wikipedia

    Science.gov (United States)

    Arritt, R. W.; Connolley, W.; Ramjohn, I.; Schulz, S.; Wickert, A. D.

    2010-12-01

    The first hit in an internet search for "global warming" using any of the three leading search engines (Google, Bing, or Yahoo) is the article "Global warming" in the online encyclopedia Wikipedia. The article garners about half a million page views per month. In addition to the site's visibility with the public, Wikipedia's articles on climate-related topics are widely referenced by policymakers, media outlets, and academia. Despite the site's strong influence on public understanding of science, few geoscientists actively participate in Wikipedia, with the result that the community that edits these articles is mostly composed of individuals with little or no expertise in the topic at hand. In this presentation we discuss how geoscientists can help shape public understanding of science by contributing to Wikipedia. Although Wikipedia prides itself on being "the encyclopedia that anyone can edit," the site has policies regarding contributions and behavior that can be pitfalls for newcomers. This presentation is intended as a guide for the geoscience community in contributing to information about climate change in this widely-used reference.

  2. Climate Trends and Farmers' Perceptions of Climate Change in Zambia

    Science.gov (United States)

    Mulenga, Brian P.; Wineman, Ayala; Sitko, Nicholas J.

    2017-02-01

    A number of studies use meteorological records to analyze climate trends and assess the impact of climate change on agricultural yields. While these provide quantitative evidence on climate trends and the likely effects thereof, they incorporate limited qualitative analysis of farmers' perceptions of climate change and/or variability. The present study builds on the quantitative methods used elsewhere to analyze climate trends, and in addition compares local narratives of climate change with evidence found in meteorological records in Zambia. Farmers offer remarkably consistent reports of a rainy season that is growing shorter and less predictable. For some climate parameters—notably, rising average temperature—there is a clear overlap between farmers' observations and patterns found in the meteorological records. However, the data do not support the perception that the rainy season used to begin earlier, and we generally do not detect a reported increase in the frequency of dry spells. Several explanations for these discrepancies are offered. Further, we provide policy recommendations to help farmers adapt to climate change/variability, as well as suggestions to shape future climate change policies, programs, and research in developing countries.

  3. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.

    2015-02-24

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control and temporal homogenization procedure. Monthly average maps at the spatial resolution of 1 km were modeled by means of a regression-based approach using topographic and geographic variables as predictors. The monthly average maximum and minimum temperatures, precipitation and potential exoatmospheric solar radiation under clear sky conditions are used to estimate the monthly average atmospheric evaporative demand by means of the Hargreaves model. Finally, the average water balance is estimated on a monthly and annual scale for each 1 km cell by means of the difference between precipitation and atmospheric evaporative demand. The digital layers used to create the maps are available in the digital repository of the Spanish National Research Council.

  4. The Climate Change Challenge for Land Professionals

    DEFF Research Database (Denmark)

    Enemark, Stig

    2014-01-01

    monitoring systems and systems for land administration and management should serve as a basis for climate change mitigation and adaptation as well as prevention and management of natural disasters. In facing the climate change challenge the role of land professionals is twofold: • Monitoring change...... such as sea level rise and environmental degradation through global positioning infrastructures and data interpretation and presentation; • Implementing climate change adaptation and mitigation measures into land administration systems and systems for disaster risk management. This paper provides an overall...... understanding of the climate change challenge and looks at land governance as a key means of contributing to climate change adaptation as well disaster risk prevention and management. More specifically the paper looks at identifying the role of land professionals in addressing the climate change challenge...

  5. An analysis of annual variation of tourist flows and climate change in Hainan Province%海南旅游客流量年内变化与气候的相关性分析

    Institute of Scientific and Technical Information of China (English)

    吴普; 葛全胜

    2009-01-01

    气候是旅游资源不可或缺的组成部分,也是影响旅游地开发的重要因素,直接影响到旅游季节的长短及旅游客流的年内变化.利用海南9个气象站点自建站以来的气候资料及近5年旅游统计资料,通过特吉旺气候舒适指数、相关分析和回归分析等方法,分析海南气候舒适度及其与旅游客流量年内变化的相关性.结果表明:11月~3月是海南旅游的最适宜期;气候对海南旅游客流量有显著影响,以气温为主导的气候舒适度是海南旅游客流年内淡旺季变化及游客旅游决策的主要影响因素;温度与海南旅游客流量呈显著负相关关系;与海口比较而言,三亚旅游业对气候更加敏感.本项研究对更好地将气候整合到旅游产品中进行宣传促销、提高产品吸引力,对海南旅游业发展规划,对提前预判游客规模尽早做出对策安排及旅游投资有很强的现实指导意义.%Climate resource is one of the most important natural tourism resources in tourism development. The plentiful climate resources not only have the special landscape function, but also have impact on tourism demand. Climate comfort degree effectively re-sponses the comfort of climate in tourism destination for tourist, it is the key factor to tourism development. It directly affects the length of tourism season and annual variation of tourist flows. The climate data of 30 years from nine meteorological stations and tourism data of 5 years from tourism administration of Hainan province were used in this paper. By adopting Comfort Index of W. H. Terjung, correlation and regression analysis,this article analyzed the relationship between climate and annual variation of tourist flows in Hainan province. The results suggested that the advantage of tourism in Hainan was winter and the most comfortable period of tourism began from current November to next March. According to the correlation analysis, climate influences tourist flows

  6. Abrupt climate change:Debate or action

    Institute of Scientific and Technical Information of China (English)

    CHENG Hai

    2004-01-01

    Global abrupt climate changes have been documented by various climate records, including ice cores,ocean sediment cores, lake sediment cores, cave deposits,loess deposits and pollen records. The climate system prefers to be in one of two stable states, i.e. interstadial or stadial conditions, but not in between. The transition between two states has an abrupt character. Abrupt climate changes are,in general, synchronous in the northern hemisphere and tropical regions. The timescale for abrupt climate changes can be as short as a decade. As the impacts may be potentially serious, we need to take actions such as reducing CO2emissions to the atmosphere.

  7. Investigating changes over time of annual rainfall in Zimbabwe

    Directory of Open Access Journals (Sweden)

    D. Mazvimavi

    2010-12-01

    Full Text Available There is increasing concern in southern Africa about the possible decline of rainfall as a result of global warming. Some studies concluded that average rainfall in Zimbabwe had declined by 10% or 100 mm during the last 100 years. This paper investigates the validity of the assumption that rainfall is declining in Zimbabwe. Time series of annual rainfall, and total rainfall for (a the early part of the rainy season, October-November-December (OND, and (b the mid to end of the rainy season, January-February-March (JFM are analysed for the presence of trends using the Mann-Kendall test, and for the decline or increase during years with either high or low rainfall using quantile regression analysis. The Pettitt test has also been utilized to examine the possible existence of change or break-points in the rainfall time series. The analysis has been done for 40 rainfall stations with records starting during the 1892–1940 period and ending in 2000, and representative of all the rainfall regions.

    The Mann-Kendal test did not identify a significant trend at all the 40 stations, and therefore there is no proof that the average rainfall at each of these stations has changed. Quantile regression analysis revealed a decline in annual rainfall less than the tenth percentile at only one station, and increasing of rainfall greater than the ninetieth percentile at another station. All the other stations had no changes over time in both the low and high rainfall at the annual interval. Climate change effects are therefore not yet statistically significant within time series of total seasonal and annual rainfall in Zimbabwe. The general perception about declining rainfall is likely due to the presence of multidecadal variability characterized by bunching of years with above (e.g. 1951–1958, 1973–1980 and below (e.g. 1959–1972, 1982–1994 average rainfall.

  8. Bioretention function under climate change scenarios in North Carolina, USA

    Science.gov (United States)

    Hathaway, J. M.; Brown, R. A.; Fu, J. S.; Hunt, W. F.

    2014-11-01

    The effect of climate change on stormwater controls is largely unknown. Evaluating such effects is important for understanding how well resiliency can be built into urban watersheds by implementing these systems. Bioretention areas with varied media depths, in situ soil types, drainage configurations, and surface infiltration capabilities have previously been monitored, modelled, and calibrated using the continuous simulation model, DRAINMOD. In this study, data from downscaled climate projections for 2055 through 2058 were utilized in these models to evaluate changes in system hydrologic function under two climate change scenarios (RCP 4.5 and 8.5). The results were compared to those generated using a “Base” scenario of observed data from 2001 to 2004. The results showed a modest change in the overall water balance of the system. In particular, the frequency and magnitude of overflow from the systems substantially increased under the climate change scenarios. As this represents an increase in the amount of uncontrolled, untreated runoff from the contributing watersheds, it is of particular concern. Further modelling showed that between 9.0 and 31.0 cm of additional storage would be required under the climate change scenarios to restrict annual overflow to that of the base scenario. Bioretention surface storage volume and infiltration rate appeared important in determining a system's ability to cope with increased yearly rainfall and higher rainfall magnitudes. As climate change effects vary based on location, similar studies should be performed in other locations to determine localized effects on stormwater controls.

  9. Wealth reallocation and sustainability under climate change

    Science.gov (United States)

    Fenichel, Eli P.; Levin, Simon A.; McCay, Bonnie; St. Martin, Kevin; Abbott, Joshua K.; Pinsky, Malin L.

    2016-03-01

    Climate change is often described as the greatest environmental challenge of our time. In addition, a changing climate can reallocate natural capital, change the value of all forms of capital and lead to mass redistribution of wealth. Here we explain how the inclusive wealth framework provides a means to measure shifts in the amounts and distribution of wealth induced by climate change. Biophysical effects on prices, pre-existing institutions and socio-ecological changes related to shifts in climate cause wealth to change in ways not correlated with biophysical changes. This implies that sustainable development in the face of climate change requires a coherent approach that integrates biophysical and social measurement. Inclusive wealth provides a measure that indicates sustainability and has the added benefit of providing an organizational framework for integrating the multiple disciplines studying global change.

  10. Atmospheric Radiation Measurement Climate Research Facility Annual Report 2006

    Energy Technology Data Exchange (ETDEWEB)

    LR Roeder

    2005-11-30

    This annual report describes the purpose and structure of the ARM Climate Research Facility and ARM Science programs and presents key accomplishments in 2006. Noteworthy scientific and infrastructure accomplishments in 2006 include: • Collaborating with the Australian Bureau of Meteorology to lead the Tropical Warm Pool-International Cloud Experiment, a major international field campaign held in Darwin, Australia • Successfully deploying the ARM Mobile Facility in Niger, Africa • Developing the new ARM Aerial Vehicles Program (AVP) to provide airborne measurements • Publishing a new finding on the impacts of aerosols on surface energy budget in polar latitudes • Mitigating a long-standing double-Intertropical Convergence Zone problem in climate models using ARM data and a new cumulus parameterization scheme.

  11. Climate change threatens European conservation areas

    Science.gov (United States)

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P<0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  12. Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change

    Directory of Open Access Journals (Sweden)

    J. Shulmeister

    2006-02-01

    both inter-annual and seven year periodicities are present, with the inter-annual signal dominant. Paleo-data demonstrate that the relative importance of the two periodicities changes through time, with longer periodicities dominant in the early Holocene.

    3. The recognition of climate modulation of oscillatory systems by abrupt climate events: We examine the relationship of ENSO to an abrupt SH climate event, the Antarctic cold reversal (ACR, in the New Zealand region. We demonstrate that the onset of the ACR was associated with the apparent switching on of an ENSO signal in New Zealand. We infer that this related to enhanced zonal SW winds with the amplification of the pressure fields allowing an existing but weak ENSO signal to manifest itself. Teleconnections of this nature would be difficult to predict for future abrupt change as boundary conditions cannot readily be specified. Paleo-data are critical to predicting the teleconnections of future abrupt changes.

  13. Inter-hemispheric linkages in climate change: paleo-perspectives for future climate change

    Directory of Open Access Journals (Sweden)

    J. Shulmeister

    2006-01-01

    Full Text Available The Pole-Equator-Pole (PEP projects of the PANASH (Paleoclimates of the Northern and Southern Hemisphere programme have significantly advanced our understanding of past climate change on a global basis and helped to integrate paleo-science across regions and research disciplines. PANASH science allows us to constrain predictions for future climate change and to contribute to the management of consequent environmental changes. We identify three broad areas where PEP science makes key contributions. 1. The pattern of global changes. Knowing the exact timing of glacial advances (synchronous or otherwise during the last glaciation is critical to understanding inter-hemispheric links in climate. Work in PEPI demonstrated that the tropical Andes in South America were deglaciated earlier than the Northern Hemisphere (NH and that an extended warming began there ca. 21 000 cal years BP. The general pattern is consistent with Antarctica and has now been replicated from studies in Southern Hemisphere (SH regions of the PEPII transect. That significant deglaciation of SH alpine systems and Antarctica led deglaciation of NH ice sheets may reflect either i faster response times in alpine systems and Antarctica, ii regional moisture patterns that influenced glacier mass balance, or iii a SH temperature forcing that led changes in the NH. This highlights the limitations of current understanding and the need for further fundamental paleoclimate research. 2. Changes in modes of operation of oscillatory climate systems. Work across all the PEP transects has led to the recognition that the El Niño Southern Oscillation (ENSO phenomenon has changed markedly through time. It now appears that ENSO operated during the last glacial termination and during the early Holocene, but that precipitation teleconnections even within the Pacific Basin were turned down, or off. In the modern ENSO phenomenon both inter-annual and seven year periodicities are present, with the

  14. India's National Action Plan on Climate Change.

    Science.gov (United States)

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  15. Climate Change and the Social Factor

    DEFF Research Database (Denmark)

    Petersen, Lars Kjerulf; Jensen, Anne; Nielsen, Signe Svalgaard

    risks and concerns of everyday life? The project found that the distinction between climate change mitigation and adaptation is of little significance for lay people. The prospect of climate change does provoke reflections on social values and the need for saving energy, but when it comes to protecting......This poster reports from a explorative study about social aspects of climate change adaptation in Denmark. The aim of the project was to explore how people perceive and relate to climate change adaptation, what risks are associated with climate change and how are those risks balanced with other...... ones own life and property against future damaging effects of climate change the threat seems distant and other forms of home improvement seem more relevant. People have a high level of trust in socio-technical systems and feel that adaptation measures primarily should be taken by the authorities....

  16. Climate Change, Health, and Communication: A Primer.

    Science.gov (United States)

    Chadwick, Amy E

    2016-01-01

    Climate change is one of the most serious and pervasive challenges facing us today. Our changing climate has implications not only for the ecosystems upon which we depend, but also for human health. Health communication scholars are well-positioned to aid in the mitigation of and response to climate change and its health effects. To help theorists, researchers, and practitioners engage in these efforts, this primer explains relevant issues and vocabulary associated with climate change and its impacts on health. First, this primer provides an overview of climate change, its causes and consequences, and its impacts on health. Then, the primer describes ways to decrease impacts and identifies roles for health communication scholars in efforts to address climate change and its health effects.

  17. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  18. Urban Vulnerability and Climate Change in Africa

    DEFF Research Database (Denmark)

    Jørgensen, Gertrud

    Urbanisation and climate change are among the major challenges for sustainable development in Africa. The overall aim of this book is to present innovative approaches to vulnerability analysis and for enhancing the resilience of African cities against climate change-induced risks. Locally adapted...... IPCC climate change scenarios, which also consider possible changes in urban population, have been developed. Innovative strategies to land use and spatial planning are proposed that seek synergies between the adaptation to climate change and the need to solve social problems. Furthermore, the book...... explores the role of governance in successfully coping with climate-induced risks in urban areas. The book is unique in that it combines: a top-down perspective of climate change modeling with a bottom-up perspective of vulnerability assessment; quantitative approaches from engineering sciences...

  19. Climate variability and climate change in Mexico: A review

    OpenAIRE

    Jáuregui, E.

    1997-01-01

    A review of research on climate variability, fluctuations and climate change in Mexico is presented. Earlier approaches include different time scales from paleoclimatic to historical and instrumental. The nature and causes of variability in Mexico have been attributed to large-scale southward/northward shifts of the mid-latitude major circulation and more recently to the ENSO cycle. Global greenhouse warming has become a major environmental issue and has spawned a large number of climate-chan...

  20. Scientific climate change information by collaborative venture and digital portal

    Science.gov (United States)

    Dubelaar-Versluis, W.

    2010-09-01

    Klimaatportaal is the digital entry of Dutch ‘climate' knowledge centres, which are collaborated in the Platform Communication on Climate Change (PCCC). This collaborative venture was established in 2003 by the Dutch climate research community to improve the quality, efficiency and effectiveness of the communication of Dutch climate research. By now, eight Dutch knowledge centres are participating and still more want to join. The Ministry of Housing, Spatial Planning and the Environment (VROM) supports the PCCC and the project is implemented in collaboration with the BSIK ‘Climate Changes Spatial Planning' programme. The website provides actual and background climate change information for a wide audience on the national scale from policy makers, media to general public. By supplying integral climate information, such as observations of climate change, causes and consequences of climate system, adaptation, mitigation and energy issues, a wide spectrum of target groups will be served. The information is offered in different forms, because of the needs of different target groups. Klimaatportaal contains therefore news on climate issues, frequently asked questions and popular science reports, like the annually brochure De Staat van het Klimaat (‘The State of the Climate'). Recently, also a portal for students is added, where they can find information for their assignments. Beside the website, PCCC is organising activities as symposia and workshops and is supplying information on international issues, for example the content of the Kyoto protocol and the IPCC fourth assessment report (2007). Finally, informing the public through contacts with the media is also an important part of the PCCC. The presentation will address the strengths and weaknesses of this approach which may serve as an example for combining knowledge in outreach activities in other countries.

  1. Climate variability and climate change vulnerability and adaptation. Workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, N.; Cirillo, R.R. [Argonne National Lab., IL (United States); Dixon, R.K. [U.S. Country Studies Program, Washington, DC (United States)] [and others

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  2. Coastal Risk Management in a Changing Climate

    DEFF Research Database (Denmark)

    Existing coastal management and defense approaches are not well suited to meet the challenges of climate change and related uncertanities. Professionals in this field need a more dynamic, systematic and multidisciplinary approach. Written by an international group of experts, "Coastal Risk...... Management in a Changing Climate" provides innovative, multidisciplinary best practices for mitigating the effects of climate change on coastal structures. Based on the Theseus program, the book includes eight study sites across Europe, with specific attention to the most vulnerable coastal environments...

  3. Global Climate Change: Threat Multiplier for AFRICOM?

    Science.gov (United States)

    2007-11-06

    Vaclav Klaus , President of the Czech Republic, as quoted in Notes for the speech of the President of the Czech Republic at the UN Climate Change...63 Vaclav Klaus , UN Climate Change Conference, 2. 64 Ibid., 1. 65 Aaron T. Wolf, and Annika Kramer, and Alexander...2007). Klaus , Vaclav , President of the Czech Republic. Notes for the Speech of the President of the Czech Republic at the UN Climate Change

  4. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  5. Fostering Hope in Climate Change Educators

    Science.gov (United States)

    Swim, Janet K.; Fraser, John

    2013-01-01

    Climate Change is a complex set of issues with large social and ecological risks. Addressing it requires an attentive and climate literate population capable of making informed decisions. Informal science educators are well-positioned to teach climate science and motivate engagement, but many have resisted the topic because of self-doubt about…

  6. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  7. Gender angle to the climate change negotiations

    NARCIS (Netherlands)

    Wamukonya, Njeri; Skutsch, Margaret

    2002-01-01

    The South is likely to suffer more from climate change than the North due to its already vulnerable situation and lack of the necessary resources to adapt to change. But do the interests of men and of women differ as regards climate change and does this have a South-North dimension? This paper attem

  8. Incorporating Student Activities into Climate Change Education

    Science.gov (United States)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  9. Climate, karst, and critters—A multidisciplinary evaluation of karst species vulnerability to climate change

    Science.gov (United States)

    Mahler, B. J.; Musgrove, M.; Long, A. J.; Stamm, J. F.; Poteet, M. F.; Symstad, A.

    2015-12-01

    The complex hydrologic regimes of karst aquifers respond rapidly to the effects of climate change, and unique biological communities associated with karst are sensitive to hydrologic changes. To explore how climate change might affect karst-dependent species, we coupled a climate-change model, a hydrologic model, and a vulnerability assessment tool to evaluate projected hydrologic change and vulnerability of selected species at sites in the karstic Edwards aquifer (Texas) and Madison aquifer (South Dakota). The Advanced Research Weather and Research Forecasting (WRF) model was used to simulate projected climate from 2011 to 2050 at a 36-km grid spacing for 3 weather stations near the study sites. Daily climate projections from the WRF model were used as input for the hydrologic Rainfall-Response Aquifer and Watershed Flow (RRAWFLOW) model and the Climate Change Vulnerability Index (CCVI). RRAWFLOW is a lumped-parameter model that simulates hydrologic response at a single site, superposing the quick- and slow-flow responses that commonly characterize karst aquifers. CCVI uses historical and projected climate and hydrologic metrics to assess the vulnerability of a species. An upward trend in temperature was projected at all three weather stations; there was a trend (downward) in precipitation only for the Texas weather station. A downward trend in mean annual spring flow or groundwater level was projected for the three Edwards sites, but there was no significant trend for the two Madison sites. Of 16 Edwards aquifer species evaluated, 10 were scored as highly or moderately vulnerable under the projected climate change scenario. In contrast, all 8 Madison aquifer species evaluated were scored as moderately vulnerable, stable, or intermediate between the two. The inclusion of hydrologic projections in the vulnerability assessment was essential for interpreting the effects of climate change on aquatic species of conservation concern such as endemic salamanders.

  10. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  11. Terrestrial plant production and climate change.

    Science.gov (United States)

    Friend, Andrew D

    2010-03-01

    The likely future increase in atmospheric CO(2) and associated changes in climate will affect global patterns of plant production. Models integrate understanding of the influence of the environment on plant physiological processes and so enable estimates of future changes to be made. Moreover, they allow us to assess the consequences of different assumptions for predictions and so stimulate further research. This paper is a review of the sensitivities of one such model, Hybrid6.5, a detailed mechanistic model of terrestrial primary production. This model is typical of its type, and the sensitivities of the global distribution of predicted production to model assumptions and possible future CO(2) levels and climate are assessed. Sensitivity tests show that leaf phenology has large effects on mean C(3) crop and needleleaved cold deciduous tree production, reducing potential net primary production (NPP) from that obtained using constant maximum annual leaf area index by 32.9% and 41.6%, respectively. Generalized Plant Type (GPT) specific parameterizations, particularly photosynthetic capacity per unit leaf N, affect mean predicted NPP of higher C(3) plants by -22.3% to 27.9%, depending on the GPT, compared to NPP predictions obtained using mean parameter values. An increase in atmospheric CO(2) concentrations from current values to 720 ppm by the end of this century, with associated effects on climate from a typical climate model, is predicted to increase global NPP by 37.3%. Mean increases range from 43.9-52.9% across different C(3) GPTs, whereas the mean NPP of C(4) grass and crop increases by 5.9%. Significant uncertainties concern the extent to which acclimative processes may reduce any potential future increase in primary production and the degree to which any gains are transferred to durable, and especially edible, biomass. Experimentalists and modellers need to work closely together to reduce these uncertainties. A number of research priorities are suggested

  12. Seasonality variations in the Central Mediterranean during climate change events in the Late Holocene

    NARCIS (Netherlands)

    Goudeau, M.-L.S.; Reichart, G.J.; Wit, J.C.; de Nooijer, L.J.; Grauel, A.-L.; Bernasconi, S. M.; de Lange, G.J.

    2015-01-01

    Holocene rapid climate change (RCC) events, such as the Little Ice Age (LIA), are thought to have influenced average annual temperatures only marginally, but to have affected winter temperatures relatively strongly. With summer temperatures relatively unaffected, reconstructing climate change at a s

  13. Climate Change, Risk and Grain Yields in China

    Institute of Scientific and Technical Information of China (English)

    Rainer Holst; Xiaohua Yu; Carola Grn

    2013-01-01

    Adopting Just and Pope (1978, 1979) style yield functions, this paper proposes a method to analyze the impacts of regional climate change on grain production in China. We find that changes in climate will affect grain production in North and South China differently. Specifically, it emerges that a 1°C increase in annual average temperature could reduce national grain output by 1.45%(1.74%reduction in North China and 1.19%reduction in South China), while an increase in total annual precipitation of around 100 mm could increase national grain output by 1.31%(3.0%increase in North China and 0.59%reduction in South China).

  14. Is the impact of future climate change on hydro-climatic conditions significant? - A climate change study for an Eastern European catchment area.

    Science.gov (United States)

    Pavlik, Dirk; Söhl, Dennis; Bernhofer, Christian

    2014-05-01

    The future change of climatic conditions is, among others, closely linked to future hydrological changes. One important aspect of these issues is the question of future availability of water resources. A changed climatic water balance, as indicator for potential water availability, has far-reaching consequences for the water cycle, hydrological conditions, ecology, water management, the energy business, agriculture and forestry, and for anthropogenic use of the river. We generated regional climate projections via dynamic downscaling for the catchment area of the Western Bug river in the border area of Poland, Belarus, and Ukraine. The hydro-climatic conditions of the past and their projected future changes in the catchment were analyzed based on 2m-temperature, precipitation, potential evaporation and climatic water balance. Up to the end of the century, the used IPCC scenarios B1 and A2 lead to warming for each month in the long-term mean, with highest warming rates in winter. Instead, precipitation does not change in the long-term yearly mean. However, the intra-annual distribution of monthly precipitation sums shifts with an increase in winter and a strong decrease in summer. Combined, this leads to a changed climatic water balance with a stronger deficit in summer and a higher gain in winter. Particular in the south-eastern part of the catchment, the summer deficit cannot be compensated within the annual cycle. It raised the question: are these changes statistically significant and thus robust for use in further impact studies? Using a significance analysis, we found, that climatic changes in temperature, precipitation and potential evaporation and thus the climatic water balance change is most significant for scenario A2 from 2071 to 2100. The temperature changes are significant throughout the year. For the other variables changes are most significant in the late summer months (July, August, and September) and the winter months (December, January, and February

  15. Climate change and shareholder value

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-03-16

    During 2005, the Carbon Trust worked with Cairneagle Associates to develop a methodology for analysing shareholder value at risk from climate change. The model developed offers a robust, replicable, top-down approach to analysing such value at risk. In addition to a company's own energy linked ('direct' and electricity linked 'indirect') carbon emissions, it looks further along the value chain and considers broader potential risk. In calculating the financial impact, the analysis quantifies the potential impact on profits, using the shape of the business in 2004, but applying a potential 2013 emissions regulatory regime. 2013 was chosen as the first year after the end of the 2008-2012 Kyoto compliance period (which also equates to Phase Two in the EU Emissions Trading Scheme). A major uncertainty is to what extent countries not currently regulated by the Kyoto Protocol (particularly the USA, India and China) will be brought into committed emission reduction targets from 2013. 2013 therefore represents the earliest year under this uncertain, but likely tougher, regulatory regime. However, although this report focuses on 2013, it needs to be recognised that, for many sectors, financial impacts will be seen significantly before this time. Ten 'case study companies' have been studied, from a range of sectors. In some cases, the 'case study company' analysed is strictly linked to a single company within that sector. In others, just a single corporate division has been reviewed, and in others yet again, characteristics from several companies have been combined to produce a more representative example. In order to enable analysis on a strictly like-for-like basis, the research has been based entirely upon public sources of information. This analysis illustrates what a determined shareholder (or other onlooker) could derive about value at risk from climate change, based upon what companies disclose today. A summary of the

  16. U.S. Annual/Seasonal Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Annual Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters that provide users with many tools to understand typical climate...

  17. Forced migrations caused by climate change

    Directory of Open Access Journals (Sweden)

    Neven Tandarić

    2014-06-01

    Full Text Available The consequences of climate change are becoming more and more pronounced, causing various environmental and social changes. One of the major and globally most noticeable changes is the intensification of forced migration caused by climate change. Such forced migrants, due to international legislation that has no built-in criteria to regulate the status of refugees due to environmental reasons and also climate change, cannot achieve this status and are becoming a problem of the entire international community, leading to significant social, economic, political and cultural changes at a global scale.

  18. Undocumented migration in response to climate change.

    Science.gov (United States)

    Nawrotzki, Raphael J; Riosmena, Fernando; Hunter, Lori M; Runfola, Daniel M

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration from 68 rural Mexican municipalities to the U.S. during the years 1986-1999. We employ two measures of climate change, the warm spell duration index (WSDI) and the precipitation during extremely wet days (R99PTOT). Results from multi-level event-history models demonstrate that climate-related international migration from rural Mexico was predominantly undocumented. We conclude that programs to facilitate climate change adaptation in rural Mexico may be more effective in reducing undocumented border crossings than increased border fortification.

  19. Climate Discovery: NCAR Online Education Climate and Global Change Professional Development Program

    Science.gov (United States)

    Ward, D. L.; Johnson, R. M.; Foster, S.; Henderson, S.; Gardiner, L.; Russell, R.; Meymaris, K.; Hatheway, B.

    2007-12-01

    The National Center for Atmospheric Research (NCAR) is offering middle and high school teachers an opportunity to learn about the science of climate and how current research is advancing our understanding through Climate Discovery, a series of three online professional development courses. The goals of the Climate Discovery online course series are to provide climate science content relevant to National Science Education Standards, to share easy to implement, hands-on classroom activities that facilitate student understanding of climate and global change, and to provide a broad overview of Earth system science to educator-leaders who are teaching sciences at the middle and high school levels. The first course in the series, Introduction to Earth's Climate, explores climate science and serves as the introduction to the Climate Discovery series. The second course, Earth System Science: A Climate Change Perspective, explores Earth as a system from the perspective of climate and global change, describing the interactions between the various parts of the Earth system, and how they all affect our climate. The final course, Understanding Climate Change Today, provides an opportunity to learn about the impacts of global change as well as exploring how climate models are developed and used to understand likely scenarios of future climate and how current scientific research is improving the quality of climate predictions. The online courses, instructed by science education specialists, combine information about current research and modeling efforts with classroom-tested science inquiry activities. The online course experience features a high level of interactivity, tools for assessment, and effective community-building interactive technologies. We encourage teachers immediately apply their learning by enriching their existing standards-aligned science curriculum, bringing the science of Earth's climate to their students. In this presentation, course developers and

  20. Exposure to climate and climate change in Mexico

    Directory of Open Access Journals (Sweden)

    Alejandro Monterroso

    2015-05-01

    Full Text Available An index with the potential to integrate different climate hazards into a single parameter is required to guide preventive decision making. We integrated in a single index the degree of exposure to climate that the nation's municipalities have. We selected this spatial scale because the municipality is the basic unit of administrative and economic planning; consequently, this is the scale at which policies of adaptation to climate change must be fostered. We conceptualized exposure as the sum of historic extreme events, the degree of ecosystem conservation and current climate and its future scenarios. This approach allowed us to create a climate hazard exposure index at the municipality scale integrating past and present. Maps of this index can be constructed to serve as a medium of risk communication and to aid policy design. We used information from eighteen variables to statistically standardize and compute the hazard exposure index by applying empirical formulae. We found that actually, out of ten Mexicans, three live in flood-prone zones, three may suffer the passage of tropical cyclones, five reside in drought zones and two live in extreme drought regions. Additionally, hailstorms affect five out of ten Mexicans, while eight out of ten are affected by frosts. Incorporating climate change, in the future more municipalities and a higher population will live in high exposure. Because understanding exposure is a necessary prerequisite to understanding vulnerability, knowledge of the spatial distribution of exposure should be useful for reducing the identified climate hazard exposure and vulnerability to climate change.

  1. Climate Change and Children's Health

    Science.gov (United States)

    In 2007, sixteen percent of children lived in counties exceeding the annual fine particulate matter standard. Exposure to higher levels of ambient particulate matter and ozone may increase school absences and hospital admissions due to respiratory illness.

  2. Assessment of radiative feedback in climate models using satellite observations of annual flux variation.

    Science.gov (United States)

    Tsushima, Yoko; Manabe, Syukuro

    2013-05-07

    In the climate system, two types of radiative feedback are in operation. The feedback of the first kind involves the radiative damping of the vertically uniform temperature perturbation of the troposphere and Earth's surface that approximately follows the Stefan-Boltzmann law of blackbody radiation. The second kind involves the change in the vertical lapse rate of temperature, water vapor, and clouds in the troposphere and albedo of the Earth's surface. Using satellite observations of the annual variation of the outgoing flux of longwave radiation and that of reflected solar radiation at the top of the atmosphere, this study estimates the so-called "gain factor," which characterizes the strength of radiative feedback of the second kind that operates on the annually varying, global-scale perturbation of temperature at the Earth's surface. The gain factor is computed not only for all sky but also for clear sky. The gain factor of so-called "cloud radiative forcing" is then computed as the difference between the two. The gain factors thus obtained are compared with those obtained from 35 models that were used for the fourth and fifth Intergovernmental Panel on Climate Change assessment. Here, we show that the gain factors obtained from satellite observations of cloud radiative forcing are effective for identifying systematic biases of the feedback processes that control the sensitivity of simulated climate, providing useful information for validating and improving a climate model.

  3. Climate change and the permafrost carbon feedback

    Science.gov (United States)

    Schuur, E.A.G.; McGuire, Anthony; Schädel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; Natali, Susan M.; Olefeldt, David; Romanovsky, V.E.; Schaefer, K.; Turetsky, M.R.; Treat, C.C.; Vonk, J.E.

    2015-01-01

    Large quantities of organic carbon are stored in frozen soils (permafrost) within Arctic and sub-Arctic regions. A warming climate can induce environmental changes that accelerate the microbial breakdown of organic carbon and the release of the greenhouse gases carbon dioxide and methane. This feedback can accelerate climate change, but the magnitude and timing of greenhouse gas emission from these regions and their impact on climate change remain uncertain. Here we find that current evidence suggests a gradual and prolonged release of greenhouse gas emissions in a warming climate and present a research strategy with which to target poorly understood aspects of permafrost carbon dynamics.

  4. EU Climate Change Exhibition Held

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On April 25, the CPAFFC, the China-EU Association (CEUA) and the Delegation of the European Commission to China jointly held the opening ceremony for the EU Exhibition on Climate Change in the CPAFFC. He Luli, former vice chairperson of the NPC Standing Committee and honorary president of the CEUA, Jose Manuel Barroso, president of the European Commission, and Li Jianping, vice president of the CPAFFC, attended the opening ceremony and made speeches. Honorary President He Luli highly praised the achievements made by China and the EU in their longtime cooperation of mutual benefits in various fields including environmental protection. She said, for many years China and EU have both committed to the development of all-round strategic partnership and establishment of a multi-level mechanism of political dialogue. She expressed, with increasing enthusiasm the CEUA would continue to actively carry out nongovernmental exchanges between China and the EU, and promote cooperation between the two sides in the fields of economy, society, environmental protection, science and technology, culture, etc.

  5. Climate Change: Science and Policy Implications

    Science.gov (United States)

    2007-01-25

    species may become extinct , while others are likely to flourish. The local effects of climate change may contribute more to decision-making than national...in some climate model projections is the possibility of dieback of the Amazon rainforest , resulting in a self-reinforcing cycle of greater drying and...ecologists expect high rates of extinctions and loss of biological diversity if climate change projections are accurate. CRS-37 94 Tol, R.S.J., “New

  6. Undocumented migration in response to climate change

    OpenAIRE

    Nawrotzki, Raphael J.; Riosmena, Fernando; HUNTER, LORI M.; Runfola, Daniel M.

    2015-01-01

    In the face of climate change induced economic uncertainty, households may employ migration as an adaptation strategy to diversify their livelihood portfolio through remittances. However, it is unclear whether such climate migration will be documented or undocumented. In this study we combine detailed migration histories with daily temperature and precipitation information for 214 weather stations to investigate whether climate change more strongly impacts undocumented or documented migration...

  7. Global climate change and US agriculture

    Science.gov (United States)

    Adams, Richard M.; Rosenzweig, Cynthia; Peart, Robert M.; Ritchie, Joe T.; Mccarl, Bruce A.

    1990-01-01

    Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.

  8. Study on climate change in Southwestern China

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zongxing

    2015-03-01

    Nominated by Chinese Academy of Sciences as an outstanding Ph.D. thesis. Offers a needed exploration of the temporal and spatial pattern of climate change in southwestern China. Explores the action mechanism among the large-scale atmospheric circulation system, the complicated topography, human activities and regional climate changes. Analyzes the response of glaciers to climate change from the aspects of morphology of the glacier, glacial mass balance and the process of hydrology. This thesis confirms many changes, including sharp temperature rise, interannual variability of precipitation, extreme climate events and significant decreases of sunshine duration and wind speed in southwestern China, and systemically explores the action mechanism between large-scale atmospheric circulation systems, the complicated topography, human activities and regional climate changes. This study also analyzes the response of glaciers to climate change so that on the one hand it clearly reflects the relationship between glacier morphologic changes and climate change; on the other, it reveals the mechanism of action of climate warming as a balance between energy and matter. The achievements of this study reflect a significant contribution to the body of research on the response of climate in cold regions, glaciers and human activities to a global change against the background of the typical monsoon climate, and have provided scientific basis for predictions, countermeasures against disasters from extreme weather, utilization of water and the establishment of counterplans to slow and adapt to climate change. Zongxing Li works at the Cold and Arid Region Environmental and Engineering Research Institute, Chinese Academy of Sciences, China.

  9. China: The Impact of Climate Change to 2030. A Commissioned Research Report

    Science.gov (United States)

    2009-04-01

    2006): 1–21. lvi X. Chen, B. Hu, R. Yu et al. “Spatial and temporal variation of phenological growing season and climate change impacts in...The simulated climatic belts, climatic seasons, and Yellow River ice phenology in China are compared between the present climate during 1975–1984 and...simulating the dominant variations of the mean temperature over China, but not the spatial distributions. The annual precipitation over East Asia exceeds

  10. Global patterns in endemism explained by past climatic change.

    Science.gov (United States)

    Jansson, Roland

    2003-03-22

    I propose that global patterns in numbers of range-restricted endemic species are caused by variation in the amplitude of climatic change occurring on time-scales of 10-100 thousand years (Milankovitch oscillations). The smaller the climatic shifts, the more probable it is that palaeoendemics survive and that diverging gene pools persist without going extinct or merging, favouring the evolution of neoendemics. Using the change in mean annual temperature since the last glacial maximum, estimated from global circulation models, I show that the higher the temperature change in an area, the fewer endemic species of mammals, birds, reptiles, amphibians and vascular plants it harbours. This relationship was robust to variation in area (for areas greater than 10(4) km2), latitudinal position, extent of former glaciation and whether or not areas are oceanic islands. Past climatic change was a better predictor of endemism than annual temperature range in all phylads except amphibians, suggesting that Rapoport's rule (i.e. species range sizes increase with latitude) is best explained by the increase in the amplitude of climatic oscillations towards the poles. Globally, endemic-rich areas are predicted to warm less in response to greenhouse-gas emissions, but the predicted warming would cause many habitats to disappear regionally, leading to species extinctions.

  11. Climate change and observed climate trends in the fort cobb experimental watershed.

    Science.gov (United States)

    Garbrecht, J D; Zhang, X C; Steiner, J L

    2014-07-01

    Recurring droughts in the Southern Great Plains of the United States are stressing the landscape, increasing uncertainty and risk in agricultural production, and impeding optimal agronomic management of crop, pasture, and grazing systems. The distinct possibility that the severity of recent droughts may be related to a greenhouse-gas induced climate change introduces new challenges for water resources managers because the intensification of droughts could represent a permanent feature of the future climate. Climate records of the Fort Cobb watershed in central Oklahoma were analyzed to determine if recent decade-long trends in precipitation and air temperature were consistent with climate change projections for central Oklahoma. The historical precipitation record did not reveal any compelling evidence that the recent 20-yr-long decline in precipitation was related to climate change. Also, precipitation projections by global circulation models (GCMs) displayed a flat pattern through the end of the 21st century. Neither observed nor projected precipitation displayed a multidecadal monotonic rising or declining trend consistent with an ongoing warming climate. The recent trend in observed annual precipitation was probably a decade-scale variation not directly related to the warming climate. On the other hand, the observed monotonic warming trend of 0.34°C decade that started around 1978 is consistent with GCM projections of increasing temperature for central Oklahoma.

  12. Physical Controls of the Earth's Climate and Climate change

    Science.gov (United States)

    Stephens, Graeme

    2013-03-01

    The Earth's climate system and changes to it are determined by the physical processes that govern the flows of energy to and from the atmosphere and Earth's surface. Although the energy exchanges at the top of the atmosphere are well determined from available satellite measurements, the global character of the energy flows within the climate system, and to and from the Earth's surface in particular, are not directly measured and thus are much more uncertain. The surface energy balance is particularly important since geographical variations of its distribution drives ocean circulations, dictates the amount of water evaporated from the Earth's surface, fuels the planetary hydrological cycle and ultimately controls how this hydrological cycle responds to forced climate change. This talk reviews our state of understanding of the physical processes that determine the energy balance, couple to the Earth's water cycle and are responsible for the most important climate feedbacks that dictate the pace of climate change. Challenges in understanding the mechanisms responsible for feedbacks associated with clouds and precipitation, water vapor, snow cover and carbon will be highlighted. The further complexity and uncertainty that aerosols add to the cloud and precipitation feedbacks will also be reviewed. The effects of uncertainties in our understanding of the physical climate system, and feedbacks within it, will be reviewed in the context of climate change projections.

  13. The Lancet Countdown: tracking progress on health and climate change.

    Science.gov (United States)

    Watts, Nick; Adger, W Neil; Ayeb-Karlsson, Sonja; Bai, Yuqi; Byass, Peter; Campbell-Lendrum, Diarmid; Colbourn, Tim; Cox, Peter; Davies, Michael; Depledge, Michael; Depoux, Anneliese; Dominguez-Salas, Paula; Drummond, Paul; Ekins, Paul; Flahault, Antoine; Grace, Delia; Graham, Hilary; Haines, Andy; Hamilton, Ian; Johnson, Anne; Kelman, Ilan; Kovats, Sari; Liang, Lu; Lott, Melissa; Lowe, Robert; Luo, Yong; Mace, Georgina; Maslin, Mark; Morrissey, Karyn; Murray, Kris; Neville, Tara; Nilsson, Maria; Oreszczyn, Tadj; Parthemore, Christine; Pencheon, David; Robinson, Elizabeth; Schütte, Stefanie; Shumake-Guillemot, Joy; Vineis, Paolo; Wilkinson, Paul; Wheeler, Nicola; Xu, Bing; Yang, Jun; Yin, Yongyuan; Yu, Chaoqing; Gong, Peng; Montgomery, Hugh; Costello, Anthony

    2016-11-11

    The Lancet Countdown: tracking progress on health and climate change is an international, multidisciplinary research collaboration between academic institutions and practitioners across the world. It follows on from the work of the 2015 Lancet Commission, which concluded that the response to climate change could be "the greatest global health opportunity of the 21st century". The Lancet Countdown aims to track the health impacts of climate hazards; health resilience and adaptation; health co-benefits of climate change mitigation; economics and finance; and political and broader engagement. These focus areas form the five thematic working groups of the Lancet Countdown and represent different aspects of the complex association between health and climate change. These thematic groups will provide indicators for a global overview of health and climate change; national case studies highlighting countries leading the way or going against the trend; and engagement with a range of stakeholders. The Lancet Countdown ultimately aims to report annually on a series of indicators across these five working groups. This paper outlines the potential indicators and indicator domains to be tracked by the collaboration, with suggestions on the methodologies and datasets available to achieve this end. The proposed indicator domains require further refinement, and mark the beginning of an ongoing consultation process-from November, 2016 to early 2017-to develop these domains, identify key areas not currently covered, and change indicators where necessary. This collaboration will actively seek to engage with existing monitoring processes, such as the UN Sustainable Development Goals and WHO's climate and health country profiles. The indicators will also evolve over time through ongoing collaboration with experts and a range of stakeholders, and be dependent on the emergence of new evidence and knowledge. During the course of its work, the Lancet Countdown will adopt a collaborative and

  14. Linkages between development and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Halsnaes, K. [UNEP, Roskilde (Denmark); Verhagen, J. [Plant Res. International, Wageningen (Netherlands); Rovere, E. La [Centro Clima. Centre for Integrated Studies on Climate Change and Environment, Rio de Janeiro (Brazil); Klein, R. [Potsdam Inst. for Climate Impacts Res., PIK, Potsdam (DE); Huq, S. [International Inst. for Environment and Development, IIED, London (United Kingdom)

    2003-11-01

    This paper aims at assessing how the development and climate change literature has considered potential linkages and synergies between general development policies and climate change adaptation and mitigation policies. The starting point for this review is to give an overview of how alternative economic development paradigms can be used as a background for understanding and assessing development and climate linkages. In this way, it is demonstrated how climate change issues are related to basic factors in economic and social development processes, as an introduction to a discussion about how alternative policy recommendations for integrated development and climate policies can be understood in the context of different development paradigms. The last part of the paper returns to the climate change and sustainable development discussion that in recent years has been running in parallel to the Third Assessment of IPCC. This discussion, to a large extent has been dominated by the climate change agenda rather than a broader development policy perspectives, and the paper finally suggests a number of areas where integrated development and climate studies could anchor climate change studies more in the development agenda. (au)

  15. Challenging conflicting discourses of climate change

    NARCIS (Netherlands)

    Fleming, Aysha; Vanclay, Frank; Hiller, Claire; Wilson, Stephen

    2014-01-01

    The influence of language on communication about climate change is well recognised, but this understanding is under-utilised by those seeking to increase uptake of action for climate change. We discuss the terms, discourse, resistance, and agency, to assist in developing ways to progress social acti

  16. How Will Climate Change Affect Globalization?

    DEFF Research Database (Denmark)

    Dilyard, John Raymond; Bals, Lydia; Zhuplev, Anatoly;

    2011-01-01

    , it will effect globalization. Businesses, if they want to be sustained, will have to adjust to climate change. This panel will examine two topics within which the relationship between climate change and globalization can be assessed - the sourcing of resources and services when the location of those resources...

  17. Climate change threatens European conservation areas

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Alagador, Diogo; Cabeza, Mar;

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natur...

  18. Incorporating Agency Into Climate Change Risk Assessments

    Energy Technology Data Exchange (ETDEWEB)

    Jones, R.N. [CSIRO Atmospheric Research, Aspendale, Victoria, 3195 (Australia)

    2004-11-01

    Human agency has been viewed as a problem for climate change assessments because of its contribution to uncertainty. In this editorial, I outline the advantages of agency in managing climate change risks, describing how those advantages can be placed within a probabilistic framework.

  19. European climate change policy beyond 2012

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-11-15

    There is an increasing scientific consensus that human activities do trigger climate changes. Actual forecasts predict temperature increases that are likely to be beyond the adaptation potential of ecosystems. These considerations play a major role in shaping public opinion and the media landscape, culminating in the view that Europe needs to play a leading role in combating climate change.

  20. Harnessing Homophily to Improve Climate Change Education

    Science.gov (United States)

    Monroe, Martha C.; Plate, Richard R.; Adams, Damian C.; Wojcik, Deborah J.

    2015-01-01

    The Cooperative Extension Service (Extension) in the United States is well positioned to educate the public, particularly farmers and foresters, about climate change and to encourage responsible adoption of adaptation and mitigation strategies. However, the climate change attitudes and perceptions of Extension professionals have limited…

  1. International business and global climate change

    NARCIS (Netherlands)

    Pinkse, J.; Kolk, A.

    2008-01-01

    Climate change has become an important topic on the business agenda with strong pressure being placed on companies to respond and contribute to finding solutions to this urgent problem. This text provides a comprehensive analysis of international business responses to global climate change and clima

  2. How Does Climate Change Affect Biodiversity?

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Rahbek, Carsten

    2006-01-01

    The most recent and complex bioclimate models excel at describing species' current distributions. Yet, it is unclear which models will best predict how climate change will affect their future distributions.......The most recent and complex bioclimate models excel at describing species' current distributions. Yet, it is unclear which models will best predict how climate change will affect their future distributions....

  3. Climate Change: Global Risks, Challenges and Decisions

    NARCIS (Netherlands)

    Richardson, K.; Steffen, W.; Liverman, D.; Barker, T.; Jotzo, F.; Kammen, D.M.; Leemans, R.; Lenton, T.M.; Munasinghe, M.; Osman-Elasha, B.; Schellnhuber, H.J.; Stern, N.; Vogel, C.; Waever, O.

    2011-01-01

    Providing an up-to-date synthesis of knowledge relevant to the climate change issue, this book ranges from the basic science documenting the need for policy action to the technologies, economic instruments and political strategies that can be employed in response to climate change. Ethical and cultu

  4. Enchytraeidae (Oligochaeta) in a changing climate

    DEFF Research Database (Denmark)

    Maraldo, Kristine

    The background for this thesis was to investigate the effect of climate change (increased CO2, temperature and prolonged drought) on field communities of enchytraeids dominated by the species Cognettia sphagnetorum. In the short-term, enchytraeids appear to be unaffected by the climate change when...

  5. 10 Facts on Climate Change and Health

    Science.gov (United States)

    World health organization 10 facts on climate change and health Next UNEP/Still Pictures Previous 1 2 3 4 5 6 7 8 9 10 Next Over the last 50 ... more heat in the lower atmosphere. The resulting changes in the global climate bring a range of risks to health, from ...

  6. Bacteria in ice may record climate change

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ To many people, bacteria and climate change are like chalk and cheese: the srnallest creature versus one of the biggest phenomena on Earth. Not really.Scientists with the CAS Institute of Tibetan Plateau Research (ITP) and coworkers recently reported that small bugs deposited in ice and snow might tell how our climate has been changing.

  7. Climate change: Update on international negotiations

    Energy Technology Data Exchange (ETDEWEB)

    Silverman, L. [Dept. of Energy, Washington, DC (United States). Office of Policy

    1997-12-31

    This paper outlines the following: United Nations` framework convention on climatic change; the United States` climate change action plan; current issues to be resolved (targets/timetables, policies, advancing commitments of all parties, and compliance); and implications for clean coal technologies.

  8. Climate change and corn susceptibility to mycotoxins

    Science.gov (United States)

    Maize is an essential part of the world’s grain supply, but climate change has the potential to increase maize susceptibility to mycotoxigenic fungal pathogens and reduce food security and safety. While rising atmospheric [CO2] is a driving force of climate change, our understanding of how elevated ...

  9. Singapore Students' Misconceptions of Climate Change

    Science.gov (United States)

    Chang, Chew-Hung; Pascua, Liberty

    2016-01-01

    Climate change is an important theme in the investigation of human-environment interactions in geographic education. This study explored the nature of students' understanding of concepts and processes related to climate change. Through semi-structured interviews, data was collected from 27 Secondary 3 (Grade 9) students from Singapore. The data…

  10. Climate change consequences for the indoor environment

    NARCIS (Netherlands)

    Ariës, M.B.C.; Bluyssen, P.M.

    2009-01-01

    Scientists warn us about climate change and its effects on the outdoor environment. These effects can have significant consequences for the indoor environment, also in the Netherlands. Climate changes will affect different aspects of the indoor environment as well as the stakeholders of that indoor

  11. Forests and climate change: adaptation and mitigation

    NARCIS (Netherlands)

    Bodegom, van A.J.; Savenije, H.; Wit, de M.

    2009-01-01

    ETFRN news No. 50: Forests and Climate Change: adaptation and mitigation. This newsletter contains interesting materials for those who think about the question how to proceed with forests and climate change after Copenhagen, with or without an agreement. Here below are presented some observations fr

  12. The response of glaciers to climate change

    NARCIS (Netherlands)

    Klok, Elisabeth Jantina

    2003-01-01

    The research described in this thesis addresses two aspects of the response of glaciers to climate change. The first aspect deals with the physical processes that govern the interaction between glaciers and climate change and was treated by (1) studying the spatial and temporal variation of the glac

  13. Financial market response to extreme events indicating climatic change

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  14. Creating Effective Dialogue Around Climate Change

    Science.gov (United States)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  15. Global Climate Change and Infectious Diseases

    Directory of Open Access Journals (Sweden)

    EK Shuman

    2010-12-01

    Full Text Available Climate change is occurring as a result of warming of the earth’s atmosphere due to human activity generating excess amounts of greenhouse gases. Because of its potential impact on the hydrologic cycle and severe weather events, climate change is expected to have an enormous effect on human health, including on the burden and distribution of many infectious diseases. The infectious diseases that will be most affected by climate change include those that are spread by insect vectors and by contaminated water. The burden of adverse health effects due to these infectious diseases will fall primarily on developing countries, while it is the developed countries that are primarily responsible for climate change. It is up to governments and individuals to take the lead in halting climate change, and we must increase our understanding of the ecology of infectious diseases in order to protect vulnerable populations.

  16. Climate change in EIA - Inspiration from practice

    DEFF Research Database (Denmark)

    Larsen, Sanne Vammen

    2013-01-01

    taking place. For exploring the praxis of integrating climate change in practice a document study of 100 Danish EIA reports is carried out. From these reports, statistics and examples are drawn. The study shows an emphasis on integration of climate change mitigation, using various quantitative tools......Climate change integration has been a topic of much interest in the field of impact assessment for a period, and thus far quite some emphasis has been put on discussions of purpose, relevance and overall approaches in both Environmental Impact Assessment of projects (EIA) and Strategic...... Environmental Assessments of plans and programmes (SEA). However, EIAs and SEAs are already being made, which integrate climate change, and for some aspects this practice has evolved over a long period. This paper seeks to explore this practice and find inspiration from the work with climate change already...

  17. Mesocosms Reveal Ecological Surprises from Climate Change.

    Science.gov (United States)

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  18. Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model

    Institute of Scientific and Technical Information of China (English)

    高学杰; 罗勇; 林万涛; 赵宗慈; FilippoGIORGI

    2003-01-01

    Climate effects of land use change in China as simulated by a regional climate model (RegCM2)are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model(CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas;an increase of mean annual surfaoe air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics.

  19. Adaptation to climate change in developing countries.

    Science.gov (United States)

    Mertz, Ole; Halsnaes, Kirsten; Olesen, Jørgen E; Rasmussen, Kjeld

    2009-05-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing countries. It is concluded that although many useful steps have been taken in the direction of ensuring adequate adaptation in developing countries, much work still remains to fully understand the drivers of past adaptation efforts, the need for future adaptation, and how to mainstream climate into general development policies.

  20. Climate change and soil salinity: The case of coastal Bangladesh.

    Science.gov (United States)

    Dasgupta, Susmita; Hossain, Md Moqbul; Huq, Mainul; Wheeler, David

    2015-12-01

    This paper estimates location-specific soil salinity in coastal Bangladesh for 2050. The analysis was conducted in two stages: First, changes in soil salinity for the period 2001-2009 were assessed using information recorded at 41 soil monitoring stations by the Soil Research Development Institute. Using these data, a spatial econometric model was estimated linking soil salinity with the salinity of nearby rivers, land elevation, temperature, and rainfall. Second, future soil salinity for 69 coastal sub-districts was projected from climate-induced changes in river salinity and projections of rainfall and temperature based on time trends for 20 Bangladesh Meteorological Department weather stations in the coastal region. The findings indicate that climate change poses a major soil salinization risk in coastal Bangladesh. Across 41 monitoring stations, the annual median projected change in soil salinity is 39 % by 2050. Above the median, 25 % of all stations have projected changes of 51 % or higher.

  1. Mirador - Climate Variability and Change

    Data.gov (United States)

    National Aeronautics and Space Administration — Earth Science data access made simple. NASA's role in climate variability study is centered around providing the global scale observational data sets on oceans and...

  2. Projected impacts of climate change on hydropower potential in China

    Science.gov (United States)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-08-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by -1.7 to 2 % in the near future (2020-2050) and increase by 3 to 6 % in the late 21st century (2070-2099). The annual DHP is projected to change by -2.2 to -5.4 % (0.7-1.7 % of the total installed hydropower capacity (IHC)) and -1.3 to -4 % (0.4-1.3 % of total IHC) for 2020-2050 and 2070-2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China - mostly in south central China and eastern China - where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  3. Achieving Climate Change Absolute Accuracy in Orbit

    Science.gov (United States)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; Bowman, K.; Brindley, H.; Butler, J. J.; Collins, W.; Dykema, J. A.; Doelling, D. R.; Feldman, D. R.; Fox, N.; Huang, X.; Holz, R.; Huang, Y.; Jennings, D.; Jin, Z.; Johnson, D. G.; Jucks, K.; Kato, S.; Kratz, D. P.; Liu, X.; Lukashin, C.; Mannucci, A. J.; Phojanamongkolkij, N.; Roithmayr, C. M.; Sandford, S.; Taylor, P. C.; Xiong, X.

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  4. Cool Science: K-12 Climate Change Art Displayed on Buses

    Science.gov (United States)

    Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Thompson, S. R.

    2015-12-01

    Cool science is an art contest where K12 students create placards (7" x 22") to educate the public about climate change. Students are prompted to create their artwork in response to questions such as: What is the evidence for climate change? How does climate change impact your local community? What can you do to reduce the impacts of climate change? In each of three years, 500-600 student entrees have been submitted from more than 12 school districts across Massachusetts. A panel of judges including scientists, artists, rapid transit representatives, and educators chooses elementary, middle, and high school winners. Winners (6), runners-up (6), and honorable mentions (12) and their families and teachers are invited to an annual Cool Science Award Ceremony to be recognized and view winning artwork. All winning artwork is posted on the Cool Science website. The winning artwork (2 per grade band) is converted into placards (11" x 28") and posters (2.5' x 12') that are placed on the inside (placards) and outside (posters) of buses. Posters are displayed for one month. So far, Cool Science was implemented in Lowell, MA where over 5000 public viewers see the posters daily on the sides of Lowell Rapid Transit Authority (LRTA) buses, making approximately 1,000,000 impressions per year. Cool Science acts to increase climate literacy in children as well as the public, and as such promotes intergenerational learning. Using art in conjunction with science learning about climate change appears to be effective at engaging not just traditionally high achieving science students, but also those interested in the creative arts. Hearing winners' stories about how they created their artwork and what this contest meant to them supports the idea that Cool Science attracts a wide diversity of students. Parents discuss climate change with their children. Multiple press releases announcing the winners further promotes the awareness of climate change throughout school districts and their

  5. Understanding Controversies in Urban Climate Change Adaptation

    DEFF Research Database (Denmark)

    Baron, Nina; Petersen, Lars Kjerulf

    2015-01-01

    This article explores the controversies that exist in urban climate change adaptation and how these controversies influence the role of homeowners in urban adaptation planning. A concrete SUDS project in a housing cooperative in Copenhagen has been used as a case study thereby investigating...... on the actor-network inspired theory of “urban green assemblages” we argue that at least three different assemblages can be identified in urban climate change adaptation. Each assemblage frames problems and responses differently, and thereby assigns different types of roles to homeowners. As climate change...... is a problem of unknown character and outcome in the future, we argue that it can be problematic if one way of framing urban climate change adaptation overrules the others. Some understandings of climate problems and adaptation options may become less influential, even though they could contribute to creating...

  6. Climate change and species interactions: ways forward.

    Science.gov (United States)

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide.

  7. Technologies for climate change adaptation. Agriculture sector

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. (ed.) (UNEP Risoe Centre, Roskilde (Denmark)); Clements, R.; Quezada, A.; Torres, J. (Practical Action Latin America, Lima (Peru)); Haggar, J. (Univ. of Greenwich, London (United Kingdom))

    2011-08-15

    This guidebook presents a selection of technologies for climate change adaptation in the agriculture sector. A set of 22 adaptation technologies are showcased. These are based primarily on the principles of agroecology, but also include scientific technologies of climate and biological sciences complemented by important sociological and institutional capacity building processes that are required for climate change to function. The technologies cover: 1) Planning for climate change and variability. 2) Sustainable water use and management. 3) Soil management. 4) Sustainable crop management. 5) Sustainable livestock management. 6) Sustainable farming systems. 7) Capacity building and stakeholder organisation. Technologies that tend to homogenise the natural environment and agricultural production have low possibilities of success in environmental stress conditions that are likely to result from climate change. On the other hand, technologies that allow for, and promote diversity are more likely to provide a strategy which strengthens agricultural production in the face of uncertain future climate change scenarios. The 22 technologies showcased in this guidebook have been selected because they facilitate the conservation and restoration of diversity while also providing opportunities for increasing agricultural productivity. Many of these technologies are not new to agricultural production practices, but they are implemented based on the assessment of current and possible future impacts of climate change in a particular location. agroecology is an approach that encompasses concepts of sustainable production and biodiversity promotion and therefore provides a useful framework for identifying and selecting appropriate adaptation technologies for the agriculture sector. The guidebook provides a systematic analysis of the most relevant information available on climate change adaptation technologies in the agriculture sector. It has been compiled based on a literature

  8. Global change and climate-vegetation classification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three phrases of the quantitative study of climate-vegetation classification and their characteristics are presented based on the review of advance in climate-vegetation interaction, a key issue of "global change and terrestrial ecosystems (GCTE)" which is the core project of International Geosphere-Biosphere Programme (IGBP): (ⅰ) characterized by the correlation between natural vegetation types and climate; (ⅱ) characterized by climatic indices which have obviously been restricted to plant ecophysiology; (ⅲ) characterized by coupling both structure and function of vegetation. Thus, the prospective of climate-vegetation classification for global change study in China was proposed, especially the study coupling climate-vegetation classification models with atmospheric general circulation models (GCMs) was emphasized.

  9. Contrasting responses of mean and extreme snowfall to climate change.

    Science.gov (United States)

    O'Gorman, Paul A

    2014-08-28

    Snowfall is an important element of the climate system, and one that is expected to change in a warming climate. Both mean snowfall and the intensity distribution of snowfall are important, with heavy snowfall events having particularly large economic and human impacts. Simulations with climate models indicate that annual mean snowfall declines with warming in most regions but increases in regions with very low surface temperatures. The response of heavy snowfall events to a changing climate, however, is unclear. Here I show that in simulations with climate models under a scenario of high emissions of greenhouse gases, by the late twenty-first century there are smaller fractional changes in the intensities of daily snowfall extremes than in mean snowfall over many Northern Hemisphere land regions. For example, for monthly climatological temperatures just below freezing and surface elevations below 1,000 metres, the 99.99th percentile of daily snowfall decreases by 8% in the multimodel median, compared to a 65% reduction in mean snowfall. Both mean and extreme snowfall must decrease for a sufficiently large warming, but the climatological temperature above which snowfall extremes decrease with warming in the simulations is as high as -9 °C, compared to -14 °C for mean snowfall. These results are supported by a physically based theory that is consistent with the observed rain-snow transition. According to the theory, snowfall extremes occur near an optimal temperature that is insensitive to climate warming, and this results in smaller fractional changes for higher percentiles of daily snowfall. The simulated changes in snowfall that I find would influence surface snow and its hazards; these changes also suggest that it may be difficult to detect a regional climate-change signal in snowfall extremes.

  10. Responsibility for private sector adaptation to climate change

    Directory of Open Access Journals (Sweden)

    Tina Schneider

    2014-06-01

    Full Text Available The Intergovernmental Panel on Climate Change (2007 indicates that vulnerable industries should adapt to the increasing likelihood of extreme weather events along with slowly shifting mean annual temperatures and precipitation patterns, to prevent major damages or periods of inoperability in the future. Most articles in the literature on business management frame organizational adaptation to climate change as a private action. This makes adaptation the sole responsibility of a company, for its sole benefit, and overlooks the fact that some companies provide critical goods and services such a food, water, electricity, and medical care, that are so vital to society that even a short-term setback in operations could put public security at risk. This raises the following questions: (1 Who is responsible for climate change adaptation by private-sector suppliers of critical infrastructure? (2 How can those who are identified to be responsible, actually be held to assume their responsibility for adapting to climate change? These questions will be addressed through a comprehensive review of the literature on business management, complemented by a review of specialized literature on public management. This review leads to several conclusions. Even though tasks that formerly belonged to the state have been taken over by private companies, the state still holds ultimate responsibility in the event of failure of private-sector owned utilities, insofar as they are "critical infrastructure." Therefore, it remains the state's responsibility to foster adaptation to climate change with appropriate action. In theory, effective ways of assuming this responsibility, while enabling critical infrastructure providers the flexibility adapt to climate change, would be to delegate adaptation to an agency, or to conduct negotiations with stakeholders. In view of this theory, Germany will be used as a case study to demonstrate how private-sector critical infrastructure

  11. Selecting global climate models for regional climate change studies

    OpenAIRE

    Pierce, David W.; Barnett, Tim P.; Santer, Benjamin D.; Gleckler, Peter J.

    2009-01-01

    Regional or local climate change modeling studies currently require starting with a global climate model, then downscaling to the region of interest. How should global models be chosen for such studies, and what effect do such choices have? This question is addressed in the context of a regional climate detection and attribution (D&A) study of January-February-March (JFM) temperature over the western U.S. Models are often selected for a regional D&A analysis based on the quality of the simula...

  12. Climate Change Creates Trade Opportunity in India

    OpenAIRE

    Dinda, Soumyananda

    2013-01-01

    Climate change is an emerging challenge to developing economy like India however it also creates opportunity to grow through climate friendly goods production and new direction of trade. This paper focuses India’s potential export trade in climate friendly goods. The estimated gravity model is defined as the potential trade and potential trade gap is measured as how well a bilateral trade flow performs relative to the mean as predicted by the model. Potential trade gap means that actual trade...

  13. Turning points in climate change adaptation

    Directory of Open Access Journals (Sweden)

    Saskia Elisabeth. Werners

    2015-12-01

    Full Text Available Concerned decision makers increasingly pose questions as to whether current management practices are able to cope with climate change and increased climate variability. This signifies a shift in the framing of climate change from asking what its potential impacts are to asking whether it induces policy failure and unacceptable change. In this paper, we explore the background, feasibility, and consequences of this new framing. We focus on the specific situation in which a social-political threshold of concern is likely to be exceeded as a result of climate change, requiring consideration of alternative strategies. Action is imperative when such a situation is conceivable, and at this point climate change becomes particularly relevant to decision makers. We call this situation an "adaptation turning point." The assessment of adaptation turning points converts uncertainty surrounding the extent of a climate impact into a time range over which it is likely that specific thresholds will be exceeded. This can then be used to take adaptive action. Despite the difficulty in identifying adaptation turning points and the relative newness of the approach, experience so far suggests that the assessment generates a meaningful dialogue between stakeholders and scientists. Discussion revolves around the amount of change that is acceptable; how likely it is that unacceptable, or more favorable, conditions will be reached; and the adaptation pathways that need to be considered under these circumstances. Defining and renegotiating policy objectives under climate change are important topics in the governance of adaptation.

  14. How does climate change cause extinction?

    Science.gov (United States)

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  15. The Environmental Justice Dimensions of Climate Change

    OpenAIRE

    Miranda, Marie Lynn; Hastings, Douglas Andrew; Aldy, Joseph Edgar; Schlesinger, William H.

    2011-01-01

    Nations around the world are considering strategies to mitigate the severe impacts of climate change predicted to occur in the twenty-first century. Many countries, however, lack the wealth, technology, and government institutions to effectively cope with climate change. This study investigates the varying degrees to which developing and developed nations will be exposed to changes in three key variables: temperature, precipitation, and runoff. We use Geographic Information Systems (GIS) anal...

  16. An Astronomer's View of Climate Change

    CERN Document Server

    Morton, Donald C

    2014-01-01

    This paper describes some of the astronomical effects that could be important for understanding the ice ages, historic climate changes and the recent temperature increase. These include changes in the sun's luminosity, periodic changes in the earth's orbital parameters, the sun's orbit around our galaxy, the variability of solar activity and the anticorrelation of cosmic ray flux with that activity. Finally recent trends in solar activity and global temperatures are compared with the predictions of climate models.

  17. Conservation and adaptation to climate change.

    Science.gov (United States)

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  18. Abrupt climate change and extinction events

    Science.gov (United States)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  19. Does the weather influence public opinion about climate change?

    Science.gov (United States)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of

  20. The deep ocean under climate change

    Science.gov (United States)

    Levin, Lisa A.; Le Bris, Nadine

    2015-11-01

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  1. The deep ocean under climate change.

    Science.gov (United States)

    Levin, Lisa A; Le Bris, Nadine

    2015-11-13

    The deep ocean absorbs vast amounts of heat and carbon dioxide, providing a critical buffer to climate change but exposing vulnerable ecosystems to combined stresses of warming, ocean acidification, deoxygenation, and altered food inputs. Resulting changes may threaten biodiversity and compromise key ocean services that maintain a healthy planet and human livelihoods. There exist large gaps in understanding of the physical and ecological feedbacks that will occur. Explicit recognition of deep-ocean climate mitigation and inclusion in adaptation planning by the United Nations Framework Convention on Climate Change (UNFCCC) could help to expand deep-ocean research and observation and to protect the integrity and functions of deep-ocean ecosystems.

  2. In Brief: Action on climate change urged

    Science.gov (United States)

    Showstack, Randy

    2008-06-01

    The science academies of the G8 countries-along with those in China, India, Brazil, Mexico, and South Africa-on 10 June issued a joint statement urging leaders at July's G8 Summit in Japan to take action on climate change. The statement indicates, ``Responding to climate change requires both mitigation and adaptation to achieve a transition to a low carbon society and our global sustainability objectives.'' In the statement, the academies urge all nations, and particularly those participating in the summit, to take a series of actions to deal with climate change. The statement is available at http://www.nationalacademies.org/includes/climatechangestatement.pdf.

  3. Wildfire Suppression Costs for Canada under a Changing Climate.

    Science.gov (United States)

    Hope, Emily S; McKenney, Daniel W; Pedlar, John H; Stocks, Brian J; Gauthier, Sylvie

    2016-01-01

    Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980-2009) fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC) climate projections. Area burned was modelled as a function of a climate moisture index (CMI), and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs); these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980-2009 period) under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period) under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years) are projected to become commonplace (i.e., occur once every two years or more often) as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses.

  4. Impacts of climate change on fisheries

    DEFF Research Database (Denmark)

    Brander, Keith

    2010-01-01

    experimentally and in controlled conditions. Indirect effects act via ecosystem processes and changes in the production of food or abundance of competitors, predators and pathogens. Recent studies of the effects of climate on primary production are reviewed and the consequences for fisheries production...... are evaluated through regional examples. Regional examples are also used to show changes in distribution and phenology of plankton and fish, which are attributed to climate. The role of discontinuous and extreme events (regime shifts, exceptional warm periods) is discussed. Changes in fish population processes...... and for adapting to climate change. in order to adapt to changing climate, future monitoring and research must be closely linked to responsive, flexible and reflexive management systems. (C) 2009 Elsevier B.V. All rights reserved....

  5. Likely Ranges of Climate Change in Bolivia

    NARCIS (Netherlands)

    Seiler, C.; Hutjes, R.W.A.; Kabat, P.

    2013-01-01

    Bolivia is facing numerous climate-related threats, ranging from water scarcity due to rapidly retreating glaciers in the Andes to a partial loss of the Amazon forest in the lowlands. To assess what changes in climate may be expected in the future, 35 global circulation models (GCMs) from the third

  6. Preparing for resettlement associated with climate change

    NARCIS (Netherlands)

    Sherbinin, de A.; Castro, M.; Gemenne, F.; Cernea, M.M.; Adamo, S.; Fearnside, P.M.; Krieger, G.; Lahmani, S.; Oliver-Smith, A.; Pankhurst, A.S.A.

    2011-01-01

    Although there is agreement that climate change will result in population displacements and migration, there are differing views on the potential volume of flows, the likely source and destination areas, the relative role of climatic versus other factors in precipitating movements, and whether migra

  7. Climate Change: The Evidence and Our Options

    Science.gov (United States)

    Thompson, Lonnie G.

    2010-01-01

    Glaciers serve as early indicators of climate change. Over the last 35 years, our research team has recovered ice-core records of climatic and environmental variations from the polar regions and from low-latitude high-elevation ice fields from 16 countries. The ongoing widespread melting of high-elevation glaciers and ice caps, particularly in low…

  8. Diagnosis Earth: The Climate Change Debate

    Science.gov (United States)

    Anderegg, William R. L.

    2010-01-01

    In the scrum of popular and political discourse on global warming, the scholarship of climate science is often left sitting on the sideline. Yet understanding the science and the scientists presents the best chance of developing an informed opinion about climate change. Confusion about the science, misunderstanding of risk assessment and…

  9. Winds of change: corporate strategy, climate change and oil multinationals

    NARCIS (Netherlands)

    Kolk, A.; Levy, D.L.

    2001-01-01

    Behind pessimistic expectations regarding the future of an international climate treaty, substantial changes can be observed in company positions. Multinationals in the oil and car industries are increasingly moving toward support for the Kyoto Protocol, and take measures to address climate change.

  10. How light competition between plants affects their response to climate change

    NARCIS (Netherlands)

    Loon, van M.P.; Schieving, F.; Rietkerk, M.; Dekker, S.C.; Sterck, F.J.; Anten, N.P.R.

    2014-01-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 conce

  11. Climate change and preventive medicine

    DEFF Research Database (Denmark)

    Faergeman, Ole

    2007-01-01

    Thermal stress, food poisoning, infectious diseases, malnutrition, psychiatric illness as well as injury and death from floods, storms and fire are all likely to become more common as the earth warms and the climate becomes more variable. In contrast, obesity, type II diabetes and coronary artery...

  12. Climate Change, Conflict, and Children

    Science.gov (United States)

    Akresh, Richard

    2016-01-01

    We have good reason to predict that a warming climate will produce more conflict and violence. A growing contingent of researchers has been examining the relationship in recent years, and they've found that hotter temperatures and reduced rainfall are linked to increases in conflict at all scales, from interpersonal violence to war. Children are…

  13. Climate change impacts and adaptations

    DEFF Research Database (Denmark)

    Arndt, Channing; Tarp, Finn

    2015-01-01

    In this article, we assert that developing countries are much better prepared to undertake negotiations at the Conference of the Parties in Paris (CoP21) as compared to CoP15 in Copenhagen. An important element of this is the accumulation of knowledge with respect to the implications of climate c...

  14. Uncertainties in the regional climate models simulations of South-Asian summer monsoon and climate change

    Science.gov (United States)

    Syed, F. S.; Iqbal, Waheed; Syed, Ahsan Ali Bukhari; Rasul, G.

    2014-04-01

    The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971-2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071-2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.

  15. Cave temperatures and global climatic change.

    Directory of Open Access Journals (Sweden)

    Badino Giovanni

    2004-12-01

    Full Text Available The physical processes that establish the cave temperature are briefly discussed, showing that cave temperature is generally strictly connected with the external climate. The Global Climatic changes can then influence also the underground climate. It is shown that the mountain thermal inertia causes a delay between the two climates and then a thermal unbalance between the cave and the atmosphere. As a consequence there is a net energy flux from the atmosphere to the mountain, larger than the geothermal one, which is deposited mainly in the epidermal parts of caves.

  16. Climate change and developing country interests

    DEFF Research Database (Denmark)

    Arndt, Channing; Chinowsky, Paul; Fant, Charles;

    We consider the interplay of climate change impacts, global mitigation policies, and the interests of developing countries to 2050. Focusing on Malawi, Mozambique, and Zambia, we employ a structural approach to biophysical and economic modeling that incorporates climate uncertainty and allows...... developing countries in effective global mitigation policies, even in the relatively near term, with the likelihood of much larger benefits post 2050....... for rigorous comparison of climate, biophysical, and economic outcomes across global mitigation regimes. We find that effective global mitigation policies generate two sources of benefit. First, less distorted climate outcomes result in typically more favourable economic outcomes. Second, successful global...

  17. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    Science.gov (United States)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  18. A Conceptual Framework for Fire Ecology in a Changing Climate

    Science.gov (United States)

    Gedalof, Z.

    2010-12-01

    Climate interacts with forest dynamics and wildfire at a range of spatial and temporal scales. The purpose of this talk is to describe (and ideally discuss) an emerging conceptual model that describes how scale dependent patterns of climatic variability (a top-down control) interact with processes of vegetation development and topography (bottom-up controls) to give rise to characteristic disturbance regimes and observed patterns of wildfire throughout North America. At the shortest timescales (synoptic to seasonal), climate influences fine fuel moisture, ignition frequency, and rates of wildfire spread. At intermediate timescales (annual to interannual), climate affects the relative abundance and continuity of fine fuels, as well as the abundance and moisture content of coarser fuels. At longer timescales (decadal to centennial) climate determines the assemblage of species that can survive at a particular location. Interactions between these species’ characteristics and the influence of climatic processes on wildfire activity give rise to the characteristic disturbance regime and vegetation structure at a given location. Large-scale modes of climatic variability such as the El Niño - Southern Oscillation and the Pacific Decadal Oscillation affect patterns in wildfire by influencing the relative frequencies of shorter scale processes. Because the importance of these processes varies depending on topographic position and the ecology of the dominant vegetation the effects of these modes varies both within and between regions. Global climatic change is effectively a centennial to millennial scale process, and so its effects can be understood as resulting from interactions between the observed patterns of higher frequency processes, as well as processes of vegetation change whose temporal evolution exceeds the length of the observational record. Statistical models of future fire that are based on historical fire climate relations and regionally downscaled climate

  19. Recent Progress in Studies of Climate Change in China

    Institute of Scientific and Technical Information of China (English)

    REN Guoyu; DING Yihui; ZHAO Zongci; ZHENG Jingyun; WU Tongwen; TANG Guoli; XU Ying

    2012-01-01

    An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China,average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1.This warming is more evident in northern China and is more significant in winter and spring.In the past 50 years in China,at least 27% of the average annual warming has been caused by urbanization.Overall,no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country,while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends.The frequency of tropical cyclone landfall decreased slightly,but the frequency of sand/dust storms decreased significantly.Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China,but it may not have exceeded the highest level of the Medieval Warm Period (1000-1300 AD).Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods,with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years.The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide.The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years,which might have been caused by increased aerosol concentrations and cloud cover.However,natural climate variability might have been a main driver for the mean and

  20. Assessing reservoir operations risk under climate change

    Science.gov (United States)

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  1. Conservation planning with uncertain climate change projections.

    Science.gov (United States)

    Kujala, Heini; Moilanen, Atte; Araújo, Miguel B; Cabeza, Mar

    2013-01-01

    Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i) species distributions that shift following climate change, (ii) basic connectivity requirements of species, (iii) alternative climate change scenarios and their impacts, (iv) in the modelling of species distributions, and (v) different levels of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization that accounts simultaneously for the present and potential future distributions of species is achievable without overly jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for amphibians and reptiles in Europe.

  2. The 7 Aarhus Statements on Climate Change

    Science.gov (United States)

    Margrethe Basse, Ellen; Svenning, Jens-Christian; Olesen, Jørgen E.; Besenbacher, Flemming; Læssøe, Jeppe; Seidenkrantz, Marit-Solveig; Lange, Lene

    2009-03-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular interest for understanding the effects of the projected future climate change and how the foreseen negative impacts can be counteracted by mitigation and adaptation measures. The themes were: Climate policy: the role of law and economics; Biodiversity and ecosystems; Agriculture and climate change; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference. The statements were also communicated to the Danish Government as well as to the press. This article is the product of the collective subsequent work of the seven theme responsibles and is a presentation of each theme statement in detail, emphasizing the current state of knowledge and how it may be used to minimize the expected negative impacts of future climate change.

  3. Conservation planning with uncertain climate change projections.

    Directory of Open Access Journals (Sweden)

    Heini Kujala

    Full Text Available Climate change is affecting biodiversity worldwide, but conservation responses are constrained by considerable uncertainty regarding the magnitude, rate and ecological consequences of expected climate change. Here we propose a framework to account for several sources of uncertainty in conservation prioritization. Within this framework we account for uncertainties arising from (i species distributions that shift following climate change, (ii basic connectivity requirements of species, (iii alternative climate change scenarios and their impacts, (iv in the modelling of species distributions, and (v different levels of confidence about present and future. When future impacts of climate change are uncertain, robustness of decision-making can be improved by quantifying the risks and trade-offs associated with climate scenarios. Sensible prioritization that accounts simultaneously for the present and potential future distributions of species is achievable without overly jeopardising present-day conservation values. Doing so requires systematic treatment of uncertainties and testing of the sensitivity of results to assumptions about climate. We illustrate the proposed framework by identifying priority areas for amphibians and reptiles in Europe.

  4. Climate Change and Maize Yield in Iowa.

    Science.gov (United States)

    Xu, Hong; Twine, Tracy E; Girvetz, Evan

    2016-01-01

    Climate is changing across the world, including the major maize-growing state of Iowa in the USA. To maintain crop yields, farmers will need a suite of adaptation strategies, and choice of strategy will depend on how the local to regional climate is expected to change. Here we predict how maize yield might change through the 21st century as compared with late 20th century yields across Iowa, USA, a region representing ideal climate and soils for maize production that contributes substantially to the global maize economy. To account for climate model uncertainty, we drive a dynamic ecosystem model with output from six climate models and two future climate forcing scenarios. Despite a wide range in the predicted amount of warming and change to summer precipitation, all simulations predict a decrease in maize yields from late 20th century to middle and late 21st century ranging from 15% to 50%. Linear regression of all models predicts a 6% state-averaged yield decrease for every 1°C increase in warm season average air temperature. When the influence of moisture stress on crop growth is removed from the model, yield decreases either remain the same or are reduced, depending on predicted changes in warm season precipitation. Our results suggest that even if maize were to receive all the water it needed, under the strongest climate forcing scenario yields will decline by 10-20% by the end of the 21st century.

  5. Geomorphic systems of the Palliser Triangle, southern Canadian prairies : description and response to changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Lemmen, D.S. [Geological Survey of Canada, Calgary, AB (Canada); Vance, R.E.; Wolfe, S.A. [Geological Survey of Canada, Ottawa, ON (Canada); Campbell, I.A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Earth and Atmospheric Sciences; David, P.P. [Montreal Univ., Montreal, PQ (Canada). Dept. of Geology; Pennock, D.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science; Sauchyn, D.J. [Regina Univ., Regina, SK (Canada). Dept. of Geography

    1998-12-31

    Four geomorphic systems in the Palliser Triangle of southeastern Alberta and southwestern Saskatchewan are reviewed. The region is characterized by a variable climate, strong annual moisture deficit, and recurrent drought. An assessment of the potential impacts of climate change of the geomorphic systems has shown that eolian landscapes are the most sensitive to climate change. Fluvial systems are the least predictable in terms of response to climate change. The climate influences the frequency of mass wasting processes by changing the regional groundwater table. Wind, water and tillage are the principal agents of soil redistribution, and wind and water erosion are closely related to extreme climatic events. By identifying possible responses to climate change, proactive land management is facilitated. refs., tabs., figs.

  6. Ice core and climate reanalysis analogs to predict Antarctic and Southern Hemisphere climate changes

    Science.gov (United States)

    Mayewski, P. A.; Carleton, A. M.; Birkel, S. D.; Dixon, D.; Kurbatov, A. V.; Korotkikh, E.; McConnell, J.; Curran, M.; Cole-Dai, J.; Jiang, S.; Plummer, C.; Vance, T.; Maasch, K. A.; Sneed, S. B.; Handley, M.

    2017-01-01

    A primary goal of the SCAR (Scientific Committee for Antarctic Research) initiated AntClim21 (Antarctic Climate in the 21st Century) Scientific Research Programme is to develop analogs for understanding past, present and future climates for the Antarctic and Southern Hemisphere. In this contribution to AntClim21 we provide a framework for achieving this goal that includes: a description of basic climate parameters; comparison of existing climate reanalyses; and ice core sodium records as proxies for the frequencies of marine air mass intrusion spanning the past ∼2000 years. The resulting analog examples include: natural variability, a continuation of the current trend in Antarctic and Southern Ocean climate characterized by some regions of warming and some cooling at the surface of the Southern Ocean, Antarctic ozone healing, a generally warming climate and separate increases in the meridional and zonal winds. We emphasize changes in atmospheric circulation because the atmosphere rapidly transports heat, moisture, momentum, and pollutants, throughout the middle to high latitudes. In addition, atmospheric circulation interacts with temporal variations (synoptic to monthly scales, inter-annual, decadal, etc.) of sea ice extent and concentration. We also investigate associations between Antarctic atmospheric circulation features, notably the Amundsen Sea Low (ASL), and primary climate teleconnections including the SAM (Southern Annular Mode), ENSO (El Nîno Southern Oscillation), the Pacific Decadal Oscillation (PDO), the AMO (Atlantic Multidecadal Oscillation), and solar irradiance variations.

  7. Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy

    Science.gov (United States)

    Neely, R.; Owens, M. A.

    2011-12-01

    The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.

  8. Responses of large mammals to climate change.

    Science.gov (United States)

    Hetem, Robyn S; Fuller, Andrea; Maloney, Shane K; Mitchell, Duncan

    2014-01-01

    Most large terrestrial mammals, including the charismatic species so important for ecotourism, do not have the luxury of rapid micro-evolution or sufficient range shifts as strategies for adjusting to climate change. The rate of climate change is too fast for genetic adaptation to occur in mammals with longevities of decades, typical of large mammals, and landscape fragmentation and population by humans too widespread to allow spontaneous range shifts of large mammals, leaving only the expression of latent phenotypic plasticity to counter effects of climate change. The expression of phenotypic plasticity includes anatomical variation within the same species, changes in phenology, and employment of intrinsic physiological and behavioral capacity that can buffer an animal against the effects of climate change. Whether that buffer will be realized is unknown, because little is known about the efficacy of the expression of plasticity, particularly for large mammals. Future research in climate change biology requires measurement of physiological characteristics of many identified free-living individual animals for long periods, probably decades, to allow us to detect whether expression of phenotypic plasticity will be sufficient to cope with climate change.

  9. Green cities, smart people and climate change

    Science.gov (United States)

    Mansouri Kouhestani, F.; Byrne, J. M.; Hazendonk, P.; Brown, M. B.; Harrison, T.

    2014-12-01

    Climate change will require substantial changes to urban environments. Cities are huge sources of greenhouse gases. Further, cities will suffer tremendously under climate change due to heat stresses, urban flooding, energy and water supply and demand changes, transportation problems, resource supply and demand and a host of other trials and tribulations. Cities that evolve most quickly and efficiently to deal with climate change will likely take advantage of the changes to create enjoyable, healthy and safer living spaces for families and communities. Technology will provide much of the capability to both mitigate and adapt our cities BUT education and coordination of citizen and community lifestyle likely offers equal opportunities to make our cities more sustainable and more enjoyable places to live. This work is the first phase of a major project evaluating urban mitigation and adaptation policies, programs and technologies. All options are considered, from changes in engineering, planning and management; and including a range of citizen and population-based lifestyle practices.

  10. Combat climat change with competetive photovoltaics

    NARCIS (Netherlands)

    Ribeyron, P.J.; Sark, W.G.J.H.M. van; Zietek, G.

    2009-01-01

    Photovoltaics (PV) offer a promising solution for CO2 emission reductions and climate change combat. However, before its wide spread on the market, PV needs to find new approaches to make solar cells competitive with respect to conventional electricity sources.

  11. Chikungunya, climate change, and human rights.

    Science.gov (United States)

    Meason, Braden; Paterson, Ryan

    2014-06-14

    Chikungunya is a re-emerging arbovirus that causes significant morbidity and some mortality. Global climate change leading to warmer temperatures and changes in rainfall patterns allow mosquito vectors to thrive at altitudes and at locations where they previously have not, ultimately leading to a spread of mosquito-borne diseases. While mutations to the chikungunya virus are responsible for some portion of the re-emergence, chikungunya epidemiology is closely tied with weather patterns in Southeast Asia. Extrapolation of this regional pattern, combined with known climate factors impacting the spread of malaria and dengue, summate to a dark picture of climate change and the spread of this disease from south Asia and Africa into Europe and North America. This review describes chikungunya and collates current data regarding its spread in which climate change plays an important part. We also examine human rights obligations of States and others to protect against this disease.

  12. Migration from atolls as climate change adaptation

    DEFF Research Database (Denmark)

    Birk, Thomas Ladegaard Kümmel; Rasmussen, Kjeld

    2014-01-01

    Adaptive strategies are important for reducing the vulnerability of atoll communities to climate change and sea level rise in both the short and long term. This paper seeks to contribute to the emerging discourse on migration as a form of adaptation to climate change based on empirical studies...... in the two atoll communities, Reef Islands and Ontong Java, which are located in the periphery of Solomon Islands. The paper will outline current migration patterns in the two island groups and discuss how some of this migration may contribute to adaptation to climate change and other stresses. It shows...... in adaptation to climate change in exposed atoll communities, addressing some of the barriers to migration seems logical. This may be done by efforts to stimulate migrant income opportunities, by improving migrant living conditions and by improving the transport services to the islands....

  13. Climate change: Carbon losses in the Alps

    Science.gov (United States)

    Kirk, Guy

    2016-07-01

    Soil carbon stocks depend on inputs from decomposing vegetation and return to the atmosphere as CO2. Monitoring of carbon stocks in German alpine soils has shown large losses linked to climate change and a possible positive feedback loop.

  14. SATELLITE OBSERVATIONS FOR EDUCATION OF CLIMATE CHANGE

    Directory of Open Access Journals (Sweden)

    ILONA PAJTÓK-TARI

    2011-03-01

    Full Text Available This paper surveys the key statements of the IPCC (2007 Reportbased mainly on the satellite-borne observations to support teaching climatechange and geography by using the potential of this technology. In theIntroduction we briefly specify the potential and the constraints of remote sensing.Next the key climate variables for indicating the changes are surveyed. Snow andsea-ice changes are displayed as examples for these applications. Testing theclimate models is a two-sided task involving satellites, as well. Validation of theability of reconstructing the present climate is the one side of the coin, whereassensitivity of the climate system is another key task, leading to consequences onthe reality of the projected changes. Finally some concluding remarks arecompiled, including a few ideas on the ways how these approaches can be appliedfor education of climate change.

  15. Economics: Higher costs of climate change

    Science.gov (United States)

    Sterner, Thomas

    2015-11-01

    An attempt to reconcile the effects of temperature on economic productivity at the micro and macro levels produces predictions of global economic losses due to climate change that are much higher than previous estimates. See Letter p.235

  16. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    ... Share Facebook Twitter Google+ Pinterest Contact Us Transportation, Air Pollution, and Climate Change Accomplishments & Successes View successes from ... reduce carbon pollution. Carbon pollution from transportation Other Air Pollution Learn about smog, soot, ozone, and other air ...

  17. Climate change and sustainability in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.

    2001-07-01

    This paper discusses the climate history of the Earth, exploring some of the driving forces of climate change along the way. It points out that it may not be the gradual increase in global mean temperature that we have to fear the most. Rather the variability of the climate may pose an even greater threat to us. The paper outlines some possible future scenarios of climate change based on what we now think we know about the causes of climate change and possible future development in emissions of greenhouse gases. It then goes on to describe the current climate negotiations and possible political solutions in the near term, before concluding with a description of the more long-term fundamental challenges we face. The aim of the discussion is to provide a deeper understanding of the climate problem we are facing, as well as the challenges that lie ahead of us, individually as well as a region, in securing the climate aspect of a sustainable development for Europe and the world. The paper is based on a presentation given at the conference Rio + 10 in Dublin in September 2001, made possible by a kind contribution from the European Environment Agency. (author)

  18. Climate Change and Global Wine Quality

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.V. [Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, Oregon, 97520 (United States); White, M.A. [Department of Aquatic, Watershed, and Earth Resources, Utah State University, Logan, Utah, 84322 (United States); Cooper, O.R. [Cooperative Institute for Research in Environmental Sciences CIRES, University of Colorado/NOAA Aeronomy Laboratory, Boulder, Colorado, 80305 (United States); Storchmann, K. [Department of Economics, Yale University, New Haven, Connecticut, 06520 (United States)

    2005-12-01

    From 1950 to 1999 the majority of the world's highest quality wine-producing regions experienced growing season warming trends. Vintage quality ratings during this same time period increased significantly while year-to-year variation declined. While improved winemaking knowledge and husbandry practices contributed to the better vintages it was shown that climate had, and will likely always have, a significant role in quality variations. This study revealed that the impacts of climate change are not likely to be uniform across all varieties and regions. Currently, many European regions appear to be at or near their optimum growing season temperatures, while the relationships are less defined in the New World viticulture regions. For future climates, model output for global wine producing regions predicts an average warming of 2C in the next 50 yr. For regions producing high-quality grapes at the margins of their climatic limits, these results suggest that future climate change will exceed a climatic threshold such that the ripening of balanced fruit required for existing varieties and wine styles will become progressively more difficult. In other regions, historical and predicted climate changes could push some regions into more optimal climatic regimes for the production of current varietals. In addition, the warmer conditions could lead to more poleward locations potentially becoming more conducive to grape growing and wine production.

  19. Atmospheric Composition Change: Climate-Chemistry Interactions

    Science.gov (United States)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; Cox, T.; Eyring, V.; Fowler, D.; Fuzzi, S.; Jockel, P.; Laj, P.; Lohmann, U.; Maione, M.; Monks, T.; Prevot, A. S. H.; Raes, F.; Richter, A.; Rognerud, B.; Schulz, M.; Shindell, D.; Stevenson, D. S.; Storelvmo, T.; Wang, W.-C.; vanWeele, M.; Wild, M.; Wuebbles, D.

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  20. What climate changes do 400 ppm commit us to? (Invited)

    Science.gov (United States)

    Zickfeld, K.

    2013-12-01

    Atmospheric CO2 is approaching an annual average concentration of 400 ppm. This paper explores the long-term climate changes that this level of atmospheric CO2 commits us to. Climate change commitment refers to the climate changes that are to be expected in the future in response to past human activities. Several types of climate change commitment have been discussed in the literature. This paper investigates the long-term climate response to the current atmospheric composition perpetuated over several centuries (constant composition commitment) and the response to an abrupt cessation of greenhouse gas emissions (zero emission commitment) using an Earth System Model of Intermediate Complexity (EMIC). The committed changes in both the physical and biogeochemical Earth system components are quantified, and the uncertainties in the magnitude and the time scales of the simulated changes are explored using sensitivity analysis and results from an EMIC intercomparison undertaken in support of the Fifth Assessment Report (AR5) of the IPCC. A second research question addresses whether it is feasible to return from 400 ppm to lower levels of atmospheric CO2 on human timescales using 'negative emissions' (i.e. net removal of atmospheric CO2 from the atmosphere). The implementation of negative emission technology (e.g. biomass energy with carbon capture and geological storage) may be desirable if the committed climate changes of 400 ppm exceed 'safe' levels. The feasibility of returning to lower CO2 levels is assessed based on the response of the Earth System and currently known limits of negative emission technology.

  1. National program of fight against the climate change. 2. annual evaluation and forecasting; Programme national de lutte contre le changement climatique. 2. bilan annuel et voies d'avenir

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This conference discussed the actions realized in the framework of the National Plan of Fight against the Climatic Change (PNLCC). The first part presents the problem, the evaluation of the PNLCC application and the control tools. the second part is devoted to the transport sector and the second to the buildings and the electric power demand control. The last part deals with the prospective and the challenges of the PNLCC. (A.L.B.)

  2. Climate change impacts on water barriers and possibilities

    DEFF Research Database (Denmark)

    Frederiksen, Peter

    The purpose is to elucidate climate change impacts on water related to precipitation, catchment hydrology, water management and land development in fruit export regions at the desert margin in Chile. The case is a region exposed to intense globalization and severe climate change. A timeline (past...... on precipitation. The change and variability is most serious in the northernmost valleys that receive less than 200 mm/yr. This is strengthened by the northwards decrease in the importance of mountains. Precipitation in the mountains, glaciers and snowfields are the main source of irrigation water...... – not the lowland precipitation. As a result annual discharge is up to 50 times lower compared to the southernmost valleys. This did not impede the expansion of fruit plantations explained by the expansion of irrigation canals, and the adoption of drip irrigation. More serious are land tenure barriers, the lack...

  3. Emissions pathways, climate change, and impacts on California

    Science.gov (United States)

    Hayhoe, K.; Cayan, D.; Field, C.B.; Frumhoff, P.C.; Maurer, E.P.; Miller, N.L.; Moser, S.C.; Schneider, S.H.; Cahill, K.N.; Cleland, E.E.; Dale, L.; Drapek, R.; Hanemann, R.M.; Kalkstein, L.S.; Lenihan, J.; Lunch, C.K.; Neilson, R.P.; Sheridan, S.C.; Verville, J.H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50-75%; and Sierra snowpack is reduced 30-70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75-90%; and snowpack declines 73-90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades.

  4. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    Science.gov (United States)

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  5. Recent Changes of Some Observed Climate Extreme Events in Kano

    Directory of Open Access Journals (Sweden)

    Imole Ezekiel Gbode

    2015-01-01

    Full Text Available Observed rainfall and temperature data for the period 1960–2007 were used to examine recent changes of extreme climate over Kano, located in the Sahelian region of Nigeria. The RClimDex software package was employed to generate nine important climate indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI. For the entire period, the results show a warming trend, an increased number of cool nights, more warm days, and a strong increase in the number of warm spells. The rainfall indices show a slight increase in annual total rainfall, a decrease in the maximum number of consecutive wet days, and a significant increase in the number of extremely wet days. Such changes in climate may result in an increasing demand for domestic energy for cooling and a higher evaporation rate from water bodies and irrigated crop. These findings may give some guidance to politicians and planners in how to best cope with these extreme weather and climate events.

  6. Climate Change: Science, Health and the Environment

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Climate Change: Science, Health and the Environment Howard Frumkin, MD, DrPH, Director of CDC's National Center for Environmental Health/Agency for Toxic Substances and Disease Registry, discusses the science of climate change, the potential for shifts in the natural world to affect our wellbeing, and the challenges of emerging issues in environmental health.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  7. Beyond Brainstorming: Exploring Climate Change Adaptation Strategies

    Science.gov (United States)

    Garfin, Gregg; Jacobs, Katharine; Buizer, James

    2008-06-01

    Climate Change Adaptation for Water Managers; Oracle, Arizona, 4-5 February 2008; The most visible manifestation of climate change in the American Southwest is its effects on water resources. Since 1999, the region's water supplies and major rivers have been tested by burgeoning population growth and drought. Model projections suggest increasing drought severity and duration due to rising temperatures, increased evapotranspiration, and enhanced atmospheric circulation from the tropics (Hadley circulation).

  8. European climate change experiments on precipitation change

    DEFF Research Database (Denmark)

    Beier, Claus

    Presentation of European activities and networks related to experiments and databases within precipitation change......Presentation of European activities and networks related to experiments and databases within precipitation change...

  9. The 7 Aarhus Statements on Climate Change

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe; Svenning, J.-C.; Olesen, Jørgen E

    2009-01-01

    More than 1000 prominent representatives from science, industry, politics and NGOs were gathered in Aarhus on 5-7 March 2009 for the international climate conference 'Beyond Kyoto: Addressing the Challenges of Climate Change'. Thematically, Beyond Kyoto was divided into seven areas of particular......; Nanotechnology solutions for a sustainable future; Citizens and society, and The Arctic. The main responsible scientists for the seven conference themes and representatives from the think-tank CONCITO delivered 'The 7 Aarhus Statements on Climate Change' as part of the closing session of the conference...

  10. Framing Climate Change to Account for Values

    Science.gov (United States)

    Hassol, S. J.

    2011-12-01

    Belief, trust and values are important but generally overlooked in efforts to communicate climate change. Because climate change has often been framed too narrowly as an environmental issue, it has failed to engage segments of the public for whom environmentalism is not an important value. Worse, for some of these people, environmentalism and the policies that accompany it may be seen as a threat to their core values, such as the importance of personal freedoms and the free market. Climate science educators can improve this situation by more appropriately framing climate change as an issue affecting the economy and our most basic human needs: food, water, shelter, security, health, jobs, and the safety of our families. Further, because people trust and listen to those with whom they share cultural values, climate change educators can stress the kinds of values their audiences share. They can also enlist the support of opinion leaders known for holding these values. In addition, incorporating messages about solutions to climate change and their many benefits to economic prosperity, human health, and other values is an important component of meeting this challenge. We must also recognize that local impacts are of greater concern to most people than changes that feel distant in place and time. Different audiences have different concerns, and effective educators will learn what their audiences care about and tailor their messages accordingly.

  11. Mental health effects of climate change

    Directory of Open Access Journals (Sweden)

    Susanta Kumar Padhy

    2015-01-01

    Full Text Available We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more number of farmer suicides. Droughts otherwise can lead to impaired mental health and stress. Increased frequency of disasters with climate change can lead to posttraumatic stress disorder, adjustment disorder, and depression. Changes in climate and global warming may require population to migrate, which can lead to acculturation stress. It can also lead to increased rates of physical illnesses, which secondarily would be associated with psychological distress. The possible effects of mitigation measures on mental health are also discussed. The paper concludes with a discussion of what can and should be done to tackle the expected mental health issues consequent to climate change.

  12. Financing Sustainable Agriculture Under Climate Change

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-kun; WANG Yang-jie

    2014-01-01

    Agriculture is facing great challenge in meeting global food security and is expected to face even greater challenge under climate change. The overall goal of this paper is to examine how ifnance can be used to achieve the joint objectives of development, mitigation of and adaptation to climate change in agriculture in developing world based on literature review. The results show that agriculture is much under invested and foreign aid also has not increased appropriately to assist developing countries to maintain sustainable agriculture under climate change. There are a wide range of areas in mitigation of and adaptation to climate change that need substantial investment. Major areas and successful cases mitigation of and adaptation to climate change in agriculture that have worked in developing countries are examined. A list of areas that have worked, could work and be scaled up or transferred is identiifed and discussed. This study concludes that mainstreaming agricultural mitigation and adaptation into agricultural development programs, enhancing local capacity, and considering different stakeholders’ needs are major experiences for successfully ifnancing sustainable agriculture under climate change.

  13. Evaluating the effect of climate change on areal reduction factors using regional climate model projections

    Science.gov (United States)

    Li, Jingwan; Sharma, Ashish; Johnson, Fiona; Evans, Jason

    2015-09-01

    Areal reduction factors (ARFs) are commonly used to transform point design rainfall to represent the average design rainfall for a catchment area. While there has been considerable attention paid in the research and engineering communities to the likely changes in rainfall intensity in future climates, the issue of changes to design areal rainfall has been largely ignored. This paper investigates the impact of climate change on ARFs. A new methodology for estimating changes in ARFs is presented. This method is used to assess changes in ARFs in the greater Sydney region using a high-resolution regional climate model (RCM). ARFs under present (1990-2009) and future (2040-2059) climate conditions were derived and compared for annual exceedance probabilities (AEPs) from 50% to 5% for durations ranging from 1 h to 120 h. The analysis shows two main trends in the future changes in ARFs. For the shortest duration events (1-h) the ARFs are found to increase which implies that these events will tend to have a larger spatial structure in the future than the current climate. In contrast, storms with durations between 6 and 72 h are likely to have decreased ARFs in the future, suggesting a more restricted spatial coverage of storms under a warming climate. The extent of the decrease varies with event frequency and catchment size. The largest decreases are found for large catchments and rare events. Although the results here are based on a single RCM and need to be confirmed in future work with multiple models, the framework that is proposed will be useful for future studies considering changes in the areal extent of rainfall extremes.

  14. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  15. Tracking Public Beliefs About Anthropogenic Climate Change.

    Science.gov (United States)

    Hamilton, Lawrence C; Hartter, Joel; Lemcke-Stampone, Mary; Moore, David W; Safford, Thomas G

    2015-01-01

    A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews) yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40%) concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15%) say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire) finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  16. Tracking Public Beliefs About Anthropogenic Climate Change.

    Directory of Open Access Journals (Sweden)

    Lawrence C Hamilton

    Full Text Available A simple question about climate change, with one choice designed to match consensus statements by scientists, was asked on 35 US nationwide, single-state or regional surveys from 2010 to 2015. Analysis of these data (over 28,000 interviews yields robust and exceptionally well replicated findings on public beliefs about anthropogenic climate change, including regional variations, change over time, demographic bases, and the interacting effects of respondent education and political views. We find that more than half of the US public accepts the scientific consensus that climate change is happening now, caused mainly by human activities. A sizable, politically opposite minority (about 30 to 40% concede the fact of climate change, but believe it has mainly natural causes. Few (about 10 to 15% say they believe climate is not changing, or express no opinion. The overall proportions appear relatively stable nationwide, but exhibit place-to-place variations. Detailed analysis of 21 consecutive surveys within one fairly representative state (New Hampshire finds a mild but statistically significant rise in agreement with the scientific consensus over 2010-2015. Effects from daily temperature are detectable but minor. Hurricane Sandy, which brushed New Hampshire but caused no disaster there, shows no lasting impact on that state's time series-suggesting that non-immediate weather disasters have limited effects. In all datasets political orientation dominates among individual-level predictors of climate beliefs, moderating the otherwise positive effects from education. Acceptance of anthropogenic climate change rises with education among Democrats and Independents, but not so among Republicans. The continuing series of surveys provides a baseline for tracking how future scientific, political, socioeconomic or climate developments impact public acceptance of the scientific consensus.

  17. Widespread climate change in the Himalayas and associated changes in local ecosystems.

    Directory of Open Access Journals (Sweden)

    Uttam Babu Shrestha

    Full Text Available BACKGROUND: Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ~20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. METHODOLOGY/PRINCIPAL FINDINGS: By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5 °C with an average increase of 0.06 °C yr(-1. The average annual precipitation has increased by 163 mm or 6.52 mmyr(-1. Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS seems to have advanced by 4.7 days or 0.19 days yr(-1 and the length of growing season (LOS appears to have advanced by 4.7 days or 0.19 days yr(-1, but there has been no change in the end of the growing season (EOS. There is considerable spatial and seasonal variation in changes in climate and phenological parameters. CONCLUSIONS/SIGNIFICANCE: This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change.

  18. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    Science.gov (United States)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  19. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park

    Science.gov (United States)

    Lutz, James A.; Van Wagtendonk, Jan W.; Franklin, Jerry F.

    2010-01-01

    Aim  (1) To calculate annual potential evapotranspiration (PET), actual evapotranspiration (AET) and climatic water deficit (Deficit) with high spatial resolution; (2) to describe distributions for 17 tree species over a 2300-m elevation gradient in a 3000-km2 landscape relative to AET and Deficit; (3) to examine changes in AET and Deficit between past (c. 1700), present (1971–2000) and future (2020–49) climatological means derived from proxies, observations and projections; and (4) to infer how the magnitude of changing Deficit may contribute to changes in forest structure and composition.Location  Yosemite National Park, California, USA.Methods  We calculated the water balance within Yosemite National Park using a modified Thornthwaite-type method and correlated AET and Deficit with tree species distribution. We used input data sets with different spatial resolutions parameterized for variation in latitude, precipitation, temperature, soil water-holding capacity, slope and aspect. We used climate proxies and climate projections to model AET and Deficit for past and future climate. We compared the modelled future water balance in Yosemite with current species water-balance ranges in North America.Results  We calculated species climatic envelopes over broad ranges of environmental gradients – a range of 310 mm for soil water-holding capacity, 48.3°C for mean monthly temperature (January minima to July maxima), and 918 mm yr−1 for annual precipitation. Tree species means were differentiated by AET and Deficit, and at higher levels of Deficit, species means were increasingly differentiated. Modelled Deficit for all species increased by a mean of 5% between past (c. 1700) and present (1971–2000). Projected increases in Deficit between present and future (2020–49) were 23% across all plots.Main conclusions  Modelled changes in Deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and

  20. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    Science.gov (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  1. Enhancing the Communication of Climate Change Science

    Science.gov (United States)

    Somerville, R. C.; Hassol, S. J.

    2011-12-01

    Climate scientists have an important role to play in the critical task of informing the public, media and policymakers. Scientists can help in publicizing and illuminating climate science. However, this task requires combining climate science expertise with advanced communication skills. For example, it is entirely possible to convey scientific information accurately without using jargon or technical concepts unfamiliar to non-scientists. However, making this translation into everyday language is a job that few scientists have been trained to do. In this talk, we give examples from our recent experience working with scientists to enhance their ability to communicate well. Our work includes providing training, technical assistance, and communications tools to climate scientists and universities, government agencies, and research centers. Our experience ranges from preparing Congressional testimony to writing major climate science reports to appearing on television. We have also aided journalists in gathering reliable scientific information and identifying trustworthy experts. Additionally, we are involved in developing resources freely available online at climatecommunication.org. These include a feature on the links between climate change and extreme weather, a climate science primer, and graphics and video explaining key developments in climate change science.

  2. Climate Change as a Wicked Problem

    Directory of Open Access Journals (Sweden)

    John FitzGibbon

    2012-05-01

    Full Text Available Understanding complexity suggests that some problems are more complex than others and defy conventional solutions. These wicked problems will not be solved by the same tools and processes that are complicit in creating them. Neither will they be resolved by approaches short on explicating the complex interconnections of the multiple causes, consequences, and cross-scale actors of the problem. Climate change is one such wicked problem confronting water management in Ghana with a dilemma. The physical consequences of climate change on Ghana’s water resources are progressively worsening. At the same time, existing institutional arrangements demonstrate weak capacities to tackle climate change–related complexities in water management. Therefore, it warrants a dynamic approach imbued with complex and adaptive systems thinking, which also capitalizes on instrumental gains from prior existing institutions. Adaptive Co-Management offers such an opportunity for Ghana to adapt its water management system to climate change.

  3. Water in Urban Areas in a Climate Change Perspective

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost....... There is a need to forecast all the changes that can be foreseen within the technical lifetime of city infrastructure, notably the water system and the impacts on other aspects of urban liveability. Based on the projects in Partnership Water in Urban Areas (www.vandibyer.dk) these drivers will be discussed...... of individual very extreme events (e.g. more than 100 years) of approximately 70 % and a 900 % increase in the expected annual losses due to floods. Other case studies in Denmark show smaller impacts, but still very significant increased annual costs compared to the present state. This calls for systematic...

  4. Climate change: menance or myth?

    Energy Technology Data Exchange (ETDEWEB)

    Pearce, F.

    2005-02-12

    Sceptics claim that global warming is a fantasy dreamed up by climate scientists. At the time when the Kyoto Protocol comes into force the author reports that a wealth of uncontested evidence shows that human activity is influencing the global environment even if we do not know by how much. The opinions of the sceptics are reported and discussed together with recent research results and questions of uncertainty are raised. There is a high degree of consensus amongst scientists about the basic science of global warming. 3 figs., 2 photos.

  5. Contribution of human and climate change impacts to changes in streamflow of Canada.

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  6. [Environmental pollution, climate variability and climate change: a review of health impacts on the Peruvian population].

    Science.gov (United States)

    Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air.

  7. Changes in Climate Driving Changes in Architectural Education

    Directory of Open Access Journals (Sweden)

    Maibritt Pedersen Zari

    2012-09-01

    Full Text Available Sustainability issues, in particular climate change, have become significant drivers of change in architectural education. It is posited that engaging in the reduction and offsetting of greenhouse gas emissions in academic institutions, particularly those responsible for the education of new generations of built environment professionals, could become an important part of creating built environments that can more effectively contribute to mitigating the causes of climate change.

  8. Navigating Negative Conversations in Climate Change

    Science.gov (United States)

    Mandia, S. A.; Abraham, J. P.; Dash, J. W.; Ashley, M. C.

    2012-12-01

    Politically charged public discussions of climate change often lead to polarization as a direct result of many societal, economic, religious and other factors which form opinions. For instance, the general public views climate change as a political discussion rather than a scientific matter. Additionally, many media sources such as websites and mainstream venues and persons have served to promote the "controversy". Scientists who engage in a public discourse of climate change often encounter politically charged environments and audiences. Traditional presentations of the science without attention paid to political, social, or economic matters are likely to worsen the existing divide. An international organization, the Climate Science Rapid Response Team (CSRRT) suggests a strategy that can be used to navigate potentially troublesome situations with divided audiences. This approach can be used during live lecture presentations, and radio, print, or television interviews. The strategy involves identifying alternative motivations for taking action on climate change. The alternative motivations are tailored to the audience and can range from national defense, economic prosperity, religious motivation, patriotism, energy independence, or hunting/fishing reasons. Similar messaging modification can be used to faithfully and accurately convey the importance of taking action on climate change but present the motivations in a way that will be received by the audience.

  9. CLIMATE CHANGE IMPACTS ON WATER RESOURCES

    Directory of Open Access Journals (Sweden)

    T.M. CORNEA

    2011-03-01

    Full Text Available Climate change impacts on water resources – The most recent scientific assessment by the Intergovernmental Panel on Climate Change (IPCC [6] concludes that, since the late 19th century, anthropogenic induced emissions of greenhouse gases have contributed to an increase in global surface temperatures of about 0.3 to 0.6o C. Based on the IPCC’s scenario of future greenhouse gas emissions and aerosols a further increase of 2o C is expected by the year 2100. Plants, animals, natural and managed ecosystems, and human settlements are susceptible to variations in the storage, fluxes, and quality of water and sensitive to climate change. From urban and agricultural water supplies to flood management and aquatic ecosystem protection, global warming is affecting all aspects of water resource management. Rising temperatures, loss of snowpack, escalating size and frequency of flood events, and rising sea levels are just some of the impacts of climate change that have broad implications for the management of water resources. With robust scientific evidence showing that human-induced climate change is occurring, it is critical to understand how water quantity and quality might be affected. The purpose of this paper is to highlight the environmental risks caused by climate anomalies on water resources, to examine the negative impacts of a greenhouse warming on the supply and demand for water and the resulting socio-economic implications.

  10. Climate change effects on lowland stream flood regimes and riparian rich fen vegetation communities in Denmark

    DEFF Research Database (Denmark)

    Thodsen, Hans; Baattrup-Pedersen, Annette; Andersen, Hans Estrup;

    2016-01-01

    to a hydrological model with the aim to predict climate driven changes in flooding regimes in lowland riparian areas. Our specific aims were to 1) predict effects of climate change on flood frequencies and magnitudes in riparian areas by using an ensemble of six climate models and 2) combine the obtained......There is growing awareness that an intensification of the hydrological cycle associated with climate change in many parts of the world will have profound implications for river ecosystem structure and functions. In the present study we link an ensemble of regional climate model projections...... predictions with the distribution of rich fen communities to explore whether these are likely to be subjected to increased flooding by a climate change induced increase in river runoff. We found that all regional climate models in the ensemble showed increases in mean annual runoff and that the increase...

  11. Ecological responses to recent climate change

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Gian-Reto [Hannover Univ., Inst. of Geobotany, Hannover (Germany); Post, Eric [Pennsylvania State Univ., Dept. of Biology, University Park, PA (United States); Convey, Peter [British Antarctic Survey, Natural Environment Research Council, Cambridge (United Kingdom); Menzel, Annette [Technical Univ. Munich, Dept. of Ecology, Freising (Germany); Parmesan, Camille [Texas Univ., Patterson Labs., Integrative Biology Dept., Austin, TX (United States); Beebee, Trevor J.C. [Sussex Univ., School of Biological Sciences, Brighton (United Kingdom); Fromentin, Jean-Marc [IFREMER, Centre Halieutique Mediterraneen et Tropical, Sete, 34 (France); Hoegh-Guldberg, Ove [Queensland Univ., Centre for Marine Studies, St Lucia, QLD (Australia); Bairlein, Franz [Institute for Avian Research ' Vogelwarte Helgoland' , Wilhelmshaven (Germany)

    2002-03-28

    There is now ample evidence of the ecological impacts of recent climate change, from polar terrestrial to tropical marine environments. The responses of both flora and fauna span an array of ecosystems and organisational hierarchies, from the species to the community levels. Despite continued uncertainty as to community and ecosystem trajectories under global change, our review exposes a coherent pattern of ecological change across systems. Although we are only at an early stage in the projected trends of global warming, ecological responses to recent climate change are already clearly visible. (Author)

  12. Anthropogenic Climate Change and Allergic Diseases

    Directory of Open Access Journals (Sweden)

    Hueiwang Anna Jeng

    2012-02-01

    Full Text Available Climate change is expected to have an impact on various aspects of health, including mucosal areas involved in allergic inflammatory disorders that include asthma, allergic rhinitis, allergic conjunctivitis and anaphylaxis. The evidence that links climate change to the exacerbation and the development of allergic disease is increasing and appears to be linked to changes in pollen seasons (duration, onset and intensity and changes in allergen content of plants and their pollen as it relates to increased sensitization, allergenicity and exacerbations of allergic airway disease. This has significant implications for air quality and for the global food supply.

  13. Evidence for phase-locked changes in climate between Scotland and Greenland during GS-1 (Younger Dryas) using micromorphology of glaciolacustrine varves from Glen Roy

    DEFF Research Database (Denmark)

    Palmer, Adrian P.; Rose, Jim; Rasmussen, Sune Olander

    2012-01-01

    There is a current need to develop annual/decadal chronologies from periods of rapid climate change in order to understand the rate and timing of climate events and identify how other proxies either lead or lag this climate forcing. Annually-laminated or varved sediments are key proxies for under...

  14. Quaternary climate changes explain diversity among reptiles and amphibians

    DEFF Research Database (Denmark)

    Bastos Araujo, Miguel; Nogués-Bravo, David; Diniz-Filho, Alexandre F.

    2008-01-01

    It is widely believed that contemporary climate determines large-scale patterns of species richness. An alternative view proposes that species richness reflects biotic responses to historic climate changes. These competing "contemporary climate" vs "historic climate" hypotheses have been vigorous...

  15. Helsinki Metropolitan Area Climate Change Adaptation Strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    The Helsinki Metropolitan Area Climate Change Adaptation Strategy has been prepared in close cooperation with the four cities of the metropolitan area (Helsinki, Espoo, Vantaa and Kauniainen), the Helsinki Region Environmental Services Authority HSY and other municipal, regional and state level organisations. In the strategy, strategic starting points and policies with which the metropolitan area prepares for the consequences of climate change, are compiled. The Helsinki Metropolitan Area adaptation strategy concentrates on the adaptation of the built and urban environment to the changing climate. The vision of the strategy is climate proof city - the future is built now. The strategy aims to (1) assess the impacts of climate change in the area, (2) prepare for the impacts of climate change and to extreme weather events and (3) to reduce the vulnerabilities of the area to climate variability and change. The target is to secure the well-being of the citizens and the functioning of the cities also in the changing climate conditions. The preparation of the adaptation strategy started in 2009 by producing the background studies. They include the regional climate and sea level scenarios, modelling of river floods in climate change conditions and a survey of climate change impacts in the region. Also, existing programmes, legislation, research and studies concerning adaptation were collected. The background studies are published in a report titled 'The Helsinki metropolitan area climate is changing - Adaptation strategy background studies' (in Finnish) (HSY 2010). HSY coordinated the strategy preparation. The work was carried out is close cooperation with the experts of the metropolitan area cities, regional emergency services, Ministry of the Environment, Helsinki Region Transport Authority and other regional organisations. The strategy work has had a steering group that consists of representatives of the cities and other central cooperation partners. The

  16. Passive cooling by night-time ventilation using climate responsive elements - Annual report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Artmann, N.

    2007-07-01

    This illustrated annual report for the Swiss Federal Office of Energy (SFOE) reports on the work done at the Swiss Federal Laboratories for Materials Science and Technology EMPA in 2007 on the subject of passive cooling systems. The paper reports on the evaluation of the possibilities and limitations of passive cooling using night-time ventilation. The climatic potential for the passive cooling of buildings using such night-time ventilation was evaluated. The author reports that the results show a very high potential for night-time cooling over the whole of Northern Europe and a still significant potential in Central, Eastern and even some regions of Southern Europe. Furthermore, a significant reduction in the potential for night cooling was found due to climate change. Although its potential might not always be sufficient to assure thermal comfort, night-time ventilation can still be used to reduce the cooling energy demand in buildings using hybrid systems.

  17. Climate change and its impacts on river discharge in two climate regions in China

    Science.gov (United States)

    Xu, H.; Luo, Y.

    2015-11-01

    Understanding the heterogeneity of climate change and its impacts on annual and seasonal discharge and the difference between median flow and extreme flow in different climate regions is of utmost importance to successful water management. To quantify the spatial and temporal heterogeneity of climate change impacts on hydrological processes, this study simulated river discharge in the River Huangfuchuan in semi-arid northern China and in the River Xiangxi in humid southern China. The study assessed the uncertainty in projected discharge for three time periods (2020s, 2050s and 2080s) using seven equally weighted GCMs (global climate models) for the SRES (Special Reports on Emissions Scenarios) A1B scenario. Climate projections that were applied to semi-distributed hydrological models (Soil Water Assessment Tools, SWAT) in both catchments showed trends toward warmer and wetter conditions, particularly for the River Huangfuchuan. Results based on seven GCMs' projections indicated changes from -1.1 to 8.6 °C and 0.3 to 7.0 °C in seasonal temperature and changes from -29 to 139 % and -32 to 85 % in seasonal precipitation in the rivers Huangfuchuan and Xiangxi, respectively. The largest increases in temperature and precipitation in both catchments were projected in the spring and winter seasons. The main projected hydrologic impact was a more pronounced increase in annual discharge in the River Huangfuchuan than in the River Xiangxi. Most of the GCMs projected increased discharge in all seasons, especially in spring, although the magnitude of these increases varied between GCMs. The peak flows were projected to appear earlier than usual in the River Huangfuchuan and later than usual in the River Xiangxi, while the GCMs were fairly consistent in projecting increased extreme flows in both catchments with varying magnitude compared to median flows. For the River Huangfuchuan in the 2080s, median flow changed from -2 to 304 %, compared to a -1 to 145 % change in high flow

  18. Shifts of climate zones in multi-model climate change experiments using the Koeppen climate classification

    Energy Technology Data Exchange (ETDEWEB)

    Hanf, Franziska; Koerper, Janina; Spangehl, Thomas; Cubash, Ulrich [Freie Univ. Berlin (Germany). Inst. fuer Meteorologie

    2012-04-15

    This study investigates the future changes in the climate zones' distribution of the Earth's land area due to increasing atmospheric greenhouse gas concentrations in three IPCC SRES emissions scenarios (A1B, A2 and B1). The Koeppen climate classification is applied to climate simulations of seven atmosphere-ocean general circulation models (AOGCMs) and their multi-model mean. The evaluation of the skill of the individual climate models compared to an observation-reanalysis-based climate classification provides a first order estimate of relevant model uncertainties and serves as assessment for the confidence in the scenario projections. Uncertainties related to differences in simulation pathways of the future projections are estimated by both, the multi-model ensemble spread of the climate change signals for a given scenario and differences between different scenarios. For the recent climate the individual models fail to capture the exact Koeppen climate types in about 24-39 % of the global land area excluding Antarctica due to temperature and precipitation biases, while the multi-model ensemble mean simulates the present day observation-reanalysis-based distribution of the climate types more accurately. For the end of the 21{sup st} century compared to the present day climate the patterns of change are similar across the three scenarios, while the magnitude of change is largest for the highest emission scenario. Moreover, the temporal development of the climate shifts from the end of the 20st century and during the 21{sup st} century show that changes of the multi-model ensemble mean for the A2 and B1 scenario are generally within the ensemble spread of the individual models for the A1B scenario, illustrating that for the given range of scenarios the model uncertainty is even larger than the spread given by the different GHG concentration pathways. The multi-model ensemble mean's projections show climate shifts to dryer climates in the subtropics

  19. Selecting representative climate models for climate change impact studies : An advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; ter Maat, Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  20. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach

    NARCIS (Netherlands)

    Lutz, Arthur F.; Maat, ter Herbert W.; Biemans, Hester; Shrestha, Arun B.; Wester, Philippus; Immerzeel, Walter W.

    2016-01-01

    Climate change impact studies depend on projections of future climate provided by climate models. The number of climate models is large and increasing, yet limitations in computational capacity make it necessary to compromise the number of climate models that can be included in a climate change impa

  1. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China

    Institute of Scientific and Technical Information of China (English)

    Jie Xue; JiaQiang Lei; DongWei Gui; JianPing Zhao; DongLei Mao; Jie Zhou

    2016-01-01

    The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958–2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden-tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can im-prove the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economic development.

  2. Plant community responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Kongstad, J.

    2012-07-01

    Climate change is expected to affect terrestrial ecosystems across the globe with increased atmospheric CO{sub 2} concentration, higher temperatures and changes in precipitation patterns. These environmental factors are drivers of many important ecosystem processes, and changes in ecosystem function are therefore expected in the future. The aim of this PhD-thesis was to examine the effects of climate change on aboveground plant growth, plant composition and plant phenology in Danish heathland ecosystems. Two sites were investigated in large-scale field experiments: 1) the CLIMAITE site, 'Brandbjerg' and 2) the INCREASE site at Mols. Field manipulations lasted years and included: Warming, summer drought and (CLIMAITE only) elevated CO{sub 2} concentrations. The treatments were applied individually and in all possible combinations. Further, at Brandbjerg, but outside the treatment plots, a study was performed on the effects nitrogen and phosphorus addition on phenology, chemistry and growth of the dominant grass Deschampsia flexuosa (Wavy Hairgrass). In general, the aboveground vegetation responded less than expected to changing climatic conditions; even though Calluna vulgaris (Heather) increased in biomass over the study period, the biomass was not affected by the manipulations, indicating that C. vulgaris, has a strong resistance to changes in climate. Also, the grass biomass (primarily D. flexuosa) was not affected and was relatively constant over the period. I argue that the resilience of D. flexuosa towards the climatic treatments came from the plants ability to let the tissue die back, and then quickly recover once conditions again became favourable. That gave the plant a high resilience to changes in climatic factors. Calluna vulgaris, on the other hand, showed a resistance to changes by constantly maintaining the growth during the whole season, probably because of its evergreen status. Together, the two different strategies made the heathland

  3. Projected Climate Change Impacts on Pennsylvania

    Science.gov (United States)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  4. Incorporating climate change into systematic conservation planning

    Science.gov (United States)

    Groves, Craig R.; Game, Edward T.; Anderson, Mark G.; Cross, Molly; Enquist, Carolyn; Ferdana, Zach; Girvetz, Evan; Gondor, Anne; Hall, Kimberly R.; Higgins, Jonathan; Marshall, Rob; Popper, Ken; Schill, Steve; Shafer, Sarah L.

    2012-01-01

    The principles of systematic conservation planning are now widely used by governments and non-government organizations alike to develop biodiversity conservation plans for countries, states, regions, and ecoregions. Many of the species and ecosystems these plans were designed to conserve are now being affected by climate change, and there is a critical need to incorporate new and complementary approaches into these plans that will aid species and ecosystems in adjusting to potential climate change impacts. We propose five approaches to climate change adaptation that can be integrated into existing or new biodiversity conservation plans: (1) conserving the geophysical stage, (2) protecting climatic refugia, (3) enhancing regional connectivity, (4) sustaining ecosystem process and function, and (5) capitalizing on opportunities emerging in response to climate change. We discuss both key assumptions behind each approach and the trade-offs involved in using the approach for conservation planning. We also summarize additional data beyond those typically used in systematic conservation plans required to implement these approaches. A major strength of these approaches is that they are largely robust to the uncertainty in how climate impacts may manifest in any given region.

  5. Urbanism, climate change and floods: Case of Tlemcen city

    Directory of Open Access Journals (Sweden)

    Hayat Adjim

    2018-03-01

    Full Text Available After a drought during the 1990s, Tlemcen has experienced heavy rainfall in recent years which caused several floods. They have become frequent and usually cause large damage. We then asked ourselves questions about the reasons for this deregulation of rainfall and floods. We have assumed that climate change has led to deregulation of precipitation and that the urbanization and morphology of the site are the causes of the floods. For this, we analyzed the rainfall data and study the configuration of the town of Tlemcen. We noticed then that Tlemcen town undergoes the climate changes effects per a diminution of the multi-annual mean of rainfall between 1974 and 2008, and a slight displacement of the rainfall from April to November after 2008. Finally, the principal reason of floods is the thoughtless urban sprawl on the water courses also favored by an unfavourable topography.

  6. Tropical deforestation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Moutinho, P.; Schwartzman, S. (eds.)

    2005-07-01

    This book represents the effort of a group of contributors that believes that finding the means to promote large-scale reduction of the greenhouse gas emissions produced by tropical deforestation and forest fires, within the parameters of the UNFCCC, is an urgent necessity, both in order to prevent dangerous interference in the climate system, and to achieve sustainable development in the tropics. Part 1 contains 3 chapters on the subject Tropical deforestation, fires and emissions: measurement and monitoring. Part 2 contains 6 chapters on the subject How to reduce deforestation emissions for carbon credit: Compensated Reduction. Part 3 contains 4 chapters on the subject Policy and legal frameworks for reducing deforestation emissions. Separate abstracts were prepared for the chapters in this book.

  7. Portfolio conservation of metapopulations under climate change.

    Science.gov (United States)

    Anderson, Sean C; Moore, Jonathan W; McClure, Michelle M; Dulvy, Nicholas K; Cooper, Andrew B

    2015-03-01

    Climate change is likely to lead to increasing population variability and extinction risk. Theoretically, greater population diversity should buffer against rising climate variability, and this theory is often invoked as a reason for greater conservation. However, this has rarely been quantified. Here we show how a portfolio approach to managing population diversity can inform metapopulation conservation priorities in a changing world. We develop a salmon metapopulation model in which productivity is driven by spatially distributed thermal tolerance and patterns of short- and long-term climate change. We then implement spatial conservation scenarios that control population carrying capacities and evaluate the metapopulation portfolios as a financial manager might: along axes of conservation risk and return. We show that preserving a diversity of thermal tolerances minimizes risk, given environmental stochasticity, and ensures persistence, given long-term environmental change. When the thermal tolerances of populations are unknown, doubling the number of populations conserved may nearly halve expected metapopulation variability. However, this reduction in variability can come at the expense of long-term persistence if climate change increasingly restricts available habitat, forcing ecological managers to balance society's desire for short-term stability and long-term viability. Our findings suggest the importance of conserving the processes that promote thermal-tolerance diversity, such as genetic diversity, habitat heterogeneity, and natural disturbance regimes, and demonstrate that diverse natural portfolios may be critical for metapopulation conservation in the face of increasing climate variability and change.

  8. Overview of different aspects of climate change effects on soils.

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  9. Overview of different aspects of climate change effects on soils

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  10. Can increased organic consumption mitigate climate changes?

    DEFF Research Database (Denmark)

    Heerwagen, Lennart Ravn; Andersen, Laura Mørch; Christensen, Tove

    2014-01-01

    correlation between increasing organic budget shares and decreasing meat budget shares is found. People include food-related behaviour such as the purchase of organic food and reduced meat consumption as ways to mitigate climate change. However, other behavioural modifications such as reduction of car usage...... and household heating are perceived as more important strategies. Research limitations/implications – Other food-related mitigation strategies could be investigated. The climate effect of different diets – and how to motivate consumers to pursue them – could be investigated. Individual as opposed to household...... the climate-friendliness of consumption using consumption of organic food as a case. The authors link stated concerns for climate changes with actual food-related behaviour....

  11. Climate Change Fuel Cell Program

    Energy Technology Data Exchange (ETDEWEB)

    Paul Belard

    2006-09-21

    Verizon is presently operating the largest Distributed Generation Fuel Cell project in the USA. Situated in Long Island, NY, the power plant is composed of seven (7) fuel cells operating in parallel with the Utility grid from the Long Island Power Authority (LIPA). Each fuel cell has an output of 200 kW, for a total of 1.4 mW generated from the on-site plant. The remaining power to meet the facility demand is purchased from LIPA. The fuel cell plant is utilized as a co-generation system. A by-product of the fuel cell electric generation process is high temperature water. The heat content of this water is recovered from the fuel cells and used to drive two absorption chillers in the summer and a steam generator in the winter. Cost savings from the operations of the fuel cells are forecasted to be in excess of $250,000 per year. Annual NOx emissions reductions are equivalent to removing 1020 motor vehicles from roadways. Further, approximately 5.45 million metric tons (5 millions tons) of CO2 per year will not be generated as a result of this clean power generation. The project was partially financed with grants from the New York State Energy R&D Authority (NYSERDA) and from Federal Government Departments of Defense and Energy.

  12. Farmers' perceptions of climate change and agricultural adaptation strategies in rural Sahel.

    Science.gov (United States)

    Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa

    2009-05-01

    Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate.

  13. Farmers' Perceptions of Climate Change and Agricultural Adaptation Strategies in Rural Sahel

    Science.gov (United States)

    Mertz, Ole; Mbow, Cheikh; Reenberg, Anette; Diouf, Awa

    2009-05-01

    Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind and occasional excess rainfall as the most destructive climate factors. Households attribute poor livestock health, reduced crop yields and a range of other problems to climate factors, especially wind. However, when questions on land use and livelihood change are not asked directly in a climate context, households and groups assign economic, political, and social rather than climate factors as the main reasons for change. It is concluded that the communities studied have a high awareness of climate issues, but climatic narratives are likely to influence responses when questions mention climate. Change in land use and livelihood strategies is driven by adaptation to a range of factors of which climate appears not to be the most important. Implications for policy-making on agricultural and economic development will be to focus on providing flexible options rather than specific solutions to uncertain climate.

  14. Using climate analogues for assessing climate change economic impacts in urban areas

    Energy Technology Data Exchange (ETDEWEB)

    Hallegatte, S. [Centre National de Recherche Meteorologique, Toulouse (France); Hourcade, J.C. [Centre International de Recherche sur l' Environnement et le Developpement, 45bis Av de la Belle Gabrielle, F-94736 Nogent-sur-Marne (France); Ambrosi, P. [Laboratoire des Sciences du Climat et de l' Environnement, Paris (France)

    2007-05-15

    This paper aims at proposing a way to get round the intrinsic deadlocks of the economic assessment of climate change impacts (absence of consistent baseline scenario and of credible description of adaptation behaviours under uncertainty). First, we use climate scenarios from two models of the PRUDENCE project (HadRM3H and ARPEGE) to search for cities whose present climates can be considered as reasonable analogues of the future climates of 17 European cities. These analogues meet rather strict criteria in terms of monthly mean temperature, total annual precipitations and monthly mean precipitations. Second, we use these analogues as a heuristic tool to understand the main features of the adaptation required by climate change. The availability of two analogues for each city provides a useful estimate of the impact of uncertainty on the required adaptation efforts. Third, we carry out a cost assessment for various adaptation strategies, taking into account the cost of possible ill-adaptations due to wrong anticipations in a context of large uncertainty (from sunk-costs to lock-in in suboptimal adaptation choices). We demonstrate the gap between an enumerative approach under perfect expectation and a calculation accounting for uncertainty and spillover effects on economic growth.

  15. Climate change impact on wave energy in the Persian Gulf

    Science.gov (United States)

    Kamranzad, Bahareh; Etemad-Shahidi, Amir; Chegini, Vahid; Yeganeh-Bakhtiary, Abbas

    2015-06-01

    Excessive usage of fossil fuels and high emission of greenhouse gases have increased the earth's temperature, and consequently have changed the patterns of natural phenomena such as wind speed, wave height, etc. Renewable energy resources are ideal alternatives to reduce the negative effects of increasing greenhouse gases emission and climate change. However, these energy sources are also sensitive to changing climate. In this study, the effect of climate change on wave energy in the Persian Gulf is investigated. For this purpose, future wind data obtained from CGCM3.1 model were downscaled using a hybrid approach and modification factors were computed based on local wind data (ECMWF) and applied to control and future CGCM3.1 wind data. Downscaled wind data was used to generate the wave characteristics in the future based on A2, B1, and A1B scenarios, while ECMWF wind field was used to generate the wave characteristics in the control period. The results of these two 30-yearly wave modelings using SWAN model showed that the average wave power changes slightly in the future. Assessment of wave power spatial distribution showed that the reduction of the average wave power is more in the middle parts of the Persian Gulf. Investigation of wave power distribution in two coastal stations (Boushehr and Assalouyeh ports) indicated that the annual wave energy will decrease in both stations while the wave power distribution for different intervals of significant wave height and peak period will also change in Assalouyeh according to all scenarios.

  16. Global climate change and international security.

    Energy Technology Data Exchange (ETDEWEB)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national and international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.

  17. Climate change, energy, sustainability and pavements

    CERN Document Server

    Gopalakrishnan, Kasthurirangan; Harvey, John

    2014-01-01

    Climate change, energy production and consumption, and the need to improve the sustainability of all aspects of human activity are key inter-related issues for which solutions must be found and implemented quickly and efficiently.  To be successfully implemented, solutions must recognize the rapidly changing socio-techno-political environment and multi-dimensional constraints presented by today's interconnected world.  As part of this global effort, considerations of climate change impacts, energy demands, and incorporation of sustainability concepts have increasing importance in the design,

  18. Climate change, water resources and child health.

    Science.gov (United States)

    Kistin, Elizabeth J; Fogarty, John; Pokrasso, Ryan Shaening; McCally, Michael; McCornick, Peter G

    2010-07-01

    Climate change is occurring and has tremendous consequences for children's health worldwide. This article describes how the rise in temperature, precipitation, droughts, floods, glacier melt and sea levels resulting from human-induced climate change is affecting the quantity, quality and flow of water resources worldwide and impacting child health through dangerous effects on water supply and sanitation, food production and human migration. It argues that paediatricians and healthcare professionals have a critical leadership role to play in motivating and sustaining efforts for policy change and programme implementation at the local, national and international level.

  19. Migration and adaptation to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tacoli, Cecilia

    2007-11-15

    Climate change is having an undeniable impact on many human systems and behaviours, including population mobility. This is hardly surprising: migration is an adaptive response to changes in people's circumstances. Yet environmental factors are not the whole story. Socio-economic, political and cultural factors are also closely linked to population movement, and heavily influence vulnerability to both direct and indirect impacts of climate change. Shifts in migration patterns are a strategy of adaptation to complex transformations, and recognising and accommodating this is key in policies for sustainable development and poverty reduction in the context of growing environmental stress.

  20. Climate Change, Human Rights, and Social Justice.

    Science.gov (United States)

    Levy, Barry S; Patz, Jonathan A

    2015-01-01

    The environmental and health consequences of climate change, which disproportionately affect low-income countries and poor people in high-income countries, profoundly affect human rights and social justice. Environmental consequences include increased temperature, excess precipitation in some areas and droughts in others, extreme weather events, and increased sea level. These consequences adversely affect agricultural production, access to safe water, and worker productivity, and, by inundating land or making land uninhabitable and uncultivatable, will force many people to become environmental refugees. Adverse health effects caused by climate change include heat-related disorders, vector-borne diseases, foodborne and waterborne diseases, respiratory and allergic disorders, malnutrition, collective violence, and mental health problems. These environmental and health consequences threaten civil and political rights and economic, social, and cultural rights, including rights to life, access to safe food and water, health, security, shelter, and culture. On a national or local level, those people who are most vulnerable to the adverse environmental and health consequences of climate change include poor people, members of minority groups, women, children, older people, people with chronic diseases and disabilities, those residing in areas with a high prevalence of climate-related diseases, and workers exposed to extreme heat or increased weather variability. On a global level, there is much inequity, with low-income countries, which produce the least greenhouse gases (GHGs), being more adversely affected by climate change than high-income countries, which produce substantially higher amounts of GHGs yet are less immediately affected. In addition, low-income countries have far less capability to adapt to climate change than high-income countries. Adaptation and mitigation measures to address climate change needed to protect human society must also be planned to protect