WorldWideScience

Sample records for clic drive beam

  1. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  2. Off-Axis Undulator Radiation for CLIC Drive Beam Diagnostics

    CERN Document Server

    Jeff, A; Welsch, CP

    2013-01-01

    The Compact LInear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. In this paper we propose the use of relatively inexpensive permanent-magnet undulators to generate off-axis visible Synchrotron Radiation from the CLIC Drive Beam. The field strength and period length of the undulator should be designed such that the on-axis undulator wavelength is in the ultra-violet. A smaller but still useable amount of visible light is then generated in a hollow cone. This light can be reflected out of the beam pipe by a ring-shaped mirror placed downstream and imaged on a camera. In this contribution, results of SRW and ZEMA...

  3. Status of the Stripline Beam Position Monitor developement for the CLIC Drive Beam

    CERN Document Server

    Benot-Morell, A; Wendt, M; Faus-Golfe, A; Nappa, J M; Vilalte, S; Smith, S

    2013-01-01

    In collaboration with SLAC, LAPP and IFIC, a first prototype of a stripline Beam Position Monitor (BPM) for the CLIC Drive Beam and its associated readout electronics has been successfully tested in the CLIC Test Facility linac (CTF3) at CERN. In addition, a modified prototype with downstream terminated striplines is under development to improve the suppression of unwanted RF signal interference. This paper presents the results of the beam tests, and the most relevant aspects for the modified stripline BPM design and its expected improvements.

  4. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  5. CLIC Main Linac Beam-Loading Compensation by Drive Beam Phase Modulation

    CERN Document Server

    Corsini, R; Syratchev, I V

    1999-01-01

    The CLIC final focus momentum acceptance of ± 0.5 % limits the bunch-to-bunch energy variation in the main beam to less than ± 0.1 %, since the estimated single-bunch contribution is ± 0.4 %. On the other hand, a relatively high beam-loading of the main accelerating structures (about 16 %) is unavoidable in order to optimize the RF-to-beam efficiency. Therefore, a compensation method is needed to reduce the resulting bunch-to-bunch energy spread of the main beam. Up to now, it has been planned to obtain the RF pulse shape needed for compensation by means of a charge ramp in the drive beam pulse. On the other hand, the use of constant-current drive beam pulses would make the design and operation of the drive beam injector considerably simpler. In this paper we present a possible solution adapted to the CLIC two-beam scheme with constant-current pulses, based on phase modulation of the drive beam bunches.

  6. Halo and tail simulations with applications to the CLIC drive beam

    CERN Document Server

    Fitterer, M; Adli, E; Burkhardt, H; Dalena, B; Rumolo, G; Schulte, D; Latina, A; Ahmed, I

    2010-01-01

    We report about generic halo and tail simulations and estimates. Previous studies weremainly focused on very high energies as relevant for the beam delivery systems of linear colliders. We have now studied, applied and extended these simulations to lower energies as relevant for the CLIC drive beam.

  7. Collective effects and experimental verification of the CLIC drive beam and decelerator

    OpenAIRE

    2014-01-01

    The Compact Linear Collider (CLIC) is a potential next-generation particle collider, in which electrons and positrons collide at a center-of-mass energy of up to 3 TeV. In order to reach a high accelerating gradient and reduce the length of the machine, CLIC uses a novel two-beam scheme. Here, the acceleration energy for the main beam is provided by energy extraction from a secondary electron drive beam, by the use of Power Extraction and Transfer Structures (PETS). This Ph.D. thesis descr...

  8. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  9. $2\\times250$ GeV CLIC $\\gamma\\gamma$ Collider Based on its Drive Beam FEL

    CERN Document Server

    Aksakal, Husnu

    2007-01-01

    CLIC is a linear $e^+e^-$ ($\\gamma\\gamma$) collider project which uses a drive beam to accelerate the main beam. The drive beam provides RF power for each corresponding unit of the main linac through energy extracting RF structures. CLIC has a wide range of center-of-mass energy options from 150 GeV to 3 TeV. The present paper contains optimization of Free Electron Laser (FEL) using one bunch of CLIC drive beam in order to provide polarized light amplification using appropriate wiggler and luminosity spectrum of $\\gamma\\gamma$ collider for $E_{cm}$=0.5 TeV. Then amplified laser can be converted to a polarized high-energy $\\gamma$ beam at the Conversion point (CP-prior to electron positron interaction point) in the process of Compton backscattering. At the CP a powerful laser pulse (FEL) focused to main linac electrons (positrons). Here this scheme described and it is show that CLIC drive beam parameters satisfy the requirement of FEL additionally essential undulator parameters has been defined. Achievable $\\g...

  10. A Gas-Jet Profile Monitor for the CLIC Drive Beam

    CERN Document Server

    Jeff, A; Lefevre, T; Tzoganis, V; Welsch, C P

    2013-01-01

    The Compact Linear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. Profile monitors using gas ionisation or fluorescence have been used at a number of accelerators. Typically, extra gas must be injected at the monitor and the rise in pressure spreads for some distance down the beam pipe. In contrast, a gas jet can be fired across the beam into a receiving chamber, with little gas escaping into the rest of the beam pipe. In addition, a gas jet shaped into a thin plane can be used like a screen on which the beam crosssectionis imaged. In this paper we present some arrangements for the generation of such a jet. In ...

  11. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server

    AUTHOR|(SzGeCERN)752526

    2015-01-01

    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  12. Studies of Cs3Sb cathodes for the CLIC drive beam photo injector option

    CERN Document Server

    Martini, Irene; Doebert, Steffen; Fedosseev, Valentine; Hessler, Christoph; Martyanov, Mikhail

    2013-01-01

    Within the CLIC (Compact Linear Collider) project, feasibility studies of a photo injector option for the drive beam as an alternative to its baseline design using a thermionic electron gun are on-going. This R&D program covers both the laser and the photocathode side. Whereas the available laser pulse energy in ultra-violet (UV) is currently limited by the optical defects in the 4thharmonics frequency conversion crystal induced by the0.14 ms long pulse trains, recent measurements of Cs3Sbphotocathodes sensitive to green light showed their potential to overcome this limitation. Moreover, using visible laser beams leads to better stability of produced electron bunches and one can take advantages of the availability of higher quality optics. The studied Cs3Sbphotocathodes have been produced in the CERN photo emission laboratory using the co-deposition technique and tested in a DC gun set-up. The analysis of data acquired during the cathode production process will be presented in this paper, as well as the r...

  13. Beam Position Monitoring at CLIC

    CERN Document Server

    Prochnow, J

    2003-01-01

    At the European Organisation for Nuclear Research CERN in Geneva, Switzerland the design of the Compact LInear Collider (CLIC) for high energy physics is studied. To achieve the envisaged high luminosity the quadrupole magnets and radio-frequency accelerating structures have to be actively aligned with micron precision and submicron resolution. This will be done using beam-based algorithms which rely on beam position information inside of quadrupoles and accelerating structures. After a general introduction to the CLIC study and the alignment algorithms, the concept of the interaction between beams and radio-frequency structures is given. In the next chapter beam measurements and simulations are described which were done to study the performance of cavity beam position monitors (BPM). A BPM design is presented which is compatible with the multi-bunch operation at CLIC and could be used to align the quadrupoles. The beam position inside the accelerating structures will be measured by using the structures thems...

  14. Requirements of CLIC Beam Loss Monitoring System

    CERN Document Server

    Sapinski, M; Holzer, EB; Jonker, M; Mallows, S; Otto, T; Welsch, C

    2010-01-01

    The Compact Linear Collider (CLIC) [1] is a proposed multi-TeV linear electron-positron collider being designed by a world-wide collaboration. It is based on a novel twobeam acceleration scheme in which two beams (drive and main beam) are placed in parallel to each other and energy is transferred from the drive beam to the main one. Beam losses on either of them can have catastrophic consequences for the machine, because of high intensity (drive beam) or high energy and small emittance (main beam). In the framework of machine protection, a Beam Loss Monitoring (BLM) system has to be put in place. This paper discusses the requirements for the beam loss system in terms of detector sensitivity, resolution, dynamic range and ability to distinguish losses originating from various sources. The two-beam module where the protection from beam losses is particularly challenging and important, is studied.

  15. Beam Loading Compensation in the Main Linac of CLIC

    OpenAIRE

    Schulte, D.; Syratchev, I.

    2000-01-01

    Compensation of multi-bunch beam loading is of great importance in the main linac of the Compact Linear Collider (CLIC). The bunch-to-bunch energy variation has to stay below 1 part in 1000. In CLIC, the RF power is obtained by decelerating a drive beam which is formed by merging a number of short bunch trains. A promising scheme for tackling beam loading in the main linac is based on varying the lengths of the bunch trains in the drive beam. The scheme and its expected performance are presen...

  16. Overview of the CLIC beam instrumentation

    CERN Document Server

    Lefèvre, T

    2011-01-01

    The performances of the Compact Linear Collider (CLIC) would rely on extremely tight tolerances on most beam parameters. The requirements for the CLIC beam instrumentation have been reviewed and studied in detail for the whole accelerator complex. In the context of the completion of the CLIC Conceptual Design Report, a first attempt was made to propose a technical solution for every CLIC instruments. Even if these choices were based on most recent technological achievements, whenever possible, alternatives solutions focusing on potential improvements on performance, reliability or cost minimization are proposed and will be studied in the future. This paper presents an overview of the CLIC beam instruments, gives a status of their already achieved performances and presents the future work activities.

  17. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  18. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  19. Update on beam loss monitoring at CTF3 for CLIC

    CERN Document Server

    Devlin, L J; Effinger, E; Holzer, E B; del Busto, E N; Mallows, S; Branger, E

    2013-01-01

    The primary role of the beam loss monitoring (BLM) system for the compact linear collider (CLIC) study is to work within the machine protection system. Due to the size of the CLIC facility, a BLM that covers large distances along the beam line is highly desirable, in particular for the CLIC drive beam decelerators, which would alternatively require some ~40,000 localised monitors. Therefore, an optical fibre BLM system is currently under investigation which can cover large sections of beam line at a time. A multimode fibre has been installed along the Test Beam Line at the CLIC test facility (CTF3) where the detection principle is based on the production of Cherenkov photons within the fibre resulting from beam loss and their subsequent transport along the fibre where they are then detected at the fibre ends using silicon photomultipliers. Several additional monitors including ACEMs, PEP-II and diamond detectors have also been installed. In this contribution the first results from the BLMs are presented, comp...

  20. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  1. Thermal evaluation of different DC multi-conductor cable cross-sections and installation patterns for the CLIC drive-beam quadrupoles

    CERN Document Server

    Maglio, D

    2007-01-01

    The main goal of this study is to determine the thermal behaviour of different dc multi-conductor cable cross-sections and installations patterns for the CLIC drive beam quadrupoles loaded with increasing values of current intensity. A simplified two dimensional model of the heat transfer problem was prepared with a commercial CFD software, STAR-CD 4.2. The heat flux generated by Joule effect in conductors was estimated taking into account the current value per conductor and the temperature dependence of the copper electrical resistance. In parallel, a geometrical simplification of the problem has been done in order to be able to apply theoretical formulas which have been implemented by Microsoft Excel. Obtained results have been compared with those got by the dedicated software, showing between them a good correspondence for two-conductor cables and confirming, for this case, the rules given in the in the French norm NF C15-100. In case of multiconductor cables, attention is to be paid to the temperature lev...

  2. Positron source investigation by using CLIC drive beam for Linac-LHC based e+p collider

    Science.gov (United States)

    Arιkan, Ertan; Aksakal, Hüsnü

    2012-08-01

    Three different methods which are alternately conventional, Compton backscattering and Undulator based methods employed for the production of positrons. The positrons to be used for e+p collisions in a Linac-LHC (Large Hadron Collider) based collider have been studied. The number of produced positrons as a function of drive beam energy and optimum target thickness has been determined. Three different targets have been used as a source investigation which are W75-Ir25, W75-Ta25, and W75-Re25 for three methods. Estimated number of the positrons has been performed with FLUKA simulation code. Then, these produced positrons are used for following Adiabatic matching device (AMD) and capture efficiency is determined. Then e+p collider luminosity corresponding to the methods mentioned above have been calculated by CAIN code.

  3. Impact of Dynamic Magnetic fields on the CLIC Main Beam

    CERN Document Server

    Snuverink, J; Jach, C; Jeanneret, JB; Schulte, D; Stulle, F

    2010-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

  4. Studies on the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Nousiainen, R; Österberg, K

    2010-01-01

    To fulfil the mechanical requirements set by the luminosity goals of the CLIC collider, currently under study, the 2-m two-beam modules, the shortest repetitive elements in the main linac, have to be controlled at micrometer level. At the same time these modules are exposed to variable high power dissipation while the accelerator is ramped up to nominal power as well as when the mode of CLIC operation is varied. This will result into inevitable temperature excursions driving mechanical distortions in and between different module components. A FEM model is essential to estimate and simulate the fundamental thermo-mechanical behaviour of the CLIC two-beam module to facilitate its design and development. In this paper, the fundamental thermal environments for the RF-components of the module are described. Also the thermal and structural results for the studied module configuration are presented showing the fundamental thermo-mechanical behaviour under the main CLIC collider operation conditions.

  5. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  6. CLIC TWO-BEAM MODULE FOR THE CLIC CONCEPTUAL DESIGN AND RELATED EXPERIMENTAL PROGRAM*

    CERN Document Server

    Samoshkin, A; Solodko, A; Riddone, G

    2011-01-01

    The CLIC (Compact LInear Collider) study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range. The two-beam linear accelerator being studied at CERN involves the design and integration of many different technical systems, tightly bound and influencing each other. For the construction of two linacs it has been decided to proceed with a modular design, and repetitive two-beam modules of a few types were defined. The modules consist of micron-level precision components operating under ultra-high vacuum as required by the beam physics. For the CLIC Conceptual Design Report, the development and system integration is mainly focused on the most complex module type containing the highest number of components and technical systems. For proving the proper functioning of the needed technical systems and confirming their feasibility it has been decided to build four prototype modules and test them without beam. In addition, three module...

  7. CLIC Two-Beam Module for the CLIC Conceptual Design and related experimental program

    CERN Document Server

    Samoshkin, A; Solodko, A; Riddone, G

    2011-01-01

    The CLIC (Compact LInear Collider) study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range. The two-beam linear accelerator being studied at CERN involves the design and integration of many different technical systems, tightly bound and influencing each other. For the construction of two linacs it has been decided to proceed with a modular design, and repetitive two-beam modules of a few types were defined. The modules consist of micron-level precision components operating under ultra-high vacuum as required by the beam physics. For the CLIC Conceptual Design Report, the development and system integration is mainly focused on the most complex module type containing the highest number of components and technical systems. For proving the proper functioning of the needed technical systems and confirming their feasibility it has been decided to build four prototype modules and test them without beam. In addition, three module...

  8. Power production experiments at the Test Beam Line in the CLIC Test Facility 3

    CERN Document Server

    Lillestøl, Reidar Lunde; Adli, Erik; Lundheim, Lars Magne

    2010-01-01

    CLIC is an international study of a future multi-TeV electron-positron linear collider, where the energy of a high-intensity drive beam is extracted and transferred to the main beam via Power Extraction and Transfer Structures (PETS) in the form of rf power. The study of power production is therefore essential for the feasibility of CLIC. Power production in PETS has been studied, and ex- periments have been performed in the decelerator Test Beam Line in the CLIC Test Facility 3. In particular, the correlation of the power production and the beam position inside the structure has been studied. It is shown that the total produced power is constant when the beam has a position offset through the PETS. In addition, the difference between the measured phases from each side is independent of the beam position, which allows for efficient combination of the fields. However, the ratio of the power on each side of the PETS unexpectedly shows a linear dependence on the horizontal offset, with a correlation value of 0.8...

  9. Intra-Beam scattering in the CLIC Damping Rings

    CERN Document Server

    Vivoli, A

    2010-01-01

    The CLIC 3 TeV nominal design requires very low emittance of the electron and positron beams to be reached in the damping rings. Due to low energy and to relatively high bunch charge and ultra-low emittance, Intra-Beam Scattering (IBS) effect is very strong and an accurate calculation is needed to check if the required emittance is effectively reached. For this reason it is being developed at CERN a new software for IBS and Radiation Effects (SIRE), which simulates the evolution of the beam particle distribution in the damping rings, taking into account radiation damping, IBS and quantum excitation. In this paper we present the results of our simulations performed with SIRE on a lattice of the CLIC damping rings.

  10. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  11. High power operation with beam of a CLIC pets equipped with on/off mechanism

    CERN Document Server

    Syratchev, I; Dubrovskiy, A; Skowronski, P; Ruber, R

    2012-01-01

    One of the feasibility issues of the CLIC two-beam scheme, is the possibility of rapidly switching off the rf power production in an individual Power Extraction and Transfer Structures (PETS) in case of breakdowns, either in the PETS or one of the main beam accelerating structures. The proposed solution is to use a variable external reflector connected to the PETS. When activated, this scheme allows us to gradually manipulate the rf power transfer to the accelerating structure and to reduce the rf power production in the PETS itself by a factor of 4. Recently the first operation of the Two Beam Test Stand (TBTS) PETS equipped with an ON/OFF mechanism was performed in CTF3. In this paper we will present the results of the PETS operation when powered by the drive beam up to high peak power levels (>100 MW) and compare them to expectations.

  12. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  13. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  14. CLIC CTF3 for open days

    CERN Multimedia

    CLIC

    2013-01-01

    CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  15. CLIC CTF3 for open days

    CERN Multimedia

    2013-01-01

    (subt french) CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  16. CLIC OVERVIEW

    CERN Document Server

    Tomas, R

    2009-01-01

    The CLIC study is exploring the scheme for an electronpositron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for lepton physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum considerably boosting the CLIC study.

  17. CLIC Overview

    CERN Document Server

    Tomás, R

    2010-01-01

    The CLIC study is exploring the scheme for an electronpositron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for lepton physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum considerably boosting the CLIC study.

  18. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  19. Acquisition system for the CLIC Module

    CERN Document Server

    Vilalte, Sebastien

    2011-01-01

    The status of R&D activities for CLIC module acquisition are discussed [1]. LAPP is involved in the design of the local CLIC module acquisition crate, described in the document Study of the CLIC Module Front-End Acquisition and Evaluation Electronics [2]. This acquisition system is a project based on a local crate, assigned to the CLIC module, including several mother boards. These motherboards are foreseen to hold mezzanines dedicated to the different subsystems. This system has to work in radiation environment. LAPP is involved in the development of Drive Beam stripline position monitors read-out, described in the document Drive Beam Stripline BPM Electronics and Acquisition [3]. LAPP also develops a generic acquisition mezzanine that allows to perform all-around acquisition and components tests for drive beam stripline BPM read-out.

  20. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  1. Recent Improvements to the Control of the CTF3 High-Current Drive Beam

    CERN Document Server

    Constance, B; Gamba, D; Skowronski, P K

    2013-01-01

    In order to demonstrate the feasibility of the CLIC multiTeV linear collider option, the drive beam complex at the CLIC Test Facility (CTF3) at CERN is providing highcurrent electron pulses for a number of related experiments. By means of a system of electron pulse compression and bunch frequency multiplication, a fully loaded, 120 MeV linac is used to generate 140 ns electron pulses of around 28 Amperes. Subsequent deceleration of this high-current drive beam demonstrates principles behind the CLIC acceleration scheme, and produces 12 GHz RF power for experimental purposes. As the facility has progressed toward routine operation, a number of studies aimed at improving the drive beam performance have been carried out. Additional feedbacks, automated steering programs, and improved control of optics and dispersion have contributed to a more stable, reproducible drive beam with consequent benefits for the experiments.

  2. Progress on modelling of the thermo-mechanical behavior of the CLIC two-beam module

    CERN Document Server

    Raatikainen, R; Niinikoski, T; Riddone, G

    2011-01-01

    under study, imposes micrometer mechanical stability of the 2-m long two-beam modules, the shortest repetitive elements of the main linacs. These modules will be exposed to variable high power dissipation during operation resulting in mechanical distortions in and between module components. The stability of the CLIC module will be tested in laboratory conditions at CERN in a full-scale prototype module. In this paper, the FEA model developed for CLIC prototype module is described. The thermal and structural results for the new module configuration are presented considering the thermo-mechanical behavior of the CLIC collider in its primary operation modes. These results will be compared to the laboratory measurements to be done during 2011 and 2012 with the full-scale prototype module. The experimental results will allow for better understanding of the module behaviour and they will be propagated back to the present thermo-mechanical model.

  3. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  4. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    CERN Document Server

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  5. Beam dynamics and wakefield suppression in interleaved damped and detuned structures for CLIC

    CERN Document Server

    D'Elia, A; Khan, V F; Jones, R M; Latina, A; Nesmiyan, I; Riddone, G

    2013-01-01

    Acceleration of multiple bunches of charged particles in the main linacs of the Compact Linear Collider (CLIC) with high accelerating fields provides two major challenges: firstly, to ensure the surface electromagnetic fields do not cause electrical breakdown and subsequent surface damage, and secondly, to ensure the beam-excited wakefields are sufficiently suppressed to avoid appreciable emittance dilution. In the baseline design for CLIC, heavy wakefield suppression is used (Q ~ 10) [1] and this ensures the beam quality is well-preserved [2]. Here we discuss an alternative means to suppress the wakefield which relies on strong detuning of the cell dipole frequencies, together with moderate damping, effected by manifolds which are slot-coupled to each accelerating cell. This damped and detuned wakefield suppression scheme is based on the methodology developed for the Japanese Linear Collider/Next Linear Collider (JLC/NLC) [3]. Here we track the multi-bunch beam down the complete collider, u...

  6. Technological challenges of CLIC

    CERN Document Server

    CERN. Geneva; Döbert, Steffen; Arnau-Izquierdo, G; Redaelli, Stefano; Mainaud, Helène; Lefèvre, Thibaut

    2006-01-01

    Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&D effort is presently developed by the CLIC international collaboration to demonstrate its feasibility by 2010, when the first physics results from LHC should be available to guide the choice of the centre-of-mass energy better suited to explore the futu...

  7. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  8. A closer look at the beam-beam processes at ILC and CLIC

    CERN Document Server

    Hartin, Anthony

    2012-01-01

    The strength of the electromagnetic fields in the bunch collision at a linear collider will have a significant effect, yielding large numbers of beamstrahlung photons and associated coherent pair production. These effects are limited in the proposed ILC beam parameters which limit the strength of the bunch field to $\\Upsilon_{\\text{ave}}=0.27$. The CLIC 3 Tev design by comparison has a $\\Upsilon_{\\text{ave}}=3.34$ yielding huge number of coherent pairs. In terms of the precision physics programs of these proposed colliders there is an imperative to investigate the effect of the strong bunch fields on higher order processes. From the exact wavefunctions used in the calculation of transition rates within the Furry interaction picture, and using appropriate simplifications, a multiplicative factor to the coupling constants was obtained. This indicates a significant variation to the transition rate near threshold energies. Further studies are in progress to calculate the exact effect on expected observables.

  9. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  10. X-band crab cavities for the CLIC beam delivery system

    CERN Document Server

    Burt, G; Dexter, A C; Abram, T; Dolgashev, V; Tantawi, S; Jones, R M

    2009-01-01

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC.

  11. Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications

    CERN Document Server

    Oeftiger, Adrian

    2011-01-01

    Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...

  12. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  13. CLIC: Status and Plan

    CERN Document Server

    Sailer, Andre

    2014-01-01

    The Compact Linear Collider (CLIC) is a high energy electron–positron col- lider with a maximal centre-of-mass energy of 3 TeV. In order to achieve high luminosity small bunches with high intensity are necessary. These lead to strong beam-beam forces, which create a challenging background environment. The accelerator concept and the detectors designed for CLIC are presented. Results from detector benchmark studies presented in the CLIC conceptual design report are summarised.

  14. The CLIC feasibility demonstration in CTF3

    CERN Document Server

    Skowroński, P K; Bettoni, S; Constance, B; Corsini, R; Divall Csatari, M; Dabrowski, A E; Doebert, S; Dubrovskiy, A; Kononenko, O; Olvegaard, M; Persson, T; Rabiller, A; Tecker, F; Farabolini, W; Lillestol, R L; Adli, E; Palaia, A; Ruber, R

    2011-01-01

    The objective of the CLIC Test Facility CTF3 is to demonstrate the feasibility issues of the CLIC two-beam technology: the efficient generation of a very high current drive beam, used as the power source to accelerate the main beam to multi-TeV energies with gradients of over 100 MeV/m, and stable drive beam deceleration. Results of successful beam acceleration with over 100 MeV/m energy gain are shown. Measurements of drive beam deceleration over a chain of Power Extraction Structures (PETS) are presented. The achieved RF power levels, the stability of the power production and of the deceleration are discussed. Finally, we give an overview of the remaining issues to be addressed by the end of 2011.

  15. Experience on Fabrication and Assembly of the First CLIC Two-Beam Module Prototype

    CERN Document Server

    Gudkov, D; Riddone, G; Rossi, F; Lebet, S

    2013-01-01

    The CLIC two-beam module prototypes are intended to prove the design of all technical systems under the different operation modes. Two validation programs are currently under way and they foresee the construction of four prototype modules for mechanical tests without beam and three prototype modules for tests with RF and beam. The program without beam will show the capability of the technical solutions proposed to fulfil the stringent requirements on radio-frequency, supporting, pre-alignment, stabilization, vacuum and cooling systems. The engineering design was performed with the use of CAD/CAE software. Dedicated mock-ups of RF structures, with all mechanical interfaces and chosen technical solutions, are used for the tests and therefore reliable results are expected. The components were fabricated by applying different technologies and methods for manufacturing and joining. The first full-size prototype module was assembled in 2012. This paper is focused on the production process including the comparison o...

  16. X-Band Crab Cavities for the CLIC Beam Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.K.; Dexter, A.C.; Abram, T.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Dolgashev, V.; Tantawi, S.; /SLAC; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.

    2011-11-22

    The CLIC machine incorporates a 20 mrad crossing angle at the IP to aid the extraction of spent beams. In order to recover the luminosity lost through the crossing angle a crab cavity is proposed to rotate the bunches prior to collision. The crab cavity is chosen to have the same frequency as the main linac (11.9942 GHz) as a compromise between size, phase stability requirements and beam loading. It is proposed to use a HE11 mode travelling wave structure as the CLIC crab cavity in order to minimise beam loading and mode separation. The position of the crab cavity close to the final focus enhances the effect of transverse wake-fields so effective wake-field damping is required. A damped detuned structure is proposed to suppress and de-cohere the wake-field hence reducing their effect. Design considerations for the CLIC crab cavity will be discussed as well as the proposed high power testing of these structures at SLAC. Design of a crab cavity for CLIC is underway at the Cockcroft Institute in collaboration with SLAC. This effort draws on a large degree of synergy with the ILC crab cavity developed at the Cockcroft Institute and other deflecting structure development at SLAC. A study of phase and amplitude variations in the cavity suggests that the tolerances are very tight and require a 'beyond state of the art' LLRF control system. A study of cavity geometry and its effect on the cavity fields has been performed using Microwave studio. This study has suggested that for our cavity an iris radius between 4-5 mm is optimum with an iris thickness of 2-3 mm based on group velocity and peak fields. A study of the cavity wakefields show that the single bunch wakes are unlikely to be a problem but the short bunch spacing may cause the multi-bunch wakefields to be an issue. This will require some of the modes to be damped strongly so that the wake is damped significantly before any following bunch arrives. Various methods of damping have been investigated and

  17. Stabilization and Fine Positioning to the Nanometre Level of the CLIC Main Beam Quadrupoles

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Lackner, F; Leuxe, R; Slaathaug, A

    2010-01-01

    The CLIC main beam quadrupoles need to be stabilized to 1.5 nm integrated R.M.S. displacement at 1 Hz. The choice was made to apply active stabilization with piezoelectric actuators in a rigid support with flexural guides. The advantages of this choice are the robustness against external forces and the possibility to make fast incremental nanometre positioning of the magnet with the same actuators. The study and feasibility demonstration is made in several steps from a single degree of freedom system (s.d.o.f.) with a small mass, a s.d.o.f. with a large mass, leading to the demonstration including the smallest (type 1) and largest (type 4) CLIC main beam quadrupoles. The paper discusses the choices of the position and orientation of the actuators and the tailored rigidities of the flexural hinges in the multi degree of freedom system, and the corresponding MIMO control system. The compatibility with the magnet support and micrometre alignment system is essential. The status of the study and performed tests wi...

  18. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  19. A CLIC Damping Wiggler Prototype at ANKA: Commissioning and Preparations for a Beam Dynamics Experimental Program

    CERN Document Server

    Bernhard, Axel; Casalbuoni, Sara; Ferracin, Paolo; Garcia Fajardo, Laura; Gerstl, Stefan; Gethmann, Julian; Grau, Andreas; Huttel, Erhard; Khrushchev, Sergey; Mezentsev, Nikolai; Müller, Anke-Susanne; Papaphilippou, Yannis; Saez de Jauregui, David; Schmickler, Hermann; Schoerling, Daniel; Shkaruba, Vitaliy; Smale, Nigel; Tsukanov, Valery; Zisopoulos, Panagiotis; Zolotarev, Konstantin

    2016-01-01

    In a collaboration between CERN, BINP and KIT a prototype of a superconducting damping wiggler for the CLIC damping rings has been installed at the ANKA synchrotron light source. On the one hand, the foreseen experimental program aims at validating the technical design of the wiggler, particularly the conduction cooling concept applied in its cryostat design, in a long-term study. On the other hand, the wiggler's influence on the beam dynamics particularly in the presence of collective effects is planned to be investigated. ANKA's low-alpha short-bunch operation mode will serve as a model system for these studies on collective effects. To simulate these effects and to make verifiable predictions an accurate model of the ANKA storage ring in low-alpha mode, including the insertion devices is under parallel development. This contribution reports on the first operational experience with the CLIC damping wiggler prototype in the ANKA storage ring and steps towards the planned advanced experimental program with th...

  20. CLIC main beam quadrupole active pre-alignment based on cam movers

    CERN Document Server

    Kemppinen, J; Leuxe, R; Mainaud Durand, H; Sandomierski, J; Sosin, M

    2012-01-01

    Compact Linear Collider (CLIC) is a study for a future 48 km long linear electron-positron collider in the multi TeV range. Its target luminosity can only be reached if the main beam quadrupoles (MB quads) are actively pre-aligned within 17 µm in sliding windows of 200 m with respect to a straight reference line. In addition to the positioning requirement, the pre-alignment system has to provide a rigid support for the nano-stabilization system to ensure that the first eigenfrequency is above 100 Hz. Re-adjustment based on cam movers was chosen for detailed studies to meet the stringent pre-alignment requirements. There are four different types of MB quads in CLIC. Their lengths and masses vary so that at least two types of cam movers have to be developed. The validation of the cams with less stringent space restrictions has proceeded to a test setup in 5 degrees of freedom (DOF). Prototypes of the more demanding, smaller cams have been manufactured and they are under tests in 1 DOF. This paper describes the...

  1. CLIC Status and Outlook

    CERN Document Server

    Stapnes, Stapnes

    2012-01-01

    The Compact Linear Collider study (CLIC) is in the process of completing a Conceptual Design Report (CDR) for a multi-TeV linear electron-positron collider. The CLICconcept is based on high gradient normal-conducting accelerating structures. The RF power for the acceleration of the colliding beams is produced by a novel two beam acceleration scheme, where power is extracted from a high current drive beam that runs parallel with the main linac. In order to establish the feasibility of this concept a number of key issues have been addressed. A short summary of the progress and status of the corresponding studies will be given, as well as an outline of the preparation and work towards an implementation plan by 2016.

  2. Impact of the New CLIC Beam Parameters on the Design of the Post-Collision Line and its Exit Window

    CERN Document Server

    Ferrari, A

    2008-01-01

    Following the recent modification of the CLIC beam parameters, we present an updated design of the post-collision line. As a result of the increase of the beamstrahlung photon cone size, the separation of the outgoing beams by the vertical magnetic chicane is more difficult, but still possible. The main changes in the post-collision line design include the implementation of a common dump for the wrong-sign charged particles of the coherent pairs and for the low-energy tails of the disrupted beam, as well as a significant reduction of the overall lattice length (allowing removal of the large refocusing quadrupoles). The thermal and mechanical stresses in the new exit window, 150 m downstream of the interaction point, were computed. We conclude that, despite the recent changes of the CLIC beam parameters and the necessary modifications of the post-collision line and its exit window, their performance is not significantly affected.

  3. Conceptual Design of the Drive Beam for a PWFA-LC

    Energy Technology Data Exchange (ETDEWEB)

    Pei, S.; Hogan, M.J.; Raubenheimer, T.O.; Seryi, A.; /SLAC; Braun, H.H.; Corsini, R.; Delahaye, J.P.; /DESY

    2009-08-03

    Plasma Wake-Field Acceleration (PWFA) has demonstrated acceleration gradients above 50 GeV/m. Simulations have shown drive/witness bunch configurations that yield small energy spreads in the accelerated witness bunch and high energy transfer efficiency from the drive bunch to the witness bunch, ranging from 30% for a Gaussian drive bunch to 95% for bunch with triangular shaped longitudinal profile. These results open the opportunity for a linear collider that could be compact, efficient and more cost effective than the present microwave technologies. A concept of a PWFA-based Linear Collider (PWFA-LC) has been developed by the PWFA collaboration. Here we will describe the conceptual design and optimization of the drive beam, which includes the drive beam linac and distribution system. We apply experience of the CLIC drive beam design and demonstration in the CLIC Test Facility (CTF3) to this study. We discuss parameter optimization of the drive beam linac structure and evaluate the drive linac efficiency in terms of the drive beam distribution scheme and the klystron/modulator requirements.

  4. Beam dynamics design of the Compact Linear Collider Drive Beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Hajari, Sh. Sanaye, E-mail: ssanayeh@cern.ch [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Shaker, H. [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland); Doebert, S. [European Organization for Nuclear Research (CERN), BE Department, CH-1211 Geneva 23 (Switzerland)

    2015-11-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The longitudinal and transverse beam dynamics of the Drive Beam injector has been studied in detail and optimized. The injector consists of a thermionic gun followed by a bunching system, some accelerating structures, and a magnetic chicane. The bunching system contains three sub-harmonic bunchers, a prebuncher, and a traveling wave buncher all embedded in a solenoidal magnetic field. The main characteristic of the Drive Beam injector is the phase coding process done by the sub-harmonic bunching system operating at half the acceleration frequency. This process is essential for the frequency multiplication of the Drive Beam. During the phase coding process the unwanted satellite bunches are produced that adversely affects the machine power efficiency. The main challenge is to reduce the population of particles in the satellite bunches in the presence of strong space-charge forces due to the high beam current. The simulation of the beam dynamics has been carried out with PARMELA with the goal of optimizing the injector performance compared to the existing model studied for the Conceptual Design Report (CDR). The emphasis of the optimization was on decreasing the satellite population, the beam loss in the magnetic chicane and limiting the beam emittance growth in transverse plane.

  5. CLIC accelerator modules under construction at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    The Compact LInear Collider (CLIC) study is dedicated to the design of an electron-positron (e- e+) linear accelerator, colliding particle beams at the energy of 3 TeV. The CLIC required luminosity can be reached with powerful particle beams (14 MW each) colliding with extremely small dimensions and high beam stability at the interaction point. The accelerated particle beams must have dimensions of 45 nm in the horizontal plane and 1 nm in the vertical plane. CLIC relies upon a novel two-beam acceleration concept in which the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, called Drive Beam (DB), and transferred to a parallel high energy accelerating particle beam, called Main Beam (MB). The extraction and transfer of the RF power is achieved by the Power Extraction and Transfer Structures (PETS) and the particle beam acceleration is achieved with high precision RF-Accelerating Structures (AS), operating at 11.9942 GHz with an accelerating gradient of 100 MV/m, whi...

  6. Instrumentation for Longitudinal Beam Gymnastics in FEL's and at the CLIC Test Facility 3

    CERN Document Server

    Lefèvre, T; Bravin, E; Burger, S; Corsini, R; Döbert, S; Soby, L; Tecker, F A; Urschutz, P; Welsch, C P; Alesini, D; Biscari, C; Buonomo, B; Coiro, O; Ghigo, A; Marcellini, F; Preger, B; Dabrowski, A; Velasco, M; Craievich, P; Ferianis, M; Veronese, M; Ferrari, A

    2008-01-01

    Built at CERN by an international collaboration, the CLIC Test Facility 3 (CTF3) aims at demonstrating the feasibility of a high luminosity 3 TeV e+-e- collider by the year 2010. One of the main issues to be demonstrated is the generation of a high average current (30 A) high frequency (12 GHz) bunched beam by means of RF manipulation. At the same time, Free Electron Lasers (FEL) are developed in several places all over the world with the aim of providing high brilliance photon sources. These machines rely on the production of high peak current electron bunches. The required performances put high demands on the diagnostic equipment and innovative longitudinal monitors have been developed during the past years. This paper gives an overview of the longitudinal instrumentation developed at ELETTRA and CTF3, where a special effort was made in order to implement at the same time non-intercepting devices for online monitoring, and destructive diagnostics which have the advantage of providing more detailed informati...

  7. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  8. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  9. Beam instability induced by rf deflectors in the combiner ring of the CLIC test facility and mitigation by damped deflecting structures

    CERN Document Server

    Alesini, D; Biscari, C; Ghigo, A; Corsini, R

    2011-01-01

    In the CTF3 (CLIC test facility 3) run of November 2007, a vertical beam instability has been found in the combiner ring during operation. After a careful analysis, the source of the instability has been identified in the vertical deflecting modes trapped in the rf deflectors and excited by the beam passage. A dedicated tracking code that includes the induced transverse wakefield and the multibunch multipassage effects has been written and the results of the beam dynamics analysis are presented in the paper. The mechanism of the instability was similar to the beam breakup in a linear accelerator or in an energy recovery linac. The results of the code allowed identifying the main key parameters driving such instability and allowed finding the main knobs to mitigate it. To completely suppress such beam instability, two new rf deflectors have been designed, constructed, and installed in the ring. In the new structures the frequency separation between the vertical and horizontal deflecting modes has been increase...

  10. Emittance optimisation in the Drive Beam Recombination Complex at CTF3

    CERN Document Server

    Gamba, D

    2014-01-01

    According to the Conceptual Design Report, the power to accelerate the main colliding beams of CLIC is taken from parallel high intensity (100 A), low energy (2.37 GeV) beams. These beams are generated by long trains, accelerated by conventional klystrons and then time-compressed in the so called Drive-Beam Recombination Complex (DBRC). A scaled version of the DBRC has been built at the CLIC Test Facility (CTF3) at CERN in order to prove its principle and study any arising feasibility issues. One of the main constraints is the emittance control during the recombination process. This work presents an overview of the studies ongoing at CTF3, keeping in view possible improvements of the nominal CLIC design. In particular, a generic feedback algorithm to solve (quasi-)linear systems has been implemented and used in order to optimize the process by tuning the energy of the beam and steer the orbits in the different lines, as well matching the design dispersion. Current results and possible room for further optimiz...

  11. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  12. A Multi-TeV Linear Collider Based on CLIC Technology CLIC Conceptual Design Report

    CERN Document Server

    Burrows, P; Draper, M; Garvey, T; Lebrun, P; Peach, K; Phinney, N; Schmickler, H; Schulte, D; Toge, N

    2012-01-01

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from ...

  13. Academic Training - Technological challenges of CLIC

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15 and 16 June 11:00-12:00 - Auditorium, bldg 500 Technological challenges of CLIC R. Corsini, S. Doebert, S. Redaelli, T.Lefevre, CERN-AB and G. Arnau Izquierdo, H. Mainaud, CERN-TS Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&...

  14. Clic ring to main Linac

    CERN Document Server

    Stulle, F; Snuverink, J; Latina, A; Molloy, S

    2010-01-01

    The low emittance transport had been identified as one of the feasibility issues for CLIC. We discuss beam dynamics challenges occurring in the beam lines connecting the damping rings and the main linac. And we outline how these motivate design choices for the general RTML layout as well as its integration into the overall CLIC layout. Constraints originating from longitudinal dynamics and stabilization requirements of beam energy and phase at the main linac entrance are emphasized.

  15. CLIC Muon Sweeper Design

    CERN Document Server

    Aloev, A; Gatignon, L; Modena, M; Pilicer, B; Tapan, I

    2016-01-01

    There are several background sources which may affect the analysis of data and detector performans at the CLIC project. One of the important background source is halo muons, which are generated along the beam delivery system (BDS), for the detector performance. In order to reduce muon background, magnetized muon sweepers have been used as a shielding material that is already described in a previous study for CLIC [1]. The realistic muon sweeper has been designed with OPERA. The design parameters of muon sweeper have also been used to estimate muon background reduction with BDSIM Monte Carlo simulation code [2, 3].

  16. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  17. The CLIC Detector Concept

    CERN Document Server

    Pitters, Florian Michael

    2016-01-01

    CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.

  18. The 30 GHz transfer structure for the CLIC study

    CERN Document Server

    Carron, G; Thorndahl, L

    1998-01-01

    In the so-called "Two-Beam Acceleration Scheme" the energy of a drive beam is converted to rf power by means of a "Transfer Structure", which plays the role of power source. In the Transfer Structure the bunched drive beam is decelerated by the electromagnetic field which it induces and builds up by the coherent interaction of successive bunches with the chosen longitudinal mode. The CLIC Transfer Structure is original in that it operates at 30 GHz and uses teeth-like corrugations to slow down the hybrid TM mode to make it synchronous with the drive beam. The beam energy is transformed into rf power, which travels along the structure and is collected by the output couplers. The 30 GHz rf power is then transported by means of two waveguides to two main linac disk-loaded accelerating structures. This report describes the CLIC Transfer Structure design, 3-D computer simulations, model construction and measure-ments as well as the prototype construction and testing with the low energy beam in the CLIC Test Facili...

  19. Klystron Modulators for the 3 TeV CLIC Scheme An Overview

    CERN Document Server

    Pearce, P

    2001-01-01

    The CLIC (Compact Linear Collider) design is based on the Two-Beam technology being developed at CERN. The Drive Beam accelerator will have about 200 multi-beam klystron-modulator (MBK-M) RF power sources for each drive beam linac. These multi-beam klystrons (MBKs) should provide up to 50 MW peak power at 937 MHz, with a 100 ms pulse width and operating at 100 Hz repetition frequency. The CLIC drive beam injector will also use a number of these same MBK-Ms operating at slightly lower power levels. A 0.5 MW peak power, 468 MHz klystron with a bandwidth of around 150 MHz will be required for the sub-harmonic buncher in each drive beam injector chain as well. The Main Beams injector complex is required to deliver e+ and e- beams at 9 GeV via the transfer lines to the CLIC Main Beam accelerator. The present injector complex design uses a series of linacs to accelerate the electron and positron beams coming from RF guns working at 1.5 GHz up to an energy of 1.98 GeV before they are put into damping rings. Each of ...

  20. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  1. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  2. The PHIN photoinjector for the CTF3 Drive beam

    CERN Document Server

    Losito, R; Braun, H; Champault, N; Chevallay, E; Divall, M; Fedosseev, V; Hirst, G; Kumar, A; Kurdi, G; Martin, W; Masi, A; Mercier, B; Musgrave, I; Prevost, C; Ross, I; Roux, R; Springate, E; Suberlucq, Guy

    2006-01-01

    A new photoinjector for the CTF3 drive beam has been designed and is now being constructed by a collaboration among LAL, CCLRC and CERN within PHIN, the second Joint Research Activity of CARE. The photoinjector will provide a train of 2332 pulses at 1.5 GHz with a complex timing structure (sub-trains of 212 pulses spaced from one another by 333 ps or 999 ps) to allow the frequency multiplication scheme, which is one of the features of CLIC, to be tested in CTF3. Each pulse of 2.33 nC will be emitted by a Cs2Te photocathode deposited by a co-evaporation process to allow high quantum efficiency in operation (>3% for a minimum of 40 h). The 3 GHz, 2 1/2 cell RF gun has a 2 port coupler to minimize emittance growth due to asymmetric fields, racetrack profile of the irises and two solenoids to keep the emittance at the output below 20 p.mm.mrad. The laser has to survive very high average powers both within the pulse train (15 kW) and overall (200 W before pulse slicing). Challenging targets are also for amplitude ...

  3. CLICdp Overview. Overview of physics potential at CLIC

    Directory of Open Access Journals (Sweden)

    Levy Aharon

    2015-01-01

    Full Text Available CLICdp, the CLIC detector and physics study, is an international collaboration presently composed of 23 institutions. The collaboration is addressing detector and physics issues for the future Compact Linear Collider (CLIC, a high-energy electron-positron accelerator which is one of the options for the next collider to be built at CERN. Precision physics under challenging beam and background conditions is the key theme for the CLIC detector studies. This leads to a number of cutting-edge R&D activities within CLICdp. The talk includes a brief introduction to CLIC, accelerator and detectors, hardware R&D as well as physics studies at CLIC.

  4. Successful start for new CLIC test facility

    CERN Multimedia

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  5. CLIC Brochure

    CERN Multimedia

    De Melis, Cinzia

    2015-01-01

    After the discovery of the Higgs boson and with upgrades to higher energy and luminosity, the LHC is mapping the route of particle physics into the future. The next step in this journey of discovery could be a linear electron-positron collider, which would complement the LHC and allow high precision measurements of the Higgs boson, the top quark and electroweak processes in addition to possible new physics beyond the Standard Model. The Compact Linear Collider is under development by two worldwide collaborations, pushing the limits of particle acceleration and detection. Technological R&D, physics simulations and engineering studies must all come together to make CLIC a reality.

  6. Development and testing of a double length pets for the CLIC experimental area

    Science.gov (United States)

    Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.

    2014-05-01

    CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.

  7. A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles

    CERN Document Server

    Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C

    2010-01-01

    In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...

  8. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  9. Power threshold for neutral beam current drive

    International Nuclear Information System (INIS)

    For fully noninductive current drive in tokamaks using neutral beams, there is a power and density threshold condition, setting a minimum value for P3/2/n2. If this condition is not met, stationary state cannot occur, and a tokamak discharge will collapse. This is a consequence of the coupling between current and electron temperature, or between current drive efficiency and energy confinement time. 4 figs

  10. LHC and CLIC LLRF final reports

    CERN Document Server

    Dexter, A; Woolley, B; Ambattu, P; Tahir, I; Syratchev, Igor; Wuensch, Walter

    2013-01-01

    Crab cavities rotate bunches from opposing beams to achieve effective head-on collision in CLIC or collisions at an adjustable angle in LHC. Without crab cavities 90% of achievable luminosity at CLIC would be lost. In the LHC, the crab cavities allow the same or larger integrated luminosity while reducing significantly the requested dynamic range of physics detectors. The focus for CLIC is accurate phase synchronisation of the cavities, adequate damping of wakefields and modest amplitude stability. For the LHC, the main LLRF issues are related to imperfections: beam offsets in cavities, RF noise, measurement noise in feedback loops, failure modes and mitigations. This report develops issues associated with synchronising the CLIC cavities. It defines an RF system and experiments to validate the approach. It reports on the development of hardware for measuring the phase performance of the RF distributions system and cavities. For the LHC, the hardware being very close to the existing LLRF, the report focuses on...

  11. First phase of CLIC R&D complete

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Let’s turn back the clocks to 2002: the LHC is still under construction, the wrap-up of the LEP physics programme is still in recent memory and the future of electron-positron accelerators at CERN is ambiguous. It was then that CLIC set out to prove the feasibility of their novel accelerator design in the CTF3 test facility. Though once a tall order for the collaboration, the recently released CLIC Conceptual Design Report has proven many of the major design elements… bringing to an end the first phase of CLIC R&D and pointing toward detailed performance optimisation studies in the next phase.   Streak camera images of the final beam, illustrating the combination of beams in the Combiner Ring. Over a decade ago, the CTF3 team set up shop in the vacated LIL injector site, once home to the weathered machine that delivered electrons and positrons to LEP. Rebuilding and upgrading the machine piece by piece, the CTF3 team converted this mA linac into a high-current drive b...

  12. Development of an X-Band Dielectric-Based Wakefield Power Extractor for Potential CLIC Applications

    CERN Document Server

    Jing, C -J; Kanareykin, A; Schoessow, P; Conde, M E; Gai, W; Power, J G; Syratchev, I

    2011-01-01

    In the past decade, tremendous efforts have been put into the development of the CLIC Power Extraction and Transfer Structure (PETS), and significant progress has been made. However, one concern remains the manufacturing cost of the PETS, particularly considering the quantities needed for a TeV machine. A dielectric-based wakefield power extractor in principle is much cheaper to build. A low surface electric field to gradient ratio is another big advantage of the dielectric-loaded accelerating/decelerating structure. We are currently investigating the possibility of using a cost-effective dielectric-based wakefield power extractor as an alternative to the CLIC PETS. We designed a 12 GHz dielectric-based power extractor which has a similar performance to CLIC PETS with parameters 23 mm beam channel, 240 ns pulse duration, 135 MW output per structure using the CLIC drive beam. In order to study potential rf breakdown issues, as a first step we are building a 11.424 GHz dielectric-based power extractor scaled fr...

  13. Achievements and Future Plans of CLIC Test Facilities

    CERN Document Server

    Braun, Hans Heinrich

    2001-01-01

    CTF2 was originally designed to demonstrate the feasibility of two-beam acceleration with high current drive beams and a string of 30 GHz CLIC accelerating structure prototypes (CAS). This goal was achieved in 1999 and the facility has since been modified to focus on high gradient testing of CAS's and 30 GHz single cell cavities (SCC). With these modifications, it is now possible to provide 30 GHz RF pulses of more than 150 MW and an adjustable pulselength from 3 to 15 ns. While the SCC results are promising, the testing of CAS's revealed problems of RF breakdown and related surface damage. As a consequence, a new R&D program has been launched to advance the understanding of RF breakdown processes, to improve surface properties, investigate new materials and to optimise the structure geometries of the CAS's. In parallel the construction of a new facility named CTF3 has started. CTF3 will mainly serve two purposes. The first is the demonstration of the CLIC drive beam generation scheme. CTF3 will acceler-a...

  14. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  15. CLIC PHYSICS OVERVIEW

    CERN Document Server

    Bozovic-Jelisavcic, Ivanka

    2016-01-01

    In this paper, based on the invited talk at the 17th Lomonosov Conference of Elementary Particle Physics, the physics program at the future Compact Linear Collider (CLIC) will be reviewed, with particular emphasis on the Higgs physics studies. It will be demonstrated, on the basis of detailed physics and detector studies carried out at CLIC, that the CLIC is indeed a precision tool for studies both in the Higgs sector and beyond the Standard Model.

  16. CLIC MDI Overview

    OpenAIRE

    Gatignon, Lau

    2012-01-01

    This paper gives an introduction to the layout of the CLIC Machine Detector Interface as it has been defined for the CLIC Conceptual Design Report. We concentrate on the specific case of the CLIC_SiD detector, although the push-pull concept for two detectors has been included in the design. Some recent work and developments are described as well. However, for the details we refer to the detailed technical talks at this conference.

  17. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  18. New clic-g structure design

    CERN Document Server

    AUTHOR|(CDS)2082335

    2016-01-01

    The baseline design of the Compact Linear Collider main linac accelerating structure is called ‘CLIC-G’. It is described in the CLIC Conceptual Design Report (CDR) [1]. As shown in Fig. 1, a regular cell of the structure has four waveguides to damp unwanted high-order-modes (HOMs). These waveguides are dimensioned to cut off the fundamental working frequency in order to prevent the degradation of the fundamental mode Q-factor. The cell geometry and HOM damping loads had been extensively optimized in order to maximize the RF-to-beam efficiency, to minimize the cost, and to meet the beam dynamics and the high gradient RF constraints [2

  19. Light-flavor squark reconstruction at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)548062; Weuste, Lars

    2015-01-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light- flavored right-handed squark at a 3 TeV e+e collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two- photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  20. Preparing for CLIC tests

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The Canon 5 undergoes first brazing for preparation in the CLIC study at the CLIC Test Facility 2 (CTF2). This will test injection for a proposed linear collider that will further explore discoveries made at the LHC. Electric fields in the canon will boost electrons into the acceleration fields of the collider.

  1. 8th CLIC/CTF3 Collaboration Meeting

    CERN Document Server

    2003-01-01

    The eighth CTF3 collaboration meeting was held at CERN on 30th September and 1st October 2003. All collaborating institutes participated: LNF (Frascati), LAL (Orsay), RAL (Oxford), SLAC (Stanford) and Uppsala University. This year a new collaboration partner (North Western University Illinois) participated for the first time. In addition many CERN groups made important contributions. Important results from operation of the Preliminary phase - the bunch combination by a factor of 4 and 5 - were reported, an important proof of principle for the CLIC Drive Beam scheme. A highlight of the commissioning of the Initial phase was the successful operation of the accelerating structures with 100 % beam loading with nominal beam parameters. Impressive progress was reported on all activities. The design and layout studies are far advanced and very active hardware design and prototyping is going on. Series production of many components has already started. The major milestones for 2004 are the installation and commission...

  2. Summary of the BDS and MDI CLIC08 Working Group

    CERN Document Server

    Tomás, R; Ahmed, I; Ambatu, PK; Angal-Kalinin, D; Barlow, R; Baud, J P; Bolzon, B; Braun, H; Burkhardt, H; Burt, GC; Corsini, R; Dalena, B; Dexter, AC; Dolgashev, V; Elsener, K; Fernandez Hernando, JL; Gaillard, G; Geffroy, N; Jackson, F; Jeremie, A; Jones, RM; McIntosh, P; Moffeit, K; Peltier, F; Resta-López, J; Rumolo, G; Schulte, D; Seryi, A; Toader, A; Zimmermann, F

    2008-01-01

    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis.

  3. The CLIC Post-Collision Line

    CERN Document Server

    Gschwendtner, E; Elsener, K; Sailer, A; Uythoven, J; Appleby, R B; Salt, M; Ferrari, A; Ziemann, V

    2010-01-01

    The 1.5 TeV CLIC beams, with a total power of 14 MW per beam, are disrupted at the interaction point due to the very strong beam-beam effect. As a result, some 3.5 MW reach the main dump in form of beamstrahlung photons. About 0.5 MW of e+e- pairs with a very broad energy spectrum need to be disposed of along the post-collision line. The conceptual design of this beam line will be presented. Emphasis will be on the optimization studies of the CLIC post-collision line design with respect to the energy deposition in windows, dumps and absorbers, on the design of the luminosity monitoring for a fast feedback to the beam steering and on the background conditions for the luminosity monitoring equipment.

  4. Optimal Power System and Grid Interface Design Considerations for the CLICs Klystron Modulators

    CERN Document Server

    Marija, Jankovic; Jon, Clare; Pat, Wheeler; Davide, Aguglia

    2015-01-01

    The Compact Linear Collider (CLIC) is an electron-positron collider under study at CERN with the aim to explore the next generation of high precision/high energy particles physics. The CLIC’s drive beams will be accelerated by approximately 1300 klystrons, requiring highly efficient and controllable solid state capacitor discharge modulators. Capacitor charger specifications include the requirement to mask the pulsed effect of the load from the utility grid, ensure maximum power quality, control the derived DC voltage precisely (to maximize accuracy for the modulators being implemented), and achieve high efficiency and operability of the overall power system. This paper presents the work carried out on the power system interface for the CLIC facility. In particular it discusses the challenges on the utility interface and analysis of the grid interface converters with regards to required functionality, efficiency, and control methodologies.

  5. CLIC brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2012-01-01

    The world's biggest and most powerful accelerator, the LHC, is mapping the route of particle physics for the future. The next step, to complement the LHC in exploring this new region, is most likely to be a linear electron-positron collider. The Compact Linear Collider (CLIC) is a novel approach to such a collider. It is currently under development by the CLIC collaboration, which is hosted at CERN.

  6. Multibunch Emittance Preservation in CLIC

    CERN Document Server

    Guignard, Gilbert

    1996-01-01

    In high-frequency linacs, where the wakefields are strong, the stability of a train of bunches is critical. The beam break-up due to long range wakefields induces a decoherence of the bunch oscillations and a consequent blow-up of the effective betatron emittances of the whole train. Since the Compact Linear Collider (CLIC) study now includes several bunches per pulse, it is important to analyse numerically and theoretically this emittance blow-up. possibilities of controlling the beam break-up without upsetting the single bunch stability have been considered: first a multibunch generalization of the BNS damping principle, secondly an attenuation of the long-range fields, and thirdly an increase of the focusing in order to overconstrain the beam. Simulation codes have been written for both checking the theoretical predictions and investigating the requirements associated with a possible application to the main linac. Animated graphics make it possible to get a didactic display of the multibunch instability.

  7. Occupancy in the CLIC ILD Time Projection Chamber using Pixelised Readout

    CERN Document Server

    Killenberg, Martin

    2013-01-01

    The occupancy in the CLIC ILD TPC caused by the beam induced background from gamma gamma -> hadrons, e+e- pairs and beam halo muons is very high for conventional pad readout. We show that the occupancy for a pixelised TPC readout is moderate and might be a viable solution to operate a TPC at CLIC.

  8. Luminosity Upgrade of CLIC LHC ep/gp Collider

    CERN Document Server

    Aksakal, H; Nergiz, Z; Schulte, D; Zimmermann, F

    2007-01-01

    An energy frontier or QCD Explorer ep and collider can be realized by colliding high-energy photons generated by Compton backscattered off a CLIC electron beam, at either 75 GeV or 1.5 TeV, with protons or ions stored in the LHC. In this study we discuss a performance optimization of this type of collider by tailoring the parameters of both CLIC and LHC. An estimate of the ultimately achievable luminosity is given.

  9. Monte Carlo Simulations of Beam Losses in the Test Beam Line of CTF3

    CERN Document Server

    Nebot Del Busto, E; Branger, E; Holzer, E B; Doebert, S; Lillestol, R L; Welsch, C P

    2013-01-01

    The Test Beam Line (TBL) of the CLIC Test Facility 3 (CTF3) aims to validate the drive beam deceleration concept of CLIC, in which the RF power requested to boost particles to multi-TeV energies is obtained via deceleration of a high current and low energy drive beam (DB). Despite a TBL beam energy (150-80 MeV) significantly lower than the minimum nominal energy of the CLIC DB (250 MeV), the pulse time structure of the TBL provides the opportunity to measure beam losses with CLIC-like DB timing conditions. In this contribution, a simulation study on the detection of beam losses along the TBL for the commissioning of the recently installed beam loss monitoring system is presented. The most likely loss locations during stable beam conditions are studied by considering the beam envelope defined by the FODO lattice as well as the emittance growth due to the deceleration process. Moreover, the optimization of potential detector locations is discussed. Several factors are considered, namely: the distance to the bea...

  10. Submicron multi-bunch BPM for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; /Fermilab

    2010-08-01

    A common-mode free cavity BPM is currently under development at Fermilab within the ILC-CLIC collaboration. This monitor will be operated in a CLIC Main Linac multi-bunch regime, and needs to provide both, high spatial and time resolution. We present the design concept, numerical analysis, investigation on tolerances and error effects, as well as simulations on the signal response applying a multi-bunch stimulus. The proposed CERN linear collider (CLIC) requires a very precise measurement of beam trajectory to preserve the low emittance when transporting the beam through the Main Linac. An energy chirp within the bunch train will be applied to measure and minimize the dispersion effects, which require high resolution (in both, time and space) beam position monitors (BPM) along the beam-line. We propose a low-Q waveguide loaded TM{sub 110} dipole mode cavity as BPM, which is complemented by a TM{sub 010} monopole mode resonator of same resonant frequency for reference signal purposes. The design is based on a well known TM{sub 110} selective mode coupling idea.

  11. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  12. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2016-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e- Compact Linear Collider (CLIC). A single point resolution of 3μm for the vertex detector and 7μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2 % X0 per layer in the ver- tex detector and 1-2%X0 in the tracker. A fast time slicing of 10ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25x25μm2 and 55x55μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50μm-500μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  13. The CLIC Vertex Detector

    Science.gov (United States)

    Dannheim, D.

    2015-03-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a measurement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → Wb will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit timing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin planar or active HV-CMOS sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. This contribution reviews the requirements and design optimisation for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensors, readout and detector integration.

  14. A Luminosity Calorimeter for CLIC

    CERN Document Server

    Abramowicz, H; Kananov, S; Levy, A; Sadeh, I

    2009-01-01

    For the relative precision of the luminosity measurement at CLIC, a preliminary target value of 1% is being assumed. This may be accomplished by constructing a finely granulated calorimeter, which will measure Bhabha scattering at small angles. In order to achieve the design goal, the geometrical parameters of the calorimeter need to be defined. Several factors influence the design of the calorimeter; chief among these is the need to minimize the error on the luminosity measurement while avoiding the intense beam background at small angles. In this study the geometrical parameters are optimized for the best performance of the calorimeter. In addition, the suppression of physics background to Bhabha scattering is investigated and a set of selection cuts is introduced.

  15. Design of Phase Feed Forward System in CTF3 and Performance of Fast Beam Phase Monitors

    CERN Document Server

    Skowronski, P K; Ghigo, A; Marcellini, F; Burrows, PN; Christian, GB; Perry, C; Gerbershagen, A; Roberts, J; Ikarios, E

    2013-01-01

    The CLIC two beam acceleration technology requires a drive beam phase stability better than 0.3 deg rms at 12 GHz, corresponding to a timing stability below 50 fs rms. For this reason the CLIC design includes a phase stabilization feed-forward system. It relies on precise beam phase measurements and their subsequent correction in a chicane with the help of fast kickers. A prototype of such a system is being installed in the CLIC Test Facility CTF3. In this paper its design and implementation is described in detail. Additionally, the performance of the precision phase monitor prototypes installed at the end of the CTF3 linac, as measured with the drive beam, is presented.

  16. Occupancy in the CLIC_ILD Time Projection Chamber

    CERN Document Server

    KILLENBERG, M.

    2011-01-01

    We report on the occupancy in the CLIC ILD TPC caused by the beam induced background from gg !hadrons, e+e- pairs and beam halo muons. In addition the particle composition of the backgrounds and the origin of back-scattering particles have been studied.

  17. Light-flavor squark reconstruction at CLIC

    Science.gov (United States)

    Simon, Frank; Weuste, Lars

    2015-08-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light-flavored right-handed squarks at a 3 TeV collider based on CLIC technology. In the considered model, these particles decay into their standard-model counterparts and the lightest neutralino, resulting in a signature of two jets plus missing energy. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two-photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  18. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  19. Control Schemes for Driving Electro-optic Array Beam Deflectors

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The beam deflectors based on electro-optic phased array(EOPA) is mainly described, and then an analysis on existing control schemes for driving the EOPA beam deflectors, based on custom hard-wired electronics or based on software in a microcontroller, is made. Compared with these, a driving and control system for a multi-channel EOPA beam deflector is presented, in which the control assignment is implemented with a field programmable gate array(FPGA) chip. For different performance requirements, two control schemes, one with the serial scheme and another with the parallel scheme, have been explored and rapidly prototyped in Xilinx FPGA chips. With the control structures for the EOPA beam deflector, scanning rates of 588kHz and 5MHz can be respectively reached.

  20. BSM physics at CLIC

    CERN Document Server

    Simoniello, Rosa

    2016-01-01

    The Compact Linear Collider (CLIC) is an option for a future electron-positron collider operating at centre-of-mass energies from a few hundred GeV up to 3 TeV. The search for phenomena beyond the Standard Model through direct observation of new particles and precision measurements is one of the main motivations for the high-energy stages of CLIC. An overview of physics benchmark studies assuming different new physics scenarios is given in this contribution. These studies are based on full detector simulations. New particles can be discovered in most of the considered scenarios almost up to the kinematic limit ($\\sqrt{s}$/2 for pair production). The low background conditions at CLIC provide extended discovery potential compared to hadron colliders, for example in the case of non-coloured TeV-scale SUSY particles. In addition to direct particle searches, BSM models can be probed up to scales of tens of TeV through precision measurements. Examples, including recent results on the reaction $e^+e^- \\to \\gamma\\gam...

  1. Higgs physics at CLIC

    CERN Document Server

    Lukic, Strahinja

    2016-01-01

    The Compact Linear Collider CLIC is an option for a future multi-TeV electron-positron collider, offering the potential for a rich precision physics programme, combined with sensitivity to a wide range of new phenomena. The CLIC physics potential for measurements of the 125 GeV Higgs boson has been studied using full detector simulations for several centre-of-mass energies. The presented results provide crucial input to the energy staging strategy for the CLIC accelerator. The complete physics program for measurements of accessible Higgs boson couplings is presented in this talk. All measurements available at a given centre-of-mass energy were included in combined fits. Operation at a few hundred GeV allows the couplings and width of the Higgs boson to be determined in a model-independent manner through the study of the Higgsstrahlung and WW-fusion processes. At a lepton collider, the measurement of the Higgsstrahlung cross section using the recoil mass technique sets the absolute scale for all Higgs coupling...

  2. Higgs physics at CLIC

    CERN Document Server

    Lukić, Strahinja

    2016-01-01

    The Compact Linear Collider CLIC is an option for a future multi-TeV electron-positron collider, offering the potential for a rich precision physics programme, combined with sensitivity to a wide range of new phenomena. The CLIC physics potential for measurements of the 125 GeV Higgs boson has been studied using full detector simulations for several centre-of-mass energies. The presented results provide crucial input to the energy staging strategy for the CLIC accelerator. The complete physics program for measurements of accessible Higgs boson couplings is presented in this contribution. The ultimate measurement precision is reached when all measurements available at a given centre-of-mass energy are included in combined fits. Operation at a few hundred GeV allows the couplings and width of the Higgs boson to be determined in a model-independent manner through the study of the Higgsstrahlung and WW-fusion processes. At a lepton collider, the measurement of the Higgsstrahlung cross section using the recoil mas...

  3. Proof of the nonexistence of a linear solution for the CR2 injection region of the CLIC drive beam

    CERN Document Server

    Apsimon, Robert

    2014-01-01

    In this paper we present a mathematical proof to show that there exists no linear system of optics which can simultaneously close an orbit bump and correct the dispersion in the CR2 injection region. Due to the requirements of the CR2 injection region, several different trajectories will exist through the injection region which are off-axis; therefore the orbit and dispersion functions need to be corrected. In this paper, we determine the properties of a hypothetical linear lattice which is capable of closing the orbit and dispersion functions and then show that the resulting solutions are either unphysical or trivial. Geneva.

  4. Crossed-beam energy transfer in direct-drive implosions

    Energy Technology Data Exchange (ETDEWEB)

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  5. Photon-Nucleon Collider based on LHC and CLIC

    CERN Document Server

    Aksakal, Husnu; Schulte, Daniel; Zimmermann, Frank

    2005-01-01

    We describe the scheme of a photon-nucleon collider where high energy photons generated by Compton backscattering off a CLIC electron beam, at either 75 GeV or 1.5 TeV are collided with protons or ions stored in LHC. Different design constraints for such a collider are discussed and achievable luminosity performance is estimated.

  6. Spectrometers for RF breakdown studies for CLIC

    Science.gov (United States)

    Jacewicz, M.; Ziemann, V.; Ekelöf, T.; Dubrovskiy, A.; Ruber, R.

    2016-08-01

    An e+e- collider of several TeV energy will be needed for the precision studies of any new physics discovered at the LHC collider at CERN. One promising candidate is CLIC, a linear collider which is based on a two-beam acceleration scheme that efficiently solves the problem of power distribution to the acceleration structures. The phenomenon that currently prevents achieving high accelerating gradients in high energy accelerators such as the CLIC is the electrical breakdown at very high electrical field. The ongoing experimental work within the CLIC collaboration is trying to benchmark the theoretical models focusing on the physics of vacuum breakdown which is responsible for the discharges. In order to validate the feasibility of accelerating structures and observe the characteristics of the vacuum discharges and their eroding effects on the structure two dedicated spectrometers are now commissioned at the high-power test-stands at CERN. First, the so called Flashbox has opened up a possibility for non-invasive studies of the emitted breakdown currents during two-beam acceleration experiments. It gives a unique possibility to measure the energy of electrons and ions in combination with the arrival time spectra and to put that in context with accelerated beam, which is not possible at any of the other existing test-stands. The second instrument, a spectrometer for detection of the dark and breakdown currents, is operated at one of the 12 GHz stand-alone test-stands at CERN. Built for high repetition rate operation it can measure the spatial and energy distributions of the electrons emitted from the acceleration structure during a single RF pulse. Two new analysis tools: discharge impedance tracking and tomographic image reconstruction, applied to the data from the spectrometer make possible for the first time to obtain the location of the breakdown inside the structure both in the transversal and longitudinal direction thus giving a more complete picture of the

  7. CLIC Physics Overview

    CERN Document Server

    AUTHOR|(SzGeCERN)471575

    2016-01-01

    This paper, based on the invited talk given at the 17th Lomonosov Conference of Elementary Particle Physics, summarizes the physics program at CLIC, with particular emphasis on the Higgs physics studies. The physics reach of CLIC operating in three energy stages, at 350 GeV, 1.4 TeV and 3 TeV center-of-mass energies is reviewed. The energy-staged approach is motivated by the high-precision physics measurements in the Higgs and top sector as well as by direct and indirect searches for beyond the Standard Model physics. The first stage, at or above 350 GeV, gives access to precision Higgs physics through the Higgsstrahlung and WW-fusion production processes, providing absolute values of the Higgs couplings to fermions and bosons. This stage also addresses precision top physics around the top-pair-production threshold. The second stage, at 1.4 TeV, opens the energy frontier, allowing for the discovery of new physics phenomena. This stage also gives access to additional Higgs properties, such as the top-Yukawa co...

  8. The Physics Prospects for CLIC

    CERN Document Server

    ELLIS, J.

    2008-01-01

    Following a brief outline of the CLIC project, this talk summarizes some of the principal motivations for an e+e− collider with ECM = 3 TeV. It is shown by several examples that CLIC would represent a significant step beyond the LHC and ILC in its capabilities for precision measurements at high energies. It would make possible a complete study of a light Higgs boson, including rare decay modes, and would provide a unique tool to study a heavy Higgs boson. CLIC could also complete the studies of supersymmetric spectra, if sparticles are relatively light, and discover any heavier sparticles. It would also enable deeper probes of extra dimensions, new gauge bosons and excited quarks or leptons. CLIC has unique value to add to experimental particle physics, whatever the LHC discovers.

  9. The CLIC Physics Potential

    CERN Document Server

    AUTHOR|(SzGeCERN)554857

    2016-01-01

    The physics and detector studies for the Compact Linear Collider (CLIC) are introduced. A staged programme of $e^{+}e^{−}$ collisions covering $\\sqrt{s}$ = 380 GeV, 1.5 TeV, and 3 TeV would allow precise measurements of Higgs boson couplings, in many cases to the percent level. This corresponds to precision higher than that expected for the high-luminosity Large Hadron Collider. Such precise Higgs coupling measurements would allow sensitivity to a variety of new physics models and the ability to distinguish between them. In addition, new particles directly produced in pairs could be measured with great precision, and measurements in the top-quark sector would provide sensitivity to new physics effects at the scales of tens of TeV.

  10. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  11. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  12. Interaction Point Backgrounds from the CLIC Post Collision Line

    OpenAIRE

    Salt, Michael David

    2012-01-01

    The proposed CLIC accelerator is designed to collide electrons and positrons ata centre of mass energy of 3 TeV, and a luminosity of 5.9 x 10^(34) cm^(−2) s^(−1) at the interactionpoint (IP). Being a single-pass machine, luminosity must be maximised byminimising the beam spot size to the order of a few nanometres. The effects of the finalfocussing and the intense beam-beam effects lead to a high production cross sectionof beamstrahlung photons, and highly divergent outgoing beams, both spatia...

  13. Common ground in ILC and CLIC detector concepts

    CERN Multimedia

    Daisy Yuhas

    2013-01-01

    The Compact Linear Collider and the International Linear Collider will accelerate particles and create collisions in different ways. Nonetheless, the detector concepts under development share many commonalities.   Timepix chips under scrutiny in the DESY test beam with the help of the beam telescope. CERN physicist Dominik Dannheim explains that the CLIC detector plans are adaptations of the ILC detector designs with a few select modifications. “When we started several years ago, we did not want to reinvent the wheel,” says Dannheim. “The approved ILC detector concepts served as an excellent starting point for our designs.” Essential differences Both CLIC and ILC scientists foresee general-purpose detectors that make measurements with exquisite precision. These colliders, however, have very different operating parameters, which will have important consequences for the various detector components. The ILC’s collision energy is set at 500 GeV ...

  14. Measurement of stau_1 pair production at CLIC

    CERN Document Server

    Muennich, A.

    2012-01-01

    We present a study performed for the CLIC Conceptual Design Report Volume 3 on the measurement of stau_1 pair production at sqrt(s) = 1.4 TeV. Only the hadronic decay of taus are considered. Results obtained using full detector simulation and including beam-induced backgrounds for the mass and for the production cross section of the stau_1 are discussed.

  15. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm2. Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 1012 to 2 x 1014 cm-3. Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  16. Transient beam-loading model and compensation in Compact Linear Collider main linac

    CERN Document Server

    Kononenko, O

    2011-01-01

    A new model to compensate for the transient beam loading in the CLIC main linac is developed. It takes into account the CLIC specific power generation scheme and the exact 3D geometry of the accelerating structure including couplers. A new method of calculating unloaded and loaded voltages during the transient is proposed and a dedicated optimization scheme of the rf pulse to compensate the transient beam-loading effect is presented. It is demonstrated that the 0.03% limit on the rms relative bunch-to-bunch energy spread in the main beam after acceleration can be reached. The optimization technique has been used to increase the rf to beam efficiency while preserving the CLIC requirements and to compensate for the energy spread caused by the Balakin-Novokhatski-Smirnov damping and transient process in the subharmonic buncher. Effects of charge jitters in the drive and main beams are studied. It is shown that within the 0.1% CLIC specification limit on the rms spread in beams charge the energy spread is not sig...

  17. Fabrication of Beam-rotating Actuator for Multiple-beam Disk Drive

    Science.gov (United States)

    Kim, Boung Jun; Kim, Soo Hyun; Kwak, Yoon Keun

    2002-05-01

    Current trends in computer and communication industries are towards increasingly higher resolution images and video processing techniques. However, such sophisticated processing tasks require massive storage systems such as a compact disk read only memory (CD-ROM) and digital versatile disc (DVD). Current demands in the development of such systems are higher data density storage media and an improved data transfer rate. The latter is discussed in this paper. A multiple-beam optical disk drive is presented as a method for improving the effective data transfer rate by increasing the beam spot number formed on an optical disk. The beam-rotating actuator is necessary for positioning the multiple-beam onto more than one track. Ray tracing was also employed for the real system setup. The beam-rotating actuator is made up of piezoelectric material, a high-stiffness wire hinge and a dove prism. The actuator has an approximately 1 kHz resonance frequency and a suitable operational range. The dynamic equation for the actuator is derived for the control of the real system.

  18. Proposal for an alignment method of the CLIC linear accelerator - From geodesic networks to the active pre-alignment

    International Nuclear Information System (INIS)

    The compact linear collider (CLIC) is the particle accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nano-metric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved before. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required: 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active pre-alignment but shows the way to the last developments that have to be done for that purpose. A method is proposed. Based on the management of the Helmert transformations between Euclidean coordinate systems, from the geodetic networks to the metrological measurements, this method is likely to solve the CLIC pre-alignment problem. Large scale facilities have been built and Monte-Carlo simulations have been made in order to validate the mathematical modeling of the measurement systems and of the alignment references. When this is done, it will be possible to extrapolate the modeling to the entire CLIC length. It will be the last step towards the demonstration of the CLIC pre-alignment feasibility. (author)

  19. CLIC vertex detector R&D

    Science.gov (United States)

    Alipour Tehrani, Niloufar

    2016-07-01

    A vertex detector concept is under development for the proposed multi-TeV linear e+e- Compact Linear Collider (CLIC). To perform precision physics measurements in a challenging environment, the CLIC vertex detector pushes the technological requirements to the limits. This paper reviews the requirements for the CLIC vertex detector and gives an overview of recent R&D achievements in the domains of sensor, readout, powering and cooling.

  20. Benchmarking of the Placet and Dimad tracking codes using the CLIC Post-Collision line

    CERN Document Server

    Ahmed, I; Ferrari, A; Latina, A

    2009-01-01

    In this benchmarking study, two contemporary codes, DIMAD and PLACET, are compared. We consider the 20 mrad post-collision line of the Compact Linear Collider (CLIC) and perform tracking studies of heavily disrupted post-collision electron beams. We successfully find that the two codes provide an equivalent description of the beam transport from the interaction point to the final dump.

  1. Golden Jubilee Photos: A CLIC for the future

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ Prototype copper accelerating structures for CLIC. New accelerator projects take many years to make and mature. When the LHC project was still only a twinkle in CERN's eye, research was already starting on a new machine. A small team at CERN was setting about the task of studying a high-energy, compact, lepton linear collider, known as CLIC. This is possibly set to become the collider of the future. A machine of this kind has all the advantages of a collider (the total collision energy is equal to the sum of the energies of the two colliding beams) without the drawback of synchrotron radiation, which is produced when particles are accelerated around a ring and thus puts a limit on the energy of such colliders. But in a project as technically challenging as CLIC, considerable technological hurdles must be overcome. To limit the linear collider's length to some tens of kilometres, the beams must acquire a considerable quantity of energy per metre travelled. The collision rate (lumi...

  2. Tissue and subcellular distribution of CLIC1

    Directory of Open Access Journals (Sweden)

    Edwards John C

    2007-02-01

    Full Text Available Abstract Background CLIC1 is a chloride channel whose cellular role remains uncertain. The distribution of CLIC1 in normal tissues is largely unknown and conflicting data have been reported regarding the cellular membrane fraction in which CLIC1 resides. Results New antisera to CLIC1 were generated and were found to be sensitive and specific for detecting this protein. These antisera were used to investigate the distribution of CLIC1 in mouse tissue sections and three cultured cell lines. We find CLIC1 is expressed in the apical domains of several simple columnar epithelia including glandular stomach, small intestine, colon, bile ducts, pancreatic ducts, airway, and the tail of the epididymis, in addition to the previously reported renal proximal tubule. CLIC1 is expressed in a non-polarized distribution in the basal epithelial cell layer of the stratified squamous epithelium of the upper gastrointesitinal tract and the basal cells of the epididymis, and is present diffusely in skeletal muscle. Distribution of CLIC1 was examined in Panc1 cells, a relatively undifferentiated, non-polarized human cell line derived from pancreatic cancer, and T84 cells, a human colon cancer cell line which can form a polarized epithelium that is capable of regulated chloride transport. Digitonin extraction was used to distinguish membrane-inserted CLIC1 from the soluble cytoplasmic form of the protein. We find that digitonin-resistant CLIC1 is primarily present in the plasma membrane of Panc1 cells. In T84 cells, we find digitonin-resistant CLIC1 is present in an intracellular compartment which is concentrated immediately below the apical plasma membrane and the extent of apical polarization is enhanced with forskolin, which activates transepithelial chloride transport and apical membrane traffic in these cells. The sub-apical CLIC1 compartment was further characterized in a well-differentiated mouse renal proximal tubule cell line. The distribution of CLIC1 was

  3. The CLIC Test Facility (CTF3) which allowed the first electron beam recombination in order to multiply the RF frequency from 3 GHz up to 15 GHz.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photo 0210005_11: The CTF3 linac accelerates an electron beam up to 350 MeV. Photo 0210005_1: At the front, the yellow dipole is used for the spectrometer line. At the back, a doublet of blue quadrupole for the matching. Photo 0210005_03: The CTF3 transfer line between the electron linac and the isochronous ring. Photo 0210005_04: One arc of the EPA isochronous ring. Photo 0210005_06: The CTF3 bunching system. The first RF wave guide feeds the Pre-Buncher while the second RF wave guide feeds the Buncher. They provide a bunched electron beam at 4 MeV. The blue magnet is a solenoid around the Buncher. Photo 0210005_07: A LIL accelerating structure used for CTF3. It is 4.5 meters long and provides an energy gain of 45 MeV. One can see 3 quadrupoles around the RF structure.

  4. Background at the Interaction Point from the CLIC Post-Collision Line

    CERN Document Server

    Salt, M D; Apyan, A; Elsener, K; Gschwendtner, E; Ferrari, A

    2010-01-01

    The 1.5 TeV electron/positron CLIC beams, with a total power of 14 MW per beam, are disrupted at the interaction point (IP) due to the very strong beam-beam effect. The resulting spent beam products are transported to suitable dumps by the post-collision beam line, which generates beam losses and causes the production of secondary cascades towards the interaction region. In this paper the electromagnetic backgrounds at the IP are presented, which were calculated using biasing Monte Carlo techniques. Also, a first estimate is made of neutron backshine from the main beam dump.

  5. CLIC quadrupole stabilization and nano-positioning

    CERN Document Server

    Collette, C; Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C

    2010-01-01

    In the Compact LInear Collider (CLIC) currently under study, electrons and positrons will be accelerated in two linear accelerators to collide at the interaction point with an energy of 0.5- 3 TeV. This machine is constituted of a succession of accelerating structures, used to accelerate the beams of particles, and electromagnets (quadrupoles) used to focus the beams. In order to ensure good performances, the quadrupoles have to be extremely stable. Additionally, they should also have the capability to move by steps of some tens of nanometers every 20 ms with a precision of +/- 1nm. This paper proposes a holistic approach to fulfill alternatively both requirements using the same device. The concept is based on piezoelectric hard mounts to isolate the quadrupoles from the ground vibrations in the sensitive range between 1 and 20 Hz, and to provide nano-positioning capabilities. It is also shown that this strategy ensures robustness to external forces (acoustic noise, water flow for the cooling, air flow for th...

  6. CLIC inner detectors cooling simulations

    CERN Document Server

    Duarte Ramos, F.; Villarejo Bermudez, M.

    2014-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concepts require the use of a dry gas for the cooling of the respective sen- sors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detec- tor specifications. This note introduces a detector cooling strategy using dry air as a coolant and shows the results of computational fluid dynamics simulations used to validate the proposed strategy.

  7. Direct drive heavy-ion-beam inertial fusion at high coupling efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Logan, B.G.; Perkins, L.J.; Barnard, J.J.

    2008-05-16

    Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

  8. Bounds on the electromagnetic dipole moments through the single top production at the CLIC

    CERN Document Server

    Koksal, M; Gutierrez-Rodriguez, A

    2016-01-01

    We obtain bounds on the anomalous magnetic and electric dipole moments of the $t$-quark from a future high-energy and high-luminosity linear electron positron collider, such as the CLIC, with unpolarized and polarized electron beams which are a powerful tool to determine new physics. We consider the processes $\\gamma e^- \\to \\bar t b\

  9. Highlights from CERN: The CLIC Project for a Future e$^{+}$e$^{−}$ Linear Collider

    CERN Document Server

    Tecker, Frank

    2007-01-01

    A high luminosity ( 10$^{34}$-10$^{35}$ cm$^{2}$/s) linear electron-positron Collider (CLIC) with a nominal centre-of-mass energy of 3 TeV is under study in the framework of an international collaboration of laboratories and institutes, with the aim to provide the HEP community with a new facility for the post LHC era. After a brief introduction of the physics motivation, the CLIC scheme to extend Linear Colliders into the Multi-TeV colliding beam energy range will be described. In the following, the main challenges and the very promising achievements already obtained will be presented.

  10. Mechanical integration studies for the CLIC vertex and inner tracking detectors

    CERN Document Server

    Villarejo Bermudez, M.A.; Gerwig, H.

    2015-01-01

    Since the publication of the CLIC Conceptual Design Report, work has proceeded in order to establish a preliminary mechanical design for the innermost CLIC detector region. This note proposes a design for the main Carbon-Fibre Reinforced Polymer (CFRP) structural elements of the inner detectors, for the beam pipe and their supports. It also describes an assembly sequence for the integration of the sensors and the mechanical components. Mechanical simulations of different structural elements and a material budget estimation are appended. Details of a proposed cabling layout for all the subdetectors are included.

  11. Precision Higgs boson measurement at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718111

    2016-01-01

    The design of the next generation collider in high energy physics will primarily focus on the possibility to achieve high precision of the measurements of interest. The necessary precision limits are set, in the first place, by the measurement of the Higgs boson but also by measurements that are sensitive to signs of New Physics. The Compact Linear Collider (CLIC) is an attractive option for a future multi-TeV linear electron-positron collider, with the potential to cover a rich physics program with high precision. In this lecture the CLIC accelerator, detector and backgrounds will be presented with emphesis on the capabilities of CLIC for precision Higgs physics.

  12. 3D FEA Computation of the CLIC Machine Detector Interface Magnets

    CERN Document Server

    Bartalesi, A

    2012-01-01

    A critical aspect of the Compact Linear Collider (CLIC) design is represented by the Accelerator/Experiment interface (called Machine Detector Interface or MDI). In the 3 TeV CLIC layout, the final focus QD0 quadrupole will be located inside the end-cap of the detector itself. This complex MDI scenario required to be simulated with a full 3D-FE analysis. This study was critical to check and control the magnetic cross-talk between the detector solenoid and the final focus magnet and therefore to optimize the design of an “antisolenoids” system needed to shield the QD0 and the e-/e+ beams from the detector magnetic field. In this paper the development and evolution of the computational FE model is presented together with the results obtained and their implication on the CLIC MDI design.

  13. CLIC's three-step plan

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    In early October, the Compact Linear Collider (CLIC) collaboration published its final Conceptual Design Report. Accompanying it was a strategic summary document that describes a whole new approach to the project: developing the linear e+e− collider in three energy stages. Though CLIC’s future still depends on signs from the LHC, its new staged approach to high-energy electron-positron physics for the post-LHC era is nothing short of convincing.   Instead of asking for a 48-kilometre-long commitment right off the bat, the CLIC collaboration is now presenting an accelerator that can be constructed in stages. For example, it could begin as an 11-kilometre 500 GeV accelerator that could later be extended to a 27-kilometre 1.5 TeV machine. Finally, after a decade or so of data taking, it could be taken up to the full 48-kilometre 3 TeV facility (see image 2). “Not only is the approach technically and financially practical, it also offers a very convincing physics prog...

  14. Photoinjector beam quality improvement by shaping the wavefront of a drive laser with oblique incidence

    Institute of Scientific and Technical Information of China (English)

    HE Zhi-Gang; WANG Xiao-Hui; JIA Qi-Ka

    2012-01-01

    To increase the quantum efficiency (QE) of a copper photocathode and reduce the thermal emittance of an electron beam,a drive laser with oblique incidence was adopted in a BNL type photocathode rf gun.The disadvantageous effects on the beam quality caused by oblique incidence were analyzed qualitatively.A simple way to solve the problens through wavefront shaping was introduced and the beam quality was improved.

  15. Detector Optimization of the CLIC Tracker

    CERN Document Server

    Saxe, Gandalf

    2015-01-01

    CLIC (Compact Linear Collider) is a proposed high-energy electron-positron collider at CERN [1] that, if approved, will be built at the feet of the Jura Mountains in Switzerland, passing through CERN. As opposed to hadrons, electrons (e-) and positrons (e+) are elementary particles. Therefore, e-e+ collisions give a well defined initial state which allows high precision studies. A circular collider is not a viable option when going to high energies (several TeV) for a e-e+ collider due to synchrotron radiation. Therefore CLIC is designed as a linear collider. CLIC is proposed to be build in three center-of-mass energy stages: 380 GeV, 1.4 TeV and 3.0 TeV. The CLIC physics program includes the high precision measurements of the Higgs and top properties, the observation of rare processes, and the possible discovery of new particles [3].

  16. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  17. The CLIC electron and positron polarized sources

    CERN Document Server

    Rinolfi, Louis; Bulyak, Eugene; Chehab, Robert; Dadoun, Olivier; Gai, Wei; Gladkikh, Peter; Kamitani, Takuya; Kuriki, Masao; Liu, Wanming; Maryuama, Takashi; Omori, Tsunehiko; Poelker, Matt; Sheppard, John; Urakawa, Junji; Variola, Alessandro; Vivoli, Alessandro; Yakimenko, Vitaly; Zhou, Feng; Zimmermann, Frank

    2010-01-01

    The CLIC polarized electron source is based on a DC gun where the photocathode is illuminated by a laser beam. Each micro-bunch has a charge of 6x109 e−, a width of 100 ps and a repetition rate of 2 GHz. A peak current of 10 A in the micro-bunch is a challenge for the surface charge limit of the photo-cathode. Two options are feasible to generate the 2 GHz e− bunch train: 100 ps micro-bunches can be extracted from the photo-cathode either by a 2 GHz laser system or by generating a macro-bunch using a ~200 ns laser pulse and a subsequent RF bunching system to produce the appropriate micro-bunch structure. Recent results obtained by SLAC, for the latter case, are presented. The polarized positron source is based on a positron production scheme in which polarized photons are produced by a laser Compton scattering process. The resulting circularly-polarized gamma photons are sent onto a target, producing pairs of longitudinally polarized electrons and positrons. The Compton backscattering process occurs eithe...

  18. Minimizing Emittance for the CLIC Damping Ring

    CERN Document Server

    Braun, H; Levitchev, E; Piminov, P; Schulte, Daniel; Siniatkin, S; Vobly, P P; Zimmermann, Frank; Zolotarev, Konstantin V; CERN. Geneva

    2006-01-01

    The CLIC damping rings aim at unprecedented small normalized equilibrium emittances of 3.3 nm vertical and 550 nm horizontal, for a bunch charge of 2.6·109 particles and an energy of 2.4 GeV. In this parameter regime the dominant emittance growth mechanism is intra-beam scattering. Intense synchrotron radiation damping from wigglers is required to counteract its effect. Here the overall optimization of the wiggler parameters is described, taking into account state-of-the-art wiggler technologies, wiggler effects on dynamic aperture, and problems of wiggler radiation absorption. Two technical solutions, one based on superconducting magnet technology the other on permanent magnets are presented. Although dynamic aperture and tolerances of this ring design remain challenging, benefits are obtained from the strong damping. For optimized wigglers, only bunches for a single machine pulse may need to be stored, making injection/extraction particularly simple and limiting the synchrotron-radiation power. With a 36...

  19. High illumination uniformity scheme with 32 beams configuration for direct-drive inertial confinement fusion

    Science.gov (United States)

    Li, Li; Gu, Chun; Xu, Lixin; Zhou, Shenlei

    2016-04-01

    The self-adapting algorithms are improved to optimize a beam configuration in the direct drive laser fusion system with the solid state lasers. A configuration of 32 laser beams is proposed for achieving a high uniformity illumination, with a root-mean-square deviation at 10-4 level. In our optimization, the parameters such as beam number, beam arrangement, and beam intensity profile are taken into account. The illumination uniformity robustness versus the parameters such as intensity profile deviations, power imbalance, intensity profile noise, the pointing error, and the target position error is also discussed. In this study, the model is assumed a solid-sphere illumination, and refraction effects of incident light on the corona are not considered. Our results may have a potential application in the design of the direct-drive laser fusion of the Shen Guang-II Upgrading facility (SG-II-U, China).

  20. High-speed reference-beam-angle control technique for holographic memory drive

    Science.gov (United States)

    Yamada, Ken-ichiro; Ogata, Takeshi; Hosaka, Makoto; Fujita, Koji; Okuyama, Atsushi

    2016-09-01

    We developed a holographic memory drive for next-generation optical memory. In this study, we present the key technology for achieving a high-speed transfer rate for reproduction, that is, a high-speed control technique for the reference beam angle. In reproduction in a holographic memory drive, there is the issue that the optimum reference beam angle during reproduction varies owing to distortion of the medium. The distortion is caused by, for example, temperature variation, beam irradiation, and moisture absorption. Therefore, a reference-beam-angle control technique to position the reference beam at the optimum angle is crucial. We developed a new optical system that generates an angle-error-signal to detect the optimum reference beam angle. To achieve the high-speed control technique using the new optical system, we developed a new control technique called adaptive final-state control (AFSC) that adds a second control input to the first one derived from conventional final-state control (FSC) at the time of angle-error-signal detection. We established an actual experimental system employing AFSC to achieve moving control between each page (Page Seek) within 300 µs. In sequential multiple Page Seeks, we were able to realize positioning to the optimum angles of the reference beam that maximize the diffracted beam intensity. We expect that applying the new control technique to the holographic memory drive will enable a giga-bit/s-class transfer rate.

  1. CLIC Accelerated R&D

    CERN Document Server

    Wilson, Ian H

    2005-01-01

    An accelerated R&D programme to demonstrate the key feasibility issues of the CLIC scheme before 2010 was approved by the CERN Council in March 2004. This report describes the activities, extra resources and time schedule to complete this programme. The activities are presented in the form of work-packages. Laboratories, Universities and Funding Agencies around the world have been invited by the CERN DG to participate in the programme by taking full technical responsibility for part, complete or several work packages and/or providing voluntary contributions "a la carte", in cash, in kind and/or in man-power. The intention is to set-up a multi-lateral collaboration between all laboratories interested in such a development.

  2. Interaction point feedback design and integrated simulations to stabilize the CLIC final focus

    CERN Document Server

    Balik, G; Deleglise, G; Jeremie, A; Pacquet, L; Badel, A; Caron, B; Le Breton, R; Latina, A; Pfingstner, J; Schulte, D; Snuverink, J

    2011-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the offset position between the beams. Sensitive to ground motion (GM), the beam needs to be stabilized to unprecedented requirements. Different Beam Based Feedback (BBF) algorithms such as Orbit Feedback (OFB) and Interaction Point Feedback (IPFB) have been designed. This paper focuses on the IPFB control which could be added to the CLIC baseline. IPFB control has been tested for different GM models in presence of noises or disturbances and it uses digital linear control with an adaptive loop. The simulations demonstrate that it is possible to achieve the required performances and quantify the maximum allowed noise level. This amount of admitted noises and disturbances is given in terms of an equivalent disturbance on the position of the magnet that controls the beam offset. Due to the limited sampling frequency of the process, the control loop is in a very small bandwidth. The study shows that these disturbances have to be l...

  3. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  4. Physics requirements for Scalar Muons searches at CLIC

    CERN Document Server

    Battaglia, M

    2010-01-01

    The determination of smuon and neutralino masses in smuon pair production is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this note we report the first results of a study of e+e− → μ ̃R+μ ̃R− in a high-mass, cosmology-motivated Supersymmetric scenario at 3 TeV at CLIC. This process is a good example to study requirements on the beam energy spectrum and polarisation and the track momentum resolution in a simple final state. We discuss the expected accuracy on the mass measurements as a function of the momentum resolution, luminosity spectrum, beam polarisation and time stamping capability. Results obtained at generator level are validated by comparison to full simulation and reconstruction. Preliminary requirements for the detector performances and beam polarisation are presented.

  5. Detector optimization studies and light Higgs decay into muons at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2013-09-15

    The Compact Linear Collider (CLIC) is a concept for a future e{sup +}e{sup -} linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab{sup -1}, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  6. Detector optimization studies and light Higgs decay into muons at CLIC

    International Nuclear Information System (INIS)

    The Compact Linear Collider (CLIC) is a concept for a future e+e- linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab-1, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  7. Emittance and Energy Diagnostics for Electron Beams with Large Momentum Spread

    CERN Document Server

    Olvegård, Maja; Thibaut, Lefevre; Enrico, Bravin

    Olvegård, M. 2013. Emittance and Energy Diagnostics for Electron Beams with Large Momentum Spread. Acta Universitatis Upsaliensis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1036. 75 pp. Uppsala. ISBN 978-91-554-8646-4. Following the discovery of the Higgs-like boson at the Large Hadron Collider, there is demand for precision measurements on recent findings. The Compact Linear Collider, CLIC, is a candidate for a future linear electron-positron collider for such precision measurements. In CLIC, the beams will be brought to collisions in the multi-TeV regime through high gradient acceleration with high frequency RF power. A high intensity electron beam, the so-called drive beam, will serve as the power source for the main beam, as the drive beam is decelerated in special structures, from which power is extracted and transfered to the main beam. When the drive beam is decelerated the beam quality deteriorates and the momentum spread increases, which make...

  8. Feasibility study of multipoint based laser alignment system for CLIC

    CERN Document Server

    Stern, G; Mainaud-Durand, H; Piedigrossi, D; Geiger, A

    2012-01-01

    CLIC (Compact LInear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities oftoday’s particle accelerators. Alignment is one of the major challenges within the CLIC study in order to achieve the high requirement of a multi-TeV center of mass colliding beam energy range (nominal 3 TeV). To reach this energy in a realistic and cost efficient scenario all accelerator components have to be aligned with an accuracy of 10 μm over a sliding window of 200 m. The demand for a straight line reference is so far based on stretched wires coupled with Wire Positioning Sensors (WPS). These solutions are currently further developed inorder to reduce the drawbacks which are mainly given by their costs and difficult implementation. However, it should be validated through inter-comparison with a solution ideally based on a different physical principle. Therefore, a new metrological approach is proposed using a laser beam as straight lin...

  9. HIGGS PHYSICS WITH A GAMMA GAMMA COLLIDER BASED ON CLIC 1*.

    Energy Technology Data Exchange (ETDEWEB)

    ASNER,D.; BURKHARDT,H.; DE ROECK,A.; ELLIS,J.; GRONBERG,J.; HEINEMEYER,S.; SCHMITT,M.; SCHULTE,D.; VELASCO,M.; ZIMMERMAN,F.

    2001-11-01

    We present the machine parameters and physics capabilities of the CLIC Higgs Experiment (CLICHE), a low-energy {gamma}{gamma} collider based on CLIC 1, the demonstration project for the higher-energy two-beam accelerator CLIC. CLICHE is conceived as a factory capable of producing around 20,000 light Higgs bosons per year. We discuss the requirements for the CLIC 1 beams and a laser backscattering system capable of producing a {gamma}{gamma} total (peak) luminosity of 2.0 (0.36) x 10{sup 34} cm{sup -2} s{sup -1} with E{sub CM}({gamma}{gamma}) 115 GeV. We show how CLICHE could be used to measure accurately the mass, {bar b}b, WW and {gamma}{gamma} decays of a light Higgs boson. We illustrate how these measurements may distinguish between the Standard Model Higgs boson and those in supersymmetric and more general two-Higgs-doublet models, complementing the measurements to be made with other accelerators. We also comment on other prospects in {gamma}{gamma} and e{sup -}{gamma} physics with CLICHE.

  10. Fast-ion transport and neutral beam current drive in ASDEX upgrade

    DEFF Research Database (Denmark)

    Geiger, B.; Weiland, M.; Jacobsen, Asger Schou;

    2015-01-01

    The neutral beam current drive efficiency has been investigated in the ASDEX Upgrade tokamak by replacing on-axis neutral beams with tangential off-axis beams. A clear modification of the radial fast-ion profiles is observed with a fast-ion D-alpha diagnostic that measures centrally peaked profiles...... during on-axis injection and outwards shifted profiles during off-axis injection. Due to this change of the fast-ion population, a clear modification of the plasma current profile is predicted but not observed by a motional Stark effect diagnostic. The fast-ion transport caused by MHD activity has been...

  11. ADAPTIVE CONTROL OF FLEXIBLE BEAM WITH UNKNOWN DEAD-ZONE IN THE DRIVING MOTOR

    Institute of Scientific and Technical Information of China (English)

    Wang Xingsong; Hong Henry; Su Chunyi

    2004-01-01

    Adaptive control of a flexible beam system preceded by an unknown dead-zone in the driving motor is investigated in state space form. By introducing an important lemma for simplifying error equation between the flexible beam model and the matching reference model, a robust adaptive control scheme is developed by involving the dead-zone inverse terms. The new adaptive control law ensures global stability of the entire system and achieves desired tracking precision even when the slopes of the dead-zone are not equal. Simulations performed on a typical flexible beam system illustrate and clarify the validity of this approach.

  12. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    Alipour Tehrani, Niloufar; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2015-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  13. Tunable Achromats and CLIC Applications

    CERN Document Server

    D'Amico, T E

    2000-01-01

    It is imperative for linear colliders that the bunch length be adjustable. In most cases bunch compression is required, but recently, in the design of the Compact LInear Collider (CLIC) RF Power Source, it was shown that bunch stretching may also be necessary. In some situations, both modes may be needed, which implies the need for tunable magnetic insertions. This is even more essential in a test facility, to span a wide experimental range. In addition, flexible tuning provides a better control of the stability of an isochronous insertion. To start a numerical search for a tunable insertion from scratch is very uncertain because the related phase space is very uneven. However, a starting point obtained with an analytical approximation is often sufficient to ensure convergence. Another advantage of the analytical treatment described in this paper is that it sheds light on the shape of the entire phase space. To achieve this the isochronous achromat developed previously has been given tuning capabilities by ex...

  14. Wakefield Damping for the CLIC Crab Cavity

    Energy Technology Data Exchange (ETDEWEB)

    Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Khan, V.; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Dolgashev, V.; /SLAC

    2011-12-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  15. Wakefield damping for the CLIC crab cavity

    CERN Document Server

    Ambattu, P K; Dexter, A C; Carter, R G; Khan, V; Jones, R M; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  16. WAKEFIELD DAMPING FOR THE CLIC CRAB CAVITY

    CERN Document Server

    Ambattu, P; Dexter, A; Carter, R; Khan, V; Jones, R; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  17. Calculations of tangential neutral beam injection current drive efficiency for present moderate flux FRCs

    Science.gov (United States)

    Lifschitz, A. F.; Farengo, R.; Hoffman, A. L.

    2004-09-01

    A Monte Carlo code is employed to study tangential neutral beam injection into moderate flux field reversed configurations (FRCs) sustained by rotating magnetic fields (RMFs). The dimensions of the FRC are similar to those obtained in the Translation, Confinement and Sustainment (TCS) experiment. Two injection geometries are considered. In one case the beam is injected through the ends, at a small angle to the FRC axis while in the other the beam is injected almost perpendicularly, at some point along the separatrix. The current drive efficiency and the deposited power are calculated employing plasma parameters that can be expected in future experiments on TCS. It is shown that, although the RMF degrades beam confinement, relatively high efficiencies can be obtained provided the RMF does not penetrate too deeply into the plasma. Since the torque deposited by the neutral beam can balance the torque deposited by the RMF, the simultaneous use of both methods appears to be a very attractive option.

  18. Neutral beam heating and current drive system and its role in ITER-FEAT operation scenarios

    International Nuclear Information System (INIS)

    The NB H and CD system, providing 33 MW in deuterium beams at 1 MeV from two injectors, in addition to 40 MW RF power, contributes to heating a plasma to sub-ignition through the L-H mode transition followed by finite-Q driven-burn (Q≥10), and achievement of a hybrid operation with an extended-duration (∼1000 s) or steady-state operation with Q≤5. To achieve such operations, the NB provides non-inductive current drive by injecting the beams tangentially into the plasma with the capability of on- and off-axis current drive. The present engineering design is under the constraints of the beam envelope, vacuum confinement, neutron shielding, tolerances, and clearances required with the toroidal field coils. The on- and off-axis current drive is to be achieved by tilting the beam axis vertically. Each beam axis of the NB injectors can be tilted independently, providing flexibility in the control of heating and the driven current profile. (author)

  19. R&D for the Vertexing at CLIC

    CERN Document Server

    Redford, S

    2015-01-01

    The Compact Linear Collider is a candidate to be the next high-energy particle physics collider. Using a novel acceleration technique, electrons and positrons would be brought into collision with a centre-of-mass energy of up to 3 TeV. Despite challenging levels of beam-induced background, this would provide a relatively clean environment in which to perform precision physics measurements. The vertex detector would be crucial in achieving this, and would need to provide accurate particle tracking information to facilitate secondary vertex reconstruction and jet flavour-tagging. With this goal in mind, current technological limits are being stretched to design a low occupancy, low mass and low-power dissipation vertex detector for CLIC. A concept comprising thin hybrid pixel detectors coupled to high- performance readout ASICs, power-pulsing and air-flow cooling is under development. In this paper, the CLIC vertex detector requirements are reviewed and the current status of R&D on sensors, readout, powerin...

  20. The CLIC positron source based on compton schemes

    CERN Document Server

    Rinolfi, L; Braun, H; Papaphilippou, Y; Schulte, D; Vivoli, A; Zimmermann, F; Dadoun, O; Lepercq, P; Roux, R; Variola, A; Zomer, F; Pogorelski, I; Yakimenko, V; Gai, W; Liu, W; Kamitani, T; Omori, T; Urakawa, J; Kuriki, M; Takahasi, TM; Bulyak, E; Gladkikh, P; Chehab, R; Clarke, J

    2010-01-01

    The CLIC polarized positron source is based on a positron production scheme in which polarized photons are produced by a Compton process. In one option, Compton backscattering takes place in a so-called “Compton ring”, where an electron beam of 1 GeV interacts with circularly-polarized photons in an optical resonator. The resulting circularly-polarized gamma photons are sent on to an amorphous target, producing pairs of longitudinally polarized electrons and positrons. The nominal CLIC bunch population is 4.2x109 particles per bunch at the exit of the Pre-Damping Ring (PDR). Since the photon flux coming out from a "Compton ring" is not sufficient to obtain the requested charge, a stacking process is required in the PDR. Another option is to use a Compton Energy Recovery Linac (ERL) where a quasicontinual stacking in the PDR could be achieved. A third option is to use a "Compton Linac" which would not require stacking. We describe the overall scheme as well as advantages and constraints of the three option...

  1. Beam loading compensation of traveling wave linacs through the time dependence of the rf drive

    International Nuclear Information System (INIS)

    Beam loading in traveling-wave linear accelerating structures leads to unacceptable spread of particle energies across an extended train of bunched particles due to beam-induced field and dispersion. Methods for modulating the rf power driving linacs are effective at reducing energy spread, but for general linacs do not have a clear analytic foundation. We report here methods for calculating how to modulate the rf drive in arbitrarily nonuniform traveling-wave linacs within the convective-transport (power-diffusion) model that results in no additional energy spread due to beam loading (but not dispersion). Varying group velocity, loss factor, and cell quality factor within a structure, and nonzero particle velocity, are handled.

  2. Physics highlights at ILC and CLIC

    CERN Document Server

    Lukić, Strahinja

    2015-01-01

    In this lecture, the physics potential for the e+e- linear collider experiments ILC and CLIC is reviewed. The experimental conditions are compared to those at hadron colliders and their intrinsic value for precision experiments, complementary to the hadron colliders, is discussed. The detector concepts for ILC and CLIC are outlined in their most important aspects related to the precision physics. Highlights from the physics program and from the benchmark studies are given. It is shown that linear colliders are a promising tool, complementing the LHC in essential ways to test the Standard Model and to search for new physics.

  3. Status of vertex and tracking detector R&D at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754272

    2015-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the bunch train structure of the beam and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few micron, ultra-low mass (~0.2% X0 per layer for the inner vertex region), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. An overview of the R&D program for pixel and tracking detectors at CLIC will be presented, including recent results on an innovative hybridisation concept based on capacitive coupling between active sensors (HV-CMOS) and readout ASICs (CLICpix).

  4. Background and Energy Deposition Studies for the CLIC Post-Collision Line

    CERN Document Server

    Appleby, R B; Deacon, L C; Gschwendtner, E

    2011-01-01

    After the interaction point, the 1.5 TeV, 14MW CLIC electron/positron beams must be transported safely to the main beam dump. In designing the CLIC post-collision line detailed simulations must be carried out in order to ensure that losses are kept within reasonable limits. Results for back-scattered photon flux arriving at the detector are recalculated after updates and enhancements to the geometry description used in the study presented in [1]. Initial results of neutron fluxes are presented. Additionally, energy deposition calculations are carried out, showing that, when the full electromagnetic showers are included, in the current design the standard magnet coils would have a short lifetime due to radiation damage to conventional insulation material. Changing the magnet mask material from graphite to iron and lengthening the intermediate dump by 2m of iron are shown to substantially lessen the energy deposition in the magnet coils and thereby extend magnet lifetimes.

  5. C. Petrone et al.: "Magnetic measurement of the model magnet QD0 designed for the CLIC final focus beam transport line." CERN TE-MSC Internal Note, EDMS Nr: 1184196

    CERN Document Server

    Arpaia, Pasquale; Petrone, Carlo; Russenschuck, Stephan; Walckiers, Louis

    2012-01-01

    This note presents the results of the magnetic measurements performed on QD0, model magnet for the final focus transport line for CLIC (Fig. 1). This high-gradient, hybrid quadrupole has a yoke length of 0.1 m and an aperture of 8.3 mm. ND2Fe14B Permanent magnet blocks provide a gradient of 150 T/m, which can be further increased to 530 T/m when the four coils are excited to 18.3 A. The request was to measure the strength of the field and the multipole coefficients at different currents. The measurement of the field strength, by means of the single stretched wire system, was done in December 2011 in the I8 laboratory. The measurement of the multipole was done by means of the oscillating wire system [1][2].

  6. Nonlinear Optimization of CLIC DRS New Design with Variable Bends and High Field Wigglers

    CERN Document Server

    Ghasem, H.; Alabau-Gonzalvo, J.; Papadopoulou, S.; Papaphilippou, Y.

    2016-01-01

    The new design of CLIC damping rings is based on longitudinal variable bends and high field superconducting wiggler magnets. It provides an ultra-low horizontal normalised emittance of 412 nm-rad at 2.86 GeV. In this paper, nonlinear beam dynamics of the new design of the damping ring (DR) with trapezium field profile bending magnets have been investigated in detail. Effects of the misalignment errors have been studied in the closed orbit and dynamic aperture.

  7. CLIC preparations go up a notch

    CERN Multimedia

    2007-01-01

    The Compact Linear Collider gears up for post-LHC physics with an international workshop. A schematic diagram of CLIC.In June CERN gained a new building: number 2010. And as chance would have it, this is more than just a number to its new residents. By the year 2010, teams working at the new CLIC Experimental Area, along with the already established CLIC Test Facility Three (CTF3), hope to have demonstrated the feasibility of the Compact Linear Collider and, depending on results from the LHC, embark on its final design and proposal. A workshop on 16t-18 October brought people from all around the world to CERN to exchange ideas and hear how the ambitious project is progressing. CLIC is a project that aims to extend lepton collider technology to multi-TeV energy physics, colliding leptons with a centre-of-mass-energy up to 3TeV, more than ten times the energy of the LEP. This is only possible in a linear collider, where no energy is lo...

  8. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  9. PACMAN – an Innovative Doctoral Programme for CLIC

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The final network project funded under the European Commission’s Seventh Framework Programme (FP7), Marie Curie Actions, held its kick-off meeting at CERN on 20 November 2013.   PACMAN – a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale – is in the final stage of recruiting 10 PhD students to do research on beam instrumentation, metrology, micrometric alignment, magnetic measurements, nano-positioning and high-precision engineering. The students will acquire multi-disciplinary expertise in advanced engineering combined with a broad span of transferable skills. “PACMAN gives us the opportunity to attract students to CERN at a key moment in the CLIC study,” said Frédérick Bordry, Head of CERN’s Technology Department. “This is also an ideal opportunity to further develop CERN’s networks with industry and universities.” “The project is...

  10. CLIC Crab Cavity Design Optimisation for Maximum Luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C.; /Lancaster U. /Cockcroft Inst. Accel. Sci. Tech.; Burt, G.; /Lancaster U. /Cockcroft Inst. Accel. Sci. Tech.; Ambattu, P.K.; /Lancaster U. /Cockcroft Inst. Accel. Sci. Tech.; Dolgashev, V.; /SLAC; Jones, R.; /Manchester U.

    2012-04-25

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  11. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  12. Nested folded-beam suspensions with low longitudinal stiffness for comb-drive actuators

    International Nuclear Information System (INIS)

    Nested folded-beam suspensions with a low longitudinal spring constant and a high lateral spring constant have been used in comb-drive actuators. In the new design, every two flexible beams and two stiff members form a parallelogram flexure, which is considered as an ‘element’ of the nested folded-beam suspension. A set of these flexures of increasing size were placed one outside another to compose a nested structure. In this way, a serial mechanical connection between adjacent parallelogram flexures was formed; thus, a longer output stroke was obtained by combining the stroke displacements of all flexures in an additive fashion. The designed suspensions were theoretically analyzed and numerically simulated. Furthermore, comb-drive actuators with conventional and new suspensions were fabricated and tested to verify the predicted function. In the testing cases, the longitudinal spring constants of suspensions with two (conventional), three and four parallelogram flexures on each side were measured as 2.77, 1.75 and 1.36 N m−1. The ratio among these three values was approximately 6:4:3, which is consistent with the theoretical predictions and simulation results. Microfabricated folded beams in series were achieved. (paper)

  13. R&D Challenges of a CLIC Vertex Detector

    CERN Document Server

    van der Kraaij, E

    2010-01-01

    The Compact Linear Collider (CLIC) is a concept for an electron-positron collider with a center- of-mass energy of up to 3 TeV. Given the unprecedented experimental conditions at CLIC none of the technologies available today can fulfill all requirements set for the vertex detector. At the conference these conditions and the challenges they pose for the R&D of a CLIC vertex detector were presented.

  14. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretchedwire RF measurements

    CERN Document Server

    Silvia Zorzetti, Silvia; Galindo Muño, Natalia; Wendt, Manfred

    2015-01-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-m regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  15. CARE-JRA2* Activities on Photo-Injectors and CLIC Test Facility (CTF3)

    CERN Document Server

    Rinolfi, Louis

    2005-01-01

    In the frame of the CARE project, there is a Joint Research Activity (JRA2) called PHIN (PHoto-INjectors). The main objective of this JRA is to perform Research and Development on charge-production by interaction of a laser pulse with material within RF fields and improve or extend existing infrastructures. Another activity of PHIN is the coordination of the activities of various Institutes concerning photo-injectors. A brief review of the work of the eight European laboratories involved in PHIN is presented. One of these R&D topics is the construction of a photo-injector for the CLIC Test Facility (CTF3). In this context the status of CTF3 and its main goals - the demonstration of the feasibility of the key issues of the CLIC two-beam acceleration scheme - is also presented.

  16. Status of a study of stabilization and fine positioning of CLIC quadrupoles to the nanometre level

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    Mechanical stability to the nanometre and below is required for the Compact Linear Collider (CLIC) quadrupoles to frequencies as low as 1 Hz. An active stabilization and positioning system based on very stiff piezo electric actuators and inertial reference masses is under study for the Main Beam Quadrupoles (MBQ). The stiff support was selected for robustness against direct forces and for the option of incrementally repositioning the magnet with nanometre resolution. The technical feasibility was demonstrated by a representative test mass being stabilized and repositioned to the required level in the vertical and lateral direction. Technical issues were identified and the development programme of the support, sensors, and controller was continued to increase the performance, integrate the system in the overall controller, adapt to the accelerator environment, and reduce costs. The improvements are implemented in models, test benches, and design of the first stabilized prototype CLIC magnet. The characterizati...

  17. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.

  18. Fast phase switching within the bunch train of the PHIN photo-injector at CERN using fiber-optic modulators on the drive laser

    CERN Document Server

    Divall Csatari, M; Bolzon, B; Bravin, E; Chevallay, E; Dobert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Mete, O; Petrarca, M; Rabiller, A N

    2011-01-01

    The future Compact Linear Collider (CLIC) e^-/e^+ collider is based on the two-beam acceleration concept, whereby interleaving electron bunches of the drive beam through a delay loop and combiner rings as well as high peak RF power at 12GHz are created locally to accelerate a second beam, the main beam. One of the main objectives of the currently operational CLIC Test Facility (CTF3) is to demonstrate beam combination from 1.5GHz to 12GHz, which requires satellite-free fast phase-switching of the drive beam with sub-ns speed. The PHIN photo-injector, with the photo-injector laser, provides flexibility in the time structure of the electron bunches produced, by direct manipulation of the laser pulses. A novel fiber modulator-based phase-switching technique allows clean and fast phase-switch at 1.5GHz. This paper describes the switching system based on fiber-optic modulators, and the measurements carried out on both the laser and the electron beam to verify the scheme.

  19. Fast phase switching within the bunch train of the PHIN photo-injector at CERN using fiber-optic modulators on the drive laser

    Science.gov (United States)

    ‘Csatari' Divall, M.; Andersson, A.; Bolzon, B.; Bravin, E.; Chevallay, E.; Döbert, S.; Drozdy, A.; Fedosseev, V.; Hessler, C.; Lefevre, T.; Livesley, S.; Losito, R.; Mete, Ö.; Petrarca, M.; Rabiller, A. N.

    2011-12-01

    The future Compact Linear Collider (CLIC) e-/e+ collider is based on the two-beam acceleration concept, whereby interleaving electron bunches of the drive beam through a delay loop and combiner rings as well as high peak RF power at 12 GHz are created locally to accelerate a second beam, the main beam. One of the main objectives of the currently operational CLIC Test Facility (CTF3) is to demonstrate beam combination from 1.5 GHz to 12 GHz, which requires satellite-free fast phase-switching of the drive beam with sub-ns speed. The PHIN photo-injector, with the photo-injector laser, provides flexibility in the time structure of the electron bunches produced, by direct manipulation of the laser pulses. A novel fiber modulator-based phase-switching technique allows clean and fast phase-switch at 1.5 GHz. This paper describes the switching system based on fiber-optic modulators, and the measurements carried out on both the laser and the electron beam to verify the scheme.

  20. Higgs and BSM physics at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)669060

    2015-01-01

    The Compact Linear Collider (CLIC) is a possible future multi-TeV linear electron-positron collider, offering the potential for a rich Standard Model physics programme and sensitivity to a wide range of phenomena beyond the Standard Model. The physics reach of CLIC has been studied for several centre-of-mass energies, motivating a staged construction and providing the opportunity for precise studies of the properties of the 125 GeV Higgs boson. Operation at a few hundred GeV allows the couplings and width of the Higgs to be determined in a model independent manner through the study of the Higgsstrahlung and WW-fusion processes. Operation at higher centre-of-mass energies, up to 3 TeV, provides higher statistics and the potential to study rare Higgs decays, the top Yukawa coupling and the Higgs self-coupling. The results at all energy stages are combined in a model independent global Higgs fit. The higher energy stages of CLIC are targeted to searches for physics beyond the Standard Model. Within the kinematic...

  1. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  2. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  3. The physics benchmark processes for the detector performance studies used in CLIC CDR Volume 3

    CERN Document Server

    Allanach, B.J.; Desch, K.; Ellis, J.; Giudice, G.; Grefe, C.; Kraml, S.; Lastovicka, T.; Linssen, L.; Marschall, J.; Martin, S.P.; Muennich, A.; Poss, S.; Roloff, P.; Simon, F.; Strube, J.; Thomson, M.; Wells, J.D.

    2012-01-01

    This note describes the detector benchmark processes used in volume 3 of the CLIC conceptual design report (CDR), which explores a staged construction and operation of the CLIC accelerator. The goal of the detector benchmark studies is to assess the performance of the CLIC ILD and CLIC SiD detector concepts for different physics processes and at a few CLIC centre-of-mass energies.

  4. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    Science.gov (United States)

    Tehrani, N. Alipour; Arfaoui, S.; Benoit, M.; Dannheim, D.; Dette, K.; Hynds, D.; Kulis, S.; Perić, I.; Petrič, M.; Redford, S.; Sicking, E.; Valerio, P.

    2016-07-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor, where efficiencies of greater than 99% have been achieved at -60 V substrate bias, with a single hit resolution of 6.1 μm . Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  5. Electro-Weak Fits at CLIC

    CERN Document Server

    De Curtis, S

    2002-01-01

    The aim of the future linear colliders is to extend the sensitivity to new physics beyond the reach of the LHC. Several models predict the existence of new vector resonances in the multi-TeV region. We review the existing limits on the masses of these new resonances from LEP/SLC and TEVATRON data and from the atomic parity violation measurements, in some specific models. We study the potential of a multi-TeV e+e- collider, such as CLIC, for the determination of their properties and nature.

  6. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  7. Combined Fits of CLIC Higgs Results for the Snowmass Process

    CERN Document Server

    Simon, F; Roloff, P

    2013-01-01

    This note presents three combined fits of CLIC Higgs physics results, a model- independent fit based on minimal assumptions and two model-dependent fits assuming that the total width is described by the sum of nine (seven) different visible final states with coupling parameters given by the deviation of the re- spective partial widths from their SM values. The input values are a snapshot of the CLIC Higgs analyses as of September 2013. The results demonstrate the capabilities of the full three-stage CLIC physics program for a precise ex- ploration of the Higgs sector.

  8. M10.3.4: CLIC crab cavity specifications completed

    CERN Document Server

    Dexter, A; Ambattu, P; Shinton, I; Jones, R

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  9. CLIC CRAB CAVITY SPECIFICATIONS MILESTONE: M10.3.4

    CERN Document Server

    Ambattu, P; Dexter, A; Jones, R; McIntosh, P; Shinton, I

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  10. Mechanical design of a pre-isolator for the CLIC final focusing magnets

    CERN Document Server

    Gaddi, A; Ramos, F; Siegrist, N

    2012-01-01

    Due to the very small vertical beam sizes, the final focusing elements at the future CLIC linear collider need to be stable against vibrations to below 0.15 nanometres at frequencies above about 4 Hz. One of the key elements in the strategy to achieve such a stable environment is a passive, heavy pre-isolator. In this report, the results from the dynamic finite element analyses of the proposed design for such a passive preisolator are summarized. Furthermore, the results from a low frequency, heavy mass passive vibration isolation test set-up used to validate the calculations are shown.

  11. Measurement of the Higgs decay to electroweak bosons at low and intermediate CLIC energies

    CERN Document Server

    AUTHOR|(SzGeCERN)471575; Milutinovic-Dumbelovic, Gordana; Pandurovic, Mila; Lukic, Strahinja

    2016-01-01

    In this paper a simulation of measurements of the Higgs boson decay to electroweak bosons in $e^+e^-$ collisions at CLIC is presented. Higgs boson production and subsequent $H\\rightarrow ZZ^\\ast$ and $H\\rightarrow WW^\\ast$ decay processes were simulated alongside the relevant background processes at 350 GeV and 1.4 TeV center-of-mass energy. Full detector simulation and event reconstruction were used under realistic beam conditions. The achievable statistical precision of the measured product of the Higgs production cross section and the branching ratio for the analysed decays has been determined.

  12. Integration of the PHIN RF Gun into the CLIC Test Facility

    CERN Document Server

    Döbert, Steffen

    2006-01-01

    CERN is a collaborator within the European PHIN project, a joint research activity for Photo injectors within the CARE program. A deliverable of this project is an rf Gun equipped with high quantum efficiency Cs2Te cathodes and a laser to produce the nominal beam for the CLIC Test Facility (CTF3). The nominal beam for CTF3 has an average current of 3.5 A, 1.5 GHz bunch repetition frequency and a pulse length of 1.5 ìs (2332 bunches) with quite tight stability requirements. In addition a phase shift of 180 deg is needed after each train of 140 ns for the special CLIC combination scheme. This rf Gun will be tested at CERN in fall 2006 and shall be integrated as a new injector into the CTF3 linac, replacing the existing injector consisting of a thermionic gun and a subharmonic bunching system. The paper studies the optimal integration into the machine trying to optimize transverse and longitudinal phase space of the beam while respecting the numerous constraints of the existing accelerator. The presented scheme...

  13. Top quark mass measurements at and above threshold at CLIC

    CERN Document Server

    Seidel, Katja; Tesar, Michal; Poss, Stephane

    2013-01-01

    We present a study of the expected precision of the top quark mass determination, measured at a linear $e^+e^-$ collider based on CLIC technology. GEANT4-based detector simulation and full event reconstruction including realistic physics and beam-induced background levels are used. Two different techniques to measure the top mass are studied: The direct reconstruction of the invariant mass of the top quark decay products and the measurement of the mass together with the strong coupling constant in a threshold scan, in both cases including first studies of expected systematic uncertainties. For the direct reconstruction, experimental uncertainties around 100 MeV are achieved, which are at present not matched by a theoretical understanding on a similar level. With a threshold scan, total uncertainties of around 100 MeV are achieved, including theoretical uncertainties in a well-defined top mass scheme. For the threshold scan, the precision at ILC is also studied to provide a comparison of the two linear collide...

  14. The synchro laser system for the CLIC Test Facility

    International Nuclear Information System (INIS)

    The CLIC Test Facility at CERN uses a laser driven 3 GHz electron gun. Considerable effort has been spent to develop a laser system, which meets the requirements of the Test Facility. The laser is based on a diode-pumped ND:YLF mode-locked oscillator. It delivers a 250 MHz train of laser pulses at 1047 nm with a length of 6.6 ps. A phase-locked timing stabilizer is used to synchronize the laser with the rf-gun. One or two pulses are amplified to 10 mJ. The amplifier system is based on a regenerative amplifier and two single pass power amplifiers. A set of harmonic generators deliver laser pulses at 523 nm, 262 nm and optional at 209nm. The measured pulse length after amplification and harmonic generations is 8 ± 2 ps (FWHM). A good pointing stability and a reasonable uniform transverse profile is obtained by relay imaging and spatial filtering. For some experiments, a train of electron bunches is used. A new pulse train generator working at 262 nm was developed to split the laser beam into 12 pulses. The simultaneous amplification of two seed laser pulses gives the possibility to double the number of pulses in the train without the need to add further splitting stages

  15. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  16. A high resolution cavity BPM for the CLIC Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Chritin, N.; Schmickler, H.; Soby, L.; /CERN; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.; /Fermilab

    2010-08-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  17. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretched-wire RF measurements

    Science.gov (United States)

    Zorzetti, Silvia; Fanucci, Luca; Galindo Muñoz, Natalia; Wendt, Manfred

    2015-09-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  18. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretched-wire RF measurements

    International Nuclear Information System (INIS)

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-μm regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method. (paper)

  19. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  20. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2016-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  1. Initial measurements on a prototype inductive adder for the CLIC kicker systems

    CERN Document Server

    Holma, Janne

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. To achieve ultra-flat pulses with a fast rise time the output impedance of the inductive adder needs to be well matched to the system impedance. The parasitic circuit elements of the inductive adder have a significant effect upon the output impedance and these values are very difficult to calculate accurately analytically. To predict these paramet...

  2. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  3. Modeling of the influence of the driving laser wavelength on the beam quality of transiently pumped X-ray lasers

    Science.gov (United States)

    Le Pape, S.; Zeitoun, Ph.

    2003-04-01

    A three dimensional ray tracing code (SHADOX) has been developed, as a post-processor of any hydrodynamic/atomic code, to model X-ray laser beam propagation along the amplifying medium and any optical component. In this paper we show a study aimed to investigate the influence of the long driving pulse wavelength on the transiently pumped X-ray laser propagation and amplification. Different pumping configurations have been modeled and their respective influence on the beam quality has been investigated. This work shows that the beam homogeneity is highly sensitive to both the emissive zone dimension and electron density gradient and that pumping by a double pulse in a two-color configuration (2 ω/ ω; Δt=200 ps) is favorable in terms of beam quality.

  4. Isolating and quantifying cross-beam energy transfer in direct-drive implosions on OMEGA and the National Ignition Facility

    Science.gov (United States)

    Davis, A. K.; Cao, D.; Michel, D. T.; Hohenberger, M.; Edgell, D. H.; Epstein, R.; Goncharov, V. N.; Hu, S. X.; Igumenshchev, I. V.; Marozas, J. A.; Maximov, A. V.; Myatt, J. F.; Radha, P. B.; Regan, S. P.; Sangster, T. C.; Froula, D. H.

    2016-05-01

    The angularly resolved mass ablation rates and ablation-front trajectories for Si-coated CH targets were measured in direct-drive inertial confinement fusion experiments to quantify cross-beam energy transfer (CBET) while constraining the hydrodynamic coupling. A polar-direct-drive laser configuration, where the equatorial laser beams were dropped and the polar beams were repointed from a symmetric direct-drive configuration, was used to limit CBET at the pole while allowing it to persist at the equator. The combination of low- and high-CBET conditions observed in the same implosion allowed for the effects of CBET on the ablation rate and ablation pressure to be determined. Hydrodynamic simulations performed without CBET agreed with the measured ablation rate and ablation-front trajectory at the pole of the target, confirming that the CBET effects on the pole are small. The simulated mass ablation rates and ablation-front trajectories were in excellent agreement with the measurements at all angles when a CBET model based on Randall's equations [C. J. Randall et al., Phys. Fluids 24, 1474 (1981)] was included into the simulations with a multiplier on the CBET gain factor. These measurements were performed on OMEGA and at the National Ignition Facility to access a wide range of plasma conditions, laser intensities, and laser beam geometries. The presence of the CBET gain multiplier required to match the data in all of the configurations tested suggests that additional physics effects, such as intensity variations caused by diffraction, polarization effects, or shortcomings of extending the 1-D Randall model to 3-D, should be explored to explain the differences in observed and predicted drive.

  5. Multi-step lining-up correction of the CLIC trajectory

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction dep...

  6. CLIC/ILC Researchers Explore New Avenues for Collaboration

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    Researchers from CLIC and ILC met for their first common International Workshop on Linear Colliders, which was held in Geneva from 18 to 22 October. Although the talks were mostly scientific and technical, the political message behind them was a breakthrough, as the workshop showed the progress made in unifying the two communities.   The International Workshop on Linear Colliders (IWLC), which was organised by the European Committee for Future Accelerators, hosted by CERN, and held at CERN and the International Conference Centre in Geneva, attracted a large audience of about 500 experts. Although there have been other joint conferences between the CLIC and ILC communities before, they have all been focused on specific technical and/or managerial issues. The IWLC was part of an ongoing effort by CLIC and ILC to provide an environment in which researchers can exchange ideas, inform their peers about their most recent achievements and work together on common issues. Given the possible technical ov...

  7. First Magnetic Tests of a Superconducting Damping Wiggler for the CLIC Damping Rings

    CERN Document Server

    Schoerling, D; Bernhard, A; Karppinen, M; Maccaferri, R; Peiffer, P; Rossmanith, R

    2010-01-01

    Each of the proposed CLIC electron and positron damping rings will be equipped with 76 wigglers. The length of each wiggler is 2 m, the period length lambda 40 to 50 mm, and the beam-stay-clear gap 13 mm. The minimum required mid-plane field B0 is 2.5 T, that can only be obtained with superconducting technologies. In order to demonstrate the feasibility of such a wiggler, a short model with a period length of 40mm was built and successfully tested at CERN. The measured mid-plane field was 2 T at 4.2K and 2.5 T at 1.9 K in the center of a 16mm gap. The currents were 730 and 910 A, respectively. To fulfill the field specification for the CLIC damping rings at 4.2 K it is planned to replace the Nb-Ti wire with a Nb3Sn wire.

  8. Higgs Physics at the CLIC Electron-Positron Linear Collider

    CERN Document Server

    Roloff, Philipp Gerhard

    2016-01-01

    The Compact Linear Collider (CLIC) is an option for a future $e^+e^-$ collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, $\\sqrt{s} =$ 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ($e^+e^-\\to ZH$) and $WW$-fusion ($e^+e^-\\to H\

  9. Single Z' production at CLIC based on e^- gamma collisions

    OpenAIRE

    Soa, D. V.; H.N. Long(Institute of Physics, VAST, 10 Dao Tan, Ba Dinh, Hanoi, Vietnam); Binh, D. T.; Khoi, D. P.

    2003-01-01

    We analyze the potential of CLIC based on e- gamma collisions to search for new $Z'$ gauge boson. Single Z' production at e-gamma colliders in two SU(3)_C X SU(3)_L X U(1)_N models: the minimal model and the model with right-handed (RH) neutrinos is studied in detail. Results show that new Z' gauge bosons can be observed at the CLIC, and the cross sections in the model with RH neutrinos are bigger than those in the minimal one.

  10. Vertex-Detector R&D for CLIC

    CERN Document Server

    Dannheim, D

    2014-01-01

    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the current status of R&D on sensors, readout and detector integration is presented.

  11. Grid Interface Design for the Compact Linear Collider (CLIC)

    CERN Document Server

    Jankovic, Maria; Clare, Jon; Wheeler, Pat; Aguglia, Davide

    2015-01-01

    This paper discusses the grid interface challenges for CERN’s proposed Compact Linear Colliders’ (CLIC) klystron modulators, including a 280 MW power system optimisation. The modular multilevel converter is evaluated as a candidate topology for a Medium Voltage grid interface along with a control method for reducing the impact of klystron modulators on the electrical network.

  12. Physics performances for Z' searches at 3 TeV and 1.5 TeV CLIC

    CERN Document Server

    Blaising, Jean-Jacques

    2012-01-01

    Extra neutral gauge bosons (Z') are predicted in many extensions of the Standard Model (SM). In the minimal anomaly-free Z' model (AFZ'), the phenomenology is controlled by only three parameters beyond the SM ones, the Z' mass and two effective coupling constants g'_Y and g'_{BL}. We study the Z' 5-sigma discovery potential in e+e- collisions at 1.4 and 3 TeV CLIC. Assuming LHC discovers a Z' of 5 TeV mass, the expected accuracies on the Z'mu+mu- couplings are presented. We discuss also the requirements on detector performance and beam polarization.

  13. Beam smoothing and temporal effects: optimized preparation of laser beams for direct-drive inertial confinement fusion

    International Nuclear Information System (INIS)

    Direct-drive laser fusion received a number of setbacks from the experimental observation in the 1960s and 1970s of very complex interactions in laser plasma experiments caused by a number of nonlinear and anomalous phenomena. Although smoothing methods were introduced intuitively or empirically -succeeding in reducing these difficulties - it was not until a few years ago that the 20-ps stochastic pulsation mechanism was discovered. We assume here that this 20 ps stochastic pulsation may be the major obstacle to achieving direct-drive fusion, even though it is now generally assumed that the major challenge to the achievement of direct-drive fusion is the Rayleigh-Taylor instability. While we do not discount the importance of the Rayleigh-Taylor mechanisms, we concentrate here on the analysis of the pulsation process. A method of analysis was developed, using, time-dependent real-time computations employing a genuine two-fluid model, which includes the interior electric fields and the very large amplitude longitudinal plasma oscillations that are driven by the laser field. These mechanisms, which were first suggested in 1974, reveal themselves now as self-generated von-Laue gratings, preventing the propagation of laser radiation through the outermost plasma corona and preventing energy deposition by temporal interuption caused by thermal relaxation and the subsequent reestablishment of these gratings, and so on. The abolition of this pulsation by broad-band laser irradiation or other smoothing methods is now well understood. A synopsis of these developments is presented here consistent with Rubbia's proposition of using the MJ drivers for laser fusion, the technology for which is now available. (author)

  14. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  15. Initial study on the shape optimisation of the CLIC crab cavity

    CERN Document Server

    Ambattu, P K; Carter, R G; Dexter, A C; Jones, R M; McIntosh, P

    2008-01-01

    The compact linear collider (CLIC) requires a crab cavity to align bunches prior to collision. The bunch structure demands tight amplitude and phase tolerances of the RF fields inside the cavity, for the minimal luminosity loss. Beam loading effects require special attention as it is one potential sources of field errors in the cavity. In order to assist the amplitude and phase control, we propose a travelling wave (TW) structure with a high group velocity allowing rapid propagation of errors out of the system. Such a design makes the cavity structure significantly different from previous ones. This paper will look at the implications of this on other cavity parameters and the optimisation of the cavity geometry.

  16. Interaction of Human Chloride Intracellular Channel Protein 1 (CLIC1) with Lipid Bilayers: A Fluorescence Study.

    Science.gov (United States)

    Hare, Joanna E; Goodchild, Sophia C; Breit, Samuel N; Curmi, Paul M G; Brown, Louise J

    2016-07-12

    Chloride intracellular channel protein 1 (CLIC1) is very unusual as it adopts a soluble glutathione S-transferase-like canonical fold but can also autoinsert into lipid bilayers to form an ion channel. The conversion between these forms involves a large, but reversible, structural rearrangement of the CLIC1 module. The only identified environmental triggers controlling the metamorphic transition of CLIC1 are pH and oxidation. Until now, there have been no high-resolution structural data available for the CLIC1 integral membrane state, and consequently, a limited understanding of how CLIC1 unfolds and refolds across the bilayer to form a membrane protein with ion channel activity exists. Here we show that fluorescence spectroscopy can be used to establish the interaction and position of CLIC1 in a lipid bilayer. Our method employs a fluorescence energy transfer (FRET) approach between CLIC1 and a dansyl-labeled lipid analogue to probe the CLIC1-lipid interface. Under oxidizing conditions, a strong FRET signal between the single tryptophan residue of CLIC1 (Trp35) and the dansyl-lipid analogue was detected. When considering the proportion of CLIC1 interacting with the lipid bilayer, as estimated by fluorescence quenching experiments, the FRET distance between Trp35 and the dansyl moiety on the membrane surface was determined to be ∼15 Å. This FRET-detected interaction provides direct structural evidence that CLIC1 associates with membranes. The results presented support the current model of an oxidation-driven interaction of CLIC1 with lipid bilayers and also propose a membrane anchoring role for Trp35. PMID:27299171

  17. Coherent electron beam density modulator for driving X-ray free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Novokhatski, A., E-mail: novo@slac.stanford.edu; Decker, F.-J.; Hettel, B.; Nosochkov, Yu.; Sullivan, M.

    2015-02-21

    We propose a new compact scheme for a Free Electron Laser with more coherent properties for the X-ray beam. Higher FEL performance would be achieved using a train of electron bunches initially accelerated in a linear accelerator. Similar to the RF klystron concept, we propose developing an X-ray FEL which consists of two parts: an X-ray self-seeding electron beam density modulator and an output set of undulators. A density modulator consists of a low-Q X-ray cavity and an undulator, which is placed between the cavity mirrors. We use this undulator as a very high gain amplifier, which compensates the amplitude loss due to monochromatic X-ray reflections from the mirrors. Following the X-ray cavity, the density modulated electron beam is separated from the X-ray beam and then enters the output set of undulators. The frequency spectrum of the final X-ray beam is determined mainly by the bandwidth of the reflected elements in the X-ray cavity.

  18. Simulation of the CLIC transfer structure by means of MAFIA

    Science.gov (United States)

    Millich, Antonio

    1993-12-01

    The function of the CTS is to extract 30 GHz power from the drive beam and to make it available for the acceleration of the main beam. The simulation of a six cells section of the CTS using the MAFIA set of codes has provided the designers of the structure with a set of RF parameters at 30 GHz. The frequency domain analysis has allowed the plotting of the dispersion curves for the first few pass bands, whereas the time domain analysis has provided results on the shape and magnitude of the longitudinal and transverse wake fields and of the loss factors.

  19. Issues and Feasibility Demonstration of Positioning Closed Loop Control for the CLIC Supporting System Using a Test Mock-up with Five Degrees of Freedom

    CERN Document Server

    Sosin, M; Chritin, N; Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    Since several years, CERN is studying the feasibility of building a high energy e+ e- linear collider: the CLIC (Compact LInear Collider). One of the challenges of such a collider is the pre-alignment precision and accuracy requirement on the transverse positions of the linac components, which is typically 14 μm over a window of 200 m. To ensure the possibility of positioning within such tight constraints, CERN Beams Department’s Survey team has worked intensively at developing the methods and technology needed to achieve that objective. This paper describes activities which were performed on a test bench (mock-up) with five degrees of freedom (DOF) for the qualification of control algorithms for the CLIC supporting system active-pre-alignment. Present understanding, lessons learned (“know how”), issues of sensors noise and mechanical components nonlinearities are presented.

  20. Four Pulse Drive System for the Beam Induction Cells and Injector for DARHT Axis 2

    International Nuclear Information System (INIS)

    The proposed drive system allows for the generation of up to four (4) high-quality radiographic pulses along one line-of-sight, having arbitrary pulse spacing (approximately500 ns), using demonstrated technologies. This concept uses a four-pulse drive system to drive both a 16-MeV ensemble of 250-kV, 4-kA induction cells and a four-pulse, 4-MeV injector. The key to this approach lies in the method used to combine four pulses from different generators in a manner that does not compromise the voltage flatness requirement of ± 1%. The induction cells use core material for only a single pulse. A simple reverse bias circuit is used to reset the cores between pulses, and the insulator has been redesigned to withstand the reverse reset voltage. This approach can be installed in stages so that the facility can be used for dual axis radiography while implementing the multi-pulsing capability. A dual double-pulse format has been identified which provides a sequence of two pulses along one line-of-sight within a 2-microsec window. The 2-microsec windows can be separated by arbitrary time intervals of 2- to 10-microsec

  1. Development and Validation of a Multipoint Based Laser Alignment System for CLIC

    CERN Document Server

    Stern, G; Lackner, F; Mainaud-Durand, H; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2013-01-01

    Alignment is one of the major challenges within CLIC study, since all accelerator components have to be aligned with accuracy up to 10 μm over sliding windows of 200 m. So far, the straight line reference concept has been based on stretched wires coupled with Wire Positioning Sensors. This concept should be validated through inter-comparison with an alternative solution. This paper proposes an alternative concept where laser beam acts as straight line reference and optical shutters coupled with cameras visualise the beam. The principle was first validated by a series of tests using low-cost components. Yet, in order to further decrease measurement uncertainty in this validation step, a high-precision automatised micrometric table and reference targets have been added to the setup. The paper presents the results obtained with this new equipment, in terms of measurement precision. In addition, the paper gives an overview of first tests done at long distance (up to 53 m), having emphasis on beam divergence

  2. Optimum frequency and gradient for the CLIC main linac accelerating structure

    CERN Document Server

    Grudiev, A; Wuensch, Walter

    2006-01-01

    A novel procedure for the optimization of CLIC main linac parameters including operating frequency and the accelerating gradient is presented. The optimization procedure takes into account both beam dynamics and high power rf constraints. Beam dynamics constraints are given by emittance growth due to short- and long-range transverse wakefields. RF constraints are given by rf breakdown and pulsed surface heating limitations of the accelerating structure. Interpolation of beam and structure parameters in a wide range allows hundreds of millions of accelerating structures to be analyzed to find the structure with the highest ratio of luminosity to main linac input power, which is used as the figure of merit. The frequency and gradient have been varied in the ranges 12-30 GHz and 90-150 MV/m respectively. It is shown that the optimum frequency lies in the range from 16 to 20 GHz depending on the accelerating gradient and that the optimum gradient is below 100 MV/m. Based on our current understanding of the constr...

  3. CLIC Detector Concepts as described in the CDR: Differences between the GEANT4 and Engineering Models

    CERN Document Server

    Elsener, K; Schlatter, D; Siegrist, N

    2011-01-01

    The CLIC_ILD and CLIC_SiD detector concepts as used for the CDR Vol. 2 in 2011 exist both in GEANT4 simulation models and in engineering layout drawings. At this early stage of a conceptual design, there are inevitably differences between these models, which are described in this note.

  4. Scalar leptoquark production at TESLA and CLIC based eγ colliders

    International Nuclear Information System (INIS)

    We study scalar leptoquark production at TESLA and CLIC based eγ colliders. Both direct and resolved contributions to the cross section are examined. We find that the masses of scalar leptoquarks can be probed up to about 0.9 TeV at TESLA and 2.6 TeV at CLIC. (orig.)

  5. Scalar leptoquark production at TESLA and CLIC based e-gamma colliders

    OpenAIRE

    Cakir, O.; Ateser, E.; Koru, H.

    2002-01-01

    We study scalar leptoquark production at TESLA and CLIC based e-gamma colliders. Both direct and resolved contributions to the cross section are examined. We find that the masses of scalar leptoquarks can be probed up to about 0.9 TeV at TESLA and 2.6 TeV at CLIC.

  6. CEBAF [Continuous Electron Beam Accelerator Facility] superconducting cavity rf drive system

    International Nuclear Information System (INIS)

    The CEBAF rf system consists of 418 individual rf amplifier chains. Each superconducting cavity is phase locked to the master drive reference line to within 1 degree, and the cavity field gradient is regulated to within 1 part in 104 by a state-of-the-art rf control module. Precision, continuously adjustable, modulo 3600 phase shifters are used to generate the individual phase references, and a compensated rf detector is used for level feedback. The close coupled digital system enhances system accuracy, provides self-calibration, and continuously checks the system for malfunction. Calibration curves, the operating program, and system history are stored in an on board EEPROM. The rf power is generated by a 5kW, water cooled, permanent magnet focused klystron. The klystrons are clustered in groups of 8 and powered from a common supply. rf power is transmitted to the accelerator sections by semiflexible waveguide

  7. Photon backgrounds at the CLIC interaction point due to losses in the post-collision extraction line

    CERN Document Server

    Salt, M D; Elsener, K; Ferrari, A

    2010-01-01

    The CLIC beam delivery system focuses 1.5~TeV electron and positron beams to a nanometre-sized cross section when colliding them at the interaction point (IP). The intense focusing leads to large beam-beam effects, causing the production of beamstrahlung photons, coherent and incoherent $e^+e^-$ pairs, as well as a significant disruption of the main beam. The transport of the post-collision beams requires a minimal loss extraction line, with high acceptance for energy deviation and divergence. The current design includes vertical bends close to the IP in order to separate the charged particles with a sign opposite to the main beam into a diagnostic-equipped intermediate dump, whilst transporting the photons and the main beam to the final dump. Photon and charged particle losses on magnet masks and dumps result in a complex radiation field and IP background particle fluxes. In this paper, the electromagnetic backgrounds at the IP arising from the losses occurring closest to the collision point are calculated.

  8. Design and Manufacturing Description of the Prototype Striplines for the Extraction Kicker of the CLIC Damping Rings

    CERN Document Server

    Belver-Aguilar, C; Faus-Golfe, A; Gómez, J; Gutiérrez, D; Toral, F

    2013-01-01

    The Pre-Damping Rings (PDRs) and Damping Rings (DRs) of CLIC are needed to reduce the beam emittances to the small values required for the main linacs. The injection and extraction, from the PDRs and DRs, are carried out by kicker systems. In order to achieve both low beam coupling impedance and reasonable broadband impedance matching to the electrical circuit, striplines have been chosen for the kicker elements. The design of the stripline kicker was previously carried out by modelling the striplines with simulation codes such as HFSS, Quickfield and CST Particle Studio. In order to have a complete analysis of the striplines, the effect of electrode supports and coaxial feedthroughs have been studied in detail. In this paper, electromagnetic analyses of the complete striplines, including fabrication tolerances, are reported. Furthermore, a new idea for impedance matching is presented.

  9. Improvements in the synthesis of highly focused ultrasonic beams using the negative-time part of the 0-order X-wave driving signals

    Science.gov (United States)

    Castellanos, Luis; Ramos, Antonio; Calás, Hector; Bazán, Ivonne

    2015-05-01

    The classical 0-order X-wave is a limited-diffraction solution for the scalar wave equation and provides good beam focusing along a large depth, for instance, in high-resolution ultrasonic imaging. In this work, only the negative-time parts of 0-order X-waves are used like driving signals for a Bessel array in order to produce a highly focused acoustic field over a line. This approach maintains the advantages provided by the conventional 0-order X-waves, large depth of focused field with low lateral beam spreading, using only one emission shot. Some achievements obtained by using the proposed technique are a low energy and lower cost to drive the piezoelectric elements while maintaining a similar depth of field and beamwidth as those of the conventional method, a lower space extension of sidelobes, and easier control of the electrical driving system. Theoretical and experimental results support these hypotheses, and confirm the improvements obtained.

  10. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  11. A Trajectory Correction based on Multi-Step Lining-up for the CLIC Main Linac

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory method described in this Note retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mai...

  12. Design of a highly segmented Endcap at a CLIC detector

    CERN Document Server

    Gerwig, H; Siegrist, N

    2010-01-01

    This technical note describes a possible design for a highly segmented end-cap at a CLIC detector with a strong magnetic field up to 5 Tesla. Reinforcement is horizontal in order to allow an insertion of the muon chambers from the side. Construction issues, assembly questions as well as muon chamber access and support questions have been studied. A FEA analysis to optimize dead space for physics and checking the weakening effect of alignment channels through the end-cap have been performed.

  13. Status of the Fatigue Studies on the CLIC Accelerating Structures

    CERN Document Server

    Calatroni, S; Neupert, H; Wuensch, Walter; CERN. Geneva

    2006-01-01

    The need for high accelerating gradients for the future multi-TeV e+e- Compact Linear Collider (CLIC) imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF (Radio Frequency) currents are subject to cyclic thermal stresses which are expected to induce surface break up by fatigue. Since no fatigue data exists in the literature up to very large numbers of cycles and for the particular stress pattern present in RF cavities, a comprehensive study of copper alloys in this parameter range has been initiated. Fatigue data for selected copper alloys in different states are presented

  14. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  15. A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2015-08-01

    Full Text Available The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing.

  16. A Framework for Applying Point Clouds Grabbed by Multi-Beam LIDAR in Perceiving the Driving Environment

    Science.gov (United States)

    Liu, Jian; Liang, Huawei; Wang, Zhiling; Chen, Xiangcheng

    2015-01-01

    The quick and accurate understanding of the ambient environment, which is composed of road curbs, vehicles, pedestrians, etc., is critical for developing intelligent vehicles. The road elements included in this work are road curbs and dynamic road obstacles that directly affect the drivable area. A framework for the online modeling of the driving environment using a multi-beam LIDAR, i.e., a Velodyne HDL-64E LIDAR, which describes the 3D environment in the form of a point cloud, is reported in this article. First, ground segmentation is performed via multi-feature extraction of the raw data grabbed by the Velodyne LIDAR to satisfy the requirement of online environment modeling. Curbs and dynamic road obstacles are detected and tracked in different manners. Curves are fitted for curb points, and points are clustered into bundles whose form and kinematics parameters are calculated. The Kalman filter is used to track dynamic obstacles, whereas the snake model is employed for curbs. Results indicate that the proposed framework is robust under various environments and satisfies the requirements for online processing. PMID:26404290

  17. Higgs Physics at the CLIC Electron-Positron Linear Collider

    CERN Document Server

    Abramowicz, H; Afanaciev, K; Tehrani, N Alipour; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J -J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Gutierrez, M A Díaz; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Codina, E Perez; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Pinto, M Vicente Barreto; Vila, I; Gonzalez, M Vogel; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I -S

    2016-01-01

    The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper presents the Higgs physics reach of CLIC operating in three energy stages, sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- -> ZH) and WW-fusion (e+e- -> Hnunu), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma_H, and model-independent determinations of the Higgs couplings. Operation at sqrt(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+e- -> ttH and e+e- -> HHnunu would allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of...

  18. Measurement of σ (e+e− → Hνν)×BR(H → ττ) at CLIC @ 350 GeV

    CERN Document Server

    Münnich, A

    2012-01-01

    This detector benchmark study evaluates the statistical precision with which the H → ττ branching ratio times cross section can be measured at CLIC running at s = 350 GeV. Only the hadronic decay of τs are considered. Results for MH = 126 GeV and 500 fb−1 of integrated luminosity are obtained using full de- tector simulation and including beam-induced backgrounds resulting in a statistical accuracy of cross section times branching ratio of 6.2%.

  19. Planned Contributions of The Wcrp Climate and Cryosphere (clic) Project To Mountain Hydrological Studies

    Science.gov (United States)

    Barry, R. G.

    Formal discussions within the World Climate Research Programme (WCRP) since 1997 have addressed the question of the role of the cryosphere in the climate system. An outcome has been the approval in March 2000 of a Science and Co-ordination Plan for a new Climate and Cryosphere (CliC) project by the WCRP Joint Scientific Com- mittee in March 2000. The concept of this plan (WCRP, 2001) and particular topics of concern for high-mountain hydrology are discussed here. The proposed definition of the cryosphere is that portion of the climate system consisting of the world's ice masses and snow deposits. of relevance for mountains are: ice caps and glaciers, sea- sonal snow cover, lake and river ice, and seasonally frozen ground and permafrost. Existing projects both within the framework of the WCRP, as well as of the IGBP are mainly regional and links into the global climate research effort are not sufficiently comprehensive. The WCRP GEWEX project has cryospheric components concerning the high latitude hydrological cycle, but mountain studies are currently only in Ti- bet. Other relevant programs include: the IGBP-BAHC Mountain Research Initiative, Global Land Ice Measurements from Space (GLIMS), and Permafrost and Climate in Europe (PACE), for example. Integration of existing cryospheric projects within a global research structure, together with new efforts addressing current gaps, is re- quired in order to: - enhance links between regional and global climatic components studies, - promote appropriate treatment of cryospheric processes in climate models, and - assemble and make accessible quality controlled, well documented, comprehen- sive and coherent global gridded data sets necessary for driving and validating climate models. The principal scientific questions relating to the cryosphere in mountain re- gions concern: - glacier melt contributions to global sea level change, - the energy and water cycle in regions with land ice, snow cover and frozen ground, - the

  20. Physics performances for Scalar Electron, Scalar Muon and Scalar Neutrino searches at 3 TeV and 1.4 TeV at CLIC

    CERN Document Server

    Battaglia, Marco; Marshall, John S; Thomson, Mark; Sailer, Andre; Poss, Stephan; van der Kraaij, Erik

    2013-01-01

    The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within t...

  1. The occupancy in the Hadronic Calorimeter endcap of the CLIC detector

    CERN Document Server

    van Dam, S.B.

    2014-01-01

    To achieve the optimal physics performance of a detector for a linear electron–positron col- lider it is essential to minimize the effect of the beam-induced background. Incoherent electron–positron pairs shower in the very forward region of the CLIC detector and cause a too high occupancy of approximately 80% in the inner radius of the HCal endcap. The occupancy is studied by performing full detector simulations and reduced by changing the material and thickness of the support tube that serves as shielding. The effect of the tile size in the HCal endcap is also studied. A minimal occupancy of ⇠ 4% in the HCal inner radius can be reached with a thick tungsten support tube. When taking a more realistic engineering point of view into account and including polyethylene, an occupancy of ⇠ 8% is achieved. These results show that it is possible to reduce the occupancy due to incoherent pairs in the HCal endcap to a similar level as that due to gg ! hadrons events.

  2. Choke-Mode Damped Structure Design for the CLIC Main Linac

    CERN Document Server

    Zha, Hao; Tang, Chuanxiang; Huang, Wenhui; Shi, Jiaru; Grudiev, Alexej; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design for the accelerating structures of main linacs of the compact linear collider (CLIC). Choke-mode structures have the potential for much lower pulsed temperature rise, and lower cost of manufacture and fabrication. A new kind of choke-mode structure was proposed and simulated by Gdfidl. This structures has comparable wakefield damping effect as the baseline design of CLIC main linacs.

  3. An automatic driving system for a Baker's garlic [Allium chinense] planter: Development of the infrared beam guidance system

    International Nuclear Information System (INIS)

    We have developed a tractor attachment type semi-automatic Baker's garlic (shallot) planter to save hard labor requirement during planting. The velocity of the tractor in operation is so slow (2 to 3m/min) that the tractor driver is forced to tie his hands for a long time. This is an obstacle to its diffusion, because farm managers have to drive their own tractors by themselves in most Japanese farmhouses, yet they have to do other jobs during the planting season. We designed a new automatic driving system that consists of one infrared beam radiator and two infrared beam receivers to solve this problem. The infrared radiator is located in front of the tractor and shows the infrared guideline of tractor path. The infrared receivers are equipped on the front of the tractor and detect the infrared from the radiator. The receivers are arranged symmetrically at 4.5 degree from the center of the tractor. So the misalignment of the tractor creates a difference in sensitivity and it is possible to distinguish the tractor direction against the infrared beam. This system was tested under the sand dune field conditions with the tractor that was converted to automatic driving. The results show the system can effectively steer about 80 m automatically with an almost straight path, and the error from the starting point is within 0.1 m

  4. Analysis of SUSY Heavy Higgs events at CLIC

    CERN Document Server

    Quevillon, J

    2009-01-01

    This paper reports the results of a study of the supersymmetric neutral heavy Higgs boson production channel e+e− → H◦A◦ → bb ̄bb ̄ at √s = 3 TeV. Reconstruction of data simulated at generator level shows a significant degradation of SUSY Heavy Higgs signal caused by γγ to hadrons background at s = 3 TeV. The importance of analysis procedures such as event cuts and transversal momentum cuts during jet-clustering to reduce the impact of the hadron background is underlined. Reconstruction at both the generator level and at the level of a full detector simulation forces us to introduce cuts to improve the quality of the results. This note describes a preliminary study of SUSY Heavy Higgs at CLIC - a more detailed paper on an extended study is in preparation.

  5. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  6. Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air–Water Interface

    Science.gov (United States)

    Hossain, Khondker R.; Al Khamici, Heba; Holt, Stephen A.; Valenzuela, Stella M.

    2016-01-01

    CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre-incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1-cholesterol pre-complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels. PMID:26875987

  7. Cholesterol Promotes Interaction of the Protein CLIC1 with Phospholipid Monolayers at the Air–Water Interface

    Directory of Open Access Journals (Sweden)

    Khondker R. Hossain

    2016-02-01

    Full Text Available CLIC1 is a Chloride Intracellular Ion Channel protein that exists either in a soluble state in the cytoplasm or as a membrane bound protein. Members of the CLIC family are largely soluble proteins that possess the intriguing property of spontaneous insertion into phospholipid bilayers to form integral membrane ion channels. The regulatory role of cholesterol in the ion-channel activity of CLIC1 in tethered lipid bilayers was previously assessed using impedance spectroscopy. Here we extend this investigation by evaluating the influence of cholesterol on the spontaneous membrane insertion of CLIC1 into Langmuir film monolayers prepared using 1-palmitoyl-2-oleoylphosphatidylcholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-ethanolamine and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine alone or in combination with cholesterol. The spontaneous membrane insertion of CLIC1 was shown to be dependent on the presence of cholesterol in the membrane. Furthermore, pre-incubation of CLIC1 with cholesterol prior to its addition to the Langmuir film, showed no membrane insertion even in monolayers containing cholesterol, suggesting the formation of a CLIC1-cholesterol pre-complex. Our results therefore suggest that CLIC1 membrane interaction involves CLIC1 binding to cholesterol located in the membrane for its initial docking followed by insertion. Subsequent structural rearrangements of the protein would likely also be required along with oligomerisation to form functional ion channels.

  8. Effects of rf breakdown on the beam in the Compact Linear Collider prototype accelerator structure

    OpenAIRE

    Palaia, Andrea; Jacewicz, Marek; Ruber, Roger; Ziemann, Volker; Farabolini, Wilfrid

    2013-01-01

    Understanding the effects of rf breakdown in high-gradient accelerator structures on the acceleratedbeam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) andis one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN.During a rf breakdown high currents are generated causing parasitic magnetic fields that interact withthe accelerated beam affecting its orbit. The beam energy is also affected because the power is part...

  9. Measurement of the branching ratios for the Standard Model Higgs decays into muon pairs and into Z boson pairs at a 1.4 TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)701211; Bozovic-Jelisavcic, Ivanka; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2016-01-01

    The measurement of the Higgs production cross-section times the branching ratios for its decays into μ+μ- and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e+e- collisions at 1.4 TeV centre-of-mass energy. Analyses for both decay channels are based on a full simulation of the CLIC_ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab 1 and unpolarised beams are assumed. For the H-->ZZ* decay, the purely hadronic final state (ZZ*--> qq ̄qq ̄) is considered as well as ZZ* decays into two jets and two leptons (ZZ*--> qq ̄l+l- ). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching fraction for decay into a Z boson pair times the Hi...

  10. A Quantum Gas Jet for Non-Invasive Beam Profile Measurement

    CERN Document Server

    Holzer, EB; Lefevre, T; Tzoganis, V; Welsch, C; Zhang, H

    2014-01-01

    A novel instrument for accelerator beam diagnostics is being developed by using De Broglie-wave focusing to create an ultra-thin neutral gas jet. Scanning the gas jet across a particle beam while measuring the interaction products, the beam profile can be measured. Such a jet scanner will provide an invaluable diagnostic tool in beams which are too intense for the use of wire scanners, such as the proposed CLIC Drive Beam. In order to create a sufficiently thin jet, a focusing element working on the de Broglie wavelength of the Helium atom has been designed. Following the principles of the Photon Sieve, we have constructed an Atomic Sieve consisting of 5230 nano-holes etched into a thin film of silicon nitride. When a quasi-monochromatic Helium jet is incident on the sieve, an interference pattern with a single central maximum is created. The stream of Helium atoms passing through this central maximum is much narrower than a conventional gas jet. The first experiences with this device are presented here, alon...

  11. High Energy Electron Reconstruction in the BeamCal

    CERN Document Server

    Sailer, Andre

    2016-01-01

    This note discusses methods of particle reconstruction in the forward region detectors of future e+ e− linear colliders such as ILC or CLIC. At the nominal luminosity the innermost electromagnetic calorimeters undergo high particle fluxes from the beam-induced background. In this prospect, different methods of the background simulation and signal electron reconstruction are described.

  12. A New Technique For Information Processing of CLIC Technical Documentation

    CERN Document Server

    Tzermpinos, Konstantinos

    2013-01-01

    The scientific work presented in this paper could be described as a novel, systemic approach to the process of organization of CLIC documentation. The latter refers to the processing of various sets of archived data found on various CERN archiving services in a more friendly and organized way. From physics aspect, this is equal to having an initial system characterized by high entropy, which after some transformation of energy and matter will produce a final system of reduced entropy. However, this reduction in entropy can be considered valid for open systems only, which are sub-systems of grander isolated systems, to which the total entropy will always increase. Thus, using as basis elements from information theory, systems theory and thermodynamics, the unorganized form of data pending to be organized to a higher form, is modeled as an initial open sub-system with increased entropy, which, after the processing of information, will produce a final system with decreased entropy. This systemic approach to the ...

  13. Mustafa environment description and users' guide with applications to CLIC

    CERN Document Server

    Guignard, Gilbert

    1998-01-01

    In the main linacs of future linear colliders, the control of the emittances and the stability of a train of bunches are critical. It was therefore important for the Compact Linear Collider study (CLIC) to have a tool allowing numerical investigations of these questions. An interactive environment called MUSTAFA (MUltibunch Simulation and Tracking Algorithm for Future Accelerators) has been created and different tools have been developed over the time according to the needs. Progressively, these code and interactive facilities evolved into two main features, their portability on PCs independent from the main frame computers and their analysis capability using animated graphics. All the codes have been written under the MS-DOS operating system. The main application MBTR has been written in FORTRAN, the animated graphics facility MOVIE and the so-called MBUNCH utility program in QUICKBASIC (MS V4.5). The MBUNCH code was created in order to manage in a user friendly set-up the other two mentioned as well as the ...

  14. Les mesures de métrologie pour le CLIC

    CERN Document Server

    Cherif, A

    2008-01-01

    Le projet CLIC est en tout point un défi technique majeur ; c?est le cas également pour la mesure dimensionnelle. Quels sont les équipements et les méthodes qui permettent de caractériser les pièces avec une incertitude de mesure aussi réduite que possible, vu les tolérances micrométriques imposées ? Afin de répondre à cette question, une veille technologique a été maintenue sur une longue période. Les acteurs relevants ont été contactés pour bénéficier d?une ouverture sur les dernières avancées dans le domaine. Différentes techniques ont été étudiées et comparées telles que la digitalisation, la tomographie X, la mesure tridimensionnelle. L'assemblage de haute précision des composants est aussi primordial. Sa mise en ?uvre sous un microscope optique ou à l'aide d'une machine tridimensionnelle est en cours d?étude. L'exposé traitera aussi de la mesure de rugosité, un domaine où nous disposons de moyens adaptés aux exigences spécifiques du projet.

  15. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  16. Experimental tests on the air cooling of the CLIC vertex detector

    CERN Document Server

    Duarte Ramos, Fernando; Nuiry, Francois-Xavier

    2016-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concept require the use of a dry gas for the cooling of the respective sensors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detector specifications. This note summarizes the results obtained from experimental tests on the air cooling of the CLIC vertex detector as well as their comparison with the corresponding computational fluid dynamics simulations.

  17. Physics at the CLIC e$^{+}$e$^{-}$ Linear Collider -- Input to the Snowmass process 2013

    OpenAIRE

    Abramowicz, Halina; Abusleme, Angel; Battaglia, Marco; Świentek, Krzysztof; Szalay, Marco; Tanabe, Tomohiko; Tesař, Michal; Thamm, Andrea; Thomson, Mark; Garcia, Juan Trenado; Uggerhøj, Ulrik I.; van der Kraaij, Erik; Vila, Iván; Benoit, Mathieu; Vilella, Eva

    2013-01-01

    This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities gr...

  18. Physics at the CLIC $e^{+}e^{-}$ Linear Collider - Input to the Snowmass process 2013

    CERN Document Server

    Abramowicz, Halina; Afanaciev, K.; Alexander, G.; Alipour Tehrani, N.; Alonso, O.; Andersen, K.K.; Arfaoui, S.; Balazs, C.; Barklow, T.; Battaglia, M.; Benoit, M.; Bilki, B.; Blaising, J.J.; Boland, M.; Boronat, M.; Bozovic Jelisavcic, I.; Burrows, P.; Chefdeville, M.; Contino, R.; Dannheim, D.; Demarteau, M.; Diaz Gutierrez, M.A.; Dieguez, A.; Duarte Campderros, J.; Eigen, G.; Elsener, K.; Feldman, D.; Felzmann, U.; Firlej, M.; Firu, E.; Fiutowski, T.; Francis, K.; Gaede, F.; Garcia Garcia, I.; Ghenescu, V.; Giudice, G.; Graf, N.; Grefe, C.; Grojean, C.; Gupta, R.S.; Hauschild, M.; Holmestad, H.; Idzik, M.; Joram, C.; Kananov, S.; Karyotakis, Y.; Killenberg, M.; Klempt, W.; Kraml, S.; Krupa, B.; Kulis, S.; Lastovicka, T.; LeBlanc, G.; Levy, A.; Levy, I.; Linssen, L.; Lucaci Timoce, A.; Lukic, S.; Makarenko, V.; Marshall, J.; Martin, V.; Mikkelsen, R.E.; Milutinovic-Dumbelovic, G.; Miyamoto, A.; Monig, K.; Moortgat-Pick, G.; Moron, J.; Munnich, A.; Neagu, A.; Pandurovic, M.; Pappadopulo, D.; Pawlik, B.; Porod, W.; Poss, S.; Preda, T.; Rassool, R.; Rattazzi, R.; Redford, S.; Reichold, A.; Repond, J.; Riemann, S.; Robson, A.; Roloff, P.; Ros, E.; Rosten, J.; Ruiz-Jimeno, A.; Rzehak, H.; Sailer, A.; Schlatter, D.; Schulte, D.; Sefkow, F.; Seidel, K.; Shumeiko, N.; Sicking, E.; Simon, F.; Smith, J.; Soldner, C.; Stapnes, S.; Strube, J.; Suehara, T.; Swientek, K.; Szalay, M.; Tanabe, T.; Tesar, M.; Thamm, A.; Thomson, M.; Trenado Garcia, J.; Uggerhoj, U.I.; van der Kraaij, E.; Vila, I.; Vilella, E.; Villarejo, M.A.; Vogel Gonzalez, M.A.; Vos, M.; Watson, N.; Weerts, H.; Wells, J.D.; Weuste, L.; Wistisen, T.N.; Wootton, K.; Xia, L.; Zawiejski, L.; Zgura, I.S.

    2013-01-01

    This paper summarizes the physics potential of the CLIC high-energy e+e- linear collider. It provides input to the Snowmass 2013 process for the energy-frontier working groups on The Higgs Boson (HE1), Precision Study of Electroweak Interactions (HE2), Fully Understanding the Top Quark (HE3), as well as The Path Beyond the Standard Model -- New Particles, Forces, and Dimensions (HE4). It is accompanied by a paper describing the CLIC accelerator study, submitted to the Frontier Capabilities group of the Snowmass process

  19. Development of a 300-kV Marx generator and its application to drive a relativistic electron beam

    Indian Academy of Sciences (India)

    Y Choyal; Lalit Gupta; Preeti Vyas; Prasad Deshpande; Anamika Chaturvedi; K C Mittal; K P Maheshwari

    2005-12-01

    We have indigenously developed a twenty-stage vertical structure type Marx generator. At a matched load of $90-100 \\Omega$, for 25 kV DC charging, an output voltage pulse of 230 kV, and duration 150 ns is obtained. This voltage pulse is applied to a relativistic electron beam (REB) planar diode. For a cathode-anode gap of 7·5 mm, an REB having beam voltage 160 kV and duration 150 ns is obtained. Brass as well as aluminum explosive electron emission-type cathodes have been used.

  20. High Charge PHIN Photo Injector at CERN with Fast Phase switching within the Bunch Train for Beam Combination

    CERN Document Server

    Csatari Divall, M; Bolzon, B; Bravin, E; Chevallay, E; Dabrowski, A; Doebert, S; Drozdy, A; Fedosseev, V; Hessler, C; Lefevre, T; Livesley, S; Losito, R; Olvegaard, M; Petrarca, M; Rabiller, A N; Egger, D; Mete, O

    2011-01-01

    The high charge PHIN photo-injector was developed within the framework of the European CARE program to provide an alternative to the drive beam thermionic gun in the CTF3 (CLIC Test Facility) at CERN. In PHIN 1908 electron bunches are delivered with bunch spacing of 1.5 GHz and 2.33 nC charge per bunch. Furthermore the drive beam generated by CTF3 requires several fast 180 deg phase-shifts with respect to the 1.5 GHz bunch repetition frequency in order to allow the beam combination scheme developed at CTF3. A total of 8 subtrains, each 140 ns long and shifted in phase with respect to each other, have to be produced with very high phase and amplitude stability. A novel fiber modulator based phase-switching technique developed on the laser system provides this phase-shift between two consecutive pulses much faster and cleaner than the base line scheme, where a thermionic electron gun and sub-harmonic bunching are used. The paper describes the fiber-based switching system and the measurements verifying the schem...

  1. Optical Mixing in the Strong Coupling Regime: A New Method of Beam Conditioning at Hohlraum LEH and Direct Drive ICF Coronal Plasmas

    Science.gov (United States)

    Mardirian, Marine; Afeyan, Bedros; Huller, Stefan; Montgomery, David; Froula, Dustin; Kirkwood, Robert

    2012-10-01

    We will present theoretical and computational results on Brillouin interactions between two beams in co-, counter-, and orthogonal propagation geometries. The beams will be structured (with speckle patterns), the plasma will have inhomogeneous flow including the Mach -1 surface. As the growth rate of the instability surpasses the natural frequency of the ion wave, the strong coupling regime (SCR) is reached, where reactive quasi-modes with intensity dependent frequency shifts result. This is especially true in laser hot spots. We trace the consequences of operations in this regime with different damping rates on the ion acoustic waves. We consider convective and absolute instabilities as well as the design of experiments which could examine these new regimes of instability behavior with new 10 psec time resolved diagnostics. Whether well enough conditioned beams can result after 10's or 100's of pairwise crossings in direct and indirect drive ICF configurations, and whether SRS can thus be strongly suppressed downstream, remains to be demonstrated. But the prospects exist for such new paths to instability control in a staged manner before STUD pulses are implemented.-

  2. Observation of asymmetric implosions in indirect-drive ICF associated with changes in laser beam-hohlraum coupling and relevance to mix experiments.

    Science.gov (United States)

    Turner, R. E.; Amendt, P. A.; Landen, O. L.; Wallace, R. J.; Thorp, K.; Pien, G.

    2004-11-01

    Indirect drive ICF experiments were performed on the Omega laser at LLE, both with and without distributed polarization rotators (DPR) in the laser beams. The hohlraums were irradiated with a three-cone beam geometry, experimentally adjusted to produce high-yield implosions with no DPRs installed. X-ray images of the cores of these implosions showed a small but tolerable P2 asymmetry. Similar experiments with DPRs installed produced lower yields, and x-ray images of the imploded cores showed substantially increased P2 asymmetries, suggesting that the shallow-angle cone of beams, which transits through the longest length of plasma and along the shallowest density gradients, had substantially increased absorption compared to the no-DPR case. We will show high magnification (nearly 100x) x-ray images of the cores, along with fusion neutron data. For capsules driven with good symmetry, we show the neutron yield results from capsules whose surfaces have been deliberately roughened by a measured amount, in order to compare to mix models in simulations.

  3. Vacuum tube operation analysis under multi-harmonic driving and heavy beam loading effect in J-PARC RCS

    Science.gov (United States)

    Yamamoto, M.; Nomura, M.; Shimada, T.; Tamura, F.; Hara, K.; Hasegawa, K.; Ohmori, C.; Toda, M.; Yoshii, M.; Schnase, A.

    2016-11-01

    An rf cavity in the J-PARC RCS not only covers the frequency range of a fundamental acceleration pattern but also generates multi-harmonic rf voltage because it has a broadband impedance. However, analyzing the vacuum tube operation in the case of multi-harmonics is very complicated because many variables must be solved in a self-consistent manner. We developed a method to analyze the vacuum tube operation using a well-known formula and which includes the dependence on anode current for some variables. The calculation method is verified with beam tests, and the results indicate that it is efficient under condition of multi-harmonics with a heavy beam loading effect.

  4. Quantifying the Growth of Cross-Beam Energy Transfer in Polar-Direct-Drive Implosions at the Omega Laser and National Ignition Facilities

    Science.gov (United States)

    Davis, A. K.

    2015-11-01

    Direct-drive inertial confinement fusion requires multiple overlapping laser beams that can drive the cross-beam energy transfer (CBET) instability. This instability is of primary concern because it can reduce the laser energy coupling and can affect the symmetry in a polar-direct-drive (PDD) configuration. An experiment was designed to determine the CBET growth by measuring the angularly resolved mass ablation rate and ablation-front trajectory in a PDD configuration. Adding a thin layer of Si over a CH shell generates two peaks in x-ray self-emission images that are measured with a time-resolved pinhole imager. The inner peak is related to the position of the ablation front and the outer peak corresponds to the position of the interface of the two layers in the plasma. The emergence of the second peak is used to measure the time for the laser to burn through the outer layer, giving the average mass ablation rate of the material. The mass ablation rate was measured by varying the thickness of the outer silicon layer. The shell trajectory and mass ablation rate measured in PDD on the pole, where CBET has little effect, were compared with simulations to validate the electron thermal-transport model. Excellent agreement was obtained when using a 2-D nonlocal transport model, and these observables could not be reproduced with flux-limited models. A similar comparison was performed on the equator where the CBET growth is large. Without the CBET model, the shell velocity and mass ablation rate were significantly overestimated by the simulation. Adding the CBET model reduced the drive on the equator and reproduced the experimental results. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. In collaboration with, D. Cao, D. T. Michel, M. Hohenberger, R. Epstein, V. N. Goncharov, S. X. Hu, I. V. Igumenshchev, J. A. Marozas, D. D. Meyerhofer, P. B. Radha, S. P. Regan, T. C

  5. Software and Parameters for Detailed TPC Studies in the CLIC CDR

    CERN Document Server

    Killenberg, M.

    2011-01-01

    For the TPC occupancy and time stamping studies in the CLIC CDR the MarlinTPC software package has been used in combination with Mokka for the full detector simulation. This document describes the working principle of the Marlin processors used for digitisation and reconstruction, and lists the parameters for reference.

  6. The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN

    CERN Document Server

    Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M

    2010-01-01

    A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...

  7. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Directory of Open Access Journals (Sweden)

    Stella M Valenzuela

    Full Text Available The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  8. Material studies in the frame of CLIC Accelerating structures production conducted within the Mechanics program together with Metso Oy

    CERN Document Server

    Nurminen, Janne

    2012-01-01

    MeChanICs (Marie Curie Linking Industry to CERN) is an Industry to Academia Partnership and Pathways (IAPP) platform for precision manufacturing knowledge exchange bringing together five Finnish manufacturing companies with Helsinki Insitute of Physics (HIP) and CERN. The scientific objective of MeChanICs project is to contribute to the manufacturing RTD of CLIC enabling technologies. The focus is on the design, materials, machining, brazing and assembly of A CLIC accelerating structure. This study deals with the materials work package of the program and wants to explore the following items: 1) producing copper accelerating structures for CLIC from raw copper powder by near net shape hot isostatic pressing (HIP). 2) The feasibility to use HIP diffusion bonding of the accelerator structures as a function of surface quality and applied temperature and pressure. 3) Brazing for CLIC AS auxiliary systems, like water cooling or damping manifolds, to the disc stack by coating one of the brazing partners with an enab...

  9. RF Cavity Induced Sensitivity Limitations on Beam Loss Monitors

    Science.gov (United States)

    Kastriotou, M.; Degiovanni, A.; Sousa, F. S. Domingues; Effinger, E.; Holzer, E. B.; Quirante, J. L. Navarro; del Busto, E. N.; Tecker, F.; Viganò, W.; Welsch, C. P.; Woolley, B. J.

    Due to the secondary showers generated when a particle hits the vacuum chamber, beam losses at an accelerator may be detected via radiation detectors located near the beam line. Several sources of background can limit the sensitivity and reduce the dynamic range of a Beam Loss Monitor (BLM). This document concentrates on potential sources of background generated near high gradient RF cavities due to dark current and voltage breakdowns. An optical fibre has been installed at an experiment of the Compact Linear Collider (CLIC) Test Facility (CTF3), where a dedicated study of the performance of a loaded and unloaded CLIC accelerating structure is undergoing. An analysis of the collected data and a benchmarking simulation are presented to estimate BLM sensitivity limitations. Moreover, the feasibility for the use of BLMs optimised for the diagnostics of RF cavities is discussed.

  10. Design of a choke-mode damped accelerating structure for CLIC Main LINAC

    CERN Document Server

    Shi, J; Grudiev, A; Wuensch, W; Tang, C; Chen, H; Huang, W

    2011-01-01

    Choke-mode damped accelerating structures are being studied as an alternative to the baseline structure of the compact linear collider (CLIC) by a CERN-Tsinghua collaboration. Choke-mode structures hold the potential for much lower levels of pulsed surface heating and, since milling is not needed, reduced cost. Structures with radial choke attached are simulated in GdfidL to investigate the damping of the transverse wake. The first pass-band of the dipole modes is well damped, while the higher order dipole modes are possibly reflected by the choke. Therefore, the geometry of the choke is tuned to minimize the reflection of these higher order dipole modes. Based on this damping scheme, an accelerating structure with the same iris dimensions as the nominal CLIC design but with choke-mode damping has been designed. A prototype structure will be manufactured and high power tested in the near future.

  11. Power pulsing scheme for analog and digital electronics of the vertex detectors at CLIC

    CERN Document Server

    Blanchot, Georges

    2015-01-01

    The precision requirements of the vertex detector at CLIC impose strong limitations on the mass of such a detector (< 0.2% of a radiation length, Xo, per layer). To achieve such a low material budget, ultra-thin hybrid pixel detectors are foreseen, while the mass for cooling and services will be reduced by implementing a power pulsing scheme that takes advantage of the low duty cycle of the accelerator. The principal aim is to achieve significant power reduction without compromising the power integrity supplied to the front-end electronics. This report summarises the study of a power pulsing scheme to power the vertex barrel electronics of the future CLIC experiment. Its main goal is to describe in more detail what has been already presented in TWEPP conferences and other presentations. The report can therefore serve as an operator manual for future use and development of the system

  12. Production of excited electrons at TESLA and CLIC based egamma colliders

    CERN Document Server

    Kirca, Z; Cakir, O

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron- photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions egamma yields egamma, egamma yields eZ and egamma yields vW. Excited electrons with masses up to about 90% of the available collider energy can be probed down to the coupling f = f prime = 0.05(0.1) at TESLA(CLIC) based egamma colliders. 22 Refs.

  13. The Event Display for CLIC: DD4hep Compatibility and Improvements

    CERN Document Server

    Quast, Thorben

    2015-01-01

    This document is a short summary of my contributions to the Event Display for the CLICdp Software group in the context of CERN’s Summer Student Programme 2015. After a brief outline of CLIC and the relevant software package, the project is motivated. The individual achievements and their technical realizations are explained rather qualitatively, as details are well documented directly in the source code.

  14. Implications of a Curved Tunnel for the Main Linac of CLIC

    CERN Document Server

    Latina, Andrea; Schulte, Daniel

    2006-01-01

    Preliminary studies of a linac that follows the earth curvature are presented for the CLIC main linac. The curvature of the tunnel is modeled in a realistic way by use of geometry changing elements. The emittance preservation is studied for a perfect machine as well as taking into account imperfections. Results for a curved linac are compared with those for a laser-straight machine.

  15. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    CERN Document Server

    Antoniou, F; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler characteristics.

  16. Pre-Alignment of CLIC using the Double-Wire Method

    CERN Document Server

    Coosemans, Williame

    1998-01-01

    The pre-alignment and active control method for the Compact Linear Collider (CLIC) is described. Two new types of instruments are used in this system - a biaxial Wire Positioning System (WPS) which uses a stretched wire as the spatial reference, and a capacitive three axes Tilt Meter System (TMS). The instruments, and the way they are used with the well-known Hydrostatic Levelling System (HLS) are described.

  17. Study of a 5-Tesla large aperture coil for the CLIC detector

    CERN Document Server

    Cure, B

    2011-01-01

    The present design of a CLIC detector foresees a large solenoid magnet with a 6 m aperture and a magnetic induction of 5 T at the interaction point. This can be achieved by a thin superconducting coil. This report gives the typical main parameters of such a coil and presents the feasibility based on and compared with the CMS and Atlas solenoid coil designs, indicating the limits on the conductor and the identified R&D prospects.

  18. Mass and Cross Section Measurements of light-flavored Squarks at CLIC

    CERN Document Server

    WEUSTE, L.

    2011-01-01

    We present a study of the prospects for the measurement of TeV-scale light-flavored right-squark masses and and the production cross sections at a 3 TeV e+e- collider based on CLIC technology. The analysis, performed in the framework of the CLIC Conceptual Design Report, is based on full Geant4 simulations of the CLIC ILD detector concept, including standard model physics background and machine related hadronic background from two-photon processes. The events were reconstructed using particle flow event reconstruction, and the mass and cross sections were obtained from a template fit built from generator-level simulations with smearing to parametrize the detector response. For an integrated luminosity of 2 ab^-1, a statistical precision of 5.9 GeV, corresponding to 0.52%, was obtained for unseparated first and second generation right squarks. For the combined cross section, a precision of 0.07 fb, corresponding to 5%, was obtained.

  19. En route vers la nano stabilisation de CLIC faisceau principale et focalisation finale

    CERN Document Server

    Artoos, K; Guinchard, M; Hauviller, Claude; Lackner, F; CERN. Geneva. TS Department

    2008-01-01

    Pour atteindre la luminosité voulue de CLIC, la taille transversale du faisceau doit être de l?ordre du nanomètre. Ceci nécessite une stabilité vibratoire des quadripôles du faisceau principal de 1 nm et même 0.1 nm pour les doublets de la focalisation finale. La nano technologie et la nano stabilisation sont des activités qui évoluent rapidement dans l?industrie et centres de recherche pour des applications très variées comme l?électronique, l?optique, la chimie voire la médecine. Cette présentation décrit les avancées techniques nécessaires pour atteindre l?objectif de CLIC et les projets et collaborations R&D prévus pour démontrer la faisabilité de la nano stabilisation de CLIC en 2010.

  20. Laser Wire and Beam Position Monitor tests

    CERN Document Server

    Boogert, S T; Lyapin, A; Nevay, L; Snuverink, J

    2013-01-01

    This subtask involved two main activities; Firstly the development and subsequent usage of high resolution beam position monitors (BPM) for the International Linear Collider (ILC) and Compact Linear Collider projects (CLIC); and secondly the development of a laser-wire (LW) transverse beam size measurement systems. This report describes the technical progress achieved at a large-scale test ILC compatible BPM system installed at the Accelerator Test Facility 2 (ATF2). The ATF2 is an energy-scaled demonstration system for the final focus systems required to deliver the particle beams to collision at the ILC and CLIC. The ATF2 cavity beam position monitor system is one of the largest of its kind and rivals systems used at free electron lasers. The ATF2 cavity beam position system has achieved a position resolutionof 250 nm (with signal attuenation) and 27 nm (without attenuation). The BPM system has been used routinely for lattice diagnostics, beam based alignment and wakefield measurements. Extensive experience...

  1. Measurement of the H$\\rightarrow$WW$^*$ Branching Ratio at 1.4TeV using the semileptonic final state at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)762723; Watson, Nigel

    2016-01-01

    This note summarises a study to evaluate the potential to measure the H$\\rightarrow$WW$^*$ branching fraction at CLIC, 1.4TeV centre-of-mass energy, with the CLIC_ILD detector, using the WW$\\rightarrow$qql$\

  2. Noninductive current drive in tokamaks

    International Nuclear Information System (INIS)

    Various current drive mechanisms may be grouped into four classes: (1) injection of energetic particle beams; (2) launching of rf waves; (3) hybrid schemes, which are combinations of various rf schemes (rf plus beams, rf and/or beam plus ohmic heating, etc.); and (4) other schemes, some of which are specific to reactor plasma conditions requiring the presence of alpha particle or intense synchrotron radiation. Particle injection schemes include current drive by neutral beams and relativistic electron beams. The rf schemes include current drive by the lower hybrid (LH) waves, the electron waves, the waves in the ion cyclotron range of frequencies, etc. Only a few of these approaches, however, have been tested experimentally, with the broadest data base available for LH waves. Included in this report are (1) efficiency criteria for current drive, (2) current drive by neutral beam injection, (3) LH current drive, (4) electron cyclotron current drive, (5) current drive by ion cyclotron waves - minority species heating, and (6) current drive by other schemes (such as hybrids and low frequency waves)

  3. CLIC 3TeV Beamsize Optimization with Radiation Effects

    CERN Document Server

    Blanco, OR; Tomas, R

    2013-01-01

    Oide effect and radiation in bending magnets are reviewed aiming to include this in the optical design process to minimize the beam size. The Oide double integral is expressed in simpler terms in order to speed up calculations. Part of the Oide function is used to evaluate how prone is a quadrupole magnet to contribute to the beam size increase, concluding in larger magnets with lower gradients. Radiation in bending magnets is reviewed for linear lattices, solving the case when the dispersion is different from zero and using the result to compare with theoretical results and a tracking code. An agreement between the theory, the implemented approximation included in MAPCLASS2 and the six-dimensional radiation in PLACET has been found.

  4. An Experimental Approach to Simulations of the CLIC Interaction Point

    DEFF Research Database (Denmark)

    Esberg, Jakob

    2012-01-01

    Since this thesis covers a relatively wide range of topics, the abstract is best split into sections that describe the scope of each chapter: The chapter on future colliders gives an introduction to key concepts of future high-energy, high-luminosity linear collider experiments. The chapter...... crystalline matter. The 6th chapter briefly introduces basic theoretical aspects that are natural for understanding the processes occurring at the interaction points of a future collider and in fixed target experiments. It is the purpose of this chapter to give basic formulas but also to give the reader...... experiments conducted at MAMI will be presented. Furthermore the chapter discusses the performance of new CMOS based detectors to be used in future experiments by the NA63 collaboration. The chapter on collider simulations introduces the beam-beam simulation codes GUINEA-PIG and GUINEA-PIG++, their methods...

  5. El mundo en un clic: usabilidad y accesibilidad en la Web

    OpenAIRE

    Domènech, Luisa

    2004-01-01

    La filosofía de Internet es el acceso libre a la información, pero esta información se encuentra limitada espacialmente por dos vertientes, el navegador y el tamaño del monitor donde se visualiza la información. A la hora de construir las páginas Web para su visualización en Internet, los arquitectos de la información deberían cumplir una serie de requerimientos para que el visitante obtenga la información deseada en poco tiempo y con pocos clic de ratón.

  6. Production of excited electrons at TESLA and CLIC based $e\\gamma$ colliders

    CERN Document Server

    Aydin, Z Z; Kirca, Z

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron-photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions e gamma --> e gamma, e gamma --> eZ and e gamma --> nu W. Excited electrons can be discovered with the masses up to about 90% of the available collider energy.

  7. Evaluation of 65nm technology for CLIC pixel front-end

    CERN Document Server

    Valerio, P; Ballabriga, R; Campbell, M; Llopart, X

    2011-01-01

    The CLIC vertex detector design requires a high single point resolution (~ 3 μm) and a precise time stamp (≤ 10 ns). In order to achieve this spatial resolution, small pixels (in the order of 20 μm pitch) must be used, together with the measurement of the charge deposition of neighbouring channels. Designing such small pixels requires the use of a deep downscaled CMOS technology. This note describes the design and characterisation of suitable building blocks implemented in a commercial 65 nm process. The characterisation included an evaluation of the radiation hardness of the blocks.

  8. Z′ Resonance and Associated Zh Production at Future Higgs Boson Factory: ILC and CLIC

    OpenAIRE

    A. Gutiérrez-Rodríguez; Hernández-Ruíz, M. A.

    2015-01-01

    We study the prospects of the B-L model with an additional $Z'$ boson to be a Higgs boson factory at high-energy and high-luminosity linear electron positron colliders, such as the ILC and CLIC, through the Higgs-strahlung process $e^{+}e^{-}\\rightarrow (Z, Z') \\to Zh$, including both the resonant and non-resonant effects. We evaluate the total cross section of $Zh$ and we calculate the total number of events for integrated luminosities of 500-2000\\hspace{0.8mm}$fb^{-1}$ and center of mass en...

  9. Feed Forward Orbit Correction in the CLIC Ring to Main LINAC Transfer lines

    CERN Document Server

    Apsimon, R; Schulte, D; Uythoven, J

    2014-01-01

    The emittance growth in the betatron collimation system of the 27 km long transfer lines between the CLIC damping rings and the main LINAC depends strongly on the transverse orbit jitter. The resulting stability requirements of the damping ring extraction elements seem extremely difficult to achieve. Position and angle feed forward systems in these long transfer lines bring the specified parameters of the extraction elements within reach. The designs of the optics and feed forward hardware are presented together with tracking simulations of the systems.

  10. Very forward detectors for ILC and CLIC detectors

    International Nuclear Information System (INIS)

    The instrumentation of the Very Forward Regions in experiments at future linear e+e- colliders is a challenge due to high radiation fields and high rates. Two calorimeters are foreseen to perform a fast and a precise luminosity measurement and and extend the detector coverage to very low polar angles. For the calorimeter near the beampipe dedicated GaAs:Cr sensors with very good radiation tolerance were developed. For the luminometer, outside the strong radiation field, silicon sensors are foreseen. Two prototypes of sensor planes are assembled with specially developed front-end and ADC ASICS with different feedback schemes of the front-end ASIC. The performance of the full system was studied with a 4 GeV electron beam at DESY. A report of the testbeam results on relevant parameters is given.

  11. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  12. Long bunch trains measured using a prototype cavity beam position monitor for the Compact Linear Collider

    Science.gov (United States)

    Cullinan, F. J.; Boogert, S. T.; Farabolini, W.; Lefevre, T.; Lunin, A.; Lyapin, A.; Søby, L.; Towler, J.; Wendt, M.

    2015-11-01

    The Compact Linear Collider (CLIC) requires beam position monitors (BPMs) with 50 nm spatial resolution for alignment of the beam line elements in the main linac and beam delivery system. Furthermore, the BPMs must be able to make multiple independent measurements within a single 156 ns long bunch train. A prototype cavity BPM for CLIC has been manufactured and tested on the probe beam line at the 3rd CLIC Test Facility (CTF3) at CERN. The transverse beam position is determined from the electromagnetic resonant modes excited by the beam in the two cavities of the pickup, the position cavity and the reference cavity. The mode that is measured in each cavity resonates at 15 GHz and has a loaded quality factor that is below 200. Analytical expressions for the amplitude, phase and total energy of signals from long trains of bunches have been derived and the main conclusions are discussed. The results of the beam tests are presented. The variable gain of the receiver electronics has been characterized using beam excited signals and the form of the signals for different beam pulse lengths with the 2 /3 ns bunch spacing has been observed. The sensitivity of the reference cavity signal to charge and the horizontal position signal to beam offset have been measured and are compared with theoretical predictions based on laboratory measurements of the BPM pickup and the form of the resonant cavity modes as determined by numerical simulation. Finally, the BPM was calibrated so that the beam position jitter at the BPM location could be measured. It is expected that the beam jitter scales linearly with the beam size and so the results are compared to predicted values for the latter.

  13. Polar-direct-drive simulations and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Marozas, J.A.; Marshall, F.J.; Craxton, R.S.; Igumenshchev, I.V.; Skupsky, S.; Bonino, M.J.; Collins, T.J.B.; Epstein, R.; Glebov, V.Yu.; Jacobs-Perkins, D.; Knauer, J.P.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Noyes, S.G.; Radha, P.B.; Sangster, T.C.; Seka, W.; Smalyuk, V.A.

    2006-05-17

    Polar direct drive (PDD) will allow direct-drive ignition experiments on the National Ignition Facility (NIF) as it is configured for x-ray drive. Optimal drive uniformity is obtained via a combination of beam repointing, pulse shapes, spot shapes, and/or target design. This article describes progress in the development of standard and "Saturn" PDD target designs.

  14. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  15. Studies on high-precision machining and assembly of CLIC RF structures

    CERN Document Server

    Huopana, J; Riddone, G; Österberg, K

    2010-01-01

    The Compact Linear Collider (CLIC) is currently under development at CERN as a potential multi-TeV e+e– collider. The manufacturing and assembly tolerances for the required RF components are essential for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is sensitive to mechanical errors in the shape and the alignment of the accelerating cavity. The current tolerances are in the micron range. This raises challenges in the field of mechanical design and demands special manufacturing technologies and processes. Currently the mechanical design of the accelerating structures is based on a disk design. Alternatively, it is possible to create the accelerating assembly from quadrants, which has the potential to be favoured for the mass production due to simplicity and cost. In this case, the functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. This paper focuses on the development work done in design and sim...

  16. A high phase advance damped and detuned structure for the main linacs of CLIC

    CERN Document Server

    Khan, Vasim; Jones, Roger M; Wuensch, Walter; Grudiev, A

    2010-01-01

    The main accelerating structures for the CLIC are designed to operate at an average accelerating gradient of 100 MV/m. The accelerating frequency has been optimised to 11.994 GHz with a phase advance of 2π/3 [1] of the main accelerating mode. The moderately damped and detuned structure (DDS) design [2-3] is being studied as an alternative to the strongly damped WDS design [1]. Both these designs are based on the nominal accelerating phase advance. Here we explore high phase advance (HPA) structures in which the group velocity of the rf fields is reduced compared to that of standard (2π/3) structures. The electrical breakdown strongly depends on the fundamental mode group velocity. Hence it is expected that electrical breakdown is less likely to occur in the HPA structures. We report on a study of both the fundamental and dipole modes in a CLIC_DDS_ HPA structure, designed to operate at 5π/6 phase advance per cell. Higher order dipole modes in both the standard and HPA structures are also studied.

  17. Measurement of sigma(ee->Hnunu)xBR(H->tautau) at CLIC @ 1.4 TeV

    CERN Document Server

    Münnich, A.

    2013-01-01

    This detector benchmark study evaluates the statistical precision with which the H -> tautau branching ratio times cross section can be measured at CLIC running at rout(s)= 1.4 TeV. Only the hadronic decays of taus are considered.

  18. High-Gradient test results from a CLIC prototype accelerating structure : TD26CC

    CERN Document Server

    Degiovanni, A; Farabolini, W; Grudiev, A; Kovermann, J; Montessinos, E; Riddone, G; Syratchev, I; Wegner, R; Wuensch, W; Solodko, A; Woolley, B

    2014-01-01

    The CLIC study has progressively tested prototype accelerating structures which incorporate an ever increasing number of features which are needed for a final version ready to be installed in a linear collider. The most recent high power test made in the CERN X-band test stand, Xbox-1, is of a CERN-built prototype which includes damping features but also compact input and output power couplers, which maximize the overall length to active gradient ratio of the structure. The structure’s high-gradient performance, 105 MV/m at 250 ns pulse length and low breakdown rate, matches previously tested structures validating both CERN fabrication and the compact coupler design.

  19. Z′ Resonance and Associated Zh Production at Future Higgs Boson Factory: ILC and CLIC

    International Nuclear Information System (INIS)

    We study the prospects of the B-L model with an additional Z′ boson to be a Higgs boson factory at high-energy and high-luminosity linear electron positron colliders, such as the ILC and CLIC, through the Higgs-strahlung process e+e-→(Z,Z′)→Zh, including both the resonant and the nonresonant effects. We evaluate the total cross section of Zh and we calculate the total number of events for integrated luminosities of 500–2000 fb−1 and center of mass energies between 500 and 3000 GeV. We find that the total number of expected Zh events can reach 106, which is a very optimistic scenario and it would be possible to perform precision measurements for both Z′ and Higgs boson in future high-energy e+e- colliders experiments

  20. Z′ Resonance and Associated Zh Production at Future Higgs Boson Factory: ILC and CLIC

    Directory of Open Access Journals (Sweden)

    A. Gutiérrez-Rodríguez

    2015-01-01

    Full Text Available We study the prospects of the B-L model with an additional Z′ boson to be a Higgs boson factory at high-energy and high-luminosity linear electron positron colliders, such as the ILC and CLIC, through the Higgs-strahlung process e+e-→(Z,Z′→Zh, including both the resonant and the nonresonant effects. We evaluate the total cross section of Zh and we calculate the total number of events for integrated luminosities of 500–2000 fb−1 and center of mass energies between 500 and 3000 GeV. We find that the total number of expected Zh events can reach 106, which is a very optimistic scenario and it would be possible to perform precision measurements for both Z′ and Higgs boson in future high-energy e+e- colliders experiments.

  1. High Power RF Induced Thermal Fatigue in the High Gradient CLIC Accelerating Structures

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Neupert, N; Wuensch, W

    2007-01-01

    The need for high accelerating gradients for the CLIC (Compact Linear Collider) imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF (Radio Frequency) currents are subjected to cyclic thermal stresses possibly resulting in surface break up by fatigue. Various high strength alloys from the group of high conductivity copper alloys have been selected and have been tested in different states, with different surface treatments and in different stress ratios. Low to medium cycle fatigue data (up to 108 cycles) of fully compressive surface thermal stresses has been collected by means of a pulsed laser surface heating apparatus. The surface damage has been characterized by SEM observations and roughness measurements. High cycle fatigue data, up to 7x1010 cycles, of varying stress ratio has been collected in high frequency bulk fatigue tests using an ultrasonic apparatus. Up-to-date results from these experiments are presented.

  2. Physics potential of the BR(H →WW∗) measurement at a √s=350 GeV and √s=1.4 TeV CLIC collider

    CERN Document Server

    Pandurovic, Mila

    2016-01-01

    Precision measurements of the number of properties of the Higgs boson, like invariant mass and couplings to the Standard Model particles, represent one of the key measurements of the CLIC physic program. The CLIC energy staging scenario allows to perform these meas- urements using different Higgs production channels. The Higgs decay to a WW pair, which is analysed at two CLIC energy stages, plays an important role in this program, as it gives access to the relative Higgs couplings to the vector bosons and to the total Higgs decay width. The studies presented here are part of an ongoing effort to investigate the full physics potential of the CLIC collider.

  3. Electric drives

    CERN Document Server

    Boldea, Ion

    2005-01-01

    ENERGY CONVERSION IN ELECTRIC DRIVESElectric Drives: A DefinitionApplication Range of Electric DrivesEnergy Savings Pay Off RapidlyGlobal Energy Savings Through PEC DrivesMotor/Mechanical Load MatchMotion/Time Profile MatchLoad Dynamics and StabilityMultiquadrant OperationPerformance IndexesProblemsELECTRIC MOTORS FOR DRIVESElectric Drives: A Typical ConfigurationElectric Motors for DrivesDC Brush MotorsConventional AC MotorsPower Electronic Converter Dependent MotorsEnergy Conversion in Electric Motors/GeneratorsPOWER ELECTRONIC CONVERTERS (PECs) FOR DRIVESPower Electronic Switches (PESs)The

  4. Klystron beam bunching

    International Nuclear Information System (INIS)

    A detailed description of electron-beam bunching phenomena in klystrons is presented. Beam harmonic current is defined, both space-charge and ballistic bunching are analyzed, Ramo's theorem is used to describe how a bunched beam drives a cavity, and a general cavity model including external coupling is provided. (author)

  5. Physics performance for measurements of chargino and neutralino pair production at a 1.4 TeV CLIC collider

    CERN Document Server

    Roloff, Philipp

    2013-01-01

    A study of chargino and neutralino pair production at a CLIC collider operating at √s = 1.4 TeV is presented. Fully hadronic final states with four jets and missing transverse energy were considered. The analysis was performed using full detector simulation and including pileup from gg → hadrons interactions. Results for the masses and production cross sections of the chargino and the next-to-lightest neutralino are discussed.

  6. Conséquences des perturbations de la gravité sur l'alignement du CLIC

    CERN Document Server

    Becker, F

    1999-01-01

    For the CLIC alignment, the accuracy required for the definition of the geometrical references entails the evaluation of the effects of the Earth's gravity field's disturbances. The distortions of the WPS wires, of the water in the hydrostatic levelling network and of the ground resulting from the Moon and the Sun's attractions and from the neighbouring masses are therefore estimated. Solutions are suggested for the distortions important enough to have to be taken into account.

  7. Impaired Driving

    Science.gov (United States)

    ... help prevent injuries and deaths from alcohol-impaired driving. The Problem Risk Factors BAC Effects Prevention Additional Resources How big is the problem? In 2014, 9,967 people were killed in alcohol-impaired driving crashes, accounting for nearly one-third (31%) of ...

  8. Distracted Driving

    Science.gov (United States)

    ... 18%) in which someone was injured involved distracted driving. 1 What are the risk factors? Activities Some activities—such as texting—take the driver’s attention away from driving more frequently and for longer periods than other ...

  9. Polar drive on OMEGA

    International Nuclear Information System (INIS)

    High-convergence polar-drive experiments are being conducted on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] using triple-picket laser pulses. The goal of OMEGA experiments is to validate modeling of oblique laser deposition, heat conduction in the presence of nonradial thermal gradients in the corona, and implosion energetics in the presence of laser-plasma interactions such as crossed-beam energy transfer. Simulated shock velocities near the equator, where the beams are obliquely incident, are within 5% of experimentally inferred values in warm plastic shells, well within the required accuracy for ignition. High, near-one-dimensional areal density is obtained in warm-plastic-shell implosions. Simulated back-lit images of the compressing core are in good agreement with measured images. Outstanding questions that will be addressed in the future relate to the role of cross-beam transfer in polar drive irradiation and increasing the energy coupled into the target by decreasing beam obliquity. (authors)

  10. Beam-Beam Effects

    CERN Document Server

    Herr, W

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities.

  11. Driving offences

    OpenAIRE

    Corbett, C

    2010-01-01

    Copyright @ 2010, Taylor & Francis Group. This material is posted on this site with the permission of the publishers. This chapter on driving offences will largely follow the template of earlier chapters except that owing to their vast number, a limited selection only will be examined based on their high volume, seriousness and public concern. The first section will define what driving offences are, how they developed alongside the emerging car culture, and it will consider the contempora...

  12. Tuning of the Compact Linear Collider Beam Delivery System

    CERN Document Server

    Garcia, H; Inntjore Levinsen, Y; Latina, A; Tomas, R; Snuverink, J

    2014-01-01

    Tuning the Compact Linear Collider (CLIC) BeamDelivery System (BDS), and in particular the Final Focus (FF), is a challenging task. In simulations without misalignments, the goal is to reach 120%o f the nominal luminosity target, in order to allow for 10% loss due to static imperfections, and another 10% loss from dynamic imperfections. Various approaches have been considered to correct the magnet misalignments, including 1-1 correction, Dispersion Free Steering (DFS), and several minimization methods utilizing multipole movers. In this paper we report on the recent advancements towards a feasible tuning approach that reaches the required luminosity target.

  13. Design of a new UHV all-metal joint for CLIC

    CERN Document Server

    Lutkiewicz, P; Rathjen, Ch

    2009-01-01

    All-metal joints are widely used in the vacuum systems of particle accelerators. The most common ConFlat® design consists of a flat soft copper gasket captured between two stainless steel flanges with sharp edges (knives). The gasket is plastically deformed and a high contact pressure develops around knives to obtain leak tightness. For large accelerators, a high reliability and a cost-optimized design are required. A smooth internal transition between flanges is needed for the RF waveguides of the compact linear collider (CLIC), with limited deformation of the inner part of the gasket. We present the study of a flange meeting these requirements. First the finite element analysis (FEA) of the Stanford linear accelerator center (SLAC) X-band all-metal joint, which has a similar specification, is shown. Some drawbacks, such as non-homogeneous sealing properties, are highlighted. Then, a new joint design is described. FEA results are presented and are compared with experimental measurements carried out on proto...

  14. Conceptual Design of a Beam line for Post-Collision extraction and diagnostics at the multi-TeV Compact Linear Collider

    CERN Document Server

    Ferrari, A; Appleby, R; Salt, M

    2009-01-01

    Strong beam-beam effects at the interaction point of a high-energy e+e- linear collider such as the Compact Linear Collider (CLIC) lead to an emittance growth for the outgoing beams, as well as to the production of beamstrahlung photons and e+e- coherent pairs. In this paper, we present a conceptual design of a 150 m long post-collision extraction line for the CLIC machine at 3 TeV, which separates the various components of the outgoing beam using a vertical magnetic chicane, before transporting them to their respective dump. In addition, detailed studies are performed in order to compute the power losses along the CLIC post-collision line. For the vacuum window at the exit of the post-collision line, we propose a thick (1.5 cm) layer of carbon-carbon composite, with a thin (0.2 mm) aluminum leak-tight foil. The stress levels in this exit window are estimated. Finally, we discuss the use of diagnostics along the post-collision line for monitoring and improving the quality of the e+e- collisions and, in turn, ...

  15. Analysis of the behaviour of the CLIC_SiD iron return yoke during a seismic event

    CERN Document Server

    Duarte Ramos, F.

    2012-01-01

    The iron return yoke of the CLIC SiD detector concept is composed of three barrel rings and two endcap discs which, during a seismic event, are subjected to horizontal and vertical accelerations that can result in both a mechanical failure of internal structural elements and high deformations which can lead to unwanted collisions with other internal or external detector elements, as well as the walls of the experimental cavern. This report presents the results from the analysis of the return yoke barrel rings and endcaps under a seismic event load case.

  16. Study of the hybrid controller electronics for the nano-stabilization of mechanical vibrations of CLIC quadrupoles

    CERN Document Server

    Fernandez Carmona, P; Collette, C; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Moron Ballester, R

    2011-01-01

    In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.

  17. Sensitivity on the Dipole Moments of the τ-Neutrino at e+e- Colliders: ILC and CLIC

    Directory of Open Access Journals (Sweden)

    A. Gutiérrez-Rodríguez

    2014-01-01

    Full Text Available We study the sensitivity on the anomalous magnetic and electric dipole moments of the τ-neutrino at a high-energy and high-luminosity linear electron positron collider, such as the ILC or CLIC, through the reaction e+e-→νν̅γ. We obtain limits on the dipole moments at the future linear colliders energies. For integrated luminosities of 500 fb−1 and center of mass energies between 0.5 and 3 TeV, the future e+e- colliders may improve the existing limits by two or three orders of magnitude.

  18. Tests of the FONT3 Linear Collider Intra-Train Beam Feedback System at the ATF

    International Nuclear Information System (INIS)

    We report preliminary results of beam tests of the FONT3 Linear Collider intra-train position feedback system prototype at the Accelerator Test Facility at KEK. The feedback system incorporates a novel beam position monitor (BPM) processor with a latency below 5 nanoseconds, and a kicker driver amplifier with similar low latency. The 56 nanosecond-long bunchtrain in the ATF extraction line was used to test the prototype BPM processor. The achieved latency will allow a demonstration of intra-train feedback on timescales relevant even for the CLIC Linear Collider design

  19. Comb-drive actuators for large displacements

    NARCIS (Netherlands)

    Legtenberg, Rob; Groeneveld, A.W.; Elwenspoek, M.

    1996-01-01

    The design, fabrication and experimental results of lateral-comb-drive actuators for large displacements at low driving voltages is presented. A comparison of several suspension designs is given, and the lateral large deflection behaviour of clamped - clamped beams and a folded flexure design is mod

  20. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    OpenAIRE

    Belver Aguilar, Carolina

    2015-01-01

    El descubrimiento del bosón de Higgs ha iniciado una nueva era en el LHC cuyo objetivo será medir las propiedades de dicho bosón con la mayor precisión posible. Sin embargo, dada la complejidad de los protones, compuestos por quarks y gluones, existe el consenso en la Física de Altas Energías de que el próximo colisionador será un colisionador electrón-positrón. Desde un punto de vista simplista, para que electrones y positrones colisionen a muy altas energías en un colisionador circular, la ...

  1. Fast wave current drive

    International Nuclear Information System (INIS)

    Experiments on the fast wave in the range of high ion cyclotron harmonics in the ACT-1 device show that current drive is possible with the fast wave just as it is for the lower hybrid wave, except that it is suitable for higher plasma densities. A 1400 loop antenna launched the high ion cyclotron harmonic fast wave [ω/Ω = O(10)] into a He+ plasma with n/sub e/approx. =4 x 1012 cm-3 and B = 4.5 kG. Probe and magnetic loop diagnostics and FIR laser scattering confirmed the presence of the fast wave, and the Rogowski loop indicated that the circulating plasma current increased by up to 40A with 1 kW of coupled power, which is comparable to lower hybrid current drive in the same device with the same unidirectional fast electron beam used as the target for the RF. A phased antenna array would be used for FWCD in a tokamak without the E-beam

  2. Beam Delivery Simulation - Recent Developments and Optimization

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00232566; Boogert, Stewart Takashi; Garcia-Morales, H; Gibson, Stephen; Kwee-Hinzmann, Regina; Nevay, Laurence James; Deacon, Lawrence Charles

    2015-01-01

    Beam Delivery Simulation (BDSIM) is a particle tracking code that simulates the passage of particles through both the magnetic accelerator lattice as well as their interaction with the material of the accelerator itself. The Geant4 toolkit is used to give a full range of physics processes needed to simulate both the interaction of primary particles and the production and subsequent propagation of secondaries. BDSIM has already been used to simulate linear accelerators such as the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), but it has recently been adapted to simulate circular accelerators as well, producing loss maps for the Large Hadron Collider (LHC). In this paper the most recent developments, which extend BDSIM’s functionality as well as improve its efficiency are presented. Improvement and refactorisation of the tracking algorithms are presented alongside improved automatic geometry construction for increased particle tracking speed.

  3. Driving things

    DEFF Research Database (Denmark)

    Nevile, Maurice Richard

    2015-01-01

    I explore how participants organise involvement with objects brought into the car, relative to the demands of driving and social activity. Objects in cars commonly include phones or other technologies, food, body care products, texts, clothing, bags and carry items, toys, and even animals......) Automobilities. London: Sage. Haddington, P., Keisanen, T. & Nevile, M. (Eds.) (2012) Meaning in motion: Interaction in cars. Special Issue for Semiotica, 191, 1/4. Haddington, P., Keisanen, T., Mondada, L., & Nevile, M. (Eds.) (2014) Multiactivity in social interaction: Beyond multitasking. Amsterdam...

  4. Polar-Direct-Drive Experiments on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, F.J.; Craxton, R.S.; Bonino, M.J.; Epstein, R.; Glebov, V.Yu.; Jacobs-Perkins, D.; Knauer, J.P.; Marozas, J.A.; McKenty, P.W.; Noyes, S.G.; Radha, P.B.; Seka, W.; Skupsky, S.; Smalyuk

    2006-06-28

    Polar direct drive (PDD), a promising ignition path for the NIF while the beams are in the indirect-drive configuration, is currently being investigated on the OMEGA laser system by using 40 beams in six rings repointed to more uniformly illuminate the target. The OMEGA experiments are being performed with standard, “warm” targets with and without the use of an equatorial “Saturn-like” toroidally shaped CH ring. Target implosion symmetry is diagnosed with framed x-ray backlighting using additional OMEGA beams and by time-integrated x-ray imaging of the stagnating core.

  5. Performance of the FONT3 Fast Analogue Intra-Train Beam-Based Feedback System at ATF

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, P.; /Queen Mary, U. of London; Christian, G.B.; Hartin, A.F.; Dabiri Khah, H.; White, G.R.; /Oxford U.; Clarke, C.C.; Perry, C.; /Oxford Instruments; Kalinin, A.; /Daresbury; McCormick, D.J.; Molloy, S.; Ross, M.C.; /SLAC

    2007-04-16

    We report results of beam tests of the FONT3 intra-train position feedback system prototype at the Accelerator Test Facility (ATF) at KEK. The feedback system incorporates a novel beam position monitor (BPM) processor with latency below 5 nanoseconds, and a kicker driver amplifier with similar low latency. The 56 nanosecond-long bunchtrain in the ATF extraction line was used to test the prototype feedback system. The achieved latency of 23ns provides a demonstration of intra-train feedback on very short timescales relevant even for the CLIC Linear Collider design.

  6. Performance of the FONT3 Fast Analogue Intra-Train Beam-Based Feedback System at ATF

    International Nuclear Information System (INIS)

    We report results of beam tests of the FONT3 intra-train position feedback system prototype at the Accelerator Test Facility (ATF) at KEK. The feedback system incorporates a novel beam position monitor (BPM) processor with latency below 5 nanoseconds, and a kicker driver amplifier with similar low latency. The 56 nanosecond-long bunchtrain in the ATF extraction line was used to test the prototype feedback system. The achieved latency of 23ns provides a demonstration of intra-train feedback on very short timescales relevant even for the CLIC Linear Collider design

  7. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Liu, S.; Bogard, F.; Cornebise, P.; Faus-Golfe, A.; Fuster-Martínez, N.; Griesmayer, E.; Guler, H.; Kubytskyi, V.; Sylvia, C.; Tauchi, T.; Terunuma, N.; Bambade, P.

    2016-10-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of ∼106 has been successfully demonstrated and confirmed for the first time in simultaneous beam core (∼109 electrons) and beam halo (∼103 electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of diamond sensors using an α source, as well as using the electron beams at PHIL, a low energy < 5 MeV photo-injector at LAL, and at ATF2. First beam halo measurement results using the DSv at ATF2 with different beam intensities and vacuum levels are also presented. Such measurements not only allow one to evaluate the different sources of beam halo generation but also to define the requirements for a suitable collimation system to be installed at ATF2, as well as to optimize its performance during future operation.

  8. Beam-beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Zholents, A.

    1994-12-01

    The term beam-beam effects is usually used to designate different phenomena associated with interactions of counter-rotating beams in storage rings. Typically, the authors speak about beam-beam effects when such interactions lead to an increase of the beam core size or to a reduction of the beam lifetime or to a growth of particle`s population in the beam halo and a correspondent increase of the background. Although observations of beam-beam effects are very similar in most storage rings, it is very likely that every particular case is largely unique and machine-dependent. This constitutes one of the problems in studying the beam-beam effects, because the experimental results are often obtained without characterizing a machine at the time of the experiment. Such machine parameters as a dynamic aperture, tune dependencies on amplitude of particle oscillations and energy, betatron phase advance between the interaction points and some others are not well known, thus making later analysis uncertain. The authors begin their discussion with demonstrations that beam-beam effects are closely related to non linear resonances. Then, they will show that a non linearity of the space charge field is responsible for the excitation of these resonances. After that, they will consider how beam-beam effects could be intensified by machine imperfections. Then, they will discuss a leading mechanism for the formation of the beam halo and will describe a new technique for beam tails and lifetime simulations. They will finish with a brief discussion of the coherent beam-beam effects.

  9. CTF3 Design Report

    CERN Document Server

    Ruth, Ronald D

    2003-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  10. Theoretical and practical feasibility demonstration of a micrometric remotely controlled pre-alignment system for the CLIC linear collider

    CERN Document Server

    Mainaud Durand, H; Chritin, N; Griffet, S; Kemppinen, J; Sosin, M; Touze, T

    2011-01-01

    The active pre-alignment of the Compact Linear Collider (CLIC) is one of the key points of the project: the components must be pre-aligned w.r.t. a straight line within a few microns over a sliding window of 200 m, along the two linacs of 20 km each. The proposed solution consists of stretched wires of more than 200 m, overlapping over half of their length, which will be the reference of alignment. Wire Positioning Sensors (WPS), coupled to the supports to be pre-aligned, will perform precise and accurate measurements within a few microns w.r.t. these wires. A micrometric fiducialisation of the components and a micrometric alignment of the components on common supports will make the strategy of pre-alignment complete. In this paper, the global strategy of active pre-alignment is detailed and illustrated by the latest results demonstrating the feasibility of the proposed solution.

  11. Analytical considerations for linear and nonlinear optimization of the TME cells. Application to the CLIC pre-damping rings

    CERN Document Server

    Fanouria, Antoniou

    2014-01-01

    The theoretical minimum emittance cells are the optimal configurations for achieving the absolute minimum emittance, if specific optics constraints are satisfied at the middle of the cell's dipole. Linear lattice design options based on an analytical approach for the theoretical minimum emittance cells are presented in this paper. In particular the parametrization of the quadrupole strengths and optics functions with respect to the emittance and drift lengths is derived. A multi-parametric space can be then created with all the cell parameters, from which one can chose any of them to be optimized. An application of this approach are finally presented for the linear and non-linear optimization of the CLIC Pre-damping rings.

  12. Alignement général du CLIC: stratégie et progrès

    CERN Document Server

    Mainaud-Durand, H

    2008-01-01

    La faisabilité concernant le pré-alignement actif du CLIC sera démontrée si l?on peut prouver qu?il existe une référence et ses capteurs associés permettant l?alignement des composants à mieux que 3 microns (1?). Pour répondre à ce challenge, une méthode de mesure d?écarts à un fil tendu est proposée, basée sur 40 ans de pratique de cette technique au CERN. Quelques problèmes demeurent concernant cette méthode : la connaissance de la forme du fil tendu utilisé comme référence droite, la détermination du géoïde à la précision souhaitée et le développement de capteurs bas coût permettant des mesures sub-micrométriques. Des études ont été entreprises afin de lever les derniers points en suspens, pendant que cette solution est intégrée dans une proposition concernant l?alignement général du CLIC. Cela implique un grand nombre d?interactions au niveau du projet, dans des domaines aussi différents que le génie civil, l?intégration, la physique du faisceau, la métrologie des �...

  13. Beam Momentum Changes due to Discharges in High-gradient Accelerator Structures

    OpenAIRE

    Palaia, Andrea

    2013-01-01

    The key questions left unanswered by the Standard Model, and the recent discovery of a Standard Model-like Higgs boson, demand an extension of the research on particle physics to the TeV energy scale. The Compact Linear Collider, CLIC, is a candidate project to achieve such goal. It is a linear lepton collider based on a novel two-beam acceleration scheme capable of high-gradient acceleration in X-band accelerator structures. The high electric fields required, however, entail the occurrence o...

  14. In vacuum diamond sensor scanner for beam halo measurements in the beam line at the KEK Accelerator Test Facility

    CERN Document Server

    Liu, Shan; Cornebise, Patrick; Faus-Golfe, Angeles; Fuster-Martínez, Nuria; Griesmayer, Erich; Guler, Hayg; Kubytskyi, Viacheslav; Sylvia, Christophe; Toshiaki, Tauchi; Terunuma, Nobuhiro; Bambade, Philip

    2015-01-01

    The investigation of beam halo transverse distributions is important for the understanding of beam losses and the control of backgrounds in Future Linear Colliders (FLC). A novel in vacuum diamond sensor (DSv) scanner with four strips has been designed and developed for the investigation of the beam halo transverse distributions and also for the diagnostics of Compton recoil electrons after the interaction point (IP) of ATF2, a low energy (1.3 GeV) prototype of the final focus system for the ILC and CLIC linear collider projects. Using the DSv, a dynamic range of $\\sim10^6$ has been successfully demonstrated and confirmed for the first time by simultaneous beam core ($\\sim10^9$ electrons) and beam halo ($\\sim10^3$ electrons) measurements at ATF2. This report presents the characterization, performance studies and tests of the diamond sensors using an $\\alpha$ source as well as using the electron beams at PHIL, a low energy ($< 10$ MeV) photo-injector at LAL, and at ATF2. First beam halo measurement results ...

  15. Distractions in Everyday Driving

    Science.gov (United States)

    ... while driving, which is one of the reasons distracted driving is such a big problem. Driver inattention is ... you’re doing any of these things while driving, you become distracted in ways that increase your risk of crashing. ...

  16. PEPPo: Using a Polarized Electron Beam to Produce Polarized Positrons

    Energy Technology Data Exchange (ETDEWEB)

    Adeyemi, Adeleke H. [Hampton Univ., Hampton, VA (United States); et al.

    2015-09-01

    Polarized positron beams have been identified as either an essential or a significant ingredient for the experimental program of both the present and next generation of lepton accelerators (JLab, Super KEK B, ILC, CLIC). An experiment demonstrating a new method for producing polarized positrons has been performed at the Continuous Electron Beam Accelerator Facility at Jefferson Lab. The PEPPo (Polarized Electrons for Polarized Positrons) concept relies on the production of polarized e⁻/e⁺ pairs from the bremsstrahlung radiation of a longitudinally polarized electron beam interacting within a high-Z conversion target. PEPPo demonstrated the effective transfer of spin-polarization of an 8.2 MeV/c polarized (P~85%) electron beam to positrons produced in varying thickness tungsten production targets, and collected and measured in the range of 3.1 to 6.2 MeV/c. In comparison to other methods this technique reveals a new pathway for producing either high-energy or thermal polarized positron beams using a relatively low polarized electron beam energy (~10MeV) .This presentation will describe the PEPPo concept, the motivations of the experiment and high positron polarization achieved.

  17. Polar-direct-drive experiments on OMEGA

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, F.J.; Craxton, R.S.; Bonino, M.J.; Epstein, R.; Glebov, V.Y.; Jacobs-Perkins, D.; Knauer, J.P.; Marozas, J.A.; McKenty, P.W.; Noyes, S.G.; Radha, P.B.; Seka, W.; Skupsky, S.; Smalyuk, V.A. [Rochester Univ., Lab. for Laser Energetics, NY (United States)

    2006-06-15

    Polar direct drive (PDD), a promising ignition path for the National Ignition Facility while the beams are in the indirect-drive configuration is currently being investigated on the OMEGA laser system by using 40 beams in six rings re-pointed to more uniformly illuminate the target. The OMEGA experiments are being performed with standard, 'warm' targets (865 {mu}m long diameter, 20 {mu}m thick, polymer (CH) shells filled with 15-atm D{sub 2}) with and without the use of an equatorial 'Saturn-like' toroidally shaped CH ring (nominal dimensions: 2.2 mm long diameter measured to ring center, 0.3 mm thick). For the Saturn case, the plasma formed around the ring refracts light toward the target equator as the ring plasma expands. The nominal laser drive is a 1 ns flat pulse, {approx} 400 J per beam, employing 1 THz, 2 dimensional smoothing by spectral dispersion (SSD) with polarization smoothing. Target implosion symmetry is diagnosed with framed X-ray back-lighting using additional OMEGA beams and by time-irradiated X-ray imaging of the stagnating core. The best results have been obtained with Saturn targets by varying the beam pointing and ring diameter, achieving about 75% of the fusion yield from symmetrically illuminated targets with the same total energy (60 beams, 15.3 kJ). (authors)

  18. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  19. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  20. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric,I et al.

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 1015 neq=cm2 , nearly 100% detection efficiency and a spatial resolution of about 3 μm were demonstrated. Since 2011 the HV detectors have first applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process.

  1. A Study of e+e− → H0A0 → bbbb at 3 TeV at CLIC

    CERN Document Server

    Battaglia, M

    2010-01-01

    The precise determination of the masses of the CP-odd and -even heavy Higgs bosons is an important part of the study of Supersymmetry and its relation with cosmology through dark matter. This note presents a determination of the A0 mass with the e+e− → H0A0 → bb ̄bb ̄ process for a dark matter motivated cMSSM scenario with MA = 1141 GeV at CLIC. The analysis is performed with full simulation and reconstruction at √s=3 TeV accounting for beamstrahlung effects. SM and SUSY backgrounds are considered and the effect of the overlay of γγ → hadrons events on the signal is studied for various assumptions for the detector time-stamping capabilities. The di-jet mass resolution is improved by applying a kinematic fit. The A0 mass can be determined with a statistical accuracy of ≃ 3-5 GeV for 3 ab−1 of integrated luminosity and 0 to 20 bunch crossings of γγ background integrated in one event, respectively.

  2. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  3. Neutral Higgs Boson Pair-Production and Trilinear Self-Couplings in the MSSM at ILC and CLIC Energies

    CERN Document Server

    Gutiérrez-Rodríguez, A; Sampayo, O A

    2009-01-01

    We study pair-production as well as the triple self-couplings of the neutral Higgs bosons of the Minimal Supersymmetric Standard Model (MSSM) at the Future International Linear $e^{+}e^{-}$ Collider (ILC) and Compact Linear Collider (CLIC). The analysis is based on the reactions $e^{+}e^{-}\\to b \\bar b h_ih_i, t \\bar t h_ih_i$ with $h_i=h, H, A$. We evaluate the total cross-section for both $b\\bar bh_ih_i$, $t\\bar th_ih_i$ and calculate the total number of events considering the complete set of Feynman diagrams at tree-level. We vary the triple couplings $\\kappa\\lambda_{hhh}$, $\\kappa\\lambda_{Hhh}$, $\\kappa\\lambda_{hAA}$, $\\kappa\\lambda_{HAA}$, $\\kappa\\lambda_{hHH}$ and $\\kappa\\lambda_{HHH}$ within the range $\\kappa=-1$ and +2. The numerical computation is done for the energies expected at the ILC with a center-of-mass energy 500, 1000, 1600 $GeV$ and a luminosity 1000 $fb^{-1}$. The channels $e^{+}e^{-}\\to b \\bar b h_ih_i$ and $e^{+}e^{-}\\to t \\bar t h_ih_i$ are also discussed to a center-of-mass energy of 3...

  4. Preliminary Results of Ion Beam Extraction Tests on EAST Neutral Beam Injector

    Institute of Scientific and Technical Information of China (English)

    胡纯栋

    2012-01-01

    The neutral beam injection (NBI) system is one of the most important auxiliary plasma heating and current driving methods for fusion device. A high power ion beam of 3 MW with 80 keV beam energy in 0.5 s beam duration and a long pulse ion beam of 4 s with 50 keV beam energy ion beam extraction were achieved on the EAST neutral beam injector on the teststand. The preliminary results show that the EAST-NBI system was developed successfully on schedule.

  5. Extended Driving Impairs Nocturnal Driving Performances

    OpenAIRE

    Patricia Sagaspe; Jacques Taillard; Torbjorn Akerstedt; Virginie Bayon; Stéphane Espié; Guillaume Chaumet; Bernard Bioulac; Pierre Philip

    2008-01-01

    Though fatigue and sleepiness at the wheel are well-known risk factors for traffic accidents, many drivers combine extended driving and sleep deprivation. Fatigue-related accidents occur mainly at night but there is no experimental data available to determine if the duration of prior driving affects driving performance at night. Participants drove in 3 nocturnal driving sessions (3-5 am, 1-5 am and 9 pm-5 am) on open highway. Fourteen young healthy men (mean age [+/-SD] = 23.4 [+/-1.7] years)...

  6. HARMONIC DRIVE SELECTION

    Directory of Open Access Journals (Sweden)

    Piotr FOLĘGA

    2014-03-01

    Full Text Available The variety of types and sizes currently in production harmonic drive is a problem in their rational choice. Properly selected harmonic drive must meet certain requirements during operation, and achieve the anticipated service life. The paper discusses the problems associated with the selection of the harmonic drive. It also presents the algorithm correct choice of harmonic drive. The main objective of this study was to develop a computer program that allows the correct choice of harmonic drive by developed algorithm.

  7. Reading Text While Driving

    OpenAIRE

    Liang, Yulan; Horrey, William J.; Hoffman, Joshua D.

    2015-01-01

    Objective In this study, we investigated how drivers adapt secondary-task initiation and time-sharing behavior when faced with fluctuating driving demands. Background Reading text while driving is particularly detrimental; however, in real-world driving, drivers actively decide when to perform the task. Method In a test track experiment, participants were free to decide when to read messages while driving along a straight road consisting of an area with increased driving demands (demand zone)...

  8. The application of multilayer elastic beam in MEMS safe and arming system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guozhong, E-mail: liguozhong-bit@bit.edu.cn; Shi, Gengchen; Sui, Li [National Lab of Mechatronic Engineering and Control, Beijing Institute of Technology, Beijing 100081, P.R.CHINA (China); Yi, Futing; Wang, Bo [Institute of High Energy Physics Chinese Academy of Sciences, Beijing 100049, P.R.CHINA (China)

    2015-07-15

    In this paper, a new approach for a multilayer elastic beam to provide a driving force and driving distance for a MEMS safe and arming system is presented. In particular this is applied where a monolayer elastic beam cannot provide adequate driving force and driving distance at the same time in limited space. Compared with thicker elastic beams, the bilayer elastic beam can provide twice the driving force of a monolayer beam to guarantee the MEMS safe and arming systems work reliably without decreasing the driving distance. In this paper, the theoretical analysis, numerical simulation and experimental verification of the multilayer elastic beam is presented. The numerical simulation and experimental results show that the bilayer elastic provides 1.8–2 times the driving force of a monolayer, and a method that improves driving force without reducing the driving distance.

  9. Failure Tolerant Operation and Trimming Principle in the CLIC Main Linac

    CERN Document Server

    Siemaszko, D

    2012-01-01

    A powering strategy for a high number of magnets disposed in a radiated and confined area is presented for a particle accelerator application. One power converter supplies the main current in series connected magnets. Then, for adjusting each current individually, small active trimmers are implemented together which each magnet. The trimmers are only dissipative, implemented as MOSFETs operated in their linear region and controlled by analog PI controllers. The reliability of the whole powering system is ensured with failure tolerance that complies with beam physics. The steady state operation and dynamic response in case of failures are experimentally studied in a reduced scale prototype.

  10. Beam Losses in the Extraction Line of a TeV E+ E- Linear Collider With a 20-Mrad Crossing Angle

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; /Uppsala U.; Nosochkov, Y.; /SLAC

    2006-03-29

    In this paper, we perform a detailed study of the power losses along the postcollision extraction line of a TeV e+e- collider with a crossing angle of 20 mrad between the beams at the interaction point. Five cases are considered here: four luminosity configurations for ILC and one for CLIC. For all of them, the strong beam-beam effects at the interaction point lead to an emittance growth for the outgoing beams, as well as to the production of beamstrahlung photons and e+e- pairs. The power losses along the 20 mrad extraction line, which are due to energy deposition by a fraction of the disrupted beam, of the beamstrahlung photons and of the e+e- coherent pairs, were estimated in the case of ideal collisions, as well as with a vertical position or angular o set at the interaction point.

  11. Laser beam riding artillery missiles guidance device is designed

    Science.gov (United States)

    Yan, Mingliang; Huo, Zhicheng; Chen, Wei

    2014-09-01

    Laser driving gun missile guidance type beam of laser information field formed by any link failure or reduced stability will directly lead to ballistic or miss out of control, and based on this, this paper designed the driving beam of laser guided missile guidance beam type forming device modulation and zoom mechanism, in order to make the missile can recognize its position in the laser beam, laser beam gun missile, by means of spatial encoding of the laser beam laser beam into information after forming device, a surface to achieve the purpose of precision guidance.

  12. Theoretical studies of non inductive current drive in compact toroids

    NARCIS (Netherlands)

    Farengo, R; Lifschitz, AF; Caputi, KI; Arista, NR; Clemente, RA

    2002-01-01

    Three non inductive current drive methods that can be applied to compact toroids axe studied. The use of neutral beams to drive current in field reversed configurations and spheromaks is studied using a Monte Carlo code that includes a complete ionization package and follows the exact particle orbit

  13. PACMAN study of FSI and micro-triangulation for the pre-alignment of CLIC

    CERN Document Server

    Kamugasa, William Solomon

    2015-01-01

    The alignment precision of linear colliders is extremely demanding owing to the very narrow beam size at the interaction point. Unlike circular colliders, particles in linear colliders have only one chance to collide and are hence tightly focused to maximise the number of interactions per collision. The PACMAN* project is dedicated to study the integration of both fiducialization and alignment of the components on a common support. FSI (Frequency Scanning Interferometry) and Micro-triangulation will contribute to this goal. FSI realized by Etalon AG’s Absolute Multiline system and Micro-triangulation implemented by QDaedalus system developed at ETH Zurich offer precision of 0.5 μm/m and 2.4 μm/m respectively. However, these systems need to be improved in order to provide the necessary geometric information via distance measurements (multilateration) and angle measurements (triangulation), respectively. The paper describes the current status and the future developments of Absolute Multiline and QDaedalus, ...

  14. Polar direct drive: Proof-of-principle experiments on OMEGA and prospects for ignition on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Craxton, R.S.; Marshall, F.J.; Bonino, M.J.; Epstein, R.; McKenty, P.W.; Skupsky, S.; Delettrez, J.A.; Igumenshchev, I.V.; Jacobs-Perkins, D.W.; Knauer, J.P.; Marozas, J.A.; Radha, P.B.; Seka, W.

    2005-04-15

    Polar direct drive (PDD) shows promise for achieving direct-drive ignition while the National Ignition Facility (NIF) is initially configured for indirect drive. Experiments have been carried out using 40 repointed beams of the 60-beam OMEGA laser system to approximate the NIF PDD configuration.

  15. Electric Vehicle - Economical driving

    DEFF Research Database (Denmark)

    Jensen, VCE, Steen V.; Schøn, Henriette

    1999-01-01

    Instruct the reader in getting most satisfaction out of an EV, especially concerning driving and loading.......Instruct the reader in getting most satisfaction out of an EV, especially concerning driving and loading....

  16. Dementia and driving

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000028.htm Dementia and driving To use the sharing features on ... please enable JavaScript. If your loved one has dementia, deciding when they can no longer drive may ...

  17. Gear bearing drive

    Science.gov (United States)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  18. InterTerm: los diccionarios de internet en un solo clic

    Directory of Open Access Journals (Sweden)

    M. Gonzalo Claros

    2009-06-01

    Full Text Available En este artículo se presenta una herramienta que funciona en todos los ordenadores con tal de que se use un navegador que entienda el JavaScript estándar: InterTerm. Con ella se puede buscar una palabra en menos de un minuto en una buena colección de diccionarios y glosarios de la web. Se describe brevemente cómo utilizarlo, cómo se ven los resultados y por qué puede ser una herramienta interesante que merece ser añadida al disco duro y a los enlaces del navegador. La lista de sitios se puede modificar a voluntad del usuario, si se atreve a meterse en los entresijos del programa. Para empezar a probarlo, basta consultar la URL . ---------------------------------------------- InterTerm: Internet dictionaries at a single click. This article introduces InterTerm, a tool that runs in every type of computer using a browser with JavaScript standard. In less than a minute, this tool can search a word in a large collection of dictionaries and glossaries available in the web. This article briefly describes how to use it, how to see the results and the reasons why it's an interesting tool to install in the hard drive and to mark as a link in the browser. The user can modify the websites list if able to use the necessary skills to get into the program's ins and outs. To start testing this application, visit .

  19. Measurement of Beam Loss at the Australian Synchrotron

    CERN Document Server

    Holzer, EB; Kastriotou, M; Boland, MJ; Jackson, PD; Rasool, RP; Schmidt, J; Welsch, CP

    2014-01-01

    The unprecedented requirements that new machines are setting on their diagnostic systems is leading to the development of new generation of devices with large dynamic range, sensitivity and time resolution. Beam loss detection is particularly challenging due to the large extension of new facilities that need to be covered with localized detector. Candidates to mitigate this problem consist of systems in which the sensitive part of the radiation detectors can be extended over long distance of beam lines. In this document we study the feasibility of a BLM system based on optical fiber as an active detector for an electron storage ring. The Australian Synchrotron (AS) comprises a 216m ring that stores electrons up to 3GeV. The Accelerator has recently claimed the world record ultra low transverse emittance (below pm rad) and its surroundings are rich in synchrotron radiation. Therefore, the AS provides beam conditions very similar to those expected in the CLIC/ILC damping rings. A qualitative benchmark of beam l...

  20. Superconducting wiggler magnets for beam-emittance damping rings

    CERN Document Server

    Schoerling, Daniel

    2012-01-01

    Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....

  1. High performance AC drives

    CERN Document Server

    Ahmad, Mukhtar

    2010-01-01

    This book presents a comprehensive view of high performance ac drives. It may be considered as both a text book for graduate students and as an up-to-date monograph. It may also be used by R & D professionals involved in the improvement of performance of drives in the industries. The book will also be beneficial to the researchers pursuing work on multiphase drives as well as sensorless and direct torque control of electric drives since up-to date references in these topics are provided. It will also provide few examples of modeling, analysis and control of electric drives using MATLAB/SIMULIN

  2. Simple Driving Techniques

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    2002-01-01

    Driving was introduced as a program transformation technique by Valentin Turchin in some papers around 1980. It was intended for the programming language REFAL and used in metasystem transitions based on super compilation. In this paper we present one version of driving for a more conventional lisp......-like language. Our aim is to extract a simple notion of driving and show that even in this tamed form it has much of the power of more general notions of driving. Our driving technique may be used to simplify functional programs which use function composition and will often be able to remove intermediate data...

  3. Multi-beam linear accelerator EVT

    Science.gov (United States)

    Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.

    2016-09-01

    A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.

  4. Bessel Beams

    OpenAIRE

    McDonald, Kirk T

    2000-01-01

    Scalar Bessel beams are derived both via the wave equation and via diffraction theory. While such beams have a group velocity that exceeds the speed of light, this is a manifestation of the "scissors paradox" of special relativty. The signal velocity of a modulated Bessel beam is less than the speed of light. Forms of Bessel beams that satisfy Maxwell's equations are also given.

  5. A beam source model for scanned proton beams

    Science.gov (United States)

    Kimstrand, Peter; Traneus, Erik; Ahnesjö, Anders; Grusell, Erik; Glimelius, Bengt; Tilly, Nina

    2007-06-01

    A beam source model, i.e. a model for the initial phase space of the beam, for scanned proton beams has been developed. The beam source model is based on parameterized particle sources with characteristics found by fitting towards measured data per individual beam line. A specific aim for this beam source model is to make it applicable to the majority of the various proton beam systems currently available or under development, with the overall purpose to drive dose calculations in proton beam treatment planning. The proton beam phase space is characterized by an energy spectrum, radial and angular distributions and deflections for the non-modulated elementary pencil beam. The beam propagation through the scanning magnets is modelled by applying experimentally determined focal points for each scanning dimension. The radial and angular distribution parameters are deduced from measured two-dimensional fluence distributions of the elementary beam in air. The energy spectrum is extracted from a depth dose distribution for a fixed broad beam scan pattern measured in water. The impact of a multi-slab range shifter for energy modulation is calculated with an own Monte Carlo code taking multiple scattering, energy loss and straggling, non-elastic and elastic nuclear interactions in the slab assembly into account. Measurements for characterization and verification have been performed with the scanning proton beam system at The Svedberg Laboratory in Uppsala. Both in-air fluence patterns and dose points located in a water phantom were used. For verification, dose-in-water was calculated with the Monte Carlo code GEANT 3.21 instead of using a clinical dose engine with approximations of its own. For a set of four individual pencil beams, both with the full energy and range shifted, 96.5% (99.8%) of the tested dose points satisfied the 1%/1 mm (2%/2 mm) gamma criterion.

  6. Thermal Fatigue of Polycrystalline Copper in CLIC Accelerating Structures: Surface Roughening and Hardening as a Function of Grain Orientation

    CERN Document Server

    Aicheler, M

    2010-01-01

    The ac­cel­er­at­ing struc­tures of CLIC will be sub­mit­ted to 2 x 1010 ther­mal-me­chan­i­cal fa­tigue cy­cles, aris­ing from Radio Fre­quen­cy (RF) in­duced eddy cur­rents, caus­ing local su­per­fi­cial cyclic heat­ing. In order to as­sess the ef­fects of su­per­fi­cial fa­tigue, high tem­per­a­ture an­nealed OFE Cop­per sam­ples were ther­mal­ly fa­tigued with the help of pulsed laser ir­ra­di­a­tion. They un­der­went post­mortem Elec­tron Backscat­tered Diffrac­tion (EBSD) mea­sure­ments andμhard­ness ob­ser­va­tions. Pre­vi­ous work has con­firmed that sur­face rough­en­ing de­pends on the ori­en­ta­tion of near-sur­face grains*,**. It is clear­ly ob­served that, through ther­mal cy­cling, the in­crease of hard­ness of a crys­tal­lo­graph­ic di­rec­tion is re­lat­ed to the amount of sur­face rough­en­ing in­duced by fa­tigue. Near-sur­face grains, ori­ent­ed [1 0 0] with re­spect to the sur­face, ex­hibit­ing ver...

  7. Alternative techniques for beam halo measurements

    CERN Document Server

    Welsch, CP; Burel, B; Lefèvre, T; Chapman, T; Pilon, MJ

    2006-01-01

    In future high intensity, high energy accelerators it must be ensured that particle losses are minimized, as activation of the vacuum chambers or other components makes maintenance and upgrade work time consuming and costly. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) are a well-established technique for measurements of the transverse beam profile. However, in order to be suitable for halo measurements as well, the dynamic range of the final image acquisition system needs to be high, being able to cover at least five orders of magnitude in intensity changes. Here, the performance of a standard acquisition system as it is used in the CLIC test facility (CTF3) is compared to a step-by-step measurement with a small movable photo multiplier tube and an innovative camera system based on charge injection de...

  8. Superluminal warp drive

    International Nuclear Information System (INIS)

    In this Letter we consider a warp drive spacetime resulting from that suggested by Alcubierre when the spaceship can only travel faster than light. Restricting to the two dimensions that retains most of the physics, we derive the thermodynamic properties of the warp drive and show that the temperature of the spaceship rises up as its apparent velocity increases. We also find that the warp drive spacetime can be exhibited in a manifestly cosmological form

  9. Universal Drive Train Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This vehicle drive train research facility is capable of evaluating helicopter and ground vehicle power transmission technologies in a system level environment. The...

  10. CTF3 Probe Beam LINAC Commissioning and Operations

    CERN Document Server

    Farabolini, W; Curtoni, A; Girardot, P; Peauger, F; Simon, C S; Chevallay, E; Divall Csatari, M; Lebas, N; Petrarca, M; Palaia, A; Ruber, R J M Y; Ziemann, V G

    2010-01-01

    The probe beam LINAC, CAL­IFES, of the CLIC Test Fa­cil­i­ty (CTF3) has been de­vel­oped by CEA Saclay, LAL Orsay and CERN to de­liv­er trains of short bunch­es (0.75 ps) spaced by 0.666 ps at an en­er­gy around 170 MeV with a charge of 0.6 nC to the TBTS (Two-beam Test Stand) in­tend­ed to test the high gra­di­ent CLIC ac­cel­er­at­ing struc­tures. Based on 3 for­mer LIL ac­cel­er­at­ing struc­tures and on a newly de­vel­oped RF pho­to-in­jec­tor, the whole ac­cel­er­a­tor is pow­ered with a sin­gle 3 GHz klystron de­liv­er­ing puls­es of 45 MW through a RF pulse com­pres­sion cav­i­ty and a net­work of waveg­uides, split­ters, phase-shifters and an at­ten­u­a­tor. We re­late here re­sults col­lect­ed dur­ing the var­i­ous com­mis­sion­ing and op­er­a­tion pe­ri­ods which led to nom­i­nal per­for­mances and sta­ble beam char­ac­ter­is­tics de­liv­ered to the TBTS. Progress has been made in the laser sys­tem for beam charge and sta...

  11. High-energy tritium beams as current drivers in tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  12. Electric Vehicle - Economical driving

    DEFF Research Database (Denmark)

    Jensen, VCE, Steen V.; Schøn, Henriette

    1999-01-01

    How do you reduce the energy-wast when driving and loading EV's - or rather: How do I get more km/l out of an EV......How do you reduce the energy-wast when driving and loading EV's - or rather: How do I get more km/l out of an EV...

  13. Piezoelectric drive circuit

    Science.gov (United States)

    Treu, Jr., Charles A.

    1999-08-31

    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  14. Recognizing driving in haste

    NARCIS (Netherlands)

    Rendón-Vélez, E.

    2014-01-01

    One can often hear people discussing the reasons why a road accident has happened: “She had to pick up her kids in the school before four o’clock and she was driving in haste and careless”, “He was stressed, he wanted to reach the beginning of the football match, tried to drive faster and didn't app

  15. Electric vehicles: Driving range

    Science.gov (United States)

    Kempton, Willett

    2016-09-01

    For uptake of electric vehicles to increase, consumers' driving-range needs must be fulfilled. Analysis of the driving patterns of personal vehicles in the US now shows that today's electric vehicles can meet all travel needs on almost 90% of days from a single overnight charge.

  16. Fundamentals of electrical drives

    CERN Document Server

    Veltman, André; De Doncker, Rik W

    2007-01-01

    Provides a comprehensive introduction to various aspects of electrical drive systems. This volume provides a presentation of dynamic generic models that cover all major electrical machine types and modulation/control components of a drive as well as dynamic and steady state analysis of transformers and electrical machines.

  17. Drive Around the World

    Institute of Scientific and Technical Information of China (English)

    Yang Wei

    2008-01-01

    @@ "It's so cool that I can drive on my own,and my own car,"Cao Gang,WOrking for a private company in Changsha,capital city of Hunan Province,mid-south China,said in excitement when he newly bought Ben Ben,a Chinese local auto brand of Chang'an,with his freshly-passed driving license.

  18. Sub-NM Beam Motion Analysis using a Standard BPM with High Resolution Electronics

    CERN Document Server

    Gasior, M; Kuzmin, A; Pfingstner, J; Schmickler, H; Sylte, M; Billing, M; Böge, M; Dehler, M

    2010-01-01

    In the Compact Linear Collider (CLIC) project high luminosity will be achieved by generating and preserving ultra low beam emittances. It will require a mechanical stability of the quadrupole magnets down to the level of 1 nmrms for frequencies above 1 Hz throughout the 24 km of linac structures. Studies are presently being undertaken to stabilize each quadrupole by means of an active feedback system based on motion sensors and piezoelectric actuators. Since it will be very difficult to prove the stability of the magnetic field down to that level of precision, an attempt was made to use a synchrotron electron beam as a sensor. The beam motion was observed with a standard button Beam Position Monitor (BPM) equipped with high resolution electronics. Beam experiments were carried out to qualify such a measurement at CesrTA (Cornell University) and at SLS (PSI, Villingen), where the residual motion of the circulating electron beams was measured in the frequency range of 5 – 700 Hz. This paper describes the resu...

  19. Progress in direct-drive inertial confinement fusion

    Directory of Open Access Journals (Sweden)

    McCrory R.L.

    2013-11-01

    Full Text Available Significant progress has been made in direct-drive inertial confinement fusion research at the Laboratory for Laser Energetics since the 2009 IFSA Conference [R.L. McCrory et al., J. Phys.: Conf. Ser. 244, 012004 (2010]. Areal densities of 300mg/cm2 have been measured in cryogenic target implosions with neutron yields 15% of 1-D predictions. A model of crossed-beam energy transfer has been developed to explain the observed scattered-light spectrum and laser–target coupling. Experiments show that its impact can be mitigated by changing the ratio of the laser beam to target diameter. Progress continues in the development of the polar-drive concept that will allow direct-drive–ignition experiments to be conducted on the National Ignition Facility using the indirect-drive-beam layout.

  20. Fast wave current drive

    Energy Technology Data Exchange (ETDEWEB)

    Goree, J.; Ono, M.; Colestock, P.; Horton, R.; McNeill, D.; Park, H.

    1985-07-01

    Fast wave current drive is demonstrated in the Princeton ACT-I toroidal device. The fast Alfven wave, in the range of high ion-cyclotron harmonics, produced 40 A of current from 1 kW of rf power coupled into the plasma by fast wave loop antenna. This wave excites a steady current by damping on the energetic tail of the electron distribution function in the same way as lower-hybrid current drive, except that fast wave current drive is appropriate for higher plasma densities.

  1. Beam - cavity interaction beam loading

    International Nuclear Information System (INIS)

    The interaction of a beam with a cavity and a generator in cyclic accelerators or storage rings is investigated. Application of Maxwell's equations together with the nonuniform boundary condition allows one to get an equivalent circuit for a beam-loaded cavity. The general equation for beam loading is obtained on the basis of the equivalent circuit, and the beam admittance is calculated. Formulas for power consumption by a beam-loaded cavity are derived, and the optimal tuning and coupling factor are analyzed. (author)

  2. Driving in a womb

    NARCIS (Netherlands)

    Anonymous

    Drive thousands of kilometres on just a litre of fuel? During the annual Shell eco-marathon at the end of May, schoolchildren and students – including a team from TU Delft – demonstrated that it can indeed be done.

  3. Drinking and driving

    OpenAIRE

    2003-01-01

    Alcohol misuse generates many health and social problems at a cost that society is increasingly unwilling to sustain. One of the most tragic consequences of alcohol misuse is the result of drinking and driving. Each week, impaired drivers kill 40 Canadian men, women and children and injure 1250 others. The Canadian Medical Association (CMA), in its campaign against drinking and driving, has recommended that a condition of obtaining or renewing a driver's licence include the individual's writt...

  4. Instant Google Drive starter

    CERN Document Server

    Procopio, Mike

    2013-01-01

    This book is a Starter which teaches you how to use Google Drive practically. This book is perfect for people of all skill levels who want to enjoy the benefits of using Google Drive to safely store their files online and in the cloud. It's also great for anyone looking to learn more about cloud computing in general. Readers are expected to have an Internet connection and basic knowledge of using the internet.

  5. Direct drive wind turbine

    Science.gov (United States)

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  6. Self-driving carsickness.

    Science.gov (United States)

    Diels, Cyriel; Bos, Jelte E

    2016-03-01

    This paper discusses the predicted increase in the occurrence and severity of motion sickness in self-driving cars. Self-driving cars have the potential to lead to significant benefits. From the driver's perspective, the direct benefits of this technology are considered increased comfort and productivity. However, we here show that the envisaged scenarios all lead to an increased risk of motion sickness. As such, the benefits this technology is assumed to bring may not be capitalised on, in particular by those already susceptible to motion sickness. This can negatively affect user acceptance and uptake and, in turn, limit the potential socioeconomic benefits that this emerging technology may provide. Following a discussion on the causes of motion sickness in the context of self-driving cars, we present guidelines to steer the design and development of automated vehicle technologies. The aim is to limit or avoid the impact of motion sickness and ultimately promote the uptake of self-driving cars. Attention is also given to less well known consequences of motion sickness, in particular negative aftereffects such as postural instability, and detrimental effects on task performance and how this may impact the use and design of self-driving cars. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels. PMID:26446454

  7. Epilepsy and driving

    Directory of Open Access Journals (Sweden)

    Moetamedi M

    2000-09-01

    Full Text Available Epilepsy is a disease with high prevalence, which interferes driving and may lead to car accident; This case-control study has been done on 100 epileptic patients and 100 persons as control group, who had history of driving. We gathered our patients with face to face interview and registering their information in special forms which were prepared for this study. There were three times more accidents among epileptic cases comparing with control group and this difference was more considerable in men and in patients under 35 years old. The cause of accident were not seizure attack in more than 60% of the patients and these ordinary accidents were also more in case group. Epileptic patients with history of car accidents during driving had poor drug compliance comparing with the epileptics without history of an accident so drug compliance may be valuable in predicting accident in these patients. We have also found poor drug compliance in whom seizure attacks caused accident for them. 58% of the epileptics had not consulted their physician about driving. 43.3% of seizures during driving were of generalized type and none of the patients had inform police about their disease during getting driving license.

  8. Dementia and driving.

    Science.gov (United States)

    O'Neill, D; Neubauer, K; Boyle, M; Gerrard, J; Surmon, D; Wilcock, G K

    1992-04-01

    Many European countries test cars, but not their drivers, as they age. There is evidence to suggest that human factors are more important than vehicular factors as causes of motor crashes. The elderly also are involved in more accidents per distance travelled than middle-aged drivers. As the UK relies on self-certification of health by drivers over the age of 70 years, we examined the driving practices of patients with dementia attending a Memory Clinic. Nearly one-fifth of 329 patients with documented dementia continued to drive after the onset of dementia, and impaired driving ability was noted in two-thirds of these. Their families experienced great difficulty in persuading patients to stop driving, and had to invoke outside help in many cases. Neuropsychological tests did not help to identify those who drove badly while activity of daily living scores were related to driving ability. These findings suggest that many patients with dementia drive in an unsafe fashion after the onset of the illness. The present system of self-certification of health by the elderly for driver-licensing purposes needs to be reassessed.

  9. Self-driving carsickness.

    Science.gov (United States)

    Diels, Cyriel; Bos, Jelte E

    2016-03-01

    This paper discusses the predicted increase in the occurrence and severity of motion sickness in self-driving cars. Self-driving cars have the potential to lead to significant benefits. From the driver's perspective, the direct benefits of this technology are considered increased comfort and productivity. However, we here show that the envisaged scenarios all lead to an increased risk of motion sickness. As such, the benefits this technology is assumed to bring may not be capitalised on, in particular by those already susceptible to motion sickness. This can negatively affect user acceptance and uptake and, in turn, limit the potential socioeconomic benefits that this emerging technology may provide. Following a discussion on the causes of motion sickness in the context of self-driving cars, we present guidelines to steer the design and development of automated vehicle technologies. The aim is to limit or avoid the impact of motion sickness and ultimately promote the uptake of self-driving cars. Attention is also given to less well known consequences of motion sickness, in particular negative aftereffects such as postural instability, and detrimental effects on task performance and how this may impact the use and design of self-driving cars. We conclude that basic perceptual mechanisms need to be considered in the design process whereby self-driving cars cannot simply be thought of as living rooms, offices, or entertainment venues on wheels.

  10. Dangers of Texting While Driving

    Science.gov (United States)

    ... and share information, we created a dedicated website . Distracted Driving Information Clearinghouse In addition, to collect and share ... technology that could potentially reduce the problem of distracted driving, the Commission’s staff created the FCC Distracted Driving ...

  11. Review of the experimental papers at the IAEA conference on noninductive current drive, Culham, 1983

    International Nuclear Information System (INIS)

    Three types of noninductive current drive experiments have been reported at this conference: (1) neutral beam (2) rf current drive, and (3) relativistic electron beams (REB). If we compare the effort to develop current drive to a horse race, the neutral beam horse was first out of the gates, but it quickly found greener pastures (heating) and has dropped temporarily out of the race. The lower hybrid horse now has a big lead at the first furlong (200 m), but the bulk of the race remains to be run. The fast wave and REB horses have yet to get up speed

  12. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  13. LHC Report: Beam on

    CERN Multimedia

    Rossano Giachino for the LHC Team

    2012-01-01

    The powering tests described in the last edition of the Bulletin were successfully finished at the end of the first week of March opening the way for 4 TeV operations this year. The beam was back in the machine on Wednesday 14 March. The first collisions at 4 TeV are scheduled for the first week of April.   The first beam of 2012 is dumped after making a few rounds in the LHC. The magnet powering tests were followed by the machine checkout phase. Here the operations team in collaboration with the equipment groups performs a sequence of tests to ensure the readiness of the LHC for beam. The tests include driving all the LHC systems – beam dump, injection, collimation, RF, power converters, magnet circuits, vacuum, interlocks, controls, timing and synchronization – through the operational cycle. The “checkout phase” is really a massive de-bugging exercise, which is performed with the objective of ensuring the proper functioning of the whole machine and t...

  14. 补体成分 C3及其缺失突变体蛋白的表达及与 CLIC1蛋白共定位的研究%The expression of human complement component C3 and its deletion mutants and the colocalization with CLIC1

    Institute of Scientific and Technical Information of China (English)

    王二宁; 陈丹丹; 刘晓颖; 范礼斌

    2015-01-01

    目的:研究补体成分 C3及其缺失突变体 C3(1-840)、C3(824-1663)在真核细胞内的表达及与氯离子通道蛋白(CLIC1)的共定位。方法构建 pcDNA3.1-C3-FLAG、pcDNA3.1-C3(1-840)-FLAG、pcDNA3.1-C3(824-1663)-FLAG 三个真核表达质粒(缺失突变体根据 C3的结构域及其裂解断裂位置设计),并分别转染至 HEK 293T 细胞中, Western blot 检测表达情况;上述质粒分别瞬时单转至 COS7细胞和分别与 GFP-CLIC1共转至 COS7细胞内,观察共定位情况。结果成功构建带 FLAG 标签的 C3基因及其两个缺失突变体[C3(1-840)、C3(824-1663)]的真核表达载体, Western blot 结果显示它们在 HEK 293T 细胞中均能成功表达;免疫荧光显示它们在 COS7细胞中均主要分布于细胞质,且三个真核表达载体中只有 C3(824-1663)与 CLIC1有共定位。结论补体 C3及其缺失突变体 C3(1-840)和 C3(824-1663)在 HEK 293T、COS7细胞中均能高效表达,且主要分布在细胞质内,C3(824-1663)与 CLIC1蛋白有共定位。%Objective To study the expression and cell localization of complement component C3 and its deletion mutants C3(1-840)and C3(824-1663)in eukaryotic cells and the colocalization with CLIC1.Methods To con-struct three eukaryotic expression plasmids of pcDNA3.1-C3-FLAG,pcDNA3.1-C3(1-840)-FLAG and pcDNA3.1-C3(824-1663)-FLAG(according to C3 structure domain and splitting position).The plasmids were transfected into HEK 293T cells.Then the expression was detected by Western blot,and their cellular localization was detected in COS7 cells by fluorescence microscopy.Results The eukaryotic expression plasmids of pcDNA3.1-C3-FLAG, pcDNA3.1-C3(1-840)-FLAG and pcDNA3.1-C3(824-1663)-FLAG were constructed successfully,which could be expressed in HEK 293T and COS7 cells,and the cellular localization of C3 and C3(1-840),C3(824-1663)ap-peared similar,mainly in the cytoplasm,and only C3(824-1663)co

  15. Polar-direct-drive experiments at the National Ignition Facility

    Science.gov (United States)

    Radha, P. B.; Hohenberger, M.; Marshall, F. J.; Michel, D. T.; Bates, J.; Boehly, T. R.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Dixit, S. N.; Edgell, D. H.; Frenje, J. A.; Froula, D. H.; Goncharov, V. N.; Hu, S. X.; Karasik, M.; Knauer, J. P.; LePape, S.; Marozas, J. A.; McCrory, R. L.; McKenty, P. W.; Meyerhofer, D. D.; Myatt, J. F.; Obenschein, S.; Petrasso, R. D.; Regan, S. P.; Rosenberg, M. J.; Sangster, T. C.; Seka, W.; Shvydky, A.; Sio, H.; Skupsky, S.; Zylstra, A.

    2016-05-01

    Polar-direct-drive experiments at the National Ignition Facility (NIF) are being used to validate direct-drive-implosion models. Energy coupling and fast-electron preheat are the primary issues being studied in planar and imploding geometries on the NIF. Results from backlit images from implosions indicate that the overall drive is well modeled although some differences remain in the thickness of the imploding shell. Implosion experiments to mitigate cross-beam energy transfer and preheat from two-plasmon decay are planned for the next year.

  16. Driving anger in Malaysia.

    Science.gov (United States)

    Sullman, Mark J M; Stephens, Amanda N; Yong, Michelle

    2014-10-01

    The present study examined the types of situations that cause Malaysian drivers to become angry. The 33-item version of the driver anger scale (Deffenbacher et al., 1994) was used to investigate driver anger amongst a sample of 339 drivers. Confirmatory factor analysis showed that the fit of the original six-factor model (discourtesy, traffic obstructions, hostile gestures, slow driving, illegal driving and police presence), after removing one item and allowing three error pairs to covary, was satisfactory. Female drivers reported more anger, than males, caused by traffic obstruction and hostile gestures. Age was also negatively related to five (discourtesy, traffic obstructions, hostile gestures, slow driving and police presence) of the six factors and also to the total DAS score. Furthermore, although they were not directly related to crash involvement, several of the six forms of driving anger were significantly related to the crash-related conditions of: near misses, loss of concentration, having lost control of a vehicle and being ticketed. Overall the pattern of findings made in the present research were broadly similar to those from Western countries, indicating that the DAS is a valid measure of driving anger even among non-European based cultures.

  17. [Drug use and driving].

    Science.gov (United States)

    Lemaire-Hurtel, Anne-Sophie; Goullé, Jean-Pierre; Alvarez, Jean-Claude; Mura, Patrick; Verstraete, Alain G

    2015-10-01

    Some drugs are known to impair driving because they can change the vision or hearing, and/or disrupt the intellectual or motor abilities: impaired vigilance, sedation, disinhibition effect, the coordination of movement disorders and the balance. The doctor during prescribing and the pharmacist during deliverance of drug treatment should inform their patients of the potential risks of drugs on driving or operating machinery. The driver has direct responsibility, who hired him and him alone, to follow the medical advice received. The pictograms on the outer packaging of medicinal products intended to classify substances according to their risk driving: The driver can whether to observe simple precautions (level one "be prudent"), or follow the advice of a health professional (level two "be very careful"), or if it is totally not drive (level three "danger caution: do not drive"). This classification only evaluates the intrinsic danger of drugs but not the individual variability. Medicines should be taken into account also the conditions for which the medication is prescribed. It is important to inform the patient on several points. PMID:25956300

  18. Beam Instabilities

    CERN Document Server

    Rumolo, G

    2014-01-01

    When a beam propagates in an accelerator, it interacts with both the external fields and the self-generated electromagnetic fields. If the latter are strong enough, the interplay between them and a perturbation in the beam distribution function can lead to an enhancement of the initial perturbation, resulting in what we call a beam instability. This unstable motion can be controlled with a feedback system, if available, or it grows, causing beam degradation and loss. Beam instabilities in particle accelerators have been studied and analysed in detail since the late 1950s. The subject owes its relevance to the fact that the onset of instabilities usually determines the performance of an accelerator. Understanding and suppressing the underlying sources and mechanisms is therefore the key to overcoming intensity limitations, thereby pushing forward the performance reach of a machine.

  19. Ceramic vane drive joint

    Science.gov (United States)

    Smale, Charles H. (Inventor)

    1981-01-01

    A variable geometry gas turbine has an array of ceramic composition vanes positioned by an actuating ring coupled through a plurality of circumferentially spaced turbine vane levers to the outer end of a metallic vane drive shaft at each of the ceramic vanes. Each of the ceramic vanes has an end slot of bow tie configuration including flared end segments and a center slot therebetween. Each of the vane drive shafts has a cross head with ends thereof spaced with respect to the sides of the end slot to define clearance for free expansion of the cross head with respect to the vane and the cross head being configured to uniformly distribute drive loads across bearing surfaces of the vane slot.

  20. Cross-Beam Energy Transfer Driven by Incoherent Laser Beams with Frequency Detuning

    Science.gov (United States)

    Maximov, A.; Myatt, J. F.; Short, R. W.; Igumenshchev, I. V.; Seka, W.

    2015-11-01

    In the direct-drive method of the inertial confinement fusion (ICF), the coupling of laser energy to target plasmas is strongly influenced by the effect of cross-beam energy transfer (CBET) between multiple driving laser beams. The laser -plasma interaction (LPI) model of CBET is based on the nonparaxial laser light propagation coupled with the low-frequency ion-acoustic-domain plasma response. Common ion waves driven by multiple laser beams play a very important role in CBET. The effect of the frequency detuning (colors) in the driving laser beams is studied and it is shown to significantly reduce the level of common ion waves and therefore the level of CBET. The differences between the LPI-based CBET model and the ray-based CBET model used in hydrocodes are discussed. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  1. Gears and gear drives

    CERN Document Server

    Jelaska, Damir T

    2012-01-01

    Understanding how gears are formed and how they interact or 'mesh' with each other is essential when designing equipment that uses gears or gear trains. The way in which gear teeth are formed and how they mesh is determined by their geometry and kinematics, which is the topic of this book.  Gears and Gear Drives provides the reader with comprehensive coverage of gears and gear drives. Spur, helical, bevel, worm and planetary gears are all covered, with consideration given to their classification, geometry, kinematics, accuracy control, load capacity and manufacturing. Cylindric

  2. Pulsation driving and convection

    Science.gov (United States)

    Antoci, Victoria

    2015-08-01

    Convection in stellar envelopes affects not only the stellar structure, but has a strong impact on different astrophysical processes, such as dynamo-generated magnetic fields, stellar activity and transport of angular momentum. Solar and stellar observations from ground and space have shown that the turbulent convective motion can also drive global oscillations in many type of stars, allowing to study stellar interiors at different evolutionary stages. In this talk I will concentrate on the influence of convection on the driving of stochastic and coherent pulsations across the Hertzsprung-Russell diagram and give an overview of recent studies.

  3. Toyota hybrid synergy drive

    Energy Technology Data Exchange (ETDEWEB)

    Gautschi, H.

    2008-07-01

    This presentation made at the Swiss 2008 research conference on traffic by Hannes Gautschi, director of service and training at the Toyota company in Switzerland, takes a look at Toyota's hybrid drive vehicles. The construction of the vehicles and their combined combustion engines and electric generators and drives is presented and the combined operation of these components is described. Braking and energy recovery are discussed. Figures on the performance, fuel consumption and CO{sub 2} output of the hybrid vehicles are compared with those of conventional vehicles.

  4. FTIR spectrometer with solid-state drive system

    Science.gov (United States)

    Rajic, Slobodan; Seals, Roland D.; Egert, Charles M.

    1999-01-01

    An FTIR spectrometer (10) and method using a solid-state drive system with thermally responsive members (27) that are subject to expansion upon heating and to contraction upon cooling. Such members (27) are assembled in the device (10) so as to move an angled, reflective surface (22) a small distance. The sample light beam (13) is received at a detector (24) along with a reference light beam (13) and there it is combined into a resulting signal. This allows the "interference" between the two beams to occur for spectral analysis by a processor (29).

  5. Polar-direct-drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Myatt, J. F. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; LePape, S. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Marozas, J. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Marshall, F. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Michel, D. T. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Regan, S. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Seka, W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Shvydky, A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Sangster, T. C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Bates, J. W. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Boehly, T. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Bonino, M. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Casey, D. T. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Collins, T. J. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Craxton, R. S. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Delettrez, J. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Edgell, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Epstein, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Fiksel, G. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Fitzsimmons, P. [General Atomics, San Diego, California 92121, USA; Frenje, J. A. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Goncharov, V. N. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Harding, D. R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Kalantar, D. H. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Karasik, M. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Kessler, T. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Kilkenny, J. D. [General Atomics, San Diego, California 92121, USA; Knauer, J. P. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Kurz, C. [General Atomics, San Diego, California 92121, USA; Lafon, M. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; LaFortune, K. N. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; MacGowan, B. J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Mackinnon, A. J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; MacPhee, A. G. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; McCrory, R. L. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; McKenty, P. W. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Meeker, J. F. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Meyerhofer, D. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Nagel, S. R. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Nikroo, A. [General Atomics, San Diego, California 92121, USA; Obenschain, S. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Ralph, J. E. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Rinderknecht, H. G. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA; Rosenberg, M. J. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Schmitt, A. J. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Wallace, R. J. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Weaver, J. [U. S. Naval Research Laboratory, Washington, DC 20375, USA; Widmayer, C. [Lawrence Livermore National Laboratory, Livermore, California 94550, USA; Skupsky, S. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Solodov, A. A. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Yaakobi, B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA; Zuegel, J. D. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA

    2015-05-01

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ~500-750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 x 1014 to 1.2 x 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  6. Polar-direct-drive experiments on the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M.; Radha, P. B.; Myatt, J. F.; Marozas, J. A.; Marshall, F. J.; Michel, D. T.; Regan, S. P.; Seka, W.; Shvydky, A.; Sangster, T. C.; Betti, R.; Boehly, T. R.; Bonino, M. J.; Collins, T. J. B.; Craxton, R. S.; Delettrez, J. A.; Edgell, D. H.; Epstein, R.; Fiksel, G.; Froula, D. H. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299 (United States); and others

    2015-05-15

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D{sub 2} gas were imploded with total drive energies ranging from ∼500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 × 10{sup 14} to 1.2 × 10{sup 15 }W/cm{sup 2}. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data.

  7. Polar-direct-drive experiments on the National Ignition Facility

    International Nuclear Information System (INIS)

    To support direct-drive inertial confinement fusion experiments at the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)] in its indirect-drive beam configuration, the polar-direct-drive (PDD) concept [S. Skupsky et al., Phys. Plasmas 11, 2763 (2004)] has been proposed. Ignition in PDD geometry requires direct-drive–specific beam smoothing, phase plates, and repointing the NIF beams toward the equator to ensure symmetric target irradiation. First experiments to study the energetics and preheat in PDD implosions at the NIF have been performed. These experiments utilize the NIF in its current configuration, including beam geometry, phase plates, and beam smoothing. Room-temperature, 2.2-mm-diam plastic shells filled with D2 gas were imploded with total drive energies ranging from ∼500 to 750 kJ with peak powers of 120 to 180 TW and peak on-target irradiances at the initial target radius from 8 × 1014 to 1.2 × 1015 W/cm2. Results from these initial experiments are presented, including measurements of shell trajectory, implosion symmetry, and the level of hot-electron preheat in plastic and Si ablators. Experiments are simulated with the 2-D hydrodynamics code DRACO including a full 3-D ray-trace to model oblique beams, and models for nonlocal electron transport and cross-beam energy transport (CBET). These simulations indicate that CBET affects the shell symmetry and leads to a loss of energy imparted onto the shell, consistent with the experimental data

  8. Dielectric Wakefield Accelerator to drive the future FEL Light Source.

    Energy Technology Data Exchange (ETDEWEB)

    Jing, C.; Power, J.; Zholents, A. (Accelerator Systems Division (APS)); ( HEP); (LLC)

    2011-04-20

    X-ray free-electron lasers (FELs) are expensive instruments and a large part of the cost of the entire facility is driven by the accelerator. Using a high-energy gain dielectric wake-field accelerator (DWA) instead of the conventional accelerator may provide a significant cost saving and reduction of the facility size. In this article, we investigate using a collinear dielectric wakefield accelerator to provide a high repetition rate, high current, high energy beam to drive a future FEL x-ray light source. As an initial case study, a {approx}100 MV/m loaded gradient, 850 GHz quartz dielectric based 2-stage, wakefield accelerator is proposed to generate a main electron beam of 8 GeV, 50 pC/bunch, {approx}1.2 kA of peak current, 10 x 10 kHz (10 beamlines) in just 100 meters with the fill factor and beam loading considered. This scheme provides 10 parallel main beams with one 100 kHz drive beam. A drive-to-main beam efficiency {approx}38.5% can be achieved with an advanced transformer ratio enhancement technique. rf power dissipation in the structure is only 5 W/cm{sup 2} in the high repetition rate, high gradient operation mode, which is in the range of advanced water cooling capability. Details of study presented in the article include the overall layout, the transform ratio enhancement scheme used to increase the drive to main beam efficiency, main wakefield linac design, cooling of the structure, etc.

  9. Efficiency studies of high frequency current drive

    International Nuclear Information System (INIS)

    Pulsed high power free-electron-lasers (FELs) offer new possibilities for the current drive in tokamaks. High intensity FELs apply to the excitation of nonlinear wave-wave processes, such as beat-waves (BW) and stimulated Raman scattering (SRS), in which large phase velocity (vph>>ve) electrostatic modes are generated. These can accelerate resonant electrons to high parallel velocities v||∼vph, which produces a slowly decaying current. Furthermore, the fast electrons with v||>>v are not toroidally trapped into banana orbits. The operation at high frequencies provides for the FEL beam an easy access into the plasma centre. This makes possible to suppress sawtooth activity by profile control and to expand the operational limits in parameter space. Raman and beat-wave methods apply particularly well to bootstrap current seeding, which may considerably enhance the overall current drive efficiency. Both Raman forward (SRS-F) and backward (SRS-B) scattering can be applied to current drive. At high, reactor relevant temperatures SRS-F is the dominant process, because SRS-B is suppressed due to heavy damping of the plasma wave. At temperatures of a few keV, SRS-B dominates because of its short gain length. In this report we shall estimate the current drive efficiency at temperatures relevant for MTX and for a tokamak reactor. We shall also consider the dependence of the efficiency on the peak intensity of FEL in these two cases. (author) 8 refs., 2 figs., 1 tab

  10. Design and fabrication of a high-aspect-ratio parylene-based comb-drive actuator for large displacements at a low driving force

    International Nuclear Information System (INIS)

    This paper presents a comb-drive actuator integrated with parylene-based flexible beams for large displacements at a low driving force. Single-crystal silicon and polysilicon are the traditional materials used for comb-drive actuators in the microeletromechanical systems industry. However, the larger Young's modulus limits the displacement at a low applied voltage. This study uses the parylene beams with the characteristic of a low modulus of the elastic comb-drive actuator as a compliant suspension to create a larger displacement (>50 µm) with smaller driving forces than that of silicon. High-aspect-ratio parylene beams can be fabricated through the deposition and removal of parylene in multiple stages on a silicon micro-trench. The proposed process uses a silicon-on-insulator wafer as the substrate to fabricate suspended silicon and parylene beams as rigid and compliant structures, respectively. The test devices of parylene- and silicon-based comb-drive actuators were fabricated with 100 pairs of comb fingers with gaps of 5 µm, and compliant beams of 15 µm in width, 2000 µm in span and 50 µm in thickness. When a driving voltage of 40 V dc was applied, the parylene-based comb-drive actuator generated a displacement of up to 55 µm, whereas the silicon-based comb-drive actuator generated a displacement of 2 µm. The parylene-based comb-drive actuator can generate about 27 times of displacement than that of silicon. This design is suitable for application in devices with large in-plane displacement and low switching speed. (paper)

  11. Chaos in drive systems

    Directory of Open Access Journals (Sweden)

    Kratochvíl C.

    2007-10-01

    Full Text Available The purpose of this article is to provide an elementary introduction to the subject of chaos in the electromechanical drive systems. In this article, we explore chaotic solutions of maps and continuous time systems. These solutions are also bounded like equilibrium, periodic and quasiperiodic solutions.

  12. Driving with a Goat

    Institute of Scientific and Technical Information of China (English)

    高素菊

    2006-01-01

    <正>A highway patrol officer was sitting in his car beside the road one day when he noticed a man driving with a goat in the back seat of his car.Turning on the lights,he pulled out,sped up, and pulled the man over.

  13. Magnetized drive fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rosensweig, R.E.; Zahn, M.

    1986-04-01

    A process is described for recovering a first fluid from a porous subterranean formation which comprises injecting a displacement fluid in an effective amount to displace the first fluid, injecting a ferrofluid, applying a magnetic field containing a gradient of field intensity within the formation, driving the displacement fluid through the formation with the ferrofluid and recovering first fluid.

  14. Fresh Drive Against Corruption

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    China’s government is making efforts to prevent corruption by taking harsh measures against the illegal selection and appointment of cadres on the 10th anniversary of China’s anti-corruption drive,President Hu Jintao called fogreater efforts to carry it out.

  15. Efficient driving; Effizientes Fahren

    Energy Technology Data Exchange (ETDEWEB)

    Dillmann, Gerhard; Prys, Gerhard; Klinkert, Carsten; Sauer, Juergen; Otasevic, Aleksandar; Steinbock, Robert [BMW Group, Muenchen (Germany)

    2008-11-15

    With the BMW Efficient Dynamics development strategy, the new BMW 7 Series is proving that a superior, dynamic driving experience with simultaneous reduction of fuel consumption and emissions can be combined with the premium standards of the luxury automobile class. (orig.)

  16. Gaze-controlled Driving

    DEFF Research Database (Denmark)

    Tall, Martin; Alapetite, Alexandre; San Agustin, Javier;

    2009-01-01

    We investigate if the gaze (point of regard) can control a remote vehicle driving on a racing track. Five different input devices (on-screen buttons, mouse-pointing low-cost webcam eye tracker and two commercial eye tracking systems) provide heading and speed control on the scene view transmitted...

  17. Drugs and driving

    NARCIS (Netherlands)

    Walsh, J. Michael; De Gier, Johan J.; Christopherson, Asbjørg S.; Verstraete, Alain G.

    2004-01-01

    The authors present a global overview on the issue of drugs and driving covering four major areas: (1) Epidemiology and Prevalence-which reviews epidemiological research, summarizes available information, discusses the methodological shortcomings of extant studies, and makes recommendations for futu

  18. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  19. The production and decay of the top partner T in the left–right twin Higgs model at the ILC and CLIC

    Directory of Open Access Journals (Sweden)

    Yao-Bei Liu

    2015-03-01

    Full Text Available The left–right twin Higgs model (LRTHM predicts the existence of the top partner T. In this work, we make a systematic investigation for the single and pair production of this top partner T through the processes: e+e−→tT¯+Tt¯ and TT¯, the neutral scalar (the SM-like Higgs boson h or neutral pseudoscalar boson ϕ0 associate productions e+e−→tT¯h+Tt¯h, TT¯h, tT¯ϕ0+Tt¯ϕ0 and TT¯ϕ0. From the numerical evaluations for the production cross sections and relevant phenomenological analysis we find that (a the production rates of these processes, in the reasonable parameter space, can reach the level of several or tens of femtobarns; (b for some cases, the peak value of the resonance production cross section can be enhanced significantly and reaches to the level of pb; (c the subsequent decay of T→ϕ+b→tb¯b may generate typical phenomenological features rather different from the signals from other new physics models beyond the standard model (SM; and (d since the relevant SM background is generally not large, some signals of the top partner T predicted by the LRTHM may be detectable in the future ILC and CLIC experiments.

  20. What Drives Commodity Prices?

    OpenAIRE

    Chen, Shu-Ling; Jackson, John D; Kim, Hyeongwoo; Resiandini, Pramesti

    2012-01-01

    This paper examines common forces driving the prices of 51 highly tradable commodities. We demonstrate that highly persistent movements of these prices are mostly due to the first common component, which is closely related to the US nominal exchange rate. In particular, our simple factor-based model outperforms the random walk model in out-of-sample forecast for the US exchange rate. The second common factor and de-factored idiosyncratic components are consistent with stationarity, implyin...

  1. Driving in America

    Institute of Scientific and Technical Information of China (English)

    刘世一

    2005-01-01

    Mitsuaki recently arrived in the United States to enter university. He wants to do well in his studies and adjust to the new culture. But Mitsuaki has a problem. It's not his roommates. It's not his school fees. It's not even his English ability. Mitsuaki's problem is that he doesn't have a car. And in America, that really makes him a foreigner. Mitsuaki has already discovered a basic fact of American culture : Driving is a way of life.

  2. Driving and Neurodegenerative Diseases

    OpenAIRE

    Uc, Ergun Y.; Rizzo, Matthew

    2008-01-01

    The proportion of elderly in the general population is rising, resulting in greater numbers of drivers with neurodegenerative disorders such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). These neurodegenerative disorders impair cognition, visual perception, and motor function, leading to reduced driver fitness and greater crash risk. Yet medical diagnosis or age alone is not reliable enough to predict driver safety or crashes, or revoke the driving privileges of these drivers. Dri...

  3. Mitigating Distracted Driving

    OpenAIRE

    Cox, Tim; Kolberg, Kenny

    2014-01-01

    The scourge of distracted driving is not limited to any one demographic group or nation. It is global and affects every victim and victims’ families. This dire situation, caused largely by technology such as texting, requires technological solutions, including new traffic safety countermeasures. The transverse rumble strip, a countermeasure reinvented in 2009 as the temporary portable rumble strip, is already proving a significant, innovative addition to work zone safety processes and procedu...

  4. Control rod drive

    International Nuclear Information System (INIS)

    Object: To provide a simple and compact construction of an apparatus for driving a drive shaft inside with a magnetic force from the outside of the primary system water side. Structure: The weight of a plunger provided with an attraction plate is supported by a plunger lift spring means so as to provide a buffer action at the time of momentary movement while also permitting the load on lift coil to be constituted solely by the load on the drive shaft. In addition, by arranging the attraction plate and lift coil so that they face each other with a small gap there-between, it is made possible to reduce the size and permit efficient utilization of the attracting force. Because of the small size, cooling can be simply carried out. Further, since there is no mechanical penetration portion, there is no possibility of leakage of the primary system water. Furthermore, concentration of load on a latch pin is prevented by arranging so that with a structure the load of the control rod to be directly beared through the scrum latch. (Kamimura, M.)

  5. Control rod drive system

    International Nuclear Information System (INIS)

    The present invention concerns an electromotive driving-type control rod driving system of a BWR type reactor, for which sliding resistance (friction) test can be performed of a movable portion of the control rod driving mechanisms. Namely, a hydraulic pressure control unit has following constitutions in addition to a conventional constitution as a sliding resistance test performing function. (1) A restricting valve is disposed downstream of the scram valve of scram pipelines to control flow rate and pressure of pressurized water flown in the pipelines. (2) A pressure gauge detects a pressure between the scram valve and the restricting valve. (3) A flow meter detects the flow rate of pipelines controlled by the restricting valve. (4) A recording pressure detector detects the pressure at the downstream of the restricting valve. (5) The recording device is attached when the sliding resistant test is performed for tracing the pressure measured by the pressure detection device. Further, the scram valve sends electric signals to a central operation chamber when it is fully closed. The central operation chamber has a function of fully opening the restricting valve by way of the electric signals. (I.S.)

  6. CTF3 Design Report Preliminary Phase

    CERN Document Server

    Allard, D; Bernard, M; Bertuzzi, J P; Bienvenu, G; Bonzano, R; Bossart, Rudolf; Braun, H; Bravin, Enrico; Borburgh, J; Buttkus, J; Chazarenc, E; Chaput, R; Chohan, V; Cloye, J J; Corsini, R; Coudert, G; Damiani, M; Deghaye, S; Delahaye, J P; Di Maio, F; Dobers, T; Dubief, P; Dupuy, B; Durieu, L; Ferrari, A; Garvey, Terence; Geschonke, Günther; Hansen, J; Hellgren, H; Hourican, M; Lamidon, M; Le Duff, J; Lefèvre, T; Lewis, J H; Lindroos, J; Mahner, E; McMonagle, G; Monteiro, J; Mourier, J; Mouton, B; Odier, P; Otto, T; Pearce, P; Pittin, R; Poehler, M; Potier, J P; Raich, U; Rettig, M; Rinolfi, Louis; Risselada, Thys; Riva, R; Rossat, G; Royer, P; Sermeus, L; Setas, K; Simonet, G; Sladen, Jonathan P H; Søby, L; Tanner, L; Tecker, F A; Thomi, J C; Wilson, Ian H; Yvon, G

    2001-01-01

    The design of CLIC is based on a two-beam scheme, where the short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP. In the first stage of the project, the "Preliminary Phase", the existing LIL linac and the EPA ring, both modified to suit the new requirements, are used to investigate the technique of frequency multiplication by means of interleaving bunches from subsequent trains. This report describes the design of this phase.

  7. Constructing a Distracted Driving Dataset

    OpenAIRE

    Foley, James; Ebe, Kazu; Owens, Justin M.; Angell, Linda; Hankey, Jonathan M.

    2014-01-01

    Distracted driving has become a topic of critical importance to driving safety research over the past several decades. Naturalistic driving data offer a unique opportunity to study how drivers engage with secondary tasks in real-world driving; however, the complexities involved with identifying and coding relevant epochs of naturalistic data have limited its accessibility to the general research community. Method This project was developed to help address this problem by creating an accessibl...

  8. Higgs Mass and Cross-Section Measurements at a 500 GeV CLIC Machine, Operating at sqrt(s) = 350 GeV and 500 GeV

    CERN Document Server

    Marshall, J

    2012-01-01

    Higgs mass and cross-section measurements have been examined to assess the capability of a 500 GeV CLIC machine, operating at centre-of-mass energies of 350 GeV and 500 GeV. A Higgs mass of 120 GeV and a luminosity of 500 fb−1 were assumed. Model-independent measurements were performed by examining the recoil of the Z in the Higgsstrahlung process, with the Z subsequently decaying to a pair of muons or electrons.

  9. PURE DRIVE GT

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    在2004年奥林匹克赛事中,中国的李婷,孙甜甜取得了中国网球第一个金牌一女子双打冠军。忘记不了当时李婷挥动着她的BABOLAT(百保力)网拍Pure Drive Zylon 360°激动地拥抱着孙甜甜吵闹着,幸福地哭着的情景。

  10. Electrical machines & drives

    CERN Document Server

    Hammond, P

    1985-01-01

    Containing approximately 200 problems (100 worked), the text covers a wide range of topics concerning electrical machines, placing particular emphasis upon electrical-machine drive applications. The theory is concisely reviewed and focuses on features common to all machine types. The problems are arranged in order of increasing levels of complexity and discussions of the solutions are included where appropriate to illustrate the engineering implications. This second edition includes an important new chapter on mathematical and computer simulation of machine systems and revised discussions o

  11. Electric drive design methodology

    CERN Document Server

    Jufer, Marcel

    2013-01-01

    An electric drive that is designed or adapted to a specific application must take into account all the elements of the chain of constituent elements in its use and deployment. In addition to the motor, the transmission, power electronics, control, sensors, and electrical protection systems must be taken into account. The motor and the transmission can be optimized and designed to obtain the best energy efficiency assessment, in particular for dynamic nodes. An inventory and a characterization of these various components is proposed as part of this book's examination and explanation

  12. Electrical machines and drives

    CERN Document Server

    Hindmarsh, John

    2002-01-01

    Recent years have brought substantial developments in electrical drive technology, with the appearance of highly rated, very-high-speed power-electronic switches, combined with microcomputer control systems.This popular textbook has been thoroughly revised and updated in the light of these changes. It retains its successful formula of teaching through worked examples, which are put in context with concise explanations of theory, revision of equations and discussion of the engineering implications. Numerous problems are also provided, with answers supplied.The third edition in

  13. Advances in traction drive technology

    Science.gov (United States)

    Loewenthal, S. H.; Anderson, N. E.; Rohn, D. A.

    1983-01-01

    Traction drives are traced from early uses as main transmissions in automobiles at the turn of the century to modern, high-powered traction drives capable of transmitting hundreds of horsepower. Recent advances in technology are described which enable today's traction drive to be a serious candidate for off-highway vehicles and helicopter applications. Improvements in materials, traction fluids, design techniques, power loss and life prediction methods will be highlighted. Performance characteristics of the Nasvytis fixed-ratio drive are given. Promising future drive applications, such as helicopter main transmissions and servo-control positioning mechanisms are also addressed.

  14. Cycloconverter drive systems. Cycloconverter gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Chiashi, M.; Osawa, H.; Endo, K. (Fuji Electric Co. Ltd., Tokyo (Japan))

    1991-10-10

    Fuji Electric has completed preparation for the production of various cycloconverter variable-speed AC drive systems used for low-speed large-capacity drives, and is ready to supply the optimum system to meet purposes. Among cycloconverter drive systems of Fuji Electric, circulating current-free cycloconverter fed synchronous motor drive is superior in respect of input power factor and equipment capacity, induction motor drive is superior in respect of maintenance, and circulating current cycloconverter fed motor drive is superior in respect of controllability. This report describes outlines, system components, comparison of performances, control systems and their characteristics, and technology for advanced performance of these various cycloconverter drive systems. Furthermore, was introduced a development of hybrid cycloconverter using a GTO thyristor which can regulate input power factor at 1. 2 refs., 14 figs., 1 tab.

  15. High-gradient two-beam electron accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay L. [Omega-P, Inc., New Haven, CT (United States)

    2014-11-04

    The main goal for this project was to design, build, and evaluate a detuned-cavity, collinear, two-beam accelerator structure. Testing was to be at the Yale University Beam Physics Laboratory, under terms of a sub-grant from Omega-P to Yale. Facilities available at Yale for this project include a 6-MeV S-band RF gun and associated beam line for forming and transporting a ~1 A drive beam , a 300 kV beam source for use as a test beam, and a full panoply of laboratory infrastructure and test equipment. During the first year of this project, availability and functionality of the 6-MeV drive beam and 300 kV test beam were confirmed, and the beam line was restored to a layout to be used with the two-beam accelerator project. Major efforts during the first year were also focused on computational design and simulation of the accelerator structure itself, on beam dynamics, and on beam transport. Effort during the second year was focussed on building and preparing to test the structure, including extensive cold testing. Detailed results from work under this project have been published in twelve archival journal articles, listed in Section IV of the technical report.

  16. Control rod drives

    International Nuclear Information System (INIS)

    Purpose: To rapidly detect the position to which a control rod has been rapidly inserted into the reactor core upon scram in the control rod drives for use in LMFBR type reactors. Constitution: In control rod drives comprising an acceleration spring disposed to the outside of an extension pipe and an acceleration pipe for conducting the spring force to a control rod for rapidly dropping the rod into the reactor core, a magnet having a repulsive force is disposed to each acceleration pipe and guide pipe as decelerating and buffering means for the acceleration pipe. The position of the control rod is detected by the interaction between the magnet and the coils attached to the inside of the guide pipe or reactor lead switch. According to this invention, 85 % scram signal which has hitherto been difficult to be processed electrically can be obtained with a sufficient intensity and with no delay to thereby improve the entire safety of the reactor system. Then, the inserted position and the insertion time can accurately and rapidly be detected. (Horiuchi, T.)

  17. Assessment of Electron-Cyclotron-Current-Drive-Assisted Operation in DEMO

    Directory of Open Access Journals (Sweden)

    Marushchenko N.B.

    2012-09-01

    Full Text Available The achievable efficiency for external current drive through electron-cyclotron (EC waves in a demonstration tokamak reactor is discussed. Two possible reactor designs, one for steady state and one for pulsed operation, are considered. It is found that for midplane injection the achievable current drive efficiency is limited by secondharmonic absorption at levels consistent with previous studies. Propagation through the second-harmonic region can be reduced by moving the launch position to the high-field side (this can be obtained by injecting the beam from an upper port in the vacuum vessel. In this case, beam tracing calculations deliver values for the EC current drive efficiency approaching those usually reported for neutral beam current drive.

  18. Beam self-excited rf cavity driver for a deflector or focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Wadlinger, E.A.

    1996-09-01

    A bunched beam from and accelerator can excite and power an rf cavity which then drives either a deflecting or focusing (including nonlinear focusing) rf cavity with and amplitude related to beam current. Rf power, generated when a bunched beam loses energy to an rf field when traversing an electric field that opposes the particle`s motion, is used to drive a separate (or the same) cavity to either focus or deflect the beam. The deflected beam can be stopped by an apertures or directed to a different area of a target depending on beam current. The beam-generated rf power can drive a radio-frequency quadrupole (RFQ) that can change the focusing properties of a beam channel as a function of beam current (space- charge force compensation or modifying the beam distribution on a target). An rf deflector can offset a beam to a downstream sextupole, effectively producing a position-dependent quadrupole field. The combination of rf deflector plus sextupole will produce a beam current dependent quadropole-focusing force. A static quadrupole magnet plus another rf deflector can place the beam back on the optic axis. This paper describes the concept, derives the appropriate equations for system analysis, and fives examples. A variation on this theme is to use the wake field generated in an rf cavity to cause growth in the beam emittance. The beam current would then be apertured by emittance defining slits.

  19. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  20. What is strenuous? Driving itself or the driving situation?

    OpenAIRE

    Schießl, Caroline; Vollrath, Mark; Altmüller, Tobias; Dambier, Michael; Kornblum, Christian

    2006-01-01

    To avoid driver overload, assistance systems can be adapted regarding the driver’s current strain. Physiological and performance workload measures require special sensors and are problematic concerning sensitivity and specificity. Within the presented study the driver’s stress level was estimated in real-driving based on an analysis of different driving manoeuvres and environmental factors. The analyses show that different driving manoeuvres result in significantly different subjective strain...

  1. External Beam Therapy (EBT)

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z External Beam Therapy (EBT) External beam therapy (EBT) is a ... follow-up should I expect? What is external beam therapy and how is it used? External beam ...

  2. Dimensions of driving anger and their relationships with aberrant driving.

    Science.gov (United States)

    Zhang, Tingru; Chan, Alan H S; Zhang, Wei

    2015-08-01

    The purpose of this study was to investigate the relationship between driving anger and aberrant driving behaviours. An internet-based questionnaire survey was administered to a sample of Chinese drivers, with driving anger measured by a 14-item short Driving Anger Scale (DAS) and the aberrant driving behaviours measured by a 23-item Driver Behaviour Questionnaire (DBQ). The results of Confirmatory Factor Analysis demonstrated that the three-factor model (hostile gesture, arrival-blocking and safety-blocking) of the DAS fitted the driving anger data well. The Exploratory Factor Analysis on DBQ data differentiated four types of aberrant driving, viz. emotional violation, error, deliberate violation and maintaining progress violation. For the anger-aberration relation, it was found that only "arrival-blocking" anger was a significant positive predictor for all four types of aberrant driving behaviours. The "safety-blocking" anger revealed a negative impact on deliberate violations, a finding different from previously established positive anger-aberration relation. These results suggest that drivers with different patterns of driving anger would show different behavioural tendencies and as a result intervention strategies may be differentially effective for drivers of different profiles.

  3. THE IMPACT OF TEXT DRIVING ON DRIVING SAFETY

    Directory of Open Access Journals (Sweden)

    Sanaz Motamedi

    2016-09-01

    Full Text Available In an increasingly mobile era, the wide availability of technology for texting and the prevalence of hands-free form have introduced a new safety concern for drivers. To assess this concern, a questionnaire was first deployed online to gain an understanding of drivers’ text driving experiences as well as their demographic information. The results from 232 people revealed that the majority of drivers are aware of the associated risks with texting while driving. However, more than one-fourth of them still frequently send or read text messages while driving. In addition to the questionnaire, through the use of a virtual-reality driving simulator, this study examined drivers’ driving performance while they were engaged in some forms of text driving under different challenging traffic conditions. Through a blocked factorial experiment, drivers would either read a text message or respond to it with two levels of text complexity while using either hand-held or hands-free texting method. Their driving performance was assessed based on the number of driving violations observed in each scenario. Conclusions regarding the impacts of different forms of texting, text complexity, and response mode on drivers driving performance were drawn.

  4. Control rod drives

    International Nuclear Information System (INIS)

    Purpose: To improve the reliability of a device for driving an LMFBR type reactor control rod by providing a buffer unit having a stationary electromagnetic coil and a movable electromagnetic coil in the device to thereby avord impact stress at scram time and to simplify the structure of the buffer unit. Constitution: A non-contact type buffer unit is constructed with a stationary electromagnetic coil, a cable for the stationary coil, a movable electromagnetic coil, a spring cable for the movable coil, and a backup coil spring or the like. Force produced at scram time is delivered without impact by the attracting or repelling force between the stationary coil and the movable coil of the buffer unit. Accordingly, since the buffer unit is of a non-contact type, there is no mechanical impact and thus no large impact stress, and as it has simple configuration, the reliability is improved and the maintenance can be conducted more easily. (Yoshihara, H.)

  5. Do emotions drive psychosis?

    Directory of Open Access Journals (Sweden)

    João Guilherme Ribeiro

    2013-11-01

    Full Text Available Introduction: How important is the emotional life of persons who manifest psychotic symptoms? Aims: The aim of this paper is to review evidence on a causal role for emotions in psychotic processes. Methods: Selective review of literature on affective symptoms in psychoses, on emotions in the production of psychotic symptoms and on dopaminergic models of psychosis. Results: Affective symptoms are relevant across psychoses. Persons with schizophrenia have high levels of emotional reactivity and the intensification of negative affects not only is associated with but also precedes the intensification of psychotic symptoms, which is evidence that negative emotions drive the course of psychotic symptoms. Negative self‑representations are central in psychotic processes and can be the link between negative emotions and psychosis. Evidence favours the notion that persecutory delusions are consistent with negative affects and self‑representations, while grandiose delusions are consistent with a defensive amplification of positive affects and self‑representations. Shame has been proposed as the core emotional experience of psychosis, one in which the self becomes vulnerable to the external world, which is consistent with persecutory experiences. Assaults on the self, under the form of hostility in the family environment and society, are strong predictors of relapse and development of schizophrenia. Assaults on the self which induce social defeat are also strong stimulants of mesolimbic dopaminergic pathways, whose hyperactivity is associated with acute psychotic episodes and the experience of “aberrant salience”, put forward as a dopaminergic model of psychosis. Conclusions: The “defeat of the self” emerges as a central link that binds the experience of negative emotions to the expression of psychotic symptoms and its psychological and neurobiological correlates. The hypothesis gains support that the emotions related to that defeat control

  6. Do emotions drive psychosis?

    Directory of Open Access Journals (Sweden)

    João G. Ribeiro

    2012-12-01

    Full Text Available Introduction: How important is the emotional life of persons who manifest psychotic symptoms? Aims: The aim of this paper is to review evidence on a causal role for emotions in psychotic processes. Methods: Selective review of literature on affective symptoms in psychoses, on emotions in the production of psychotic symptoms and on dopaminergic models of psychosis. Results: Affective symptoms are relevant across psychoses. Persons with schizophrenia have high levels of emotional reactivity and the intensification of negative affects not only is associated with but also precedes the intensification of psychotic symptoms, which is evidence that negative emotions drive the course of psychotic symptoms. Negative self‑representations are central in psychotic processes and can be the link between negative emotions and psychosis. Evidence favours the notion that persecutory delusions are consistent with negative affects and self‑representations, while grandiose delusions are consistent with a defensive amplification of positive affects and self‑representations. Shame has been proposed as the core emotional experience of psychosis, one in which the self becomes vulnerable to the external world, which is consistent with persecutory experiences. Assaults on the self, under the form of hostility in the family environment and society, are strong predictors of relapse and development of schizophrenia. Assaults on the self which induce social defeat are also strong stimulants of mesolimbic dopaminergic pathways, whose hyperactivity is associated with acute psychotic episodes and the experience of “aberrant salience”, put forward as a dopaminergic model of psychosis. Conclusions: The “defeat of the self” emerges as a central link that binds the experience of negative emotions to the expression of psychotic symptoms and its psychological and neurobiological correlates. The hypothesis gains support that the emotions related to that defeat control

  7. The Drive Laser System for DC-SC Injector

    CERN Document Server

    Lu Xiang Yang; Quan, Shengwen; Wang, Fang; Zhao, Kui

    2004-01-01

    PKU-SCAF has developed a photoinjector which adopt a 1+1/2 cell super conducting cavity and DC electron gun. We also developed a low cost drive laser system for the photocathode DC gun to provide high average beam current. This laser system include a commercial high repetition rate, ps, all solid-state laser, the home made SHG and FHG, Fourier relay optics and the uniform illumination optics. The test results shows the output power at 266 nm of the laser system is more than 1.2W and got more than 500 A beam current from CsTe cathode from the DC gun.

  8. Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

  9. Aggressive Driving Behavior: Undergraduate Students Study

    OpenAIRE

    Rungson Chomeya

    2010-01-01

    Problem statement: The main purposes of this research were (1) to study the aggressive driving behavior of graduate students, (2) to develop aggressive driving behavior standard test, (3) to compare the aggressive driving behavior between gender, years of study, academic achievement, driving confidence and driving experience and (4) to study the relationship among aggressive driving behavior, driving confidence, driving experience and accident experience. Approach: The subjects consisted of 4...

  10. Collective acceleration of protons by the plasma waves in a counterstreaming electron beam

    International Nuclear Information System (INIS)

    A novel advanced accelerator is proposed. The counterstreaming electron beam accelerator relies on the same physical mechanism as that of the plasma accelerator but replaces the stationary plasma in the plasma accelerator by a magnetized relativistic electron beam, drifting antiparallel to the driving source and the driven particles, as the wave supporting medium. The plasma wave in a counterstreaming electron beam can be excited either by a density-ramped driving electron beam or by properly beating two laser beams. The fundamental advantages of the counterstreaming electron beam accelerator over the plasma accelerator are a longer and tunable plasma wavelength, a longer pump depletion length or a larger transformer ratio, and easier pulse shaping for the driving source and the driven beam. Thus the energy gain of the driven particles can be greatly enhanced whereas the trapping threshold can be dramatically reduced so as to admit the possibility for proton acceleration

  11. Automobile Driving and Aggressive Behavior

    OpenAIRE

    Novaco, Raymond W.

    1991-01-01

    Automobile driving and aggressive behavior have had an extensive association. Themes of dominance and territoriality have long been part of automobile driving, which has also involved flagrant assaultive actions. Recent episodes of roadway violence in metropolitan areas have raised community concern about aggressive behavior in driving, although common beliefs about why such violence occurs can be seen as pseudoexplanations. Various themes in the psychology of aggression are presented as they...

  12. Quantum effects in warp drives

    OpenAIRE

    Finazzi Stefano

    2013-01-01

    Warp drives are interesting configurations that, at least theoretically, provide a way to travel at superluminal speed. Unfortunately, several issues seem to forbid their realization. First, a huge amount of exotic matter is required to build them. Second, the presence of quantum fields propagating in superluminal warp-drive geometries makes them semiclassically unstable. Indeed, a Hawking-like high-temperature flux of particles is generated inside the warp-drive bubble, which causes an expon...

  13. The Drive-Wise Project: Driving Simulator Training increases real driving performance in healthy older drivers

    Directory of Open Access Journals (Sweden)

    Gianclaudio eCasutt

    2014-05-01

    Full Text Available Background: Age-related cognitive decline is often associated with unsafe driving behavior. We hypothesized that 10 active training sessions in a driving simulator increase cognitive and on-road driving performance. In addition, driving simulator training should outperform cognitive training.Methods: Ninety-one healthy active drivers (62 – 87 years were randomly assigned to either (1 a driving simulator training group, (2 an attention training group (vigilance and selective attention, or (3 a control group. The main outcome variables were on-road driving and cognitive performance. Seventy-seven participants (85% completed the training and were included in the analyses. Training gains were analyzed using a multiple regression analysis with planned comparisons.Results: The driving simulator training group showed an improvement in on-road driving performance compared to the attention training group. In addition, both training groups increased cognitive performance compared to the control group. Conclusion: Driving simulator training offers the potential to enhance driving skills in older drivers. Compared to the attention training, the simulator training seems to be a more powerful program for increasing older drivers’ safety on the road.

  14. Driving anger in Ukraine: Appraisals, not trait driving anger, predict anger intensity while driving.

    Science.gov (United States)

    Stephens, A N; Hill, T; Sullman, M J M

    2016-03-01

    Trait driving anger is often, but not always, found to predict both the intensity of anger while driving and subsequent crash-related behaviours. However, a number of studies have not found support for a direct relationship between one's tendency to become angry and anger reported while driving, suggesting that other factors may mediate this relationship. The present self-report study investigated whether, in anger provoking driving situations, the appraisals made by drivers influence the relationship between trait and state anger. A sample of 339 drivers from Ukraine completed the 33-item version of the Driver Anger Scale (DAS; Deffenbacher et al., 1994) and eight questions about their most recent experience of driving anger. A structural equation model found that the intensity of anger experienced was predicted by the negative evaluations of the situation, which was in turn predicted by trait driving anger. However, trait driving anger itself did not predict anger intensity; supporting the hypothesis that evaluations of the driving situation mediate the relationship between trait and state anger. Further, the unique structure of the DAS required to fit the data from the Ukrainian sample, may indicate that the anger inducing situations in Ukraine are different to those of a more developed country. Future research is needed to investigate driving anger in Ukraine in a broader sample and also to confirm the role of the appraisal process in the development of driving anger in both developed and undeveloped countries.

  15. Numerical investigation of beam-driven PWFA in quasi-nonlinear regime

    CERN Document Server

    Londrillo, P; Ferrario, M

    2014-01-01

    In beam-driven Plasma Based Wakefield Acceleration (PWFA), the quasi-nonlinear model has been designed to combine high efficient 'blowout' regimes, where cold and overdense driving electron beams form a totally rarefied plasma channel, with low charge beam distribution assuring the excited wakefield preserves relevant linear properties.

  16. Motor Integrated Variable Speed Drives

    DEFF Research Database (Denmark)

    Singh, Yash Veer

    A new trend in the variable speed drives (VSDs) is to develop fully integrated systems, which lead to low-cost products with shorter design cycles. Motor Integrated design of VSDs will reduce cable length to connect drive with machine windings and installation time for end user. The electric drives...... so it can fit inside the motor housing. Weight and volume of a filter inductor has to come down drastically to make it a suitable power converter for motor integrated variable speed drives. Introduction of active power electronic switches can ensure very high performance and small size...

  17. Optimal Electron Energies for Driving Chromospheric Evaporation in Solar Flares

    CERN Document Server

    Reep, Jeffrey; Alexander, David

    2015-01-01

    In the standard model of solar flares, energy deposition by a beam of electrons drives strong chromospheric evaporation leading to a significantly denser corona and much brighter emission across the spectrum. Chromospheric evaporation was examined in great detail by Fisher, Canfield, & McClymont (1985a,b,c), who described a distinction between two different regimes, termed explosive and gentle evaporation. In this work, we examine the importance of electron energy and stopping depths on the two regimes and on the atmospheric response. We find that with explosive evaporation, the atmospheric response does not depend strongly on electron energy. In the case of gentle evaporation, lower energy electrons are significantly more efficient at heating the atmosphere and driving up-flows sooner than higher energy electrons. We also find that the threshold between explosive and gentle evaporation is not fixed at a given beam energy flux, but also depends strongly on the electron energy and duration of heating. Furt...

  18. To Drive or Not to Drive: Assessment Dilemmas for GPs

    Directory of Open Access Journals (Sweden)

    J. Sims

    2012-01-01

    Full Text Available Introduction. Most Australians are dependent on their cars for mobility, thus relinquishing driving licences for medical reasons poses challenges. Aims. To investigate how general practitioners (GPs recognise and manage patients’ fitness to drive, GPs’ attitudes and beliefs about their role as assessors, and GPs’ experiences in assessing and reporting to driving authorities and identify GPs’ educational needs. Methods. Mixed methods: questionnaire mailed to GPs from three rural and two metropolitan Divisons of General Practice in Victoria, Australia. Results. 217/1028 completed questionnaires were returned: 85% recognised a patients’ fitness to drive, 54% felt confident in their assessment ability, 21% felt the GP should have primary responsibility for declaring patients’ fitness to drive, 79% felt that reporting a patient would negatively impact on the doctor-patient relationship, 74% expressed concern about legal liability, and 74% favoured further education. Discussion. This study provides considerable information including recommendations about GP education, the assessment forms, and legal clarification.

  19. Beam quality measure for vector beams.

    Science.gov (United States)

    Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew

    2016-08-01

    Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580

  20. Detonation drive pellet injector

    International Nuclear Information System (INIS)

    Detonation drive pellet injector has been developed and tested. By this method the free piston is not necessary because the pellet accelerated the high pressure shock directly. In the experiment, the Teflon pellet (5 mm dia., 5 mm length) was accelerated by hydrogen, oxygen and dilution gas mixtured detonation. When the gas pressure was only 500 kPa and the mixture rates of hydrogen, oxygen and helium were 3:6:1 or 3:6:0, the Teflon pellet speed was up to 747 m/s. Typical experimental results over 300 kPa of the initial gas pressure range are 78--92% of the one-dimensional calculational values. It showed that the pellet could be accelerated by a relative low pressure gas. When the helium dilution rate is larger than 20%, it was often found the strong detonation of which speed is more than the Chapman-Jouguet speed. Then the pellet speed above 1,100 m/s was obtained

  1. Drive-By Pharming

    Science.gov (United States)

    Stamm, Sid; Ramzan, Zulfikar; Jakobsson, Markus

    This paper describes an attack concept termed Drive-by Pharming where an attacker sets up a web page that, when simply viewed by the victim (on a JavaScript-enabled browser), attempts to change the DNS server settings on the victim's home broadband router. As a result, future DNS queries are resolved by a DNS server of the attacker's choice. The attacker can direct the victim's Internet traffic and point the victim to the attacker's own web sites regardless of what domain the victim thinks he is actually going to, potentially leading to the compromise of the victim's credentials. The same attack methodology can be used to make other changes to the router, like replacing its firmware. Routers could then host malicious web pages or engage in click fraud. Since the attack is mounted through viewing a web page, it does not require the attacker to have any physical proximity to the victim nor does it require the explicit download of traditional malicious software. The attack works under the reasonable assumption that the victim has not changed the default management password on their broadband router.

  2. A Drive Laser for Multi-Bunch Photoinjector Operation

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D J; Cormier, E; Messerly, M J; Prantil, M A; Barty, C J

    2012-05-11

    Numerous electron beam applications would benefit from increased average current without sacrificing beam brightness. Work is underway at LLNL to investigate the performance of X-band photoinjectors that would generate electron bunches at a rate matching the RF drive frequency, i.e. one bunch per RF cycle. A critical part of this effort involves development of photo-cathode drive laser technology. Here we present a new laser architecture that can generate pulse trains at repetition rates up to several GHz. This compact, fiber-based system is driven directly by the accelerator RF and so is inherently synchronized with the accelerating fields, and scales readily over a wide range of drive frequencies (L-band through X-band). The system will be required to produce 0.5 {mu}J, {approx}200 fs rise time, spatially and temporally shaped UV pulses designed to optimize the electron beam brightness. Presented is the current status of this system, producing 2 ps pulses from a continuous-wave source.

  3. Pulse selection control for the IR FEL photocathode drive laser

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K.; Evans, R.; Garza, O. [and others

    1997-08-01

    The method for current control of a photocathode source is described. This system allows for full remote control of a photocathode drive laser for resulting electron beam currents ranging from less than one microamp to a full current ranging from less than one microamp to a full current of five milliamps. All current modes are obtained by gating the drive laser with a series of electro-optical cells. The system remotely generates this control signal by assuming a mode of operation with the following properties selectable: Current mode as continuous or gated, micropulse density, macropulse gate width from single shot to 1ms duration, macropulse synchronization to A/C line voltage (60 Hz) or an external trigger, 60 Hz phase and slewing through 60 Hz when applicable. All selections are derived from programmable logic devices operating from a master-oscillator resulting in a discrete, phase stable, pulse control for the drive laser.

  4. Beam diagnostics in the CIRFEL

    Energy Technology Data Exchange (ETDEWEB)

    Krishnaswamy, J.; Lehrman, I.S.; Hartley, R. [Northrop Grumman Advanced Technology and Development Center, Princeton, NJ (United States)] [and others

    1995-12-31

    The CIRFEL system has been operating with electron energies in the range of 11 to 12 MeV and RF pulse length of 3 to 4 {mu}secs. The electrons produced by a Magnesium photocathode illuminated by a 261nm mode locked laser are accelerated in the RF gun, and further boosted in energy by a booster section downstream of the RIF gun. The electrons are energy selected in the bending section before insertion into a permanent magnet wiggler. We describe several recent diagnostic measurements carried out on the CIRFEL system: emittance measurements in two different sections of the beam line, energy and energy spread measurements, and jitter characteristics of the photo cathode drive laser as well as the electron beam energy.

  5. Distracted Driving Raises Crash Risk

    Science.gov (United States)

    ... a Seriously Ill Child Featured Website: NIDA for Teens Past Issues Most Viewed February 2014 Print RSS Find us on Facebook External link, please review our exit disclaimer . Subscribe Distracted Driving Raises Crash Risk Video technology and in-vehicle sensors showed that distracted driving, ...

  6. Warp Drive With Zero Expansion

    OpenAIRE

    Natario, Jose

    2001-01-01

    It is commonly believed that Alcubierre's warp drive works by contracting space in front of the warp bubble and expanding space behind it. We show that this expansion/contraction is but a marginal consequence of the choice made by Alcubierre, and explicitly construct a similar spacetime where no contraction/expansion occurs. Global and optical properties of warp drive spacetimes are also discussed.

  7. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  8. Beam propagation

    International Nuclear Information System (INIS)

    The main part of this thesis consists of 15 published papers, in which the numerical Beam Propagating Method (BPM) is investigated, verified and used in a number of applications. In the introduction a derivation of the nonlinear Schroedinger equation is presented to connect the beginning of the soliton papers with Maxwell's equations including a nonlinear polarization. This thesis focuses on the wide use of the BPM for numerical simulations of propagating light and particle beams through different types of structures such as waveguides, fibers, tapers, Y-junctions, laser arrays and crystalline solids. We verify the BPM in the above listed problems against other numerical methods for example the Finite-element Method, perturbation methods and Runge-Kutta integration. Further, the BPM is shown to be a simple and effective way to numerically set up the Green's function in matrix form for periodic structures. The Green's function matrix can then be diagonalized with matrix methods yielding the eigensolutions of the structure. The BPM inherent transverse periodicity can be untied, if desired, by for example including an absorptive refractive index at the computational window edges. The interaction of two first-order soliton pulses is strongly dependent on the phase relationship between the individual solitons. When optical phase shift keying is used in coherent one-carrier wavelength communication, the fiber attenuation will suppress or delay the nonlinear instability. (orig.)

  9. Polar-drive experiments with shimmed targets on OMEGA

    Science.gov (United States)

    Marshall, F. J.; Radha, P. B.; Bonino, M. J.; Delettrez, J. A.; Epstein, R.; Skupsky, S.; Giraldez, E.

    2012-10-01

    Polar-drive experiments are being performed on OMEGA in preparation for future ignition attempts using the same method on the National Ignition Facility. This work presents results from a series of experiments employing shimmed shells whose shape (thinner at the target equator) is used to further compensate for the oblique illumination present in the polar-drive beam configuration. Implosion experiments were performed with multiple-picket laser pulses from 40 OMEGA beams driving gas-filled, shimmed shells. The implosions were diagnosed with x-ray backlighting, fusion yield, and reaction particle spectra from which the implosion symmetry, areal density, and core conditions are inferred. The compressed shell shape determined from framed x-ray radiography is compared to that predicted by the 2-D hydrodynamics code DRACO. The benefits of using a shimmed target for polar-drive implosions are less oblique illumination, better low-mode implosion symmetry, and are clearly demonstrated by these experiments. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  10. A new method for RF power generation for two-beam linear colliders

    International Nuclear Information System (INIS)

    In this paper we discuss a new approach to two-beam acceleration. The energy for RF production is initially stored in a long-pulse electron beam which is efficiently accelerated to about 1.2 GeV by a fully loaded, conventional, low frequency (∼1 GHz) linac. The beam pulse length is twice the length of the high-gradient linac. Segments of this long pulse beam are compressed using combiner rings to create a sequence of higher peak power drive beams with gaps in between. This train of drive beams is distributed from the end of the linac against the main beam direction down a common transport line so that each drive beam can power a section of the main linac. After a 180-degree turn, each high-current, low-energy drive beam is decelerated in low-impedance decelerator structures, and the resulting power is used to accelerate the low-current, high-energy beam in the main linac. The method discussed here seems relatively inexpensive, is very flexible and can be used to accelerate beams for linear colliders over the entire frequency and energy range

  11. Electron Locking in Current Drive

    Science.gov (United States)

    McCollam, K. J.; Jarboe, T. R.; Nelson, B. A.; Orvis, D. J.; Raman, R.; Redd, A. J.; Smith, R. J.; Nagata, M.; Uyama, T.

    2000-10-01

    The traveling n=1, m~= q_edge magnetic distortion observed in the Helicity Injected Torus (HIT-II) during coaxial helicity injection (CHI) is responsible for some current profile relaxation. A model for electromotive current drive, called the electron locking model, can account for the results of current drive experiments in both the HIT-II and the original HIT devices. The most relevant of these results involve the the frequencies and directions of the mode itself, the E× B drift, and the electric current drift. In spherical tokamaks with CHI, electrode and coil polarities can be changed to control the relative directions of these drifts. Results from HIT-II experiments with different polarities are shown. These point out the character n=1, m~= q_edge mode, and suggest its role in CHI current drive. The electron locking model is presented, and is also discussed in the context of mean field electrodynamics. This model might also be applied to other types of current drive, such as rotating magnetic field (RMF) current drive, oscillating field current drive (OFCD), steady inductive helicity injection (SIHI), or Ohmic current drive in a reversed field pinch (RFP). These examples are discussed.

  12. Beam-beam effects in the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, V.; Alexahin, Y.; Lebedev, V.; Lebrun, P.; Moore, R.S.; Sen, T.; Tollestrup, A.; Valishev, A.; Zhang, X.L.; /Fermilab

    2005-01-01

    The Tevatron in Collider Run II (2001-present) is operating with 6 times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Electromagnetic long-range and head-on interactions of high intensity proton and antiproton beams have been significant sources of beam loss and lifetime limitations. We present observations of the beam-beam phenomena in the Tevatron and results of relevant beam studies. We analyze the data and various methods employed in operations, predict the performance for planned luminosity upgrades, and discuss ways to improve it.

  13. Commissioning Preparation of the AWAKE Proton Beam Line

    CERN Document Server

    Schmidt, Janet; Bracco, Chiara; Goddard, Brennan; Gorbonosov, Roman; Gourber-Pace, Marine; Gschwendtner, Edda; Jensen, Lars; Jones, Owain Rhodri; Kain, Verena; Mazzoni, Stefano; Meddahi, Malika

    2016-01-01

    The AWAKE experiment at CERN will use a proton bunch with an momentum of 400 GeV/c from the SPS to drive large amplitude wakefields in a plasma. This will require a ~830 m long transfer line from the SPS to the experiment. The prepa- rations for the beam commissioning of the AWAKE proton transfer line are presented in this paper. They include the detailed planning of the commissioning steps, controls and beam instrumentation specifications as well as operational tools, which are developed for the steering and monitoring of the beam line. The installation of the transfer line has been finished and first beam is planned in summer 2016.

  14. Driving Resistance from Railroad Trains

    DEFF Research Database (Denmark)

    Lindgreen, Erik Bjørn Grønning; Sorenson, Spencer C

    2005-01-01

    This report methods and parameters for calculating the driving resistance of railroad trains. Calculations and comparisons are presented for aerodynamic, rolling and total resistance for a variety of freight trains under different loading conditions, operating speed and configuration. Simplified ...... methods are presented for the estimation of the driving resistance for passenger trains. This report is a supplement to the ARTEMIS rail emissions model.......This report methods and parameters for calculating the driving resistance of railroad trains. Calculations and comparisons are presented for aerodynamic, rolling and total resistance for a variety of freight trains under different loading conditions, operating speed and configuration. Simplified...

  15. Semiclassical instability of warp drives

    International Nuclear Information System (INIS)

    Warp drives, at least theoretically, provide a way to travel at superluminal speeds. However, even if one succeeded in providing the necessary exotic matter to construct them, it would still be necessary to check whether they would survive to the switching on of quantum effects. In this contribution we will report on the behaviour of the Renormalized Stress-Energy Tensor (RSET) in the spacetimes associated with superluminal warp drives. We find that the RSET will exponentially grow in time close to the front wall of the superluminal bubble, hence strongly supporting the conclusion that the warp-drive geometries are unstable against semiclassical back-reaction.

  16. Recent advances in direct-drive ICF target physics at the laboratory for laser energetics

    International Nuclear Information System (INIS)

    The principal role of the Laboratory for Laser Energetics (LLE) is the development and validation of the direct-drive approach to inertial fusion. The LLE experimental and theoretical programs in support of this mission were organized to provide a moderate-gain option for the U.S. National Ignition Facility (NIF). Experimental implementation of the LLE program is carried out on the LLE's 30-kJ, 60-beam, UV OMEGA laser. This paper summarizes the status of the direct-drive ICF physics program at LLE with emphasis on the development of beam-smoothing techniques, long-scale-length plasma interaction experiments, direct-drive planar-foil hydrodynamic instability experiments, the effect of laser nonuniformity on target stability, integrated spherical target implosion experiments, design of direct-drive targets, development of target diagnostic techniques, and implementation of cryogenic-fuel-layering technology. (author)

  17. Beam halo in high-intensity beams

    International Nuclear Information System (INIS)

    In space-charge dominated beams the nonlinear space-charge forces produce a filamentation pattern, which in projection to the 2-D phase spaces results in a 2-component beam consisting of an inner core and a diffuse outer halo. The beam-halo is of concern for a next generation of cw, high-power proton linacs that could be applied to intense neutron generators for nuclear materials processing. The author describes what has been learned about beam halo and the evolution of space-charge dominated beams using numerical simulations of initial laminar beams in uniform linear focusing channels. Initial results are presented from a study of beam entropy for an intense space-charge dominated beam

  18. Electron Accelerators for Radioactive Ion Beams

    Energy Technology Data Exchange (ETDEWEB)

    Lia Merminga

    2007-10-10

    The summary of this paper is that to optimize the design of an electron drive, one must: (a) specify carefully the user requirements--beam energy, beam power, duty factor, and longitudinal and transverse emittance; (b) evaluate different machine options including capital cost, 10-year operating cost and delivery time. The author is convinced elegant solutions are available with existing technology. There are several design options and technology choices. Decisions will depend on system optimization, in-house infrastructure and expertise (e.g. cryogenics, SRF, lasers), synergy with other programs.

  19. Laser driven proton acceleration and beam shaping

    OpenAIRE

    Sinigardi, Stefano

    2014-01-01

    In the race to obtain protons with higher energies, using more compact systems at the same time, laser-driven plasma accelerators are becoming an interesting possibility. But for now, only beams with extremely broad energy spectra and high divergence have been produced. The driving line of this PhD thesis was the study and design of a compact system to extract a high quality beam out of the initial bunch of protons produced by the interaction of a laser pulse with a thin solid target, usi...

  20. Lunar Core Drive Tubes Summary

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains a brief summary and high resolution imagery from various lunar rock and core drive tubes collected from the Apollo and Luna missions to the moon.