WorldWideScience

Sample records for clic active prealignment

  1. Propagation error simulations concerning the CLIC active prealignment

    CERN Document Server

    Touzé, T; Missiaen, D

    2009-01-01

    The CLIC1 components will have to be prealigned within a thirty times more demanding tolerance than the existing CERNmachines. It is a technical challenge and a key issue for the CLIC feasibility. Simulations have been undertaken concerning the propagation error due to the measurement uncertainties of the prealignment systems. The uncertainties of measurement, taken as hypothesis for the simulations, are based on the data obtained on several dedicated facilities. This paper introduces the simulations and the latest results obtained, as well as the facilities.

  2. CLIC main beam quadrupole active pre-alignment based on cam movers

    CERN Document Server

    Kemppinen, J; Leuxe, R; Mainaud Durand, H; Sandomierski, J; Sosin, M

    2012-01-01

    Compact Linear Collider (CLIC) is a study for a future 48 km long linear electron-positron collider in the multi TeV range. Its target luminosity can only be reached if the main beam quadrupoles (MB quads) are actively pre-aligned within 17 µm in sliding windows of 200 m with respect to a straight reference line. In addition to the positioning requirement, the pre-alignment system has to provide a rigid support for the nano-stabilization system to ensure that the first eigenfrequency is above 100 Hz. Re-adjustment based on cam movers was chosen for detailed studies to meet the stringent pre-alignment requirements. There are four different types of MB quads in CLIC. Their lengths and masses vary so that at least two types of cam movers have to be developed. The validation of the cams with less stringent space restrictions has proceeded to a test setup in 5 degrees of freedom (DOF). Prototypes of the more demanding, smaller cams have been manufactured and they are under tests in 1 DOF. This paper describes the...

  3. An Active Pre-Alignment System and Metrology Network for CLIC

    CERN Document Server

    Becker, F; Pittin, R; Wilson, Ian H

    2003-01-01

    The pre-alignment tolerance on the transverse positions of the components of the CLIC linacs is typically ten microns over distances of 200 m. Such tight tolerances cannot be obtained by a static one-time alignment because normal seismic ground movement and cultural noise associated with human and industrial activity quickly creates significant errors. It is therefore foreseen to maintain the components in place using an active-alignment system which will be linked to a permanent metrology and geodetic network. This report describes the overall philosophy and implementation of such a system and proposes one possible solution for active-alignment which uses stepping-motors to move components and stretched-wires as reference lines. Special sensors have been developed to measure the position of the components with respect to the reference lines, and to measure local tilt and relative vertical position. An in-depth analysis has been made of the repercussions on the alignment system of perturbing effects due to th...

  4. Development of an Eccentric CAM Based Active Pre-Alignment System for the CLIC Main Beam Quadrupole Magnet

    CERN Document Server

    Lackner, F; Collette, C; Mainaud Durand, H; Hauviller, C; Kemppinen, J; Leuxe, R

    2010-01-01

    CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in stringent alignment and a nanometre stability requirement. In the current feasibility study, the main beam quadrupole magnets have to be actively pre-aligned with a precision of 1 µm in 5 degrees of freedom (d.o.f.) before being mechanically stabilized to the nm scale above 1 Hz. This contribution describes the approach of performing this active pre-alignment based on an eccentric cam system. In order to limit the amplification of the vibration sources at resonant frequencies a sufficiently high Eigenfrequency is required. Therefore the contact region between cam and support was optimized for adequate stiffness based on the Hertzian theory. Furthermore, practical tests performed on a single degree of freedom mock-up wil...

  5. ISSUES AND FEASIBILITY DEMONSTRATION OF CLIC SUPPORTING SYSTEM CHAIN ACTIVE PRE-ALIGNMENT USING A MULTI-MODULE TEST SETUP (MOCK-UP)

    CERN Document Server

    Sosin, Mateusz

    2016-01-01

    The implementation study of the CLIC (Compact LInear Collider) is under way at CERN with a focus on the challenging issues. The pre-alignment precision and accuracy requirements are part of these technical challenges: the permissible transverse position errors of the linac components are typically 14 micrometers over sliding windows of 200m. To validate the proposed methods and strategies, the Large Scale Metrology section at CERN has performed campaigns of measurements on the CLIC Two Beam Test Modules, focusing inter alia on the alignment performance of the CLIC “snake”- girders configuration and the Main Beam Quadrupoles supporting structures. This paper describes the activities and results of tests which were performed on the test mock-up for the qualification of the CLIC supporting system chain for active pre-alignment. The lessons learnt (“know how”), the issues encountered in the girder position determination as well as the behaviour of the mechanical components are presented.

  6. Theoretical and practical feasibility demonstration of a micrometric remotely controlled pre-alignment system for the CLIC linear collider

    CERN Document Server

    Mainaud Durand, H; Chritin, N; Griffet, S; Kemppinen, J; Sosin, M; Touze, T

    2011-01-01

    The active pre-alignment of the Compact Linear Collider (CLIC) is one of the key points of the project: the components must be pre-aligned w.r.t. a straight line within a few microns over a sliding window of 200 m, along the two linacs of 20 km each. The proposed solution consists of stretched wires of more than 200 m, overlapping over half of their length, which will be the reference of alignment. Wire Positioning Sensors (WPS), coupled to the supports to be pre-aligned, will perform precise and accurate measurements within a few microns w.r.t. these wires. A micrometric fiducialisation of the components and a micrometric alignment of the components on common supports will make the strategy of pre-alignment complete. In this paper, the global strategy of active pre-alignment is detailed and illustrated by the latest results demonstrating the feasibility of the proposed solution.

  7. Strategy and validation of fiducialisation for the pre-alignment of CLIC components

    CERN Document Server

    Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    The feasibility of the high energy e+ e- linear collider CLIC (Compact Linear Collider) is very dependent on the ability to accurately pre-align its components. There are two 20 km long Main Linacs which meet in an interaction point (IP). The Main Linacs are composed of thousands of 2 m long modules. One of the challenges is to meet very tight alignment tolerances at the level of CLIC module: for example, the magnetic centre of a Drive Beam Quad needs to be aligned within 20 µm rms with respect to a straight line. Such accuracies cannot be achieved using usual measurement devices. Thus it is necessary to work in close collaboration with the metrology lab. To test and improve many critical points, including alignment, a CLIC mock-up is being assembled at CERN. This paper describes the application of the strategy of fiducialisation for the pre-alignment of CLIC mock-up components. It also deals with the first results obtained by performing measurements using a CMM (Coordinate Measuring Machine) to ensure the f...

  8. Validation of a Micrometric remotely controlled pre-alignment system for the CLIC Linear Collider using a test setup (Mock-Up) with 5 degrees of freedom

    CERN Document Server

    Mainaud Durand, H; Griffet, S; Kemppinen, J; Leuxe, R; Sosin, M

    2011-01-01

    The CLIC main beam quadrupoles need to be prealigned within 17 um rms with respect to a straight reference line along a sliding window of 200 m. A readjustment system based on eccentric cam movers, which will provide stiffness to the support assembly, is being studied. The cam movers were qualified on a 1 degree of freedom (DOF) test setup, where a repeatability of adjustment below 1um was measured along their whole range. This paper presents the 5 DOF mock-up, built for the validation of the eccentric cam movers, as well as the first results of tests carried out: resolution of displacement along the whole range, measurements of the support eigenfrequencies.

  9. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  10. Proposition d'une méthode d'alignement de l'accélérateur linéaire CLIC

    CERN Document Server

    Touzé, Thomas; Mainaud-Durand, H

    2011-01-01

    The compact linear collider (CLIC) is the particles accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nanometric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required : 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active prealignment but shows the way to the last developments that have to be done for that purpose. A metho...

  11. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome.

    Science.gov (United States)

    Domingo-Fernández, Raquel; Coll, Rebecca C; Kearney, Jay; Breit, Samuel; O'Neill, Luke A J

    2017-07-21

    The NLRP3 inflammasome is a multiprotein complex that regulates the activation of caspase-1 leading to the maturation of the proinflammatory cytokines IL-1β and IL-18 and promoting pyroptosis. Classically, the NLRP3 inflammasome in murine macrophages is activated by the recognition of pathogen-associated molecular patterns and by many structurally unrelated factors. Understanding the precise mechanism of NLRP3 activation by such a wide array of stimuli remains elusive, but several signaling events, including cytosolic efflux and influx of select ions, have been suggested. Accordingly, several studies have indicated a role of anion channels in NLRP3 inflammasome assembly, but their direct involvement has not been shown. Here, we report that the chloride intracellular channel proteins CLIC1 and CLIC4 participate in the regulation of the NLRP3 inflammasome. Confocal microscopy and cell fractionation experiments revealed that upon LPS stimulation of macrophages, CLIC1 and CLIC4 translocated into the nucleus and cellular membrane. In LPS/ATP-stimulated bone marrow-derived macrophages (BMDMs), CLIC1 or CLIC4 siRNA transfection impaired transcription of IL-1β, ASC speck formation, and secretion of mature IL-1β. Collectively, our results demonstrate that CLIC1 and CLIC4 participate both in the priming signal for IL-1β and in NLRP3 activation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Validation of CLIC Re-Adjustment System Based on Eccentric Cam Movers One Degree of Freedom Mock-Up

    CERN Document Server

    Kemppinen, J; Lackner, F

    2011-01-01

    Compact Linear Collider (CLIC) is a 48 km long linear accelerator currently studied at CERN. It is a high luminosity electron-positron collider with an energy range of 0.5-3 TeV. CLIC is based on a two-beam technology in which a high current drive beam transfers RF power to the main beam accelerating structures. The main beam is steered with quadrupole magnets. To reach CLIC target luminosity, the main beam quadrupoles have to be actively pre-aligned within 17 µm in 5 degrees of freedom and actively stabilised at 1 nm in vertical above 1 Hz. To reach the pre-alignment requirement as well as the rigidity required by nano-stabilisation, a system based on eccentric cam movers is proposed for the re-adjustment of the main beam quadrupoles. Validation of the technique to the stringent CLIC requirements was started with tests in one degree of freedom on an eccentric cam mover. This paper describes the dedicated mock-up as well as the tests and measurements carried out with it. Finally, the test results are present...

  13. Validation of the CLIC alignment strategy on short range

    CERN Document Server

    Mainaud Durand, H; Griffet, S; Kemppinen, J; Rude, V; Sosin, M

    2012-01-01

    The pre-alignment of CLIC consists of aligning the components of linacs and beam delivery systems (BDS) in the most accurate possible way, so that a first pilot beam can circulate and allow the implementation of the beam based alignment. Taking into account the precision and accuracy needed: 10 µm rms over sliding windows of 200m, this pre-alignment must be active and it can be divided into two parts: the determination of a straight reference over 20 km, thanks to a metrological network and the determination of the component positions with respect to this reference, and their adjustment. The second part is the object of the paper, describing the steps of the proposed strategy: firstly the fiducialisation of the different components of CLIC; secondly, the alignment of these components on common supports and thirdly the active alignment of these supports using sensors and actuators. These steps have been validated on a test setup over a length of 4m, and the obtained results are analysed.

  14. Investigating Sterol and Redox Regulation of the Ion Channel Activity of CLIC1 Using Tethered Bilayer Membranes

    Science.gov (United States)

    Al Khamici, Heba; Hossain, Khondker R.; Cornell, Bruce A.; Valenzuela, Stella M.

    2016-01-01

    The Chloride Intracellular Ion Channel (CLIC) family consists of six conserved proteins in humans. These are a group of enigmatic proteins, which adopt both a soluble and membrane bound form. CLIC1 was found to be a metamorphic protein, where under specific environmental triggers it adopts more than one stable reversible soluble structural conformation. CLIC1 was found to spontaneously insert into cell membranes and form chloride ion channels. However, factors that control the structural transition of CLIC1 from being an aqueous soluble protein into a membrane bound protein have yet to be adequately described. Using tethered bilayer lipid membranes and electrical impedance spectroscopy system, herein we demonstrate that CLIC1 ion channel activity is dependent on the type and concentration of sterols in bilayer membranes. These findings suggest that membrane sterols play an essential role in CLIC1’s acrobatic switching from a globular soluble form to an integral membrane form, promoting greater ion channel conductance in membranes. What remains unclear is the precise nature of this regulation involving membrane sterols and ultimately determining CLIC1’s membrane structure and function as an ion channel. Furthermore, our impedance spectroscopy results obtained using CLIC1 mutants, suggest that the residue Cys24 is not essential for CLIC1’s ion channel function. However Cys24 does appear important for optimal ion channel activity. We also observe differences in conductance between CLIC1 reduced and oxidized forms when added to our tethered membranes. Therefore, we conclude that both membrane sterols and redox play a role in the ion channel activity of CLIC1. PMID:27941637

  15. Active Alignment Electronic System for CLIC 30 GHz Modules in CTF2

    CERN Document Server

    Carrica, D; Coosemans, Williame; Benedetti, M

    1998-01-01

    The active alignment system is capable of positioning accelerator components of CLIC (Compact Linear Collider) with a precision of a few microns. An electronic processing and command system connects the micro-movers and sensors of this system to the CERN-PS complex control system.

  16. Regulation of the membrane insertion and conductance activity of the metamorphic chloride intracellular channel protein CLIC1 by cholesterol.

    Directory of Open Access Journals (Sweden)

    Stella M Valenzuela

    Full Text Available The Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity. The study employed pressure versus area change measurements of Langmuir lipid monolayer films; and impedance spectroscopy measurements using tethered bilayer membranes to monitor membrane conductance during and following the addition of CLIC1 protein. The observed cholesterol dependent behaviour of CLIC1 is highly reminiscent of the cholesterol-dependent-cytolysin family of bacterial pore-forming proteins, suggesting common regulatory mechanisms for spontaneous protein insertion into the membrane bilayer.

  17. Issues and Feasibility Demonstration of Positioning Closed Loop Control for the CLIC Supporting System Using a Test Mock-up with Five Degrees of Freedom

    CERN Document Server

    Sosin, M; Chritin, N; Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    Since several years, CERN is studying the feasibility of building a high energy e+ e- linear collider: the CLIC (Compact LInear Collider). One of the challenges of such a collider is the pre-alignment precision and accuracy requirement on the transverse positions of the linac components, which is typically 14 μm over a window of 200 m. To ensure the possibility of positioning within such tight constraints, CERN Beams Department’s Survey team has worked intensively at developing the methods and technology needed to achieve that objective. This paper describes activities which were performed on a test bench (mock-up) with five degrees of freedom (DOF) for the qualification of control algorithms for the CLIC supporting system active-pre-alignment. Present understanding, lessons learned (“know how”), issues of sensors noise and mechanical components nonlinearities are presented.

  18. Study and application of micrometric alignment on the prototype girders of the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nikolaos; Mainaud-Durand, Hélène; Samochkine, Alexandre; Anastasopoulos, Michail

    2011-01-01

    The Compact LInear Collider (CLIC), currently under study at CERN, aims at the development of a Multi-TeV e+ e- collider. The micro-precision CLIC RF-structures will have an accelerating gradient of 100 MV/m and will be mounted and aligned on specially developed supporting girders. The girder fabrication constraints are dictated by stringent physics requirements. The micrometric pre-alignment over several kilometers of girders, allow for the CLIC structures to fulfill their acceleration and collision functionality. Study of such girders and their sophisticated alignment method, is a challenging case involving dedicated mechanical design as well as prototype production and experimental testing.

  19. Association of anti-CLIC2 and anti-HMGB1 autoantibodies with higher disease activity in systemic lupus erythematosus patients

    Directory of Open Access Journals (Sweden)

    C S Syahidatulamali

    2017-01-01

    Full Text Available Background: Systemic lupus erythematosus (SLE is a systemic autoimmune disease characterized by numerous autoantibodies. In this study, we investigated the presence of anti-chloride intracellular channel 2 (anti-CLIC2 and anti-high mobility group box 1 (anti-HMGB1 autoantibodies in SLE patients (n = 43 versus healthy controls ([HCs] n = 43, and their association with serological parameters (antinuclear antibody [ANA], anti-double-stranded DNA [anti-dsDNA], and C-reactive protein [CRP] and disease activity using Systemic Lupus Erythematosus Disease Activity Index (SLEDAI score (active or inactive. Settings and Design: Case–control study at Rheumatology Clinic of Universiti Sains Malaysia Hospital. Subjects and Methods: The sera of SLE patients and HCs were tested for the presence of anti-CLIC2 and anti-HMGB1 autoantibodies using human recombinant proteins and ELISA methodologies. Other serological parameters were evaluated according to routine procedures, and patients' demographic and clinical data were obtained. Statistical Analysis: Mann–Whitney U-test, Chi-square test, Fisher's exact test, and receiver operating characteristic analysis. Results: Anti-CLIC2 autoantibody levels were significantly higher in SLE patients compared to HCs (P = 0.0035, whereas anti-HMGB1 autoantibody levels were not significantly elevated (P = 0.7702. Anti-CLIC2 and anti-HMGB1 autoantibody levels were not associated with ANA pattern, anti-dsDNA, and CRP. Interestingly, SLEDAI score (≥6 was associated with anti-CLIC2 (P = 0.0046 and with anti-HMGB1 (P = 0.0091 autoantibody levels. Conclusion: Our findings support the potential of using anti-CLIC2 autoantibodies as a novel biomarker for SLE patients. Both anti-CLIC2 and anti-HMGB1 autoantibody levels demonstrated potential in monitoring SLE disease activity.

  20. Association of anti-CLIC2 and anti-HMGB1 autoantibodies with higher disease activity in systemic lupus erythematosus patients.

    Science.gov (United States)

    Syahidatulamali, C S; Wan Syamimee, W G; Azwany, Y Nor; Wong, K K; Che Maraina, C H

    2017-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by numerous autoantibodies. In this study, we investigated the presence of anti-chloride intracellular channel 2 (anti-CLIC2) and anti-high mobility group box 1 (anti-HMGB1) autoantibodies in SLE patients (n = 43) versus healthy controls ([HCs] n = 43), and their association with serological parameters (antinuclear antibody [ANA], anti-double-stranded DNA [anti-dsDNA], and C-reactive protein [CRP]) and disease activity using Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score (active or inactive). Case-control study at Rheumatology Clinic of Universiti Sains Malaysia Hospital. The sera of SLE patients and HCs were tested for the presence of anti-CLIC2 and anti-HMGB1 autoantibodies using human recombinant proteins and ELISA methodologies. Other serological parameters were evaluated according to routine procedures, and patients' demographic and clinical data were obtained. Mann-Whitney U-test, Chi-square test, Fisher's exact test, and receiver operating characteristic analysis. Anti-CLIC2 autoantibody levels were significantly higher in SLE patients compared to HCs (P = 0.0035), whereas anti-HMGB1 autoantibody levels were not significantly elevated (P = 0.7702). Anti-CLIC2 and anti-HMGB1 autoantibody levels were not associated with ANA pattern, anti-dsDNA, and CRP. Interestingly, SLEDAI score (≥6) was associated with anti-CLIC2 (P = 0.0046) and with anti-HMGB1 (P = 0.0091) autoantibody levels. Our findings support the potential of using anti-CLIC2 autoantibodies as a novel biomarker for SLE patients. Both anti-CLIC2 and anti-HMGB1 autoantibody levels demonstrated potential in monitoring SLE disease activity.

  1. CLIC Brochure

    CERN Multimedia

    AUTHOR|(CDS)2086185

    2015-01-01

    After the discovery of the Higgs boson and with upgrades to higher energy and luminosity, the LHC is mapping the route of particle physics into the future. The next step in this journey of discovery could be a linear electron-positron collider, which would complement the LHC and allow high precision measurements of the Higgs boson, the top quark and electroweak processes in addition to possible new physics beyond the Standard Model. The Compact Linear Collider is under development by two worldwide collaborations, pushing the limits of particle acceleration and detection. Technological R&D, physics simulations and engineering studies must all come together to make CLIC a reality.

  2. CLICdp Overview. Overview of physics potential at CLIC

    Directory of Open Access Journals (Sweden)

    Levy Aharon

    2015-01-01

    Full Text Available CLICdp, the CLIC detector and physics study, is an international collaboration presently composed of 23 institutions. The collaboration is addressing detector and physics issues for the future Compact Linear Collider (CLIC, a high-energy electron-positron accelerator which is one of the options for the next collider to be built at CERN. Precision physics under challenging beam and background conditions is the key theme for the CLIC detector studies. This leads to a number of cutting-edge R&D activities within CLICdp. The talk includes a brief introduction to CLIC, accelerator and detectors, hardware R&D as well as physics studies at CLIC.

  3. Tissue and subcellular distribution of CLIC1

    Directory of Open Access Journals (Sweden)

    Edwards John C

    2007-02-01

    Full Text Available Abstract Background CLIC1 is a chloride channel whose cellular role remains uncertain. The distribution of CLIC1 in normal tissues is largely unknown and conflicting data have been reported regarding the cellular membrane fraction in which CLIC1 resides. Results New antisera to CLIC1 were generated and were found to be sensitive and specific for detecting this protein. These antisera were used to investigate the distribution of CLIC1 in mouse tissue sections and three cultured cell lines. We find CLIC1 is expressed in the apical domains of several simple columnar epithelia including glandular stomach, small intestine, colon, bile ducts, pancreatic ducts, airway, and the tail of the epididymis, in addition to the previously reported renal proximal tubule. CLIC1 is expressed in a non-polarized distribution in the basal epithelial cell layer of the stratified squamous epithelium of the upper gastrointesitinal tract and the basal cells of the epididymis, and is present diffusely in skeletal muscle. Distribution of CLIC1 was examined in Panc1 cells, a relatively undifferentiated, non-polarized human cell line derived from pancreatic cancer, and T84 cells, a human colon cancer cell line which can form a polarized epithelium that is capable of regulated chloride transport. Digitonin extraction was used to distinguish membrane-inserted CLIC1 from the soluble cytoplasmic form of the protein. We find that digitonin-resistant CLIC1 is primarily present in the plasma membrane of Panc1 cells. In T84 cells, we find digitonin-resistant CLIC1 is present in an intracellular compartment which is concentrated immediately below the apical plasma membrane and the extent of apical polarization is enhanced with forskolin, which activates transepithelial chloride transport and apical membrane traffic in these cells. The sub-apical CLIC1 compartment was further characterized in a well-differentiated mouse renal proximal tubule cell line. The distribution of CLIC1 was

  4. CLIC Physics Potential

    CERN Document Server

    Pandurovic, Mila

    2017-01-01

    The CLICdp is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC) and performs research and development of the CLIC detector. CLIC is a future multi-TeV linear electron-positron collider, designed to cover a physics program of the Standard model physics, with the emphasis on Higgs and top as well as to address the wide range of open questions of the phenomena beyond the Standard model with high precision. The CLIC is designed to be build and operated at three discrete energy stages, sort(s) = 380 GeV, 1.5 and 3.0 TeV, which are optimized for the foreseen physics program. In this talk the CLIC accelerator, detector and experimental environment of CLIC will be presented, as well as, the number of the full-simulation measurements in the Higgs, top and beyond Standard model sector, presenting the capabilities of CLIC for high precision measurements.

  5. CLIC MDI Overview

    CERN Document Server

    Gatignon, Lau

    2012-01-01

    This paper gives an introduction to the layout of the CLIC Machine Detector Interface as it has been defined for the CLIC Conceptual Design Report. We concentrate on the specific case of the CLIC_SiD detector, although the push-pull concept for two detectors has been included in the design. Some recent work and developments are described as well. However, for the details we refer to the detailed technical talks at this conference.

  6. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  7. Introduction to powering schemes for the CLIC detectors

    CERN Document Server

    Blanchot, G

    2011-01-01

    The CLIC detector designs together with the CLIC beam properties impose strong constraints in terms of power distribution for the front-end electronics. The definition of periodic active and idle times in the detector operation allows implementing a pulsed powering scheme that will result in a significant reduction of dissipated power. This note provides an introduction to the different power pulsing schemes applicable to the CLIC detectors electronics.

  8. Acquisition system for the CLIC Module

    CERN Document Server

    Vilalte, Sebastien

    2011-01-01

    The status of R&D activities for CLIC module acquisition are discussed [1]. LAPP is involved in the design of the local CLIC module acquisition crate, described in the document Study of the CLIC Module Front-End Acquisition and Evaluation Electronics [2]. This acquisition system is a project based on a local crate, assigned to the CLIC module, including several mother boards. These motherboards are foreseen to hold mezzanines dedicated to the different subsystems. This system has to work in radiation environment. LAPP is involved in the development of Drive Beam stripline position monitors read-out, described in the document Drive Beam Stripline BPM Electronics and Acquisition [3]. LAPP also develops a generic acquisition mezzanine that allows to perform all-around acquisition and components tests for drive beam stripline BPM read-out.

  9. Preparing for CLIC tests

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The Canon 5 undergoes first brazing for preparation in the CLIC study at the CLIC Test Facility 2 (CTF2). This will test injection for a proposed linear collider that will further explore discoveries made at the LHC. Electric fields in the canon will boost electrons into the acceleration fields of the collider.

  10. CLIC4 regulates cell adhesion and β1 integrin trafficking.

    Science.gov (United States)

    Argenzio, Elisabetta; Margadant, Coert; Leyton-Puig, Daniela; Janssen, Hans; Jalink, Kees; Sonnenberg, Arnoud; Moolenaar, Wouter H

    2014-12-15

    Chloride intracellular channel protein 4 (CLIC4) exists in both soluble and membrane-associated forms, and is implicated in diverse cellular processes, ranging from ion channel formation to intracellular membrane remodeling. CLIC4 is rapidly recruited to the plasma membrane by lysophosphatidic acid (LPA) and serum, suggesting a possible role for CLIC4 in exocytic-endocytic trafficking. However, the function and subcellular target(s) of CLIC4 remain elusive. Here, we show that in HeLa and MDA-MB-231 cells, CLIC4 knockdown decreases cell-matrix adhesion, cell spreading and integrin signaling, whereas it increases cell motility. LPA stimulates the recruitment of CLIC4 to β1 integrin at the plasma membrane and in Rab35-positive endosomes. CLIC4 is required for both the internalization and the serum- or LPA-induced recycling of β1 integrin, but not for EGF receptor trafficking. Furthermore, we show that CLIC4 suppresses Rab35 activity and antagonizes Rab35-dependent regulation of β1 integrin trafficking. Our results define CLIC4 as a regulator of Rab35 activity and serum- and LPA-dependent integrin trafficking. © 2014. Published by The Company of Biologists Ltd.

  11. PACMAN study of FSI and micro-triangulation for the pre-alignment of CLIC

    CERN Document Server

    Kamugasa, William Solomon

    2015-01-01

    The alignment precision of linear colliders is extremely demanding owing to the very narrow beam size at the interaction point. Unlike circular colliders, particles in linear colliders have only one chance to collide and are hence tightly focused to maximise the number of interactions per collision. The PACMAN* project is dedicated to study the integration of both fiducialization and alignment of the components on a common support. FSI (Frequency Scanning Interferometry) and Micro-triangulation will contribute to this goal. FSI realized by Etalon AG’s Absolute Multiline system and Micro-triangulation implemented by QDaedalus system developed at ETH Zurich offer precision of 0.5 μm/m and 2.4 μm/m respectively. However, these systems need to be improved in order to provide the necessary geometric information via distance measurements (multilateration) and angle measurements (triangulation), respectively. The paper describes the current status and the future developments of Absolute Multiline and QDaedalus, ...

  12. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  13. Fiducialisation and initial alignment of CLIC component with micrometric accuracy

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalan Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan Petrov; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon William; Modena, Michele; Novotny, Peter; Sanz, Claude; Severino, Giordana; Russenschuck, Stephan; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia; CERN. Geneva. ATS Department

    2016-01-01

    We propose a new solution to fiducialise the three major components of the CLIC collider: quadrupoles, beam-position monitors (BPM), and accelerating structures (AS). This solution is based on the use of a copper-beryllium (CuBe) wire to locate the reference position, i.e. the symmetry axes of the components (their magnetic, respectively electromagnetic centre axis), and to determine their position in the common support assembly defining a local coordinate system, with respect to the fiducials. These alignment targets will be used later to align the support assembly in the tunnel. With such a method, several accelerator components of different types, supported by a dedicated adjustment system, can be simultaneously fiducialised and pre-aligned using the same wire, enabling a micrometric accuracy with help of a 3D coordinate measurement machine (CMM). Alternative solutions based on frequency scanning interferometry (FSI) and micro-triangulation are also under development, to perform such fiducialisation and in...

  14. CLIC brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2012-01-01

    The world's biggest and most powerful accelerator, the LHC, is mapping the route of particle physics for the future. The next step, to complement the LHC in exploring this new region, is most likely to be a linear electron-positron collider. The Compact Linear Collider (CLIC) is a novel approach to such a collider. It is currently under development by the CLIC collaboration, which is hosted at CERN.

  15. Physics at CLIC

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The Compact Linear Collider (CLIC) is a high-energy e+e- collider under development. The CLIC conceptual design report, published in 2012, concentrated on 3 TeV centre-of-mass energy. At that time operation at lower energies was not yet studied at the same level. Following the discovery of the Higgs boson, the CLIC potential for precision Higgs measurements was addressed for several centre-of-mass energies. In parallel, the scope for precision top quark physics was further explored. As a result an optimised CLIC staging scenario was defined in collaboration between accelerator and detector experts. The staging scenario aims at a maximum physics output and maximum luminosity yield with a collider built and operated in three energy steps: 380 GeV, 1.5 TeV, 3 TeV. The seminar will comprise a short status report on the CLIC accelerator and detector. Emphasis will be on the CLIC physics potential for Higgs, top quark and BSM physics in the new staging scenario.

  16. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    OpenAIRE

    Wu Zhou; Lijuan Zhang; Yaoqin Xie; Changhong Liang

    2014-01-01

    Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorit...

  17. CLIC: developing a linear collider

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Compact Linear Collider (CLIC) is a CERN project to provide high-energy electron-positron collisions. Instead of conventional radio-frequency klystrons, CLIC will use a low-energy, high-intensity primary beam to produce acceleration.

  18. The CLIC Detector Concept

    CERN Document Server

    Pitters, Florian Michael

    2016-01-01

    CLIC is a concept for a future linear collider that would provide e+e- collisions at up to 3 TeV. The physics aims require a detector system with excellent jet energy and track momentum resolution, highly efficient flavour-tagging and lepton identification capabilities, full geometrical coverage extending to low polar angles and timing information in the order of nanoseconds to reject beam-induced background. To deal with those requirements, an extensive R&D programme is in place to overcome current technological limits. The CLIC detector concept includes a low-mass all-silicon vertex and tracking detector system and fine-grained calorimeters designed for particle flow analysis techniques, surrounded by a 4 T solenoid magnet. An overview of the requirements and design optimisations for the CLIC detector concept is presented.

  19. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A; Nguyen, F

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  20. Study of Pre-Alignment tolerances in the RTML

    CERN Document Server

    Lienart, Thibaut

    2012-01-01

    In this document a study of the impact of jitter and static misalignment on the elements of the Ring To Main Linac transport (RTML) on the emittance growth through Monte Carlo simulations using the tracking code PLACET is presented. Tolerances are proposed for the dynamic alignment requirements of the RTML in order to meet the budget emittance growth. A study of the impact of static misalignment and correction thereof with basic Beam-Based Alignment techniques is also presented and resulting tolerances are proposed for the prealignment phase of the machine.

  1. CLIC project timeline

    CERN Multimedia

    CLIC, Compact Linear Collider Project

    2018-01-01

    The CLIC project timeline. Current plan is to start at sqrt(s)=380 GeV for Higgs and top quark precision physics and upgrade up to 3 TeV. This timeline represent a purely technical schedule and assumes support at the European Strategy for Particle Physics (ESPP) in 2020 and available funding.

  2. Sextupole Magnets in CLIC

    CERN Document Server

    Glaudell, Rebecca

    2013-01-01

    Sextupolar magnets in the Final Focus System of the CLIC beamline are virtually adjusted in position and strength to minimize the beam size at the interaction point with the use of Nelder Mead Simplex Method for function minimization and MAPCLASS2 for beamline manipulation.

  3. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  4. The CLIC Vertex Detector

    CERN Document Server

    Dannheim, D

    2015-01-01

    The precision physics needs at TeV-scale linear electron-positron colliders (ILC and CLIC) require a vertex-detector system with excellent flavour-tagging capabilities through a meas- urement of displaced vertices. This is essential, for example, for an explicit measurement of the Higgs decays to pairs of b-quarks, c-quarks and gluons. Efficient identification of top quarks in the decay t → W b will give access to the ttH-coupling measurement. In addition to those requirements driven by physics arguments, the CLIC bunch structure calls for hit tim- ing at the few-ns level. As a result, the CLIC vertex-detector system needs to have excellent spatial resolution, full geometrical coverage extending to low polar angles, extremely low material budget, low occupancy facilitated by time-tagging, and sufficient heat removal from sensors and readout. These considerations challenge current technological limits. A detector concept based on hybrid pixel-detector technology is under development for the CLIC ver- tex det...

  5. Design of the 15 GHz BPM test bench for the CLIC test facility to perform precise stretchedwire RF measurements

    CERN Document Server

    Silvia Zorzetti, Silvia; Galindo Muño, Natalia; Wendt, Manfred

    2015-01-01

    The Compact Linear Collider (CLIC) requires a low emittance beam transport and preservation, thus a precise control of the beam orbit along up to 50 km of the accelerator components in the sub-m regime is required. Within the PACMAN3 (Particle Accelerator Components Metrology and Alignment to the Nanometer Scale) PhD training action a study with the objective of pre-aligning the electrical centre of a 15 GHz cavity beam position monitor (BPM) to the magnetic centre of the main beam quadrupole is initiated. Of particular importance is the design of a specific test bench to study the stretched-wire setup for the CLIC Test Facility (CTF3) BPM, focusing on the aspects of microwave signal excitation, transmission and impedance-matching, as well as the mechanical setup and reproducibility of the measurement method.

  6. Higgs physics at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)613844

    2016-10-03

    The Compact Linear Collider CLIC is an option for a future multi-TeV electron-positron collider, offering the potential for a rich precision physics programme, combined with sensitivity to a wide range of new phenomena. The CLIC physics potential for measurements of the 125 GeV Higgs boson has been studied using full detector simulations for several centre-of-mass energies. The presented results provide crucial input to the energy staging strategy for the CLIC accelerator. The complete physics program for measurements of accessible Higgs boson couplings is presented in this contribution. The ultimate measurement precision is reached when all measurements available at a given centre-of-mass energy are included in combined fits. Operation at a few hundred GeV allows the couplings and width of the Higgs boson to be determined in a model-independent manner through the study of the Higgsstrahlung and WW-fusion processes. At a lepton collider, the measurement of the Higgsstrahlung cross section using the recoil mas...

  7. BSM physics at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)700050

    2016-01-01

    The Compact Linear Collider (CLIC) is an option for a future electron-positron collider operating at centre-of-mass energies from a few hundred GeV up to 3 TeV. The search for phenomena beyond the Standard Model through direct observation of new particles and precision measurements is one of the main motivations for the high-energy stages of CLIC. An overview of physics benchmark studies assuming different new physics scenarios is given in this contribution. These studies are based on full detector simulations. New particles can be discovered in most of the considered scenarios almost up to the kinematic limit ($\\sqrt{s}$/2 for pair production). The low background conditions at CLIC provide extended discovery potential compared to hadron colliders, for example in the case of non-coloured TeV-scale SUSY particles. In addition to direct particle searches, BSM models can be probed up to scales of tens of TeV through precision measurements. Examples, including recent results on the reaction $e^+e^- \\to \\gamma\\gam...

  8. Technological challenges of CLIC

    CERN Multimedia

    CERN. Geneva; Döbert, Steffen; Arnau-Izquierdo, G; Redaelli, Stefano; Mainaud, Helène; Lefèvre, Thibaut

    2006-01-01

    Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&D effort is presently developed by the CLIC international collaboration to demonstrate its feasibility by 2010, when the first physics results from LHC should be available to guide the choice of the centre-of-mass energy better suited to explore the futu...

  9. High performance electronics for alignment regulation on the CLIC 30GHz modules

    Energy Technology Data Exchange (ETDEWEB)

    Carrica, D. [University of Mar Del Plata (Argentina); Coosemans, W.; Pittin, R. [CERN, Conseil Europeen pour la recherche nucleaire, Laboratoire europeen pour la physique des particules, Geneve (Switzerland)

    1999-07-01

    CERN is studying a linear collider (CLIC) to obtain electron-positron collisions with centre-of-mass energies in the TeV range. To demonstrate the feasibility of CLIC, a test facility (CTF2) is being constructed. CTF2 consists of 4 identical modules, each 1.4 m long module consists of 2 linac with a girder and a doublet or a triplet quadrupole. Girders are elements that support mechanically the cavities of the accelerator while the main objective of the quadrupole is to focus particle beams. The alignment system has 2 principal utilities. The first is to pre-align the elements to make the beam pass through the aperture and produce signals in beam position monitors. In respect to these signals the girders and the quadrupoles are moved for making the definitive alignment. The second utility is to maintain the elements in this position. The alignment control system of CTF2 must regulate the position of the girders and quadrupoles with a precision < 10 {mu}m. In fact an accuracy of 1 {mu} has been obtained on CTF2. Thanks to its flexibility and its simplicity, the system is expected to adapt easily to CLIC even if it means to control modules that involve up to a maximum of 384 motors and 896 sensors.

  10. CLIC: Detector technology R&D for CLIC

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  11. 2016 WCRP CliC Annual Report

    OpenAIRE

    Hislop, lawrence; Hamon, Gwénaëlle

    2017-01-01

    The 2016 Annual Report of the World Climate Research Programme (WCRP)'s Climate and Cryosphere (CliC) Project gives an overview of our activities in 2016 and includes contributions from Greg Flato, Gerhard Krinner, James Renwick, Mike Sparrow, Sophie Nowicki, Eric Larour, Tony Payne, David and Denise Holland, Chris Derksen, Regine Hock, Ben Marzeion, Alexandra Jahn, Dirk Notz, Christina Schaedel, Ted Schuur, Don Perovich, Marilyn Raphael, Jenny Hutchings, Steve Ackley, Allen Pope, Penny Wagne...

  12. CLIC Detector and Physics Status

    CERN Document Server

    AUTHOR|(SzGeCERN)627941

    2017-01-01

    This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage is optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.

  13. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  14. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  15. CLIC Physics Overview

    CERN Document Server

    AUTHOR|(SzGeCERN)471575

    2016-01-01

    This paper, based on the invited talk given at the 17th Lomonosov Conference of Elementary Particle Physics, summarizes the physics program at CLIC, with particular emphasis on the Higgs physics studies. The physics reach of CLIC operating in three energy stages, at 350 GeV, 1.4 TeV and 3 TeV center-of-mass energies is reviewed. The energy-staged approach is motivated by the high-precision physics measurements in the Higgs and top sector as well as by direct and indirect searches for beyond the Standard Model physics. The first stage, at or above 350 GeV, gives access to precision Higgs physics through the Higgsstrahlung and WW-fusion production processes, providing absolute values of the Higgs couplings to fermions and bosons. This stage also addresses precision top physics around the top-pair-production threshold. The second stage, at 1.4 TeV, opens the energy frontier, allowing for the discovery of new physics phenomena. This stage also gives access to additional Higgs properties, such as the top-Yukawa co...

  16. A novel technique for prealignment in multimodality medical image registration.

    Science.gov (United States)

    Zhou, Wu; Zhang, Lijuan; Xie, Yaoqin; Liang, Changhong

    2014-01-01

    Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  17. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-01-01

    Full Text Available Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  18. Multi-step lining-up correction of the CLIC trajectory

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction dep...

  19. The Physics Prospects for CLIC

    CERN Document Server

    ELLIS, J.

    2008-01-01

    Following a brief outline of the CLIC project, this talk summarizes some of the principal motivations for an e+e− collider with ECM = 3 TeV. It is shown by several examples that CLIC would represent a significant step beyond the LHC and ILC in its capabilities for precision measurements at high energies. It would make possible a complete study of a light Higgs boson, including rare decay modes, and would provide a unique tool to study a heavy Higgs boson. CLIC could also complete the studies of supersymmetric spectra, if sparticles are relatively light, and discover any heavier sparticles. It would also enable deeper probes of extra dimensions, new gauge bosons and excited quarks or leptons. CLIC has unique value to add to experimental particle physics, whatever the LHC discovers.

  20. Silicon Technologies for the CLIC Vertex Detector

    CERN Document Server

    Spannagel, Simon

    2017-01-01

    CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...

  1. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2016-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e- Compact Linear Collider (CLIC). A single point resolution of 3μm for the vertex detector and 7μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2 % X0 per layer in the ver- tex detector and 1-2%X0 in the tracker. A fast time slicing of 10ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D effort. Various hybrid planar sensor assemblies with a pixel size of 25x25μm2 and 55x55μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50μm-500μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  2. CLIC project R&D studies: the magnet system for the 3 TEV

    CERN Document Server

    Modena, Michele

    2017-01-01

    This Note presents the R&D activities done and coordinated by TE-MSC Group on the magnetic system for the CLIC (Compact Linear Collider) project. The main aspects investigated are: the magnetic system definition, basic design for all magnets (i.e. a CLIC Magnet Catalogue), powering and cost evaluation, advanced design and prototyping for the most critical magnet variants. The CLIC layout here considered is the one for the highest collision energy of 3 TeV. This layout was the one studied in detail as baseline for the CLIC Conceptual Design Report that was released in 2012. This Note summarize the activities of about 6 years (2010-2016) done with the contribution of CERN staff (part-time), the contribution of some CERN Project Associates sponsored by the CLIC Project and in collaboration with STCF Daresbury Laboratory (UK).

  3. Physics and Detectors at CLIC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    CLIC represents an attractive option for the future particle physics programme at the energy frontier. CLIC is a proposed electron-positron linear collider, based on a novel two beam accelerating structure, with the capability of operating at centre-of-mass energies of up to 3 TeV. The Physics and Detector volume of the CLIC conceptual design report was recently published as a CERN yellow report. In this seminar, I will review the conclusions of this report, focussing on four main areas. Firstly, I will give an overview of the physics potential at CLIC, and will place this in the context of a possible scenario for the staged construction of the machine. Secondly, I will discuss the challenges for a detector operating in the CLIC machine environment. I will then present detailed studies of possible detector concepts, based on high granularity particle flow calorimetry, which demonstrate that the required detector performance goals at CLIC can be met. Finally, I will highlight the main issues for the future R&a...

  4. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  5. The CLIC Physics Potential

    CERN Document Server

    AUTHOR|(SzGeCERN)554857

    2016-01-01

    The physics and detector studies for the Compact Linear Collider (CLIC) are introduced. A staged programme of $e^{+}e^{−}$ collisions covering $\\sqrt{s}$ = 380 GeV, 1.5 TeV, and 3 TeV would allow precise measurements of Higgs boson couplings, in many cases to the percent level. This corresponds to precision higher than that expected for the high-luminosity Large Hadron Collider. Such precise Higgs coupling measurements would allow sensitivity to a variety of new physics models and the ability to distinguish between them. In addition, new particles directly produced in pairs could be measured with great precision, and measurements in the top-quark sector would provide sensitivity to new physics effects at the scales of tens of TeV.

  6. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets

    Science.gov (United States)

    Li, Yang; Liu, Jun S.; Mootha, Vamsi K.

    2017-01-01

    In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active. PMID:28719601

  7. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets.

    Directory of Open Access Journals (Sweden)

    Yang Li

    2017-07-01

    Full Text Available In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs, while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays or 1887 human microarray datasets (45158 microarrays. CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1 and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active.

  8. Electroweak precision measurements at CLIC

    CERN Document Server

    Weber, Matthias Artur; Boyko, Igor

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future electron-positron collider operating at centre-of-mass energies from a few hundred GeV up to 3 TeV. Details will be presented on two recent physics benchmark analyses of electroweak measurements at CLIC based on full detector simulations and assuming centre-of-mass energies of 1.4 and 3 TeV. Vector boson scattering gives insight into the mechanism of electroweak symmetry breaking. The processes e$^+$e$^-\\rightarrow$WW$\

  9. CLIC Drive Beam Accelerating Structures

    CERN Document Server

    Wegner, Rolf

    2012-01-01

    Travelling structures for accelerating the high-current (4.2 A) CLIC Drive Beam to an energy of 2.37 GeV are presented. The structures are optimised for efficiency (full beam loading operation) and a desired filling time. Higher order modes are studied and are reduced by detuning along the structure and by damping with silicon carbide loads.

  10. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  11. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  12. CLIC inner detectors cooling simulations

    CERN Document Server

    Duarte Ramos, F.; Villarejo Bermudez, M.

    2014-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concepts require the use of a dry gas for the cooling of the respective sen- sors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detec- tor specifications. This note introduces a detector cooling strategy using dry air as a coolant and shows the results of computational fluid dynamics simulations used to validate the proposed strategy.

  13. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  14. BDS tuning and luminosity monitoring in CLIC

    CERN Document Server

    Dalena, Barbara; Latina, Andrea; Marin, Eduardo; Pfingstner, Jurgen; Schulte, Daniel; Snuverink, Jochem; Tomas, Rogelio; Zamudio, Guillermo

    2011-01-01

    The emittance preservation in the Beam Delivery System (BDS) is one of the major challenges in CLIC. The fast detuning of the final focus optics requires an on-­line tuning procedure in order to keep luminosity close to the maximum. Different tuning techniques have been applied to the CLIC BDS and in particular to the Final Focus System (FFS) in order to mitigate static and dynamic imperfections. Some of them require a fast luminosity measurement. Here we study the possibility to use beam-­beam backgrounds processes at CLIC 3 TeV CM energy as fast luminosity signal. In particular the hadrons multiplicity in the detector region is investigated.

  15. CLIC's three-step plan

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    In early October, the Compact Linear Collider (CLIC) collaboration published its final Conceptual Design Report. Accompanying it was a strategic summary document that describes a whole new approach to the project: developing the linear e+e− collider in three energy stages. Though CLIC’s future still depends on signs from the LHC, its new staged approach to high-energy electron-positron physics for the post-LHC era is nothing short of convincing.   Instead of asking for a 48-kilometre-long commitment right off the bat, the CLIC collaboration is now presenting an accelerator that can be constructed in stages. For example, it could begin as an 11-kilometre 500 GeV accelerator that could later be extended to a 27-kilometre 1.5 TeV machine. Finally, after a decade or so of data taking, it could be taken up to the full 48-kilometre 3 TeV facility (see image 2). “Not only is the approach technically and financially practical, it also offers a very convincing physics prog...

  16. CLIC CTF3 for open days

    CERN Multimedia

    CLIC

    2013-01-01

    CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  17. CLIC CTF3 for open days

    CERN Multimedia

    2013-01-01

    (subt french) CLIC – the Compact Linear Collider – is a study for a future accelerator that reaches unprecedented energies for electrons and their antimatter twins, positrons. It uses a novel two-beam acceleration scheme in which the electrons and positrons are propelled to high energy by an additional high current electron beam, the so-called Drive Beam. In order to generate this high current Drive Beam, a long train of electron bunches is accelerated, parts of the train delayed in a Delay Loop and Combiner Rings, and interleaved by transversely deflecting radio-frequency cavities. The CLIC Test Facility CTF3, which is shown in the movie, examines the new technologies envisioned by the CLIC design, in particular the Drive Beam generation and the two-beam acceleration. It is a scaled-down version of the CLIC facility, and it has demonstrated the feasibility of the novel scheme.

  18. Successful start for new CLIC test facility

    CERN Multimedia

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  19. Detector Optimization of the CLIC Tracker

    CERN Document Server

    Saxe, Gandalf

    2015-01-01

    CLIC (Compact Linear Collider) is a proposed high-energy electron-positron collider at CERN [1] that, if approved, will be built at the feet of the Jura Mountains in Switzerland, passing through CERN. As opposed to hadrons, electrons (e-) and positrons (e+) are elementary particles. Therefore, e-e+ collisions give a well defined initial state which allows high precision studies. A circular collider is not a viable option when going to high energies (several TeV) for a e-e+ collider due to synchrotron radiation. Therefore CLIC is designed as a linear collider. CLIC is proposed to be build in three center-of-mass energy stages: 380 GeV, 1.4 TeV and 3.0 TeV. The CLIC physics program includes the high precision measurements of the Higgs and top properties, the observation of rare processes, and the possible discovery of new particles [3].

  20. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  1. CLIC Waveguide Damped Accelerating Structure Studies

    CERN Document Server

    Dehler, M; Wuensch, Walter

    1996-01-01

    Studies of waveguide damped 30 GHz accelerating structures for multibunching in CLIC are described. Frequency discriminated damping using waveguides with a lowest cutoff frequency above the fundamental but below the higher order modes was considered. The wakefield behavior was investigated using time domain MAFIA computations over up to 20 cells and for frequencies up to 150 GHz. A configuration consisting of four T-cross-sectioned waveguides per cell reduces the transverse wake below 1% at typical CLIC bunch spacings.

  2. A Trajectory Correction based on Multi-Step Lining-up for the CLIC Main Linac

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory method described in this Note retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mai...

  3. A Luminosity Calorimeter for CLIC

    CERN Document Server

    Abramowicz, H; Kananov, S; Levy, A; Sadeh, I

    2009-01-01

    For the relative precision of the luminosity measurement at CLIC, a preliminary target value of 1% is being assumed. This may be accomplished by constructing a finely granulated calorimeter, which will measure Bhabha scattering at small angles. In order to achieve the design goal, the geometrical parameters of the calorimeter need to be defined. Several factors influence the design of the calorimeter; chief among these is the need to minimize the error on the luminosity measurement while avoiding the intense beam background at small angles. In this study the geometrical parameters are optimized for the best performance of the calorimeter. In addition, the suppression of physics background to Bhabha scattering is investigated and a set of selection cuts is introduced.

  4. Performances of the Main Beam Quadrupole Type1 Prototypes for CLIC

    CERN Document Server

    Modena, M; Garcia Perez, J; Leuxe, R; Perrin-Bonnet, G; Petrone, C; Struik, M; Vorozhtsov, A

    2013-01-01

    A critical magnet family for the future Compact Linear Collider (CLIC) is the Main Beam Quadrupole (MBQ) one. These magnets, placed along the two main linacs, will be actively stabilized in the nanometre range and are one of the key elements for reaching the outstanding nanometric dimensions and luminosity of the colliding beams. In the framework of the CLIC R&D and prototypes procurement for the CLIC Test Facility under construction at CERN, several prototypes of MBQ were procured. TheMBQ magnet has a classical electro-magnetic design. A challenging aspect of the design is the extremely high mechanical precision required for the manufacturing and assembly of the iron quadrants. The challenging manufacturing aspects are presented and discussed. Results on the realized prototypes are discussed.

  5. GateKeeper: a new hardware architecture for accelerating pre-alignment in DNA short read mapping.

    Science.gov (United States)

    Alser, Mohammed; Hassan, Hasan; Xin, Hongyi; Ergin, Oguz; Mutlu, Onur; Alkan, Can

    2017-11-01

    High throughput DNA sequencing (HTS) technologies generate an excessive number of small DNA segments -called short reads- that cause significant computational burden. To analyze the entire genome, each of the billions of short reads must be mapped to a reference genome based on the similarity between a read and 'candidate' locations in that reference genome. The similarity measurement, called alignment, formulated as an approximate string matching problem, is the computational bottleneck because: (i) it is implemented using quadratic-time dynamic programming algorithms and (ii) the majority of candidate locations in the reference genome do not align with a given read due to high dissimilarity. Calculating the alignment of such incorrect candidate locations consumes an overwhelming majority of a modern read mapper's execution time. Therefore, it is crucial to develop a fast and effective filter that can detect incorrect candidate locations and eliminate them before invoking computationally costly alignment algorithms. We propose GateKeeper, a new hardware accelerator that functions as a pre-alignment step that quickly filters out most incorrect candidate locations. GateKeeper is the first design to accelerate pre-alignment using Field-Programmable Gate Arrays (FPGAs), which can perform pre-alignment much faster than software. When implemented on a single FPGA chip, GateKeeper maintains high accuracy (on average >96%) while providing, on average, 90-fold and 130-fold speedup over the state-of-the-art software pre-alignment techniques, Adjacency Filter and Shifted Hamming Distance (SHD), respectively. The addition of GateKeeper as a pre-alignment step can reduce the verification time of the mrFAST mapper by a factor of 10. https://github.com/BilkentCompGen/GateKeeper. mohammedalser@bilkent.edu.tr or onur.mutlu@inf.ethz.ch or calkan@cs.bilkent.edu.tr. Supplementary data are available at Bioinformatics online.

  6. Online Resources for High School Teachers--A CLIC Away

    Science.gov (United States)

    Holmes, Jon L.

    2000-04-01

    "I'm a high school teacher. I don't have time to sift through all of JCE to find what I need. I don't have enough time as it is!" If you need to find things in a hurry, go to JCE HS CLIC, the JCE High School Chemed Learning Information Center, http://JChemEd.chem.wisc.edu/HS/. You will find good solid, reliable information, and you will find it fast. CLIC is open 24 hours every day, all over the world. What You Will Find at JCE CLIC We know teachers are pressed for time. During the few minutes between classes or at the end of the day, information needs to be found very quickly. Perhaps you are looking for a demo that illustrates electrochemistry using Cu, Mg, orange juice, and a clock; or a student activity on chromatography that is ready to copy and hand out; or a video to illustrate the action of aqua regia on gold, because you can't use aqua regia and can't afford gold. You can find each of these quickly at CLIC. The Journal has always provided lots of articles designed with high school teachers in mind. What the new JCE HS CLIC does is collect the recent materials at one address on JCE Online, making it quicker and easier for you to find them. Information has been gathered from both print and online versions of the Journal, from JCE Software, and from JCE Internet. It is organized as shown at the bottom of the page. Getting Access to Information You have located something that interests you, perhaps a list of tested demonstrations that pertain to consumer chemistry. Now it is time to get it. JCE subscribers (individuals and libraries) can read, download, and print the full versions of the articles as well as all supplemental materials, including student handouts and instructor's notes. You will need the username and password that are on the mailing label that comes with your Journaleach month. JCE HS CLIC home page: http://JChemEd.chem.wisc.edu/HS/ Your Suggestions, Please Our plans for JCE HS CLIC do not end with what you find now. Other resources and features

  7. Overview of the CLIC detector and its physics potential

    Science.gov (United States)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  8. Overview of the CLIC detector and its physics potential

    CERN Document Server

    AUTHOR|(SzGeCERN)786425

    2016-01-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cutting-edge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  9. Overview of the CLIC detector and its physics potential

    Directory of Open Access Journals (Sweden)

    Ström Rickard

    2017-01-01

    Full Text Available The CLIC detector and physics study (CLICdp is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC. CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  10. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aicheler, M [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Burrows, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Draper, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garvey, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lebrun, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Peach, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Phinney, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schmickler, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schulte, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Toge, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-02-13

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.

  11. Laser wire emittance measurement line AT CLIC

    CERN Document Server

    Garcia, H; Blair, G A; Aumeyr, T; Schulte, D; Stulle, F

    2011-01-01

    A precise measurement of the transverse beam size and beam emittances upstream of the final focus is essential for ensuring the full luminosity at future linear colliders. A scheme for the emittance measurements at the RTML line of the CLIC using laser-wire beam profile monitors is described. A lattice of the measurement line is discussed and results of simulations of statistical errors and of their impact on the accuracy of the emittance reconstruction are given. Laser wire systems suitable for CLIC and their main characteristics are discussed.

  12. Status and Future Prospects of CLIC

    CERN Document Server

    Döbert, S

    2009-01-01

    The Compact Linear Collider (CLIC) is studied by a growing international collaboration. Main feasibility issues should be demonstrated by 2010 with the CLIC Test Facility (CTF3) constructed at CERN. The CLIC design parameters have recently been changed significantly. The rf frequency has been reduced from 30 GHz to 12 GHz and the loaded accelerating gradient from 150 MV/m to 100 MV/m. A new coherent parameter set for a 3 TeV machine will be presented. The status and perspectives of the CLIC feasibility study will be presented with a special emphasis on experimental results obtained with CTF3 towards drive beam generation as well as progress on the high gradient accelerating structure development. The frequency change allows using high power x-band test facilities at SLAC and KEK for accelerating structure testing at 11.4 GHz. The design gradient of 100 MV/m has been achieved in recent test at SLAC with a very low breakdown-rate.

  13. CLIC preparations go up a notch

    CERN Multimedia

    2007-01-01

    The Compact Linear Collider gears up for post-LHC physics with an international workshop. A schematic diagram of CLIC.In June CERN gained a new building: number 2010. And as chance would have it, this is more than just a number to its new residents. By the year 2010, teams working at the new CLIC Experimental Area, along with the already established CLIC Test Facility Three (CTF3), hope to have demonstrated the feasibility of the Compact Linear Collider and, depending on results from the LHC, embark on its final design and proposal. A workshop on 16t-18 October brought people from all around the world to CERN to exchange ideas and hear how the ambitious project is progressing. CLIC is a project that aims to extend lepton collider technology to multi-TeV energy physics, colliding leptons with a centre-of-mass-energy up to 3TeV, more than ten times the energy of the LEP. This is only possible in a linear collider, where no energy is lo...

  14. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current

    Science.gov (United States)

    Barbieri, Federica; Peretti, Marta; Pizzi, Erika; Pattarozzi, Alessandra; Carra, Elisa; Sirito, Rodolfo; Daga, Antonio; Curmi, Paul M.G.; Mazzanti, Michele; Florio, Tullio

    2014-01-01

    Epidemiological and preclinical studies propose that metformin, a first-line drug for type-2 diabetes, exerts direct antitumor activity. Although several clinical trials are ongoing, the molecular mechanisms of this effect are unknown. Here we show that chloride intracellular channel-1 (CLIC1) is a direct target of metformin in human glioblastoma cells. Metformin exposure induces antiproliferative effects in cancer stem cell-enriched cultures, isolated from three individual WHO grade IV human glioblastomas. These effects phenocopy metformin-mediated inhibition of a chloride current specifically dependent on CLIC1 functional activity. CLIC1 ion channel is preferentially active during the G1-S transition via transient membrane insertion. Metformin inhibition of CLIC1 activity induces G1 arrest of glioblastoma stem cells. This effect was time-dependent, and prolonged treatments caused antiproliferative effects also for low, clinically significant, metformin concentrations. Furthermore, substitution of Arg29 in the putative CLIC1 pore region impairs metformin modulation of channel activity. The lack of drugs affecting cancer stem cell viability is the main cause of therapy failure and tumor relapse. We identified CLIC1 not only as a modulator of cell cycle progression in human glioblastoma stem cells but also as the main target of metformin's antiproliferative activity, paving the way for novel and needed pharmacological approaches to glioblastoma treatment. PMID:25361004

  15. R&D Challenges of a CLIC Vertex Detector

    CERN Document Server

    van der Kraaij, E

    2010-01-01

    The Compact Linear Collider (CLIC) is a concept for an electron-positron collider with a center- of-mass energy of up to 3 TeV. Given the unprecedented experimental conditions at CLIC none of the technologies available today can fulfill all requirements set for the vertex detector. At the conference these conditions and the challenges they pose for the R&D of a CLIC vertex detector were presented.

  16. Academic Training - Technological challenges of CLIC

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15 and 16 June 11:00-12:00 - Auditorium, bldg 500 Technological challenges of CLIC R. Corsini, S. Doebert, S. Redaelli, T.Lefevre, CERN-AB and G. Arnau Izquierdo, H. Mainaud, CERN-TS Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&...

  17. CLIC accelerator modules under construction at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    The Compact LInear Collider (CLIC) study is dedicated to the design of an electron-positron (e- e+) linear accelerator, colliding particle beams at the energy of 3 TeV. The CLIC required luminosity can be reached with powerful particle beams (14 MW each) colliding with extremely small dimensions and high beam stability at the interaction point. The accelerated particle beams must have dimensions of 45 nm in the horizontal plane and 1 nm in the vertical plane. CLIC relies upon a novel two-beam acceleration concept in which the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, called Drive Beam (DB), and transferred to a parallel high energy accelerating particle beam, called Main Beam (MB). The extraction and transfer of the RF power is achieved by the Power Extraction and Transfer Structures (PETS) and the particle beam acceleration is achieved with high precision RF-Accelerating Structures (AS), operating at 11.9942 GHz with an accelerating gradient of 100 MV/m, whi...

  18. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  19. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  20. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  1. The physics benchmark processes for the detector performance studies used in CLIC CDR Volume 3

    CERN Document Server

    Allanach, B.J.; Desch, K.; Ellis, J.; Giudice, G.; Grefe, C.; Kraml, S.; Lastovicka, T.; Linssen, L.; Marschall, J.; Martin, S.P.; Muennich, A.; Poss, S.; Roloff, P.; Simon, F.; Strube, J.; Thomson, M.; Wells, J.D.

    2012-01-01

    This note describes the detector benchmark processes used in volume 3 of the CLIC conceptual design report (CDR), which explores a staged construction and operation of the CLIC accelerator. The goal of the detector benchmark studies is to assess the performance of the CLIC ILD and CLIC SiD detector concepts for different physics processes and at a few CLIC centre-of-mass energies.

  2. A Multi-TeV Linear Collider Based on CLIC Technology CLIC Conceptual Design Report

    CERN Document Server

    Burrows, P; Draper, M; Garvey, T; Lebrun, P; Peach, K; Phinney, N; Schmickler, H; Schulte, D; Toge, N

    2012-01-01

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from ...

  3. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  4. Performance of Particle Flow Calorimetry at CLIC

    CERN Document Server

    Marshall, J.S.; Thomson, M.A.

    2013-01-01

    The experimental conditions at CLIC are also significantly more challenging than those at previous electron-positron colliders, with increased levels of beam-induced backgrounds combined with a bunch spacing of only 0.5 ns. This paper describes the modifications made to the PandoraPFA particle flow algorithm to improve the jet energy reconstruction for jet energies above 250 GeV. It then introduces a combination of timing and pT cuts that can be applied to reconstructed particles in order to significantly reduce the background. A systematic study is...

  5. Optical replica based longitudinal diagnostic for CLIC

    CERN Document Server

    Angelova-Hamberg, G

    2008-01-01

    The performance of the CLIC main linac critically depends on the beam properties at its entrance. We discuss a method, based on practical experience gathered in the optical replica experiment in FLASH at DESY, that allows to diagnose longitudinal properties of individual bunches within a bunch train at several places in the transfer line between the damping ring and the main linac. Apart from the possibility to obtain single-shot non-invasive longitudinal bunch profiles this method allows to analyze the longitudinal-transverse correlations (beam-tails) within a bunch.

  6. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.

  7. Status of a study of stabilization and fine positioning of CLIC quadrupoles to the nanometre level

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    Mechanical stability to the nanometre and below is required for the Compact Linear Collider (CLIC) quadrupoles to frequencies as low as 1 Hz. An active stabilization and positioning system based on very stiff piezo electric actuators and inertial reference masses is under study for the Main Beam Quadrupoles (MBQ). The stiff support was selected for robustness against direct forces and for the option of incrementally repositioning the magnet with nanometre resolution. The technical feasibility was demonstrated by a representative test mass being stabilized and repositioned to the required level in the vertical and lateral direction. Technical issues were identified and the development programme of the support, sensors, and controller was continued to increase the performance, integrate the system in the overall controller, adapt to the accelerator environment, and reduce costs. The improvements are implemented in models, test benches, and design of the first stabilized prototype CLIC magnet. The characterizati...

  8. High Power test of a low group velocity X-band Accelerator Structure for CLIC

    CERN Document Server

    Döbert, S; Riddone, G; Taborelli, M; Wuensch, W; Zennaro, R; Fukuda, S; Higashi, Y; Higo, T; Matsumoto, S; Ueno, K; Yokoyama, K; Adolphsen, C; Dolgashev, V; Laurent, L; Lewandowski, J; Tantawi, S; Wang, F; Wang, JW

    2008-01-01

    In recent years evidence has been found that the maximum sustainable gradient in an accelerating structure depends on the rf power flow through the structure. The CLIC study group has consequently designed a new prototype structure for CLIC with a very low group velocity, input power and average aperture ( = 0.13). The 18 cell structure has a group velocity of 2.6 % at the entrance and 1 % at the last cell. Several of these structures have been made in a collaboration between KEK, SLAC and CERN. A total of five brazed-disk structures and two quadrant structures have been made. The high power results of the first KEK/SLAC built structure is presented which reached an unloaded gradient in excess of 100 MV/m at a pulse length of 230 ns with a breakdown rate below 10-6 per meter active length. The high-power testing was done using the NLCTA facility at SLAC.

  9. Combined Fits of CLIC Higgs Results for the Snowmass Process

    CERN Document Server

    Simon, F; Roloff, P

    2013-01-01

    This note presents three combined fits of CLIC Higgs physics results, a model- independent fit based on minimal assumptions and two model-dependent fits assuming that the total width is described by the sum of nine (seven) different visible final states with coupling parameters given by the deviation of the re- spective partial widths from their SM values. The input values are a snapshot of the CLIC Higgs analyses as of September 2013. The results demonstrate the capabilities of the full three-stage CLIC physics program for a precise ex- ploration of the Higgs sector.

  10. CLIC Main Beam Quadrupole Eigen Mode computation

    CERN Document Server

    Deleglise, Guillaume

    2010-01-01

    In this report, we summarise the work done on the CLIC Main Beam Quadrupole. There are about 4000 MB quadrupoles of 4 types with lengths ranging from 420mm to 1900mm. In order to obtain the desired CLIC luminosity, the MB quadrupoles have to be stable to 1nm above 1Hz. The region of interest for the study is between 0.5Hz and about 100Hz. In order to achieve the specifications, the magnet should not have any resonance peaks in this region of Interest. In addition, the magnet on its support shouldn’t have any resonance peak in the same frequency range. The first step is to determine if the designed magnet has its first resonance peak above 100Hz. We are studying the longest quadrupole more susceptible to internal resonances. In a second step, the magnet on ideal supporting points has been evaluated. The current magnet design can be seen on following figure. One can see that it is composed of 4 quadrants assembled so as to have a quadrupole magnetic field. As a last step, the mechanical model has been used to...

  11. CLIC vertex detector R&D

    CERN Document Server

    Redford, S

    2014-01-01

    In order to achieve its primary objectives of heavy-flavour tagging and tau lepton identification, the CLIC vertex detector must precisely reconstruct displaced vertices. This re- quires accurate determination of the impact parameter and charge of tracks originating from the secondary vertex. Excellent spatial resolution must therefore be provided down to low polar angles, whilst maintaining low occupancy, low mass and low power dissipation. These requirements chal- lenge current technological limits, and demand a broad programme of R&D. A detector concept is currently under development, comprising a hybrid pixel detector of small-pitch readout ASICs implemented in 65nm CMOS technology (CLICpix) combined with ultra-thin sensors. The read- out chips are low-power, and power-pulsing is used to reduce further their power dissipation. This enables a forced gas cooling system in the vertex detector region. In this paper, the CLIC vertex detector requirements are reviewed and the current status of R&D on se...

  12. Higgs and BSM physics at CLIC

    CERN Document Server

    Milutinovic-Dumbelovic, Gordana

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future electron-positron collider operating at centre-of-mass energies from a few hundred GeV up to 3 TeV. This paper discusses the Higgs and BSM physics reach of CLIC operating in several energy stages. The presented results are based on physics benchmark analyses using full detector simulations, several of which have been completed recently. The initial stage of operation near the top quark pair production threshold allows to study Higgs boson production in the Higgsstrahlung and WW-fusion processes, resulting in model-independent determinations of the Higgs couplings. High-energy operation, here assumed at 1.4 and 3 TeV, gives access to rarer Higgs decays and production processes such as double Higgs production, which is sensitive to the Higgs self-coupling. In the second part of this paper, examples for direct and indirect new physics searches are given. In both cases, the achievable sensitivities generally rise with the centre-of-mass energy.

  13. Summary of the BDS and MDI CLIC08 Working Group

    CERN Document Server

    Tomás, R; Ahmed, I; Ambatu, PK; Angal-Kalinin, D; Barlow, R; Baud, J P; Bolzon, B; Braun, H; Burkhardt, H; Burt, GC; Corsini, R; Dalena, B; Dexter, AC; Dolgashev, V; Elsener, K; Fernandez Hernando, JL; Gaillard, G; Geffroy, N; Jackson, F; Jeremie, A; Jones, RM; McIntosh, P; Moffeit, K; Peltier, F; Resta-López, J; Rumolo, G; Schulte, D; Seryi, A; Toader, A; Zimmermann, F

    2008-01-01

    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis.

  14. A high resolution cavity BPM for the CLIC Test Facility

    CERN Document Server

    Chritin, N.; Soby, L.; Lunin, A.; Solyak, N.; Wendt, M.; Yakovlev, V.

    2012-01-01

    In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

  15. Technical Specification for the CLIC Two-Beam Module

    CERN Document Server

    Riddone, G; Nousiainen, R; Samoshkin, A; Schulte, D; Syratchev, I; Wuensch, W; Zennaro, R

    2008-01-01

    A high-energy (0.5-3 TeV centre-of-mass), highluminosity Compact Linear Collider (CLIC) is being studied at CERN [1]. The CLIC main linacs, 21-km long each, are composed of 2-m long two beam modules. This paper presents their current layout, the main requirements for the different sub-systems (alignment, supporting, stabilization, cooling and vacuum) as well as the status of their integration.

  16. A tapered damped accelerating structure for CLIC

    CERN Document Server

    Dehler, M; Wuensch, Walter

    1998-01-01

    A new 30 GHz multibunch accelerating structure incorporating both damping and detuning has been designed for the Compact LInear Collider (CLIC). Each cell of the 150-cell structure is damped by its ow n set of four radial waveguides resulting in a Q of 16 for the lowest dipole mode. A simple linear taper of the beam-pipe dimension provides a detuning frequency spread of 2 GHz (5.4%). Predictions of the transverse wakefield levels in this structure have been made using both uncoupled, and two-band coupled equivalent circuit models with non-perfect loads. The short-range wakefield has been calcula ted to be about 1000 V/(pC.mm.m) decreasing to less than 1% at the second bunch (0.67 ns) and with a long time level below 0.1%.

  17. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear e+e− collider pose challenging demands on the performance of the vertex and tracking detector system. In particular the detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A highly granular all- silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints.

  18. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  19. Requirements for the CLIC tracker readout

    CERN Document Server

    Nurnberg, Andreas Matthias

    2017-01-01

    The requirement of precision physics and the environment found in the proposed future high-energy linear $e^{+}e^{−}$ collider CLIC result in challenging constraints for the silicon tracking detector. A track-momentum resolution of approximately $\\sigma_{p_T}/p^2_T = 2\\times10^{−5}$GeV${}^{−1}$ for high-momentum tracks has to be achieved in an environment with high rates of beam-induced background events. The current layout foresees a multi-layer tracking detector system arranged in a barrel and endcap geometry with a total surface of approximately 100 m${}^2$. This note describes the specifications for the tracker sensors and readout electronics.

  20. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  1. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  2. Light Higgs Studies for the CLIC CDR

    CERN Document Server

    Grefe, Christian; Strube, Jan

    2012-01-01

    The Higgs boson is the most anticipated discovery at the LHC, which can only partially explore its true nature. Thus one of the most compelling arguments to build a future linear collider is to investigate properties of the Higgs boson, especially to test the predicted linear dependence of the branching ratios on the mass of the ?nal state. At a 3TeV CLIC machine the Higgs boson production cross section is relatively large and allows for a precision measurement of the Higgs branching ratio to pairs of b and c quarks, and even to muons. The cross section times branching ratio of the decays $H\\rightarrow b\\bar{b}$, $H\\rightarrow c\\bar{c}$ and $H\\rightarrow \\mu^{+}\\mu^{-}$ can be measured with a statistical uncertainty of approximately 0.22%, 3.2% and 15%, respectively.

  3. CLIC TWO-BEAM MODULE FOR THE CLIC CONCEPTUAL DESIGN AND RELATED EXPERIMENTAL PROGRAM*

    CERN Document Server

    Samoshkin, A; Solodko, A; Riddone, G

    2011-01-01

    The CLIC (Compact LInear Collider) study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range. The two-beam linear accelerator being studied at CERN involves the design and integration of many different technical systems, tightly bound and influencing each other. For the construction of two linacs it has been decided to proceed with a modular design, and repetitive two-beam modules of a few types were defined. The modules consist of micron-level precision components operating under ultra-high vacuum as required by the beam physics. For the CLIC Conceptual Design Report, the development and system integration is mainly focused on the most complex module type containing the highest number of components and technical systems. For proving the proper functioning of the needed technical systems and confirming their feasibility it has been decided to build four prototype modules and test them without beam. In addition, three module...

  4. CLIC Two-Beam Module for the CLIC Conceptual Design and related experimental program

    CERN Document Server

    Samoshkin, A; Solodko, A; Riddone, G

    2011-01-01

    The CLIC (Compact LInear Collider) study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range. The two-beam linear accelerator being studied at CERN involves the design and integration of many different technical systems, tightly bound and influencing each other. For the construction of two linacs it has been decided to proceed with a modular design, and repetitive two-beam modules of a few types were defined. The modules consist of micron-level precision components operating under ultra-high vacuum as required by the beam physics. For the CLIC Conceptual Design Report, the development and system integration is mainly focused on the most complex module type containing the highest number of components and technical systems. For proving the proper functioning of the needed technical systems and confirming their feasibility it has been decided to build four prototype modules and test them without beam. In addition, three module...

  5. CLIC/ILC Researchers Explore New Avenues for Collaboration

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    Researchers from CLIC and ILC met for their first common International Workshop on Linear Colliders, which was held in Geneva from 18 to 22 October. Although the talks were mostly scientific and technical, the political message behind them was a breakthrough, as the workshop showed the progress made in unifying the two communities.   The International Workshop on Linear Colliders (IWLC), which was organised by the European Committee for Future Accelerators, hosted by CERN, and held at CERN and the International Conference Centre in Geneva, attracted a large audience of about 500 experts. Although there have been other joint conferences between the CLIC and ILC communities before, they have all been focused on specific technical and/or managerial issues. The IWLC was part of an ongoing effort by CLIC and ILC to provide an environment in which researchers can exchange ideas, inform their peers about their most recent achievements and work together on common issues. Given the possible technical ov...

  6. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  7. Striplines for CLIC Pre-damping and Damping Rings

    CERN Document Server

    Belver-Aguilar, C; Barnes, M J; Rumolo, G; Zannini, C; Toral, F

    2011-01-01

    The Compact Linear Collider (CLIC) study explores the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV: CLIC will complement LHC physics in the multi-TeV range. The CLIC design relies on the presence of Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve, through synchrotron radiation, the very low emittance needed to fulfill the luminosity requirements. The specifications for the kicker systems are very challenging and include very low beam coupling impedance and excellent field homogeneity: striplines have been chosen for the kicker elements. Analytical calculations have been carried out to determine the effect of tapering upon the high frequency beam coupling impedance. In addition detailed numerical modeling of the field homogeneity has been performed and the sensitivity of the homogeneity to various parameters, including stripline cross-section, have been studied. This paper presents the main conclusions of the beam impedance calculations an...

  8. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  9. The CLIC electron and positron polarized sources

    CERN Document Server

    Rinolfi, Louis; Bulyak, Eugene; Chehab, Robert; Dadoun, Olivier; Gai, Wei; Gladkikh, Peter; Kamitani, Takuya; Kuriki, Masao; Liu, Wanming; Maryuama, Takashi; Omori, Tsunehiko; Poelker, Matt; Sheppard, John; Urakawa, Junji; Variola, Alessandro; Vivoli, Alessandro; Yakimenko, Vitaly; Zhou, Feng; Zimmermann, Frank

    2010-01-01

    The CLIC polarized electron source is based on a DC gun where the photocathode is illuminated by a laser beam. Each micro-bunch has a charge of 6x109 e−, a width of 100 ps and a repetition rate of 2 GHz. A peak current of 10 A in the micro-bunch is a challenge for the surface charge limit of the photo-cathode. Two options are feasible to generate the 2 GHz e− bunch train: 100 ps micro-bunches can be extracted from the photo-cathode either by a 2 GHz laser system or by generating a macro-bunch using a ~200 ns laser pulse and a subsequent RF bunching system to produce the appropriate micro-bunch structure. Recent results obtained by SLAC, for the latter case, are presented. The polarized positron source is based on a positron production scheme in which polarized photons are produced by a laser Compton scattering process. The resulting circularly-polarized gamma photons are sent onto a target, producing pairs of longitudinally polarized electrons and positrons. The Compton backscattering process occurs eithe...

  10. CLIC quadrupole stabilization and nano-positioning

    CERN Document Server

    Collette, C; Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C

    2010-01-01

    In the Compact LInear Collider (CLIC) currently under study, electrons and positrons will be accelerated in two linear accelerators to collide at the interaction point with an energy of 0.5- 3 TeV. This machine is constituted of a succession of accelerating structures, used to accelerate the beams of particles, and electromagnets (quadrupoles) used to focus the beams. In order to ensure good performances, the quadrupoles have to be extremely stable. Additionally, they should also have the capability to move by steps of some tens of nanometers every 20 ms with a precision of +/- 1nm. This paper proposes a holistic approach to fulfill alternatively both requirements using the same device. The concept is based on piezoelectric hard mounts to isolate the quadrupoles from the ground vibrations in the sensitive range between 1 and 20 Hz, and to provide nano-positioning capabilities. It is also shown that this strategy ensures robustness to external forces (acoustic noise, water flow for the cooling, air flow for th...

  11. CLIC-ACM: Acquisition and Control System

    CERN Document Server

    Bielawski, B; Magnoni, S

    2014-01-01

    CLIC [1] (Compact Linear Collider) is a world-wide collaboration to study the next terascale lepton collider, relying upon a very innovative concept of two-beamacceleration. In this scheme, the power is transported to the main accelerating structures by a primary electron beam. The Two Beam Module (TBM) is a compact integration with a high filling factor of all components: RF, Magnets, Instrumentation, Vacuum, Alignment and Stabilization. This paper describes the very challenging aspects of designing the compact system to serve as a dedicated Acquisition & Control Module (ACM) for all signals of the TBM. Very delicate conditions must be considered, in particular radiation doses that could reach several kGy in the tunnel. In such severe conditions shielding and hardened electronics will have to be taken into consideration. In addition, with more than 300 ADC&DAC channels per ACM and about 21000 ACMs in total, it appears clearly that power consumption will be an important issue. It is also obvious that...

  12. Minimizing Emittance for the CLIC Damping Ring

    CERN Document Server

    Braun, H; Levitchev, E; Piminov, P; Schulte, Daniel; Siniatkin, S; Vobly, P P; Zimmermann, Frank; Zolotarev, Konstantin V; CERN. Geneva

    2006-01-01

    The CLIC damping rings aim at unprecedented small normalized equilibrium emittances of 3.3 nm vertical and 550 nm horizontal, for a bunch charge of 2.6·109 particles and an energy of 2.4 GeV. In this parameter regime the dominant emittance growth mechanism is intra-beam scattering. Intense synchrotron radiation damping from wigglers is required to counteract its effect. Here the overall optimization of the wiggler parameters is described, taking into account state-of-the-art wiggler technologies, wiggler effects on dynamic aperture, and problems of wiggler radiation absorption. Two technical solutions, one based on superconducting magnet technology the other on permanent magnets are presented. Although dynamic aperture and tolerances of this ring design remain challenging, benefits are obtained from the strong damping. For optimized wigglers, only bunches for a single machine pulse may need to be stored, making injection/extraction particularly simple and limiting the synchrotron-radiation power. With a 36...

  13. Development of a Cavity Beam Position Monitor for CLIC

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Lunin, A; Wendt, M; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) project presents many challenges to its subsystems and the beam diagnostics in particular must perform beyond current limitations. The requirements for the CLIC main beam position monitors foresee a spacial resolution of 50 nm while delivering a 50 ns temporal resolution within the bunch train. We discuss the design of the microwave cavity pick-up and associated electronics, bench top tests with the first prototype cavity, as well as some of the machine-specific integration and operational issues.

  14. Vertex-Detector R&D for CLIC

    CERN Document Server

    Dannheim, Dominik

    2014-03-19

    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the current status of R&D on sensors, readout and detector integration is presented.

  15. Physics Potential of CLIC Operation at 380 GeV

    CERN Document Server

    Winter, Alasdair

    2017-01-01

    The Compact Linear Collider (CLIC) is a multi-TeV linear electron positron collider proposed as a future project for CERN aiming to provide high precision measurements of the standard model and discovery potential for new physics at the TeV scale. We present the physics potential of the CLIC experiment in its 380 GeV stage, which focuses on measurement of the Higgs boson and the top quark. In particular, the precision with which the mass, width and couplings of each particle can be measured will be examined.

  16. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  17. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  18. Update on beam loss monitoring at CTF3 for CLIC

    CERN Document Server

    Devlin, L J; Effinger, E; Holzer, E B; del Busto, E N; Mallows, S; Branger, E

    2013-01-01

    The primary role of the beam loss monitoring (BLM) system for the compact linear collider (CLIC) study is to work within the machine protection system. Due to the size of the CLIC facility, a BLM that covers large distances along the beam line is highly desirable, in particular for the CLIC drive beam decelerators, which would alternatively require some ~40,000 localised monitors. Therefore, an optical fibre BLM system is currently under investigation which can cover large sections of beam line at a time. A multimode fibre has been installed along the Test Beam Line at the CLIC test facility (CTF3) where the detection principle is based on the production of Cherenkov photons within the fibre resulting from beam loss and their subsequent transport along the fibre where they are then detected at the fibre ends using silicon photomultipliers. Several additional monitors including ACEMs, PEP-II and diamond detectors have also been installed. In this contribution the first results from the BLMs are presented, comp...

  19. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  20. Occupancy in the CLIC_ILD Time Projection Chamber

    CERN Document Server

    KILLENBERG, M.

    2011-01-01

    We report on the occupancy in the CLIC ILD TPC caused by the beam induced background from gg !hadrons, e+e- pairs and beam halo muons. In addition the particle composition of the backgrounds and the origin of back-scattering particles have been studied.

  1. CLIC 50 MW L-Band Multi-Beam Klystron

    CERN Document Server

    Jensen, E

    2006-01-01

    50 MW power sources at 937 MHz will be needed to accelerate the CLIC drive beams. We present a novel MBK concept with very many beamlets; this allows for small single beam perveance and high efficiency. The MBK features disc-shaped RF circuits operated in a whispering-gallery mode - a configuration permitting both high interaction impedance and easy spurious mode damping.

  2. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  3. Grid Interface Design for the Compact Linear Collider (CLIC)

    CERN Document Server

    Jankovic, Maria; Clare, Jon; Wheeler, Pat; Aguglia, Davide

    2015-01-01

    This paper discusses the grid interface challenges for CERN’s proposed Compact Linear Colliders’ (CLIC) klystron modulators, including a 280 MW power system optimisation. The modular multilevel converter is evaluated as a candidate topology for a Medium Voltage grid interface along with a control method for reducing the impact of klystron modulators on the electrical network.

  4. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  5. Stabilization and Fine Positioning to the Nanometre Level of the CLIC Main Beam Quadrupoles

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Lackner, F; Leuxe, R; Slaathaug, A

    2010-01-01

    The CLIC main beam quadrupoles need to be stabilized to 1.5 nm integrated R.M.S. displacement at 1 Hz. The choice was made to apply active stabilization with piezoelectric actuators in a rigid support with flexural guides. The advantages of this choice are the robustness against external forces and the possibility to make fast incremental nanometre positioning of the magnet with the same actuators. The study and feasibility demonstration is made in several steps from a single degree of freedom system (s.d.o.f.) with a small mass, a s.d.o.f. with a large mass, leading to the demonstration including the smallest (type 1) and largest (type 4) CLIC main beam quadrupoles. The paper discusses the choices of the position and orientation of the actuators and the tailored rigidities of the flexural hinges in the multi degree of freedom system, and the corresponding MIMO control system. The compatibility with the magnet support and micrometre alignment system is essential. The status of the study and performed tests wi...

  6. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  7. Common ground in ILC and CLIC detector concepts

    CERN Multimedia

    Daisy Yuhas

    2013-01-01

    The Compact Linear Collider and the International Linear Collider will accelerate particles and create collisions in different ways. Nonetheless, the detector concepts under development share many commonalities.   Timepix chips under scrutiny in the DESY test beam with the help of the beam telescope. CERN physicist Dominik Dannheim explains that the CLIC detector plans are adaptations of the ILC detector designs with a few select modifications. “When we started several years ago, we did not want to reinvent the wheel,” says Dannheim. “The approved ILC detector concepts served as an excellent starting point for our designs.” Essential differences Both CLIC and ILC scientists foresee general-purpose detectors that make measurements with exquisite precision. These colliders, however, have very different operating parameters, which will have important consequences for the various detector components. The ILC’s collision energy is set at 500 GeV ...

  8. Permanent magnet quadrupoles for the CLIC Drive Beam decelerator

    CERN Document Server

    Shepherd, Ben; Collomb, Norbert

    2012-01-01

    STFC in collaboration with CERN has developed a new type of adjustable permanent magnet based quadrupole for the CLIC Drive Beam Decelerator. It uses vertical movement of the permanent magnets to achieve an integrated gradient range of 3.6-14.6T, which will allow it to be used for the first 60% of the decelerator line. Construction of a prototype of this magnet has begun; following this, it will be measured magnetically at CERN and Daresbury Laboratory.

  9. Measurement of stau_1 pair production at CLIC

    CERN Document Server

    Muennich, A.

    2012-01-01

    We present a study performed for the CLIC Conceptual Design Report Volume 3 on the measurement of stau_1 pair production at sqrt(s) = 1.4 TeV. Only the hadronic decay of taus are considered. Results obtained using full detector simulation and including beam-induced backgrounds for the mass and for the production cross section of the stau_1 are discussed.

  10. A study of Failure Modes in the CLIC Decelerator

    CERN Document Server

    Adli, E; Syratchev, I

    2008-01-01

    The CLIC Drive Beam decelerator is responsible for producing the RF power for the main linacs, using Power Extraction and Transfer Structures (PETS). To provide uniform power production, the beam must be transported with very small losses. In this paper failure modes for the operation of the decelerator are investigated, and the impact on beam stability and loss levels is presented. Quadrupole failure, PETS inhibition and PETS RF break down scenarios are being considered.

  11. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    Vicente Barreto Pinto, Mateus

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  12. Integrated CMOS sensor technologies for the CLIC tracker

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2017-01-01

    Integrated technologies are attractive candidates for an all silicon tracker at the proposed future multi-TeV linear e+e- collider CLIC. In this context CMOS circuitry on a high resistivity epitaxial layer has been studied using the ALICE Investigator test-chip. Test-beam campaigns have been performed to study the Investigator performance and a Technology Computer Aided Design based simulation chain has been developed to further explore the sensor technology.

  13. Higgs physics at the CLIC electron-positron linear collider

    Science.gov (United States)

    Abramowicz, H.; Abusleme, A.; Afanaciev, K.; Alipour Tehrani, N.; Balázs, C.; Benhammou, Y.; Benoit, M.; Bilki, B.; Blaising, J.-J.; Boland, M. J.; Boronat, M.; Borysov, O.; Božović-Jelisavčić, I.; Buckland, M.; Bugiel, S.; Burrows, P. N.; Charles, T. K.; Daniluk, W.; Dannheim, D.; Dasgupta, R.; Demarteau, M.; Díaz Gutierrez, M. A.; Eigen, G.; Elsener, K.; Felzmann, U.; Firlej, M.; Firu, E.; Fiutowski, T.; Fuster, J.; Gabriel, M.; Gaede, F.; García, I.; Ghenescu, V.; Goldstein, J.; Green, S.; Grefe, C.; Hauschild, M.; Hawkes, C.; Hynds, D.; Idzik, M.; Kačarević, G.; Kalinowski, J.; Kananov, S.; Klempt, W.; Kopec, M.; Krawczyk, M.; Krupa, B.; Kucharczyk, M.; Kulis, S.; Laštovička, T.; Lesiak, T.; Levy, A.; Levy, I.; Linssen, L.; Lukić, S.; Maier, A. A.; Makarenko, V.; Marshall, J. S.; Martin, V. J.; Mei, K.; Milutinović-Dumbelović, G.; Moroń, J.; Moszczyński, A.; Moya, D.; Münker, R. M.; Münnich, A.; Neagu, A. T.; Nikiforou, N.; Nikolopoulos, K.; Nürnberg, A.; Pandurović, M.; Pawlik, B.; Perez Codina, E.; Peric, I.; Petric, M.; Pitters, F.; Poss, S. G.; Preda, T.; Protopopescu, D.; Rassool, R.; Redford, S.; Repond, J.; Robson, A.; Roloff, P.; Ros, E.; Rosenblat, O.; Ruiz-Jimeno, A.; Sailer, A.; Schlatter, D.; Schulte, D.; Shumeiko, N.; Sicking, E.; Simon, F.; Simoniello, R.; Sopicki, P.; Stapnes, S.; Ström, R.; Strube, J.; Świentek, K. P.; Szalay, M.; Tesař, M.; Thomson, M. A.; Trenado, J.; Uggerhøj, U. I.; van der Kolk, N.; van der Kraaij, E.; Vicente Barreto Pinto, M.; Vila, I.; Vogel Gonzalez, M.; Vos, M.; Vossebeld, J.; Watson, M.; Watson, N.; Weber, M. A.; Weerts, H.; Wells, J. D.; Weuste, L.; Winter, A.; Wojtoń, T.; Xia, L.; Xu, B.; Żarnecki, A. F.; Zawiejski, L.; Zgura, I.-S.

    2017-07-01

    The Compact Linear Collider (CLIC) is an option for a future {e+}{e-} collider operating at centre-of-mass energies up to 3 {TeV} , providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: √{s} = 350 {GeV} , 1.4 and 3 {TeV} . The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- → ZH) and {W} {W} -fusion (e+e- → H ν_{!e} {\\bar{{ν }}_{!e} ), resulting in precise measurements of the production cross sections, the Higgs total decay width Γ_{{H}}, and model-independent determinations of the Higgs couplings. Operation at √{s} > 1 {TeV} provides high-statistics samples of Higgs bosons produced through {W} {W} -fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes {e+}{e-} → t {\\bar{t}} {H} and {e+}{e-} → {H} {H} {{ν}}_{!e} {\\bar{{ν }}}_{!e} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  14. Golden Jubilee Photos: A CLIC for the future

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ Prototype copper accelerating structures for CLIC. New accelerator projects take many years to make and mature. When the LHC project was still only a twinkle in CERN's eye, research was already starting on a new machine. A small team at CERN was setting about the task of studying a high-energy, compact, lepton linear collider, known as CLIC. This is possibly set to become the collider of the future. A machine of this kind has all the advantages of a collider (the total collision energy is equal to the sum of the energies of the two colliding beams) without the drawback of synchrotron radiation, which is produced when particles are accelerated around a ring and thus puts a limit on the energy of such colliders. But in a project as technically challenging as CLIC, considerable technological hurdles must be overcome. To limit the linear collider's length to some tens of kilometres, the beams must acquire a considerable quantity of energy per metre travelled. The collision rate (lumi...

  15. First phase of CLIC R&D complete

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Let’s turn back the clocks to 2002: the LHC is still under construction, the wrap-up of the LEP physics programme is still in recent memory and the future of electron-positron accelerators at CERN is ambiguous. It was then that CLIC set out to prove the feasibility of their novel accelerator design in the CTF3 test facility. Though once a tall order for the collaboration, the recently released CLIC Conceptual Design Report has proven many of the major design elements… bringing to an end the first phase of CLIC R&D and pointing toward detailed performance optimisation studies in the next phase.   Streak camera images of the final beam, illustrating the combination of beams in the Combiner Ring. Over a decade ago, the CTF3 team set up shop in the vacated LIL injector site, once home to the weathered machine that delivered electrons and positrons to LEP. Rebuilding and upgrading the machine piece by piece, the CTF3 team converted this mA linac into a high-current drive b...

  16. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  17. Higgs physics at the CLIC electron-positron linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Benhammou, Y.; Borysov, O.; Kananov, S.; Levy, A.; Levy, I.; Rosenblat, O. [Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel); Abusleme, A.; Diaz Gutierrez, M.A.; Vogel Gonzalez, M. [Pontificia Universidad Catolica de Chile, Santiago (Chile); Afanaciev, K.; Makarenko, V.; Shumeiko, N. [Belarusian State University, National Scientific and Educational Centre of Particle and High Energy Physics, Minsk (Belarus); Alipour Tehrani, N.; Dannheim, D.; Elsener, K.; Grefe, C.; Hauschild, M.; Hynds, D.; Klempt, W.; Kulis, S.; Linssen, L.; Maier, A.A.; Muenker, R.M.; Muennich, A.; Nikiforou, N.; Nuernberg, A.; Perez Codina, E.; Petric, M.; Pitters, F.; Poss, S.G.; Redford, S.; Roloff, P.; Sailer, A.; Schlatter, D.; Schulte, D.; Sicking, E.; Simoniello, R.; Stapnes, S.; Stroem, R.; Strube, J.; Weber, M.A. [CERN, Geneva (Switzerland); Balazs, C.; Charles, T.K. [Monash University, Melbourne (Australia); Benoit, M.; Vicente Barreto Pinto, M. [Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire (DPNC), Geneva (Switzerland); Bilki, B.; Demarteau, M.; Repond, J.; Weerts, H.; Xia, L. [Argonne National Laboratory, Argonne, IL (United States); Blaising, J.J. [Laboratoire d' Annecy-le-Vieux de Physique des Particules, Annecy-le-Vieux (France); Boland, M.J.; Felzmann, U.; Rassool, R. [University of Melbourne, Melbourne (Australia); Boronat, M.; Fuster, J.; Garcia, I.; Ros, E.; Vos, M. [CSIC-University of Valencia, IFIC, Valencia (Spain); Bozovic-Jelisavcic, I.; Kacarevic, G.; Lukic, S.; Milutinovic-Dumbelovic, G.; Pandurovic, M. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Buckland, M.; Vossebeld, J. [University of Liverpool, Liverpool (United Kingdom); Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kopec, M.; Moron, J.; Swientek, K.P. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Crakow (Poland); Burrows, P.N. [Oxford University, Oxford (United Kingdom); Daniluk, W.; Krupa, B.; Kucharczyk, M.; Lesiak, T.; Moszczynski, A.; Pawlik, B.; Sopicki, P.; Wojton, T.; Zawiejski, L. [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Crakow (Poland); Eigen, G.; Kraaij, E. van der [University of Bergen, Department of Physics and Technology, Bergen (Norway); Firu, E.; Ghenescu, V.; Neagu, A.T.; Preda, T.; Zgura, I.S. [Institute of Space Science, Bucharest (Romania); Gabriel, M.; Simon, F.; Szalay, M.; Tesar, M.; Kolk, N. van der; Weuste, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Gaede, F. [CERN, Geneva (Switzerland); DESY, Hamburg (Germany); Goldstein, J. [University of Bristol, Bristol (United Kingdom); Green, S.; Marshall, J.S.; Mei, K.; Thomson, M.A.; Xu, B. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Hawkes, C.; Nikolopoulos, K.; Watson, M.; Watson, N.; Winter, A. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Kalinowski, J.; Krawczyk, M.; Zarnecki, A.F. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Lastovicka, T. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Martin, V.J. [University of Edinburgh, Edinburgh (United Kingdom); Moya, D.; Ruiz-Jimeno, A.; Vila, I. [CSIC-University of Cantabria, IFCA, Santander (Spain); Peric, I. [Institut fuer Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Protopopescu, D.; Robson, A. [University of Glasgow, Glasgow (United Kingdom); Trenado, J. [University of Barcelona, Barcelona (ES); Uggerhoej, U.I. [Aarhus University, Aarhus (DK); Wells, J.D. [University of Michigan, Physics Department, Ann Arbor, MI (US)

    2017-07-15

    The Compact Linear Collider (CLIC) is an option for a future e{sup +}e{sup -} collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: √(s) = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e{sup +}e{sup -} → ZH) and WW-fusion (e{sup +}e{sup -} → Hν{sub e} anti ν{sub e}), resulting in precise measurements of the production cross sections, the Higgs total decay width Γ{sub H}, and model-independent determinations of the Higgs couplings. Operation at √(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e{sup +}e{sup -} → t anti tH and e{sup +}e{sup -} → HHν{sub e} anti ν{sub e} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit. (orig.)

  18. Occupancy in the CLIC ILD Time Projection Chamber using Pixelised Readout

    CERN Document Server

    Killenberg, Martin

    2013-01-01

    The occupancy in the CLIC ILD TPC caused by the beam induced background from gamma gamma -> hadrons, e+e- pairs and beam halo muons is very high for conventional pad readout. We show that the occupancy for a pixelised TPC readout is moderate and might be a viable solution to operate a TPC at CLIC.

  19. Stabilization and positioning of CLIC quadrupole magnets with sub-nanometre resolution

    CERN Document Server

    Janssens, S; Collette, C; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    To reach the required luminosity at the CLIC interaction point, about 2000 quadrupoles along each linear collider are needed to obtain a vertical beam size of 1 nm at the interaction point. Active mechanical stabilization is required to limit the vibrations of the magnetic axis to the nanometre level in a frequency range from 1 to 100 Hz. The approach of a stiff actuator support was chosen to isolate from ground motion and technical vibrations acting directly on the quadrupoles. The actuators can also reposition the quadrupoles between beam pulses with nanometre resolution. A first conceptual design of the active stabilization and nano positioning based on the stiff support and seismometers was validated in models and experimentally demonstrated on test benches. Lessons learnt from the test benches and information from integrated luminosity simulations using measured stabilization transfer functions lead to improvements of the actuating support, the sensors used and the system controller. The controller elect...

  20. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2016-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  1. System control for the CLIC main beam quadrupole stabilization and nano-positioning

    CERN Document Server

    Janssens, S; Collette, E; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Kuzmin, A; Leuxe, R; Pfingstner, J; Schulte, D; Snuverink, J

    2011-01-01

    The conceptual design of the active stabilization and nano-positioning of the CLIC main beam quadrupoles was validated in models and experimentally demonstrated on test benches. Although the mechanical vibrations were reduced to within the specification of 1.5 nm at 1 Hz, additional input for the stabilization system control was received fromintegrated luminosity simulations that included the measured stabilization transfer functions. Studies are ongoing to obtain a transfer function which is more compatible with beam based orbit feedback; it concerns the controller layout, new sensors and their combination. In addition, the gain margin must be increased in order to reach the requirements froma higher vibration background. For this purpose, the mechanical support is adapted to raise the frequency of some resonances in the system and the implementation of force sensors is considered. Furthermore, this will increase the speed of repositioning the magnets between beam pulses. This paper describes the improvement...

  2. CLIC: Physics potential of a high-energy e+e- collider

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  3. On structure design for the CLIC Booster Linac

    CERN Document Server

    Darvish, Esmat

    2015-01-01

    Using the SUPERFISH code we present a design for a traveling wave (TW) structure of the Booster Linac for CLIC. The structure, consisting of thirty asymmetric cells attached to the beam pipes at two ends, works in 2π/3 operating mode at working frequency 2 GHz. For the corresponding operating mode and frequency, the RF field configuration transmitted through the cavity is obtained. The results are prepared in an RF field data file to be used in the PARMELA code for further beam dynamic study.

  4. Beam Phase and Energy Tolerances in the CLIC RTML

    CERN Document Server

    Stulle, Frank

    2011-01-01

    Tight beam phase and energy constraints are imposed on the CLIC ring to main linac transport (RTML) to achieve the demanded performance of the following main linac and at the interaction point. A major issue will be energy jitter which is converted by the bunch compressor chicanes into beam phase jitter. Constraints on the two bunch compression stages, the booster linac and the incoming beam are evaluated. As an alternative to the current second stage of bunch compression a beam line is studied which inherently prevents incoming energy jitter from becoming beam phase jitter while preserving the required bunch compression.

  5. Design of a highly segmented Endcap at a CLIC detector

    CERN Document Server

    Gerwig, H; Siegrist, N

    2010-01-01

    This technical note describes a possible design for a highly segmented end-cap at a CLIC detector with a strong magnetic field up to 5 Tesla. Reinforcement is horizontal in order to allow an insertion of the muon chambers from the side. Construction issues, assembly questions as well as muon chamber access and support questions have been studied. A FEA analysis to optimize dead space for physics and checking the weakening effect of alignment channels through the end-cap have been performed.

  6. Parameters of the CLIC Transfer Structure for the Multi-Drive Beam Generation Scheme

    CERN Document Server

    Millich, Antonio

    1997-01-01

    Three versions of the CLIC Transfer Structure (CTS) have been studied by means of simulations using the MAFIA set of codes. Of these the high impedance version has been built as a prototype and tested in the CTF (CLIC Test Facility). The other two versions were designed with the aim of suiting the requirements of the two Drive Beam Generation schemes presently being pursued for the CLIC scheme. Here we report the simulation results for th CTS to be used in the multi-drive beam generation scheme.

  7. An Injector for the CLIC Test Facility (CTF3)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Roger H.

    2001-01-23

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  8. Preliminary design of the CLIC drive-beam transfer line

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the drive-beam generation complex of CLIC there is an important beam transfer line between the drive-beam accelerator and the drive- beam decelerators, where the 30 GHz RF power is generated in the decelerator structures In the drive-beam generation complex of CLIC there is an important beam transfer line between the drive-beam accelerator and the drive-beam decelerators, where the 30 GHz RF power is generated in the decelerator structures. The design proposed for this transport system is based on building blocks or beam optics subsystems, which have been individually studied in detail and can be combined in order to cover specific functions. One function consists of bending the beams wherever required by the geometrical layout, so as to preserve the bunch length and keep the bending arc compact and compatible with acceptable synchrotron radiation. Other functions are to adjust the path length of each drive beam for synchronism with the main-linac beam and to compress or stretch the bunch according to the ...

  9. Off-Axis Undulator Radiation for CLIC Drive Beam Diagnostics

    CERN Document Server

    Jeff, A; Welsch, CP

    2013-01-01

    The Compact LInear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. In this paper we propose the use of relatively inexpensive permanent-magnet undulators to generate off-axis visible Synchrotron Radiation from the CLIC Drive Beam. The field strength and period length of the undulator should be designed such that the on-axis undulator wavelength is in the ultra-violet. A smaller but still useable amount of visible light is then generated in a hollow cone. This light can be reflected out of the beam pipe by a ring-shaped mirror placed downstream and imaged on a camera. In this contribution, results of SRW and ZEMA...

  10. R&D for the Vertexing at CLIC

    CERN Document Server

    Redford, S

    2015-01-01

    The Compact Linear Collider is a candidate to be the next high-energy particle physics collider. Using a novel acceleration technique, electrons and positrons would be brought into collision with a centre-of-mass energy of up to 3 TeV. Despite challenging levels of beam-induced background, this would provide a relatively clean environment in which to perform precision physics measurements. The vertex detector would be crucial in achieving this, and would need to provide accurate particle tracking information to facilitate secondary vertex reconstruction and jet flavour-tagging. With this goal in mind, current technological limits are being stretched to design a low occupancy, low mass and low-power dissipation vertex detector for CLIC. A concept comprising thin hybrid pixel detectors coupled to high- performance readout ASICs, power-pulsing and air-flow cooling is under development. In this paper, the CLIC vertex detector requirements are reviewed and the current status of R&D on sensors, readout, powerin...

  11. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  12. Feasibility study of multipoint based laser alignment system for CLIC

    CERN Document Server

    Stern, G; Mainaud-Durand, H; Piedigrossi, D; Geiger, A

    2012-01-01

    CLIC (Compact LInear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities oftoday’s particle accelerators. Alignment is one of the major challenges within the CLIC study in order to achieve the high requirement of a multi-TeV center of mass colliding beam energy range (nominal 3 TeV). To reach this energy in a realistic and cost efficient scenario all accelerator components have to be aligned with an accuracy of 10 μm over a sliding window of 200 m. The demand for a straight line reference is so far based on stretched wires coupled with Wire Positioning Sensors (WPS). These solutions are currently further developed inorder to reduce the drawbacks which are mainly given by their costs and difficult implementation. However, it should be validated through inter-comparison with a solution ideally based on a different physical principle. Therefore, a new metrological approach is proposed using a laser beam as straight lin...

  13. SM-like Higgs decay into two muons at 1.4 TeV CLIC

    CERN Document Server

    Milutinovic-Dumbelovic, Gordana

    2016-01-01

    The branching fraction measurement of the SM-like Higgs boson decay into two muons at 1.4 TeV CLIC will be described in this paper contributed to the LCWS13. The study is performed in the fully simulated ILD detector concept for CLIC, taking into consideration all the relevant physics and the beam-induced backgrounds, as well as the instrumentation of the very forward region to tag the high-energy electrons. Higgs couplings are known to be sensitive to BSM physics and we prove that BR times the Higgs production cross section can be measured with approximately 35.5% statistical accuracy in four years of the CLIC operation at 1.4 TeV centre-of-mass energy with unpolarised beams. The result is preliminary as the equivalent photon approximation is not considered in the cross-section calculations. This study complements the Higgs physics program foreseen at CLIC.

  14. Simulated top-quark pair production in the CLIC_ILD detector

    CERN Multimedia

    CLIC, Compact Linear Collider Project

    2017-01-01

    Simulated production of a top-quark pair with a nominal collision energy of 3 TeV, in the CLIC_ILD detector. The event display show the reconstructed particles used as input for a jet clustering algorithm.

  15. Review of the Drive Beam Stabilization in the CLIC Test Facility CTF3

    CERN Document Server

    Dubrovskiy, A; Skowronski, P; Tecker, F; Persson, T

    2013-01-01

    CTF3 is a Test Facility focusing on beam-based studies of the key concepts of the Compact Linear Collider CLIC. Over the past several years many aspects of the CLIC two-beam acceleration scheme were studied in CTF3, including the crucial issue of drive beam stability. The main sources of drifts and instabilities have been identified and mitigated, helping to improve the machine performance and showing significant progress towards the experimental demonstration of the very stringent requirements on current, energy and phase stability needed in CLIC. In this paper, the more effective techniques and feed-backs are summarized. The latest measurements on beam stability are reported and their relevance to CLIC is discussed.

  16. Analysis of long-range wakefields in CLIC main Linac Accelerating Structures with Damping Loads

    CERN Document Server

    De Michele, G

    2012-01-01

    The baseline design of the CLIC accelerating structure foresees a moderate detuning and heavy damping of high order modes (HOMs), which are the source of long-range transverse wakefields. Such unwanted fields produce bunch-to-bunch instabilities so the HOMs must be suppressed. In order to damp these modes, the CLIC RF structure is equipped with lossy material inserted into four rectangular waveguides coupled to each accelerating cell. The lossy material absorbs EM (electromagnetic) wave energy with little reflection back to the accelerating cells. In the past, computations of the long-range wake of CLIC accelerating modes have been done using perfectly absorbing boundaries to terminate the damping waveguides. In this paper, 3D EM simulations of CLIC baseline accelerating structure with HOMs damping loads will be presented. A comparison between different EM codes (GdfidL, CST PARTICLE STUDIO®) will be discussed as well as the analysis of different types of absorbing materials with respect to the wakefields da...

  17. Study of the supporting system for the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nick; Mainaud-Durand, Hélène; Gudkov, Dmitry; Samoshkin, Alexandre; Simopoulos, Simos; Hinis, Evangelos; Alexopoulos, Theodoros

    2010-01-01

    The Compact Linear Collider (CLIC) study aims at the development of a Multi-TeV e+ e-collider. The micro-precision CLIC structures will have an accelerating gradient of 100 MV/m and will be aligned on so-called girders. The girder construction constrains are mainly dictated by the beam physics and RF requirements. The study of such girders is a challenging case involving material choice, mechanical design as well as prototype fabrication and experimental testing.

  18. Choke-Mode Damped Structure Design for the CLIC Main Linac

    OpenAIRE

    Zha, Hao; Chen, Huaibi; Tang, Chuanxiang; Huang, Wenhui; Shi, Jiaru; Grudiev, Alexej; Wuensch, Walter

    2012-01-01

    Choke-mode damped structures are being studied as an alternative design for the accelerating structures of main linacs of the compact linear collider (CLIC). Choke-mode structures have the potential for much lower pulsed temperature rise, and lower cost of manufacture and fabrication. A new kind of choke-mode structure was proposed and simulated by Gdfidl. This structures has comparable wakefield damping effect as the baseline design of CLIC main linacs.

  19. PACMAN – an Innovative Doctoral Programme for CLIC

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The final network project funded under the European Commission’s Seventh Framework Programme (FP7), Marie Curie Actions, held its kick-off meeting at CERN on 20 November 2013.   PACMAN – a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale – is in the final stage of recruiting 10 PhD students to do research on beam instrumentation, metrology, micrometric alignment, magnetic measurements, nano-positioning and high-precision engineering. The students will acquire multi-disciplinary expertise in advanced engineering combined with a broad span of transferable skills. “PACMAN gives us the opportunity to attract students to CERN at a key moment in the CLIC study,” said Frédérick Bordry, Head of CERN’s Technology Department. “This is also an ideal opportunity to further develop CERN’s networks with industry and universities.” “The project is...

  20. Alternative design of the CLIC Damping Ring Lattice

    CERN Document Server

    Braun, Hans; Papaphilippou, Yannis; Siniatkin, Sergei; Zolotarev, Konstantin

    2010-01-01

    An original design of the CLIC damping ring demonstrates the parameters required for the linear collider together with the highly compact lattice (the circumference of the ring is only about 365 m). However, this design can hardly be implemented in a real machine because of such drawbacks as the lack of space between the magnetic elements to accommodate other accelerator components, serious problems with the evacuation of the high radiation power from damping wigglers and strong gradient of quadrupoles and sextupoles, which can hardly be achieved in the frame of the existing magnet technology. From this point of view this design can be considered as an ideal solution and an aim to be approached. In this paper we explore a possibility to design alternative solutions although with a larger size but with the same performance and with the realistic technical parameters.

  1. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  2. The CLIC Positron Capture and Acceleration in the Injector Linac.

    CERN Document Server

    Vivoli, Alessandro; Chehab, Robert; Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Rinolfi, Louis; Strakhovenko, Vladimir; Variola, Alessandro

    2010-01-01

    The baseline of the CLIC study considers non-polarized e+ for the 3 TeV centre of mass energy. The e+ source is based on the hybrid targets scheme, where a crystal-radiator target is followed by an amorphous-converter target. Simulations have been performed from the exit of the amorphous target up to the entrance of the Pre-Damping Ring. Downstream the amorphous target, there is an Adiabatic Matching Device (AMD) followed by a Pre-Injector Linac accelerating the e+ beam up to around 200 MeV. Then a common Injector Linac (for both e+ and e-) accelerates the beams up to 2.86 GeV before being injected into the Pre-Damping Ring. In this note, the characteristics of the AMD and the other sections are described and the beam parameters at the entrance of the Pre-Damping Ring are given.

  3. Analysis of SUSY Heavy Higgs events at CLIC

    CERN Document Server

    Quevillon, J

    2009-01-01

    This paper reports the results of a study of the supersymmetric neutral heavy Higgs boson production channel e+e− → H◦A◦ → bb ̄bb ̄ at √s = 3 TeV. Reconstruction of data simulated at generator level shows a significant degradation of SUSY Heavy Higgs signal caused by γγ to hadrons background at s = 3 TeV. The importance of analysis procedures such as event cuts and transversal momentum cuts during jet-clustering to reduce the impact of the hadron background is underlined. Reconstruction at both the generator level and at the level of a full detector simulation forces us to introduce cuts to improve the quality of the results. This note describes a preliminary study of SUSY Heavy Higgs at CLIC - a more detailed paper on an extended study is in preparation.

  4. Physics requirements for Scalar Muons searches at CLIC

    CERN Document Server

    Battaglia, M

    2010-01-01

    The determination of smuon and neutralino masses in smuon pair production is an important part of the program of spectroscopic studies of Supersymmetry at a high energy linear collider. In this note we report the first results of a study of e+e− → μ ̃R+μ ̃R− in a high-mass, cosmology-motivated Supersymmetric scenario at 3 TeV at CLIC. This process is a good example to study requirements on the beam energy spectrum and polarisation and the track momentum resolution in a simple final state. We discuss the expected accuracy on the mass measurements as a function of the momentum resolution, luminosity spectrum, beam polarisation and time stamping capability. Results obtained at generator level are validated by comparison to full simulation and reconstruction. Preliminary requirements for the detector performances and beam polarisation are presented.

  5. Compensation of transient beam-loading in Clic main Linac

    CERN Document Server

    Kononenko, O; Grudiev, A

    2010-01-01

    Compensating transient beam loading to maintain a 0.03% rms relative beam energy spread is a key issue for the CLIC two-beam acceleration technique. The combination of short pulses, narrow bandwidth rf components and the limited number of rf pulse shaping “knobs” given by the drive beam generation scheme makes meeting this specification challenging. A dedicated model, which takes into account all stages of drive beam generation, including the delay loop and combiner rings, the single-bunch response of the power generation structure (PETS), the RF waveguide network transfer function and dispersive properties of the accelerating structure has been developed. The drive beam phase switching delays, resulting rf pulse shape, and finally the energy spread are presented.

  6. Design of the CLIC Drive Beam Recombination Complex

    CERN Document Server

    Barranco Garcia, J; Tecker, F; Biscari, C

    2011-01-01

    The CLIC Drive Beam Recombination Complex (DBRC) is designed to compress beam pulses from a current of 4 A to 100 A before using them to produce RF power in the deceleration lines. The beam is transported isochronously through a complex system consisting of a delay loop, two combiner rings and final turn around. The system is designed to preserve transverse and longitudinal emittances. During the optics design, chromaticity and non-linear dispersion were identified as the main single particle dynamics causes for transverse emittance growth. Different sextupole families are used to compensate these chromatic effects while keeping isochronicity. The bunch length is also adjusted to minimize coherent synchrotron radiation effects on bunch length, energy spread and transverse emittance. Finally, the injection scheme of the combiner rings was improved by making the time-variable bump created with help of the RF deflectors truly achromatic.

  7. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  8. High Field Studies for CLIC Accelerating Structures Development

    CERN Document Server

    Profatilova, I

    2017-01-01

    Compact Linear Collider RF structures need to be able to achieve the very high average accelerating gradient of 100 MV/m. One of the main challenges in reaching such high accelerating gradients is to avoid vacuum electrical breakdown within CLIC accelerating structures. Accelerating structure tests are carried out in the klystron-based test stands known as the XBoxes. In order to investigate vacuum breakdown phenomena and its statistical characteristics in a simpler system and get results in a faster way, pulsed dc systems have been developed at CERN. To acquire sufficient breakdown data in a reasonable period of time, high repetition rate pulse generators are used in the systems for breakdown studies, so-called pulsed dc system. This paper describes the pulsed dc systems and the two high repetition rate circuits, which produce high-voltage pulses for it, available at CERN.

  9. A Vertex and Tracking Detector System for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear $e^+e^−$ collider pose challenging demands on the performance of the detector system. In particular the vertex and tracking detectors have to combine precision measurements with robustness against the expected high rates of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A detector concept meeting these requirements has been developed and an integrated R&D program addressing the challenges is progressing in the areas of ultra-thin sensors and readout ASICs, interconnect technology, mechanical integration and cooling.

  10. Structural Dynamics of Soluble Chloride Intracellular Channel Protein CLIC1 Examined by Amide Hydrogen-Deuterium Exchange Mass Spectrometry (DXMS)†

    Science.gov (United States)

    Stoychev, Stoyan H.; Nathaniel, Christos; Fanucchi, Sylvia; Brock, Melissa; Li, Sheng; Asmus, Kyle; Woods, Virgil L.; Dirr, Heini W.

    2009-01-01

    Chloride intracellular channel protein 1 (CLIC1) functions as an anion channel in plasma and nuclear membranes when its soluble monomeric form converts to an integral-membrane form. The transmembrane region of CLIC1 is located in its thioredoxin-like domain 1 but the mechanism whereby the protein converts to its membrane conformation has yet to be determined. Since channel formation in membranes is enhanced at low pH (5 to 5.5), a condition that is found at the surface of membranes, the structural dynamics of soluble CLIC1 was studied at pH 7 and at pH 5.5 in the absence of membranes by amide hydrogen-deuterium exchange mass spectrometry (DXMS). Rapid hydrogen exchange data indicate that CLIC1 displays a similar core structure at these pH values. Domain 1 is less stable than the all-helical domain 2 and, while the structure of domain 1 remains intact, its conformational flexibility is further increased in an acidic environment (pH 5.5). In the absence of membrane, an acidic environment appears to prime the solution structure of CLIC1 by destabilising domain 1 in order to lower the activation energy barrier for its conversion to the membrane-insertion conformation. The significantly enhanced H/D-exchange rates at pH 5.5 displayed by two segments (peptides 11-31 and 68-82) could be due to the protonation of acidic residues in salt bridges. One of these segments (peptide 11-31) includes part of the transmembrane region which, in the solution structure, consists of helix α1. This helix is intrinsically stable and is most likely retained in the membrane conformation. Strand β2, another element of the transmembrane region, displays a propensity to form a helical structure and has putative N- and C-capping motifs, suggesting that it too most likely forms a helix in a lipid bilayer. PMID:19650640

  11. X-ray and Neutron Reflectivity Study Shows That CLIC1 Undergoes Cholesterol-Dependent Structural Reorganization in Lipid Monolayers.

    Science.gov (United States)

    Hossain, Khondker R; Holt, Stephen A; Le Brun, Anton P; Al Khamici, Heba; Valenzuela, Stella M

    2017-10-31

    CLIC1 belongs to the ubiquitous family of chloride intracellular ion channel proteins that are evolutionarily conserved across species. The CLICs are unusual in that they exist mainly as soluble proteins but possess the intriguing property of spontaneous conversion from the soluble to an integral membrane-bound form. This conversion is regulated by the membrane lipid composition, especially by cholesterol, together with external factors such as oxidation and pH. However, the precise physiological mechanism regulating CLIC1 membrane insertion is currently unknown. In this study, X-ray and neutron reflectivity experiments were performed to study the interaction of CLIC1 with different phospholipid monolayers prepared using POPC, POPE, or POPS with and without cholesterol in order to better understand the regulatory role of cholesterol in CLIC1 membrane insertion. Our findings demonstrate for the first time two different structural orientations of CLIC1 within phospholipid monolayers, dependent upon the absence or presence of cholesterol. In phospholipid monolayers devoid of cholesterol, CLIC1 was unable to insert into the lipid acyl chain region. However, in the presence of cholesterol, CLIC1 showed significant insertion within the phospholipid acyl chains occupying an area per protein molecule of 6-7 nm2 with a total CLIC1 thickness ranging from ∼50 to 56 Å across the entire monolayer. Our data strongly suggests that cholesterol not only facilitates the initial docking or binding of CLIC1 to the membrane but also promotes deeper penetration of CLIC1 into the hydrophobic tails of the lipid monolayer.

  12. CLIC: clustering analysis of large microarray datasets with individual dimension-based clustering.

    Science.gov (United States)

    Yun, Taegyun; Hwang, Taeho; Cha, Kihoon; Yi, Gwan-Su

    2010-07-01

    Large microarray data sets have recently become common. However, most available clustering methods do not easily handle large microarray data sets due to their very large computational complexity and memory requirements. Furthermore, typical clustering methods construct oversimplified clusters that ignore subtle but meaningful changes in the expression patterns present in large microarray data sets. It is necessary to develop an efficient clustering method that identifies both absolute expression differences and expression profile patterns in different expression levels for large microarray data sets. This study presents CLIC, which meets the requirements of clustering analysis particularly but not limited to large microarray data sets. CLIC is based on a novel concept in which genes are clustered in individual dimensions first and in which the ordinal labels of clusters in each dimension are then used for further full dimension-wide clustering. CLIC enables iterative sub-clustering into more homogeneous groups and the identification of common expression patterns among the genes separated in different groups due to the large difference in the expression levels. In addition, the computation of clustering is parallelized, the number of clusters is automatically detected, and the functional enrichment for each cluster and pattern is provided. CLIC is freely available at http://gexp2.kaist.ac.kr/clic.

  13. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)756402

    2017-01-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128 × 128 square pixels with 25 μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (∼ 20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ∼ 20 ns for a power consumption of 5 μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (∼ 20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using...

  14. Characterisation of capacitively coupled HV/HR-CMOS sensor chips for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.

    2017-12-01

    The capacitive coupling between an active sensor and a readout ASIC has been considered in the framework of the CLIC vertex detector study. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is a High-Voltage CMOS sensor chip produced in a commercial 180 nm HV-CMOS process for this purpose. The sensor was designed to be connected to the CLICpix2 readout chip. It therefore matches the dimensions of the readout chip, featuring a matrix of 128×128 square pixels with 25μm pitch. The sensor chip has been produced with the standard value for the substrate resistivity (~20 Ωcm) and it has been characterised in standalone testing mode, before receiving and testing capacitively coupled assemblies. The standalone measurement results show a rise time of ~20 ns for a power consumption of 5μW/pixel. Production of the C3PD HV-CMOS sensor chip with higher substrate resistivity wafers (~20, 80, 200 and 1000 Ωcm) is foreseen. The expected benefits of the higher substrate resistivity will be studied using future assemblies with the readout chip.

  15. SM-like Higgs decay into two muons at 1.4 TeV CLIC

    CERN Document Server

    Milutinovic-Dumbelovic, G

    2014-01-01

    The potential for measuring the Standard Model (SM) Higgs boson decay into two muons at a 1.4 TeV CLIC e+e− collider is addressed in this paper, that was presented at ICHEP2014. The study is performed in the full Geant4 detector simulations of CLIC_ILD, taking into consideration all the relevant physics and the beam-induced background processes, as well as the instrumentation of the very forward region to tag forward electrons. In this analysis we show that the branching ratio BR(H-->mu+mu-) times the Higgs production cross-section can be measured with 38% statistical accuracy at √s =1.4 TeV using an integrated luminosity of 1.5 ab-1. This study is part of an ongoing comprehensive Higgs physics benchmark study covering various Higgs production processes and decay modes, currently being carried out to estimate the full Higgs physics potential of CLIC.

  16. Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring

    CERN Document Server

    Levichev, Eugene; Shatilov, Dmitry

    2010-01-01

    The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850

  17. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  18. RF Design of the TW Buncher for the CLIC Drive Beam Injector

    CERN Document Server

    Shaker, H

    2015-01-01

    The CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the first report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This report includes the design of the power couplers. The fundamental mode beam loading and higher order modes effect were preliminary studied.

  19. SVD-based filter design for the trajectory feedback of CLIC

    CERN Document Server

    Pfingstner, J; Schulte, D; Snuverink, J

    2011-01-01

    The trajectory feedback of the Compact Linear Collider (CLIC) is an essential mitigation method for ground motion effects at CLIC. In this paper signicant improvements of the design of this feedback are presented. The new controller is based on a singular value decomposition (SVD) of the orbit response matrix to decouple the in- and outputs of the accelerator. For each decoupled channel one independent controller is designed by utilising ground motion and noise models. This new design allows a relaxation of the required resolution of the beam position monitor from 10 to 50 nm. At the same time the suppression of ground motion effects is improved. As a consequence, the tight tolerances for the allowable luminosity loss due to ground motion effects in CLIC can be met. The presented methods can be easily adapted to other accelerators in order to loosen sensor tolerances and to efciently suppress ground motion effects.

  20. Results from the CLIC X-Band Structure Test Program at NLCTA

    Energy Technology Data Exchange (ETDEWEB)

    Adolphsen, Chris; Bowden, Gordon; Dolgashev, Valery; Laurent, Lisa; Tantawi, Sami; Wang, Faya; Wang, Juwen W.; /SLAC; Doebert, Steffen; Grudiev, Alexej; Riddone, Germana; Wuensch, Walter; Zennaro, Riccardo; /CERN; Higashi, Yasuo; Higo, Toshiyasu; /KEK, Tsukuba

    2009-07-06

    As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their fabrication (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure, which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives that could increase efficiency. This paper summarizes the high gradient test results from NLCTA in support of this effort.

  1. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  2. Design and standalone characterisation of a capacitively coupled HV-CMOS sensor chip for the CLIC vertex detector

    Science.gov (United States)

    Kremastiotis, I.; Ballabriga, R.; Campbell, M.; Dannheim, D.; Fiergolski, A.; Hynds, D.; Kulis, S.; Peric, I.

    2017-09-01

    The concept of capacitive coupling between sensors and readout chips is under study for the vertex detector at the proposed high-energy CLIC electron positron collider. The CLICpix Capacitively Coupled Pixel Detector (C3PD) is an active High-Voltage CMOS sensor, designed to be capacitively coupled to the CLICpix2 readout chip. The chip is implemented in a commercial 180 nm HV-CMOS process and contains a matrix of 128×128 square pixels with 25μm pitch. First prototypes have been produced with a standard resistivity of ~20 Ωcm for the substrate and tested in standalone mode. The results show a rise time of ~20 ns, charge gain of 190 mV/ke- and ~40 e- RMS noise for a power consumption of 4.8μW/pixel. The main design aspects, as well as standalone measurement results, are presented.

  3. Mustafa environment description and users' guide with applications to CLIC

    CERN Document Server

    Guignard, Gilbert

    1998-01-01

    In the main linacs of future linear colliders, the control of the emittances and the stability of a train of bunches are critical. It was therefore important for the Compact Linear Collider study (CLIC) to have a tool allowing numerical investigations of these questions. An interactive environment called MUSTAFA (MUltibunch Simulation and Tracking Algorithm for Future Accelerators) has been created and different tools have been developed over the time according to the needs. Progressively, these code and interactive facilities evolved into two main features, their portability on PCs independent from the main frame computers and their analysis capability using animated graphics. All the codes have been written under the MS-DOS operating system. The main application MBTR has been written in FORTRAN, the animated graphics facility MOVIE and the so-called MBUNCH utility program in QUICKBASIC (MS V4.5). The MBUNCH code was created in order to manage in a user friendly set-up the other two mentioned as well as the ...

  4. Top quark mass measurements at and above threshold at CLIC

    CERN Document Server

    Seidel, Katja; Tesar, Michal; Poss, Stephane

    2013-01-01

    We present a study of the expected precision of the top quark mass determination, measured at a linear $e^+e^-$ collider based on CLIC technology. GEANT4-based detector simulation and full event reconstruction including realistic physics and beam-induced background levels are used. Two different techniques to measure the top mass are studied: The direct reconstruction of the invariant mass of the top quark decay products and the measurement of the mass together with the strong coupling constant in a threshold scan, in both cases including first studies of expected systematic uncertainties. For the direct reconstruction, experimental uncertainties around 100 MeV are achieved, which are at present not matched by a theoretical understanding on a similar level. With a threshold scan, total uncertainties of around 100 MeV are achieved, including theoretical uncertainties in a well-defined top mass scheme. For the threshold scan, the precision at ILC is also studied to provide a comparison of the two linear collide...

  5. A New Technique For Information Processing of CLIC Technical Documentation

    CERN Document Server

    Tzermpinos, Konstantinos

    2013-01-01

    The scientific work presented in this paper could be described as a novel, systemic approach to the process of organization of CLIC documentation. The latter refers to the processing of various sets of archived data found on various CERN archiving services in a more friendly and organized way. From physics aspect, this is equal to having an initial system characterized by high entropy, which after some transformation of energy and matter will produce a final system of reduced entropy. However, this reduction in entropy can be considered valid for open systems only, which are sub-systems of grander isolated systems, to which the total entropy will always increase. Thus, using as basis elements from information theory, systems theory and thermodynamics, the unorganized form of data pending to be organized to a higher form, is modeled as an initial open sub-system with increased entropy, which, after the processing of information, will produce a final system with decreased entropy. This systemic approach to the ...

  6. Les mesures de métrologie pour le CLIC

    CERN Document Server

    Cherif, A

    2008-01-01

    Le projet CLIC est en tout point un défi technique majeur ; c?est le cas également pour la mesure dimensionnelle. Quels sont les équipements et les méthodes qui permettent de caractériser les pièces avec une incertitude de mesure aussi réduite que possible, vu les tolérances micrométriques imposées ? Afin de répondre à cette question, une veille technologique a été maintenue sur une longue période. Les acteurs relevants ont été contactés pour bénéficier d?une ouverture sur les dernières avancées dans le domaine. Différentes techniques ont été étudiées et comparées telles que la digitalisation, la tomographie X, la mesure tridimensionnelle. L'assemblage de haute précision des composants est aussi primordial. Sa mise en ?uvre sous un microscope optique ou à l'aide d'une machine tridimensionnelle est en cours d?étude. L'exposé traitera aussi de la mesure de rugosité, un domaine où nous disposons de moyens adaptés aux exigences spécifiques du projet.

  7. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    AUTHOR|(SzGeCERN)674552

    2016-01-01

    The physics aims at the future CLIC high-energy linear $e^{+}e^{−}$ collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The main challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X$_{0}$ per layer for the vertex region and ~1% X$_{0}$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tra...

  8. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  9. Detector optimization studies and light Higgs decay into muons at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2013-09-15

    The Compact Linear Collider (CLIC) is a concept for a future e{sup +}e{sup -} linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab{sup -1}, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  10. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  11. Mechanical integration studies for the CLIC vertex and inner tracking detectors

    CERN Document Server

    Villarejo Bermudez, M.A.; Gerwig, H.

    2015-01-01

    Since the publication of the CLIC Conceptual Design Report, work has proceeded in order to establish a preliminary mechanical design for the innermost CLIC detector region. This note proposes a design for the main Carbon-Fibre Reinforced Polymer (CFRP) structural elements of the inner detectors, for the beam pipe and their supports. It also describes an assembly sequence for the integration of the sensors and the mechanical components. Mechanical simulations of different structural elements and a material budget estimation are appended. Details of a proposed cabling layout for all the subdetectors are included.

  12. Status of the Stripline Beam Position Monitor developement for the CLIC Drive Beam

    CERN Document Server

    Benot-Morell, A; Wendt, M; Faus-Golfe, A; Nappa, J M; Vilalte, S; Smith, S

    2013-01-01

    In collaboration with SLAC, LAPP and IFIC, a first prototype of a stripline Beam Position Monitor (BPM) for the CLIC Drive Beam and its associated readout electronics has been successfully tested in the CLIC Test Facility linac (CTF3) at CERN. In addition, a modified prototype with downstream terminated striplines is under development to improve the suppression of unwanted RF signal interference. This paper presents the results of the beam tests, and the most relevant aspects for the modified stripline BPM design and its expected improvements.

  13. Design and characterization of a prototype stripline beam position monitor for the Clic Drive Beam*

    CERN Document Server

    Benot-Morell, A; Wendt, M; Nappa, J M; Tassan-Viol, J; Vilalte, S; Smith, S

    2012-01-01

    The prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics is under development at CERN, in collaboration with SLAC, LAPP and IFIC. The anticipated position resolution and accuracy are expected to be below 2μm and 20μm respectively for operation of the BPM in the CLIC drive beam (DB) linac. This paper describes the particular CLIC DB conditions with respect to the beam position monitoring, presents the measurement concept, and summarizes electromagnetic simulations and RF measurements performed on the prototype.

  14. Experimental tests on the air cooling of the CLIC vertex detector

    CERN Document Server

    Duarte Ramos, Fernando; Nuiry, Francois-Xavier

    2016-01-01

    The strict requirements in terms of material budget for the inner region of the CLIC detector concept require the use of a dry gas for the cooling of the respective sensors. This, in conjunction with the compactness of the inner volumes, poses several challenges for the design of a cooling system that is able to fulfil the required detector specifications. This note summarizes the results obtained from experimental tests on the air cooling of the CLIC vertex detector as well as their comparison with the corresponding computational fluid dynamics simulations.

  15. HIGGS PHYSICS WITH A GAMMA GAMMA COLLIDER BASED ON CLIC 1*.

    Energy Technology Data Exchange (ETDEWEB)

    ASNER,D.; BURKHARDT,H.; DE ROECK,A.; ELLIS,J.; GRONBERG,J.; HEINEMEYER,S.; SCHMITT,M.; SCHULTE,D.; VELASCO,M.; ZIMMERMAN,F.

    2001-11-01

    We present the machine parameters and physics capabilities of the CLIC Higgs Experiment (CLICHE), a low-energy {gamma}{gamma} collider based on CLIC 1, the demonstration project for the higher-energy two-beam accelerator CLIC. CLICHE is conceived as a factory capable of producing around 20,000 light Higgs bosons per year. We discuss the requirements for the CLIC 1 beams and a laser backscattering system capable of producing a {gamma}{gamma} total (peak) luminosity of 2.0 (0.36) x 10{sup 34} cm{sup -2} s{sup -1} with E{sub CM}({gamma}{gamma}) 115 GeV. We show how CLICHE could be used to measure accurately the mass, {bar b}b, WW and {gamma}{gamma} decays of a light Higgs boson. We illustrate how these measurements may distinguish between the Standard Model Higgs boson and those in supersymmetric and more general two-Higgs-doublet models, complementing the measurements to be made with other accelerators. We also comment on other prospects in {gamma}{gamma} and e{sup -}{gamma} physics with CLICHE.

  16. Software and Parameters for Detailed TPC Studies in the CLIC CDR

    CERN Document Server

    Killenberg, M.

    2011-01-01

    For the TPC occupancy and time stamping studies in the CLIC CDR the MarlinTPC software package has been used in combination with Mokka for the full detector simulation. This document describes the working principle of the Marlin processors used for digitisation and reconstruction, and lists the parameters for reference.

  17. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  18. Development and testing of a double length pets for the CLIC experimental area

    Science.gov (United States)

    Sánchez, L.; Carrillo, D.; Gavela, D.; Lara, A.; Rodríguez, E.; Gutiérrez, J. L.; Calero, J.; Toral, F.; Samoshkin, A.; Gudkov, D.; Riddone, G.

    2014-05-01

    CLIC (compact linear collider) is a future e+e- collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS first prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wakefields, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing, electron beam and arc welding were used to complete the assembly. Finally, several tests such as dimensional control and leak testing were carried out to validate design and fabrication methods. In addition, RF measurements at low power were made to study frequency tuning.

  19. Collective effects and experimental verification of the CLIC drive beam and decelerator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00418229; Stapnes, Steinar; Adli, Erik

    The Compact Linear Collider (CLIC) is a potential next-generation particle collider, in which electrons and positrons collide at a center-of-mass energy of up to 3 TeV. In order to reach a high accelerating gradient and reduce the length of the machine, CLIC uses a novel two-beam scheme. Here, the acceleration energy for the main beam is provided by energy extraction from a secondary electron drive beam, by the use of Power Extraction and Transfer Structures (PETS). This Ph.D. thesis describes deceleration measurements from the CLIC Test Facility 3 at CERN, from a beam that had up to 37 % of its kinetic energy converted into 12 GHz rf power. The results are part of the feasibility demonstration of the CLIC scheme. The measured difference in beam energy of the decelerated beam is correlated with particle tracking simulations and with predictions based on analytical formulae, and a very good agreement is demonstrated. The evolution of the transverse emittance was also studied, since it is critical to contain th...

  20. Development of a Beam-based Phase Feedforward Demonstration at the CLIC Test Facility (CTF3)

    CERN Document Server

    AUTHOR|(CDS)2083344; Christian, Glenn

    The Compact Linear Collider (CLIC) is a proposal for a future linear electron--positron collider that could achieve collision energies of up to 3~TeV. In the CLIC concept the main high energy beam is accelerated using RF power extracted from a high intensity drive beam, achieving an accelerating gradient of 100~MV/m. This scheme places strict tolerances on the drive beam phase stability, which must be better than $0.2^\\circ$ at 12~GHz. To achieve the required phase stability CLIC proposes a high bandwidth (${>}17.5$~MHz), low latency drive beam ``phase feedforward'' (PFF) system. In this system electromagnetic kickers, powered by 500~kW amplifiers, are installed in a chicane and used to correct the phase by deflecting the beam on to longer or shorter trajectories. A prototype PFF system has been installed at the CLIC Test Facility, CTF3; the design, operation and commissioning of which is the focus of this work. Two kickers have been installed in the pre-existing chicane in the TL2 transfer line at CTF3 for t...

  1. Study of the ALICE Investigator chip in view of the requirements at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303; Dannheim, Dominik; Fiergolski, Adrian; Van Hoorne, Jacobus Willem; Hynds, Daniel; Klempt, Wolfgang; Nurnberg, Andreas Matthias; Sielewicz, Krzysztof Marek; Snoeys, Walter

    2017-01-01

    CLIC is an option for a future high energy linear $e^{+}e^{−}$ collider at CERN in the post-LHC era. The CLIC machine is designed to reach centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. To achieve high precision measurements, e.g. of the Higgs- width, challenging requirements are imposed on the CLIC detector. A single point tracking resolution of 7 μm and a material budget of 1-2%$X_{0}$ per layer are required for the tracker. Moreover, to suppress background hits from beam-beam interactions, a precise time slicing of hits of 10 ns is needed. To address these requirements, a large area silicon tracker is foreseen for the detector at CLIC. In this context, integrated technologies are promising candidates to achieve large scale production and low material budget. The Investigator chip is a test chip developed for the ALICE Inner Tracking System upgrade, implemented in a 180 nm CMOS process on a high resistivity substrate. It contains various test-matrices with analogue functionality, whi...

  2. Finite Element Model for Thermal-Structural analysis of CLIC Lab Module type 0#2

    CERN Document Server

    Moilanen, Antti; Vamvakas, Alex; Vainola, Jukka Ilmari; Doebert, Steffen

    2017-01-01

    Temperature changes lead to unwanted thermo-mechanical deformations in the components of the Compact Linear Collider (CLIC) module. There are several sources and sinks of heat around the CLIC two-beam module. Heat is generated in the components that produce, transfer, and extract radio frequency (RF) power. Excess heat is removed from the components by cooling water as well as dissipated to air by convection from the outer surfaces of the components. The ambient temperature might also vary along the tunnel during the operation of CLIC. Due to tight assembling and alignment tolerances, it is necessary to minimize the thermo-mechanical deformations in the components. In this paper, the steps of thermal-structural Finite Element Analysis (FEA) of CLIC lab module type 0#2 are described from geometry model simplification to setting up the simulation. The description is accompanied by useful hints for CATIA and ANSYS users performing similar modelling tasks. A reliable computer simulation is important for studying ...

  3. Development of an X-Band Dielectric-Based Wakefield Power Extractor for Potential CLIC Applications

    CERN Document Server

    Jing, C -J; Kanareykin, A; Schoessow, P; Conde, M E; Gai, W; Power, J G; Syratchev, I

    2011-01-01

    In the past decade, tremendous efforts have been put into the development of the CLIC Power Extraction and Transfer Structure (PETS), and significant progress has been made. However, one concern remains the manufacturing cost of the PETS, particularly considering the quantities needed for a TeV machine. A dielectric-based wakefield power extractor in principle is much cheaper to build. A low surface electric field to gradient ratio is another big advantage of the dielectric-loaded accelerating/decelerating structure. We are currently investigating the possibility of using a cost-effective dielectric-based wakefield power extractor as an alternative to the CLIC PETS. We designed a 12 GHz dielectric-based power extractor which has a similar performance to CLIC PETS with parameters 23 mm beam channel, 240 ns pulse duration, 135 MW output per structure using the CLIC drive beam. In order to study potential rf breakdown issues, as a first step we are building a 11.424 GHz dielectric-based power extractor scaled fr...

  4. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  5. Material studies in the frame of CLIC Accelerating structures production conducted within the Mechanics program together with Metso Oy

    CERN Document Server

    Nurminen, Janne

    2012-01-01

    MeChanICs (Marie Curie Linking Industry to CERN) is an Industry to Academia Partnership and Pathways (IAPP) platform for precision manufacturing knowledge exchange bringing together five Finnish manufacturing companies with Helsinki Insitute of Physics (HIP) and CERN. The scientific objective of MeChanICs project is to contribute to the manufacturing RTD of CLIC enabling technologies. The focus is on the design, materials, machining, brazing and assembly of A CLIC accelerating structure. This study deals with the materials work package of the program and wants to explore the following items: 1) producing copper accelerating structures for CLIC from raw copper powder by near net shape hot isostatic pressing (HIP). 2) The feasibility to use HIP diffusion bonding of the accelerator structures as a function of surface quality and applied temperature and pressure. 3) Brazing for CLIC AS auxiliary systems, like water cooling or damping manifolds, to the disc stack by coating one of the brazing partners with an enab...

  6. Engineering study, development and prototype fabrication of the supporting system for the CLIC Two-Beam Module

    CERN Document Server

    AUTHOR|(CDS)2068725; Karyotakis, Yannis; Dahoo, Pierre Richard; Alexopoulos, Theo; MEIS, Costantin; De Conto, Jean Marie; Jeremie, Andrea; Puzot, Patrique

    CERN, the European Organization for Nuclear Research, is based on the international collaboration in the field of high-energy particle physics research. The experiments carried out in its facilities are achieved through the existing particle accelerators. In addition, advanced accelerator research and development is one of the goals of CERN. For this reason, CLIC (the Compact LInear Collider) a new electron-positron linear accelerator is being studied at CERN. CLIC is built by the assembly of the Two-Beam Modules and takes advantage of an innovative acceleration principle, the Two-Beam acceleration. Each Module contains several technical systems that contribute to its successful operation. This thesis presents the development of the prototype supporting system for the CLIC Two-Beam Module. At first, the physics requirements are translated into technical specifications and the fundamental parts of the supporting system are defined. The CLIC operational conditions are identified and the corresponding boundaries...

  7. Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures

    CERN Document Server

    Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

    2013-01-01

    RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

  8. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  9. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  10. Modal Analysis and Measurement of Water Cooling Induced Vibrations on a CLIC Main Beam Quadrupole Prototype

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Janssens, S; Leuxe, R; Modena, M; Moron Ballester, R; Struik, M; Deleglise, C; Jeremie, A

    2011-01-01

    To reach the Compact Linear Collider (CLIC) design luminosity, the mechanical jitter of the CLIC main beam quadrupoles should be smaller than 1.5 nm integrated root mean square (r.m.s.) displacement above 1 Hz. A stiff stabilization and nano-positioning system is being developed but the design and effectiveness of such a system will greatly depend on the stiffness of the quadrupole magnet which should be as high as possible. Modal vibration measurements were therefore performed on a first assembled prototype magnet to evaluate the different mechanical modes and their frequencies. The results were then compared with a Finite Element (FE) model. The vibrations induced by water-cooling without stabilization were measured with different flow rates. This paper describes and analyzes the measurement results.

  11. Measuring the bunch frequency multiplication at the 3rd CLIC Test Facility

    CERN Document Server

    Dabrowski, AE; Bravin, E; Corsini, R; Dobert, S; Lefevre, T; Rabiller, A; Soby, L; Skowronski, P K; Tecker, F; Egger, D; Ferrari, A; Welsch, C P

    2012-01-01

    The CLIC Test Facility 3 (CTF3) is being built and commissioned by an international collaboration to test the feasibility of the proposed Compact Linear Collider (CLIC) drive beam generation scheme. Central to this scheme is the use of RF deflectors to inject bunches into a delay loop and a combiner ring, in order to transform the initial bunch frequency of 1.5 GHz from the linac to a final bunch frequency of 12 GHz. To do so, the machine's transverse optics must be tuned to ensure beam isochronicity and each ring's length can finally be adjusted with wiggler magnets to a sub millimeter path length accuracy. Diagnostics based on optical streak camera and RF power measurements, in particular frequency bands, have been designed to measure the longitudinal behaviour of the beam during the combination. This paper presents the diagnostics and recent commissioning measurements.

  12. Time Domain Simulations of the CLIC PETS (Power Extraction and Transfer Structure) with GdfidL

    CERN Document Server

    Syratchev, I V

    2001-01-01

    The Compact Linear Collider (CLIC) PETS is required to produce about 0.5 GW RF power per metre in the 30 GHz CLIC decelerator when driven by the high current beam (~ 270 A). To avoid beam break-up in the decelerator it is necessary to provide strong damping of the transverse deflecting modes. A PETS geometry with a level of damping consistent with stable drive beam operation has been designed, using the frequency domain code HFSS. A verification of the overall performance of this structure has been made recently using the code GdfidL, which permits a very fine mesh analysis of a full-length structure in the time domain. This paper gives the results of this analysis.

  13. Beam dynamics and wakefield suppression in interleaved damped and detuned structures for CLIC

    CERN Document Server

    D'Elia, A; Khan, V F; Jones, R M; Latina, A; Nesmiyan, I; Riddone, G

    2013-01-01

    Acceleration of multiple bunches of charged particles in the main linacs of the Compact Linear Collider (CLIC) with high accelerating fields provides two major challenges: firstly, to ensure the surface electromagnetic fields do not cause electrical breakdown and subsequent surface damage, and secondly, to ensure the beam-excited wakefields are sufficiently suppressed to avoid appreciable emittance dilution. In the baseline design for CLIC, heavy wakefield suppression is used (Q ~ 10) [1] and this ensures the beam quality is well-preserved [2]. Here we discuss an alternative means to suppress the wakefield which relies on strong detuning of the cell dipole frequencies, together with moderate damping, effected by manifolds which are slot-coupled to each accelerating cell. This damped and detuned wakefield suppression scheme is based on the methodology developed for the Japanese Linear Collider/Next Linear Collider (JLC/NLC) [3]. Here we track the multi-bunch beam down the complete collider, u...

  14. Status of the CLIC/CTF Beam Instrumentation R&D

    CERN Document Server

    Benot-Morell, A; Bobb, L; Bravin, E; Lefevre, T; Locci, F; Magnoni, S; Mazzoni, S; Nebot del Busto, E; Pan, R; Towler, J; Wendt, M; Gillespie, W A; Walsh, D A; Jamison, S P; Aumeyr, T; Boogert, S; Karataev, P; Lyapin, A; Snuverink, J; Nappa, J M; Vilalte, S

    2014-01-01

    The Compact Linear Collider (CLIC) is an e+/e- collider based on the two-beam acceleration principle, proposed to support precision high-energy physics experiments in the energy range 0.5-3 TeV [1]. To achieve a high luminosity of up to 6x1034cm-2s-1, the transport and preservation of a low emittance beam is mandatory. A large number and great variety of beam diagnostics instruments is foreseen to verify and guarantee the required beam quality. We discuss the status of the beam diagnostics developments and experimental results accomplished at the CLIC Test Facility (CTF) and at the Cornell University CesrTA ring accelerator.

  15. A prototype cavity beam position monitor for the CLIC Main Beam

    CERN Document Server

    Cullinany , F; Joshi, N; Lyapin, A; Bastard, D; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Wendt, M; Lunin, A; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) places unprecedented demands on its diagnostics systems. A large number of cavity beam position monitors (BPMs) throughout the main linac and beam delivery system (BDS) must routinely perform with 50 nm spatial resolution. Multiple position measurements within a single 156 ns bunch train are also required. A prototype low-Q cavity beam position monitor has been designed and built to be tested on the CLIC Test Facility (CTF3) probe beam. This paper presents the latest measurements of the prototype cavity BPM and the design and simulation of the radio frequency (RF) signal processing electronics with regards to the final performance. Installation of the BPM in the CTF3 probe beamline is also discussed.

  16. Machining and Characterizing X-Band RF-Structures for CLIC

    CERN Document Server

    Atieh, S; Arnau-Izquierdo, G; Cherif, A; Deparis, L; Glaude, D; Remandet, L; Riddone, G; Scheubel, M; Gudkov, D; Samoshkin, A; Soldko, A

    2011-01-01

    The Compact Linear Collider (CLIC) is currently under study at CERN as a potential multi-TeV e+e– collider. The manufacturing and assembling tolerances for making the required RF components are essential for CLIC to perform efficiently. Machining techniques are relevant to the construction of ultra-high-precision parts for the Accelerating Structures (AS). Optical-quality turning and ultra-precision milling using diamond tools are the main manufacturing techniques identified to produce ultra-high shape accuracy parts. A shape error of less than 5 μm and roughness of Ra 0.025 are achieved. Scanning Electron Microscopy (SEM) observation as well as sub-micron precision Coordinate Measuring Machines (CMM), roughness measurements and their crucial environment were implemented at CERN for quality assurance and further development. This paper focuses on the enhancements of precision machining and characterizing the fabrication of AS parts.

  17. Optimal Power System and Grid Interface Design Considerations for the CLICs Klystron Modulators

    CERN Document Server

    Marija, Jankovic; Jon, Clare; Pat, Wheeler; Davide, Aguglia

    2015-01-01

    The Compact Linear Collider (CLIC) is an electron-positron collider under study at CERN with the aim to explore the next generation of high precision/high energy particles physics. The CLIC’s drive beams will be accelerated by approximately 1300 klystrons, requiring highly efficient and controllable solid state capacitor discharge modulators. Capacitor charger specifications include the requirement to mask the pulsed effect of the load from the utility grid, ensure maximum power quality, control the derived DC voltage precisely (to maximize accuracy for the modulators being implemented), and achieve high efficiency and operability of the overall power system. This paper presents the work carried out on the power system interface for the CLIC facility. In particular it discusses the challenges on the utility interface and analysis of the grid interface converters with regards to required functionality, efficiency, and control methodologies.

  18. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    CERN Document Server

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  19. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  20. Power pulsing scheme for analog and digital electronics of the vertex detectors at CLIC

    CERN Document Server

    Blanchot, Georges

    2015-01-01

    The precision requirements of the vertex detector at CLIC impose strong limitations on the mass of such a detector (< 0.2% of a radiation length, Xo, per layer). To achieve such a low material budget, ultra-thin hybrid pixel detectors are foreseen, while the mass for cooling and services will be reduced by implementing a power pulsing scheme that takes advantage of the low duty cycle of the accelerator. The principal aim is to achieve significant power reduction without compromising the power integrity supplied to the front-end electronics. This report summarises the study of a power pulsing scheme to power the vertex barrel electronics of the future CLIC experiment. Its main goal is to describe in more detail what has been already presented in TWEPP conferences and other presentations. The report can therefore serve as an operator manual for future use and development of the system

  1. Production of excited electrons at TESLA and CLIC based egamma colliders

    CERN Document Server

    Kirca, Z; Cakir, O

    2003-01-01

    We analyze the potential of TESLA and CLIC based electron-photon colliders to search for excited spin-1/2 electrons. The production of excited electrons in the resonance channel through the electron- photon collision and their subsequent decays to leptons and electroweak gauge bosons are investigated. We study in detail the three signal channels of excited electrons and the corresponding backgrounds through the reactions egamma yields egamma, egamma yields eZ and egamma yields vW. Excited electrons with masses up to about 90% of the available collider energy can be probed down to the coupling f = f prime = 0.05(0.1) at TESLA(CLIC) based egamma colliders. 22 Refs.

  2. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  3. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  4. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  5. Design of a choke-mode damped accelerating structure for CLIC Main LINAC

    CERN Document Server

    Shi, J; Grudiev, A; Wuensch, W; Tang, C; Chen, H; Huang, W

    2011-01-01

    Choke-mode damped accelerating structures are being studied as an alternative to the baseline structure of the compact linear collider (CLIC) by a CERN-Tsinghua collaboration. Choke-mode structures hold the potential for much lower levels of pulsed surface heating and, since milling is not needed, reduced cost. Structures with radial choke attached are simulated in GdfidL to investigate the damping of the transverse wake. The first pass-band of the dipole modes is well damped, while the higher order dipole modes are possibly reflected by the choke. Therefore, the geometry of the choke is tuned to minimize the reflection of these higher order dipole modes. Based on this damping scheme, an accelerating structure with the same iris dimensions as the nominal CLIC design but with choke-mode damping has been designed. A prototype structure will be manufactured and high power tested in the near future.

  6. Interaction point feedback design and integrated simulations to stabilize the CLIC final focus

    CERN Document Server

    Balik, G; Deleglise, G; Jeremie, A; Pacquet, L; Badel, A; Caron, B; Le Breton, R; Latina, A; Pfingstner, J; Schulte, D; Snuverink, J

    2011-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the offset position between the beams. Sensitive to ground motion (GM), the beam needs to be stabilized to unprecedented requirements. Different Beam Based Feedback (BBF) algorithms such as Orbit Feedback (OFB) and Interaction Point Feedback (IPFB) have been designed. This paper focuses on the IPFB control which could be added to the CLIC baseline. IPFB control has been tested for different GM models in presence of noises or disturbances and it uses digital linear control with an adaptive loop. The simulations demonstrate that it is possible to achieve the required performances and quantify the maximum allowed noise level. This amount of admitted noises and disturbances is given in terms of an equivalent disturbance on the position of the magnet that controls the beam offset. Due to the limited sampling frequency of the process, the control loop is in a very small bandwidth. The study shows that these disturbances have to be l...

  7. Analysis of a copper sample for the CLIC ACS study in a field emission scanning microscope

    CERN Document Server

    Muranaka, Tomoko; Leifer, Klaus; Ziemann, Volker; Navitski, Aliaksandr; Müller, Günter

    2011-01-01

    We report measurements on a diamond turned Copper sample of material intended for the CLIC accelerating structures. The first part of the measurements was performed at Bergische Universität Wuppertal using a field emission scanning microscope to localize and characterize strong emission sites. In a second part the sample was investigated in an optical microscope, a white-light profilometer and scanning electron microscope in the microstructure laboratory in Uppsala to attempt to identify the features responsible for the field emission.

  8. Electron Cloud Build Up and Instability in the CLIC Damping Rings

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2008-01-01

    Electron cloud can be formed in the CLIC positron damping ring and cause intolerable tune shift and beam instability. Build up simulations with the Faktor2 code, developed at CERN, have been done to predict the cloud formation in the arcs and wigglers of the damping rings. HEADTAIL simulations have been used to study the effect of this electron cloud on the beam and assess the thresholds above which the electron cloud instability would set in.

  9. Status of an automatic Beam Steering for the CLIC Test Facility 3

    CERN Document Server

    Adli, E; Dabrowski, A; Schulte, D; Shaker, SH; Skowronski, P; Tecker, F; Tomás, R

    2008-01-01

    An automatic beam steering application for CTF 3 is being designed in order to automatize operation of the machine, as well as providing a test-bed for advanced steering algorithms for CLIC. Beam-based correction including dispersion free steering have been investigated. An approach based on a PLACET on-line model has been tested. This paper gives an overview of the current status and the achieved results of the CTF3 automatic steering.

  10. Study of a 5-Tesla large aperture coil for the CLIC detector

    CERN Document Server

    Cure, B

    2011-01-01

    The present design of a CLIC detector foresees a large solenoid magnet with a 6 m aperture and a magnetic induction of 5 T at the interaction point. This can be achieved by a thin superconducting coil. This report gives the typical main parameters of such a coil and presents the feasibility based on and compared with the CMS and Atlas solenoid coil designs, indicating the limits on the conductor and the identified R&D prospects.

  11. ClicO FS: an interactive web-based service of Circos.

    Science.gov (United States)

    Cheong, Wei-Hien; Tan, Yung-Chie; Yap, Soon-Joo; Ng, Kee-Peng

    2015-11-15

    : We present ClicO Free Service, an online web-service based on Circos, which provides a user-friendly, interactive web-based interface with configurable features to generate Circos circular plots. Online web-service is freely available at http://clicofs.codoncloud.com : soonjoo.yap@codongenomics.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  12. Amplitude model for beam oscillations in the main Linac of CLIC

    CERN Document Server

    Pfingstner, Jürgen; Schmickler, Hermann; Hofbaur, Michael

    2010-01-01

    To achieve the challenging goal of ultra-low emittance preservation in the main linac of CLIC, different techniques are used. The according algorithms often rely on an accurate, fast and efficient to compute model of the amplitude behavior of the beam oscillations in the beam line. In this paper such a model is developed, considering the accelerator design as well as the effect of filamentation. Filamentation is especially important, due to the high energy spread of the according beam and the large total phase advance of the lattice. Therefore a general model to describe filamentation is adapted to the properties of the beam in the main linac of CLIC. At the beginning of the linac, where made assumptions are not valid, this basic model is supported by a fit to simulation data. An accuracy evaluation of the produced data shows that the quadratic error is around 4 %. Therefore, the developed model delivers a fast and efficient procedure, to precisely predict the beam envelope behavior in the main linac of CLIC.

  13. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  14. Mass and Cross Section Measurements of light-flavored Squarks at CLIC

    CERN Document Server

    WEUSTE, L.

    2011-01-01

    We present a study of the prospects for the measurement of TeV-scale light-flavored right-squark masses and and the production cross sections at a 3 TeV e+e- collider based on CLIC technology. The analysis, performed in the framework of the CLIC Conceptual Design Report, is based on full Geant4 simulations of the CLIC ILD detector concept, including standard model physics background and machine related hadronic background from two-photon processes. The events were reconstructed using particle flow event reconstruction, and the mass and cross sections were obtained from a template fit built from generator-level simulations with smearing to parametrize the detector response. For an integrated luminosity of 2 ab^-1, a statistical precision of 5.9 GeV, corresponding to 0.52%, was obtained for unseparated first and second generation right squarks. For the combined cross section, a precision of 0.07 fb, corresponding to 5%, was obtained.

  15. Online optimisation of the CLIC Drive Beam bunch train recombination at CTF3

    CERN Document Server

    AUTHOR|(CDS)2082483; Tecker, Frank

    The Compact Linear Collider (CLIC) design is the leading alternative for a future multi-TeV "e^+e^−" linear collider. One of the key aspects of the design is the use of a Drive Beam as power source for the acceleration of the colliding beams. This work is focused on the optimisation of the set-up and the operations of the CLIC Drive Beam recombination at the CLIC Test Facility (CTF3) at CERN. The main effects that may affect the beam quality during the recombination are studied, with emphasis on orbit, transverse dynamics and beam energy effects. A custom methodology is used to analyse the problem, both from a theoretical and a numerical point of view. The aim is to provide first-order orbit and transverse optics constraints, which can be used as guidelines during the set-up of the beam recombination process. The developed techniques are applied at the CTF3, and the results are reported. The non-linear beam energy effects have been investigated by means of MAD-X simulations. The results show that these effe...

  16. Effects of RF breakdown on the beam in a CLIC prototype accelerator structure

    CERN Document Server

    Palaia, A; Ruber, R; Ziemann, V; Farabolini, W

    2013-01-01

    Understanding the effects of RF breakdown in high-gradient accelerator structures on the accelerated beam is an extremely relevant aspect in the development of the Compact Linear Collider (CLIC) and is one of the main issues addressed at the Two-beam Test Stand at the CLIC Test Facility 3 at CERN. During a RF breakdown large electro-magnetic fields are generated and produce parasitic magnetic fields which interact with the accelerated beam affecting its orbit and energy. We discuss here measurements of such effects observed on an electron beam accelerated in a CLIC prototype structure. Measurements of the trajectory of bunch-trains on a nanosecond time-scale showed fast changes in correspondence of breakdown which we compare with measurements of the relative beam spots on a scintillating screen. We identify different breakdown scenarios for which we offer an explanation based also on measurements of the power at the input and output ports of the accelerator structure. Finally we present the distribution of th...

  17. En route vers la nano stabilisation de CLIC faisceau principale et focalisation finale

    CERN Document Server

    Artoos, K; Guinchard, M; Hauviller, Claude; Lackner, F; CERN. Geneva. TS Department

    2008-01-01

    Pour atteindre la luminosité voulue de CLIC, la taille transversale du faisceau doit être de l?ordre du nanomètre. Ceci nécessite une stabilité vibratoire des quadripôles du faisceau principal de 1 nm et même 0.1 nm pour les doublets de la focalisation finale. La nano technologie et la nano stabilisation sont des activités qui évoluent rapidement dans l?industrie et centres de recherche pour des applications très variées comme l?électronique, l?optique, la chimie voire la médecine. Cette présentation décrit les avancées techniques nécessaires pour atteindre l?objectif de CLIC et les projets et collaborations R&D prévus pour démontrer la faisabilité de la nano stabilisation de CLIC en 2010.

  18. Measurement of the H$\\rightarrow$WW$^*$ Branching Ratio at 1.4TeV using the semileptonic final state at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)762723; Watson, Nigel

    2016-01-01

    This note summarises a study to evaluate the potential to measure the H$\\rightarrow$WW$^*$ branching fraction at CLIC, 1.4TeV centre-of-mass energy, with the CLIC_ILD detector, using the WW$\\rightarrow$qql$\

  19. High-voltage pixel detectors in commercial CMOS technologies for ATLAS, CLIC and Mu3e experiments

    CERN Document Server

    Peric, Ivan; Backhaus, Malte; Barbero, Marlon; Benoit, Mathieu; Berger, Niklaus; Bompard, Frederic; Breugnon, Patrick; Clemens, Jean-Claude; Dannheim, Dominik; Dierlamm, Alexander; Feigl, Simon; Fischer, Peter; Fougeron, Denis; Garcia-Sciveres, Maurice; Heim, Timon; Hügging, Fabian; Kiehn, Moritz; Kreidl, Christian; Krüger, Hans; La Rosa, Alessandro; Liu, Jian; Lütticke, Florian; Mariñas, Carlos; Meng, Lingxin; Miucci, Antonio; Münstermann, Daniel; Nguyen, Hong Hanh; Obermann, Theresa; Pangaud, Patrick; Perrevoort, Ann-Kathrin; Rozanov, Alexandre; Schöning, André; Schwenker, Benjamin; Wiedner, Dirk

    2013-01-01

    High-voltage particle detectors in commercial CMOS technologies are a detector family that allows implementation of low-cost, thin and radiation-tolerant detectors with a high time resolution. In the R/D phase of the development, a radiation tolerance of 10 15 n eq = cm 2 , nearly 100% detection ef fi ciency and a spatial resolution of about 3 μ m were demonstrated. Since 2011 the HV detectors have fi rst applications: the technology is presently the main option for the pixel detector of the planned Mu3e experiment at PSI (Switzerland). Several prototype sensors have been designed in a standard 180 nm HV CMOS process and successfully tested. Thanks to its high radiation tolerance, the HV detectors are also seen at CERN as a promising alternative to the standard options for ATLAS upgrade and CLIC. In order to test the concept, within ATLAS upgrade R/D, we are currently exploring an active pixel detector demonstrator HV2FEI4; also implemented in the 180 nm HV process

  20. Design of a 3 GHz Accelerator Structure for the CLIC Test Facility (CTF 3) Drive Beam

    OpenAIRE

    Carron, G; Jensen, E.; Luong, M.; Millich, A.; Rugo, E.; Syratchev, I; Thorndahl, L

    2000-01-01

    For the CLIC two-beam scheme, a high-current, long-pulse drive beam is required for RF power generation. Taking advantage of the 3 GHz klystrons available at the LEP injector once LEP stops, a 180 MeV electron accelerator is being constructed for a nominal beam current of 3.5 A and 1.5 microsecond pulse length. The high current requires highly effective suppression of dipolar wakes. Two concepts are investigated for the accelerating structure design: the "Tapered Damped Structure" developed f...

  1. Design of a 3 GHz Accelerator Structure for the CLIC Test Facility (CTF 3) Drive Beam

    OpenAIRE

    Carron, G; Jensen, E.; Luong, M.; Millich, A.; Rugo, E.; Syratchev, I; Thorndahl, L

    2000-01-01

    For the CLIC two-beam scheme, a high-current, long-pulse drive beam is required for RF power generation. Taking advantage of the 3 GHz klystrons available at the LEP injector once LEP stops, a 180 MeV electron accelerator is being constructed for a nominal beam current of 3.5 A and 1.5 ms pulse length. The high current requires highly effective suppression of dipolar wakes. Two concepts are investigated for the accelerating structure design: the "Tapered Damped Structure" developed for the CL...

  2. The anti-solenoid compensation of the CLIC detector solenoid using IRSYN

    CERN Document Server

    Appleby, Robert

    2011-01-01

    The detector solenoid of CLIC causes a range of aberrations on the beam at the interaction point, particularly due to its overlap with the final focus magnets. These effects are corrected using antisolenoid correction coils on the final quadrupole before the collision point. In this note, we use the interaction region beam dynamics code IRSYN to compute the impact of the SiD solenoid on the beam and benchmark the anti-solenoid correction. We find the correction is achieved, with a small residual amount of beam aberration which is correctable using the beam delivery system. This provides a validation of the correction and a benchmark of IRSYN to existing codes.

  3. Mechanical design of a pre-isolator for the CLIC final focusing magnets

    CERN Document Server

    Gaddi, A; Ramos, F; Siegrist, N

    2012-01-01

    Due to the very small vertical beam sizes, the final focusing elements at the future CLIC linear collider need to be stable against vibrations to below 0.15 nanometres at frequencies above about 4 Hz. One of the key elements in the strategy to achieve such a stable environment is a passive, heavy pre-isolator. In this report, the results from the dynamic finite element analyses of the proposed design for such a passive preisolator are summarized. Furthermore, the results from a low frequency, heavy mass passive vibration isolation test set-up used to validate the calculations are shown.

  4. Design and Manufacture of a Main Beam Quadrupole Model for CLIC

    CERN Document Server

    Modena, Michele

    2012-01-01

    The Main Beam Quadrupole (MBQ) magnets represent one of the most populated families of Compact Linear Collider (CLIC) magnets. In total more than 4000 units of 4 different types with the same bore radius of 5 mm and field gradient of 200 T/m but with different magnetic length are needed. An extremely high precision and mechanical stability are necessary in order to fulfill the magnetic and stabilization requirements as defined in the beam optics studies. A magnet design has been proposed and several quadrupole prototypes of different length have been produced targeting a high mechanical precision. Magnetic calculation, constructional design and the first test results are presented.

  5. Review of the transverse impedance budget for the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E

    2014-01-01

    Single bunch instability thresholds and the associated coherent tune shifts have been evaluated in the transverse plane for the damping rings (DR) of the Compact Linear Collider (CLIC). A multi-kick version of the HEADTAIL code was used to study the instability thresholds in the case where different impedance contributions are taken into account such as the broad-band resonator model in combination with the resistive wall contribution from the arcs and the wigglers of the DR. Simulations performed for positive values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability.

  6. Facebook ADS: Comparativa de rendimiento de anuncios para engagement, clics y conversiones

    OpenAIRE

    VALERO PÉREZ, ALBERT

    2017-01-01

    Dado el uso masivo de los anuncios de Facebook por parte de profesionales del marketing digital, este Proyecto de Fin de Carrera se centra en el análisis comparativo del rendimiento en cuanto a conversiones de los tres tipos más comúnmente utilizados en Facebook ADS: los anuncios orientados a la búsqueda de interacción o engagement, aquellos enfocados puramente a la consecución de clics en el enlace y por último los anuncios diseñados exclusivamente a conseguir conversiones. ...

  7. Grid Interface Challenges and Candidate Solutions for the Compact Linear Collider’s (CLIC) Klystron Modulators

    CERN Document Server

    Aguglia, D; Watson, A; Clare, J; Wheeler, P

    2014-01-01

    The Compact Linear Collider (CLIC) is a linear electron-positron accelerator under study at CERN, in view of exploring a new leptons collision energy region (0.5TeV to 5TeV). This complex requires ~1600 klystrons fed by highly efficient and controllable power electronics for a convenient power connection to the utility grid. This paper presents the challenges and evaluates several possible structures for the power system. Discussion are provided regarding the candidate topologies according to the converters’ ratings / number and considering reliability, modularity, and redundancy.

  8. CLIC-LHC-based FEL-nucleus collider: Feasibility and physics search potential

    Energy Technology Data Exchange (ETDEWEB)

    Yavas, Omer [Department of Engineering of Physics, Faculty of Engineering, Ankara University, 06100 Tandogan, Ankara (Turkey)]. E-mail: yavas@eng.ankara.edu.tr; Corsini, Roberto [CERN, CH-1211, Geneve 23 (Switzerland); Braun, Hans [Institute of Physics Academy of Sciences, H. Cavid Ave. 33, Baku (Azerbaijan); Sultansoy, Saleh [Institute of Physics Academy of Sciences, H. Cavid Ave. 33, Baku (Azerbaijan); Department of Physics, Faculty of Arts and Science, Gazi University, 06500 Teknikokullar, Ankara (Turkey); Guliyev, Ekber [Institute of Physics Academy of Sciences, H. Cavid Ave. 33, Baku (Azerbaijan); Yigit, Senay [Department of Engineering of Physics, Faculty of Engineering, Ankara University, 06100 Tandogan, Ankara (Turkey); Turkish Atomic Energy Authority, 06530 Lodullu, Ankara (Turkey); Ozcan, Aynur [Department of Physics, Faculty of Arts and Science, Gazi University, 06500 Teknikokullar, Ankara (Turkey)

    2005-11-01

    The feasibility of a CLIC-LHC-based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the nuclear resonance fluorescence method. The tunability, monochromaticity and high polarization of the FEL beam together with high statistics and huge energy of LHC nucleus beams will give a unique opportunity to determine different characteristics of excited nuclear levels. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.

  9. CLIC-LHC Based FEL-Nucleus Collider: Feasibility and Physics Search Potential

    CERN Document Server

    Braun, H; Delahaye, J P; Guliyev, E; Ozcan, A; Sultansoy, S; Yavas, O; Yigit, S

    2005-01-01

    The feasibility of a CLIC-LHC based FEL-nucleus collider is investigated. It is shown that the proposed scheme satisfies all requirements of an ideal photon source for the Nuclear Resonance Fluorescence method. The tunability, monochromaticity and high polarization of the FEL beam together with high statistics and huge energy of LHC nucleus beams will give an unique opportunity to determine different characteristics of excited nuclear levels. The physics potential of the proposed collider is illustrated for a beam of Pb nuclei.

  10. Measurement of sigma(ee->Hnunu)xBR(H->tautau) at CLIC @ 1.4 TeV

    CERN Document Server

    Münnich, A.

    2013-01-01

    This detector benchmark study evaluates the statistical precision with which the H -> tautau branching ratio times cross section can be measured at CLIC running at rout(s)= 1.4 TeV. Only the hadronic decays of taus are considered.

  11. Preliminary design of a bunching system for the CLIC polarized electron source

    CERN Document Server

    Zhou, F; Sheppard, J

    2009-01-01

    Major parameters of the CLIC and ILC electron sources are given in Table I. It is shown that the CLIC source needs to provide 312 15-ps-long 2-GHz microbunches. There are two approaches to achieve the time structure [2]: one is to develop a 2-GHz optical pulse train, and the other to develop a 156-ns-long CW optical pulse and use an RF bunching system to generate 312 2-GHz microbunches. The former scheme may ease the RF bunching system but still need it to bunch 100-ps of microbunch down to 15-ps level. Otherwise, a huge amount of energy spread is accumulated when the beam is accelerated through downstream 2-GHz accelerator. In addition, in the former scheme, the space charge is high and surface charge is not yet proven in the parameter regime and 2-GHz mode locked laser is challenging. The latter scheme needs a high-efficiency bunching system to generate 312 15-ps microbunches with 2-GHz repetition rate but it has some notable advantages: a 156-ns CW laser technique is matured, and the charge limit behavior ...

  12. Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications

    CERN Document Server

    Oeftiger, Adrian

    2011-01-01

    Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...

  13. A high phase advance damped and detuned structure for the main linacs of CLIC

    CERN Document Server

    Khan, V.F.; Grudiev, A.; Jones, R.M.; Wuensch, W.

    2010-01-01

    The main accelerating structures for the CLIC are designed to operate at an average accelerating gradient of 100 MV/m. The accelerating frequency has been optimised to 11.994 GHz with a phase advance of 2π/3 [1] of the main accelerating mode. The moderately damped and detuned structure (DDS) design [2-3] is being studied as an alternative to the strongly damped WDS design [1]. Both these designs are based on the nominal accelerating phase advance. Here we explore high phase advance (HPA) structures in which the group velocity of the rf fields is reduced compared to that of standard (2π/3) structures. The electrical breakdown strongly depends on the fundamental mode group velocity. Hence it is expected that electrical breakdown is less likely to occur in the HPA structures. We report on a study of both the fundamental and dipole modes in a CLIC_DDS_ HPA structure, designed to operate at 5π/6 phase advance per cell. Higher order dipole modes in both the standard and HPA structures are also studied.

  14. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; Linde, Frank; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  15. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  16. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  17. A CLIC Damping Wiggler Prototype at ANKA: Commissioning and Preparations for a Beam Dynamics Experimental Program

    CERN Document Server

    Bernhard, Axel; Casalbuoni, Sara; Ferracin, Paolo; Garcia Fajardo, Laura; Gerstl, Stefan; Gethmann, Julian; Grau, Andreas; Huttel, Erhard; Khrushchev, Sergey; Mezentsev, Nikolai; Müller, Anke-Susanne; Papaphilippou, Yannis; Saez de Jauregui, David; Schmickler, Hermann; Schoerling, Daniel; Shkaruba, Vitaliy; Smale, Nigel; Tsukanov, Valery; Zisopoulos, Panagiotis; Zolotarev, Konstantin

    2016-01-01

    In a collaboration between CERN, BINP and KIT a prototype of a superconducting damping wiggler for the CLIC damping rings has been installed at the ANKA synchrotron light source. On the one hand, the foreseen experimental program aims at validating the technical design of the wiggler, particularly the conduction cooling concept applied in its cryostat design, in a long-term study. On the other hand, the wiggler's influence on the beam dynamics particularly in the presence of collective effects is planned to be investigated. ANKA's low-alpha short-bunch operation mode will serve as a model system for these studies on collective effects. To simulate these effects and to make verifiable predictions an accurate model of the ANKA storage ring in low-alpha mode, including the insertion devices is under parallel development. This contribution reports on the first operational experience with the CLIC damping wiggler prototype in the ANKA storage ring and steps towards the planned advanced experimental program with th...

  18. The L-band klystron-modulator RF power system for CLIC

    CERN Document Server

    Pearce, P

    2000-01-01

    The long-pulse, high-power klystron-modulators are an important part of the CLIC drive-beam scheme and a number of design variations are being studied in order to improve their overall power efficiency, reliability and cost effectiveness. Because of the number needed (364 at 50 MW for the 3 TeV scheme) and their size, they will have a large impact on the capital cost of the pulsed RF power to be delivered to the beam and to the resistive losses in the drive-beam accelerating structures. Overall RF system efficiency is an important parameter for long linear colliders, and to a large extent, will be determined by the performance and efficiency of the klystron-modulators. The input AC power to output RF power efficiency of one CLIC klystron- modulator, including the klystron, power conversion, pulse transformer, auxiliary power and switching losses at 100 Hz and 100 mu s pulse width, is estimated as 52The RF to beam efficiency is estimated at 24, and after taking into account other RF power transmission losses w...

  19. Studies on high-precision machining and assembly of CLIC RF structures

    CERN Document Server

    Huopana, J; Riddone, G; Österberg, K

    2010-01-01

    The Compact Linear Collider (CLIC) is currently under development at CERN as a potential multi-TeV e+e– collider. The manufacturing and assembly tolerances for the required RF components are essential for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is sensitive to mechanical errors in the shape and the alignment of the accelerating cavity. The current tolerances are in the micron range. This raises challenges in the field of mechanical design and demands special manufacturing technologies and processes. Currently the mechanical design of the accelerating structures is based on a disk design. Alternatively, it is possible to create the accelerating assembly from quadrants, which has the potential to be favoured for the mass production due to simplicity and cost. In this case, the functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. This paper focuses on the development work done in design and sim...

  20. Beam Tests of a Prototype Stripline Beam Position Monitoring System for the Drive Beam of the CLIC Two-beam Module at CTF3

    CERN Document Server

    Benot-Morell, Alfonso; Nappa, Jean-Marc; Vilalte, Sebastien; Wendt, Manfred

    2016-01-01

    In collaboration with LAPP and IFIC, two units of a prototype stripline Beam Position Monitor (BPM) for the CLIC Drive Beam (DB), and its associated readout electronics have been successfully installed and tested in the Two-Beam-Module (TBM) at the CLIC Test Facility 3 (CTF3) at CERN. This paper gives a short overview of the BPM system and presents the performance measured under different Drive Beam configurations.

  1. Results from the CLIC X-BAND structure test program at the NLCTA

    CERN Document Server

    Adolphsen, Chris; Dolgashev, Valery; Laurent, Lisa; Tantawi, Sami; Wang, Faya; Wang, W Juwen; Doebert, Steffen; Grudiev, Alexej; Riddone, Germana; Wuensh, Walter; Zennaro, Riccardo; Higashi, Yasuo; Higo, Toshiyasu

    2010-01-01

    As part of a SLAC-CERN-KEK col­lab­o­ra­tion on high gra­di­ent X-band struc­ture re­search, sev­er­al pro­to­type struc­tures for the CLIC lin­ear col­lid­er study have been test­ed using two of the high power (300 MW) X-band rf sta­tions in the NLCTA fa­cil­i­ty at SLAC. These struc­tures dif­fer in terms of their man­u­fac­tur­ing (brazed disks and clamped quad­rants), gra­di­ent pro­file (amount by which the gra­di­ent in­creas­es along the struc­ture which op­ti­mizes ef­fi­cien­cy and max­i­mizes sus­tain­able gra­di­ent) and HOM damp­ing (use of slots or waveg­uides to rapid­ly dis­si­pate dipole mode en­er­gy). The CLIC goal in the next few years is to demon­strate the fea­si­bil­i­ty of a CLIC-ready base­line de­sign and to in­ves­ti­gate al­ter­na­tives which could bring even high­er ef­fi­cien­cy. This paper sum­ma­rizes the high gra­di­ent test re­sults from the NLCTA in sup­port of this ef­fort.

  2. Present status of development of damping ring extraction kicker system for CLIC

    CERN Document Server

    Holma, Janne; Belver-Aguilar, Caroline; Faus-Golfe, Angeles; Toral, Fernando

    2012-01-01

    The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping ring kickers must provide extremely flat, high-voltage pulses: specifications call for a 160 ns duration and a flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. The stripline design is also extremely challenging: the field for the damping ring kicker system must be homogenous to within ±0.01 % over a 1 mm radius, and low beam coupling impedance is required. The solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications for the field pulse ripple and droop. This paper describes the initial design of the inductive adder and the striplines of the kicker system.

  3. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server

    AUTHOR|(SzGeCERN)752526

    2015-01-01

    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  4. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    CERN Document Server

    Elzhov, A V; Kaminsky, A K; Kuzikov, S V; Perelshtejn, E A; Peskov, N Yu; Petelin, M I; Sedykh, S N; Sergeev, A P; Sergeev, A S; Syratchev, I V; Zaitsev, N I

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30GHz, is used in the investigation. The experimental setup consists of a wavebeam injector - FEM oscillator (power of similar to 25MW, pulse duration up to 200ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed.

  5. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  6. Experimental Verifiction of the CLIC two beam Acceleration Technology in CTF3

    CERN Document Server

    Constance, B; Barranco, J; Corsini, R; Doebert, S; Dubrovskiy, A; Skowronski, P; Tecker, F; Farabolini, W; Persson, T; Lillestol, R; Ikarios, E; Jacewicz, M; Palaia, A; Ruber, R

    2013-01-01

    The Compact Linear Collider international collaboration is pursuing an extensive R&D program towards a multi- TeV electron-positron collider. In particular, the development of two-beam acceleration technology is the focus of the CLIC test facility CTF3. In this paper we summarise the most recent results obtained at CTF3: the results of the studies on the drive beam generation are presented, the achieved two beam acceleration performance is reported and the measured breakdown rates and related observations are summarised. The stability of deceleration process performed over 12 subsequent modules and the comparison of the obtained results with the theoretical expectations are discussed. We also outline and discuss the future experimental program.

  7. Status report of the baseline collimation system of CLIC. Part I

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  8. Status report of the baseline collimation system of CLIC. Part II

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  9. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  10. Preliminary design of the pulse generator for the CLIC damping ring extraction system

    CERN Document Server

    Holma, Janne; Ovaska, Seppo

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  11. Applying one-dimensional fluid thermal elements into a 3D CLIC accelerating strucutre

    CERN Document Server

    Raatikainen, Riku; Österberg, Kenneth; Riddone, Germana; Samoshkin, Alexander; Gudkov, Dmitry

    2010-01-01

    A finite element modeling method to simplify the analysis of coupled thermal-structural model for the CLIC accelerating structure is presented. In addition, the results of thermal and structural analyses for the accelerating structure are presented. Instead of using a standard 3D computational fluid dynamics (CFD) method for solving problems involving fluid dynamics and heat transfer in 3D environment, one-dimensional fluid thermal elements are used. In one-dimensional flow, the governing equations of fluid dynamics are considerably simplified. Thus, it is expected that the computational time for more complex simulations becomes shorter. The method was first applied to several test models, which demonstrated the suitability of the one-dimensional flow modeling. The results show that one-dimensional fluid flow reduces the computation time considerably allowing the modeling for the future larger assemblies with sufficient accuracy.

  12. Surface Field Optimization of Accelerating Structures for CLIC Using ACE3P on Remote Computing Facility

    CERN Document Server

    Sjobak, K N; Grudiev, A

    2013-01-01

    This paper presents a computer program for searching for the optimum shape of an accelerating structure cell by scanning a multidimensional geometry parameter space. For each geometry, RF parameters and peak surface fields are calculated using ACE3P on a remote high-performance computational system. Parameter point selection, mesh generation, result storage and post-analysis are handled by a GUI program running on the user’s workstation. This paper describes the program, AcdOptiGui. AcdOptiGui also includes some capability for automatically selecting scan points based on results from earlier simulations, which enables rapid optimization of a given parameterized geometry. The software has previously been used as a part of the design process for accelerating structures for a 500 GeV CLIC.

  13. Imperfection Tolerances For On-line Dipsersion Free Steering in the Main LINAC of CLIC

    CERN Document Server

    Pfingstner, J; Schulte, D

    2013-01-01

    Long-term ground motion misaligns the elements of the main linac of CLIC over time. Especially the misaligned quadrupoles create dispersion and hence the beam quality is decreased gradually due to an effect called chromatic dilution. Over longer time periods, orbit feedback systems are not capable to fully recover the beam quality and have to be supplemented by dispersion correction algorithms. In this paper, such and dispersion correction algorithm is presented, which is an extended version of the well-known dispersion free steering algorithm. This extended algorithm can recover the beam quality over long time scaled without stopping the accelerator operation (on-line). Tolerances for different imperfections of the system have been identified and a strong sensitivity to the resolution of the wake field monitors of the main linac accelerating structures has been identified. This problem can be mitigated by using a local excitation scheme as will be shown in this work.

  14. High intensity profile monitor for time resolved spectrometry at the CLIC Test Facility 3

    Energy Technology Data Exchange (ETDEWEB)

    Olvegard, M., E-mail: maja.olvegard@physics.uu.se [CERN, CH-1211 Geneva 23 (Switzerland); Uppsala University, P.O. Box 256, SE-751 05 (Sweden); Adli, E. [CERN, CH-1211 Geneva 23 (Switzerland); University of Oslo, Boks 1072 Blindern, NO-0316 Oslo (Norway); Braun, H.H. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Bravin, E.; Chritin, N.; Corsini, R.; Dabrowski, A.E.; Doebert, S.; Dutriat, C. [CERN, CH-1211 Geneva 23 (Switzerland); Egger, D. [CERN, CH-1211 Geneva 23 (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Lefevre, T. [CERN, CH-1211 Geneva 23 (Switzerland); Mete, O. [CERN, CH-1211 Geneva 23 (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Skowronski, P.K.; Tecker, F. [CERN, CH-1211 Geneva 23 (Switzerland)

    2012-08-11

    The power source of the Compact LInear Collider (CLIC) relies on the generation and deceleration of a high-intensity electron drive beam. In order to provide the best radio-frequency (RF) to beam-energy transfer efficiency, the electron beam is accelerated using fully loaded RF cavities, which leads to strong beam loading effects resulting in a high-energy transient. The stability of the RF power produced by the drive beam depends on the stability of the drive beam energy and energy spread along the pulse. The control and the monitoring of the time evolution of the beam energy distribution are therefore crucial for the accelerator performance. For this purpose segmented beam dumps, which are simple and robust devices, have been designed and installed at the CLIC Test Facility 3 (CTF3). These devices are located at the end of spectrometer lines and provide horizontal beam profiles with a time resolution better than 10 ns. The segmented dumps are composed of parallel, vertical, metallic plates, and are based on the same principle as a Faraday cup: the impinging beam current is read by a fast acquisition channel. Both FLUKA and Geant4 simulations were performed to define the optimum detector geometry for beam energies ranging from 5 MeV to 150 MeV. This paper presents a detailed description of the different steps of the design: the optimization of the detector spatial resolution, the minimization of the thermal load and the long-term damage resulting from high radiation doses. Four segmented dumps are currently used in the CTF3 complex. Their measured performance and limitations are presented in this paper. Typical beam spectra as measured in the CTF3 linac are also presented along with a description of the RF manipulations needed for tuning the beam energy spectrum.

  15. Investigation of Hadronic Higgs Decays at CLIC at 350 GeV & Scintillator Studies for a Highly Granular Calorimeter

    CERN Document Server

    Szalay, Marco; Simon, Frank

    The energy frontier of accelerator-based physics has been dominated, for the best part of the last ten years, by the Large Hadron Collider (LHC). This remarkable accelerator has provided scientists with proton-proton collisions up to 13 TeV in energy, that led to exciting progress in the understanding of particle physics, culminating in the discovery of the Higgs boson in 2012. Despite its successes, the LHC carries an intrinsic limitation: since it collides composite particles, the initial conditions of each interaction cannot be completely determined. This limits the precision with which some observables can be measured. A new generation of colliders, designed for the acceleration of elementary electrons and positrons, is being developed to reach higher precision and to provide complementary discovery potential for new phenomena. The two most mature projects in this category are the Compact LInear Collider (CLIC) and the International Linear Collider (ILC). One key component of the physics program at CLIC i...

  16. Wakefield Simulation of CLIC PETS Structure Using Parallel 3D Finite Element Time-Domain Solver T3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the parallel 3D Finite Element electromagnetic time-domain code T3P. Higher-order Finite Element methods on conformal unstructured meshes and massively parallel processing allow unprecedented simulation accuracy for wakefield computations and simulations of transient effects in realistic accelerator structures. Applications include simulation of wakefield damping in the Compact Linear Collider (CLIC) power extraction and transfer structure (PETS).

  17. Physics performance for measurements of chargino and neutralino pair production at a 1.4 TeV CLIC collider

    CERN Document Server

    Roloff, Philipp

    2013-01-01

    A study of chargino and neutralino pair production at a CLIC collider operating at √s = 1.4 TeV is presented. Fully hadronic final states with four jets and missing transverse energy were considered. The analysis was performed using full detector simulation and including pileup from gg → hadrons interactions. Results for the masses and production cross sections of the chargino and the next-to-lightest neutralino are discussed.

  18. Drive Beam Quadrupoles for the CLIC Project: a Novel Method of Fiducialisation and a New Micrometric Adjustment System

    CERN Document Server

    AUTHOR|(SzGeCERN)411678; Duquenne, Mathieu; Sandomierski, Jacek; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    This paper presents a new method of fiducialisation applied to determine the magnetic axis of the Drive Beam quadrupole of the CLIC project with respect to external alignment fiducials, within a micrometric accuracy and precision. It introduces also a new micrometric adjustment system along 5 Degrees of Freedom, developed for the same Drive Beam quadrupole. The combination of both developments opens very interesting perspectives to get a more simple and accurate alignment of the quadrupoles.

  19. Improved sensitivity on the electromagnetic dipole moments of the top quark in γ γ , γ γ*, and γ*γ* collisions at the CLIC

    Science.gov (United States)

    Billur, A. A.; Köksal, M.; Gutiérrez-Rodríguez, A.

    2017-09-01

    We realize a phenomenological study to examine the sensitivity on the magnetic moment and electric dipole moment of the top quark through the processes γ γ →t t ¯, e γ →e γ*γ →e t t ¯, and e-e+→e-γ*γ*e+→e-t t ¯e+ at the Compact Linear Collider (CLIC). We find that with a center-of-mass energy of the CLIC-1.4 TeV, integrated luminosity of L =1500 fb-1 and CLIC-3 TeV, integrated luminosity of L =2000 fb-1 with systematic uncertainties of δsys=0 , 5%, 10% at the 95% C.L., it is possible the CLIC may put limits on the electromagnetic dipole moments of the top quark a^V and a^A with a sensitivity of O (10-3-10-2). Therefore, we show that the sensitivity with the CLIC data is much greater than that for the Large Hadron Collider data.

  20. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  1. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  2. Studies of Cs3Sb cathodes for the CLIC drive beam photo injector option

    CERN Document Server

    Martini, Irene; Doebert, Steffen; Fedosseev, Valentine; Hessler, Christoph; Martyanov, Mikhail

    2013-01-01

    Within the CLIC (Compact Linear Collider) project, feasibility studies of a photo injector option for the drive beam as an alternative to its baseline design using a thermionic electron gun are on-going. This R&D program covers both the laser and the photocathode side. Whereas the available laser pulse energy in ultra-violet (UV) is currently limited by the optical defects in the 4thharmonics frequency conversion crystal induced by the0.14 ms long pulse trains, recent measurements of Cs3Sbphotocathodes sensitive to green light showed their potential to overcome this limitation. Moreover, using visible laser beams leads to better stability of produced electron bunches and one can take advantages of the availability of higher quality optics. The studied Cs3Sbphotocathodes have been produced in the CERN photo emission laboratory using the co-deposition technique and tested in a DC gun set-up. The analysis of data acquired during the cathode production process will be presented in this paper, as well as the r...

  3. A Gas-Jet Profile Monitor for the CLIC Drive Beam

    CERN Document Server

    Jeff, A; Lefevre, T; Tzoganis, V; Welsch, C P

    2013-01-01

    The Compact Linear Collider (CLIC) will use a novel acceleration scheme in which energy extracted from a very intense beam of relatively low-energy electrons (the Drive Beam) is used to accelerate a lower intensity Main Beam to very high energy. The high intensity of the Drive Beam, with pulses of more than 1015 electrons, poses a challenge for conventional profile measurements such as wire scanners. Thus, new non-invasive profile measurements are being investigated. Profile monitors using gas ionisation or fluorescence have been used at a number of accelerators. Typically, extra gas must be injected at the monitor and the rise in pressure spreads for some distance down the beam pipe. In contrast, a gas jet can be fired across the beam into a receiving chamber, with little gas escaping into the rest of the beam pipe. In addition, a gas jet shaped into a thin plane can be used like a screen on which the beam crosssectionis imaged. In this paper we present some arrangements for the generation of such a jet. In ...

  4. CLIC, a Multi-TeV $e^{\\pm}$ Linear Collider

    CERN Document Server

    Delahaye, J P; Bossart, Rudolf; Braun, Hans Heinrich; Carron, G; Coosemans, Williame; Corsini, R; D'Amico, T E; Godot, J C; Guignard, Gilbert; Hutchins, S; Jensen, E; Millich, Antonio; Pearce, P; Potier, J P; Riche, A J; Rinolfi, Louis; Schulte, Daniel; Suberlucq, Guy; Thorndahl, L; Valentini, M; Wuensch, Walter; Zimmermann, Frank; Napoly, O; Raubenheimer, T O; Ruth, Ronald D; Syratchev, I V

    1999-01-01

    The CLIC study of a high energy (0.5 - 5 TeV), high luminosity (1034 - 1035 cm-2 sec-1) e± linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structures operating at high accelerating fields (150 MV/m) significantly reduces the length and, in consequence, the cost of the linac. Based on new beam and linac parameters derived from a recently developed set of general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost-effective and efficient drive beam generation scheme for RF power production by the so-called "Two Beam Acceleration (TBA)" method is described. It uses a thermionic gun and a fully-loaded normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches, and RF multiplication by funnelling in compressor rings to produce the desired bunch structure. Recent 30 GHz hardware developments and ...

  5. CLIC, a 0.5 to 5 TeV e$^{\\pm}$ Compact Linear Collider

    CERN Document Server

    Delahaye, J P; Braun, Hans Heinrich; Carron, G; Chautard, F; Coosemans, Williame; Corsini, R; D'Amico, T E; Dehler, M; Godot, J C; Guignard, Gilbert; Hagel, J; Hutchins, S; Johnson, C D; Jensen, E; Kamber, I; Millich, Antonio; Pearce, P; Potier, J P; Riche, A J; Rinolfi, Louis; Schulte, Daniel; Suberlucq, Guy; Thorndahl, L; Valentini, M; Warner, D J; Wilson, Ian H; Wuensch, Walter; Napoly, O; Raubenheimer, T O; Ruth, Ronald D

    1998-01-01

    The CLIC study of a high energy (0.5 - 5 TeV), high luminosity (10^34 - 10^35 cm^-2 sec^-1) e± linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structure s operating at high accelerating fields (100 to 200 MV/m) significantly reduces the length and, in consequence the cost of the linac. Based on new beam and linac parameters derived from a recently dev eloped set of general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost effe ctive and very efficient drive beam generation scheme for RF power production by the so-called "Two Beam Acceleration (TBA)" method is described. It uses a conventional thermionic gun and a fully-load ed normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches and RF multiplication by funneling in compressor rings to produce the desired bunch st ructure. Recent 30...

  6. Examination of the CLIC drive beam pipe design for thermal distortion caused by distributed beam loss

    CERN Document Server

    Johnson, C D

    1997-01-01

    Beam transport programs are widely used to estimate the distribution of power deposited in accelerator structures by particle beams, either intentionally as for targets or beam dumps or accidentally owing to beam loss incidents. While this is usually adequate for considerations of radiation safety, it does not reveal the expected temperature rise and its effect on structural integrity. To find this, thermal diffusion must be taken into account, requiring another step in the analysis. The method that has been proposed is to use the output of a transport program, perhaps modified, as input for a finite element analysis program that can solve the thermal diffusion equation. At CERN, the design of the CLIC drive beam pipe has been treated in this fashion. The power distribution produced in the walls by a distributed beam loss was found using the electron gamma shower code EGS4. The distribution of power density was then used to form the input for the finite element analysis program ANSYS, which was able to find t...

  7. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  8. Development and Validation of a Multipoint Based Laser Alignment System for CLIC

    CERN Document Server

    Stern, G; Lackner, F; Mainaud-Durand, H; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2013-01-01

    Alignment is one of the major challenges within CLIC study, since all accelerator components have to be aligned with accuracy up to 10 μm over sliding windows of 200 m. So far, the straight line reference concept has been based on stretched wires coupled with Wire Positioning Sensors. This concept should be validated through inter-comparison with an alternative solution. This paper proposes an alternative concept where laser beam acts as straight line reference and optical shutters coupled with cameras visualise the beam. The principle was first validated by a series of tests using low-cost components. Yet, in order to further decrease measurement uncertainty in this validation step, a high-precision automatised micrometric table and reference targets have been added to the setup. The paper presents the results obtained with this new equipment, in terms of measurement precision. In addition, the paper gives an overview of first tests done at long distance (up to 53 m), having emphasis on beam divergence

  9. Comparative Study of the Tuning Performances of the Nominal and Long L* CLIC Final Focus System at √s = 380 GeV

    CERN Document Server

    Plassard, F; Marin, E; Tomás, R

    2017-01-01

    Mitigation of static imperfections for emittance preservation is one of the most important and challenging tasks faced by the Compact Linear Collider (CLIC) beam delivery system. A simulation campaign has been performed to recover the nominal luminosity by means of different alignment procedures. The state of the art of the tuning studies is drawn up. Comparative studies of the tuning performances and a tuning-based final focus system design optimization for two L options are presented. The effectiveness of the tuning techniques applied to these different lattices will be decisive for the final layout of the CLIC final focus system at √s = 380 GeV.

  10. Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P

    Energy Technology Data Exchange (ETDEWEB)

    Candel, A; Kabel, A.; Lee, L.; Li, Z.; Ng, C.; Schussman, G.; Ko, K.; /SLAC; Syratchev, I.; /CERN

    2009-06-19

    In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.

  11. Physics performances for Z' searches at 3 TeV and 1.5 TeV CLIC

    CERN Document Server

    Blaising, Jean-Jacques

    2012-01-01

    Extra neutral gauge bosons (Z') are predicted in many extensions of the Standard Model (SM). In the minimal anomaly-free Z' model (AFZ'), the phenomenology is controlled by only three parameters beyond the SM ones, the Z' mass and two effective coupling constants g'_Y and g'_{BL}. We study the Z' 5-sigma discovery potential in e+e- collisions at 1.4 and 3 TeV CLIC. Assuming LHC discovers a Z' of 5 TeV mass, the expected accuracies on the Z'mu+mu- couplings are presented. We discuss also the requirements on detector performance and beam polarization.

  12. Analysis of the behaviour of the CLIC_SiD iron return yoke during a seismic event

    CERN Document Server

    Duarte Ramos, F.

    2012-01-01

    The iron return yoke of the CLIC SiD detector concept is composed of three barrel rings and two endcap discs which, during a seismic event, are subjected to horizontal and vertical accelerations that can result in both a mechanical failure of internal structural elements and high deformations which can lead to unwanted collisions with other internal or external detector elements, as well as the walls of the experimental cavern. This report presents the results from the analysis of the return yoke barrel rings and endcaps under a seismic event load case.

  13. Study of the hybrid controller electronics for the nano-stabilization of mechanical vibrations of CLIC quadrupoles

    CERN Document Server

    Fernandez Carmona, P; Collette, C; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Moron Ballester, R

    2011-01-01

    In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.

  14. Test of the beam effect on vacuum arc occurrence in a high-gradient accelerating structure for the CLIC project

    CERN Document Server

    AUTHOR|(CDS)2130409; Gagliardi, Martino

    A new generation of lepton colliders capable of reaching TeV energies is pres- ently under development, and to succeed in this task it is necessary to show that the technology for such a machine is available. The Compact Linear Collider (CLIC) is a possible design option among the future lepton collider projects. It consists of two normal-conducting linacs. Accelerating structures with a gradient of the order of 100 MV/m are necessary to reach the required high energies within a reasonable machine length. One of the strictest require- ments for such accelerating structures is a relatively low occurrence of vacuum arcs. CLIC prototype structures have been tested in the past, but only in absence of beam. In order to proof the feasibility of the high gradient technology for building a functional collider, it is necessary to understand the effect of the beam presence on the vacuum breakdowns. Tests of this type have never been performed previously. The main goal of this work is to provide a first measurement of t...

  15. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  16. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  17. Cam Mover Alignment System positioning with the Wire Positioning with the Wire Position Sensor Feedback for CLIC

    CERN Document Server

    AUTHOR|(CDS)2077936; Mainaud Durand, Helene; Kostka, Z.S.

    2016-01-01

    Compact Linear Collider (CLIC) is a study of an electron-positron collider with nominal energy of 3 TeV and luminosity of 2 ∙ 1034 cm-2s-1. The luminosity goal leads to stringent alignment requirements for single quadrupole magnets. Vertical and lateral offset deviations with regards to a given orbit reference in both ends of a quadrupole shall be below 1 μm and quadrupole roll deviation shall be below 100 μrad. Translation in the direction of particle beam is not controlled but mechanically locked. A parallel kinematic platform based on cam movers was chosen as system for detailed studies. Earlier studies have shown that cam movers can reach the CLIC requirements through an iterative process. The paper presents new modular off-the-shelf control electronics and software including three optional positioning algorithms based on iterations as well as a more advanced algorithm which can reach target position in one movement. The advanced algorithm reads wire position sensors (WPS), calculates quadrupole orien...

  18. lW{nu} production at CLIC: a window to TeV scale non-decoupled neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Aguila, Francisco del [Departamento de Fisica Teorica y del Cosmos and Centro Andaluz de Fisica de Particulas elementales (CAFPE), Universidad de Granada, E-18071 Granada (Spain); Aguilar-Saavedra, Juan Antonio [Departamento de Fisica and CFTP, Instituto Superior Tecnico, P-1049-001 Lisbon (Portugal)

    2005-05-01

    We discuss single heavy neutrino production e{sup +}e{sup -}{yields}N{nu}{yields}lW{nu}, l = e,{mu},{tau}, at a future high energy collider like CLIC, with a centre of mass energy of 3 TeV. This process could allow to detect heavy neutrinos with masses of 1-2 TeV if their coupling to the electron V{sub eN} is in the range 0.004-0.01. We study the dependence of the limits on the heavy neutrino mass and emphasise the crucial role of lepton flavour in the discovery of a positive signal at CLIC energy. We present strategies to determine heavy neutrino properties once they are discovered, namely their Dirac or Majorana character and the size and chirality of their charged current couplings. Conversely, if no signal is found, the bound V{sub eN} {<=} 0.002-0.006 would be set for masses of 1-2 TeV, improving the present limit up to a factor of 30. We also extend previous work examining in detail the flavour and mass dependence of the corresponding limits at ILC, as well as the determination of heavy neutrino properties if they are discovered at this collider.

  19. Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

    CERN Document Server

    2017-01-01

    Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

  20. Design and optimisation of the positron production chain for CLIC from the target to the damping ring

    Science.gov (United States)

    Bayar, C.; Ciftci, A. K.; Doebert, S.; Latina, A.

    2017-10-01

    The CLIC Positron source has been designed to produce non-polarised positron beams using a hybrid target composed of a crystal followed by an amorphous target. After production, positrons are captured and accelerated to 200 MeV in the pre-injector linac and subsequently accelerated further up to 2.86 GeV in the injector linac. At this point they enter the pre-damping ring and afterwards the main damping ring to obtain the necessary beam quality for a linear collider. In this study, we have designed and optimised the beam transport and acceleration from the target to the pre-damping ring which has a limiting transverse and longitudinal acceptance. The goal of the study was to maximise the positron yield accepted by the pre-damping ring.

  1. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A

    2010-01-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, o...

  2. Alignement général du CLIC: stratégie et progrès

    CERN Document Server

    Mainaud-Durand, H

    2008-01-01

    La faisabilité concernant le pré-alignement actif du CLIC sera démontrée si l?on peut prouver qu?il existe une référence et ses capteurs associés permettant l?alignement des composants à mieux que 3 microns (1?). Pour répondre à ce challenge, une méthode de mesure d?écarts à un fil tendu est proposée, basée sur 40 ans de pratique de cette technique au CERN. Quelques problèmes demeurent concernant cette méthode : la connaissance de la forme du fil tendu utilisé comme référence droite, la détermination du géoïde à la précision souhaitée et le développement de capteurs bas coût permettant des mesures sub-micrométriques. Des études ont été entreprises afin de lever les derniers points en suspens, pendant que cette solution est intégrée dans une proposition concernant l?alignement général du CLIC. Cela implique un grand nombre d?interactions au niveau du projet, dans des domaines aussi différents que le génie civil, l?intégration, la physique du faisceau, la métrologie des �...

  3. Separation of hadronic W and Z decays in the CLIC_ILD and the CLICdet detector models at 1.4 and 3TeV

    CERN Document Server

    AUTHOR|(SzGeCERN)793139; Roloff, Philipp Gerhard; Strom, Lars Rickard; Weber, Matthias Artur

    2017-01-01

    A study of the W and Z separation was performed for the CLIC_ILD and the CLICdet detector models for the proposed Compact Linear Collider (CLIC). Comparisons were done for fully-hadronic WW and ZZ events at the collision energies of 1.4 and 3 TeV. Particle flow objects are reconstructed using a full simulation of the events including relevant beam-induced background processes. Several different collections of particles, with varying level of background suppression, were compared for each of the detector models and optimal jet clustering parameters were found in each case, resulting in the best separation of the W and Z mass peaks. The CLICdet detector model performs similar to CLIC_ILD with an achieved jet mass separation of around 1.6 $\\sigma$ at 1.4 TeV and 1.3 $\\sigma$ at 3 TeV. For both detector models we achieve a better separation at 1.4 TeV when comparing dijet masses rather than large-R jet masses. At 3 TeV jets with a radius around R=0.5 perform similarly well as dijets.

  4. Radiation and Background Levels in a CLIC Detector due to Beam-Beam Effects Optimisation of Detector Geometries and Technologies

    CERN Document Server

    Sailer, André; Lohse, Thomas

    2013-01-10

    The high charge density---due to small beam sizes---and the high energy of the proposed CLIC concept for a linear electron--positron collider with a centre-of-mass energy of up to 3~TeV lead to the production of a large number of particles through beam-beam interactions at the interaction point during every bunch crossing (BX). A large fraction of these particles safely leaves the detector. A still significant amount of energy will be deposited in the forward region nonetheless, which will produce secondary particles able to cause background in the detector. Furthermore, some particles will be created with large polar angles and directly cause background in the tracking detectors and calorimeters. The main sources of background in the detector, either directly or indirectly, are the incoherent $mathrm{e}^{+}mathrm{e}^{-}$ pairs and the particles from $gammagamma ightarrow$ hadron events. The background and radiation levels in the detector have to be estimated, to study if a detector is feasible, that can han...

  5. A Study of e+e− → H0A0 → bbbb at 3 TeV at CLIC

    CERN Document Server

    Battaglia, M

    2010-01-01

    The precise determination of the masses of the CP-odd and -even heavy Higgs bosons is an important part of the study of Supersymmetry and its relation with cosmology through dark matter. This note presents a determination of the A0 mass with the e+e− → H0A0 → bb ̄bb ̄ process for a dark matter motivated cMSSM scenario with MA = 1141 GeV at CLIC. The analysis is performed with full simulation and reconstruction at √s=3 TeV accounting for beamstrahlung effects. SM and SUSY backgrounds are considered and the effect of the overlay of γγ → hadrons events on the signal is studied for various assumptions for the detector time-stamping capabilities. The di-jet mass resolution is improved by applying a kinematic fit. The A0 mass can be determined with a statistical accuracy of ≃ 3-5 GeV for 3 ab−1 of integrated luminosity and 0 to 20 bunch crossings of γγ background integrated in one event, respectively.

  6. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  7. Effect of PYTHIA8 tunes on event shapes and top-quark reconstruction in e$^+$e$^-$ annihilation at CLIC

    CERN Document Server

    Chekanov, Sergei; Fischer, Andrew; Zhang, Jinlong

    2017-01-01

    This paper describes the effect of PYTHIA8 tunes on event simulation of e$^+$e$^-$ collisions with center-of-mass (CM) energies of 380 GeV and 3 TeV at the proposed CLIC collider. Event shapes, such as thrust, thrust major, thrust minor, oblateness, as well as particle multiplicities have been analyzed and relative differences with respect to the default PYTHIA8 tune were determined. The effect of tunes on top-mass reconstruction in the resolved and boosted regimes was analyzed. No statistically significant variation for reconstructed top masses using invariant masses of three jets was found for events with a CM energy of 380 GeV. For the fully boosted top reconstruction at a CM energy of 3 TeV, a significant shift in reconstructed top mass of about 700 MeV for the "Montull" tune was observed. This shift correlates with an increase in particle multiplicity compared to all other PYTHIA8 tunes.

  8. Stabilization of Nanometre-Size Particle Beams in the Final Focus System of the Compact LInear Collider (CLIC)

    CERN Document Server

    Redaelli, S

    2003-01-01

    The Compact LInear Collider (CLIC) study at the European Organization for Nuclear Research (CERN) is developing the design of a 3 TeV e+ e- linear collider. The discovery reach of this machine depends on obtaining a luminosity of 1035 cm_2s_1, which will be done by colliding beams with transverse spot sizes in the nanometre range ≈ 60 × 0:7 nm2). Tolerances on fast mechanical stability of the focusing quadrupoles reach the 0.2 nm level. The serious concern of magnet stabilization for future linear colliders has been addressed by building a CERN test stand on magnet stability, bringing together state-of-the-art stabilization technology, latest equipment for vibration measurements and realistic magnet prototypes. For the first time an accelerator magnet was successfully stabilized to the sub-nanometre level, reducing its vibrations level by one order of magnitude with respect to the supporting ground. The best measurements indicate transverse RMS vibration amplitudes (above 4 Hz) of (0.79+0.08) nm ho...

  9. Measurement of σ (e+e− → Hνν)×BR(H → ττ) at CLIC @ 350 GeV

    CERN Document Server

    Münnich, A

    2012-01-01

    This detector benchmark study evaluates the statistical precision with which the H → ττ branching ratio times cross section can be measured at CLIC running at s = 350 GeV. Only the hadronic decay of τs are considered. Results for MH = 126 GeV and 500 fb−1 of integrated luminosity are obtained using full de- tector simulation and including beam-induced backgrounds resulting in a statistical accuracy of cross section times branching ratio of 6.2%.

  10. Beam-Based Alignment in CTF3 Test Beam Line

    OpenAIRE

    Sterbini, G; Dӧbert, S; Marín, E.; Lillestol, RL; Schulte, D.; Adli, E.

    2012-01-01

    The CLIC linear collider is based on the two beams acceleration scheme. During acceleration of the colliding beams, the drive beam suffers a large build up on its energy spread. In order to efficiently transport such a beam, beam-based alignment techniques together with tight prealignment tolerances are crucial. To evaluate the performance of these steering algorithms, a beam-based steering campaign has been conducted at the Test Beam Line of the CLIC Test Facility. In the following we presen...

  11. Physics potential for the measurement of sigma(H nu antinu ̄) x BR(H -->μ+μ-) at a 1.4 TeV CLIC collider

    CERN Document Server

    Milutinovic-Dumbelovic, Gordana; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2015-01-01

    Measurements of Higgs couplings at CLIC will offer the potential for a rich precision phys- ics programme and for the search for physics beyond the Standard Model(SM). The poten- tial for measuring the SM Higgs boson decay into two muons at a 1.4 TeV CLIC collider is addressed in this paper. The study is performed using a full Geant4 detector simulation of the CLIC_ILD detector model, taking into consideration all the relevant physics and beam-induced background processes, as well as the instrumentation of the very forward region to identify high-energy electrons. In this analysis, we show that the branching ratio BR(H-->μ+μ-) times the Higgs production cross-section in W+W- fusion can be measured with 38% statistical accuracy at sqrt(s) = 1.4 TeV assuming an integrated luminosity of 1.5 ab-1 with unpolarised beams. If 80% electron beam polarisation is considered, as planned for CLIC, the statistical uncertainty of the measurement is 27%. Systematic uncertainties are negligible.

  12. Measurement of the branching ratios for the Standard Model Higgs decays into muon pairs and into Z boson pairs at a 1.4 TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)701211; Bozovic-Jelisavcic, Ivanka; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2016-01-01

    The measurement of the Higgs production cross-section times the branching ratios for its decays into μ+μ- and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e+e- collisions at 1.4 TeV centre-of-mass energy. Analyses for both decay channels are based on a full simulation of the CLIC_ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab 1 and unpolarised beams are assumed. For the H-->ZZ* decay, the purely hadronic final state (ZZ*--> qq ̄qq ̄) is considered as well as ZZ* decays into two jets and two leptons (ZZ*--> qq ̄l+l- ). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching fraction for decay into a Z boson pair times the Hi...

  13. Physics performances for Scalar Electron, Scalar Muon and Scalar Neutrino searches at 3 TeV and 1.4 TeV at CLIC

    CERN Document Server

    Battaglia, M.; Marshall, J.S.; Poss, S.; Sailer, A.; Thomson, M.; van der Kraaij, E.

    2013-01-01

    The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within t...

  14. Drive Beam Generation For CLIC Based On 200 MHz SC Structures

    CERN Document Server

    Thorndahl, L

    1998-01-01

    The present note describes an RF power generation scheme for multibunch operation at 1 TeV CM and luminosity 10^34 cm^-2s^-1. - The scheme is upgraded to use acceleration with 200 MHz SC cavities (instead of 352 or 250 MHz ones, but still with 6MV/m) in order to reduce the active SC linac length, for the required stored electromagnetic energy (180 KJ/linac), and hence also reduce the capital cost of drive beam generation. Further value (7.8 10^9), due to the lowered frequency, increases the overall efficiency.

  15. A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles

    CERN Document Server

    Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C

    2010-01-01

    In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...

  16. Brazing of Mo to a CuZr alloy for the production of bimetallic raw materials for the CLIC accelerating structures

    CERN Document Server

    Salvo, M; Heikkinen, Samuli; Salvo, Milena; Casalegno, Valentina; Sgobba, Stefano; Rizzo, Stefano; Izquierdo, Gonzalo Arnau; Taborelli, Mauro

    2010-01-01

    Future linear accelerators, as CLIC (Compact Linear Collider), are extremely demanding in terms of material properties. Traditionally accelerating structure is made of brazed OFE copper parts. For the high conducting regions submitted to mechanical fatigue, CuZr would represent an improved selection than pure copper while for regions where the highest electric field is applied a refractory metal, i.e. Mo, could result in a better performance. The feasibility of joining such materials, namely CuZr (UNS C15000) and pure Mo has been investigated. The joining method developed and investigated here consists in a vacuum brazing process exploiting a Cu-based brazing filler applied under appropriate vacuum conditions. Apparent shear strength (adapted from ASTM B898) on the joined samples was about 200 MPa. (C) 2010 Elsevier B.V. All rights reserved.

  17. Optimisation Des Paramètres De Faisceau En Utilisant Le Processus e+e- => HZ => Hqq Avec Une Energie de 380 GeV Au Projet CLIC

    CERN Document Server

    AUTHOR|(CDS)2089028; RABOANARY, Roland

    Ce travail de thèse vise à trouver un bon compromis entre luminosité de collision et le beamstrahlung à travers un des processus les plus importants, le Higgsstrahlung. Vu que dans l’étude du processus Higgsstrahlung, l’énergie centre de masse est fixée, ce processus est supposé très sensible à l’effet de beamstrahlung. C’est pour cette raison qu’on a choisi le processus Higgsstrahlung pour réaliser l’optimisation des paramètres du faisceau au projet CLIC (Compact Linear Collider). Un paramètre d’échelonnage spécifique est utilisé pour varier la taille du faisceau à travers l’émittance horizontale du faisceau. Une valeur optimale qui correspond à la meilleure précision de la section efficace est obtenue.

  18. Limits on top FCNC decay t$\\rightarrow$cH and t$\\rightarrow$c$\\gamma$ from CLIC at 380 GeV

    CERN Document Server

    Zarnecki, Aleksander

    2018-01-01

    FCNC top decays are very strongly suppressed in the Standard Model and the observation of any such decay would be a direct signature of physics beyond SM. Many "new physics" scenarios predict contributions to FCNC processes and the largest enhancement in many models is for t$\\rightarrow$cH decay. Enhancements for the decay channel t$\\rightarrow$c$\\gamma$ are more modest, but the decay still has a clearly identifiable kinematic signature. Prospects for measuring these decays at CLIC running at 380 GeV were studied with full detector simulation, taking the luminosity distribution, beam polarization and beam induced background into account. Top pair production events with t$\\rightarrow$cH decays can be identified based on the kinematic constraints and flavour tagging information. The analysis was divided into three steps: classification of top pair candidate events, event quality determination and kinematic reconstruction based on signal or background hypotheses, and final separation of signal from background. T...

  19. Measurement of Higgs decay to WW$^{*}$ in Higgsstrahlung at $\\sqrt{s}=500$ GeV ILC and in WW-fusion at $\\sqrt{s}=3$ TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718111

    2017-01-01

    This talk presents results of the two independent analyses evaluating the measurement accuracy of the branching ratio for the Standard model Higgs boson decay to a W-pair, at the Compact Linear Collider (CLIC) and at the International Linear Collider (ILC). The considered Higgs production channels are the WW-fusion for the highest energy stage of CLIC, $\\sqrt{s}=3$ TeV, and the Higgsstrahlung process for the nominal ILC energy, $\\sqrt{s}=500$ GeV. Both studies are performed using the full simulation of the detector. The realistic experimental conditions have been simulated including beam energy spectrum, initial state radiation and the background from $\\gamma \\gamma \\rightarrow hadrons$ processes, which are overlaid on simulated events. The multivariate analysis technique is used for the final event selection and the expected relative statistical uncertainty, $\\Delta ( \\sigma \\cdot BR)/(\\sigma \\cdot BR)$, of the measured Higgs production cross sections is estimated.

  20. A 12 kV, 1 kHz, Pulse Generator for Breakdown Studies of Samples for CLIC RF Accelerating Structures

    CERN Document Server

    Soares, R H; Kovermann, J; Calatroni, S; Wuensch, W

    2012-01-01

    Compact Linear Collider (CLIC) RF structures must be capable of sustaining high surface electric fields, in excess of 200 MV/m, with a breakdown (BD) rate below 3×10-7 breakdowns/pulse/m. Achieving such a low rate requires a detailed understanding of all the steps involved in the mechanism of breakdown. One of the fundamental studies is to investigate the statistical characteristics of the BD rate phenomenon at very low values to understand the origin of an observed dependency of the surface electric field raised to the power of 30. To acquire sufficient BD data, in a reasonable period of time, a high repetition rate pulse generator is required for an existing d.c. spark system at CERN. Following BD of the material sample the pulse generator must deliver a current pulse of several 10’s of Amperes for ~2 μs. A high repetition rate pulse generator has been designed, built and tested; this utilizes pulse forming line technology and employs MOSFET switches. This paper describes the design of the pulse generat...

  1. Thermal evaluation of different DC multi-conductor cable cross-sections and installation patterns for the CLIC drive-beam quadrupoles

    CERN Document Server

    Maglio, D

    2007-01-01

    The main goal of this study is to determine the thermal behaviour of different dc multi-conductor cable cross-sections and installations patterns for the CLIC drive beam quadrupoles loaded with increasing values of current intensity. A simplified two dimensional model of the heat transfer problem was prepared with a commercial CFD software, STAR-CD 4.2. The heat flux generated by Joule effect in conductors was estimated taking into account the current value per conductor and the temperature dependence of the copper electrical resistance. In parallel, a geometrical simplification of the problem has been done in order to be able to apply theoretical formulas which have been implemented by Microsoft Excel. Obtained results have been compared with those got by the dedicated software, showing between them a good correspondence for two-conductor cables and confirming, for this case, the rules given in the in the French norm NF C15-100. In case of multiconductor cables, attention is to be paid to the temperature lev...

  2. Jet Reconstruction and Kinematic Fitting of the Top Quark Pair Production at CLIC at √s = 3 TeV

    CERN Document Server

    Galy-Fajou, Theo; Bay, Aurelio

    Top quark physics, due to its possible link with new physics, is a critical topic now that the Standard Model has been experimentally verified. A complete method to reconstruct top quarks pairs at the proposed Compact LInear Collider project is presented here. In this study, MC generated events of e+e− → tt have been used to tune and optimize algorithms in order to reconstruct faithfully the decay products of the top quarks. An emphasis is made on the flavour identification of the jets since it is critical to identify correctly identify the jets to remove most of the background. The reconstructed jets are fitted to the topology with the KLFitter algorithms that have been adapted for CLIC. Using a multi-variable analysis, it finds the best permutation of jets with the best set of parameters using the kinematics of the event. The results of this technique applied on a sample of 49500 e+e− → tt events (corresponding to 850 fb−1 at √s = 3 TeV) is presented here.

  3. Beam instability induced by rf deflectors in the combiner ring of the CLIC test facility and mitigation by damped deflecting structures

    CERN Document Server

    Alesini, D; Biscari, C; Ghigo, A; Corsini, R

    2011-01-01

    In the CTF3 (CLIC test facility 3) run of November 2007, a vertical beam instability has been found in the combiner ring during operation. After a careful analysis, the source of the instability has been identified in the vertical deflecting modes trapped in the rf deflectors and excited by the beam passage. A dedicated tracking code that includes the induced transverse wakefield and the multibunch multipassage effects has been written and the results of the beam dynamics analysis are presented in the paper. The mechanism of the instability was similar to the beam breakup in a linear accelerator or in an energy recovery linac. The results of the code allowed identifying the main key parameters driving such instability and allowed finding the main knobs to mitigate it. To completely suppress such beam instability, two new rf deflectors have been designed, constructed, and installed in the ring. In the new structures the frequency separation between the vertical and horizontal deflecting modes has been increase...

  4. Higgs Mass and Cross-Section Measurements at a 500 GeV CLIC Machine, Operating at sqrt(s) = 350 GeV and 500 GeV

    CERN Document Server

    Marshall, J

    2012-01-01

    Higgs mass and cross-section measurements have been examined to assess the capability of a 500 GeV CLIC machine, operating at centre-of-mass energies of 350 GeV and 500 GeV. A Higgs mass of 120 GeV and a luminosity of 500 fb−1 were assumed. Model-independent measurements were performed by examining the recoil of the Z in the Higgsstrahlung process, with the Z subsequently decaying to a pair of muons or electrons.

  5. University of Tokyo President H. Komiyama greeting CERN Secretary-General M. Metzger, IT Department Head, W. von Rüden, AT Department Head P. Lebrun, CLIC Project Leader J.P. Delahaye and ATLAS Collaboration Spokesperson P. Jenni on 18 August 2006.

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    University of Tokyo President H. Komiyama greeting CERN Secretary-General M. Metzger, IT Department Head, W. von Rüden, AT Department Head P. Lebrun, CLIC Project Leader J.P. Delahaye and ATLAS Collaboration Spokesperson P. Jenni on 18 August 2006.

  6. Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    Signature of MoU between CERN and Australian Collaboration for Accelerator Science (ACAS); Roger Rassool, ACAS Director; Mark Boland, ACAS Deputy Director; Jean-Pierre Delahaye, CLIC Project Leader; in the presence of Rolf Heuer, Director-General and Emmanuel Tsesmelis, Adviser for Australia

  7. C. Petrone et al.: "Magnetic measurement of the model magnet QD0 designed for the CLIC final focus beam transport line." CERN TE-MSC Internal Note, EDMS Nr: 1184196

    CERN Document Server

    Arpaia, Pasquale; Petrone, Carlo; Russenschuck, Stephan; Walckiers, Louis

    2012-01-01

    This note presents the results of the magnetic measurements performed on QD0, model magnet for the final focus transport line for CLIC (Fig. 1). This high-gradient, hybrid quadrupole has a yoke length of 0.1 m and an aperture of 8.3 mm. ND2Fe14B Permanent magnet blocks provide a gradient of 150 T/m, which can be further increased to 530 T/m when the four coils are excited to 18.3 A. The request was to measure the strength of the field and the multipole coefficients at different currents. The measurement of the field strength, by means of the single stretched wire system, was done in December 2011 in the I8 laboratory. The measurement of the multipole was done by means of the oscillating wire system [1][2].

  8. CLIC crab cavity final report

    CERN Document Server

    Burt, G et al

    2013-01-01

    A high gradient 12 GHz, normal‐conducting travelling‐wave structure, with a high group‐velocity to minimise the effects of beam loading, has been developed. Appropriate input coupler and wakefield damping processes have been incorporated and two ‘undamped’ structures have been fabricated, one in the UK by Shakespeare Engineering Ltd and the other by VDL at CERN. Systematic high gradient tests are planned at SLAC and CERN, to study breakdown differences between deflecting and accelerating structures.

  9. 6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

    CERN Multimedia

    Teams : M. Brice, JC Gadmer

    2010-01-01

    6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

  10. Study and Development of a Laser Based Alignment System

    CERN Multimedia

    Stern, G

    2014-01-01

    CLIC (Compact Linear Collider) has tight requirements regarding pre-alignment of beam related components: 10 µm accuracy over a sliding window of 200 m along the 20 km of linac. To perform such an alignment, a new system is proposed combining laser beam as straight line reference and camera/shutter assemblies as sensors. The poster describes the alignment system and shows results regarding laser pointing stability with respect to time, shutter type, distance and environment. These results give a frame for future building and calibrating of sensors.

  11. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  12. Metodologías activas. Un estudio de AICLE/CLIL en Tecnología e Inglés / Active Learning. A study of CLIC/AICLE in Technology and English

    Directory of Open Access Journals (Sweden)

    Susana Warburton

    2017-09-01

    Full Text Available Resumen: Esta investigación recoge el trabajo realizado durante un periodo de dos cursos académicos en un centro concertado de la Comunidad valenciana, dentro de la metodología Aprendizaje Integrado de Contenidos y Lenguas Extranjeras (AICLE o en inglés Content and Language Integrated Learning (CLIL. Las materias implicadas en esta investigación han sido la de tecnología y lengua inglesa del segundo ciclo de Educación Secundaria Obligatoria. Se parte de la hipótesis de que los alumnos no se encuentran muy receptivos para el aprendizaje de lenguas extranjeras y que nuevos enfoques metodológicos, en particular el aprendizaje cooperativo a través de AICLE/CLIL, podrían motivar y mejorar los resultados de aprendizaje del inglés, así como el de otras materias. Para la obtención de datos hemos utilizado cuestionarios, entrevistas, observación participativa durante la realización de las diferentes tareas y las exposiciones orales de los trabajos y observadores externos. Los resultados evidencian que la integración de contenidos y lengua ha mejorado sensiblemente en las comunicaciones orales de los alumnos. Un estudio comparativo con otras asignaturas menos prácticas, podría ampliar este trabajo. Abstract: This research includes the work done over a period of two years at a private centre of Valencia, within the methodology Content and Language Integrated Learning (CLIL. The areas involved in this project have been Technology and the English language of the second cycle of secondary school. The assumption is that students are not very receptive to foreign language learning and new methodological approaches, including cooperative learning through CLIL, could motivate and improve learning outcomes of English and those of other subjects. For data collection we used questionnaires, interviews, participant observation while performing different tasks and oral presentations of work and outside observers. The results show that the integration of content and language has improved especially in oral communication. A comparative study with other less practical subjects could extend this work.

  13. Comprehensive regional and temporal gene expression profiling of the rat brain during the first 24 h after experimental stroke identifies dynamic ischemia-induced gene expression patterns, and reveals a biphasic activation of genes in surviving tissue

    DEFF Research Database (Denmark)

    Rickhag, Karl Mattias; Wieloch, Tadeusz; Gidö, Gunilla

    2006-01-01

    -dehydrogenase1, and Choline kinase) or cell death-regulating genes such as mitochondrial CLIC. We conclude that a biphasic transcriptional up-regulation of the brain-derived neurotrophic factor (BDNF)-G-protein coupled receptor (GPCR)-mitogen-activated protein (MAP) kinase signaling pathways occurs in surviving...... tissue, concomitant with a progressive and persistent activation of cell proliferation signifying tissue regeneration, which provide the means for cell survival and postischemic brain plasticity.......In order to identify biological processes relevant for cell death and survival in the brain following stroke, the postischemic brain transcriptome was studied by a large-scale cDNA array analysis of three peri-infarct brain regions at eight time points during the first 24 h of reperfusion following...

  14. Aberrant Chloride Intracellular Channel 4 Expression Contributes to Endothelial Dysfunction in Pulmonary Arterial Hypertension

    Science.gov (United States)

    Wojciak-Stothard, Beata; Abdul-Salam, Vahitha B.; Lao, Ka Hou; Tsang, Hilda; Irwin, David C.; Lisk, Christina; Loomis, Zoe; Stenmark, Kurt R.; Edwards, John C; Yuspa, Stuart H.; Howard, Luke S.; Edwards, Robert J.; Rhodes, Christopher J.; Gibbs, J Simon R.; Wharton, John; Zhao, Lan; Wilkins, Martin R.

    2014-01-01

    Background Chloride intracellular channel 4 (CLIC4) is highly expressed in the endothelium of remodelled pulmonary vessels and plexiform lesions of patients with pulmonary arterial hypertension (PAH). CLIC4 regulates vasculogenesis through endothelial tube formation. Aberrant CLIC4 expression may contribute to the vascular pathology of PAH. Methods and Results CLIC4 protein expression was increased in plasma and blood-derived endothelial cells from patients with idiopathic PAH (IPAH) and in the pulmonary vascular endothelium of 3 rat models of pulmonary hypertension. CLIC4 gene deletion markedly attenuated the development of chronic hypoxia-induced pulmonary hypertension in mice. Adenoviral overexpression of CLIC4 in cultured human pulmonary artery endothelial cells compromised pulmonary endothelial barrier function and enhanced their survival and angiogenic capacity, while CLIC4 shRNA had an inhibitory effect. Similarly, inhibition of CLIC4 expression in blood-derived endothelial cells from patients with IPAH attenuated the abnormal angiogenic behaviour that characterises these cells. The mechanism of CLIC4 effects involves p65-mediated activation of nuclear factor-κB, followed by stabilisation of hypoxia-inducible factor-1α and increased downstream production of vascular endothelial growth factor and endothelin-1. Conclusions Increased CLIC4 expression is an early manifestation and mediator of endothelial dysfunction in pulmonary hypertension. PMID:24503951

  15. Definition of a reference metrology network for the positioning of a large linear accelerator; Definition d'un reseau de reference metrologique pour le positionnement d'un grand accelerateur lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Becker, F

    2003-12-15

    This thesis is a study of the Compact Linear Collider (CLIC) alignment system, a project of linear accelerator of about 30 km long of the European Organization for Nuclear Research (CERN). The pre-alignment tolerance on the transverse positions of the components of the CLIC linacs is typically ten microns over distances of 200 m. This research is a consequence of 10 years work, where several sets of special sensors dedicated to metrology have been adapted for the CLIC project. Most of these sensors deliver measurements linked to geometric references sensitive to gravity fluctuation. An important part of this work is therefore dedicated to study the gravity disruptions as a high level of accuracy is required. The parameters to take into account in the use of the hydrostatic leveling have thus been highlighted. A proposal of configuration of the system alignment based on a selection of sensors has also been given in this research. Computer models of different possible configurations have been presented. As the existing computing software was inappropriate, a new object oriented software package has been developed, to ensure future upgrades. An optimized configuration of the network has been defined from a set of simulations. Finally, due to problems in the use of hydrostatic leveling systems, a solution based on the use of a long laser beam as an alternative solution is discussed. (author)

  16. oWPS VERSUS cWPS

    CERN Document Server

    Mainaud Durand, H; Herty, A; Marin, A; Rude, V

    2012-01-01

    The strategy of the CLIC pre-alignment relies on Wire Positioning Sensors (WPS) measuring the radial and vertical offsets with respect to a stretched wire. A precision below 2 µm and an accuracy of 5 µm over a whole range of measurement of 10 mm per axis are required for these sensors. Two types of sensors, based on two different technologies are under development and study at CERN: the capacitive sensor (cWPS) is already in use for the monitoring of the position of the low beta triplets in the LHC and the optical sensor (oWPS) is currently under development with Open Source Instruments. The cWPS had to be upgraded in order to reach the specifications required by the CLIC alignment. The oWPS is a new development especially designed to the CLIC demands. The paper presents the two types of sensors, the developments, as well as the latest results obtained in validation tests. These two types of sensors are part of a common test setup: results of inter-comparison tests achieved on this setup are detailed.

  17. Compilation of References and Bibliography. Volume 1. An Annotated Bibliography on Low Intensity Conflict Taken from the Joint Low- Intensity Conflict Project Final Report of 1 August 1986. CLIC PAPERS.

    Science.gov (United States)

    1987-08-01

    Ernesto "Che" Guevara, Nguyen Van Thieu, and Chaliand. 11. Book, Insurgency, Combatting Terrorism. Clutterbuck, Richard, The Long War: Counterinsurgency...activities in Kashmir, the Congo, the Sinai, Lebanon, Santo Domingo , Chad, and other locations. 53 %0 3. Book, Peacekeeping Operations, International

  18. Micrometric alignment metrology means, developments and applications

    CERN Document Server

    Mainaud-Durand, H

    2004-01-01

    In order to meet the ever-increasing drastic alignment tolerances concerning the future particle accelerators, a new generation of sensors has been developed. Whether they are based on ultrasonic, optical or capacitive technology, these sensors, of micrometric resolution, allow continuous measurements in an often hostile environment (strong radiations, strong electro-magnetic fields) and thereby revolutionize alignment possibilities. After a brief presentation of the different sensors tested, used and indeed developed by our group, we present the past, present and future applications linked to the particle accelerators - in the short term concerning micrometric alignment of the low-beta quadrupoles of the LHC, and in the long term concerning the prealignment of the CLIC - or linked to other applications.

  19. Experiment of Laser Pointing Stability on Different Surfaces to validate Micrometric Positioning Sensor

    CERN Document Server

    AUTHOR|(SzGeCERN)721924; Mainaud Durand, Helene; Piedigrossi, Didier; Sandomierski, Jacek; Sosin, Mateusz; Geiger, Alain; Guillaume, Sebastien

    2014-01-01

    CLIC requires 10 μm precision and accuracy over 200m for the pre-alignment of beam related components. A solution based on laser beam as straight line reference is being studied at CERN. It involves camera/shutter assemblies as micrometric positioning sensors. To validate the sensors, it is necessary to determine an appropriate material for the shutter in terms of laser pointing stability. Experiments are carried out with paper, metal and ceramic surfaces. This paper presents the standard deviations of the laser spot coordinates obtained on the different surfaces, as well as the measurement error. Our experiments validate the choice of paper and ceramic for the shutter of the micrometric positioning sensor. It also provides an estimate of the achievable precision and accuracy of the determination of the laser spot centre with respect to the shutter coordinate system defined by reference targets.

  20. Background simulation for the CLIC Beam Delivery System with Geant

    CERN Document Server

    Blair, G A; Schreiber, H J

    2002-01-01

    Background simulation with particle interactions in the materials of an accelerator environment and their follow up towards the detector are described. The studies include muon production and follow up using the Geant3 program and the development of a general simulation environment suited to accelerator optics descriptions based on Geant4. given by the product of the differential cross section and the photon path length, summed over all possible photon energies. The follow up of the muons through the BDS ge-ometry and the simulation of the energy loss of the muons is done using GEANT3[2].

  1. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  2. An Experimental Approach to Simulations of the CLIC Interaction Point

    DEFF Research Database (Denmark)

    Esberg, Jakob

    2012-01-01

    crystalline matter. The 6th chapter briefly introduces basic theoretical aspects that are natural for understanding the processes occurring at the interaction points of a future collider and in fixed target experiments. It is the purpose of this chapter to give basic formulas but also to give the reader...... experiments conducted at MAMI will be presented. Furthermore the chapter discusses the performance of new CMOS based detectors to be used in future experiments by the NA63 collaboration. The chapter on collider simulations introduces the beam-beam simulation codes GUINEA-PIG and GUINEA-PIG++, their methods...... of operation and their features. The characteristics of the simulated particles are presented and a comparison between the outputs of these codes with those from CAIN. \\item In the chapter on tridents, the implementation of the direct trident process in GUINEA-PIG++ is described. The results are compared...

  3. Active quadrupole stabilization for future linear particle colliders

    CERN Document Server

    Collette, Christophe; Kuzmin, Andrey; Janssens, Stef; Sylte, Magnus; Guinchard, Michael; Hauviller, Claude

    2010-01-01

    The future Compact LInear particle Collider (CLIC) under study at CERN will require to stabilize heavy electromagnets, and also to provide them some positioning capabilities. Firstly, this paper presents the concept adopted to address both requirements. Secondly, the control strategy adopted for the stabilization is studied numerically, showing that the quadrupole can be stabilized in both lateral and vertical direction. Finally, the strategy is validated experimentally on a single degree of freedom scaled test bench.

  4. Status Report of Projects Activities at CERN

    CERN Document Server

    Missiaen, Dominique; Dobers, Tobias; Fuchs, Jean-Frederic; Gayde, Jean-Christophe; Jones, Mark; Mainaud Durand, Helene

    2014-01-01

    Besides the Long Shut-Down 1 (LS1), some projects are still progressing at CERN. Among them, it has to be mentioned LINAC4, a future essential part of the LHC injector chain, AWAKE, a project to verify the approach of using protons to drive a strong wakefield in a plasma, ELENA, a small compact ring for cooling and decelerating antiproton and HIE-Isolde, not to forget the long term studies for CLIC and FCC. This paper describes the status of these projects from the survey and alignment point of view.

  5. Blockage of transdifferentiation from fibroblast to myofibroblast in experimental ovarian cancer models

    Directory of Open Access Journals (Sweden)

    Dai Shuzhen

    2009-09-01

    Full Text Available Abstract Background Tumour stromal myofibroblasts can promote tumour invasion. As these cells are genetically more stable than cancer cells, there has been enormous interest in developing targeted molecular therapies against them. Chloride intracellular channel 4 (CLIC4 and reactive oxygen species (ROS have been linked with promoting stromal cell transdifferentiation in various cancers, but little is known of their roles in ovarian cancer. In this study, we examined the functional roles that both CLIC4 and ROS play in the process of ovarian cancer cell-stimulated or TGF-β1 induced fibroblast-to-myofibroblast transdifferentiation. We also examine whether it is possible to reverse such a process, with the aim of developing novel therapies against ovarian cancer by targeting activated transdifferentiated myofibroblasts. Results We demonstrate that TGF-β1 induced or CMSKOV3 activate transdifferentiated myofibroblasts (fibroblasts. These fibroblasts mimic "reactive" stromal myofibroblasts and demonstrate significant up-regulation of CLIC4 expression and increased level of ROS production. Blocking the production of ROS with an antioxidant consequently reduces the expression of CLIC4, and is accompanied by disappearance of α-smooth-muscle actin (α-SMA, a myofibroblast marker, suggesting ROS acts as a signalling molecule that promotes and enhances CLIC4 activities in the myofibroblast transdifferentiaton process. Down-regulation of CLIC4 with a generic agent or specific siRNA both significantly reduces the expression of factors related to the phenotypes and functions of myofibroblasts, such as α-SMA, hepatocyte growth factor (HGF and vascular endothelial growth factor (VEGF, thus reversing the myofibroblast phenotype back to fibroblasts. These results convincingly show that ROS and CLIC4 are responsible for TGF-β1 induced fibroblast-to-myofibroblast transdifferentiaton and down-regulation of both is sufficient to block transdifferentiated

  6. Get Active

    Science.gov (United States)

    ... try getting active more often. What kinds of activity should I do? To get all the health ... Health Benefits What are the benefits of physical activity? Physical activity increases your chances of living longer. ...

  7. Activated Charcoal

    Science.gov (United States)

    Activated Carbon, Animal Charcoal, Carbo Vegetabilis, Carbon, Carbón Activado, Charbon Actif, Charbon Activé, Charbon Animal, Charbon Médicinal, Charbon Végétal, Charbon Végétal Activé, Charcoal, Gas Black, Lamp Black, Medicinal Charcoal, Noir de Gaz, ...

  8. Physical Activity

    DEFF Research Database (Denmark)

    Andersen, Lars Bo; Anderssen, Sigmund Alfred; Wisløff, Ulrik

    2014-01-01

    Andersen LB, Anderssen SA, Wisløff U, Hellénius M-L, Fogelholm M, Ekelund U. (Expert Group) Nordic Nutrition Recommendations 2012. Integrating nutrition and physical activity. Chapter: Physical Activity p. 195-217.Nordic Counsil of Ministers.......Andersen LB, Anderssen SA, Wisløff U, Hellénius M-L, Fogelholm M, Ekelund U. (Expert Group) Nordic Nutrition Recommendations 2012. Integrating nutrition and physical activity. Chapter: Physical Activity p. 195-217.Nordic Counsil of Ministers....

  9. Astronomy Activities.

    Science.gov (United States)

    Greenstone, Sid

    This document consists of activities and references for teaching astronomy. The activities (which include objectives, list of materials needed, and procedures) focus on: observing the Big Dipper and locating the North Star; examining the Big Dipper's stars; making and using an astrolabe; examining retograde motion of Mars; measuring the Sun's…

  10. Liberation Theology in Central America. Liberation Theology and the Marxist Sociology of Religion. CLIC Papers

    Science.gov (United States)

    1989-06-01

    stated by Gustavo Gutierrez, ". . . many agree with Sartre that ’Marxism, as the formal framework of all contemporary-philosophical thought, cannot be...political terms. According to Jean Bayet 31 , a series of grave internal struggles developed within the different factions of the dominant class... Paul Blanquart that permitted the new ideology to be recuperated by the dominant classes co-opting its revolutionary aspects. The lack of consciousness

  11. CLIC spectrometer magnet interference computation of transversal B-field on primary beam

    CERN Document Server

    Swoboda, Detlef; Tomas, Rogelio

    2009-01-01

    A 3-D FE model with the present spectrometer magnet concept has been built to compute the interference of the spectrometer field with the primary beam. Screening of the primary beam and Final Focus magnets (FF) is achieved by an “Anti-solenoid” close to the beam trajectory.

  12. Study and Experimental Characterization of a Novel Photo Injector for the CLIC Drive Beam

    CERN Document Server

    Mete, Oznur; Rivkin, Leonid

    2011-01-01

    In this thesis, the transverse and longitudinal beam properties of the PHIN photoinjector are characterized. The ob jective of the research is to demonstrate the reliable and stable production of a 1.3 µs long bunch train, with 2.33 nC charge per bunch and 4.5 µC of total charge, by the PHIN photoinjector. The results of this thesis are the important steps towards the feasibility demonstration of a photoinjector as the Compact Linear Collider’s drive beam source. The PHIN photoinjector has been conceptualized by a collaboration between “Laboratoire de l’Accélérateur Linéaire (LAL)”, “Rutherford Appleton Laboratory (RAL)” and “Organisation Européenne pour la Recherche Nucléaire (CERN)”. Within this collaboration, LAL and RAL have committed to the design and the construction of the RF gun and laser, respectively. The photocathode production as well as the overall coordination and commissioning were under the responsibility of CERN. The pro ject is in the framework of the second Joint Res...

  13. A Framework for Competitive Strategies Development in Low Intensity Conflict. CLIC Papers

    Science.gov (United States)

    1988-04-01

    refueling probes proved equally effective in providing a lawilmingw mix. Another example comes from David versus Goliath in the Bible . David’s original...antigovernment jokes, stories, poems, and songs in public. Comments. The preceding lists of indicators should not be viewed as a definitive set...1987), p. 34. 29. Mark Lorell, Charles Kelley, 3r., with the assistance of Deborah Hensler, Presidential policv Durinu the Vietnam W u , The Rand

  14. Copper-to-silicon-carbide joints development for Future CLIC Hom Dampers

    CERN Document Server

    Gil Costa, Miguel

    2015-01-01

    Ceramic-to-metal joints have been of paramount importance for the nuclear and aeronautic industry since the last century. In this document, two different approaches to the Cu-to-SiC joining are briefly described and discussed. The first approach consists of an intermediate piece of lower Coefficient of Thermal Expansion than copper aiming to reduce the expansion mismatch with the ceramic during the brazing cycle. Soldering is selected as a second attempt, whose lower joining temperature reduces the absolute expansion difference between Cu and SiC. In addition, four SiC metallization processes are proposed and some of them have been also tested and discussed.

  15. Introducción: entre ladrillos y clics de ratón (bricks and clicks

    Directory of Open Access Journals (Sweden)

    Agustí, Lluís

    2002-03-01

    Full Text Available El Instituto Cervantes es la institución pública destinada a promover la enseñanza y el estudio de la lengua y la cultura española en el exterior, contribuyendo así al desarrollo y difusión de las culturas de España e Hispanoamericana. Para este fin dispone, además de los servicios centrales en Madrid, de una red de más de treinta centros en el mundo que cuentan en común básicamente proponer cursos de lengua, actividades relacionadas con la cultura y el espectáculo, y un servicio bibliotecario estable. Nacido al mismo tiempo que el Instituto Camões, su homólogo portugués, el Instituto Cervantes toma como referencias y modelo otras experiencias culturales occidentales previas: las Alianzas y los Institutos franceses, el Instituto Británico, el Goethe o el Dante Alighieri.

  16. Age and Type of Instruction (CLIC vs. Traditional EFL) in Lexical Development

    Science.gov (United States)

    Augustín-Llach, María Pilar

    2016-01-01

    The present paper compares the vocabulary development of a group of CLIL and of traditional EFL learners along three years. The observation that a CLIL approach might provide with larger benefits in the long-run vocabulary is the starting point of this study. We had learners in the two groups complete a letter-writing task. These writings were…

  17. Beam Dynamics Studies for CLIC Drive Beams and for Focusing Highly Chromatic Beams

    CERN Document Server

    Riche, A J

    1997-01-01

    The main linac 30 GHz RF source called drive beam consists in a succession of structures resonating at this frequency, loaded by convenient trains of high charge bunches for transfer of the energy (group velocity # 0) to the structures of the main linac. Maximum efficiency is obtained if one can focus the drive beam up to the point where particles with minimum energy reach energy zero. At this point, some particles still have their initial energy, then all the spectrum is represented. The challenge is to keep the beam envelope within the iris, with this chromaticity, with the misalignments of beam at entry, misalignments of structures and quadrupoles, and also with the transverse wake they create. Parameters, lay-out and results correspond to October 97 state of studies.

  18. Test of the BEXE autocorrelator circuit at the CLIC laser beam

    CERN Document Server

    Aulenbacher, K; Cornali, R; Manarin, A; Rossa, E; Schmickler, Hermann; Voors, G; CERN. Geneva. SPS and LEP Division

    1997-01-01

    This device allows the measurement of the bunch length of a photon bunch by autocorrelation. The detector works in a very large range from X-rays to Infrared. This report describes the laser beam test and the resulting calibration.

  19. Positron sources for electron-positron colliders application to the ILC and CLIC

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    The increased demanding qualities for positron sources dedicated to e+e- colliders pushed on investigations oriented on new kinds of e+ sources. The different kinds of positron sources polarized and no polarized are considered. Their main features (intensity, emittance) are described and analysed. Comparison between the different sources is worked out. The characteristics of the positron beam available in the collision point are greatly depending on the capture device and on the positron accelerator. Different kinds of capture systems are considered and their qualities, compared. Intense positron sources which are necessary for the colliders require intense incident beams (electrons or photons). The large number of pairs created in the targets leads to important energy deposition and so, thermal heating, which associated to temperature gradients provoke mechanical stresses often destructive. Moreover, the important Coulomb collisions, can affect the atomic structure in crystal targets and the radiation resist...

  20. Los productos interactivos: haciendo clic en la articulación

    Directory of Open Access Journals (Sweden)

    Mac Gaul de Jorge, Marcia Ivonne

    2006-01-01

    Full Text Available La Universidad Nacional de Salta y la Enseñanza EGB3 y Polimodal, dependiente de la Dirección General de Educación Polimodal del Ministerio de Educación de la provincia concretaron durante los años 2005-2006 un Proyecto de Articulación denominado "Las TICs y los MCS (Medios de Comunicación Social como estrategia académica de Articulación entre la Universidad, Docentes y Comunidad Escolar de Enseñanza Media-Polimodal en Salta". Este proyecto brindó un espacio para concretar una estrategia de planeamiento educacional destinada a relacionar, organizar, coordinar y establecer pautas y criterios compartidos de acción en torno a objetivos, que arrojen como resultado la ponderación de logros y la mejor calidad del objeto social a trabajar por las áreas involucradas, entre las cuales se cuenta el área de Informática. Los autores de este trabajo, co-responsables del Proyecto por parte de la Universidad, con funciones de consultores contenidistas, describiremos las actividades compartidas entre los docentes de ambos niveles, las cuales dieron lugar al establecimiento de los contenidos considerados prioritarios desde una perspectiva educativa y a la especificación de requerimientos, que desde lo tecnológico, se tradujeron en los dos programas de software educativo desarrollados para alumnos de nivel Polimodal: Tecnología Informática (TI e Introducción a la Resolución de Problemas Computacionales (RPC.

  1. The Literature of Low Intensity Conflict: A Selected Bibliography and Suggestions for Future Research (CLIC Papers)

    Science.gov (United States)

    1988-09-01

    Alnwick, Kenneth J. "Perspectives on Air Power At the Low End of the Conflict Spectrum." Air University Review 35 (March- April 1984). Arendt , Hannah . On...HUNTINGTON on the cause of disorder in developing nations, ARENDT on the philosophy of revolution, CHALMERS JOHNSON on the general theory of revolution... Arendt , 2, 7 Doctrine, 1, 3, 4, 6, 8, 9, 10, Arnold, 14 13, 14, 16, 17, 18, 19, 20 Asprey, 3, 7 Dodd, 10 Atkinson, 1, 7 Dubik, 3, 10 Barber, 2, 7 Dunn, 2

  2. Active matter

    Science.gov (United States)

    Ramaswamy, Sriram

    2017-05-01

    The study of systems with sustained energy uptake and dissipation at the scale of the constituent particles is an area of central interest in nonequilibrium statistical physics. Identifying such systems as a distinct category—Active matter—unifies our understanding of autonomous collective movement in the living world and in some surprising inanimate imitations. In this article I present the active matter framework, briefly recall some early work, review our recent results on single-particle and collective behaviour, including experiments on active granular monolayers, and discuss new directions for the future.

  3. ACTIVITY STUDIES

    African Journals Online (AJOL)

    2-HYDROXY-4-METHOXYBENZALDEHYDE: LARVICIDAL STRUCTURE-. ACTIVITY STUDIES. Geoffrey M. Mahangal, Teresa O. Akengal, Wilber Lwandez, Isaiah 0. ... 2Behavioural and Chemical Ecology Department, International Centre for Insect Physiology and .... Y = mean death count, X = initial larvae population'.

  4. Active Galaxies

    DEFF Research Database (Denmark)

    Kilerci Eser, Ece

    one is related to the mass estimates of supermassive black holes (SMBHs). Mass estimates of SMBHs are important to understand the formation and evolution of SMBHs and their host galaxies. Black hole masses in Type 1 AGN are measured with the reverberation mapping (RM) technique. Reverberation mapping......Galaxy formation and evolution is one of the main research themes of modern astronomy. Active galaxies such as Active Galactic Nuclei (AGN) and Ultraluminous Infrared Galaxies (ULIRGs) are important evolutionary stages of galaxies. The ULIRG stage is mostly associated with galaxy mergers...... and interactions. During the interactions of gas-rich galaxies, the gas inflows towards the centers of the galaxies and can trigger both star formation and AGN activity. The ULIRG stage includes rapid star formation activity and fast black hole growth that is enshrouded by dust. Once the AGN emission...

  5. Intangible activities

    DEFF Research Database (Denmark)

    Hermansen, Jonathan

    2016-01-01

    ‘Informal helping’ is often associated with other types of prosocial behaviour such as formal voluntary work. Therefore, one could jump to the conclusion that it would be the same factors driving both types of activities. This article demonstrates that this is not the case. The study relies...

  6. Physical activity

    Science.gov (United States)

    ... not exercised or been active in a long time, start slowly to prevent injuries. Taking a brisk 10-minute walk twice a week is a good start. Try joining a dance, yoga, or karate class if it appeals to you. You could also ...

  7. Active particles

    CERN Document Server

    Degond, Pierre; Tadmor, Eitan

    2017-01-01

    This volume collects ten surveys on the modeling, simulation, and applications of active particles using methods ranging from mathematical kinetic theory to nonequilibrium statistical mechanics. The contributing authors are leading experts working in this challenging field, and each of their chapters provides a review of the most recent results in their areas and looks ahead to future research directions. The approaches to studying active matter are presented here from many different perspectives, such as individual-based models, evolutionary games, Brownian motion, and continuum theories, as well as various combinations of these. Applications covered include biological network formation and network theory; opinion formation and social systems; control theory of sparse systems; theory and applications of mean field games; population learning; dynamics of flocking systems; vehicular traffic flow; and stochastic particles and mean field approximation. Mathematicians and other members of the scientific commu...

  8. Flexible scalable photonic manufacturing method

    Science.gov (United States)

    Skunes, Timothy A.; Case, Steven K.

    2003-06-01

    A process for flexible, scalable photonic manufacturing is described. Optical components are actively pre-aligned and secured to precision mounts. In a subsequent operation, the mounted optical components are passively placed onto a substrate known as an Optical Circuit Board (OCB). The passive placement may be either manual for low volume applications or with a pick-and-place robot for high volume applications. Mating registration features on the component mounts and the OCB facilitate accurate optical alignment. New photonic circuits may be created by changing the layout of the OCB. Predicted yield data from Monte Carlo tolerance simulations for two fiber optic photonic circuits is presented.

  9. Analgesic Activity.

    Science.gov (United States)

    2016-01-01

    Analgesics are agents which selectively relieve pain by acting in the CNS and peripheral pain mediators without changing consciousness. Analgesics may be narcotic or non-narcotic. The study of pain in animals raises ethical, philosophical, and technical problems. Both peripheral and central pain models are included to make the test more evident for the analgesic property of the plant. This chapter highlights methods such as hot plate and formalin and acetic acid-induced pain models to check the analgesic activity of medicinal plants.

  10. Active house

    DEFF Research Database (Denmark)

    Eriksen, Kurt Emil; Olesen, Gitte Gylling Hammershøj

    2010-01-01

    Formålet med dette abstrakt er at illustrere, at huse kan være konstrueret til at basere sig udelukkende på vedvarende energikilder og samtidig være CO2-neutrale og producere mere energi end de forbruger. Active House Visionen undersøger disse muligheder i otte demonstration huse i fem forskellige...... europæiske lande, hvor husene konstrueres, fremstilles og testes. Kvalitative og kvantitative målinger vil blive designet til at vurdere husene i forhold til energi, indeklima og miljø....

  11. Active packaging with antifungal activities.

    Science.gov (United States)

    Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

    2016-03-02

    There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Staying Active: Physical Activity and Exercise

    Science.gov (United States)

    ... Events Advocacy For Patients About ACOG Staying Active: Physical Activity and Exercise Home For Patients Search FAQs Staying ... Exercise FAQ045, November 2016 PDF Format Staying Active: Physical Activity and Exercise Women's Health What are the benefits ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Needs for Pregnant or Postpartum Women Physical Activity & Health Adding Physical Activity to Your Life Activities for Children Activities ... Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social ... Physical Activity Steps to Wellness Walkability Audit Tool Sample ...

  14. Activating schoolyards

    DEFF Research Database (Denmark)

    Andersen, Henriette Bondo; Pawlowski, Charlotte Skau; Scheller, Hanne Bebendorf

    2015-01-01

    and structural changes in the physical environment. METHOD: The study builds on a quasi-experimental study design using a mixed method approach including: 1) an exploratory study aimed at providing input for the developing process; 2) an evaluation of the effect of the interventions using a combination...... as well as quantitative methods can be seen as a strength, as the different types of data complement each other and results of one part of the study informed the following parts. A unique aspect of our study is the use of accelerometers in combination with GPS and GIS in the effect evaluation...... to objectively determine where and how active the students are in the schoolyard, before and after the intervention. This provides a type of data that, to our knowledge, has not been used before in schoolyard interventions. Exploring the change in behavior in relation to specific intervention elements...

  15. Halal Activism

    DEFF Research Database (Denmark)

    Fischer, Johan

    2016-01-01

    The purpose of this article is to further our understanding of contemporary Muslim consumer activism in Malaysia with a particular focus on halal (in Arabic, literally “permissible” or “lawful”) products and services. Muslim activists and organisations promote halal on a big scale in the interface...... zones between new forms of Islamic revivalism, the ethnicised state and Muslim consumer culture. Organisations such as the Muslim Consumers Association of Malaysia play an important role in pushing and protecting halal in Malaysia, that is, halal activists constantly call on the state to tighten halal...... in particular historical/national settings and that these issues should be explored in the interfaces between Islam, the state and market. More specifically, this article examines the above issues building on ethnography from fieldwork with three Muslim organisations in Malaysia....

  16. Active sharing

    CERN Multimedia

    2012-01-01

    The big news this week is, of course, the conclusions from the LHC performance workshop held in Chamonix from 6 to 10 February . The main recommendation, endorsed by CERN’s Machine Advisory Committee and adopted by the Management, is that the LHC will run at 4 TeV per beam this year. You can find all the details from Chamonix in the slides presented on Wednesday at the summary session, which leaves me free to talk about another important development coming up soon.   In ten days time, a new kind of gathering will be taking place in Geneva, bringing together two previously separate conferences, one driven by physics, the other by the medical community, but both looking to apply physics to the advancement of health. The merger of the International Conference for Translational Research in Radio-Oncology and CERN’s workshop on Physics for Health in Europe (ICTR-PHE) makes for a very eclectic mix. Presentations range from active shielding for interplanetary flight to the rather...

  17. DAVIC activities

    Science.gov (United States)

    Fujiwara, Hiroshi

    1995-12-01

    DAVIC (Digital Audio Visual Council) is the defacto standardization organization established in Mar. 1994, based on international consensus for digital audio visual services. After completion of MPEG2 standardization, the broadcasting industry, the communication industry, the computer industry, and consumer electronics industry have started development of concrete services and products. Especially the interactive digital audio visual services, such as Video On Demand (VOD) or Near Video On Demand (NVOD), have become hot topics all over the world. Such interactive digital audio visual services are combined technologies of multi-media coding, digital transmission and computer networking. Therefore more than 150 organizations from all industry sectors have participated in DAVIC and are contributing from their own industrial contexts. DAVIC's basic policy is to use the available technologies specified by the other standards bodies as much as possible. So DAVIC's standardization activities have close relationship with ISO IEC/JTC1/SC29, ITU-T SG 9, ATM-Forum, IETF, IMA, DVB, etc. DAVIC is trying to specify Applications, Reference Models, Security, Usage Information Control, and the interfaces and protocols among the Content Provider, the Server, the core network, the access network, and the Set Top Unit. DAVIC's first goal is to specify DAVIC1.0 based on CFP1 (Call for Proposal) and CFP2 by Dec. 1995, and the next direction is under preparation for further progress based on CFP3 and CFP4.

  18. Activation Energy

    Science.gov (United States)

    Gadeken, Owen

    2002-01-01

    Teaming is so common in today's project management environment that most of us assume it comes naturally. We further assume that when presented with meaningful and challenging work, project teams will naturally engage in productive activity to complete their tasks. This assumption is expressed in the simple (but false) equation: Team + Work = Teamwork. Although this equation appears simple and straightforward, it is far from true for most project organizations whose reality is a complex web of institutional norms based on individual achievement and rewards. This is illustrated by the very first successful team experience from my early Air Force career. As a young lieutenant, I was sent to Squadron Officer School, which was the first in the series of Air Force professional military education courses I was required to complete during my career. We were immediately formed into teams of twelve officers. Much of the course featured competition between these teams. As the most junior member of my team, I quickly observed the tremendous pressure to show individual leadership capability. At one point early in the course, almost everyone in our group was vying to become the team leader. This conflict was so intense that it caused us to fail miserably in our first outdoor team building exercise. We spent so much time fighting over leadership that we were unable to complete any of the events on the outdoor obstacle course. This complete lack of success was so disheartening to me that I gave our team little hope for future success. What followed was a very intense period of bickering, conflict, and even shouting matches as our dysfunctional team tried to cope with our early failures and find some way to succeed. British physician and researcher Wilfred Bion (Experiences in Groups, 1961) discovered that there are powerful psychological forces inherent in all groups that divert from accomplishing their primary tasks. To overcome these restraining forces and use the potential

  19. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Physical Activity Basics Needs for Adults Needs for Children What Counts Needs for Older Adults Needs for ... Adding Physical Activity to Your Life Activities for Children Activities for Older Adults Overcoming Barriers Measuring Physical ...

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Adults Needs for Children What Counts Needs for Older Adults Needs for Pregnant or Postpartum Women Physical Activity & ... to Your Life Activities for Children Activities for Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart ...

  1. Types of Physical Activity

    Science.gov (United States)

    ... basics Types of physical activity Types of physical activity Not sure what kinds of physical activity you should do? Well, you need three main types of activity . They are aerobic (sometimes called "cardio"), muscle-strengthening , ...

  2. Facts about Physical Activity

    Science.gov (United States)

    ... Micronutrient Malnutrition State and Local Programs Facts about Physical Activity Recommend on Facebook Tweet Share Compartir Some Americans ... Activity Guideline for aerobic activity than older adults. Physical activity and socioeconomic status Adults with more education are ...

  3. Physical Activity Guidelines

    Science.gov (United States)

    ... use this site. health.gov Physical Activity Guidelines Physical Activity Physical activity is key to improving the health of the Nation. Based on the latest science, the Physical Activity Guidelines for Americans is an essential resource for ...

  4. Active knee joint flexibility and sports activity

    DEFF Research Database (Denmark)

    Hahn, Thomas; Foldspang, Anders; Vestergaard, E

    1999-01-01

    The aim of the study was to estimate active knee flexion and active knee extension in athletes and to investigate the potential association of each to different types of sports activity. Active knee extension and active knee flexion was measured in 339 athletes. Active knee extension...... was significantly higher in women than in men and significantly positively associated with weekly hours of swimming and weekly hours of competitive gymnastics. Active knee flexion was significantly positively associated with participation in basketball, and significantly negatively associated with age and weekly...... hours of soccer, European team handball and swimming. The results point to sport-specific adaptation of active knee flexion and active knee extension. Udgivelsesdato: 1999-Apr...

  5. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Needs for Pregnant or Postpartum Women Physical Activity & Health Adding Physical Activity to Your Life Activities for Children Activities for ... June 4, 2015 Content source: Division of Nutrition, Physical Activity, and Obesity , National Center for Chronic Disease Prevention and Health Promotion ... Listen Watch ...

  6. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... gov . Physical Activity Physical Activity Basics Needs for Adults Needs for Children What Counts Needs for Older Adults Needs for Pregnant or Postpartum Women Physical Activity & ...

  7. Physical Activity Assessment

    Science.gov (United States)

    Current evidence convincingly indicates that physical activity reduces the risk of colon and breast cancer. Physical activity may also reduce risk of prostate cancer. Scientists are also evaluating potential relationships between physical activity and other cancers.

  8. Activities of Daily Living

    Science.gov (United States)

    ... With Parkinson's › Managing Parkinson's › Activities of Daily Living Activities of Daily Living Sometimes Parkinson’s disease (PD) can complicate the basic daily activities a person with living with Parkinson’s once did ...

  9. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... About Physical Activity Data, Trends and Maps Surveillance Systems Resources & Publications Reports Adults Need More Physical Activity MMWR Data Highlights State Indicator Report on Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social Media Tools Community ...

  10. Guide to Physical Activity

    Science.gov (United States)

    ... Families ( We Can! ) Health Professional Resources Guide to Physical Activity Physical activity is an important part of your ... to injury. Examples of moderate-intensity amounts of physical activity Common Chores Washing and waxing a car for ...

  11. Physical Activity Basics

    Science.gov (United States)

    ... Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Physical Activity Basics Recommend on Facebook Tweet Share Compartir How much physical activity do you need? Regular physical activity helps improve ...

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Needs for Pregnant or Postpartum Women Physical Activity & Health Adding Physical Activity to Your Life Activities for ... Obesity , National Center for Chronic Disease Prevention and Health Promotion Email Recommend Tweet YouTube Instagram Listen Watch ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Adults Needs for Children What Counts Needs for Older Adults Needs for Pregnant or Postpartum Women Physical ... to Your Life Activities for Children Activities for Older Adults Overcoming Barriers Measuring Physical Activity Intensity Target ...

  14. Measuring Physical Activity Intensity

    Science.gov (United States)

    ... 67 Data & Statistics Facts About Physical Activity Data, Trends and Maps Surveillance Systems Resources & Publications Reports Adults Need More Physical Activity MMWR Data Highlights State Indicator Report on Physical Activity, 2014 Recommendations & Guidelines Fact ...

  15. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... 67 Data & Statistics Facts About Physical Activity Data, Trends and Maps Surveillance Systems Resources & Publications Reports Adults Need More Physical Activity MMWR Data Highlights State Indicator Report on Physical Activity, 2014 Recommendations & Guidelines Fact ...

  16. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social Media Tools Community Strategies Worksite Physical Activity Steps to ... counts as aerobic activity, watch this video: Windows Media Player, 4:48 More videos Here are some ...

  17. Physical activity and obesity

    National Research Council Canada - National Science Library

    Bouchard, Claude; Katzmarzyk, Peter T

    2010-01-01

    ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 The Physical Activity and Exercise Continuum 7 Darren Warburton Definition of Health, Physical Activity, and Exercise . . . . . . . 7 The Continuum...

  18. Physical Activity During School

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino

    to be even more active during school hours further enhancing their academic behaviour, it is important to know when, why and how they are active, and their attitude towards different types of physical activities. Therefore, the aim of this study was to categorize the physical activities attended by students...... during school hours and to elucidate their attitude towards the different types of activities. The data consisted of observations of lessons followed by group interviews. Analyses of the observations revealed six categories of physical activities, varying from mandatory physical activities, activities...

  19. Physical Activity and Cancer

    Science.gov (United States)

    ... Cancer Genetics Services Directory Cancer Prevention Overview Research Physical Activity and Cancer On This Page What is physical activity? What is known about the relationship between physical ...

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social Media Tools Community Strategies Worksite Physical Activity Steps to Wellness Walkability Audit Tool Sample ...

  1. Wake fields in HCS accelerator and CTS power line of the CLIC Test Facility (CTF II) simulation with program wake

    CERN Document Server

    Riche, A

    2000-01-01

    One of the two parallel beam lines of the CTF II, (the 'Drive Beam') is providing the other (the accelerator) with 30 GHz power. Experimentation was performed in 98 and later with a CTF layout to study acceleration of a train of bunches with beam loading compensation, bunch length compression and 30 GHz conversion of the Drive Beam power [1]. This conversion is limited by the difficulty of transmitting the beam through the structures extracting the beam power (CTS). A large transverse wake loss factor is associated with the necessary high longitudinal wake loss factor in CTS. Therefore the limitation of transmission should come mainly from transverse wakes in CTS. Dynamics in HCS and in the bunch compression device was studied with codes GPT [2] and PARMELA [3], [4] using beam parameters input derived from calculations of the beam in the RF gun with code MAFIA. Code WAKE is used to verify that the influence of the wake-fields in HCS is small, to follow the beam along the 4 CTS of the drive linac, and to give ...

  2. Compatibility and Integration of a CLIC Quadrupole Nanometre-Stabilization and Positioning system in a Large Accelerator Environment

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A; Sylte, M

    2010-01-01

    A prerequisite for a successful nanometer level magnet stabilization and pointing system is a low background vibration level. This paper will summarize and compare the ground motion measurements made recently in different accelerator environments at e.g. CERN, CESRTA and PSI. Furthermore the paper will give the beginning of an inventory and characterization of some technical noise sources, and their propagation and influence in an accelerator environment. The importance of the magnet support is also mentioned. Finally, some advances in the characterization of the nanometer vibration measurement techniques will be given.

  3. Proof of the nonexistence of a linear solution for the CR2 injection region of the CLIC drive beam

    CERN Document Server

    Apsimon, Robert

    2014-01-01

    In this paper we present a mathematical proof to show that there exists no linear system of optics which can simultaneously close an orbit bump and correct the dispersion in the CR2 injection region. Due to the requirements of the CR2 injection region, several different trajectories will exist through the injection region which are off-axis; therefore the orbit and dispersion functions need to be corrected. In this paper, we determine the properties of a hypothetical linear lattice which is capable of closing the orbit and dispersion functions and then show that the resulting solutions are either unphysical or trivial. Geneva.

  4. Comportamiento de viviendas de ferrocemento bajo cargas cíclic Behavior of ferrocement housing under cyclical loads

    Directory of Open Access Journals (Sweden)

    Daniel Bedoya Ruiz

    2009-07-01

    Full Text Available La escasez de vivienda en el mundo ha llevado desde hace varios años a la búsqueda de nuevos materiales y sistemas alternativos para su construcción. El ferrocemento desde hace más de 25 décadas viene siendo estudiado y aplicado como solución de vivienda en varios países; Colombia, uno de ellos. En este trabajo se presenta parte de los resultados de una investigación acerca del comportamiento de las viviendas de ferrocemento bajo cargas cíclicas. Se probaron dos módulos de vivienda a escala real construidos con paneles prefabricados de pared delgada de ferrocemento. Sobre cada módulo de ferrocemento se realizaron ensayos de carga cíclica y se evaluó su comportamiento. Los resultados obtenidos muestran la sensibilidad de este sistema estructural ante varios ciclos de carga, con pérdidas de rigidez cercanas al 20% para los primeros ciclos y hasta un 85% al final de los mismos.The shortage of dwelling in the world has taken for several years to the search of new materials and alternative systems for its construction. For more than 25 decades, ferrocement has been studied and applied as a dwelling solution in several countries, among them Colombia.. This article refers to the results of a research about seismic behavior of ferrocement dwellings. Two modules built on real scale with prefabricated panels of ferrocement thin wall were used. On each module of ferrocement, tests of cyclical load were carried out, and its behavior was evaluated. The obtained results showed the sensitivity of this structural system under several cycles of load, with losses of rigidity near to 20% for the first cycles and up to 85% at the end of the same.

  5. U.S. Military Civic Action in Honduras, 1982-1985: Tactical Success, Strategic Uncertainty. CLIC Papers

    Science.gov (United States)

    1988-09-01

    morale improved among individual soldiers. Many sources concluded that the US military image was enhanced by involvement in medical and other civic actions...United States State Department Official (1986) Interview with the author. Washington, DC. 7 March. Vinelli P. (1984) "Honduras- Desarrollo Economico y

  6. Criminalisation of Activism

    DEFF Research Database (Denmark)

    Uldam, Julie

    Different forms of political participation involve different challenges. This paper focuses on challenges to radical activism and particularly the criminalisation of activism.......Different forms of political participation involve different challenges. This paper focuses on challenges to radical activism and particularly the criminalisation of activism....

  7. Diabetes - keeping active

    Science.gov (United States)

    ... ways to add more activity to your day. Introduction There are many benefits to being active. Staying ... of activities and locations. When the weather is cold or wet, stay active by ... and equipment. Start slowly. A common mistake is to try and do too much ...

  8. Increasing Youth Physical Activity with Activity Calendars

    Science.gov (United States)

    Eckler, Seth

    2016-01-01

    Physical educators often struggle with ways to get their students to be active beyond the school day. One strategy to accomplish this is the use of physical activity calendars (PACs). The purpose of this article is to support the use of PACs and give practical advice for creating effective PACs.

  9. Active nematic gels as active relaxing solids

    Science.gov (United States)

    Turzi, Stefano S.

    2017-11-01

    I propose a continuum theory for active nematic gels, defined as fluids or suspensions of orientable rodlike objects endowed with active dynamics, that is based on symmetry arguments and compatibility with thermodynamics. The starting point is our recent theory that models (passive) nematic liquid crystals as relaxing nematic elastomers. The interplay between viscoelastic response and active dynamics of the microscopic constituents is naturally taken into account. By contrast with standard theories, activity is not introduced as an additional term of the stress tensor, but it is added as an external remodeling force that competes with the passive relaxation dynamics and drags the system out of equilibrium. In a simple one-dimensional channel geometry, we show that the interaction between nonuniform nematic order and activity results in either a spontaneous flow of particles or a self-organization into subchannels flowing in opposite directions.

  10. Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R.

    1968-01-01

    In activation analysis, a sample of an unknown material is first irradiated (activated) with nuclear particles. In practice these nuclear particles are almost always neutrons. The success of activation analysis depends upon nuclear reactions which are completely independent of an atom's chemical associations. The value of activation analysis as a research tool was recognized almost immediately upon the discovery of artificial radioactivity. This book discusses activation analysis experiments, applications and technical considerations.

  11. Lectures Abandoned: Active Learning by Active Seminars

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak; Corry, Aino Vonge

    2012-01-01

    Traditional lecture-based courses are widely criticised for be- ing less eective in teaching. The question is of course what should replace the lectures and various active learning tech- niques have been suggested and studied. In this paper, we report on our experiences of redesigning a software ......- tive seminars as a replacement of traditional lectures, an activity template for the contents of active seminars, an ac- count on how storytelling supported the seminars, as well as reports on our and the students' experiences....

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Measuring ... About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs File ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Address What's this? Submit What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & Obesity ... Address What's this? Submit What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & Obesity ...

  14. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Intensity The amount of energy used by the body per minute of activity. The table below lists ... upon the amount of energy used by the body while doing the activity. Top of Page Moderate ...

  15. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... for a breath. Absolute Intensity The amount of energy used by the body per minute of activity. ... or vigorous-intensity based upon the amount of energy used by the body while doing the activity. ...

  16. Active Marine Station Metadata

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Active Marine Station Metadata is a daily metadata report for active marine bouy and C-MAN (Coastal Marine Automated Network) platforms from the National Data...

  17. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do an activity. When using relative intensity, people pay attention to how physical activity affects their heart rate ...

  18. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & Infographics Social Media Tools Community Strategies Worksite Physical Activity Steps ... Obesity , National Center for Chronic Disease Prevention and Health Promotion Email Recommend Tweet YouTube Instagram Listen Watch ...

  19. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Data, Trends and Maps Surveillance Systems Resources & Publications Reports Adults Need More Physical Activity MMWR Data Highlights State Indicator Report on Physical Activity, 2014 Recommendations & Guidelines Fact Sheets & ...

  20. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... intensity, people pay attention to how physical activity affects their heart rate and breathing. The talk test ... Physical Activity, and Obesity , National Center for Chronic Disease Prevention and Health Promotion Email Recommend Tweet YouTube ...

  1. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... and absolute intensity. Relative Intensity The level of effort required by a person to do an activity. When using relative intensity, people pay attention to how physical activity affects their heart rate ...

  2. Active ageing technologies

    DEFF Research Database (Denmark)

    Lassen, Aske Juul

    In the recent decade the concept of active aging has become important in the Western hemisphere. The World Health Organization and The European Union have staged active aging as a core policy area and initiated programs of physical activity, independence and prolonged working lives among...... the elderly. As part of this rearticulation of old age, many new technologies take form. This paper uses a wide concept of technologies (devices, regimes, strategies and ways of doing) and argues that technologies form active aging subjectivities, and on the other hand, that these subjectivities...... of physical and productive activity; e.g. that a game of billiards is a technology of active aging. Thus, active aging is enacted in the socio-material practices of the technologies in this paper. The paper contributes with a strengthening of the concept of active aging, by focusing on entangled practices...

  3. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... activity. When using relative intensity, people pay attention to how physical activity affects their heart rate and breathing. The talk test is a simple way to measure relative intensity. In general, if you're ...

  4. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient ... What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient ...

  5. Preschoolers’ Physical Activity Behaviours

    Science.gov (United States)

    Irwin, Jennifer D.; He, Meizi; Bouck, L. Michelle Sangster; Tucker, Patricia; Pollett, Graham L.

    2016-01-01

    Objectives To understand parents’ perspectives of their preschoolers’ physical activity behaviours. Methods A maximum variation sample of 71 parents explored their preschoolers’ physical activity behaviours through 10 semi-structured focus group discussions. Results Parents perceived Canada’s Physical Activity Guidelines for Children as inadequate; that their preschoolers get and need more than 30–90 minutes of activity daily; and that physical activity habits must be established during the preschool years. Nine barriers against and facilitators toward adequate physical activity were proposed: child’s age, weather, daycare, siblings, finances, time, society and safety, parents’ impact, and child’s activity preferences. Discussion The need for education and interventions that address current barriers are essential for establishing physical activity as a lifestyle behaviour during early childhood and, consequently, helping to prevent both childhood and adulthood obesity. PMID:16625802

  6. USAID Activity Locations

    Data.gov (United States)

    US Agency for International Development — The USAID Activities dataset is a snapshot of activities supported by USAID including their geographical locations within countries at the time of the snapshot. The...

  7. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local ... Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local ...

  8. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... or vigorous-intensity based upon the amount of energy used by the body while doing the activity. Top of ... 4, 2015 Content source: Division of Nutrition, Physical Activity, and Obesity , National ...

  9. Major operations and activities

    Energy Technology Data Exchange (ETDEWEB)

    Black, D.G.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the major operations and activities on the site. These operations and activities include site management, waste management, environmental restoration and corrective actions, and research and technology development.

  10. Family Activities for Fitness

    Science.gov (United States)

    Grosse, Susan J.

    2009-01-01

    This article discusses how families can increase family togetherness and improve physical fitness. The author provides easy ways to implement family friendly activities for improving and maintaining physical health. These activities include: walking, backyard games, and fitness challenges.

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs ... Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs ...

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... About Physical Activity Data, Trends and Maps Surveillance Systems Resources & Publications Reports Adults Need More Physical Activity ... Windows Media Player, 4:48 More videos Here are some ways to understand and measure the intensity ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... activity. If you're doing vigorous-intensity activity, you will not be able to say more than a few words without pausing for a breath. Absolute ... ABOUT About CDC Jobs Funding LEGAL ...

  14. Activity-based design

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh

    2006-01-01

      In many types of activities communicative and material activities are so intertwined that the one cannot be understood without taking the other into account. This is true of maritime and hospital work that are used as examples in the paper. The spatial context of the activity is also important:...... and automatic machinery can replace one another in an activity. It also gives an example of how to use the framework for design....

  15. Comparing Active Vision Models

    NARCIS (Netherlands)

    Croon, G.C.H.E. de; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.

    2009-01-01

    Active vision models can simplify visual tasks, provided that they can select sensible actions given incoming sensory inputs. Many active vision models have been proposed, but a comparative evaluation of these models is lacking. We present a comparison of active vision models from two different

  16. Computers + Student Activities Handbook.

    Science.gov (United States)

    Masie, Elliott; Stein, Michele

    Designed to provide schools with the tools to start utilizing computers for student activity programs without additional expenditures, this handbook provides beginning computer users with suggestions and ideas for using computers in such activities as drama clubs, yearbooks, newspapers, activity calendars, accounting programs, room utilization,…

  17. Comparing active vision models

    NARCIS (Netherlands)

    Croon, G.C.H.E. de; Sprinkhuizen-Kuyper, I.G.; Postma, E.O.

    2009-01-01

    Active vision models can simplify visual tasks, provided that they can select sensible actions given incoming sensory inputs. Many active vision models have been proposed, but a comparative evaluation of these models is lacking. We present a comparison of active vision models from two different

  18. Recurrent radio activity in active galactic nuclei

    Directory of Open Access Journals (Sweden)

    Jamrozy M.

    2012-12-01

    Full Text Available There has been a growing body of persuasive evidence to indicate that AGN activity, powered by mass accretion onto a supermassive black hole, can involve multiple episodes. Thus thinking of jet activity as occurring within a unique brief period in the life of a galaxy is no longer valid. The most striking examples of AGNs with recurrent jet activity are the double-double radio sources, which contain two or more pairs of distinct lobes on the opposite sides of a parent optical object. On the other hand, we have now conclusive arguments that galaxy mergers and interactions are principal triggers for AGNs. Quite a number of examples of powerful radio sources hosted by galaxies with peculiar optical morphologies (tails, shells, dust-lanes, etc. can be cited to support such a scenario. The structure and spectra of extended radio emission from radio galaxies, with sizes ranging up to a few Mpc, can provide a lot of information on the history of the central AGN activity, while the spectral and dynamical ages of these extended radio lobes could be used to constrain the time scales of recurrent AGN activity.

  19. Proteolytic activities in yeast.

    Science.gov (United States)

    Saheki, T; Holzer, H

    1975-03-28

    Studies on the mechanism and time course of the activation of proteinases A (EC 3.4.23.8), B (EC 3.4.22.9) and C (EC 3.4.12.--) in crude yeast extracts at pH 5.1 and 25 degrees C showed that the increase in proteinase B activity is paralleled with the disappearance of proteinase B inhibitor. Addition of purified proteinase A to fresh crude extracts accelerates the inactivation of the proteinase B inhibitor and the appearance of maximal activities of proteinases B and C. The decrease of proteinase B inhibitor activity and the increase of proteinase B activity are markedly retarded by the addition of pepstatin. Because 10-minus 7 M pepstatin completely inhibits proteinase A without affecting proteinase B activity, this is another indication for the role of proteinase A during the activation of proteinase B. Whereas extracts of yeast grown on minimal medium reached maximal activation of proteinases B and C after 20 h of incubation at pH 5.1 and 25 degrees C, extracts of yeast grown on complete medium had to be incubated for about 100 h. In the latter case, the addition of proteinas A results in maximal activation of proteinases B and C and disappearance of proteinase B inhibitor activity only after 10--20 h of incubation. With the optimal conditions, the maximal activities of proteinases A, B and C, as well as of the proteinase B inhibitor, were determined in crude extracts of yeast that had been grown batchwise for different lengths of time either on minimal or on complete medium. Upon incubation, all three proteinases were activated by several times their initial activity. This reflects the existence of proteolytically degradable inhibitors of the three proteinases and together with the above mentioned observations it demonstrates that the "activation" of yeast proteinases A, B and C upon incubation results from the proteolytic digestion of inhibitors rather than from activation of inactive zymogens by limited proteolysis.

  20. Accessibility, activity participation and location of activities

    DEFF Research Database (Denmark)

    Næss, Petter

    2006-01-01

    By investigating relationships between residential location and the availability of facilities, location of activities, trip distances, activity participation and trip frequencies, this paper seeks to contribute to a more detailed and nuanced understanding of the relationships between residential...... outweigh each other. However, differences in trip distances due to the location of the dwelling relative to concentrations of facilities translate into substantially longer total travelling distances among suburbanites than among inner-city residents....... location and the amount of daily-life travel in an urban region. The empirical data are from a comprehensive study of residential location and travel in Copenhagen Metropolitan Area. Differences between inner- and outer-area residents in activity frequencies and trip frequencies are modest and partly...

  1. "Towards a Future Linear Collider" and "The Linear Collider Studies at CERN"

    CERN Document Server

    CERN. Geneva

    2010-01-01

    During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERN’s linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.

  2. Factor XII Contact Activation.

    Science.gov (United States)

    Naudin, Clément; Burillo, Elena; Blankenberg, Stefan; Butler, Lynn; Renné, Thomas

    2017-11-01

    Contact activation is the surface-induced conversion of factor XII (FXII) zymogen to the serine protease FXIIa. Blood-circulating FXII binds to negatively charged surfaces and this contact to surfaces triggers a conformational change in the zymogen inducing autoactivation. Several surfaces that have the capacity for initiating FXII contact activation have been identified, including misfolded protein aggregates, collagen, nucleic acids, and platelet and microbial polyphosphate. Activated FXII initiates the proinflammatory kallikrein-kinin system and the intrinsic coagulation pathway, leading to formation of bradykinin and thrombin, respectively. FXII contact activation is well characterized in vitro and provides the mechanistic basis for the diagnostic clotting assay, activated partial thromboplastin time. However, only in the past decade has the critical role of FXII contact activation in pathological thrombosis been appreciated. While defective FXII contact activation provides thromboprotection, excess activation underlies the swelling disorder hereditary angioedema type III. This review provides an overview of the molecular basis of FXII contact activation and FXII contact activation-associated disease states. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Marine Biology Activities. Ocean Related Curriculum Activities.

    Science.gov (United States)

    Pauls, John

    The ocean affects all of our lives. Therefore, awareness of and information about the interconnections between humans and oceans are prerequisites to making sound decisions for the future. Project ORCA (Ocean Related Curriculum Activities) has developed interdisciplinary curriculum materials designed to meet the needs of students and teachers…

  4. Participatory Activities in Practice

    DEFF Research Database (Denmark)

    Gottlieb, Frederik; Sørensen, Vicki

    Through a series of participatory activities within a product development project, we analyse how these activities influence the design process and how new meaning is created through the interaction of crossing intentions (Larsen, 2010). By focusing on a specific theme in the project we reflect...... on how participatory activities are a key part in establishing important interactions between participants resulting in new design approaches. At other times participatory activities become a part of blurring these new approaches when performing new participatory activities towards developing new...... iterations of the concept in focus. We conclude that participatory activities can play a key part in the uptake of user knowledge but that a participatory innovation approach of establishing collaboration between crossing intentions can as well be considered provocative and as such, result in resistance...

  5. Mechanics of active surfaces

    Science.gov (United States)

    Salbreux, Guillaume; Jülicher, Frank

    2017-09-01

    We derive a fully covariant theory of the mechanics of active surfaces. This theory provides a framework for the study of active biological or chemical processes at surfaces, such as the cell cortex, the mechanics of epithelial tissues, or reconstituted active systems on surfaces. We introduce forces and torques acting on a surface, and derive the associated force balance conditions. We show that surfaces with in-plane rotational symmetry can have broken up-down, chiral, or planar-chiral symmetry. We discuss the rate of entropy production in the surface and write linear constitutive relations that satisfy the Onsager relations. We show that the bending modulus, the spontaneous curvature, and the surface tension of a passive surface are renormalized by active terms. Finally, we identify active terms which are not found in a passive theory and discuss examples of shape instabilities that are related to active processes in the surface.

  6. Solar Activity and TECHNOSPHERE

    Science.gov (United States)

    Kuznetsov, V. D.

    2017-05-01

    A review of solar activity factors impacting on the near-Earth space and technosphere are given. Solar activity in the form of enhanced fluxes of hard electromagnetic and corpuscular radiation, solar wind streams and mass ejections is considered as a principal source of space weather creating the dangerous for the astronauts, satellites, International Space Station and for the ground technical systems. The examples of effects of solar activity on the space and ground technosphere are given.

  7. Confinement for Active Objects

    OpenAIRE

    Florian Kammuller

    2014-01-01

    In this paper, we provide a formal framework for the security of distributed active objects. Active objects com-municate asynchronously implementing method calls via futures. We base the formal framework on a security model that uses a semi-lattice to enable multi-lateral security crucial for distributed architectures. We further provide a security type system for the programming model ASPfun of functional active objects. Type safety and a confinement property are presented. ASPfun thus reali...

  8. CDBG Public Services Activity

    Data.gov (United States)

    Department of Housing and Urban Development — CDBG activity related to public services, including senior services, legal services, youth services, employment training, health services, homebuyer counseling, food...

  9. CDBG Housing Activity

    Data.gov (United States)

    Department of Housing and Urban Development — CDBG activity related to housing, including multifamily rehab, housing services, code enforcement, operation and repair of foreclosed property and public housing...

  10. Physical activity and sarcopenia.

    Science.gov (United States)

    Pillard, Fabien; Laoudj-Chenivesse, Dalila; Carnac, Gilles; Mercier, Jacques; Rami, Jacques; Rivière, Daniel; Rolland, Yves

    2011-08-01

    Physical activity can be a valuable countermeasure to sarcopenia in its treatment and prevention. In considering physical training strategies for sarcopenic subjects, it is critical to consider personal and environmental obstacles to access opportunities for physical activity for any patient with chronic disease. This article presents an overview of current knowledge of the effects of physical training on muscle function and the physical activity recommended for sarcopenic patients. So that this countermeasure strategy can be applied in practice, the authors propose a standardized protocol for prescribing physical activity in chronic diseases such as sarcopenia. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. CDBG Economic Development Activity

    Data.gov (United States)

    Department of Housing and Urban Development — CDBG activity related to economic development, including commercial or industrial rehab, commercial or industrial land acquisition, commercial or industrial...

  12. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... What's this? Submit Button Our Division About Us Nutrition Physical Activity Overweight & Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs ...

  13. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Adults Overcoming Barriers Measuring Physical Activity Intensity Target Heart Rate & Estimated Maximum Heart Rate Perceived Exertion (Borg Rating of Perceived Exertion Scale) ...

  14. Active Flow Control Activities at NASA Langley

    Science.gov (United States)

    Anders, Scott G.; Sellers, William L., III; Washburn, Anthony E.

    2004-01-01

    NASA Langley continues to aggressively investigate the potential advantages of active flow control over more traditional aerodynamic techniques. This paper provides an update to a previous paper and describes both the progress in the various research areas and the significant changes in the NASA research programs. The goals of the topics presented are focused on advancing the state of knowledge and understanding of controllable fundamental mechanisms in fluids as well as to address engineering challenges. An organizational view of current research activities at NASA Langley in active flow control as supported by several projects is presented. On-center research as well as NASA Langley funded contracts and grants are discussed at a relatively high level. The products of this research are to be demonstrated either in bench-top experiments, wind-tunnel investigations, or in flight as part of the fundamental NASA R&D program and then transferred to more applied research programs within NASA, DOD, and U.S. industry.

  15. Habitats, activities, and signs

    DEFF Research Database (Denmark)

    Andersen, Peter Bøgh; Brynskov, Martin

    2004-01-01

    Digital habitats is a framework for designing and modeling environments for activities that involve mobile and embedded computing systems. This paper 1) introduces the basic concepts of the framework, i.e. activity, thematic role, and the three ‘dimensions’ of a habitat: physical, informational, ...

  16. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Physical Activity Data, Trends and Maps Surveillance Systems Resources & Publications Reports Adults Need More Physical Activity MMWR ... Tracking Stair Usage Project Checklist CDC’s Example Related Resources Walking Step It Up! Surgeon General’s Call to ...

  17. Emotionally Intense Science Activities

    Science.gov (United States)

    King, Donna; Ritchie, Stephen; Sandhu, Maryam; Henderson, Senka

    2015-01-01

    Science activities that evoke positive emotional responses make a difference to students' emotional experience of science. In this study, we explored 8th Grade students' discrete emotions expressed during science activities in a unit on Energy. Multiple data sources including classroom videos, interviews and emotion diaries completed at the end of…

  18. Active Students in Webinars

    Science.gov (United States)

    Kolås, Line; Nordseth, Hugo; Yri, Jørgen Sørlie

    2015-01-01

    To ensure student activity in webinars we have defined 10 learning tasks focusing on production and communication e.g. collaborative writing, discussion and polling, and investigated how the technology supports the learning activities. The three project partners in the VisPed-project use different video-conferencing systems, and we analyzed how it…

  19. Coordinating Shared Activities

    Science.gov (United States)

    Clement, Bradley

    2004-01-01

    Shared Activity Coordination (ShAC) is a computer program for planning and scheduling the activities of an autonomous team of interacting spacecraft and exploratory robots. ShAC could also be adapted to such terrestrial uses as helping multiple factory managers work toward competing goals while sharing such common resources as floor space, raw materials, and transports. ShAC iteratively invokes the Continuous Activity Scheduling Planning Execution and Replanning (CASPER) program to replan and propagate changes to other planning programs in an effort to resolve conflicts. A domain-expert specifies which activities and parameters thereof are shared and reports the expected conditions and effects of these activities on the environment. By specifying these conditions and effects differently for each planning program, the domain-expert subprogram defines roles that each spacecraft plays in a coordinated activity. The domain-expert subprogram also specifies which planning program has scheduling control over each shared activity. ShAC enables sharing of information, consensus over the scheduling of collaborative activities, and distributed conflict resolution. As the other planning programs incorporate new goals and alter their schedules in the changing environment, ShAC continually coordinates to respond to unexpected events.

  20. Global physical activity levels

    DEFF Research Database (Denmark)

    Hallal, Pedro C; Andersen, Lars Bo; Bull, Fiona C

    2012-01-01

    To implement effective non-communicable disease prevention programmes, policy makers need data for physical activity levels and trends. In this report, we describe physical activity levels worldwide with data for adults (15 years or older) from 122 countries and for adolescents (13-15-years...

  1. Activation force splines

    DEFF Research Database (Denmark)

    Engell-Nørregård, Morten Pol; Erleben, Kenny

    We present a method for simulating the active contraction of deformable models, usable for interactive animation of soft deformable objects. We present a novel physical principle as the governing equation for the coupling between the low dimensional 1D activation force model and the higher...

  2. Tendinopathy and Doppler activity

    DEFF Research Database (Denmark)

    Boesen, M I; Koenig, M J; Torp-Pedersen, S

    2006-01-01

    Intratendinous Doppler activity has been interpreted as an equivalent of neovessels in the Achilles tendon and as a sign of tendinosis (AT).......Intratendinous Doppler activity has been interpreted as an equivalent of neovessels in the Achilles tendon and as a sign of tendinosis (AT)....

  3. The Activity of Play

    DEFF Research Database (Denmark)

    Pichlmair, Martin

    This paper presents Activity Theory as a framework for understanding the action of playing games with the intention of building a foundation for the creation of new game design tools and methods. Activity Theory, an epistemological framework rooted in Soviet psychology of the first half of the 20...

  4. Respirometry in activated sludge

    NARCIS (Netherlands)

    Spanjers, H.

    1993-01-01

    The purpose of the study was (1) to develop a respiration meter capable of continuously measuring, using different procedures, the oxygen uptake rate of activated sludge and (2) to expand knowledge about respiration related characteristics of wastewater and activated sludge.

    A

  5. [Field Learning Activities].

    Science.gov (United States)

    Nolde Forest Environmental Education Center, Reading, PA.

    Seventy field activities, pertinent to outdoor, environmental studies, are described in this compilation. Designed for elementary and junior high school students, the activities cover many discipline areas--science, social studies, language arts, health, history, mathematics, and art--and many are multidisciplinary in use. Topics range from soil…

  6. Mental activity and culture

    NARCIS (Netherlands)

    Hofstede, Gert Jan

    2018-01-01

    How does culture affect mental activity? That question, applied to the design of social agents, is tackled in this chapter. Mental activity acts on the perceived outside world. It does so in three steps: perceive, interpret, select action. We see that when culture is taken into account, objective

  7. Obesity and physical activity.

    NARCIS (Netherlands)

    Westerterp, K.R.

    1999-01-01

    Department of Human Biology, Maastricht University, The Netherlands. k.westerterp@hb.unimaas.nl OBJECTIVES: Three aspects of obesity and physical activity are reviewed: whether the obese are inactive; how the activity level can be increased; and which are the effects of an increase in physical

  8. ANTHROPOGENIC ACTIVITIES THREATENING THE ...

    African Journals Online (AJOL)

    Osondu

    2012-02-17

    Feb 17, 2012 ... Abstract. Abundant fauna and flora resources in Nigeria are being threatened due to the increasing rate of anthropogenic activities across the protected areas in the country. This study examined anthropogenic activities threatening the natural resources considered to be of ecotourism value in Old Oyo ...

  9. Peak Longevity Physical Activity

    Science.gov (United States)

    People who engage in three to five times the recommended minimum level of leisure-time physical activity derive the greatest benefit in terms of mortality reduction when compared with people who do not engage in leisure-time physical activity.

  10. Measuring children's physical activity

    DEFF Research Database (Denmark)

    Schneller, Mikkel Bo; Bentsen, Peter; Nielsen, Glen

    2017-01-01

    INTRODUCTION: Accelerometer-based physical activity monitoring has become the method of choice in many large-scale physical activity (PA) studies. However, there is an ongoing debate regarding the placement of the device, the determination of device wear time, and how to solve a lack of participant...

  11. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... Obesity Healthy Weight Breastfeeding Micronutrient Malnutrition State and Local Programs Measuring Physical Activity Intensity Recommend on Facebook Tweet Share Compartir For more help with what counts as aerobic activity, watch this video: Windows Media Player, 4:48 More videos Here are some ...

  12. Activity Book: Ocean Ecology.

    Science.gov (United States)

    Learning, 1992

    1992-01-01

    Presents a collection of activities to help elementary students study ocean ecology. The activities have students investigate ocean inhabitants, analyze animal adaptations, examine how temperature and saltiness affect ocean creatures, and learn about safeguarding the sea. Student pages offer reproducible learning sheets. (SM)

  13. Plasminogen activation in cancer

    NARCIS (Netherlands)

    Reijerkerk, Arie

    2004-01-01

    The subject of this thesis focusses on the role of the plasminogen activation system in angiogenesis and cancer. The plasminogen activation system regulates fibrinolysis and controls cell migration and invasion by plasmin-mediated matrix proteolysis. Plasmin is formed upon cleavage of the zymogen

  14. ANTHROPOGENIC ACTIVITIES THREATENING THE ...

    African Journals Online (AJOL)

    Osondu

    2012-02-17

    Feb 17, 2012 ... anthropogenic activities threatening the natural resources considered to be of ecotourism value in Old Oyo National Park. ... Result of the analysis showed that human activities had negative impacts on the Park resources. Recommendations .... Patrol Team (PPT) or the assigned rangers and other diurnal ...

  15. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... CDC’s Example StairWELL Stairwell Appearance Motivational Signs Installing Music Other Ideas to Consider Tracking Stair Usage Project ... an activity. When using relative intensity, people pay attention to how physical activity affects their heart rate ...

  16. Measuring Physical Activity Intensity

    Medline Plus

    Full Text Available ... relative intensity and absolute intensity. Relative Intensity The level of effort required by a person to do an activity. When using relative intensity, people pay attention to how physical activity affects their heart rate and breathing. The talk test is a simple ...

  17. Nutrition Activities Resource Guide.

    Science.gov (United States)

    New York City Board of Education, Brooklyn, NY. Div. of Special Education.

    The resource guide suggests activities to help special education students make appropriate choices about their nutritional habits. It is explained that the activities can be infused into other curriculum areas. The guide consists of five themes and includes performance objectives for each: foods eaten at school (planning a school lunch, keeping a…

  18. Associated Nitrogenase Activity.

    African Journals Online (AJOL)

    The feedback control mechanism in which the demand for fixed N by the plant regulates nitrogenase activity (NA) in legumes as ..... phoenolpyruvate carboxylase in vitro decreases sensitivity to inhibition by L-malate. Plant. Physiology 67:37-42. Silsbury, J.H. (1987). Nitrogenase activity in Trifo- lium subterraneum L. in ...

  19. Analog active filters

    Science.gov (United States)

    Ghausi, M. S.

    1984-01-01

    The evolution of active filters during the time from 1920 to 1980 is considered, taking into account the hardware used to implement a filtering network for voice frequency over 60 years. From 1920 to 1960 the majority of voice-frequency filters was realized as discrete RLC networks. After the development of transistors, it was realized that size and cost reductions could be achieved by replacing the inductors with active networks. In the early 1970's, batch-processed thin-film hybrid integrated circuits began to be employed. The synthesis of transfer functions which are predominantly input/output types is considered. Attention is given to direct realizations, synthesis using component simulation, cascade synthesis, multiple-loop feedback design, active-R and active-C filters, aspects of sensitivity, and switched-capacitor filters.

  20. Ras activation by SOS

    DEFF Research Database (Denmark)

    Iversen, Lars; Tu, Hsiung-Lin; Lin, Wan-Chen

    2014-01-01

    SOS molecules catalyzing nucleotide exchange in H-Ras. Single-molecule kinetic traces revealed that SOS samples a broad distribution of turnover rates through stochastic fluctuations between distinct, long-lived (more than 100 seconds), functional states. The expected allosteric activation of SOS...... by Ras-guanosine triphosphate (GTP) was conspicuously absent in the mean rate. However, fluctuations into highly active states were modulated by Ras-GTP. This reveals a mechanism in which functional output may be determined by the dynamical spectrum of rates sampled by a small number of enzymes, rather......Activation of the small guanosine triphosphatase H-Ras by the exchange factor Son of Sevenless (SOS) is an important hub for signal transduction. Multiple layers of regulation, through protein and membrane interactions, govern activity of SOS. We characterized the specific activity of individual...