High Altitude Clear Air Turbulence Project
National Oceanic and Atmospheric Administration, Department of Commerce — The Air Force Flight Dynamics Laboratory conducted the High Altitude Clear Air Turbulence Project in the mid 1960s with the intention of better understanding air...
Molecular Air Data Clear Air Turbulence Sensor: MADCAT Project
National Aeronautics and Space Administration — Clear air turbulence (CAT), often referred to as "air pockets," is attributed to Kelvin-Helmholtz instabilities at altitudes usually above 18,000ft, often without...
Molecular Air Data Clear Air Turbulence Sensor: MADCAT Project
National Aeronautics and Space Administration — Clear air turbulence (CAT), often referred to as "air pockets," is attributed to Kelvin-Helmholtz instabilities at altitudes generally above 18,000ft, often in the...
SR-CATS: A Short-Range Clear Air Turbulence Sensor Project
National Aeronautics and Space Administration — Clear air turbulence (CAT), often referred to as "air pockets," is attributed to Kelvin-Helmholtz instabilities at altitudes generally above 18,000ft, often in the...
Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection
Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent
2016-06-01
An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.
Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.
Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine
2016-05-01
Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners. PMID:27140350
Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Barny, Hervé; Rondeau, Philippe; Veerman, Henk
2016-01-01
A high-performance airborne UV Rayleigh lidar system was developed within the European project DELICAT. With its forward-pointing architecture it aims at demonstrating a novel detection scheme for clear air turbulence (CAT) for an aeronautics safety application. Due to its occurrence in clear and clean air at high altitudes (aviation cruise flight level), this type of turbulence evades microwave radar techniques and in most cases coherent Doppler lidar techniques. The present lidar detection ...
Vrancken, Patrick; Ehret, Gerhard; Barny, Hervé; Rondeau, Philippe; Veerman, Henk
2016-01-01
A high-performance airborne UV Rayleigh lidar system was developed within the European project DELICAT. With its forward-pointing architecture it aims at demonstrating a novel detection scheme for clear air turbulence (CAT) for an aeronautics safety application. Due to its occurrence in clear and clean air at high altitudes (aviation cruise flight level), this type of turbulence evades microwave radar techniques and in most cases coherent Doppler lidar techniques. The present lidar detection technique relies on air density fluctuations measurement and is thus independent of backscatter from hydrometeors and aerosol particles. The subtle air density fluctuations caused by the turbulent air flow demand exceptionally high stability of the setup and in particular of the detection system. This paper describes an airborne test system for the purpose of demonstrating this technology and turbulence detection method: a high-power UV Rayleigh lidar system is installed on a research aircraft in a forward-looking configu...
Mode S and ADS-B as a Source of Clear-Air Turbulence Measurements
Kopeć, Jacek; Kwiatkowski, Kamil; de Haan, Siebren; Malinowski, Szymon
2016-04-01
Clear-Air Turbulence (CAT) beside being the most common cause for commercial aircraft incidents in the cruise phase is a complex physical phenomenon. CAT is an effect of various underlying physical mechanisms such as different kinds of hydrodynamic instabilities or large scale forcing. In order to properly understand and correctly forecast it one needs a significant amount of observation data. Up to date the best available observations are the in-situ EDR (from eddy dissipation rate - a measure of turbulence intensity). Those observations are reported every ~1 min of flight (roughly every 15 km). Yet their availability is limited by the willingness of the airlines to cooperate in adjusting on-board software. However there is a class of data that can be accessed more freely. In this communication we present and discuss a feasibility analysis of the three methods of processing Mode S/ADS-B messages into viable turbulence measurements. The Mode S/ADS-B messages are unrestricted navigational data broadcast by most of the commercial aircraft. The unique characteristic of this data is a very high temporal resolution. This allows to employ processing which results in obtaining turbulence information characterized by spatial resolution comparable with the best available data sources. Moreover due to using Mode-S/ASS-B data, the number of aircraft that are providing observations increases significantly. The methods are either using simple positioning information available in the ADS-B or high-resolution wind information from the Mode S. The paper is largely based on the results of the methods application to the data originating from DELICAT flight campaign that took place in 2013. The flight campaign was conducted using NLR operated Cessna Citation II. The reference Mode-S/ADS-B data partly overlapping with the research flights were supplied by the KNMI. Analysis shows very significant potential of the Mode-S wind based methods. J. M. Kopeć, K. Kwiatkowski, S. de Haan, and
Range resolution dependence of VHF radar returns from clear-air turbulence and precipitation
Chu, Y.-H. Y.-H.; Su, C.-L.
1999-06-01
With employing 1.5 h of the data observed by the Chung-Li VHF radar, the range resolution dependences of the VHF backscatter from refractivity fluctuation and precipitation are investigated in this article. It indicates that the atmospheric layer structure of refractivity seems to play a role in governing the range resolution dependence of clear-air turbulent echoes. Observations shows that the VHF clear-air echo power ratios for 4 to 2 μs pulse lengths are close to 3 dB in the middle or bottom side of the layer, while the ratios are significantly greater than 3 dB in the top side of the layer. The analysis of the precipitation echo power ratio for 4 to 2 ms pulse lengths shows that basically the ratios above 3.0 km are close to 3 dB, but enormously smaller than 3 dB below 3.0 km. The feature of extraordinarily small echo power ratios below 3.0 km is also observed for the radar returns from refractivity turbulence. The radar recovery effect is thought to be a primary factor responsible for the severe diminution of the echo power ratios at the lower altitudes. In addition, statistical analysis reveals that the range resolution effect on the first and second moments of the Doppler spectra for the radar echoes from clear-air turbulence and precipitation is insignificant and negligible. The dependences of the coefficient A and power B in the power-law approximation Vt=APBr to the terminal velocity Vt and range-corrected echo power Pr are examined theoretically and experimentally. The results show that the coefficient A (powers B) is inversely (positively) proportional to the range resolution, in a good agreement with the observations. Because of the strong dependence of coefficient A and power B on the radar pulse width, it suggests that great caution should be taken in comparing the power-law expressions Vt=APBr established from the radar returns obtained with different range resolutions.
International Nuclear Information System (INIS)
A study on Clear-Air Turbulence (abbreviated by CAT) forecast in a Numerical Weather Model is presented in this paper. The main objective of this study is to evaluate ARPEGE Meteofrance-NWP model's ability to reproduce CAT, by calculating various CAT indices at the regional scale (over Europe) in this model. The list of indices used here is inspired from that proposed by R. Sharman and Wolff (2006). Calculated indices are then compared with AMDARs (Aircraft Meteorological DAta Relay) turbulence measurements during winter, early in 2010. This work was performed within DELICAT european project (*DEmonstration of LIdar based Clear-Air Turbulence detection), in the Seventh Research Framework program of the European Union [FP7], in Meteofrance national weather agency.
Schaffner, Philip R.; Daniels, Taumi S.; West, Leanne L.; Gimmestad, Gary G.; Lane, Sarah E.; Burdette, Edward M.; Smith, William L.; Kireev, Stanislav; Cornman, Larry; Sharman, Robert D.
2012-01-01
The Forward-Looking Interferometer (FLI) is an airborne sensor concept for detection and estimation of potential atmospheric hazards to aircraft. The FLI concept is based on high-resolution Infrared Fourier Transform Spectrometry technologies that have been developed for satellite remote sensing. The FLI is being evaluated for its potential to address multiple hazards, during all phases of flight, including clear air turbulence, volcanic ash, wake vortices, low slant range visibility, dry wind shear, and icing. In addition, the FLI is being evaluated for its potential to detect hazardous runway conditions during landing, such as wet or icy asphalt or concrete. The validation of model-based instrument and hazard simulation results is accomplished by comparing predicted performance against empirical data. In the mountain lee wave data collected in the previous FLI project, the data showed a damped, periodic mountain wave structure. The wave data itself will be of use in forecast and nowcast turbulence products such as the Graphical Turbulence Guidance and Graphical Turbulence Guidance Nowcast products. Determining how turbulence hazard estimates can be derived from FLI measurements will require further investigation.
Kopeć, J. M.; Kwiatkowski, K.; de Haan, S.; Malinowski, S. P.
2015-11-01
Navigational information broadcast by commercial aircraft in the form of Mode-S and ADS-B messages can be considered a new and valid source of upper air turbulence measurements. A set of three processing methods is proposed and analysed using a quality record of turbulence encounters made by a research aircraft. The proposed methods are based on processing the vertical acceleration or the background wind into the eddy dissipation rate. All the necessary parameters are conveyed in the Mode-S/ADS-B messages. The comparison of the results of application of the processing against a reference eddy dissipation rate obtained using on-board accelerometer indicate a significant potential of those methods. The advantages and limitation of the presented approaches are discussed.
Cean air and clear responsibility
International Nuclear Information System (INIS)
This paper is the text of the address given by Commissioner Kenneth C. rogers, USNRC, at the 23rd DOE/NRC Nuclear Air Cleaning Conference. Mr. Rogers reviews the regulatory approach to the subject, discussing the requirements of 10CFR20 and ALARA principles. A discussion of the talk follows the text
Clear-air radar observations of the atmospheric boundary layer
Ince, Turker
2001-10-01
This dissertation presents the design and operation of a high-resolution frequency-modulated continuous-wave (FM- CW) radar system to study the structure and dynamics of clear-air turbulence in the atmospheric boundary layer (ABL). This sensitive radar can image the vertical structure of the ABL with both high spatial and temporal resolutions, and provide both qualitative information about the morphology of clear-air structures and quantitative information on the intensity of fluctuations in refractive-index of air. The principles of operation and the hardware and data acquisition characteristics of the radar are described in the dissertation. In October 1999, the radar participated in the Cooperative Atmosphere-Surface Exchange Study (CASES'99) Experiment to characterize the temporal structure and evolution of the boundary-layer features in both convective and stable conditions. The observed structures include clear-air convection, boundary layer evolution, gravity waves, Kelvin-Helmholtz instabilities, stably stratified layers, and clear-air turbulence. Many of the S-band radar images also show high- reflectivity returns from Rayleigh scatterers such as insects. An adaptive median filtering technique based on local statistics has, therefore, been developed to discriminate between Bragg and Rayleigh scattering in clear-air radar observations. The filter is tested on radar observations of clear air convection with comparison to two commonly used image processing techniques. The dissertation also examines the statistical mean of the radar-measured C2n for clear-air convection, and compares it with the theoretical predictions. The study also shows that the inversion height, local thickness of the inversion layer, and the height of the elevated atmospheric layers can be estimated from the radar reflectivity measurements. In addition, comparisons to the radiosonde-based height estimates are made. To examine the temporal and spatial structure of C2n , the dissertation
Interpretation of MST radar returns from clear air
Liu, C. H.
1983-01-01
The nature of the scattering and reflection mechanisms that give rise to the MST radar echoes from the clear air is essential in the correct interpretation of the data about winds, waves, turbulence and stability in the atmosphere. There are two main aspects: the nature of the targets the radar sees and their generation mechanisms; and the signatures of the radar signals returned from the different targets. Volume scatterings from isotropic or anisotropic turbulence, and partial reflections from horizontally stratified, sharp refractive index gradients are believed the main contributors to radar echoes. Combined effects from all the mechanisms probably produce the observed data. The signature of the echo signals for these different scatterers under realistic experimental conditions should be studied. It is hoped from these studies, the nature of the targets can be better understood, and related to atmospheric dynamic processes.
Pollution prevention at ports: clearing the air
International Nuclear Information System (INIS)
Seaports are major hubs of economic activity and of environmental pollution in coastal urban areas. Due to increasing global trade, transport of goods through ports has been steadily increasing and will likely continue to increase in the future. Evaluating air pollution impacts of ports requires consideration of numerous sources, including marine vessels, trucks, locomotives, and off-road equipment used for moving cargo. The air quality impacts of ports are significant, with particularly large emissions of diesel exhaust, particulate matter, and nitrogen oxides. The health effects of these air pollutants to residents of local communities include asthma, other respiratory diseases, cardiovascular disease, lung cancer, and premature mortality. In children, there are links with asthma, bronchitis, missed school days, and emergency room visits. The significance of these environmental health impacts requires aggressive efforts to mitigate the problem. Approaches to mitigation encompass a range of possibilities from currently available, low-cost approaches, to more significant investments for cleaner air. Examples of the former include restrictions on truck idling and the use of low-sulfur diesel fuel; the latter includes shore-side power for docked ships, and alternative fuels. A precautionary approach to port-related air pollution would encourage local production of goods in order to reduce marine traffic, greener design for new terminals, and state-of-the art approaches to emissions-control that have been successfully demonstrated at ports throughout the world
Sensitivity to draught in turbulent air flows
Energy Technology Data Exchange (ETDEWEB)
Todde, V.
1998-09-01
Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet
Clear-Air Propagation Modeling using Parabolic Equation Method
Directory of Open Access Journals (Sweden)
V. Kvicera
2003-12-01
Full Text Available Propagation of radio waves under clear-air conditions is affected bythe distribution of atmospheric refractivity between the transmitterand the receiver. The measurement of refractivity was carried out onthe TV Tower Prague to access evolution of a refractivity profile. Inthis paper, the parabolic equation method is used in modelingpropagation of microwaves when using the measured data. This paperbriefly describes the method and shows some practical results ofsimulation of microwave propagation using real vertical profiles ofatmospheric refractivity.
TurbEFA: an interdisciplinary effort to investigate the turbulent flow across a forest clearing
Directory of Open Access Journals (Sweden)
Ronald Queck
2015-01-01
Full Text Available It is assumed that the description of the exchange processes between heterogeneous natural surfaces and the atmosphere within turbulence closure models is mainly limited by a realistic three-dimensional (3D representation of the vegetation architecture. Within this contribution we present a method to record the 3D vegetation structure and to use this information to derive model parameters that are suitable for numerical flow models. A mixed conifer forest stand around a clearing was scanned and represented by a dense 3D point cloud applying a terrestrial laser scanner. Thus, the plant area density (PAD with a resolution of one cubic meter was provided for analysis and for numerical simulations. Multi-level high-frequency wind velocity measurements were recorded simultaneously by 27 ultrasonic anemometers on 4 towers for a period of one year. The relationship between wind speed, Reynolds stress and PAD was investigated and a parametrization of the drag coefficient CD$C_D$ by the PAD is suggested. The derived 3D vegetation model and a simpler model (based on classical forest assessments of the site were applied in a boundary layer model (BLM and in large-eddy simulations (LES. The spatial development of the turbulent flow over the clearing is further demonstrated by the results of a wind tunnel experiment. The project showed, that the simulation results were improved significantly by the usage of realistic vegetation models. 3D simulations are necessary to depict the influence of heterogeneous canopies on the turbulent flow. Whereas we found limits for the mapping of the vegetation structure within the wind tunnel, there is a considerable potential for numerical simulations. The field measurements and the LES gave new insight into the turbulent flow in the vicinity and across the clearing. The results show that the zones of intensive turbulence development can not be restricted to the locations found in previous studies with more idealized
TurbEFA: an interdisciplinary effort to investigate the turbulent flow across a forest clearing
Ronald Queck; Christian Bernhofer; Anne Bienert; Thomas Eipper; Valeri Goldberg; Stefan Harmansa; Veit Hildebrand; Hans-Gerd Maas; Fabian Schlegel; Jörg Stiller
2015-01-01
It is assumed that the description of the exchange processes between heterogeneous natural surfaces and the atmosphere within turbulence closure models is mainly limited by a realistic three-dimensional (3D) representation of the vegetation architecture. Within this contribution we present a method to record the 3D vegetation structure and to use this information to derive model parameters that are suitable for numerical flow models. A mixed conifer forest stand around a clearing was scanned ...
Vertical velocity structure and geometry of clear air convective elements
Rowland, J. R.; Arnold, A.
1975-01-01
The paper discusses observations of individual convective elements with a high-power narrow-beam scanning radar, an FM-CW radar, and an acoustic sounder, including the determination of the vertical air velocity patterns of convective structures with the FM-CW radar and acoustic sounder. Data are presented which link the observed velocity structure and geometrical patterns to previously proposed models of boundary layer convection. It is shown that the high-power radar provides a clear three-dimensional picture of convective cells and fields over a large area with a resolution of 150 m, where the convective cells are roughly spherical. Analysis of time-height records of the FM-CW radar and acoustic sounder confirms the downdraft-entrainment mechanism of the convective cell. The Doppler return of the acoustic sounder and the insect-trail slopes on FM-CW radar records are independent but redundant methods for obtaining the vertical velocity patterns of convective structures.
Clearing the Air: A Global Agenda. Worldwatch Paper 94.
French, Hilary F.
The environmental impact of air pollution on the earth can be described as grave. Air pollution, particularly acid rain, is devastating forests, crops, and lakes over wide areas of North America and Europe. In many cities, ancient buildings have eroded more in recent decades than they had over the previous thousand years. Indications are that…
Queck, Ronald; Bernhofer, Christian; Bienert, Anne; Schlegel, Fabian
2016-04-01
Forest ecosystems play an important role in the interaction between the land surface and the atmosphere. Measurements and modelling efforts have revealed significant uncertainties in state-of-the-art flux assessments due to spatial inhomogeneities in the airflow and land surface. Here, a field experiment is used to describe the turbulent flow across a typical Central European forest clearing. A three-dimensional model of the inhomogeneous forest stand was developed using an innovative approach based on terrestrial laser-scanner technology. The comparison of the wind statistics of two measurement campaigns (5 and 12 months long) showed the spatial and temporal representativeness of the ultrasonic anemometer measurements within the canopy. An improved method for the correction of the vertical velocity enables the distinction between the instrumental offsets and the vertical winds due to the inclination of the instrument. Despite a 13 % fraction of deciduous plants within the otherwise evergreen canopy, the effects of phenological seasons on the velocity profiles were small. The data classified according to the wind speed revealed the intermittent nature of recirculating air in the clearing. Furthermore, the development of sub-canopy wind-speed maxima is explained by considering the velocity moments and the momentum equation (including measurements of the local pressure gradient). Clearings deflect the flow downward and feed the sub-canopy flow, i.e., advective fluxes, according to wind speed and, likely, clearing size, whereas local pressure gradients play an important role in the development of sub-canopy flow. The presented dataset is freely available at the project homepage.
Microstructure of premixed propane/air flame in the transition from laminar to turbulent combustion
Institute of Scientific and Technical Information of China (English)
CHEN XianFeng; SUN JinHua; LIU Yi; LIU XuanYa; CHEN SiNing; LU ShouXiang
2007-01-01
In order to explore the flame structure and propagation behavior of premixed propane/air in the transition from laminar to turbulent combustion, the high speed camera and Schlieren images methods were used to record the photograph of flame propagation process in a semi-vented pipe. Meanwhile, the super-thin thermocouple and ionization current probe methods were applied to detect the temperature distribution and reaction intensity of combustion reaction. The characteristics of propane/air flame propagation and microstructure were analyzed in detail by the experimental results coupled with chemical reaction thermodynamics. In the test, the particular tulip flame behavior and the formation process in the laminar-turbulent transition were disclosed clearly. From the Schlieren images and iron current results, one conclusion can be drawn that the small-scale turbulent combustion also appeared in laminar flame, which made little influence on the flame shape, but increased the flame thickness obviously.
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF TURBULENT AIR-CUSHION-CASCADE
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Experimental and numerical studies of air-cushion-cascade were conducted and described. The SIMPLE algorithm combined with the normal k-ε turbulence model was adopted to simulate the air-phase flow. The experiment was carried out an IFA 300 anemometer. The flow field was measured for different ratios of main-stream velocity to jet velocity, different numbers of gaps and a couple of gap widths. The contur of the air-cushion was obtained, and the numerical calculations gave a closed-form result. The results show that the air-cushion thickness would increase with the increase of the jet volcoity, gap width and gap number mainly determined by the jet in the former half cascade. The possibility to achieve anti-erosion by the turbulent jet was examined and confirmed.
Turbulent drag reduction over air- and liquid- impregnated surfaces
Rosenberg, Brian J.; Van Buren, Tyler; Fu, Matthew K.; Smits, Alexander J.
2016-01-01
Results on turbulent skin friction reduction over air- and liquid-impregnated surfaces are presented for aqueous Taylor-Couette flow. The surfaces are fabricated by mechanically texturing the inner cylinder and chemically modifying the features to make them either non-wetting with respect to water (air-infused, or superhydrophobic case), or wetting with respect to an oil that is immiscible with water (liquid-infused case). The drag reduction, which remains fairly constant over the Reynolds number range tested (100 ≤ Reτ ≤ 140), is approximately 10% for the superhydrophobic surface and 14% for the best liquid-infused surface. Our results suggest that liquid-infused surfaces may enable robust drag reduction in high Reynolds number turbulent flows without the shortcomings associated with conventional superhydrophobic surfaces, namely, failure under conditions of high hydrodynamic pressure and turbulent flow fluctuations.
Clearing the air : report 2 : air quality trends in Sudbury 1998 to 2007
International Nuclear Information System (INIS)
This report highlighted key trends in air pollutant concentrations in the Greater Sudbury region between 1998 and 2007. Air pollutant concentrations were compared with ambient air quality criteria for Ontario as well as federal standards. The study measured levels of sulfur dioxide (SO2); ground-level ozone (O3); particulate matter (PM); and metals. An air quality index was used to rate overall air quality based on hourly measurements of up to 6 air pollutants. Air quality monitoring stations were placed throughout the Greater Sudbury region to record the amounts of pollutants in the air. The study showed that average SO2 concentrations continued to decrease across the monitoring network. O3 concentrations met the provincial 1-hour criterion except when long-range O3 was transported into the region from the United States under specific meteorological conditions. Coarse fractions of particulates were less than the annual criterion at stations. Average PM concentrations met the Canada Wide Standard, while the 24-hour criteria for metals were met for most of the year. Sudbury's air quality was then compared to air quality data obtained from other Ontario cities. It was concluded that Sudbury's air quality will continue to improve in the future. 9 figs.
Turbulent transfer characteristics of radioiodine effluents from air to grass
International Nuclear Information System (INIS)
A total of 20 controlled field releases of radioiodine have been performed at the National Reactor Testing Station in Idaho as a portion of a program to study the transmission of gaseous radioiodine through the air-vegetation-cow-milk-human chain. Most of the releases were conducted over typical pasture grasses during different wind and stability conditions. Radioiodine adherence to grass and carbon plates was measured during most of the tests. Vertical air concentration profiles and turbulence parameters were measured to determine flux characteristics. Analysis of the data reveals the complex interdisciplinary nature of transfer of radioiodine from air to a natural surface. The data are in reasonable agreement with the deposition models of Sheppard and Chamberlain when corrections for the physical and biological receptiveness of the grass and grass density are made. The average ratios of momentum to mass flux were found to be 0.9 in stable conditions and 1.4 in unstable conditions. These ratios demonstrate the effect on mass flux in the lowest 4m by a surface that acts as a partial sink for gaseous effluents. This series of releases indicates the need for further research on the biological receptiveness of grass and turbulent transfer within a grass canopy. (author)
Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei
2016-03-01
Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.
Characteristics of turbulent nonpremixed jet flame in cross air flow
International Nuclear Information System (INIS)
An experimental study on the characteristics of stability of propane turbulent nonpremixed jet flames discharged normal to air free-streams with uniform velocity profile is conducted. Experimental observations are focused on the flame shape, the stability considering two kinds of flame, lift-off distance,and the flame length according to velocity ratio. In order to investigate the mixing structure of the flame base at the lower limit, we employ the RMS technique and measure the species consent ration by a gas chromatography. In the results of the stability curve and lifted flame, it is found that the dependency of nozzle diameter is closely related to the large-scale vortical structure representing counter-rotating vortices pair. Also, the detailed discussion on the phenomenon of blowout due to this large vortical motion, is provided
Response of surface air temperature to small-scale land clearing across latitudes
International Nuclear Information System (INIS)
Climate models simulating continental scale deforestation suggest a warming effect of land clearing on the surface air temperature in the tropical zone and a cooling effect in the boreal zone due to different control of biogeochemical and biophysical processes. Ongoing land-use/cover changes mostly occur at local scales (hectares), and it is not clear whether the local-scale deforestation will generate temperature patterns consistent with the climate model results. Here we paired 40 and 12 flux sites with nearby weather stations in North and South America and in Eastern Asia, respectively, and quantified the temperature difference between these paired sites. Our goal was to investigate the response of the surface air temperature to local-scale (hectares) land clearing across latitudes using the surface weather stations as proxies for localized land clearing. The results show that north of 10°N, the annual mean temperature difference (open land minus forest) decreases with increasing latitude, but the temperature difference shrinks with latitude at a faster rate in the Americas [−0.079 (±0.010) °C per degree] than in Asia [−0.046 (±0.011) °C per degree]. Regression of the combined data suggests a transitional latitude of about 35.5°N that demarks deforestation warming to the south and cooling to the north. The warming in latitudes south of 35°N is associated with increase in the daily maximum temperature, with little change in the daily minimum temperature while the reverse is true in the boreal latitudes. (paper)
Clear Air Attenuation on FSO Links Experimental : Measurements in Czech Republic
Czech Academy of Sciences Publication Activity Database
Fišer, Ondřej; Brázda, Vladimír; Fišer, O., jr.
New York : SBMO/IEEEMTT-S, 2013, s. 1-4. ISBN 978-1-4799-1397-8. [IMOC 2013 (International Microwave and Optoelectronic Conference). Rio de Janeiro (BR), 04.08.2013-07.08.2013] R&D Projects: GA ČR(CZ) GAP102/11/1376; GA MŠk(CZ) LD13036 Institutional support: RVO:68378289 Keywords : free space optics * sonic temperature * clear air attenuation Subject RIV: DG - Athmosphere Sciences, Meteorology http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6646590&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6646590
Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow
Institute of Scientific and Technical Information of China (English)
ZHANG Lei; MENG Qing-lin
2009-01-01
In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.
Influences of initial velocity, diameter and Reynolds number on a circular turbulent air/air jet
Institute of Scientific and Technical Information of China (English)
Mi Jian-Chun; Du Cheng
2011-01-01
This paper assesses the suitability of the inflow Reynolds number defined by Reo ≡ UoD/v (here Uo and D are respectively the initial jet velocity and diameter while v is kinematic viscosity) for a round air/air jet.Specifically an experimental investigation is performed for the influences of U(o),D and Re(o) on the mean-velocity decay and spread coefficients (Ku,Kr) in the far field of a circular air jet into air from a smoothly contracting nozzle.Present measurements agree well with those previously obtained under similar inflow conditions.The relations Ku (oc) U(o) and Kr (oc) 1/U(o) for U(o) ＜ 5 m/s appear to work,while each coefficient approaches asymptotically to a constant for U(o) ＞ 6 m/s,regardless of the magnitudes of Reo and D.It is revealed that Reo may not be an appropriate dimensionless parameter to characterize the entire flow of a free air/air jet.This paper is the first paper that has challenged the suitability of Re(o) for turbulent free jets.
Aviation turbulence processes, detection, prediction
Lane, Todd
2016-01-01
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
Clear air boundary layer spaced antenna wind measurement with the Multiple Antenna Profiler (MAPR
Directory of Open Access Journals (Sweden)
S. A. Cohn
Full Text Available Spaced antenna (SA wind measurement techniques are applied to Multiple Antenna Profiler (MAPR data to evaluate its performance in clear air conditions. MAPR is a multiple antenna 915 MHz wind profiler developed at the National Center for Atmospheric Research (NCAR and described in Cohn et al. (1997, designed to make high resolution wind measurements. Previous reported measurements with MAPR were restricted to precipitation because of low signal to noise (SNR and signal to ground-clutter (SCR ratios. By using a standard pulse-coding technique and upgrading the profiler control software, increases in average power and SNR were achieved, making routine measurements in clear air possible. Comparison of winds measured by MAPR and by a sonic anemometer on a nearby 300 m tower show correlation coefficients in the range of R^{2} = 0.75 – 0.80, and an average absolute error of ~ 1.4 m s - 1 . This compares favorably with the agreement typically found in wind profiler comparisons. We also consider the use of the parameter ah , which is related to the value of the cross-correlation function at its zero crossing. This parameter is a data quality indicator and possibly a key component in a ground clutter removal technique.
Key words. Meteorology and atmospheric dynamics (mesoscale meteorology; instruments and techniques – Radio science (remote sensing
Intensive probing of clear air convective fields by radar and instrumented drone aircraft.
Rowland, J. R.
1972-01-01
Clear air convective fields were probed in three summer experiments (1969, 1970, and 1971) on an S-band monopulse tracking radar at Wallops Island, Virginia, and a drone aircraft with a takeoff weight of 5.2 kg, wingspan of 2.5 m, and cruising glide speed of 10.3 m/sec. The drone was flown 23.2 km north of the radar and carried temperature, pressure/altitude, humidity, and vertical and airspeed velocity sensors. Extensive time-space convective field data were obtained by taking a large number of RHI and PPI pictures at short intervals of time. The rapidly changing overall convective field data obtained from the radar could be related to the meteorological information telemetered from the drone at a reasonably low cost by this combined technique.
The evolution of the clear air convective layer revealed by surface-based remote sensors
Noonkester, V. R.
1976-01-01
Results are reported for simultaneous observations of the growth and decay of the clear-air convective mixing layer near a coastline, which were made with an FM-CW radar, a high-power narrow-beam S-band radar, and an acoustic echo sounder. The main purpose of this study was to determine the relationship between the rise rate of the convective depth and the lapse rate of temperature, particularly in the morning hours. The results indicate that the three remote sensors can provide excellent mutually supporting data on the convective depth. It is found that this depth is well behaved during the day and that its rise rate varies roughly linearly with the inverse square root of the temperature lapse rate during the morning. The data suggest that some models concerning the rise rate require modification, since these models imply that the surface heat flux would have to be unreasonably large to produce the observed relationship.
Prices that clear the air: energy use and pollution in Chile and Indonesia
International Nuclear Information System (INIS)
Emission reductions could be provided by cleaner technologies as well as substitution towards less polluting inputs and goods. The paper presents a model to assess the scope for emission reductions by input substitution. The model is applied to manufacturing in Chile and Indonesia - two developing countries considering air pollution control strategies. Substitutability in input demand in manufacturing is estimated using standard techniques and combined with emission factors to assess the potential for emission reductions via demand changes. For sulphur oxides (SOx) and suspended particulates (TSP), emission elasticities with respect to the price of heavy fuels range from -0.4 to -1.2. A price increase of 20% would reduce emissions of SOx and TSP by 8 to 24%. While these results indicate how emissions can be reduced by presumptive taxes on fuels - clearing the air as well as the markets for energy - such a strategy preferably should be accompanied by other instruments that stimulate cleaner technologies. Similarly, emission standard should be accompanied by presumptive taxes on goods and inputs. Emission taxes, if feasible, optimally combined inducements along both avenues. 42 refs., 14 tabs
Space-borne clear air lidar measurements in the presence of broken cloud
Directory of Open Access Journals (Sweden)
I. Astin
Full Text Available A number of proposed lidar systems, such as ESA’s AEOLUS (formerly ADM and DIAL missions (e.g. WALES are to make use of lidar returns in clear air. However, on average, two-thirds of the globe is covered in cloud. Hence, there is a strong likelihood that data from these instruments may be contaminated by cloud. Similarly, optically thick cloud may not be penetrated by a lidar pulse, resulting in unobservable regions that are overshadowed by the cloud. To address this, it is suggested, for example, in AEOLUS, that a number of consecutive short sections of lidar data (between 1 and 3.5 km in length be tested for cloud contamination or for overshadowing and only those that are unaffected by cloud be used to derive atmospheric profiles. The prob-ability of obtaining profiles to near ground level using this technique is investigated both analytically and using UV air-borne lidar data recorded during the CLARE’98 campaign. These data were measured in the presence of broken cloud on a number of flights over southern England over a four-day period and were chosen because the lidar used has the same wavelength, footprint and could match the along-track spacing of the proposed AEOLUS lidar.
Key words. Atmospheric composition and structure (aerosols and particles Meteorology and atmospheric dynamics (instruments and techniques; general circulation
Intensive probing of a clear air convective field by radar and instrumental drone aircraft.
Rowland, J. R.
1973-01-01
An instrumented drone aircraft was used in conjunction with ultrasensitive radar to study the development of a convective field in the clear air. Radar data are presented which show an initial constant growth rate in the height of the convective field of 3.8 m/min, followed by a short period marked by condensation and rapid growth at a rate in excess of 6.1 m/min. Drone aircraft soundings show general features of a convective field including progressive lifting of the inversion at the top of the convection and a cooling of the air at the top of the field. Calculations of vertical heat flux as a function of time and altitude during the early stages of convection show a linear decrease in heat flux with altitude to near the top of the convective field and a negative heat flux at the top. Evidence is presented which supports previous observations that convective cells overshoot their neutral buoyancy level into a region where they are cool and moist compared to their surroundings. Furthermore, only that portion of the convective cell that has overshot its neutral buoyancy level is generally visible to the radar.
Communication with spatially modulated Light through turbulent Air across Vienna
Krenn, Mario; Fickler, Robert; Fink, Matthias; Handsteiner, Johannes; Malik, Mehul; Scheidl, Thomas; Ursin, Rupert; Zeilinger, Anton
2014-01-01
The transverse spatial modes of light offer a large state-space with interesting physical properties. For exploiting it in future long-distance experiments, spatial modes will have to be transmitted over turbulent free-space links. Numerous recent lab-scale experiments have found significant degradation in the mode quality after transmission through simulated turbulence and consecutive coherent detection. Here we experimentally analyze the transmission of one prominent class of spatial modes,...
Liquid mean velocity and turbulence in a horizontal air-water bubbly flow
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.
Energy Technology Data Exchange (ETDEWEB)
Mantzaras, I.; Benz, P.; Schaeren, R.; Bombach, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)
1999-08-01
The catalytically stabilised thermal combustion (CST) of lean hydrogen-air mixtures was investigated numerically in a turbulent channel flow configuration using a two-dimensional elliptic model with detailed heterogeneous and homogeneous chemical reactions. Comparison between turbulent and laminar cases having the same incoming mean properties shows that turbulence inhibits homogeneous ignition due to increased heat transport away from the near-wall layer. The peak root-mean-square temperature and species fluctuations are always located outside the extent of the homogeneous reaction zone indicating that thermochemical fluctuations have no significant influence on gaseous combustion. (author) 4 figs., 6 refs.
International Nuclear Information System (INIS)
A supercomputer is a nice tool for simulating environmental flows. The Center for Global Environmental Research (CGER) of the National Institute for Environmental Studies purchased a supercomputer SX-3 of CGER about three years ago, and it has been used for various environmental simulations since. Although one of the main purposes for which the supercomputer was used was to simulate global warming with a general circulation model (GCM), our research organization used the supercomputer for more fundamental work to investigate heat and mass transfer mechanisms in environmental flows. Our motivations for this work was the fact that GCMs involve a number of uncertain submodels related to heat and mass transfer in turbulent atmospheric and oceanic flows. It may be easy to write research reports by running GCMs which were developed in western countries, but it is difficult for numerical scientists to do original work with such second-hand GCMs. In this sense, we thought that it would be more original to study the fundamentals of heat and mass transfer mechanisms in environmental flows rather than to run a GCM. Therefore, we tried to numerically investigate turbulence structure and scalar transfer both at the air-sea interface and in thermally stratified flows, neither of which were well modeled by GCMs. We also employed laboratory experiments to clarify the turbulence structure and scalar transfer mechanism, since numerical simulations are not sufficiently powerful to clarify all aspects of turbulence structure and scalar transfer mechanisms. A numerical technique is a promising tool to complement measurements of processes that cannot be clarified by turbulence measurements in environmental flows. It should also be noted that most of the interesting phenomena in environmental flows can be elucidated by laboratory or field measurements but not by numerical simulations alone. Thus, it is of importance to combine laboratory or field measurements with numerical simulations
Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow
International Nuclear Information System (INIS)
The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
The effect of precipitation on wind-profiler clear air returns
Directory of Open Access Journals (Sweden)
A. J. McDonald
2004-11-01
Full Text Available A small number of studies have indicated that reductions in the signal strength of clear air returns can be observed at low altitudes in regions of precipitation. This study uses data from the NERC MST radar facility in Aberystwyth (52.4° N, 4.1° W and co-located tipping bucket rain gauge data to determine whether this effect can be observed for all periods where high rainfall rates were observed at the ground. The period selected for examination includes all of the days where a peak rainfall rate of 6mm h^{-1} was exceeded in 2001. A statistical examination of VHF radar signal power during periods with and without surface rainfall suggests that the returned power is reduced by the presence of precipitating clouds. The corrected spectral width of the Doppler spectra is also significantly wider during periods of precipitation. The process which causes the decrease in the VHF signal power seems to be associated with a reduction in Fresnel reflection within precipitating clouds. This, in turn, may be due to a reduction of humidity gradients in clouds. UHF wind profiler data is also used to show that there is a relationship between enhanced UHF returns (signifying precipitation and reduced VHF returns. To clarify the processes and effects observed we examine three case studies which show typical relationships between the VHF signal power and surface rainfall or enhanced UHF signal-to-noise ratios. The effect of precipitation on the signal processing scheme's derivation of signal power and spectral width is explored using individual Doppler spectra.
Twisted light communication through turbulent air across Vienna
Krenn, Mario; Fink, Matthias; Handsteiner, Johannes; Malik, Mehul; Scheidl, Thomas; Ursin, Rupert; Zeilinger, Anton
2014-01-01
The orbital-angular momentum (OAM) of light has recently emerged as a promising candidate for quantum and classical information systems. The discrete, unbounded state-space of OAM not only promises vastly enhanced data rates, but also an increased tolerance to eavesdropping in quantum communication. Numerous recent lab-scale experiments have found significant degradation in OAM mode quality while transmitting light carrying such modes through simulated turbulence. Here we experimentally realize the transmission of classical information encoded in the intensity patterns of 16 OAM mode superpositions through 3 km of strong turbulence over the city of Vienna. The average error rate is 1%. Our method relies on a novel detection scheme that identifies the mode intensity patterns using an artificial neuronal network. We show that in our method the relative phase between two modes is transmitted in a stable way. This opens the possibility for long-distance quantum communication with entangled OAM states.
Communication with spatially modulated light through turbulent air across Vienna
International Nuclear Information System (INIS)
Transverse spatial modes of light offer a large state-space with interesting physical properties. For exploiting these special modes in future long-distance experiments, the modes will have to be transmitted over turbulent free-space links. Numerous recent lab-scale experiments have found significant degradation in the mode quality after transmission through simulated turbulence and consecutive coherent detection. Here, we experimentally analyze the transmission of one prominent class of spatial modes—orbital-angular momentum (OAM) modes—through 3 km of strong turbulence over the city of Vienna. Instead of performing a coherent phase-dependent measurement, we employ an incoherent detection scheme, which relies on the unambiguous intensity patterns of the different spatial modes. We use a pattern recognition algorithm (an artificial neural network) to identify the characteristic mode patterns displayed on a screen at the receiver. We were able to distinguish between 16 different OAM mode superpositions with only a ∼1.7% error rate and to use them to encode and transmit small grayscale images. Moreover, we found that the relative phase of the superposition modes is not affected by the atmosphere, establishing the feasibility for performing long-distance quantum experiments with the OAM of photons. Our detection method works for other classes of spatial modes with unambiguous intensity patterns as well, and can be further improved by modern techniques of pattern recognition. (paper)
Theoretical analysis and semianalytical solutions for a turbulent buoyant hydrogen-air jet
El-Amin, M.F.
2012-01-01
Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).
Theoretical Analysis and Semianalytical Solutions for a Turbulent Buoyant Hydrogen-Air Jet
El-Amin, M. F.; Shuyu Sun; Amgad Salama
2012-01-01
Semianalytical solutions are developed for turbulent hydrogen-air plume. We derived analytical expressions for plume centerline variables (radius, velocity, and density deficit) in terms of a single universal function, called plume function. By combining the obtained analytical expressions of centerline variables with empirical Gaussian expressions of the mean variables, we obtain semianalytical expressions for mean quantities of hydrogen-air plume (velocity, density deficit, and mass fraction).
Twisted photon entanglement through turbulent air across Vienna.
Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Zeilinger, Anton
2015-11-17
Photons with a twisted phase front can carry a discrete, in principle, unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is possible to distribute quantum entanglement encoded in OAM over a turbulent intracity link of 3 km. We confirm quantum entanglement of the first two higher-order levels (with OAM=± 1ħ and ± 2ħ). They correspond to four additional quantum channels orthogonal to all that have been used in long-distance quantum experiments so far. Therefore, a promising application would be quantum communication with a large alphabet. We also demonstrate that our link allows access to up to 11 quantum channels of OAM. The restrictive factors toward higher numbers are technical limitations that can be circumvented with readily available technologies. PMID:26578763
Twisted photon entanglement through turbulent air across Vienna
Krenn, Mario; Fink, Matthias; Fickler, Robert; Zeilinger, Anton
2015-01-01
Photons with a twisted phase front can carry a discrete, in principle unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is possible to distribute quantum entanglement encoded in OAM over a turbulent intra-city link of 3 kilometers. We confirm quantum entanglement of the first two higher-order levels (with OAM=$\\pm 1 \\hbar$ and $\\pm 2 \\hbar$). They correspond to four new quantum channels orthogonal to all that have been used in long-distance quantum experiments so far. Therefore a promising application would be quantum communication with a large alphabet. We also demonstrate that our link allows access to up to 11 quantum channels of OAM. The r...
Institute of Scientific and Technical Information of China (English)
Z. Lin; R.E. Waltz
2007-01-01
@@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.
Quasi 3-D measurements of turbulence structure in horizontal air-water bubbly flow
International Nuclear Information System (INIS)
Quasi 3-D measurements of the turbulence structure of air-water bubbly flow in a horizontal tube with 35 mm i.d. are undertaken with two TSI 'X''-type hot-film probes. The turbulent fluctuations, uf,vf,wf, in axial, radial and circumferential directions, respectively, and Reynolds tresses -UV-bar and -u w-bar are obtained. It is found that in the lower portion of the tube, the profiles of turbulent fluctuation and Reynolds tress resemble those of single phase flow; whereas in the upper portion of he tube, where the bubble population is high, the turbulence, especially the circumferential fluctuation wf, is substantially enhanced, and the radial turbulence assumes highest value in the radial position -0.7< r/R<0.5. The magnitudes of Reynolds stresses -u w-bar and -UV-bar in our measurements are in the same level except in the lower portion of the tube where -u w-bar assumes a value close to zero as is the case in single phase flow and vertical air-water bubbly flow
Hydrogen autoignition in a turbulent jet with preheated co-flow air
Energy Technology Data Exchange (ETDEWEB)
Echekki, Tarek; Gupta, Kamlesh G. [Department of Mechanical and Aerospace Engineering, North Carolina State University, 2601 Stinson Drive - Campus Box 7910, Raleigh, NC 27695-7910 (United States)
2009-10-15
The autoignition of hydrogen in a turbulent jet with preheated air is studied computationally using the stand-alone one-dimensional turbulence (ODT) model. The simulations are based on varying the jet Reynolds number and the mixture pressure. Also, computations are carried out for homogeneous autoignition at different mixture fractions and the same two pressure conditions considered for the jet simulations. The simulations show that autoignition is delayed in the jet configuration relative to the earliest autoignition events in homogeneous mixtures. This delay is primarily due to the presence of scalar dissipation associated with the scalar mixing layer in the jet configuration as well as with the presence of turbulent stirring. Turbulence plays additional roles in the subsequent stages of the autoignition process. Pressure effects also are present during the autoignition process and the subsequent high-temperature combustion stages. These effects may be attributed primarily to the sensitivity of the autoignition delay time to the mixture conditions and the role of pressure and air preheating on molecular transport properties. The overall trends are such that turbulence increases autoignition delay times and accordingly the ignition length and pressure further contribute to this delay. (author)
Energy Technology Data Exchange (ETDEWEB)
Wharton, S; Schroeder, M; Paw U, K T; Falk, M; Bible, K
2009-01-08
Carbon dioxide, water vapor and energy fluxes were measured using eddy covariance (EC) methodology over three adjacent forests in southern Washington State to identify stand-level age-effects on ecosystem exchange. The sites represent Douglas-fir forest ecosystems at two contrasting successional stages: old-growth (OG) and early seral (ES). Here we present eddy flux and meteorological data from two early seral stands and the Wind River AmeriFlux old-growth forest during the growing season (March-October) in 2006 and 2007. We show an alternative approach to the usual friction velocity (u*) method for determining periods of adequate atmospheric boundary layer (ABL) mixing based on the ratio of mean horizontal ({bar u}) and vertical ({bar w}) wind flow to a modified turbulent kinetic energy scale (uTKE). This new parameter in addition to footprint modeling showed that daytime CO{sub 2} fluxes (F{sub NEE}) in small clear-cuts (< 10 hectares) can be measured accurately with EC if micrometeorological conditions are carefully evaluated. Peak midday CO{sub 2} fluxes (F{sub NEE} = -14.0 to -12.3 {micro}mol m{sup -2} s{sup -1}) at OG were measured in April in both 2006 and 2007 before bud break when air and soil temperatures and vapor pressure deficit were relatively low, and soil moisture and light levels were favorable for photosynthesis. At the early seral stands, peak midday CO{sub 2} fluxes (F{sub NEE} = -11.0 to -8.7 {micro}mol m{sup -2} s{sup -1}) were measured in June and July while spring-time CO{sub 2} fluxes were much smaller (F{sub NEE} = -3.8 to -3.6 {micro}mol m{sup -2} s{sup -1}). Overall, we measured lower evapotranspiration (OG = 230 mm; ES = 297 mm) higher midday F{sub NEE} (OG F{sub NEE} = -9.0 {micro}mol m{sup -2} s{sup -1}; ES F{sub NEE} = -7.3 {micro}mol m{sup -2} s{sup -1}) and higher Bowen ratios (OG {beta} = 2.0. ES {beta} = 1.2) at the old-growth forest than at the ES sites during the summer months (May-August). Eddy covariance studies such as ours
Improving Forecast Skill by Assimilation of AIRS Cloud Cleared Radiances RiCC
Susskind, Joel; Rosenberg, Robert I.; Iredell, Lena
2015-01-01
ECMWF, NCEP, and GMAO routinely assimilate radiosonde and other in-situ observations along with satellite IR and MW Sounder radiance observations. NCEP and GMAO use the NCEP GSI Data Assimilation System (DAS).GSI DAS assimilates AIRS, CrIS, IASI channel radiances Ri on a channel-by-channel, case-by-case basis, only for those channels i thought to be unaffected by cloud cover. This test excludes Ri for most tropospheric sounding channels under partial cloud cover conditions. AIRS Version-6 RiCC is a derived quantity representative of what AIRS channel i would have seen if the AIRS FOR were cloud free. All values of RiCC have case-by-case error estimates RiCC associated with them. Our experiments present to the GSI QCd values of AIRS RiCC in place of AIRS Ri observations. GSI DAS assimilates only those values of RiCC it thinks are cloud free. This potentially allows for better coverage of assimilated QCd values of RiCC as compared to Ri.
Numerical simulation of high-speed turbulent water jets in air
Guha, Anirban; Balachandar, Ram
2010-01-01
Numerical simulation of high-speed turbulent water jets in air and its validation with experimental data has not been reported in the literature. It is therefore aimed to simulate the physics of these high-speed water jets and compare the results with the existing experimental works. High-speed water jets diffuse in the surrounding atmosphere by the processes of mass and momentum transfer. Air is entrained into the jet stream and the entire process contributes to jet spreading and subsequent pressure decay. Hence the physical problem is in the category of multiphase flows, for which mass and momentum transfer is to be determined to simulate the problem. Using the Eulerian multiphase and the k-\\epsilon turbulence models, plus a novel numerical model for mass and momentum transfer, the simulation was achieved. The results reasonably predict the flow physics of high-speed water jets in air.
Numerical study of turbulent normal diffusion flame CH4-air stabilized by coaxial burner
Directory of Open Access Journals (Sweden)
Riahi Zouhair
2013-01-01
Full Text Available The practical combustion systems such as combustion furnaces, gas turbine, engines, etc. employ non-premixed combustion due to its better flame stability, safety, and wide operating range as compared to premixed combustion. The present numerical study characterizes the turbulent flame of methane-air in a coaxial burner in order to determine the effect of airflow on the distribution of temperature, on gas consumption and on the emission of NOx. The results in this study are obtained by simulation on FLUENT code. The results demonstrate the influence of different parameters on the flame structure, temperature distribution and gas emissions, such as turbulence, fuel jet velocity, air jet velocity, equivalence ratio and mixture fraction. The lift-off height for a fixed fuel jet velocity is observed to increase monotonically with air jet velocity. Temperature and NOx emission decrease of important values with the equivalence ratio, it is maximum about the unity.
Energy and water vapor transport across a simplified cloud-clear air interface
Gallana, Luca; De Santi, Francesca; Iovieno, Michele; Tordella, Daniela
2015-01-01
We consider a simplified physics of the could interface where condensation, evaporation and radiation are neglected and momentum, thermal energy and water vapor transport is represented in terms of the Boussinesq model coupled to a passive scalar transport equation for the vapor. The interface is modeled as a layer separating two isotropic turbulent regions with different kinetic energy and vapor concentration. In particular, we focus on the small scale part of the inertial range as well as on the dissipative range of scales which are important to the micro-physics of warm clouds. We have numerically investigated stably stratified interfaces by locally perturbing at an initial instant the standard temperature lapse rate at the cloud interface and then observing the temporal evolution of the system. When the buoyancy term becomes of the same order of the inertial one, we observe a spatial redistribution of the kinetic energy which produce a concomitant pit of kinetic energy within the mixing layer. In this sit...
Gas transfer at the air-water interface in a turbulent flow environment
Energy Technology Data Exchange (ETDEWEB)
Herlina
2005-07-01
The gas transfer process across the air-water interface in a bottom-shear-induced turbulent environment was investigated to gain improved fundamental understanding of the physical mechanisms that control the process. For this purpose, it is necessary to reveal the hydrodynamics of the flow field as well as the molecular diffusion and the turbulent transport contributions to the total flux. Therefore, detailed laboratory experiments were conducted to obtain this information. The experiments were performed in a grid-stirred tank using a combined Particle Image Velocimetry - Laser Induced Fluorescence (PIV-LIF) technique that has been developed for these near surface gas transfer measurements. The turbulence characteristics of the velocity near the interface were acquired from the PIV measurements and showed generally good agreement with the theoretical profiles from Hunt and Graham (1978). The LIF technique enabled visualization of the planar concentration fields which provided more insight into the gas transfer mechanisms. The high data resolution allowed detailed quantification of the concentration distribution within the thin aqueous boundary layer. The interrelated interpretation of the obtained results suggest that the gas transfer process is controlled by a spectrum of different eddy sizes and the gas transfer at different turbulence levels can be associated to certain eddy sizes. For high turbulence levels the gas transfer should be asymptotic to the small eddy model, whereas for low turbulence level to the large eddy model. The new results of turbulent mass flux should aid as an excellent database in refining numerical models and developing more accurate models for the prediction of the transfer velocity. (orig.)
Direct numerical simulation of a turbulent stably stratified air flow above a wavy water surface
Druzhinin, O. A.; Troitskaya, Yu. I.; Zilitinkevich, S. S.
2016-01-01
The influence of the roughness of the underlaying water surface on turbulence is studied in a stably stratified boundary layer (SSBL). Direct numerical simulation (DNS) is conducted at various Reynolds (Re) and Richardson (Ri) numbers and the wave steepness ka. It is shown that, at constant Re, the stationary turbulent regime is set in at Ri below the threshold value Ri c depending on Re. At Ri > Ri c , in the absence of turbulent fluctuations near the wave water surface, three-dimensional quasiperiodical structures are identified and their threshold of origin depends on the steepness of the surface wave on the water surface. This regime is called a wave pumping regime. The formation of three-dimensional structures is explained by the development of parametric instability of the disturbances induced by the surface water in the air flow. The DNS results are quite consistent with prediction of the theoretical model of the SSBL flow, in which solutions for the disturbances of the fields of velocity and temperature in the wave pumping regime are found to be a solution of a two-dimensional linearized system with the heterogeneous boundary condition, which is caused by the presence of the surface wave. In addition to the turbulent fluctuations, the three-dimensional structures in the wave pumping regime provide for the transfer of impulse and heat, i.e., the increase in the roughness of the water-air boundary caused by the presence of waves intensifies the exchange in the SSBL.
Experimental study of humid air reverse diffusion combustion in a turbulent flow field
Institute of Scientific and Technical Information of China (English)
GE Bing; ZANG Shusheng; GU Xin
2007-01-01
Experiments were performed to investigate the differences between the propane/air turbulent diffusion reactive flows past bluff-body and the propane/humid air turbulent diffusion reactive flows in the same conditions.The velocity distributions of the non-humid reactive flow fields and the humid reactive flow fields were measured by particle image velocimetry (PIV) techniques.The temperature fields were measured by high temperature thermocouples,and NOx distributions were obtained by using gas detection instruments.The results show that although humid air reactive flow fields are similar to non-humid flow fields in general,there are some differences in the humid air combustion flow field comparing with the non-humid combustion flow field:the center of the reversed-flow region goes forward;the dimension of the reversed-flow region is smaller;the peak temperature and NOx formation are reduced.It is suggested that humid air combustion is helpful to shorten the axial length of combustors,and reduce the formation of pollutants.
Clearing the air: challenges to introducing smoking restrictions in West Virginia.
Stebbins, K R
1997-05-01
One of the most fundamental rights, the right to breathe air free of unhealthy carcinogens, is continuously threatened by powerful corporate tobacco interests, which spend enormous amounts of money not only to promote smoking, but also to stifle local, state, and national efforts to control smoking in the United States. From the perspective of a "committed participant" this paper discusses recent difficulties encountered in attempting to introduce West Virginia's first comprehensive smoking control legislation, and the strategies used to overcome them. The primary message reported here is that, given the overwhelming financial, emotional, and human-potential costs involved in ongoing tobacco abuse in the United States, it is essential that citizens unite to protect the health of all children and the vast majority of adults who do not smoke, and to discourage the consumption of cigarettes, the single biggest cause of disease and death in our society. The example reported here from West Virginia demonstrates that persistent citizen activism can make a critical difference in promoting laws that protect human health from unhealthy environmental tobacco smoke. PMID:9141171
Czech Academy of Sciences Publication Activity Database
Heroldová, Marta
2002-01-01
Roč. 51, Suppl. 1 (2002), s. 83-91. ISSN 0139-7893. [Rodens et spatium /7./. České Budějovice, 10.07.2000-14.07.2000] R&D Projects: GA MŽP ZZ/620/2/97; GA ČR GA524/01/1316; GA AV ČR KSK6005114 Institutional research plan: CEZ:AV0Z6093917 Keywords : Microtus agrestis * diet * air pollution clearings Subject RIV: EH - Ecology, Behaviour Impact factor: 0.234, year: 2002
Experimental Study on Turbulent Structure of Humid Air Flame in a Bluff-body Burner
Institute of Scientific and Technical Information of China (English)
Bing Ge; Shu-Sheng Zang; Pei-qing Guo
2009-01-01
The main objective of the present experimental study is to analyze the turbulent structure in humid air non-premixed flame, and determine the effect of humidity on the flow field and the flame stability limit in turbu-lent non-premixed flame. Particle Image Velocimetry (PIV) is used to capture the instantaneous appearance of vortex structures and obtain the quantitative velocity field. The distributions of Reynolds shear stress, mean and root-mean squared fluctuating (rms) velocities are examined to get insight into the effect of fuel-to-air velocity ra-tio on velocity flow field. The results show that with steam addition, the air-driven vortex in the bluff-body wake is thinner; the biggest peaks of rms velocity and Reynolds shear stress are lower; the distance between the peaks of rms velocity on the sides of centerline reduces. Besides these, the flame stability is affected. Both central fuel penetration limit and partially quenching limit reduce with steam addition.
Horizontal H 2-air turbulent buoyant jet resulting from hydrogen leakage
El-Amin, Mohamed
2012-02-01
The current article is devoted to introducing mathematical and physical analyses with numerical investigation of a buoyant jet resulting from hydrogen leakage in air from a horizontal round source. H 2-air jet is an example of the non-Boussinesq buoyant jet in which a low-density gas jet is injected/leak into a high-density ambient. The density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type and the rate of entrainment is assumed to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment consists of two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. The top-hat profile assumption is used to obtain the mean centerline velocity, width, density and concentration of the H 2-air horizontal jet in addition to kinematic relations which govern the jet trajectories. A set of ordinary differential equations is obtained and solved numerically using Runge-Kutta method. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained based on Gaussian model. Finally, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained by solving the governing partial differential equations. Additionally, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Ryan, Ellen
1994-01-01
The importance of communication between college advancement professionals and fund raisers is emphasized, and some techniques are offered for resolving specific communication issues, including time constraints during travel, timely filing of reports, resistance to computers, completeness of information recorded, resistance to information sharing,…
Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.
2001-05-01
Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of
Turbulent vertical fluxes and air quality measured in urban air in Helsinki
JÃ€rvi, Leena
2009-01-01
There is a growing need to understand the exchange processes of momentum, heat and mass between an urban surface and the atmosphere as they affect our quality of life. Understanding the source/sink strengths as well as the mixing mechanisms of air pollutants is particularly important due to their effects on human health and climate. This work aims to improve our understanding of these surface-atmosphere interactions based on the analysis of measurements carried out in Helsinki, Finland. The v...
Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.
2015-11-01
The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.
Yagüe, Carlos; Román Cascón, Carlos; Maqueda, Gregorio; Sastre, Mariano; Arrillaga, Jon A.; Artíñano, Begoña; Diaz-Ramiro, Elías; Gómez-Moreno, Francisco J.; Borge, Rafael; Narros, Adolfo; Pérez, Javier
2016-04-01
An urban field campaign was conducted at an air pollution hot spot in Madrid city (Spain) during winter 2015 (from 16th February to 2nd March). The zone selected for the study is a square (Plaza Fernández Ladreda) located in the southern part of the city. This area is an important intersection of several principal routes, and therefore a significant impact in the air quality of the area is found due to the high traffic density. Meteorological data (wind speed and direction, air temperature, relative humidity, pressure, precipitation and global solar radiation) were daily recorded as well as micrometeorological measurements obtained from two sonic anemometers. To characterize this urban atmospheric boundary layer (uABL), micrometeorological parameters (turbulent kinetic energy -TKE-, friction velocity -u∗- and sensible heat flux -H-) are calculated, considering 5-minute average for variance and covariance evaluations. Furthermore, synoptic atmospheric features were analyzed. As a whole, a predominant influence of high pressure systems was found over the Atlantic Ocean and western Spain, affecting Madrid, but during a couple of days (17th and 21st February) some atmospheric instability played a role. The influence of the synoptic situation and specially the evolution of the micrometeorological conditions along the day on air quality characteristics (Particulate Matter concentrations: PM10, PM2.5 and PM1, and NOx concentrations) are analyzed and shown in detail. This work has been financed by Madrid Regional Research Plan through TECNAIRE (P2013/MAE-2972).
Directory of Open Access Journals (Sweden)
Gábor Janiga
2011-05-01
Full Text Available Direct Numerical Simulations (DNS have been conducted to study the response of initially laminar spherical premixed methane–air flame kernels to successively higher turbulence intensities at five different equivalence ratios. The numerical experiments include a 16-species/25-step skeletal mechanism for methane oxidation and a multicomponent molecular transport model. Highly turbulent conditions (with integral Reynolds numbers up to 4513 have been accessed. The effect of turbulence on the physical properties of the flame, in particular its consumption speed Sc, which is an interesting measure of the turbulent flame speed ST has been investigated. Local quenching events are increasingly observed for highly turbulent conditions, particularly for lean mixtures. The obtained results qualitatively confirm the expected trend regarding correlations between u′/SL and the consumption speed: Sc first increases, roughly linearly, with u′/SL (low turbulence zone, then levels off (bending zone before decreasing again (quenching limit for too intense turbulence. For a fixed value of u′/SL, Sc/SL varies with the mixture equivalence ratio, showing that additional parameters should probably enter phenomenological expressions relating these two quantities.
Non-Boussinesq turbulent buoyant jet resulting from hydrogen leakage in air
Energy Technology Data Exchange (ETDEWEB)
El-Amin, M.F. [Department of Mechanical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)
2009-09-15
This paper is devoted to introduce a numerical investigation of a vertical axisymmetric non-Boussinesq buoyant jet resulting from hydrogen leakage in air as an example of injecting a low-density gas jet into high-density ambient. As the domain temperature is assumed to be constant and therefore the density of the mixture is a function of the concentration only, the binary gas mixture is assumed to be of a linear mixing type. Also, it is assumed that the rate of entrainment to be a function of the plume centerline velocity and the ratio of the mean plume and ambient densities. On the other hand, the local rate of entrainment may be considered to be consisted from two components; one is the component of entrainment due to jet momentum while the other is the component of entrainment due to buoyancy. Firstly, the integral models of the mass, momentum and concentration fluxes are obtained and transformed to a set of ordinary differential equations using some non-dimensional transformations known as similarity transformations. The given ordinary differential system is integrated numerically and the mean centerline mass fraction, jet width and mean centerline velocity are obtained. In the second step, the mean axial velocity, mean concentration and mean density of the jet are obtained. Finally in the third step of this article, several quantities of interest, including the cross-stream velocity, Reynolds stress, velocity-concentration correlation (radial flux), turbulent eddy viscosity and turbulent eddy diffusivity, are obtained. In addition, the turbulent Schmidt number is estimated and the normalized jet-feed material density and the normalized momentum flux density are correlated. (author)
Wu, Mingliang; Yang, Fei; Rong, Mingzhe; Wu, Yi; Qi, Yang; Cui, Yufei; Liu, Zirui; Guo, Anxiang
2016-04-01
This paper focuses on the numerical investigation of arc characteristics in an air direct current circuit breaker (air DCCB). Using magneto-hydrodynamics (MHD) theory, 3D laminar model and turbulence model are constructed and calculated. The standard k-epsilon model is utilized to consider the turbulence effect in the arc chamber of the DCCB. Several important phenomena are found: the arc column in the turbulence-model case is more extensive, moves much more slowly than the counterpart in the laminar-model case, and shows stagnation at the entrance of the chamber, unlike in the laminar-model case. Moreover, the arc voltage in the turbulence-model case is much lower than in the laminar-model case. However, the results in the turbulence-model case show a much better agreement with the results of the breaking experiments under DC condition than in the laminar-model case, which is contradictory to the previous conclusions from the arc researches of both the low-voltage circuit breaker and the sulfur hexafluoride (SF6) nozzle. First, in the previous air-arc research of the low-voltage circuit breaker, it is assumed that the air plasma inside the chamber is in the state of laminar, and the laminar-model application gives quite satisfactory results compared with the experiments, while in this paper, the laminar-model application works badly. Second, the turbulence-model application in the arc research of the SF6-nozzle performs much better and gives higher arc voltage than the laminar-model application does, whereas in this paper, the turbulence-model application predicts lower arc voltage than the laminar-model application does. Based on the analysis of simulation results in detail, the mechanism of the above phenomena is revealed. The transport coefficients are strongly changed by turbulence, which will enhance the arc diffusion and make the arc volume much larger. Consequently, the arc appearance and the distribution of Lorentz force in the turbulence-model case
The evolution of the boundary layer in turbulent Rayleigh-Bénard convection in air
du Puits, R.; Willert, C.
2016-04-01
We report measurements of the near-wall flow field in turbulent Rayleigh-Bénard convection in air (Pr = 0.7) using particle image velocimetry. The measurements were performed in a thin, rectangular sample at fixed Rayleigh number Ra = 1.45 × 1010. In particular, we focus on the evolution of the boundary layer that a single convection roll generates along its path at the lower horizontal plate. We identify three specific flow regions along this path: (i) a region of wall-normal impingement of the down flow close to one corner of the sample, (ii) a region where a shear layer with almost constant thickness evolves, and (iii) a region in which this boundary layer grows and eventually detaches from the plate surface at the opposite corner of the sample. Our measurements with a spatial resolution better than 1/500 of the total thickness of the boundary layer show that the typical velocity field as well as its statistics qualitatively varies between the three flow regions. In particular, it could be verified that the shear layer region covering about 75% of the total area of the plate is in transition to turbulence at the Rayleigh number as low as investigated in the present work.
Mihailovic, D. T.; Alapaty, K.; Lalic, B.; Arsenic, I.; Rajkovic, B.; Malinovic, S.
2004-10-01
A method for estimating profiles of turbulent transfer coefficients inside a vegetation canopy and their use in calculating the air temperature inside tall grass canopies in land surface schemes for environmental modeling is presented. The proposed method, based on K theory, is assessed using data measured in a maize canopy. The air temperature inside the canopy is determined diagnostically by a method based on detailed consideration of 1) calculations of turbulent fluxes, 2) the shape of the wind and turbulent transfer coefficient profiles, and 3) calculation of the aerodynamic resistances inside tall grass canopies. An expression for calculating the turbulent transfer coefficient inside sparse tall grass canopies is also suggested, including modification of the corresponding equation for the wind profile inside the canopy. The proposed calculations of K-theory parameters are tested using the Land Air Parameterization Scheme (LAPS). Model outputs of air temperature inside the canopy for 8 17 July 2002 are compared with micrometeorological measurements inside a sunflower field at the Rimski Sancevi experimental site (Serbia). To demonstrate how changes in the specification of canopy density affect the simulation of air temperature inside tall grass canopies and, thus, alter the growth of PBL height, numerical experiments are performed with LAPS coupled with a one-dimensional PBL model over a sunflower field. To examine how the turbulent transfer coefficient inside tall grass canopies over a large domain represents the influence of the underlying surface on the air layer above, sensitivity tests are performed using a coupled system consisting of the NCEP Nonhydrostatic Mesoscale Model and LAPS.
E-ɛ modelling of turbulent air flow downwind of a model forest edge
Liu, J.; Chen, J. M.; Black, T. A.; Novak, M. D.
1996-01-01
A two-dimensional E-ɛ model, which included the effects of plant-atmosphere interaction, was used to simulate air flow downwind of forest edges for the purpose of predicting the microclimate in forest openings. A suitable set of wall functions was selected to consider the aerodynamic effects of the ground in the opening. The model with discretization and parameter schemes was validated using a set of data from a wind-tunnel experiment. The simulated wind speed and turbulence kinetic energy closely agreed with the measured values. After validation, the model was used to predict eddy diffusivity in the lee of the forest edge. The modelled spatial distribution of the eddy diffusivity agreed in general with that calculated using wind-tunnel measurements. The usefulness and limitations of the E-ɛ model are discussed.
Air-chemistry "turbulence": power-law scaling and statistical regularity
Directory of Open Access Journals (Sweden)
H.-m. Hsu
2011-08-01
Full Text Available With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO_{2}, NO_{x}, CO, SO_{2}, and O_{3} and aerosol (PM_{10} measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, plain/hill, and industrial/agricultural locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, and intermediate (20 ~ 30 days peaks are also identified with the continuous wavelet transform (CWT. The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of −5/3 and −1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. These exponents are mostly independent of the averages and standard deviations of time series measured at various geographic settings, i.e., the spatial inhomogeneities. In other words, they possess dominant universal structures. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, −3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are important structural information, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.
Mortazavi, Milad; Mani, Ali
2015-11-01
Air entrainment in breaking waves is a ubiquitous and complex phenomenon. It is the main source of air transfer from atmosphere to the oceans. Furthermore, air entrainment due to ship-induced waves contributes to bubbly flows in ship wakes and also affect their performance. In this study, we consider a turbulent hydraulic jump as a canonical setting to investigate air entrainment due to turbulence-wave interactions. The flow has an inlet Froude number of 2.0, while three different Weber numbers (We = 1820, 729, 292), and two different Reynolds numbers (Re = 11000, 5500) based on the inlet height and inlet velocity are investigated. Air entrainment is shown to be very sensitive to the We number, while Re number has a minor effect. Wave breaking and interface collisions are significantly reduced in the low Weber number cases. As a result, micro-bubble generation is significantly reduced with decreasing Weber number. Vortex shedding events are observed to emerge at the toe of the jump in all of the cases. For high Weber number regimes, shedding of vortices is accompanied by engulfment of air pockets into the jump in a periodic manner, while for lower Webber number regimes such events are significantly suppressed. Reynolds number is shown to have a negligible effect on the air entrainment, wave breaking and micro-bubble generation, contrary to the previous assumptions in other studies. Supported by ONR.
International Nuclear Information System (INIS)
Hydrogen (H2) is a clean burning component, but relatively expensive. Mixing a small amount of hydrogen with other fuels is an effective way to use H2. H2 enriched combustion significantly improves fuel efficiency and reduces pollutant (nitrogen oxide and particulate matter) emissions. This presentation discussed the effect of hydrogen addition on burning rate and surface density of turbulent lean premixed methane-air flames. The presentation discussed flame configuration; the experimental methodology using laser tomography; and results for typical images, burning velocity, ratio of turbulent to laminar burning velocities, flame surface density, curvature, flame brush thickness, and integrated flame surface area. It was concluded that the increase of turbulent burning velocity was faster than that of laminar burning velocity, which contradicted traditional theory. figs.
NUMERICAL SIMULATION OF METHANE-AIR TURBULENT JET FLAME USING A NEW SECOND-ORDER MOMENT MODEL
Institute of Scientific and Technical Information of China (English)
Chen Xinglong; Zhou Lixing; Zhang Jian
2000-01-01
A new second-order moment model for turbulent combustion is applied in the simulation of methane-air turbulent jet flame.The predicted results are compared with the experimental results and with those predicted using the wellknown EBU-Arrhenius model and the original second-order moment model.The comparison shows the advantage of the new model that it requires almost the same computational storage and time as that of the original second-order moment model,but its modeling results are in better agreement with experiments than those using other models.Hence,the new second-order moment model is promising in modeling turbulent combustion with NOx formation with finite reaction rate for engineering application.
Yu, Lisan
2016-04-01
The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.
Coe, E. C.; Fetner, M. W.
1954-01-01
Data on atmospheric turbulence in the vicinity of thunderstorms obtained during a flight evaluation of an experimental C band (5.5 cm) airborne radar are summarized. The turbulence data were obtained with an NACA VGH recorder installed in a United Air Lines DC-3 airplane.
Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.
2016-03-01
A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.
Breakup and coalescence models for turbulent air-water mixtures in a vertical pipe
International Nuclear Information System (INIS)
The range of multiphase flow applications (air-water mixtures) in today's technology is immense. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. The design of such systems requires the accurate prediction of the dynamical evolution of local bubble size or of interfacial area, since the rate of exchange of mass, momentum and energy between bubbles and water as well as between the two-phase mixture and external boundaries depends severely on the internal flow geometry or interfacial shape and area. The rapidly increasing computer power allows one to use CFD codes combined with the so-called population balance equation (PBE) to trace the transient change of local bubble size of poly-dispersed flows. Unfortunately, there are still some efforts needed to develop reliable constitutive models for the interaction between phases and the law governing the evolution of bubble size. An efficient 1D Multi-Bubble- Class Test Solver (Lucas et al., 2005) is developed in our institute for validating and improving these constitutive models such as bubble forces, multiphase turbulence, coalescence and breakup. Models of bubble coalescence and breakup were found to be the weakest points in modeling of poly-dispersed flows (Lucas et al., 2007; Krepper et al., 2008). (orig.)
Growth of gravity-capillary waves in countercurrent air/water turbulence
Soldati, Alfredo; Zonta, Francesco; Onorato, Miguel
2015-11-01
We use Direct Numerical Simulation (DNS) of the Navier Stokes equations to analyze the dynamics of the interface between air and water when both phases are driven by opposite pressure gradients (countercurrent configuration). The Reynolds number (Reτ), the Weber number (We) and the Froude number (Fr) fully describe the physical problem. We examine the problem of the transient growth of interface waves for different combinations of physical parameters. Keeping Reτ constant and varying We and Fr , we show that, in the initial stages of the wave generation process, the amplitude of the interface elevation η grows in time as η ~t 2 / 5 . Wavenumber spectra, E (kx) , of the surface elevation in the capillary range are in good agreement with the prediction of the Wave Turbulence Theory. Finally, the wave-induced modification of the average wind and current velocity profiles will be addressed. Support from Regione Autonoma Friuli Venezia Giulia under grant PAR FSC 2007/2013 is gratefully acknowledged.
International Nuclear Information System (INIS)
An experimental study was carried out to investigate the characteristics of the pressure oscillation generated from non-condensable gas-steam-water direct condensation in subcooled water during the steady steam discharging and air clearing period. Steam and/or air is discharged through an I-type sparger whose pitc over diameter ratio (P/D) varies from 2 to 5. The tests were divisible into two separate phases. In the first phase, a low pressure steady steam test, the test conditions were restricted to the condensation oscillation regime. The pressure pulse shows a peak at a pool temperature around 50 ∼ 80degC depending on the sparger and the steam mass flux. The dominant frequency of pressure oscillation increases significantly with the subcooling temperature of pool water and it lies in the range of 100 ∼ 760Hz. The P/D ratio has a stron influence on the magnitude of pressure oscillation. As the P/D ratio increases, the amplitude of the dynamic pressure increases significantly. In the second phase of the test, a high pressure air clearing test, the dominant frequencies and amplitudes that occurred during the air clearing period were measured by using piezoelectric type pressure sensor and the Blowdown and Condensation (B and C) loop at KAERI. The steam mass flux is within the range of 1,230 ∼ 2,380 kg/m2-s. The results show that the dominant frequency shows a very similar trend with that of the low pressure steady steam test. The dominant frequencies of the air clearing period, however, vary in the range of 5 ∼ 30Hz depending on the water temperature and the shape of sparger. (author)
Modeling of turbulent supersonic H2-air combustion with an improved joint beta PDF
Baurle, R. A.; Hassan, H. A.
1991-01-01
Attempts at modeling recent experiments of Cheng et al. indicated that discrepancies between theory and experiment can be a result of the form of assumed probability density function (PDF) and/or the turbulence model employed. Improvements in both the form of the assumed PDF and the turbulence model are presented. The results are again used to compare with measurements. Initial comparisons are encouraging.
Institute of Scientific and Technical Information of China (English)
LI Gen; REN BaoHua; ZHENG JianOiu; WANG Jun
2009-01-01
Based on the daily turbulent heat fluxes and related meteorological variables dataeets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-eea humidity gradient (△q') as well as mean air-eea humidity gradient (△q), while the distribution of low-frequency oscillation Intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (△T'). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of △q', low-frequency oscillation intensity of anomalous wind speed (U'), △q and mean wind speed (U), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation Intensity of △T' and U. 3) Over the tropical west Pacific and sea areas north of 20ON, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa' (Ta') and U', indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs' (Ts') also greatly influences the low-frequency oscillation of LHF (SHF).
Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.
2016-04-01
The detailed knowledge of the interaction of wind with surface water waves is necessary for correct parameterization of turbulent exchange at the air-sea interface in prognostic models. At sufficiently strong winds, sea-spray-generated droplets interfere with the wind-waves interaction. The results of field experiments and laboratory measurements (Andreas et al., JGR 2010) show that mass fraction of air-borne spume water droplets increases with the wind speed and their impact on the carrier air-flow may become significant. Phenomenological models of droplet-laden marine atmospheric boundary layer (Kudryavtsev & Makin, Bound.-Layer Met. 2011) predict that droplets significantly increase the wind velocity and suppress the turbulent air stress. The results of direct numerical simulation (DNS) of a turbulent particle-laden Couette flow over a flat surface show that inertial particles may significantly reduce the carrier flow vertical momentum flux (Richter & Sullivan, GRL 2013). The results also show that in the range of droplet sizes typically found near the air-sea interface, particle inertial effects are significant and dominate any particle-induced stratification effects. However, so far there has been no attempt to perform DNS of a droplet-laden air-flow over waved water surface. In this report, we present results of DNS of droplet-laden, turbulent Couette air-flow over waved water surface. The carrier, turbulent Couette-flow configuration in DNS is similar to that used in previous numerical studies (Sullivan et al., JFM 2000, Shen et al., JFM 2010, Druzhinin et al., JGR 2012). Discrete droplets are considered as non-deformable solid spheres and tracked in a Lagrangian framework, and their impact on the carrier flow is modeled with the use of a point-force approximation. The droplets parameters in DNS are matched to the typical known spume-droplets parameters in laboratory and field experiments. The DNS results show that both gravitational settling of droplets and
International Nuclear Information System (INIS)
A generalized method of similitude is introduced and applied to develop scaling relationships for a General Electric Mark I suppression pool. A scale model is proposed to model suppression pool wall loads due to air flow through a T-quencher discharge device. The scaling relationships developed provide the means for relating scale model parameters (i.e., pressure, velocity,) to full scale
International Nuclear Information System (INIS)
The variation of velocity and temperature profiles for turbulent flow in air is obtained theoretically when the physical properties of the air vary with temperature. By adopting certain assumptions, a set of equations is derived which are used with the help of the computer sub-routine SYSTD, to obtain the velocity and temperature profiles
International Nuclear Information System (INIS)
Scientific research and design institute of energy technic (Moscow, Russia) works up the projects of thermal pool reactors RUTA with power 20 and 55 MW for heat delivery of apartment buildings and production premises. The reactors may be use as protected sources of energy for air conditioning or seawater desalination. Variant of underground siting of heat delivery atomic station with reactor RUTA is examined. Calculation studies of worked regimes confirms the high level of safety of heat delivery atomic station with the reactor RUTA. Work analysis of reactor installation RUTA in the central heat delivery systems is showing that for practically all space heating period this reactor is satisfying the standard requirements of heat delivery of buildings
Market Assessment of Forward-Looking Turbulence Sensing Systems
Kauffmann, Paul; Sousa-Poza, Andres
2001-01-01
In recognition of the importance of turbulence mitigation as a tool to improve aviation safety, NASA's Aviation Safety Program developed a Turbulence Detection and Mitigation Sub-element. The objective of this effort is to develop highly reliable turbulence detection technologies for commercial transport aircraft to sense dangerous turbulence with sufficient time warning so that defensive measures can be implemented and prevent passenger and crew injuries. Current research involves three forward sensing products to improve the cockpit awareness of possible turbulence hazards. X-band radar enhancements will improve the capabilities of current weather radar to detect turbulence associated with convective activity. LIDAR (Light Detection and Ranging) is a laser-based technology that is capable of detecting turbulence in clear air. Finally, a possible Radar-LIDAR hybrid sensor is envisioned to detect the full range of convective and clear air turbulence. To support decisions relating to the development of these three forward-looking turbulence sensor technologies, the objective of this study was defined as examination of cost and implementation metrics. Tasks performed included the identification of cost factors and certification issues, the development and application of an implementation model, and the development of cost budget/targets for installing the turbulence sensor and associated software devices into the commercial transport fleet.
Turbulent flow field and air entrainment in laboratory plunging breaking waves
Na, Byoungjoon; Chang, Kuang-An; Huang, Zhi-Cheng; Lim, Ho-Joon
2016-05-01
This paper presents laboratory measurements of turbulent flow fields and void fraction in deep-water plunging breaking waves using imaging and optical fiber techniques. Bubble-size distributions are also determined based on combined measurements of velocity and bubble residence time. The most excited mode of the local intermittency measure of the turbulent flow and its corresponding length scale are obtained using a wavelet-based method and found to correlate with the swirling strength and vorticity. Concentrated vortical structures with high intermittency are observed near the lower boundaries of the aerated rollers where the velocity shear is high; the length scale of the deduced eddies ranges from 0.05 to 0.15 times the wave height. The number of bubbles with a chord length less than 2 mm demonstrates good correlation with the swirling strength. The power-law scaling and the Hinze scale of the bubbles determined from the bubble chord length distribution compare favorably with existing measurements. The turbulent dissipation rate, accounting for void fraction, is estimated using mixture theory. When void fraction is not considered, the turbulent dissipation rate is underestimated by more than 70% in the initial impinging and the first splash-up roller. A significant discrepancy of approximately 67% between the total energy dissipation rate and the turbulence dissipation rate is found. Of this uncounted dissipation, 23% is caused by bubble-induced dissipation.
Turbulence modelling of statistically periodic flows: Synthetic jet into quiescent air
International Nuclear Information System (INIS)
Computations of a 2D synthetic jet are performed with usual RANS equations solved in time-accurate mode (URANS), with the standard k-ε model and the Rotta + IP second moment closure. The purpose of the present work is to investigate the ability of these standard turbulence models to close the phase-averaged Navier-Stokes equations. Results are compared with recent experiments by Yao et al. made available to the CFD Validation of Synthetic Jets and Turbulent Separation Control workshop held in Williamsburg in 2004. Comparisons of the performance of the models with experimental data show that the evolution of the vortex dipole generated by inviscid mechanisms is not correctly reproduced by the k-ε model. The Reynolds-stress model gives much more realistic predictions. However, several characteristics are not well predicted, as for instance the convection velocity. A detailed analysis shows that the vortex dipole dynamics is essentially inviscid during the early blowing phase, when the flow is more transitional than fully turbulent. Turbulence develops and influences the dynamics of the vortices only at a later stage of the blowing phase. Consequently, it is of importance that the turbulence models do not predict erroneously high levels of turbulence. In particular, the present study shows that the correct prediction of the region of negative production that appears during the deceleration of the blowing velocity, due to the misalignment of the strain and anisotropy tensors, is crucial. Therefore, linear eddy-viscosity models must be discarded for this type of pulsed flows, in particular for flow control using synthetic jets
Turbulence modelling of statistically periodic flows: Synthetic jet into quiescent air
Energy Technology Data Exchange (ETDEWEB)
Carpy, S. [Laboratoire d' Etudes Aerodynamiques, UMR 6609, CNRS/University of Poitiers/ENSMA, SP2MI, Boulevard Marie et Pierre Curie, Teleport 2 - BP 30179 - 86962 Futuroscope Chasseneuil Cedex (France); Manceau, R. [Laboratoire d' Etudes Aerodynamiques, UMR 6609, CNRS/University of Poitiers/ENSMA, SP2MI, Boulevard Marie et Pierre Curie, Teleport 2 - BP 30179 - 86962 Futuroscope Chasseneuil Cedex (France)]. E-mail: remi.manceau@lea.univ-poitiers.fr
2006-10-15
Computations of a 2D synthetic jet are performed with usual RANS equations solved in time-accurate mode (URANS), with the standard k-{epsilon} model and the Rotta + IP second moment closure. The purpose of the present work is to investigate the ability of these standard turbulence models to close the phase-averaged Navier-Stokes equations. Results are compared with recent experiments by Yao et al. made available to the CFD Validation of Synthetic Jets and Turbulent Separation Control workshop held in Williamsburg in 2004. Comparisons of the performance of the models with experimental data show that the evolution of the vortex dipole generated by inviscid mechanisms is not correctly reproduced by the k-{epsilon} model. The Reynolds-stress model gives much more realistic predictions. However, several characteristics are not well predicted, as for instance the convection velocity. A detailed analysis shows that the vortex dipole dynamics is essentially inviscid during the early blowing phase, when the flow is more transitional than fully turbulent. Turbulence develops and influences the dynamics of the vortices only at a later stage of the blowing phase. Consequently, it is of importance that the turbulence models do not predict erroneously high levels of turbulence. In particular, the present study shows that the correct prediction of the region of negative production that appears during the deceleration of the blowing velocity, due to the misalignment of the strain and anisotropy tensors, is crucial. Therefore, linear eddy-viscosity models must be discarded for this type of pulsed flows, in particular for flow control using synthetic jets.
Inertial-dissipation methods and turbulent fluxes at the air-ocean interface
DEFF Research Database (Denmark)
Fairall, C. W.; Larsen, Søren Ejling
1986-01-01
The use of high frequency atmospheric turbulence properties (inertial subrange spectra, structure function parameters or dissipation rates) to infer surface fluxes of momentum, sensible heat and latent heat is more practical for most ocean going platforms than direct covariance measurement. The...
Knutsson, Magnus; Åbom, Mats
2009-02-01
Charge air coolers (CACs) are used on turbocharged internal combustion engines to enhance the overall gas-exchange performance. The cooling of the charged air results in higher density and thus volumetric efficiency. It is also important for petrol engines that the knock margin increases with reduced charge air temperature. A property that is still not very well investigated is the sound transmission through a CAC. The losses, due to viscous and thermal boundary layers as well as turbulence, in the narrow cooling tubes result in frequency dependent attenuation of the transmitted sound that is significant and dependent on the flow conditions. Normally, the cross-sections of the cooling tubes are neither circular nor rectangular, which is why no analytical solution accounting for a superimposed mean flow exists. The cross-dimensions of the connecting tanks, located on each side of the cooling tubes, are large compared to the diameters of the inlet and outlet ducts. Three-dimensional effects will therefore be important at frequencies significantly lower than the cut-on frequencies of the inlet/outlet ducts. In this study the two-dimensional finite element solution scheme for sound propagation in narrow tubes, including the effect of viscous and thermal boundary layers, originally derived by Astley and Cummings [Wave propagation in catalytic converters: Formulation of the problem and finite element scheme, Journal of Sound and Vibration 188 (5) (1995) 635-657] is used to extract two-ports to represent the cooling tubes. The approximate solutions for sound propagation, accounting for viscothermal and turbulent boundary layers derived by Dokumaci [Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters, Journal of Sound and Vibration 182 (5) (1995) 799-808] and Howe [The damping of sound by wall turbulent shear layers, Journal of the Acoustical Society of America 98 (3) (1995) 1723-1730], are
International Nuclear Information System (INIS)
We investigate experimentally and numerically the turbulent natural convection flow that develops in a differentially heated cavity of height H=1 m, width W=H and depth D=0.32H, submitted to a temperature difference between the active vertical walls equal to 15 K resulting in a characteristic Rayleigh number equal to 1.5 x 109. In the experiment temperature is measured by 25 μm micro-thermocouples and velocity by a Laser Doppler Anemometer. Both 2D and 3D LES and 3D DNS are performed. DNS uses a Chebyshev spectral method and LES a finite volume method with a local subgrid diffusivity model. Numerical simulations are performed for both adiabatic conditions and experimentally measured temperature on the horizontal walls. Time-averaged quantities and turbulent statistics in the median vertical plane are presented and compared
An improved algorithm of simulation on air-sea turbulent heat fluxes in China seas
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
With a global GSSTF2 and NCEP/NCAR reanalysis database and observation data at the Yong Xing station of Xisha Island in the South China Sea, we simulated the turbulent sensible and latent heat flux at sea surface in Chinese and neighboring seas (hereafter termed as China seas) using a common bulk method with some improved parameters. Comparing the simulated results with the observed and reanalyzed data, the improvement yielded higher accuracy, a smaller mean square deviation within 10 W/m2, and a smaller average relative error at about 25%. In addition, spatial resolution was improved to 0.1°×0.1°. The simulation is able to replay the main features of regional and seasonal variation in turbulent heat fluxes, and also the general pattern of heat flux changes during the summer monsoon outbreak in the South China Sea.
Numerical predictions of turbulent heat transfer for air flow in rotating pipe
Energy Technology Data Exchange (ETDEWEB)
Ould-Rouiss, M., E-mail: ould@univ-mlv.f [Universite Paris-Est, MSME, UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Dries, A. [Universite Paris-Est, MSME, UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallee (France); Mazouz, A. [Universite de Valenciennes, LMF, 59326 Valenciennes (France)
2010-08-15
Heat transfer in fully developed turbulent pipe flow with isoflux condition imposed at the wall is investigated numerically by use of direct numerical simulation (DNS) and large eddy simulation (LES) for various rotation rates (0{<=}N{<=}7) at a Reynolds number equal to 5500. To validate the present computations, predictions are compared to the results reported in the archival literature, and found to agree fairly well with them. With increasing rotation number, the temperature fluctuations decrease near the wall and are enhanced in the core region. The pipe rotation induces a reduction of the streamwise turbulent heat flux and an obvious augmentation of the azimuthal one, especially near the wall. Thus, heat transfer between fluid and wall is reduced. For higher rotation numbers (N>3), the flow and the scalar transport become nearly insensitive to N. Joint probability density functions sketch the correlation between flow and thermal fields. Visualization of the temperature field exhibits the stabilizing effects of the centrifugal forces.
A review of the sources of uncertainties when estimating global-scale turbulent air-sea fluxes
Brodeau, Laurent; Barnier, Bernard
2015-04-01
Bulk formulae are used to estimate turbulent air-sea fluxes needed to provide surface boundary conditions to most of present-day OGCMs, AGCMs and coupled Earth systems. This study aims at making an inventory of the major sources of uncertainties and errors made when estimating turbulent air-sea fluxes with the bulk method, namely wind stress, evaporation (latent heat flux) and sensible heat flux. We use 6-hourly near-surface atmospheric fields and daily SST of ERA-Interim to compute global estimates of these fluxes during the last three decades. Those fluxes are computed using different bulk routines and different types of physical and numerical simplifications widely used within the GCM community. Moreover, to assess the sensitivity of these flux estimates to possible errors in the input atmospheric fields and SST, user-controlled biases are applied to each of these fields prior to bulk computation. As a result, a quantification of the potential sources of uncertainties related to the accuracy of both the parametrization and input fields is proposed. Any parametrization-related approximation can also be expressed in terms of a bias on a given input field. We find that the largest source of flux uncertainties is the choice of the bulk algorithm used to estimate the bulk transfer coefficients. The resulting disagreement in terms of globally-averaged heat flux and evaporation is 8 W/m2 and 1 Sv. In mid latitudes, this heat flux disagreement is about 10 W/m2, which independently compares to a bias of 1 m/s in surface wind speed, 3° in SST, 0.5° in surface temperature, or a modification of 5% in the surface humidity. Our study also underlies the relative importance of the accuracy of the estimate of the air density and the specific humidity at saturation.
Experimental Investigation of Fully Turbulent Plasma Jet and its Interaction with Ambient Air
Czech Academy of Sciences Publication Activity Database
Kavka, Tetyana; Mašláni, Alan; Sember, Viktor; Kopecký, Vladimír; Chumak, Oleksiy; Hrabovský, Milan
Kyoto : International Plasma Chemistry Society, 2007 - (Tachibana, K.; Takai, O.; Ono, K.; Shirafuji, T.), 00421-00429 ISBN 978-4-9903773-3-5. [International Symposium on Plasma Chemistry/18th./. Kyoto (JP), 26.08.2007-31.08.2007] R&D Projects: GA AV ČR KJB100430701 Institutional research plan: CEZ:AV0Z20430508 Keywords : Turbulent thermal plasma jet * Hybrid gas-water torch Subject RIV: BL - Plasma and Gas Discharge Physics
NOx emission characteristics in turbulent hydrogen jet flames with coaxial air
International Nuclear Information System (INIS)
The characteristics of NOx emissions in pure hydrogen nonpremixed jet flames with coaxial air are analyzed numerically for a wide range of coaxial air conditions. Among the models tested in simple nonpremixed jet flame, the one-half power scaling law could be reproduced only by the Model C using the HO2/H2O2 reaction, implying the importance of chemical nonequilibrium effect. The flame length is reduced significantly by augmenting coaxial air, and could be represented as a function of the ratio of coaxial air to fuel velocity. Predicted EINOx scaling showed a good concordance with experimental data, and the overall one-half power scaling was observed in coaxial flames with Model C when flame residence time was defined with flame volume instead of a cubic of the flame length. Different level of oxygen mass fraction at the stoichiometric surface was observed as coaxial air was increased. These different levels imply that the coaxial air strengthens the nonequilibrium effect
Gainusa-Bogdan, Alina; Servonnat, Jerome; Braconnot, Pascale
2014-05-01
Low-latitude turbulent ocean-atmosphere fluxes play a major role in the ocean and atmosphere dynamics, heat distribution and availability for meridional transport to higher latitudes, as well as for the global freshwater cycle. Their representation in coupled ocean-atmosphere models is thus of chief importance in climate simulations. Despite numerous reports of important observational uncertainties in large-scale turbulent flux products, only few model flux evaluation studies attempt to quantify and directly consider these uncertainties. To address this problem for large-scale, climatological flux evaluation, we assemble a comprehensive database of 14 climatological surface flux products, including in situ-based, satellite, hybrid and reanalysis data sets. We develop an associated analysis protocol and use it together with this database to offer an observational ensemble approach to model flux evaluation. We use this approach to perform an evaluation of the representation of the intertropical turbulent air-sea fluxes in a suite of CMIP5 historical simulations run with different recent versions of the IPSL model. To enhance model understanding, we consider both coupled and forced atmospheric model configurations. For the same purpose, we not only analyze the surface fluxes, but also their associated meteorological state variables and inter-variable relationships. We identify an important, systematic underestimation of the near-surface wind speed and a significant exaggeration of the sea-air temperature contrast in all the IPSL model versions considered. Furthermore, the coupled model simulations develop important sea surface temperature and associated air humidity bias patterns. Counterintuitively, these biases do not systematically transfer to significant biases in the surface fluxes. This is due to a combination of compensation of effects and the large flux observational spread. Our analyses reveal several inconsistencies in inter-variable relationships between
Berlin, Joey
2016-01-01
Texas physicians have been pushing for action to curb or eliminate coal-fired power plant emissions, pointing to studies and evidence that those plants' congesting environmental output makes patient populations sicker and the number of emergency department visits greater. PMID:27295290
Modeling of turbulent supersonic H2-air combustion with a multivariate beta PDF
Baurle, R. A.; Hassan, H. A.
1993-01-01
Recent calculations of turbulent supersonic reacting shear flows using an assumed multivariate beta PDF (probability density function) resulted in reduced production rates and a delay in the onset of combustion. This result is not consistent with available measurements. The present research explores two possible reasons for this behavior: use of PDF's that do not yield Favre averaged quantities, and the gradient diffusion assumption. A new multivariate beta PDF involving species densities is introduced which makes it possible to compute Favre averaged mass fractions. However, using this PDF did not improve comparisons with experiment. A countergradient diffusion model is then introduced. Preliminary calculations suggest this to be the cause of the discrepancy.
Energy Technology Data Exchange (ETDEWEB)
Jaszczur, Marek; Nowak, Remigiusz; Szmyd, Janusz [Faculty of Energy and Fuels, AGH University of Science and Technology (Poland); Branny, Marian; Karch, Michal; Wodziak, Waldemar, E-mail: marek.jaszczur@agh.edu.pl [Faculty of Mining and Geoengineering, AGH University of Science and Technology (Poland)
2011-12-22
This paper presents a comparison between results obtained using SPIV experimental technique and numerical simulations approach. An analysis has been performed to validate the turbulent models used in mining ventilation systems. The flow of air across the intersection of the mining face with the ventilation gallery has been examined.
International Nuclear Information System (INIS)
The vertical movement of ions in the lower atmosphere is due to two main causes: the atmospheric electrical field and turbulent diffusion. The vertical current is thus the sum of a conduction current and of a diffusion current. In order to resolve the discrepancies between the theories usually adopted (which neglect the diffusion current) and the experimental results, we propose here a theoretical model which takes into account the turbulent diffusion. This model makes it possible, if it is assumed that the conductivity is independent of the altitude in the exchange layer, to calculate the diffusivity from the three basic electrical parameters: electrical field, space charge, conductivity. The diffusivity values thus obtained have been compared to those deduced from thoron determinations made at different levels, and carried out at the same point and at the same time as the measurements of the electrical parameters. When the diffusivity is greater than 0.05 m2s-1 (this corresponding to adiabatic or super-adiabatic conditions) the values obtained are practically equal. This theoretical model thus appears to be satisfactory. (author)
Air-chemistry "turbulence": power-law scaling and statistical regularity
Hsu, H.-m.; Lin, C.-Y.; Guenther, A.; J. J. Tribbia; Liu, S. C.
2011-01-01
With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO_{2}, NO_{x}, CO, SO_{2}, and O_{3}) and aerosol (PM_{10}) measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with ...
International Nuclear Information System (INIS)
This paper reports on an experimental investigation that has been conducted to determine the condensation heat transfer coefficient of steam in the presence of air in order to simulate the conditions that may be encountered in reactor containments under accidental conditions. The experimental test section consisted of an internally cooled, vertical copper cylinder enclosed in a large steel vessel. Air was admitted inside the vessel from an outside air supply source while steam was produced at the bottom of the vessel by a set of heaters with a total capacity of 36 KW. The pressure vessel was fully insulated so that the heat produced by steam condensation was entirely removed by water flowing inside the cylinder. With the arrangement, the air-stream mixture was in a natural circulation mode. Three sets of experiments were performed. In each set the system pressure was held constant while the air content and the cylinder wall subcooling were varied. The three sets had pressures of 1.5, 3.0, and 4.5 atmospheres respectively. Cylinder wall subcooling ranged from 15 to 50 C. The air mass fraction ranged from 25% to 90%. The maximum Grashoff number was on the order of 1011. It was found that the heat transfer coefficient decreased slowly with subcooling, and increased significantly with pressure, and mildly with height
Ban, Junmei; Gao, Zhiqiu; Lenschow, Donald H.
2010-01-01
This study examines climate simulations with the National Center for Atmospheric Research Community Atmosphere Model version 3 (NCAR CAM3) using a new air-sea turbulent flux parameterization scheme. The current air-sea turbulent flux scheme in CAM3 consists of three basic bulk flux equations that are solved simultaneously by an iterative computational technique. We recently developed a new turbulent flux parameterization scheme where the Obukhov stability length is parameterized directly by using a bulk Richardson number, an aerodynamic roughness length, and a heat roughness length. Its advantages are that it (1) avoids the iterative process and thus increases the computational efficiency, (2) takes account of the difference between z0m and z0h and allows large z0m/z0h, and (3) preserves the accuracy of iteration. An offline test using Tropical Ocean-Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) data shows that the original scheme overestimates the surface fluxes under very weak winds but the new scheme gives better results. Under identical initial and boundary conditions, the original CAM3 and CAM3 coupled with the new turbulent flux scheme are used to simulate the global distribution of air-sea surface turbulent fluxes, and precipitation. Comparisons of model outputs against the European Remote Sensing Satellites (ERS), the Objectively Analyzed air-sea Fluxes (OAFlux), and Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) show that: (1) the new scheme produces more realistic surface wind stress in the North Pacific and North Atlantic trade wind belts and wintertime extratropical storm track regions; (2) the latent heat flux in the Northern Hemisphere trade wind zones shows modest improvement in the new scheme, and the latent heat flux bias in the western boundary current region of the Gulf Stream is reduced; and (3) the simulated precipitation in the new scheme is closer to observation in the Asian monsoon
International Nuclear Information System (INIS)
1-D radiative transfer code Matrix-Operator Model (MOMO), has been extended from [0.2−3.65μm] the band to the whole [0.2−100μm] spectrum. MOMO can now be used for the computation of a full range of radiation budgets (shortwave and longwave). This extension to the longwave part of the electromagnetic radiation required to consider radiative transfer processes that are features of the thermal infrared: the spectroscopy of the water vapor self- and foreign-continuum of absorption at 12μm and the emission of radiation by gases, aerosol, clouds and surface. MOMO's spectroscopy module, Coefficient of Gas Absorption (CGASA), has been developed for computation of gas extinction coefficients, considering continua and spectral line absorptions. The spectral dependences of gas emission/absorption coefficients and of Planck's function are treated using a k-distribution. The emission of radiation is implemented in the adding–doubling process of the matrix operator method using Schwarzschild's approach in the radiative transfer equation (a pure absorbing/emitting medium, namely without scattering). Within the layer, the Planck-function is assumed to have an exponential dependence on the optical-depth. In this paper, validation tests are presented for clear air case studies: comparisons to the analytical solution of a monochromatic Schwarzschild's case without scattering show an error of less than 0.07% for a realistic atmosphere with an optical depth and a blackbody temperature that decrease linearly with altitude. Comparisons to radiative transfer code RTTOV are presented for simulations of top of atmosphere brightness temperature for channels of the space-borne instrument MODIS. Results show an agreement varying from 0.1 K to less than 1 K depending on the channel. Finally MOMO results are compared to CALIPSO Infrared Imager Radiometer (IIR) measurements for clear air cases. A good agreement was found between computed and observed radiance: biases are smaller than 0
Turbulence, aeration and bubble features of air-water flows over macro- and intermediate roughness
Directory of Open Access Journals (Sweden)
Stefano PAGLIARA
2011-06-01
Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential in which the flow characteristics vary with slopes and discharges. The underlying phenomenon of two phase flow characteristics in the macro and intermediate roughness conditions were analyzed in a setup assembled at the PITLAB center of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness nature of the bed. Flow discharges per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of rough bed. Analyses were mainly concentrated in the inner flow region which constitutes both bubbly and intermediate flow region. The findings revealed that two phase flow properties over rough bed were very much affected by the different rough bed arrangement. Turbulence features of two phase flows over rough beds were compared with that of the stepped chute data under similar flow conditions. Overall the results highlighted the flow features in the inner layers of the two phase flow.
Changing the balance of power – Worldwide air force`s capability turbulences
Directory of Open Access Journals (Sweden)
Pavel NEČAS
2012-03-01
Full Text Available In past Century, the air power had undergone a significant journey. In its humble beginnings during WWI an airplane proved itself a perspective and highly capable new weapon. WWII demonstrated the importance of air superiority for waging a global warfare. The Cold War mastered technologies enabling air power to be not only a weapon a mass destruction but also a surgical tool. On one hand, an aircraft has become a state of art technology, yet on the other hand a cost for its development, procurement, and servicing grew into an astronomic levels. Therefore, since mid 1970s there have been trends to shift airpower from quantity into quality, which has gained a new moment with the end of the Cold War. Starting with the first Gulf War, in past two decades demonstrated a growing importance of a multirole fighter aircraft that is able to carry out a full specter of missions for minimal costs. When analyzing five most potent airpowers of the 21st century, we can witness that this is the trend is on and it will surely continue in future.
International Nuclear Information System (INIS)
Highlights: • Flow with Negligible Disturbances, or first type, with length LND = L1. • Flow with Small Disturbances, or second type, with length LSD. • Total length, LND + LSD = L2, is in agreement with average Undisturbed flow, LU. • Flow with Coherent Vortices, or third type, with length LCV. • Total length, LND + LSD + LCV = L3, is in agreement with average Potential core, LP. - Abstract: The paper is aimed at investigating the influence of the Reynolds number on the instant flow evolution of a rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2,200, where the Reynolds number, Re, is defined according to the hydraulic diameter, D, of a rectangular slot of height H, equal to about D = 2H. The Particle Image Velocimetry (PIV) technique allows obtaining the instant PIV visualizations on the central symmetry section of the rectangular jet. The visual inspection of the instant frames with one and two vortices, except for Re = 35,300 where only one vortex images are detected, shows that after the jet exit is present the Flow with Constant Instant Height, with a length LCIH which increases with the decrease of the Reynolds number, from a ratio LCIH/H equal to LCIH/H = 0.9 at Re = 35,300 to LCIH/H = 4.0 at Re = 2,200. The instant PIV measurements, carried out at several distances from the jet exit, show that the variations of the ratio U/U‾0 of the centerline instant velocity, U, to the exit average velocity, U‾0, remain below ±4% for a length LCIV, defining the Flow with Constant Instant Velocity on the centerline. The ratio LCIV/H increases from LCIV/H = 1.1 at Re = 35,300 to LCIV/H = 4.1 at Re = 2,200 and is quite similar to LCIH/H. The instant PIV measurements of the centerline turbulence intensity, Tu, show that its variations remain below ±4% for a length LCIT, defining the Flow with Constant Instant Turbulence on the centerline. The ratio LCIT/H is equal to LCIV/H. The instant PIV velocity profiles in the
Directory of Open Access Journals (Sweden)
A. Devasthale
2010-02-01
Full Text Available Temperature inversions are one of the dominant features of the Arctic atmosphere and play a crucial role in various processes by controlling the transfer of mass and moisture fluxes through the lower troposphere. It is therefore essential that they are accurately quantified, monitored and simulated as realistically as possible over the Arctic regions. In the present study, the characteristics of inversions in terms of frequency and strength are quantified for the entire Arctic Ocean for summer and winter seasons of 2003 to 2008 using the AIRS data for the clear-sky conditions. The probability density functions (PDFs of the inversion strength are also presented for every summer and winter month.
Our analysis shows that although the inversion frequency along the coastal regions of Arctic decreases from June to August, inversions are still seen in almost each profile retrieved over the inner Arctic region. In winter, inversions are ubiquitous and are also present in every profile analysed over the inner Arctic region. When averaged over the entire study area (70° N–90° N, the inversion frequency in summer ranges from 69% to 86% for the ascending passes and 72% to 86% for the descending passes. For winter, the frequency values are 88% to 91% for the ascending passes and 89% to 92% for the descending passes of AIRS/AQUA. The PDFs of inversion strength for the summer months are narrow and right-skewed (or positively skewed, while in winter, they are much broader. In summer months, the mean values of inversion strength for the entire study area range from 2.5 K to 3.9 K, while in winter, they range from 7.8 K to 8.9 K. The standard deviation of the inversion strength is double in winter compared to summer. The inversions in the summer months of 2007 were very strong compared to other years. The warming in the troposphere of about 1.5 K to 3.0 K vertically extending up to 400 hPa was observed in the summer months of 2007.
Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.
1992-01-01
A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.
Lidar sounding of the optical parameter of atmospheric turbulence
Gurvich, A. S.; Fortus, M. I.
2016-03-01
The operation of a lidar intended for clear air turbulence (CAT) positioning on the basis of the backscatter enhancement (BSE) effect is analyzed using a turbulence model with a power-law spectrum. Systematic distortions occurring due to a need to regularize the lidar positioning problem solution are estimated. It is shown that the effect of molecular viscosity of air on the positioning result can be neglected if the wave parameter, which characterizes the diffraction manifestation, is higher than 3. This corresponds to sounding ranges of more than 1 km for optical or UV lidars. The analysis results show that the BSE lidar positioning accuracy weakly depends on the exponent in the turbulence spectrum in regions of severe turbulence. The results can justify a physical experiment for the design of an aircraft system for the lidar detection of CAT regions ahead of the flight course.
Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim
2015-04-01
the spray of droplets generation, especially heat transfer. The work was supported by RFBR grants (14-05-91767, 14-08-31740, 15-35-20953) and RSF grant 14-17-00667 and by President grant for young scientists MK-3550.2014.5 References: 1. Emanuel, K. A. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics // J. Atmos. Sci., 52(22), 3969-3976,1995. 2. Brian K. Haus, Dahai Jeong, Mark A. Donelan, Jun A. Zhang, and Ivan Savelyev Relative rates of sea-air heat transfer and frictional drag in very high winds // GEOPHYSICAL RESEARCH LETTERS, VOL. 37, L07802, doi:10.1029/2009GL042206, 2010 3. Yu. I. Troitskaya, D.A. Sergeev, A.A. Kandaurov, G.A Baidakov, M.A. Vdovin, V.I. Kazakov Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions // JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, C00J21, 13 PP., 2012 doi:10.1029/2011JC007778 4. Yu.I.Troitskaya, D.A.Sergeev, A.A.Kandaurov, M.I. Vdovin, A.A. Kandaurov, E.V.Ezhova, S.S.Zilitinkevich Momentum and buoyancy exchange in a turbulent air boundary layer over a wavy water surface. Part 2. Wind wave spectra // Nonlinear. Geoph. Processes, Vol. 20, P. 841-856, 2013.
Idealised Simulations of Turbulence Near Thunderstorms
Zovko Rajak, D.; Lane, T.
2012-04-01
Atmospheric turbulence is a significant hazard to the aviation industry because it can cause injuries, damage to aircraft as well as financial losses. A number of recent studies have been conducted in order to explain the mechanisms that are responsible for convectively induced turbulence (CIT), which can occur within the cloud as well as in the clear air regions surrounding the cloud. The majority of these studies were focused on above cloud turbulence, however, relatively little is known about the mechanisms that generate turbulence around thunderstorms. This type of turbulence, also known as near-cloud turbulence, is of particular interest because it is much more difficult to avoid than turbulence within clouds since it is invisible and undetectable using standard hazard methods (e.g. on-board and ground-based radars). This study examines turbulence generation by organised convection (viz. supercells) using three-dimensional (3D) simulations conducted with the Weather Research and Forecasting model. Results from several high-resolution idealised simulations will be shown, with a focus on the role of 3D cloud-induced flow perturbations on turbulence generation and their sensitivity to different background flow conditions like wind shear. High resolution numerical modeling is necessary for more realistic treatment of deep convection and turbulence processes on a scale that affect aircraft (these are on the order of 100 m). Since conducting 3D simulations with cloud-resolving scales is very computationally expensive it is necessary to use nesting in order to resolve these small scale processes. The simulation results show regions of turbulence that extend more than 100 km away from the active deep convection (i.e. regions with high radar reflectivity). These turbulent regions are related to strong upper-level storm outflow and the associated enhanced vertical shear. Simulations also show localised modulation of the outflow jet by small-scale gravity waves (~ 4 km
Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej
2015-04-01
Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in
International Nuclear Information System (INIS)
The exchange of pollutants between the soil and the near-surface boundary layer is considered taking into account the effects of dry deposition, sedimentation and resuspension. The time taken to reach steady-state conditions has been evaluated. The exact solutions of conventional vertical turbulent diffusion with a given lower boundary condition have been derived and analysed. (author)
An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm
Evans, Joni K.
2013-01-01
The focal point of the study reported here was the definition and examination of turbulence, wind shear and thunderstorm in relation to aviation accidents. NASA project management desired this information regarding distinct subgroups of atmospheric hazards, in order to better focus their research portfolio. A seven category expansion of Kaplan's turbulence categories was developed, which included wake turbulence, mountain wave turbulence, clear air turbulence, cloud turbulence, convective turbulence, thunderstorm without mention of turbulence, and low altitude wind shear, microburst or turbulence (with no mention of thunderstorms).More than 800 accidents from flights based in the United States during 1987-2008 were selected from a National Transportation Safety Board (NTSB) database. Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor in the accident report, and each accident was assigned to only one hazard category. This report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time of the accident.
Day, M. S.; Bell, J. B.; Cheng, R. K.; Tachibana, S.; Beckner, V. E.; Lijewski, M. J.
2009-07-01
One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.
International Nuclear Information System (INIS)
One strategy for reducing US dependence on petroleum is to develop new combustion technologies for burning the fuel-lean mixtures of hydrogen or hydrogen-rich syngas fuels obtained from the gasification of coal and biomass. Fuel-flexible combustion systems based on lean premixed combustion have the potential for dramatically reducing pollutant emissions in transportation systems, heat and stationary power generation. However, lean premixed flames are highly susceptible to fluid-dynamical combustion instabilities making robust and reliable systems difficult to design. Low swirl burners are emerging as an important technology for meeting design requirements in terms of both reliability and emissions for next generation combustion devices. In this paper, we present simulations of a lean, premixed hydrogen flame stabilized on a laboratory-scale low swirl burner. The simulations use detailed chemistry and transport without incorporating explicit models for turbulence or turbulence/chemistry interaction. Here we discuss the overall structure of the flame and compare with experimental data. We also use the simulation data to elucidate the characteristics of the turbulent flame interaction and how this impacts the analysis of experimental measurements.
Stirring turbulence with turbulence
Cekli, Hakki Ergun; Joosten, René; van de Water, Willem
2015-12-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.
Galactic turbulence and paleoclimate variability
Bershadskii, A
2010-01-01
The wavelet regression detrended fluctuations of the reconstructed temperature for the past three ice ages: approximately 340000 years (Antarctic ice cores isotopic data), exhibit clear evidences of the galactic turbulence modulation up to 2500 years time-scales. The observed strictly Kolmogorov turbulence features indicates the Kolmogorov nature of galactic turbulence, and provide explanation to random-like fluctuations of the global temperature on the millennial time scales.
Static magnetic fields enhance turbulence
Pothérat, Alban
2015-01-01
More often than not, turbulence occurs under the influence of external fields, mostly rotation and magnetic fields generated either by planets, stellar objects or by an industrial environment. Their effect on the anisotropy and the dissipative behaviour of turbulence is recognised but complex, and it is still difficult to even tell whether they enhance or dampen turbulence. For example, externally imposed magnetic fields suppress free turbulence in electrically conducting fluids (Moffatt 1967), and make it two-dimensional (2D) (Sommeria & Moreau 1982); but their effect on the intensity of forced turbulence, as in pipes, convective flows or otherwise, is not clear. We shall prove that since two-dimensionalisation preferentially affects larger scales, these undergo much less dissipation and sustain intense turbulent fluctuations. When higher magnetic fields are imposed, quasi-2D structures retain more kinetic energy, so that rather than suppressing forced turbulence, external magnetic fields indirectly enha...
Haas, Jean-Francois; Griffond, Jerome; Souffland, Denis; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane
2015-11-01
A turbulent mixing zone (TMZ) is created in a vertical shock tube (based in ISAE DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a thin nitrocellulose membrane maintained flat and parallel to the shock by two wire grids. The upper grid (SF6 side) of square mesh spacing hu 1.8 or 12.1 mm is expected to seed perturbation for the Richtmyer-Meshkov instability (RMI) while the lower grid with hl 1 mm is needed to prevent the membrane from bulging prior to the shot. The experiments were carried out for different lengths L of SF6 between the initial interface and the shock tube's end plate: 10, 15, 20, 25 and 30 cm. The time resolved Schlieren image processing based on space and frequency filtering yields similar evolution for the TMZ thickness. Before reshock, the thickness grows initially fast then slows down and reaches different values (10 to 14 mm) according to L. Soon after reshock, the TMZ thickness growths rate is 21 mm/ms independently of L and hu. Numerical Schlieren images generated from 3D numerical simulations (performed at CEA DAM IDF) are analyzed as the experimental ones for L 15 and 25 cm and for hu 1.8 and 12.1 mm. The very weak experimental dependence on hu is not obtained by simulation as expected from dimensional reasoning. This discrepancy remains paradoxical.
Clearing the air on energy prices
International Nuclear Information System (INIS)
Although it is well known that the cost of wind energy continues to fall steadily, it's difficult to supply an answer to the question of how the price of electricity generated by wind compares with prices from other sources. Direct comparisons between wind energy and electricity from fossil fuel sources often ignore the fact that there are hidden costs associated with the latter. Comparisons are often made anyway. Perhaps of equal importance to wind energy's price competitiveness with fossil fuels is how it measures up to other renewable energy sources. The key to both types of comparisons are location and time. (au)
Flowpac successfully clear the air in Lithuania
Energy Technology Data Exchange (ETDEWEB)
Maripuu, M.; Wikstrom, G. [Alstom Power, Vaexjoe (Sweden)
2010-10-15
Following the shutdown of the Ignalina nuclear power plant, Lithuania has restarted the Elektrenai multi-fuel fossil fired power plant. In order to meet EU LCPD emission limits, new pollution control equipment, including innovative Flowpac FGD systems, were installed on several of the plant's boilers and are now running. Early operating experience has demonstrated the advantages of the Flowpac technology. 5 figs.
Do collective actions clear common air?
Energy Technology Data Exchange (ETDEWEB)
Aakvik, A.; Tjoetta, S. [Univ. of Bergen (Norway). Dept. of Economics
2007-07-01
Success in managing global public goods and commons is important for future welfare. Examples of global public goods include global warming, maintenance of international macroeconomic stability, international trade rules, international political stability, humanitarian assistance, and knowledge. The list is far from exhaustive. Institutions to manage international public goods include international environmental agreements such as the Kyoto Protocol, World Bank, International Monetary Fund, World Trade Organization, and United Nations. Public goods crossing national jurisdictional borders add a dimension to Samuelson's (1954) general theory for public goods. Under the current international law, obligations may be imposed only on a sovereign state with its consent. Hence, multinational institutions and international agreements often have weak or even lack of explicit control and enforcement mechanism. Compliance with agreements is often hard to control and verify, and moreover there is seldom explicit sanction mechanism in these agreements. With this in mind, it is reasonable to question whether these institutions work. In this paper the authors want to address this question by evaluating specific international environmental agreements which share many of the same characteristics as most of the institutions managing global public goods and commons. They consider the effects of voluntary international environmental protocols on emissions using the 1985 Helsinki Protocol and the 1994 Oslo Protocol on the reduction of sulfur oxides. These protocols are voluntary in the meaning that they lack control and enforcement mechanism to handle non-compliance. Lack of control and enforcement mechanism raises the question whether these voluntary protocols have an effect or that they merely tend to codify what countries would have done anwyay. The analysis utilizes panel data from 30 European countries for the period 1960-2002. The authors divided these countries into 'participants' and 'non-participants', ie. those that did and those that did not ratify the specific protocol, respectively. They use a difference-in-difference estimator which focuses on difference in emission before and after signing a specific protocol and compares it to this difference for non-participating countries. Difference-in-difference estimation methods rely on many annual data and hence this will induce serial correlations in the variables. Overlooking this may introduce biased estimate of the standard errors. To overcome this bias the authors follow Bertrand et. al. (2003), and compute the difference-in-difference estimates for a great number of randomly generated placebo protocols. They use this empirical distribution of placebo effects to test estimated effects.
Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
International Nuclear Information System (INIS)
Highlights: • The study evaluates the importance of thermal radiation in a methane–air flame. • The radiative properties are treated with the WSGG based on HITEMP 2010. • The turbulence–radiation interaction (TRI) is based on a RANS approach. • Radiation strongly affected the temperature field but not the chemical composition. • Neglecting TRI led to a lower estimate of the radiation heat transfer. - Abstract: This paper presents a study of the effect of thermal radiation in the simulation of a turbulent, non-premixed methane–air flame. In such a problem, two aspects need to be considered for a precise evaluation of the thermal radiation: the turbulence–radiation interactions (TRI), and the local variation of the radiative properties of the participating species, which are treated here with the weighted-sum-of-gray-gases (WSGG) model based on newly obtained correlations from HITEMP2010 database. The chemical reactions rates were considered as the minimum values between the Arrhenius and Eddy Break-Up rates. A two-step global reaction mechanism was used, while the turbulence modeling was considered via standard k–ε model. The source terms of the energy equation consisted of the heat generated in the chemical reaction rates as well as in the radiation exchanges. The discrete ordinates method (DOM) was employed to solve the radiative transfer equation (RTE), including the TRI. Comparisons of simulations with/without radiation (which in turn was solved with/without TRI) demonstrated that the temperature, the radiative heat source, and the wall heat flux were importantly affected by thermal radiation, while the influence on species concentrations proved to be negligible. Inclusion of thermal radiation led to results that were closer to experimental data available in the literature for the same test case considered in this paper. Inclusion of TRI improved the agreement, although in a smaller degree. The main influence of TRI was mainly on global
Clearing, transparency, and collateral
Francesco Carli; Francesca Carapella; Gaetano Antinolfi
2014-01-01
In an environment of Over-The-Counter trading with adverse selection we study traders' incentives to screen their counterparties under different clearing arrangements. When the clearing arrangement is also a choice, traders decide which types of transactions to clear under each arrangement, with signicant consequences for transparency and collateral requirements. The key trade-off is between insurance and the value of information: on one hand risk averse traders want to smooth consumption and...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Chinese “Xue Long” breaker made its first voyage to the Arctic Ocean for scientific expedition from July to September, 1999. The tethersonde meteorological tower (TMT) sounding system was used to probe the temperature, humidity, air pressure, wind direction and wind speed on different underlying surfaces above the Arctic Ocean. The probed data were used for calculating the roughness length z0, momentum flux M, drag coefficient CDD, sensible heat flux Hss, bulk transfer coefficient CHH for sensible heat, latent heat flux HLL, and bulk transfer coefficient CEE for latent heat of air-ice-sea on different underlying surfaces. They vary within the ranges of (0.2 ～ 1.0) mm, (1.14～9.19) ×10-2N/m2, (0.87～ 1.76) × 10-3,-(4.2～ 12.5) W/m2, (0.84～ 1.37) x 10-3,-6.6～ 23.6 W/m2 and (0.85 ～ 1.40) x 10-3, respectively. It shows that the drag coefficient is greater than the latent heat transfer coefficient, and again the latent heat transfer coefficient is larger than the sensible heat transfer coefficient. Besides, the fluxes of momentum, sensible and latent heat are apparently correlated to the mean wind speed and the mean potential temperature difference and mean specific humidity difference.
Turbulence and diffusion fossil turbulence
Gibson, C H
2000-01-01
Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...
Institute of Scientific and Technical Information of China (English)
张猛; 王金华; 谢永亮; 卫之龙; 金武; 黄佐华
2013-01-01
Instantaneous flame front structure and turbulent burning velocities of CH4/H2/air mixtures were measured using OH-PLIF technique. Various turbulence intensities were generated by perforated plates with different hole di-ameter and opening ratio. Stabilized turbulent premixed flames were obtained at the outlet of the Bunsen burner for long-duration OH-PLIF measurement. 500 single shot images were averaged to obtain turbulent burning velocity by conventional angel method. The effects of hydrogen addition and turbulence intensity on turbulent burning velocity were analyzed and a power law correlation of turbulent burning velocity was obtained. Results show that turbulent burning velocity increases with the increase of turbulence intensity due to the increase of flame front area. Hydrogen addition increases the flame intrinsic instability and leads to the active response of laminar flame to turbulence, resulting in the much wrinkle flame front structure,larger flame front area and subsequently the increased turbulent burning velocity. A correlation between turbulent burning velocity and turbulence intensity was derived in the form of ST/SL∝a(u′/SL)n,andn remained a constant value of 0.35.%利用OH平面激光诱导荧光技术测量CH4/H2/空气预混湍流火焰前锋面结构，得到湍流燃烧速率．采用不同孔径和开孔比的湍流发生板，产生不同湍流强度和尺度下稳定的预混湍流火焰供OH-PLIF测量．利用500张瞬时火焰结构图片得到湍流火焰前锋面的平均位置，运用角度法得到湍流燃烧速率．分析了掺氢比和湍流强度对湍流燃烧速率的影响，并给出了拟合关系式．实验结果表明，湍流燃烧速率随湍流强度的增加而增加，这是由于流场尺度减小引起火焰锋面面积增加．湍流燃烧速率随掺氢比的升高略有增加，这是由于掺氢引起火焰不稳定性增强，导致火焰对湍流流动的响应增强，增强了湍流火焰前锋
... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...
International Nuclear Information System (INIS)
In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)
EN Department
2010-01-01
To facilitate snow clearing operations, which commence at 4.30 in the morning, all drivers of CERN cars are kindly requested to park them together in groups. This will help us greatly assist us in our work. Thank-you for your help. Transport Group / EN-HE Tel. 72202
Rigby, S.E.
2014-01-01
This MATLAB code allows the user to generate a series of keyword files for use with LS-DYNA to predict the blast load and evaluate the effects of blast wave clearing on a finite-sized, deformable target. User doccumentation is provided.
Turbulence in Natural Environments
Banerjee, Tirtha
Problems in the area of land/biosphere-atmosphere interaction, hydrology, climate modeling etc. can be systematically organized as a study of turbulent flow in presence of boundary conditions in an increasing order of complexity. The present work is an attempt to study a few subsets of this general problem of turbulence in natural environments- in the context of neutral and thermally stratified atmospheric surface layer, the presence of a heterogeneous vegetation canopy and the interaction between air flow and a static water body in presence of flexible protruding vegetation. The main issue addressed in the context of turbulence in the atmospheric surface layer is whether it is possible to describe the macro-states of turbulence such as mean velocity and turbulent velocity variance in terms of the micro-states of the turbulent flow, i.e., a distribution of turbulent kinetic energy across a multitude of scales. This has been achieved by a `spectral budget approach' which is extended for thermal stratification scenarios as well, in the process unifying the seemingly different and unrelated theories of turbulence such as Kolmogorov's hypothesis, Heisenberg's eddy viscosity, Monin Obukhov Similarity Theory (MOST) etc. under a common framework. In the case of a more complex scenario such as presence of a vegetation canopy with edges and gaps, the question that is addressed is in what detail the turbulence is needed to be resolved in order to capture the bulk flow features such as recirculation patterns. This issue is addressed by a simple numerical framework and it has been found out that an explicit prescription of turbulence is not necessary in presence of heterogeneities such as edges and gaps where the interplay between advection, pressure gradients and drag forces are sufficient to capture the first order dynamics. This result can be very important for eddy-covariance flux calibration strategies in non-ideal environments and the developed numerical model can be
Renfro, M W; Klassen, M S; King, G B; Laurendeau, N M
1997-02-01
We report a developing technique capable of making continuous time-series measurements of naturally occurring minor-species concentrations. The high repetition rate of the mode-locked laser used in this technique allows for the study of transient combustion events, such as turbulence, and their effect on minor-species concentrations. The technique is applied to make CH fluorescence time-series measurements and to calculate power spectral densities in a turbulent nonpremixed flame. To our knowledge, the reported time series represents the first such measurement for a naturally occurring minor species in a turbulent flame. PMID:18183140
Atmospheric turbulence and diffusion research
International Nuclear Information System (INIS)
The Atmospheric Turbulence and Diffusion Division (well known in the atmospheric dispersion community as the Atmospheric Turbulence and Diffusion Laboratory, ATDL) is one of several field facilities of NOAAs Air Resources Laboratory, headquartered in Silver Spring, Maryland. The laboratory conducts research on matters of atmospheric diffusion and turbulent exchange, concerning air quality. ATDD focuses attention on the physics of the lower atmosphere, with special emphasis on the processes contributing to atmospheric transport, dispersion, deposition, and air-surface exchange, and on the development of predictive capabilities using the results of this research. Research is directed toward issues of national and global importance related to the missions of DOE, to DOE's Oak Ridge Field Office, and to NOAA. The program is divided into four major projects: plume transport and diffusion in the planetary boundary layer, complex topography, canopy micrometeorology, and air-surface exchange
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
On Lean Turbulent Combustion Modeling
Directory of Open Access Journals (Sweden)
Constantin LEVENTIU
2014-06-01
Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.
Directory of Open Access Journals (Sweden)
Pinar Ozuguz
2014-01-01
Full Text Available Malignant melanoma (MM of soft tissue, also called clear cell sarcoma (CCS of tendons and aponeuroses, derives from the neural crest. CCS is similar morphologically to MM but has no precursor skin lesion, and instead, has a characteristic chromosomal translocation. Prognosis is related to the tumor size. Early recognition and initial radical surgery is the key to a favorable outcome. The tumor has to be differentiated from other benign and malignant lesions of the soft tissues, such as fibrosarcoma. The demonstration of melanin and a positive immunohistochemical reaction for S-100 protein and HMB-45 can assist in the differential diagnosis. We report the case of a 58-year-old woman with CCS arising from the soft tissue of her little finger.
Directory of Open Access Journals (Sweden)
D. Falceta-Gonçalves
2011-01-01
Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Dimotakis, Paul E.
2005-01-01
The ability of turbulent flows to effectively mix entrained fluids to a molecular scale is a vital part of the dynamics of such flows, with wide-ranging consequences in nature and engineering. It is a considerable experimental, theoretical, modeling, and computational challenge to capture and represent turbulent mixing which, for high Reynolds number (Re) flows, occurs across a spectrum of scales of considerable span. This consideration alone places high-Re mixing phenomena beyond the reach o...
Directory of Open Access Journals (Sweden)
Trunev A. P.
2014-05-01
Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed
International Nuclear Information System (INIS)
This paper presents an overview of the progress made in understanding plasma turbulence. It has relied heavily on numerical simulations to gain some intuition on the physical processes underlying nonlinear interaction and as a cross check for quantitative estimates derived from weak turbulence theory or DIA-based strong turbulence theory. The mathematical description of plasmas, especially those confined in a magnetic bottle, is far more complex than the Navier-Stokes fluid. Yet because of the dispersion of the plasma eigenmodes, the DIA perhaps has greater validity in a plasma than in a Navier-Stokes fluid. Recent developments in dynamical-systems theory have not yet been implemented in plasma turbulence at the level discussed in other studies for boundary-layer turbulence. This technique has promise for evaluating the behavior of large eddies, which may dominate plasma transport as a low-order system. In the collisionless, kinetic regime, where turbulence in x, v phase space has to be addressed, the new methods involving noneigenmode entities called clumps and holes, need further evolution to gain complete acceptability. For the future, a combination of analytical tools and numerical methods may afford the optimum route. Some examples of this are revireviewed
Turbulent conductivity in parallel with iso-velocities in a planar established flow
International Nuclear Information System (INIS)
In this thesis are presented the experimental results obtained during the study of the turbulent diffusion of heat using a wire source in a flat air flow. The Taylor statistical theory laws are well respected in the domain studied. The experiments have made it possible to evaluate the influence of the Reynolds number and of the distance from the wall on the quadratic values of velocity fluctuations and on the Lagrange turbulence scales. In particular, the author has found a correlation between the Lagrange scales and the friction coefficient when the Reynolds number varies. A diffusion law is derived from the Taylor theory; it makes it possible to explain more clearly the idea of turbulent conductivity. (author)
Directory of Open Access Journals (Sweden)
André de Arruda Lyra
2007-08-01
Full Text Available A turbulência em ar claro (Clear Air Turbulence - CAT, que ocorre freqüentemente próximo à região de corrente de jato, geralmente em altitudes entre 10.000 e 12.000 m, pode provocar sérios riscos para a aviação. Desta forma, previsões acuradas desse fenômeno contribuem na prevenção de acidentes aéreos e desconforto durante o vôo. Indicadores capazes de detectar esse fenômeno, como turbulência Brown (fim, Ellrod (ETI e o de número de Richardson (Ri foram calculados a partir das saídas do modelo regional ETA. As previsões de tais indicadores são avaliadas para 2 eventos de 24 de junho de 2003 e de 17 de agosto de 2006, e confrontadas com as informações contidas nas cartas de tempo significativo SIGWX. Os resultados mostram que os três indicadores de turbulência apresentaram boa correlação com as cartas SIGWX. O estudo mostrou a utilidade das previsões do modelo ETA para ajudar a entender o mecanismo da turbulência e para indicar a ocorrência do fenômeno com maior antecedência, por exemplo: 48h ou 72h comparado às 24h de antecedência das cartas SIGWX.The Clear Air Turbulence (CAT which is frequently observed near jet stream regions, usually in the layer between 10,000 and 12,000 m, may cause serious damages to aviation, reaching airplanes without warning. Therefore, predictions of this phenomenon can help to prevent physical damages and discomfort for the crew and passengers. Numerical weather prediction models have been used as powerful tools for operational forecasts of this phenomenon, by application of some indices in the determination of the turbulence areas. In this work, the Brown, Ellrod and Richardson number indices, calculated from ETA model outputs, are used to detect turbulence. The verification was accomplished for 2 events on 24 June 2003 and 17 August 2006 and was based on SIGWX charts. The results show that the three indices correlated well with SIGWX charts. This study showed that the use of ETA
Slot, H.J.; Moore, P.; Delfos, R.; Boersma, B.J.
2009-01-01
In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the f
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Visible imaging of edge turbulence in NSTX
International Nuclear Information System (INIS)
Edge plasma turbulence in tokamaks and stellarators is believed to cause the radical heat and particle flux across the separatrix and into the scrape-off-layers of these devices. This paper describes initial measurements of 2-D space-time structure of the edge density turbulence made using a visible imaging diagnostic in the National Spherical Torus Experiment (NSTX). The structure of the edge turbulence is most clearly visible using a method of gas puff imaging to locally illuminate the edge density turbulence
International Nuclear Information System (INIS)
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (Rij-ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
International Nuclear Information System (INIS)
A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)
Gorshkov Pavel Vladimirovich
2012-01-01
Non-autoclaved foam concrete is an advanced thermal insulation material. Until recently, foam concrete production has been based on separate preparation of foam and solution, followed by their blending in a mixer. The situation changed when high-quality synthetic foaming agents and turbulence cavitation technology appeared on the market. Every model provides a dependence between the foam concrete strength and the water-to-cement ratio. According to the water-cement ratio we can distinguish st...
Slot, H J; Moore, P.; Delfos, R.; Boersma, B.J.
2009-01-01
In this paper we present the experimental results of a detailed investigation of the flow and acoustic properties of a turbulent jet with Mach number 0·75 and Reynolds number 3·5 103. We describe the methods and experimental procedures followed during the measurements, and subsequently present the flow field and acoustic field. The experiment presented here is designed to provide accurate and reliable data for validation of Direct Numerical Simulations of the same flow. Mean Mach number surve...
Temperature and velocity measurements in premixed turbulent flames
Dandekar, K. V.; Gouldin, F. C.
1981-01-01
Turbulent flame speed data for premixed flames of methane-air, propane-air and ethylene-air mixtures stabilized in grid turbulence are reported and discussed. It is shown that turbulence effects on flame speed cannot be fully correlated by the turbulence length scale and r.m.s. velocity in the cold flow. Rather there appear to be significant flame-flow-turbulence interactions affecting both turbulence level in the reaction zone and measured flame speeds. Results of detailed velocity measurements, including autocorrelations, by laser velocimetry are used to elucidate the nature of these interactions. It is concluded that flame speed experiments must be designed and conducted to provide sufficient information (e.g., boundary conditions) to allow for reconstruction of the flow field and these interactions by modelers if the data are to be of value in turbulent combustion model development and evaluation.
To Clear or Not To Clear - That Is the Question
Downing, Adam; Childs, Corey; Porr, C. A. Shea
2009-01-01
Many options exist if you do decide to clear land. Regardless of the option you choose, the primary goal should be the same: to minimize soil loss and movement during and immediately after the land clearing process.
International Nuclear Information System (INIS)
The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Coherence in Turbulence: New Perspective
Levich, Eugene
2009-07-01
It is claimed that turbulence in fluids is inherently coherent phenomenon. The coherence shows up clearly as strongly correlated helicity fluctuations of opposite sign. The helicity fluctuations have cellular structure forming clusters that are actually observed as vorticity bands and coherent structures in laboratory turbulence, direct numerical simulations and most obviously in atmospheric turbulence. The clusters are named BCC - Beltrami Cellular Clusters - because of the observed nearly total alignment of the velocity and vorticity fields in each particular cell, and hence nearly maximal possible helicity in each cell; although when averaged over all the cells the residual mean helicity in general is small and does not play active dynamical role. The Beltrami like fluctuations are short-lived and stabilize only in small and generally contiguous sub-domains that are tending to a (multi)fractal in the asymptotic limit of large Reynolds numbers, Re → ∞. For the model of homogeneous isotropic turbulence the theory predicts the leading fractal dimension of BCC to be: DF = 2.5. This particular BCC is responsible for generating the Kolmogorov -5/3 power law energy spectrum. The most obvious role that BCC play dynamically is that the nonlinear interactions in them are relatively reduced, due to strong spatial alignment between the velocity field v(r, t) and the vorticity field ω(r, t) = curlv(r, t), while the physical quantities typically best characterizing turbulence intermittency, such as entrophy, vorticity stretching and generation, and energy dissipation are maximized in and near them. The theory quantitatively relates the reduction of nonlinear inter-actions to the BCC fractal dimension DF and subsequent turbulence intermittency. It is further asserted that BCC is a fundamental feature of all turbulent flows, e.g., wall bounded turbulent flows, atmospheric and oceanic flows, and their leading fractal dimension remains invariant and universal in these flows
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....
Bec, Jeremie; Khanin, Konstantin
2007-01-01
The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers mod...
Kühnen, Jakob; Hof, Björn
2015-11-01
We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.
Clearing and vegetation management issues
International Nuclear Information System (INIS)
Clearing and continued management of incompatible plant species is critical to maintaining safe and reliable transmission and distribution lines at British Columbia Hydro. As part of a general review of policies regarding rights-of-way, the clearing of BC Hydro rights-of-way was studied by a task team in order to formulate a set of recommended policies and procedures to guide employees in all rights-of-way decisions, and to provide clear direction for resolution of all rights-of-way issues in a cost-effective manner. Issues reviewed were: clearing standards and line security standardization for transmission circuits; clearing rights for removal of trees or management of vegetation beyond the statutory right-of-way; clearing and vegetation management procedures; tree replacement; arboricultural techniques; periodic reviewing of clearing practices; compensation for tree removal; herbicide use; and heritage and wildlife trees. Justification for the recommendation is provided along with alternate options and costs of compliance
Vertical transport of desert particulates by dust devils and clear thermals
International Nuclear Information System (INIS)
While the vertical and horizontal transport of natural surface material by dust devils is not in itself a critical environmental problem, the transport and downwind fallout of toxic or hazardous materials from dust devil activity may be a contributing factor in the development of future ecological-biological problems. Direct quantitative measurements of the dust particle size distribution near and within the visible dust devil vortex and analyses of the upper level clear thermal plume have been made to provide estimates of the vertical and horizontal transport of long half-life radioactive substances such as plutonium. Preliminary measurements and calculations of dust concentrations within dust devils indicate that over 7 x 103 tons of desert dust and sand may be transported downwind from an area 285 km2 during an average dust devil season (May to August). Near the ground these dust concentrations contain particles in the size range from approximately 1 μm to 250 μm diameter. Since the vertical velocity distribution greatly exceeds the particle(s) fall velocities, the detrainment of particles within the vortex is controlled primarily by the spatial distribution of the radial (v/sub r/) and tangential (v/sub theta/) velocity fields. Above the visible dust devil vortex, a clear thermal plume may extend upward to 15,000 to 18,000 ft MSL. A new airborne sampling and air data system has been developed to provide direct measurements of the dust concentration and air motion near and within the upper thermal plume. The air sampler has been designed to operate isokinetically over a considerable portion of the low-speed flight regime of a light aircraft. A strapped down, gyro-reference platform and a boom-vane system is used to determine the vertical air motions as well as the temperature and turbulence structure within the thermal plume. (U.S.)
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Meteorology Associated with Turbulence Encounters During NASA's Fall-2000 Flight Experiments
Hamilton, David W.; Proctor, Fred H.
2002-01-01
Initial flight experiments have been conducted to investigate convectively induced turbulence and to test technologies for its airborne detection. Turbulence encountered during the experiments is described with sources of data measured from in situ sensors, groundbased and airborne Doppler radars, and aircraft video. Turbulence measurements computed from the in situ system were quantified in terms of RMS normal loads (sigma(sub Delta n)), where 0.20 g is less than or equal to sigma(sub Delta n) is less than or equal to 0.30 g is considered moderate and sigma(sub Delta n) is greater than 0.30 g is severe. During two flights, 18 significant turbulence encounters (sigma(sub Delta) is greater than or equal to 0.20 g) occurred in the vicinity of deep convection; 14 moderate and 4 severe. In all cases, the encounters with turbulence occurred along the periphery of cumulus convection. These events were associated with relatively low values of radar reflectivity, i.e. RRF is less than 35 dBz, with most levels being below 20 dBz. The four cases of severe turbulence occurred in precipitation and were centered at the interface between a cumulus updraft turret and a downwind downdraft. Horizontal gradients of vertical velocity at this interface were found to be strongest on the downwind side of the cumulus turrets. Furthermore, the greatest loads to the aircraft occurred while flying along, not orthogonal to, the ambient environmental wind vector. During the two flights, no significant turbulence was encountered in the clear air (visual meteorological conditions), not even in the immediate vicinity of the deep convection.
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Media Language, Clear or Obscure
DEFF Research Database (Denmark)
Jakobsen, Bjarne le Fevre; Ejstrup, Michael
2015-01-01
Abstract— Be clear, not obscure. One of the four maxims for optimal communication is that it is essential to develop proficiency in being concise and clear. The question is whether this is really a good idea in all contexts. There is some evidence to the contrary. Undoubtedly, we have many contex...
Venaille, Antoine; Vallis, Geoffrey K
2014-01-01
We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...
Variable Density Turbulence Tunnel Facility
Bewley, Gregory P; Sinhuber, Michael; Xu, Haitao; Bodenschatz, Eberhard
2014-01-01
The Variable Density Turbulence Tunnel (VDTT) at the Max Planck Institute for Dynamics and Self-Organization in G\\"ottingen, Germany produces very high turbulence levels at moderate flow velocities, low power consumption and adjustable kinematic viscosity. To reach the highest Reynolds number, the tunnel can be filled and pressurized up to 15 bar with the dense gas sulfur hexafluoride (SF$_6$). The Reynolds number can be varied by changing the pressure or flow rate of the gas or by using different non-flammable gases including air. Turbulence is generated at the upstream ends of two measurement sections with grids, and the evolution of this turbulence is observed as it moves down the length of the sections. We describe the instrumentation presently in operation, which consists of the tunnel itself, classical grid turbulence generators, and state-of-the-art nano-fabricated hot-wire anemometers provided by Princeton University [Vallikivi et al. (2011) Exp. Fluids 51, 1521]. We report measurements of the charact...
U.S. Army ultrahigh-resolution turbulence profiling FM-CW radar: description and data
McLaughlin, Scott
1992-08-01
The U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, New Mexico, recently received a new frequency-modulated continuous-wave (FM-CW) turbulence profiling radar. The radar is capable of high temporal (10 s) and spatial (1 to 2 m) resolution profiles of Cn2 up through 2 km above ground level. Data from this system can detect electromagnetic/atmospheric effects such as possible laser blooming/scattering regions, microwave tunneling and multipathing layers, and other clear-air and hydrometeor meteorological phenomena. The radar is superior in performance to previous high-resolution clear-air FM-CWs incorporating newer technologies and real-time processing. A system description and sample data are shown.
Clear Cell Basal Cell Carcinoma
Bo Wang; Tracey Harbert; Jennifer Olivella; Daniel Olson; Sarma, Deba P; Stephanie Ortman
2011-01-01
Introduction. Clear cell basal cell carcinoma (BCC) is an uncommon and unusual variant of BCC, which is characterized by a variable component of clear cells. The pathogenesis of this histological variant and its clinical significance has not been clarified. Differentiation of this uncommon variant of BCC from other clear cell tumors is important for the treatment. Case Presentation. A 65-year-old male presented with a 0.9 cm dome-shaped lesion on his upper chest. A shave biopsy revealed a der...
Media Language, Clear or Obscure
DEFF Research Database (Denmark)
Ejstrup, Michael; le Fevre Jakobsen, Bjarne
2015-01-01
Be clear, not obscure. One of the four maxims for optimal communication is that it is essential to develop proficiency in being concise and clear. The question is whether this is really a good idea in all contexts. There is some evidence to the contrary. Undoubtedly, we have many contexts where it...... is important for mutual understanding that we be clear and concise. This is true of instructions for electronic equipment and for household appliances. Here, linguistic brevity and clarity may be preferable, but not in other cases. Culture, globalization, and the recognition of ever faster growth in...
2012-04-09
... for Processing, Clearing, and Transfer of Customer Positions, 76 FR 13101 (Mar. 10, 2011). \\6... (Aug. 1, 2011). \\11\\ See 76 FR 33066 (Jun. 6, 2011). II. Customer Clearing Documentation A... customer when trading with that SD or MSP. \\12\\ See 76 FR 45730 at 45731, Aug. 1, 2011. \\13\\ See...
Wind Turbine Power Curves Incorporating Turbulence Intensity
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
2014-01-01
The performance of a wind turbine in terms of power production (the power curve) is important to the wind energy industry. The current IEC-61400-12-1 standard for power curve evaluation recognizes only the mean wind speed at hub height and the air density as relevant to the power production...... model and method are parsimonious in the sense that only a single function (the zero-turbulence power curve) and a single auxiliary parameter (the equivalent turbulence factor) are needed to predict the mean power at any desired turbulence intensity. The method requires only ten minute statistics but...
Statistical turbulence theory and turbulence phenomenology
Herring, J. R.
1973-01-01
The application of deductive turbulence theory for validity determination of turbulence phenomenology at the level of second-order, single-point moments is considered. Particular emphasis is placed on the phenomenological formula relating the dissipation to the turbulence energy and the Rotta-type formula for the return to isotropy. Methods which deal directly with most or all the scales of motion explicitly are reviewed briefly. The statistical theory of turbulence is presented as an expansion about randomness. Two concepts are involved: (1) a modeling of the turbulence as nearly multipoint Gaussian, and (2) a simultaneous introduction of a generalized eddy viscosity operator.
Flames in fractal grid generated turbulence
Energy Technology Data Exchange (ETDEWEB)
Goh, K H H; Hampp, F; Lindstedt, R P [Department of Mechanical Engineering, Imperial College, London SW7 2AZ (United Kingdom); Geipel, P, E-mail: p.lindstedt@imperial.ac.uk [Siemens Industrial Turbomachinery AB, SE-612 83 Finspong (Sweden)
2013-12-15
Twin premixed turbulent opposed jet flames were stabilized for lean mixtures of air with methane and propane in fractal grid generated turbulence. A density segregation method was applied alongside particle image velocimetry to obtain velocity and scalar statistics. It is shown that the current fractal grids increase the turbulence levels by around a factor of 2. Proper orthogonal decomposition (POD) was applied to show that the fractal grids produce slightly larger turbulent structures that decay at a slower rate as compared to conventional perforated plates. Conditional POD (CPOD) was also implemented using the density segregation technique and the results show that CPOD is essential to segregate the relative structures and turbulent kinetic energy distributions in each stream. The Kolmogorov length scales were also estimated providing values {approx}0.1 and {approx}0.5 mm in the reactants and products, respectively. Resolved profiles of flame surface density indicate that a thin flame assumption leading to bimodal statistics is not perfectly valid under the current conditions and it is expected that the data obtained will be of significant value to the development of computational methods that can provide information on the conditional structure of turbulence. It is concluded that the increase in the turbulent Reynolds number is without any negative impact on other parameters and that fractal grids provide a route towards removing the classical problem of a relatively low ratio of turbulent to bulk strain associated with the opposed jet configuration. (paper)
Some Characteristics of the Surface Boundary Layer of a Strong Cold Air Process over Southern China
Institute of Scientific and Technical Information of China (English)
LIU Ximing; CHENG Xueling; WU Qiong; FU Minning; ZENG Qingcun
2013-01-01
In southern China,cold air is a common weather process during the winter soason; it can cause strong wind,sharp temperature decreases,and even the snow or freezing rain events.However,the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data,especially regarding turbulence.In this study,four-layer gradient meteorological observation data and one-layer.10-Hz ultrasonic anemometer-thermometer monitoring data from the northeru side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passagc over southern China.The results show that,with the passage of a cold air front.the wind speed exhibits low-frequency variations and that the wind systematically descends.During the strong wind period,the wind speed increases with height in the surface layer.Regular gust packets arc superimposed on the basic strong wind flow.Before the passage of cold air,the wind gusts exhibit a coherent structure.The wind and turbulent momentum fluxes are small,although the gusty wind momentum flux is slightly larger than the turbulent momentum flux.However,during the invasion of cold air,both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed,and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period.After the cold air invasion,this structure almost disappears.
Introduction to quantum turbulence
Barenghi, Carlo F.; Skrbek, Ladislav; Sreenivasan, Katepalli R.
2014-01-01
The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose–Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our ai...
4th iTi Conference in Turbulence
Peinke, Joachim; Talamelli, Alessandro; Castillo, Luciano; Hölling, Michael
2012-01-01
This fourth issue on "progress in turbulence" is based on the fourth ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Leading researchers from the engineering and physical sciences presented latest results in turbulence research. Basic as well as applied research is driven by the rather notorious difficult and essentially unsolved problem of turbulence. In this collection of contributions clear progress can be seen in different aspects, ranging from new quality of numerical simulations to new concepts of experimental investigations and new theoretical developments. The importance of turbulence is shown for a wide range of applications including: combustion, energy, flow control, urban flows, are few examples found in this volume. A motivation was to bring fundamentals of turbulence in connection with renewable energy. This lead us to add a special topic relevant to the impact of turbulence on the wind energy conversion. The structure of the present book...
Lifecycle of laser-produced air sparks
International Nuclear Information System (INIS)
We investigated the lifecycle of laser-generated air sparks or plasmas using multiple plasma diagnostic tools. The sparks were generated by focusing the fundamental radiation from an Nd:YAG laser in air, and studies included early and late time spark dynamics, decoupling of the shock wave from the plasma core, emission from the spark kernel, cold gas excitation by UV radiation, shock waves produced by the air spark, and the spark's final decay and turbulence formation. The shadowgraphic and self-emission images showed similar spark morphology at earlier and late times of its lifecycle; however, significant differences are seen in the midlife images. Spectroscopic studies in the visible region showed intense blackbody-type radiation at early times followed by clearly resolved ionic, atomic, and molecular emission. The detected spectrum at late times clearly contained emission from both CN and N2+. Additional spectral features have been identified at late times due to emission from O and N atoms, indicating some degree of molecular dissociation and excitation. Detailed spatially and temporally resolved emission analysis provides insight about various physical mechanisms leading to molecular and atomic emission by air sparks, including spark plasma excitation, heating of cold air by UV radiation emitted by the spark, and shock-heating
CFD analysis on a turbulence generator of medium consistency pump
International Nuclear Information System (INIS)
Medium concentration paper suspension is a water-air-fibre three phase suspension. It has complicated physical features. When concentration exceeds 7%, it stops flowing and acts like a solid. A generator suspension is installed before the impeller to disturb the flocs and networks to make it start to flow. In this paper, CFD method is adopted to study the effects of the turbulence generator. As there is not a mature model to describe the characteristic of pulp suspension, Newtonian fluid is used to get the general property of the turbulence generator. In the CFD simulation, apparent viscosity of the pulp suspension is used to characterize the mixture. Firstly, numerical method is applied to get the turbulence generator properties in different rotational speed and different viscosity. From another point of view, air contained in the suspension is separate initially by means of centrifugal force. As it is difficult to describe a practical model of pulp suspension, it is simplified to be a water-air two-phase mixture. Several air contents are simulated to study the air distribution in the turbulence generator. The results show that there are three main effects of turbulence generator. Firstly, it has an entrainment effect of the suspension to make it into the pump. Secondly, it stirs the pulp suspension to bring it into flowing. Last, air is centralized in the shaft centre and pre-separated in the turbulence generator. So, the turbulence generator can pre-treat the pulp suspension to make the MC pump transport suspension successfully
Plain Language Clear and Simple.
National Literacy Secretariat, Ottawa (Ontario).
Written for Canadian public servants and written with their help, this handbook presents principles and tips to make official writing clear, concise, and well organized. The handbook defines "plain language" writing as a technique of organizing information in ways that make sense to the reader--using familiar, straightforward words. The handbook…
Gibson, C H
1999-01-01
A theory of fossil turbulence presented in the 11th Liege Colloquium on Marine turbulence is "revisited" in the 29th Liege Colloquium "Marine Turbulence Revisited". The Gibson (1980) theory applied universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as it is constrained and fossilized by buoyancy forces. Towed oceanic microstructure measurements of Schedvin (1979) confirmed the predicted universal constants. Universal constants, spectra, hydrodynamic phase diagrams (HPDs) and other predictions of the theory have been reconfirmed by a wide variety of field and laboratory observations. Fossil turbulence theory has many applications; for example, in marine biology, laboratory and field measurements suggest phytoplankton species with different swimming abilities adjust their growth strategies differently by pattern recognition of several days of turbulence-fossil-turbulence dissipation and persistence times above thres...
Energy Technology Data Exchange (ETDEWEB)
Pietri, L.; Amielh, M.; Anselmet, F.; Fulachier, L. [Institut de Recherche sur les Phinomenes Hors Equilibre Equipe Turbulence, 13 - Marseille (France)
1997-12-31
Turbulent flows with strong density variations, like helium jets in the ambient air, have specific properties linked with the difference of gas densities. This paper presents some experimental results of turbulence properties inside such flows: the Reynolds tensions and the associated turbulent viscosity, and some characteristics linked with the statistical properties of the different turbulence scales. These last results allows to show the complexity of such flows characterized by the influence of external parameters (Reynolds number, initial density ratio, initial momentum flux) that govern the evolution of these parameters inside the jet from the nozzle up to regions where similarity properties are reached. (J.S.) 12 refs.
Impact of turbulence anisotropy near walls in room airflow
DEFF Research Database (Denmark)
Schälin, A.; Nielsen, Peter Vilhelm
2004-01-01
The inﬂuence of diﬀerent turbulence models used in computational ﬂuid dynamics predictions is studied in connection with room air movement. The turbulence models used are the high Re-number k–e model and the high Re- number Reynolds stress model (RSM). The three-dimensional wall jet is selected f...
Dobelli, Rolf
2013-01-01
The Art of Thinking Clearly by world-class thinker and entrepreneur Rolf Dobelli is an eye-opening look at human psychology and reasoning — essential reading for anyone who wants to avoid “cognitive errors” and make better choices in all aspects of their lives. Have you ever: Invested time in something that, with hindsight, just wasn’t worth it? Or continued doing something you knew was bad for you? These are examples of cognitive biases, simple errors we all make in our day-to-day thinking. But by knowing what they are and how to spot them, we can avoid them and make better decisions. Simple, clear, and always surprising, this indispensable book will change the way you think and transform your decision-making—work, at home, every day. It reveals, in 99 short chapters, the most common errors of judgment, and how to avoid them.
In-Service Evaluation of the Turbulence Auto-PIREP System and Enhanced Turbulence Radar Technologies
Prince, Jason B.; Buck, Bill K.; Robinson, Paul A.; Ryan, Tim
2007-01-01
From August 2003 to December 2006, In-Service Evaluations (ISE) of the Turbulence Auto-PIREP System (TAPS) and Enhanced Turbulence (E-Turb) Radar, technologies developed in NASA's Turbulence Prediction and Warning System (TPAWS) element of its Aviation Safety and Security Program (AvSSP), were conducted. NASA and AeroTech Research established an industry team comprising AeroTech, Delta Air Lines, Rockwell Collins, and ARINC to conduct the ISEs. The technologies were installed on Delta aircraft and their effectiveness was evaluated in day-to-day operations. This report documents the establishment and conduct of the ISEs and presents results and feedback from various users.
Lessons from hydrodynamic turbulence
International Nuclear Information System (INIS)
Turbulent flows, with their irregular behavior, confound any single attempts to understand them. But physicists have succeeded in identifying some universal properties of turbulence and relating them to broken symmetries. (author)
Distinguishing ichthyogenic turbulence from geophysical turbulence
Pujiana, Kandaga; Moum, James N.; Smyth, William D.; Warner, Sally J.
2015-05-01
Measurements of currents and turbulence beneath a geostationary ship in the equatorial Indian Ocean during a period of weak surface forcing revealed unexpectedly strong turbulence beneath the surface mixed layer. Coincident with the turbulence was a marked reduction of the current speeds registered by shipboard Doppler current profilers, and an increase in their variability. At a mooring 1 km away, measurements of turbulence and currents showed no such anomalies. Correlation with the shipboard echo sounder measurements indicate that these nighttime anomalies were associated with fish aggregations beneath the ship. The fish created turbulence by swimming against the strong zonal current in order to remain beneath the ship, and their presence affected the Doppler speed measurements. The principal characteristics of the resultant ichthyogenic turbulence are (i) low wave number roll-off of shear spectra in the inertial subrange relative to geophysical turbulence, (ii) Thorpe overturning scales that are small compared with the Ozmidov scale, and (iii) low mixing efficiency. These factors extend previous findings by Gregg and Horne (2009) to a very different biophysical regime and support the general conclusion that the biological contribution to mixing the ocean via turbulence is negligible.
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
Gupta, Kumar S.; Sen, Siddhartha
2009-01-01
We demonstrate the possibility of a turbulent flow of electrons in graphene in the hydrodynamic region, by calculating the corresponding turbulent probability density function. This is used to calculate the contribution of the turbulent flow to the conductivity within a quantum Boltzmann approach. The dependence of the conductivity on the system parameters arising from the turbulent flow is very different from that due to scattering.
Lagrangian statistics in laboratory 2D turbulence
Xia, Hua; Francois, Nicolas; Punzmann, Horst; Shats, Michael
2014-05-01
Turbulent mixing in liquids and gases is ubiquitous in nature and industrial flows. Understanding statistical properties of Lagrangian trajectories in turbulence is crucial for a range of problems such as spreading of plankton in the ocean, transport of pollutants, etc. Oceanic data on trajectories of the free-drifting instruments, indicate that the trajectory statistics can often be described by a Lagrangian integral scale. Turbulence however is a state of a flow dominated by a hierarchy of scales, and it is not clear which of these scales mostly affect particle dispersion. Moreover, coherent structures often coexist with turbulence in laboratory experiments [1]. The effect of coherent structures on particle dispersion in turbulent flows is not well understood. Recent progress in scientific imaging and computational power made it possible to tackle this problem experimentally. In this talk, we report the analysis of the higher order Lagrangian statistics in laboratory two-dimensional turbulence. Our results show that fluid particle dispersion is diffusive and it is determined by a single measurable Lagrangian scale related to the forcing scale [2]. Higher order moments of the particle dispersion show strong self-similarity in fully developed turbulence [3]. Here we introduce a new dispersion law that describes single particle dispersion during the turbulence development [4]. These results offer a new way of predicting dispersion in turbulent flows in which one of the low energy scales are persistent. It may help better understanding of drifter Lagrangian statistics in the regions of the ocean where small scale coherent eddies are present [5]. Reference: 1. H. Xia, H. Punzmann, G. Falkovich and M. Shats, Physical Review Letters, 101, 194504 (2008) 2. H. Xia, N. Francois, H. Punzmann, and M. Shats, Nature Communications, 4, 2013 (2013) 3. R. Ferrari, A.J. Manfroi , W.R. Young, Physica D 154 111 (2001) 4. H. Xia, N. Francois, H. Punzmann and M. Shats, submitted (2014
Central Clearing of OTC Derivatives
DEFF Research Database (Denmark)
Cont, Rama; Kokholm, Thomas
2014-01-01
netting agreements. When a CCP exists for interest rate derivatives, adding a CCP for credit derivatives is shown to decrease overall exposures. These findings are shown to be robust to the statistical assumptions of the model as well as the choice of risk measure used to quantify exposures....... classes are realistically taken into account. We argue that empirically plausible specifications of model parameters lead to the conclusion that central clearing does reduce interdealer exposures: the gain from multilateral netting in a CCP overweighs the loss of netting across asset classes in bilateral...
Peterson, M A
1997-01-01
The possibility is considered that turbulence is described by differential equations for which uniqueness fails maximally, at least in some limit. The inviscid Burgers equation, in the context of Onsager's suggestion that turbulence should be described by a negative absolute temperature, is such a limit. In this picture, the onset of turbulence coincides with the proliferation of singularities which characterizes the failure of uniqueness.
An introduction to the theory of superfluid turbulence
International Nuclear Information System (INIS)
In this paper I first describe some aspects of the theory of counterflow turbulence. I then devote most of the paper to grid turbulence, where the theory is less well developed, although I make use of an important experimental result obtained with a more complicated type of flow generated by two counter-rotating discs. My aim is to stimulate interest in the theory of superfluid turbulence, particularly, at this stage, in the simple case of grid turbulence, among both low temperature physicists and those with a background in classical fluid mechanics. I focus on open questions and unsolved problems, questions and problems that are clearly seen in grid turbulence, but which are more widely relevant. My own background is in experimental quantum fluids. I tend to speculate about what I see as the physics of superfluid turbulence. (orig.)
Mitra, Dhrubaditya; Rogachevskii, Igor
2016-01-01
We show, by direct numerical simulations, that heavy inertial particles (with Stokes number ${\\rm St}$) in inhomogeneously forced statistically stationary turbulent flows cluster at the minima of turbulent kinetic energy. We further show that two turbulent transport processes, turbophoresis and turbulent diffusion together determine the spatial distribution of the particles. The ratio of the corresponding transport coefficient -- the turbulent Soret coefficient -- increases with ${\\rm St}$ for small ${\\rm St}$, reaches a maxima for ${\\rm St}\\approx 10$ and decreases as $\\sim {\\rm St}^{-0.33}$ for large ${\\rm St}$.
Introduction to quantum turbulence.
Barenghi, Carlo F; Skrbek, Ladislav; Sreenivasan, Katepalli R
2014-03-25
The term quantum turbulence denotes the turbulent motion of quantum fluids, systems such as superfluid helium and atomic Bose-Einstein condensates, which are characterized by quantized vorticity, superfluidity, and, at finite temperatures, two-fluid behavior. This article introduces their basic properties, describes types and regimes of turbulence that have been observed, and highlights similarities and differences between quantum turbulence and classical turbulence in ordinary fluids. Our aim is also to link together the articles of this special issue and to provide a perspective of the future development of a subject that contains aspects of fluid mechanics, atomic physics, condensed matter, and low-temperature physics. PMID:24704870
Avila, Marc; Roland, Nicolas; Hof, Bjoern
2013-01-01
Turbulence is ubiquitous in nature and although the equations governing fluid flow are well known, there are no analytical expressions that describe the complexity of turbulent motion. The nonlinear nature and the large number of spatial and temporal degrees of freedom turn this into one of the most challenging problems in mathematics and the physical sciences alike. We here report the discovery of unstable localised solutions for pipe flow that share key spatial characteristics of turbulence in the intermittent regime. While their temporal dynamics are very simple, much of the spatial complexity found in low Reynolds number turbulence is already encoded in them. We furthermore demonstrate how turbulent transients arise from one such solution branch. Our observations shed light on the origin of turbulence and link the localised structures commonly observed in turbulent flows to invariant solutions of the Navier-Stokes equations.
New trends in turbulence; Turbulence: nouveaux aspects
Energy Technology Data Exchange (ETDEWEB)
Lesieur, M. [Institut National Polytechnique, LEGI/INPG, Institut de Mecanique, UMR 101, 38 - Grenoble (France); Yaglom, A. [Institut of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)]|[MIT, Dept. of Aeronautics and Astronautics, Cambridge, MA (United States); David, F. [CEA Saclay, SPhT, 91 - Gif-sur-Yvette (France)
2001-07-01
According to a Russian scientist, the flow of fluids actually met both in nature and engineering practice are turbulent in the overwhelmingly majority of cases. This document that reviews all the progress made recently in the understanding of turbulence, is made up of 10 courses. Course 1 ''a century of turbulence'' deals with the linear and non-linear points of views. In course 2 ''measures of anisotropy and the universal properties of turbulence'' the author gives a very complete account of fully developed turbulence experimental data both in the laboratory and in the atmosphere. Course 3 ''large-eddy simulations of turbulence (LES)'', LES are powerful tools to simulate the coherent vortices formation and evolution in a deterministic way. In Course 4 ''statistical turbulence modelling for the computation of physically complex flows'' the author describes methods used for predicting statistical industrial flows, where the geometry is right now too complex to allow the use of LES. In course 5 ''computational aero-acoustics'' an informative review of computational aero-acoustics with many applications to aircraft noise, is made. In course 6 ''the topology of turbulence'' the author presents the basis of topological fluid dynamics and stresses the importance of helicity in neutral and in magnetohydrodynamics (MHD) flows. In course 7 ''burgulence'' the authors deal with finite-time singularities, but mostly on the basis of Burger equations in one or several dimensions with the formation of multiple shocks. In course 8 ''2-dimensional turbulence'' the author presents numerous examples of 2D turbulence in the laboratory (rotating or MHD flows, plasmas), in the ocean and in the planetary atmosphere. Course 9 ''analysing and computing turbulent flows using wavelets'' is a useful presentation of
Near free-surface turbulent structures in a high-froude number turbulent open-channel flow
International Nuclear Information System (INIS)
In this study, Direct Numerical Simulation (DNS) of an air-liquid counter current flow induced by a high-speed liquid film at Froude number of 1.8 based on the bulk water mean-velocity and wave velocity of long wave, was conducted. As the results, Air-liquid interaction effects on the water phase were very weak, and present flow field formed so-called ''Super-critical turbulent open-channel flow''. In the supercritical open-channel flow, vertical turbulent confinement effect cannot be observed and vertical turbulent intensity was increased near free-surface caused from surface deformation effects. (author)
Microgravity Turbulent Gas-Jet Diffusion Flames
1996-01-01
A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.
Jasanoff, Sheila
2013-01-01
Clearing the air How do we grasp the air? Without Michel Callon’s guidance, I might never have asked that question. Years ago, when I first entered environmental law practice, I took it for granted that problems such as air pollution exist “out there” in the real world for science to discover and law to fix. It is a measure of Callon’s influence that I understand the law today as a metaphysical instrument, no less powerful in its capacity to order nature than the tools of the ancient oracular...
Laser beam propagation in atmospheric turbulence
Murty, S. S. R.
1979-01-01
The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.
Laminar Turbulent Transition in a Boundary Layer Subjected to Weak Free Stream Turbulence
Kenchi, Toshiaki; Matsubara, Masaharu; Ikeda, Toshihiko
For revealing the transition process in a flat plate boundary layer subjected to a weak free stream turbulence, flow visualization and hot-wire measurements were performed. A weak free stream turbulence was generated by a turbulence grid mounted upstream of the contraction. The flow visualization clearly displayed a transition scenario in which a local two-dimensional wave packet rapidly forms a Λ shape structure and then breaks down to turbulence, resulting in the generation of a turbulent spot. Quantitative measurements performed by using a hot-wire anemometer also confirmed the existence of local Tollmien-Schlichting waves that agreed with the parallel linear theory in terms of their frequency, phase velocity, and the wall-normal distribution of band-pass-filtered fluctuations. For comparison, a boundary layer subjected to a moderate-intensity free stream turbulence was investigated. This investigation showed that streaky structures play an important role in the boundary layer transition, as shown by Matsubara et al. [J. Fluid Mech., 430, (2001), 149-168.] A drastic change occurred in the transition process and this change could be sensitively determined by employing the intensity and/or spectra of the free stream turbulence.
Momentum and scalar transport at the turbulent/non-turbulent interface of a jet
DEFF Research Database (Denmark)
Westerweel, J.; Fukushima, C.; Pedersen, Jakob Martin;
2009-01-01
Conditionally sampled measurements with particle image velocimetry (PIV) of a turbulent round submerged liquid jet in a laboratory have been taken at Re = 2 x 10(3) between 60 and 100 nozzle diameters from the nozzle in order to investigate the dynamics and transport processes at the continuous...... and well-defined bounding interface between the turbulent and non-turbulent regions of flow. The jet carries a fluorescent dye measured with planar laser-induced fluorescence (LIF), and the surface discontinuity in the scalar concentration is identified as the fluctuating turbulent jet interface. Thence...... the mean outward 'boundary entrainment' velocity is derived and shown to be a constant fraction (about 0.07) of the the mean jet velocity on the centreline. Profiles of the conditional mean velocity, mean scalar and momentum flux show that at the interface there are clear discontinuities in the mean axial...
International Nuclear Information System (INIS)
The Crystal Clear Collaboration has designed and is building a high-resolution small animal PET scanner. The design is based on the use of the Hamamatsu R7600-M64 multi-anode photomultiplier tube and a LSO/LuYAP phoswich matrix with one to one coupling between the crystals and the photo-detector. The complete system will have 80 PM tubes in four rings with an inner diameter of 137 mm and an axial field of view of 110 mm. The PM pulses are digitized by free-running ADCs and digital data processing determines the gamma energy, the phoswich layer and even the pulse arrival time. Single gamma interactions are recorded and coincidences are found by software. The gantry allows rotation of the detector modules around the field of view. Simulations, and measurements a 2x4 module test set-up predict a spatial resolution of 1.5 mm in the centre of the field of view and a sensitivity of 5.9% for a point source in the centre of the field of view
Institute of Scientific and Technical Information of China (English)
SantiagoLain; RicardoAliod
2000-01-01
A statistical formalism overcoming some conceptual and practical difficulties arising in existing two-phase flow (2PHF) mathematical modelling has been applied to propose a model for dilute 2PHF turbulent flows.Phase interaction terms with a clear physical meaning enter the equations and the formalism provides some guidelines for the avoidance of closure assumptions or the rational approximation of these terms. Continuous phase averaged continuity, momentum, turbulent kinetic energy and turbulence dissipation rate equations have been rigorously and systematically obtained in a single step. These equations display a structure similar to that for single-phase flows.It is also assumed that dispersed phase dynamics is well described by a probability density function (pdf) equation and Eulerian continuity, momentum and fluctuating kinetic energy equations for the dispersed phase are deduced.An extension of the standard k-c turbulence model for the continuous phase is used. A gradient transport model is adopted for the dispersed phase fluctuating fluxes of momentum and kinetic energy at the non-colliding, large inertia limit. This model is then used to predict the behaviour of three axisymmetric turbulent jets of air laden with solid particles varying in size and concentration. Qualitative and quantitative numerical predictions compare reasonably well with the three different sets of experimental results, studying the influence of particle size, loading ratio and flow confinement velocity.
Energy Technology Data Exchange (ETDEWEB)
Jullien, F. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires, Direction des piles atomiques
1968-02-01
In this thesis are presented the experimental results obtained during the study of the turbulent diffusion of heat using a wire source in a flat air flow. The Taylor statistical theory laws are well respected in the domain studied. The experiments have made it possible to evaluate the influence of the Reynolds number and of the distance from the wall on the quadratic values of velocity fluctuations and on the Lagrange turbulence scales. In particular, the author has found a correlation between the Lagrange scales and the friction coefficient when the Reynolds number varies. A diffusion law is derived from the Taylor theory; it makes it possible to explain more clearly the idea of turbulent conductivity. (author) [French] Cette these presente les resultats experimentaux de l'etude de la diffusion turbulente de la chaleur a partir d'un fil source dans un ecoulement d'air plan. Les lois de la theorie statistique de Taylor sont bien verifiees dans le domaine d'etude. Les experiences ont permis d'evaluer l'influence du nombre de Reynolds et de la distance a la paroi sur les valeurs quadratiques des fluctuations de vitesse et les echelles lagrangiennes de turbulence. En particulier, l'auteur a trouve une correlation entre les echelles lagrangiennes et le coefficient de frottement lorsque le nombre de Reynolds varie. Comme consequences de la theorie de Taylor, une loi de diffusion est etablie et permet de preciser la notion de conductibilite turbulente. (auteur)
Interdisciplinary aspects of turbulence
Kupka, Friedrich
2008-01-01
What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of nume...
Energy Technology Data Exchange (ETDEWEB)
Kerstein, A.R. [Sandia National Lab., Livermore, CA (United States)
1996-12-31
One-Dimensional Turbulence is a new turbulence modeling strategy involving an unsteady simulation implemented in one spatial dimension. In one dimension, fine scale viscous and molecular-diffusive processes can be resolved affordably in simulations at high turbulence intensity. The mechanistic distinction between advective and molecular processes is thereby preserved, in contrast to turbulence models presently employed. A stochastic process consisting of mapping {open_quote}events{close_quote} applied to a one-dimensional velocity profile represents turbulent advection. The local event rate for given eddy size is proportional to the velocity difference across the eddy. These properties cause an imposed shear to induce an eddy cascade analogous in many respects to the eddy cascade in turbulent flow. Many scaling and fluctuation properties of self-preserving flows, and of passive scalars introduced into these flows, are reproduced.
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Jejjala, Vishnu; Minic, Djordje; Ng, Y. Jack; Tze, Chia-Hsiung
We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.
Jejjala, Vishnu; Minic, Djordje(Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA); Ng, Y. Jack; Tze, Chia-Hsiung
2009-01-01
We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.
Triggering filamentation using turbulence
Eeltink, D; Marchiando, N; Hermelin, S; Gateau, J; Brunetti, M; Wolf, J P; Kasparian, J
2016-01-01
We study the triggering of single filaments due to turbulence in the beam path for a laser of power below the filamenting threshold. Turbulence can act as a switch between the beam not filamenting and producing single filaments. This 'positive' effect of turbulence on the filament probability, combined with our observation of off-axis filaments suggests the underlying mechanism is modulation instability caused by transverse perturbations. We hereby experimentally explore the interaction of modulation instability and turbulence, commonly associated with multiple-filaments, in the single-filament regime.
Fossil turbulence and fossil turbulence waves can be dangerous
Gibson, Carl H.
2012-01-01
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any other forces that tend to damp the eddies out. By this definition, turbulence always cascades from small scales where vorticity is created to larger scales where turbulence fossilizes. Fossil turbulence is any perturbation in a hydrophysical field produced by turbulence that persists after the fluid is no longer turbulent at the scale of the perturbation. Fossil turbu...
Inhomogeneous turbulence in magnetic reconnection
Yokoi, Nobumitsu
2016-07-01
Turbulence is expected to play an essential role in enhancing magnetic reconnection. Turbulence associated with magnetic reconnection is highly inhomogeneous: it is generated by inhomogeneities of the field configuration such as the velocity shear, temperature gradient, density stratification, magnetic shear, etc. This self-generated turbulence affects the reconnection through the turbulent transport. In this reconnection--turbulence interaction, localization of turbulent transport due to dynamic balance between several turbulence effects plays an essential role. For investigating inhomogeneous turbulence in a strongly nonlinear regime, closure or turbulence modeling approaches provide a powerful tool. A turbulence modeling approach for the magnetic reconnection is introduced. In the model, the mean-field equations with turbulence effects incorporated are solved simultaneously with the equations of turbulent statistical quantities that represent spatiotemporal properties of turbulence under the effect of large-scale field inhomogeneities. Numerical simulations of this Reynolds-averaged turbulence model showed that self-generated turbulence enhances magnetic reconnection. It was pointed out that reconnection states may be divided into three category depending on the turbulence level: (i) laminar reconnection; (ii) turbulent reconnection, and (iii) turbulent diffusion. Recent developments in this direction are also briefly introduced, which includes the magnetic Prandtl number dependence, spectral evolution, and guide-field effects. Also relationship of this fully nonlinear turbulence approach with other important approaches such as plasmoid instability reconnection will be discussed.
Statistical models for spatial patterns of inertial particles in turbulence
Gustavsson, K
2014-01-01
The dynamics of particles suspended in turbulent flows is of fundamental importance for a wide range of questions in astrophysics, cloud physics, oceanography, and in technology. Laboratory experiments and direct numerical simulations have demonstrated that heavy particles respond in intricate ways to turbulent fluctuations of the carrying fluid: independent particles may cluster together and form spatial patterns even though the fluid is incompressible, and the relative speeds of nearby particles may fluctuate strongly. Both phenomena depend sensitively on the parameters of the system, affect collision rates and outcomes, and thus the long-term fate of the system. This is a hard problem to describe theoretically: the turbulence determines the particle paths, but at the same time the turbulent fluctuations encountered by a particle depend sensitively upon its path through the medium. In recent years it has become clear that important aspects of the particle dynamics in turbulence can be understood in terms of...
Internal wave energy radiated from a turbulent mixed layer
Energy Technology Data Exchange (ETDEWEB)
Munroe, James R., E-mail: jmunroe@mun.ca [Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John' s, Newfoundland A1B 3X7 (Canada); Sutherland, Bruce R., E-mail: bsuther@ualberta.ca [Departments of Physics and Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2R3 (Canada)
2014-09-15
We examine mixed-layer deepening and the generation of internal waves in stratified fluid resulting from turbulence that develops in response to an applied surface stress. In laboratory experiments the stress is applied over the breadth of a finite-length tank by a moving roughened conveyor belt. The turbulence in the shear layer is characterized using particle image velocimetry to measure the kinetic energy density. The internal waves are measured using synthetic schlieren to determine their amplitudes, frequencies, and energy density. We also perform fully nonlinear numerical simulations restricted to two dimensions but in a horizontally periodic domain. These clearly demonstrate that internal waves are generated by transient eddies at the integral length scale of turbulence and which translate with the background shear along the base of the mixed layer. In both experiments and simulations we find that the energy density of the generated waves is 1%–3% of the turbulent kinetic energy density of the turbulent layer.
Deterministic and stochastic aspects of the transition to turbulence
Song, Baofang
2014-01-01
The purpose of this contribution is to summarize and discuss recent advances regarding the onset of turbulence in shear flows. The absence of a clear cut instability mechanism, the spatio-temporal intermittent character and extremely long lived transients are some of the major difficulties encountered in these flows and have hindered progress towards understanding the transition process. We will show for the case of pipe flow that concepts from nonlinear dynamics and statistical physics can help to explain the onset of turbulence. In particular the turbulent structures ('puffs') observed close to onset are spatially localized chaotic transients and their lifetimes increase super exponentially with Reynolds number. At the same time fluctuations of individual turbulent puffs can (although very rarely) lead to the nucleation of new puffs. The competition between these two stochastic processes gives rise to a non-equilibrium phase transition where turbulence changes from a super-transient to a sustained state.
The Inherently Three-Dimensional Nature of Magnetized Plasma Turbulence
Howes, Gregory G
2013-01-01
It is often asserted or implicitly assumed, without justification, that the results of two-dimensional investigations of plasma turbulence are applicable to the three-dimensional plasma environments of interest. A projection method is applied to derive two scalar equations that govern the nonlinear evolution of the Alfvenic and pseudo-Alfvenic components of ideal incompressible magnetohydrodynamic (MHD) plasma turbulence. The mathematical form of these equations makes clear the inherently three-dimensional nature of plasma turbulence, enabling an analysis of the nonlinear properties of two-dimensional limits often used to study plasma turbulence. In the anisotropic limit k_perp >>k_parallel that naturally arises in magnetized plasma systems, the perpendicular 2D limit retains the dominant nonlinearities that are mediated only by the Alfvenic fluctuations but lacks the wave physics associated with the linear term that is necessary to capture the anisotropic cascade of turbulent energy. In the in-plane 2D limit...
Turbulence compensation: an overview
van Eekeren, Adam W. M.; Schutte, Klamer; Dijk, Judith; Schwering, Piet B. W.; van Iersel, Miranda; Doelman, Niek J.
2012-06-01
In general, long range visual detection, recognition and identification are hampered by turbulence caused by atmospheric conditions. Much research has been devoted to the field of turbulence compensation. One of the main advantages of turbulence compensation is that it enables visual identification over larger distances. In many (military) scenarios this is of crucial importance. In this paper we give an overview of several software and hardware approaches to compensate for the visual artifacts caused by turbulence. These approaches are very diverse and range from the use of dedicated hardware, such as adaptive optics, to the use of software methods, such as deconvolution and lucky imaging. For each approach the pros and cons are given and it is indicated for which scenario this approach is useful. In more detail we describe the turbulence compensation methods TNO has developed in the last years and place them in the context of the different turbulence compensation approaches and TNO's turbulence compensation roadmap. Furthermore we look forward and indicate the upcoming challenges in the field of turbulence compensation.
DEFF Research Database (Denmark)
Gilling, Lasse
Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect of...
Seesaw mechanism in turbulence and turbulent transport
International Nuclear Information System (INIS)
Full text: Theory of nonlocal transport has been developed, based upon the statistical theory of plasma turbulence. Essence is that fluctuations (with long radial correlation length) can be excited by nonlinear processes, although they are linearly stable. Experiments have reported the non-diffusive mechanisms in rapid response of transport between distant radii. Simulations have demonstrated that transport barrier can be established while increasing linear growth rate of local instabilities. These await application of theory of nonlocal transport. Example of such nonlinearly-driven, meso-scale fluctuations is the zonal flow (ZF). ZFs grow extracting energy from microscopic fluctuations so as to reduce the turbulence and turbulent transport. Because the radial correlation length of ZF is longer than those for microscopic fluctuations, which are inducing turbulent transport, ZF, which is driven fluctuations at one radius, can suppress fluctuations at distant radii. Thus, the fluctuations exchange energy over the distance that is much longer than autocorrelation length of microscopic fluctuations. This mechanism induces new nonlocal interactions in turbulent transport. That is, strong fluctuations at particular radius can suppress fluctuations at different radius, via induction of ZFs. Stronger fluctuations suppress weaker fluctuations. This is called the seesaw mechanism via ZFs. Owing to this mechanism, the turbulence transport is not determined by local parameters alone, but by parameters at far distance. The transient response is much faster than the process governed by diffusive processes. [This work is partly supported by the Grant-in-Aid for Specially-Promoted Research (16002005), the Grant-in-Aid for Scientific Research (19360418) and collaboration programme of NIFS.] (author)
Samanta, Devranjan; Dubief, Yves; Holzner, Markus; Schäfer, Christof; Morozov, Alexander N; Wagner, Christian; Hof, Björn
2013-06-25
Turbulence is ubiquitous in nature, yet even for the case of ordinary Newtonian fluids like water, our understanding of this phenomenon is limited. Many liquids of practical importance are more complicated (e.g., blood, polymer melts, paints), however; they exhibit elastic as well as viscous characteristics, and the relation between stress and strain is nonlinear. We demonstrate here for a model system of such complex fluids that at high shear rates, turbulence is not simply modified as previously believed but is suppressed and replaced by a different type of disordered motion, elasto-inertial turbulence. Elasto-inertial turbulence is found to occur at much lower Reynolds numbers than Newtonian turbulence, and the dynamical properties differ significantly. The friction scaling observed coincides with the so-called "maximum drag reduction" asymptote, which is exhibited by a wide range of viscoelastic fluids. PMID:23757498
Sound generation by turbulence
Energy Technology Data Exchange (ETDEWEB)
Dowling, A.P.; Hynes, T.P. [Cambridge Univ., Dept. of Engineering (United Kingdom)
2004-06-01
Sound is a weak by-product of a subsonic turbulent flow. The main convective elements of the turbulence are silent and it is only spectral components with supersonic phase speeds that couple to the far-field sound. This paper reviews recent work on sound generation by turbulence. Just as there is a hierarchy of numerical models for turbulence (scaling, RANS, LES and DNS), there are different approaches for relating the near-field turbulence to the far-field sound. Kirchhoff approaches give the far-field sound in a straightforward way, but provide little insight into the sources of sound. Acoustic analogies can be used with different base flows to describe the propagation effects and to highlight the major noise producing regions. (authors)
Yang, Huan; Lehner, Luis
2014-01-01
We show that rapidly-spinning black holes can display turbulent gravitational behavior which is mediated by a new type of parametric instability. This instability transfers energy from higher temporal and azimuthal spatial frequencies to lower frequencies--- a phenomenon reminiscent of the inverse energy cascade displayed by 2+1-dimensional turbulent fluids. Our finding reveals a path towards gravitational turbulence for perturbations of rapidly-spinning black holes, and provides the first evidence for gravitational turbulence in an asymptotically flat spacetime. Interestingly, this finding predicts observable gravitational wave signatures from such phenomena in black hole binaries with high spins and gives a gravitational description of turbulence relevant to the fluid-gravity duality.
Stochastic modelling of turbulence
DEFF Research Database (Denmark)
Sørensen, Emil Hedevang Lohse
stochastic turbulence model based on ambit processes is proposed. It is shown how a prescribed isotropic covariance structure can be reproduced. Non-Gaussian turbulence models are obtained through non-Gaussian Lévy bases or through volatility modulation of Lévy bases. As opposed to spectral models operating......This thesis addresses stochastic modelling of turbulence with applications to wind energy in mind. The primary tool is ambit processes, a recently developed class of computationally tractable stochastic processes based on integration with respect to Lévy bases. The subject of ambit processes is...... still undergoing rapid development. Turbulence and wind energy are vast and complicated subjects. Turbulence has structures across a wide range of length and time scales, structures which cannot be captured by a Gaussian process that relies on only second order properties. Concerning wind energy, a wind...
NO concentration imaging in turbulent nonpremixed flames
Energy Technology Data Exchange (ETDEWEB)
Schefer, R.W. [Sandia National Laboratories, Livermore, CA (United States)
1993-12-01
The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.
Numerical simulation of turbulent flow in a cyclonic separator
Bogdanov, Dmitry; Poniaev, Sergey
2014-12-01
Numerical simulation of a turbulent flow of air with dispersed particles through a cyclonic separator is presented. Because of a high streamline curvature in the separator it is difficult to simulate the flow by using the conventional turbulent models. In this work the curvature correction term was included into the k - ω - SST turbulence model implemented in the OpenFOAM® software. Experimental data and results of numerical simulation by the commercial ANSYS Fluent® solver for a turbulent flow in a U-duct were used to validate the model. The numerical simulation of the flow in the cyclonic separator demonstrates that the implemented turbulence model successfully predicts the cyclonic separator efficiency.
Wave turbulent diffusion due to the Doppler shift
Balk, A. M.
2006-08-01
Turbulent diffusion of a passive tracer caused by a random wavefield is believed to be quadratic with respect to the energy spectrum ɛk of the velocity field (i.e. proportional to epsi4, where epsi is the order of the wave amplitudes). So, the wave turbulent diffusion (say, on the ocean surface or in the air) is often believed to be dominated by the turbulent diffusion due to the incompressible flow. In this paper, we show that the wave turbulent diffusion can be associated with the Doppler shift and find that the wave turbulent diffusion can be more significant than previously thought. This mechanism works if the velocity field is compressible and statistically anisotropic, with the result that the wave system has a significant Stokes drift. The contribution of this mechanism has a lower order in epsi. We confirm our results with numerical simulations. To derive these results, we develop the statistical near-identity transformation.
Turbulent Combustion Modeling Advances, New Trends and Perspectives
Echekki, Tarek
2011-01-01
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book ...
Direct numerical simulation of turbulent mixing in grid-generated turbulence
Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Hayase, Toshiyuki; Kubo, Takashi
2008-12-01
Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.
Direct numerical simulation of turbulent mixing in grid-generated turbulence
Energy Technology Data Exchange (ETDEWEB)
Nagata, Kouji; Suzuki, Hiroki; Sakai, Yasuhiko; Kubo, Takashi [Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603 (Japan); Hayase, Toshiyuki [Institute of Fluid Science, Tohoku University, Sendai 980-8577 (Japan)], E-mail: nagata@nagoya-u.jp, E-mail: hsuzuki@nagoya-u.jp, E-mail: ysakai@mech.nagoya-u.ac.jp, E-mail: t-kubo@nagoya-u.jp, E-mail: hayase@ifs.tohoku.ac.jp
2008-12-15
Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.
Direct numerical simulation of turbulent mixing in grid-generated turbulence
International Nuclear Information System (INIS)
Turbulent mixing of passive scalar (heat) in grid-generated turbulence (GGT) is simulated by means of direct numerical simulation (DNS). A turbulence-generating grid, on which the velocity components are set to zero, is located downstream of the channel entrance, and it is numerically constructed on the staggered mesh arrangement using the immersed boundary method. The grid types constructed are: (a) square-mesh biplane grid, (b) square-mesh single-plane grid, (c) composite grid consisting of parallel square-bars and (d) fractal grid. Two fluids with different temperatures are provided separately in the upper and lower streams upstream of the turbulence-generating grids, generating the thermal mixing layer behind the grids. For the grid (a), simulations for two different Prandtl numbers of 0.71 and 7.1, corresponding to air and water flows, are conducted to investigate the effect of the Prandtl number. The results show that the typical grid turbulence and shearless mixing layer are generated downstream of the grids. The results of the scalar field show that a typical thermal mixing layer is generated as well, and the effects of the Prandtl numbers on turbulent heat transfer are observed.
Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels
Elena-Carmen Teleman; Radu Silion; Elena Axinte; Radu Pescaru
2008-01-01
The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...
Effect of turbulence on extinction of counterflow diffusion flame
Energy Technology Data Exchange (ETDEWEB)
Tsuji, Hiroshi; Yoshida, Akira; Endo, Nobuyuki [Tokyo Denki Univ. (Japan). Dept. of Mechanical Engineering
1994-12-31
A laminar counterflow diffusion flame established in the forward stagnation region of a porous cylinder has been used widely for the laminar flame studies. In the present study, this flame was applied to investigating the extinction of a diffusion flame due to air stream turbulence. Propane or methane was ejected from a 30-mm porous cylinder. The turbulence was given to the counterflowing air stream by perforated plates. The results of this study show that the air stream turbulence causes large-scale distortions with small amplitude on the apparently laminar diffusion flame, and the time-averaged thickness of this flame is three times as large as the purely laminar flame. Even if the air stream becomes turbulent, there exists a critical stagnation velocity gradient beyond which the flame can never be stabilized, however large the fuel ejection velocity is. Local extinction near the stagnation region always leads to global extinction of the whole flame. As expected, the critical velocity gradient decreases as the turbulence intensity increases. This flame is subjected to the sum of the bulk stretch rate exerted by the mean flow and the turbulent stretch rate exerted by small eddies of Kolmogorov scale. The critical total stretch rate at which the extinction occurs is nearly constant for each fuel for all turbulence conditions tested in the present study and coincides with the critical stagnation velocity gradient of the laminar diffusion flame, that is, the total stretch rate without turbulence. This fact suggests that large-scale eddies are not so effective for the local extinction and that the chemical reaction that occurs in molecular scale is not affected by small eddies of the Kolmogorov scale.
Transition to Turbulence in the Infrared - Revisited
Leighton, Richard; Smith, Geoffrey B.
2015-11-01
A serendipitous observation of the transition to turbulence of a wind driven free-surface at the University of Delaware Air-Sea Interaction Laboratory led the 1998 'Gallery of Fluid Motion: Transition to turbulence in the infrared'. This transition, via the formation of Langmuir cells is being examined numerically. Simulations are performed of a strongly shear driven air-water interface, modeled as a flat interface with a specified Stokes drift and a constant heat flux cooling the interface. The simulations are initialized with a weak random flow field and allowed to evolve under the influence of constant shear and heat flux. Like the original experiment, the flow is slow to setup, but transition occurs quickly. The scaling and energetics will be discussed.
CO2 Efflux from Cleared Mangrove Peat
Lovelock, Catherine E.; Roger W Ruess; Feller, Ilka C.
2011-01-01
BACKGROUND: CO(2) emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. METHODOLOGY/PRINCIPAL FINDINGS: We measured CO(2) efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2) efflux. CO(2) efflux from soils de...
Turbulent thermal diffusion in strongly stratified turbulence: theory and experiments
Amir, G; Eidelman, A; Elperin, T; Kleeorin, N; Rogachevskii, I
2016-01-01
Turbulent thermal diffusion is a combined effect of the temperature stratified turbulence and inertia of small particles. It causes the appearance of a non-diffusive turbulent flux of particles in the direction of the turbulent heat flux. This non-diffusive turbulent flux of particles is proportional to the product of the mean particle number density and the effective velocity of inertial particles. The theory of this effect has been previously developed only for small temperature gradients and small Stokes numbers (Phys. Rev. Lett. {\\bf 76}, 224, 1996). In this study a generalized theory of turbulent thermal diffusion for arbitrary temperature gradients and Stokes numbers has been developed. The laboratory experiments in the oscillating grid turbulence and in the multi-fan produced turbulence have been performed to validate the theory of turbulent thermal diffusion in strongly stratified turbulent flows. It has been shown that the ratio of the effective velocity of inertial particles to the characteristic ve...
DNS of aerosol evolution in a turbulent jet
Zhou, Kun; Attili, Antonio; Bisetti, Fabrizio
2011-11-01
The effects of turbulence on the evolution of aerosols are not well understood. In this work, the interaction of aerosol dynamics and turbulence are studied in a canonical flow configuration by numerical means. The configuration consists of a hot nitrogen stream saturated with dibutyl phthalate (DBP) vapor mixing with cool air in a shear layer. A direct numerical simulation (DNS) for the momentum and scalar fields is coupled with the direct quadrature method of moments (DQMOM) for the condensing liquid phase. The effects of turbulent mixing on aerosol processes (nucleation, condensation, and coagulation) are quantified by analyzing the statistics of number density and droplet sizes.
Energy Technology Data Exchange (ETDEWEB)
Taxil, I.
1996-12-20
Gas-solid turbulent fluidization has already been widely studied in the literature. However, its definition and specificities remain controversial and confused. Most of the studies focussed on the turbulent transition velocities are based on wall pressure drop fluctuations studies. In this work, we first characterize the turbulent regime with the classical study of pressure drop signals with standard deviation analysis, completed with a more specific frequency analysis and also by a stochastic analysis. Then, we evaluate bubble flow properties. Experimental results have been obtained in a 0.2 m I.D. fluidized bed expanding to 0.4 m I.D. in the freeboard in order to limit entrainment at high fluidization velocities. The so lid used was FCC catalyst. It was fluidized by air at ambient conditions. The superficial fluidization velocity ranged 0.2 to 2 m/s. Fast response transducers recorded pressure drop at the wall and bubble flow properties (bubble size, bubble velocity and bubble frequency) could be deduced from a light reflected signal at various bed locations with optical fibers. It has been shown the turbulent regime is delimited by two velocities: Uc (onset of turbulent regime) and Utr (onset of transport regime), which can be determined based on standard deviations, dominant frequencies and width of wave land of pressure signals. The stochastic analysis confirms that the signal enriches in frequencies in the turbulent regime. Bubble size and bubble velocity could be correlated to the main superficial gas velocity. The main change in bubble flow in the turbulent regime was shown to be the stagnation of the bubble frequency at its maximum value. It was also shown that the bubble flow properties in the turbulent regime imply a strong aeration of the emulsion phase. (authors) 76 refs.
2010-04-01
... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Clear Lake. 9.99 Section 9... TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.99 Clear Lake. (a) Name. The name of the viticultural area described in this section is “Clear Lake.” (b) Approved...
Three-dimensional computation of drift Alfven turbulence
International Nuclear Information System (INIS)
A transcollisional, electromagnetic fluid model, incorporating the parallel heat flux as a dependent variable, is constructed to treat electron drift turbulence in the regime of tokamak edge plasma at the L-H transition. The resulting turbulence is very sensitive to the plasma beta throughout this regime, with the scaling with rising beta produced by the effect of magnetic induction to slow the Alfvenic parallel electron dynamics and thereby leave the turbulence in a more robust, non-adiabatic state. Magnetic flutter and curvature have a minor quantitative effect is strong. Transport by magnetic flutter is small compared to that by the E x B flow eddies. Fluctuation statistics show that while the turbulence shows no coherent structure, it is coupled strongly enough so that neither density nor temperature fluctuations behave as passive scalars. Both profile gradients drive the turbulence, with the total thermal energy transport varying only weakly with the gradient ratio, d log T/d log n. Scaling with magnetic shear is pronounced, with stronger shear leading to lower drive levels. Scaling with either collision frequency or magnetic curvature is weak, consistent with their weak qualitative effect. The result is that electron drift turbulence at L-H transition edge parameters is drift Alfven turbulence, with both ballooning and resistivity in a clear secondary role. The contents of the drift Alfven model will form a significant part of any useful first-principles computation of tokamak edge turbulence. (Author)
Origin of Perpendicular Scales in Solar Wind Turbulence
Galinsky, V. L.
2015-10-01
Results of a study of dispersive Alfvén modes propagating outward from the Sun in streaming inhomogeneous plasma are presented for the inner heliosphere (≲1 AU) region. The results clearly show that a combination of nonlinear wave-particle and wave-wave interactions of outward-only Alfvén modes initially propagating along the local background magnetic field is perfectly capable of explaining the prevalence of turbulent energy in perpendicular ({k}\\perp ) scales over energy contained in scales propagating parallel ({k}\\parallel ) to the local magnetic field perturbations observed in the solar wind. The currently agreed on explanation for this anisotropy, as well as for the scale dependence of wave energy spectra, involves various nonlinear models of imbalanced incompressible MHD turbulence that require a mixture of inward and outward propagating waves to fuel a nonlinear cascade of energy into the {k}\\perp spectrum. The presented approach, for the first time, bridges a gap between week and strong turbulence theories—the interplay of wave-particle and wave-wave processes allows us to obtain strong turbulence scalings from seemingly week turbulence wave resonances. The reported results have a major implication on the current theories of solar wind turbulence and may require a complete overhaul of the state-of-the-art turbulence paradigm, including reassessment and reevaluation of the magnitude and directions (outward \\rightleftarrows inward; {k}\\perp \\rightleftarrows {k}\\parallel ) of the turbulent cascades that are necessary to explain the observations.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
(continuous DNS/LES/RANS, Molecular dynamics, Monte-Carlo, predictive modeling) New Experimental Diagnostics (novel methods for flow visualization and control, high-tech) The First International Conference `Turbulent Mixing and Beyond' was organized by the following members of the Organizing Committee: Snezhana I Abarzhi (chairperson, Chicago, USA) Malcolm J Andrews (Los Alamos National Laboratory, USA) Sergei I Anisimov (Landau Institute for Theoretical Physics, Russia) Serge Gauthier (Commissariat à l'Energie Atomique, France) Donald Q Lamb (The University of Chicago, USA) Katsunobu Nishihara (Institute for Laser Engineering, Osaka, Japan) Bruce A Remington (Lawrence Livermore National Laboratory, USA) Robert Rosner (Argonne National Laboratory, USA) Katepalli R Sreenivasan (International Centre for Theoretical Physics, Italy) Alexander L Velikovich (Naval Research Laboratory, USA) The Organizing Committee gratefully acknowledges the financial support of the Conference Sponsors: National Science Foundation (NSF), USA (Divisions and Programs Directors: Drs A G Detwiler, L M Jameson, E L Lomon, P E Phelan, G A Prentice, J A Raper, W Schultz, P R Westmoreland; PI: Dr S I Abarzhi) Air Force Office of Scientific Research (AFOSR), USA (Program Director: Dr J D Schmisseur; PI: Dr S I Abarzhi) European Office of Aerospace Research and Development (EOARD) of the AFOSR, UK (Program Chief: Dr S Surampudi; PI: Dr S I Abarzhi) International Centre for Theoretical Physics (ICTP), Trieste, Italy (Centre's Director: Dr K R Sreenivasan) The University of Chicago and The Argonne National Laboratory (ANL), USA (Laboratory's Director: Dr R Rosner) Commissariat à l'Energie Atomique (CEA), France (Directeur de Recherche: Dr S Gauthier) Department of Energy, Los Alamos National Laboratory (LANL), USA (Program manager: Dr R J Hanrahan; Group Leader: Dr M J Andrew) The DOE ASC Alliance Center for Astrophysical Thermonuclear Flashes, The University of Chicago, USA (Center's Director: Dr D Q Lamb
Periodically kicked turbulence
Lohse
2000-10-01
Periodically kicked turbulence is theoretically analyzed within a mean-field theory. For large enough kicking strength A and kicking frequency f the Reynolds number grows exponentially and then runs into some saturation. The saturation level Re(sat) can be calculated analytically; different regimes can be observed. For large enough Re we find Re(sat) approximately Af, but intermittency can modify this scaling law. We suggest an experimental realization of periodically kicked turbulence to study the different regimes we theoretically predict and thus to better understand the effect of forcing on fully developed turbulence. PMID:11089041
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J. [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K.S. [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B.J. [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M. [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Statistical Mechanics of Turbulent Flows
International Nuclear Information System (INIS)
This is a handbook for a computational approach to reacting flows, including background material on statistical mechanics. In this sense, the title is somewhat misleading with respect to other books dedicated to the statistical theory of turbulence (e.g. Monin and Yaglom). In the present book, emphasis is placed on modelling (engineering closures) for computational fluid dynamics. The probabilistic (pdf) approach is applied to the local scalar field, motivated first by the nonlinearity of chemical source terms which appear in the transport equations of reacting species. The probabilistic and stochastic approaches are also used for the velocity field and particle position; nevertheless they are essentially limited to Lagrangian models for a local vector, with only single-point statistics, as for the scalar. Accordingly, conventional techniques, such as single-point closures for RANS (Reynolds-averaged Navier-Stokes) and subgrid-scale models for LES (large-eddy simulations), are described and in some cases reformulated using underlying Langevin models and filtered pdfs. Even if the theoretical approach to turbulence is not discussed in general, the essentials of probabilistic and stochastic-processes methods are described, with a useful reminder concerning statistics at the molecular level. The book comprises 7 chapters. Chapter 1 briefly states the goals and contents, with a very clear synoptic scheme on page 2. Chapter 2 presents definitions and examples of pdfs and related statistical moments. Chapter 3 deals with stochastic processes, pdf transport equations, from Kramer-Moyal to Fokker-Planck (for Markov processes), and moments equations. Stochastic differential equations are introduced and their relationship to pdfs described. This chapter ends with a discussion of stochastic modelling. The equations of fluid mechanics and thermodynamics are addressed in chapter 4. Classical conservation equations (mass, velocity, internal energy) are derived from their
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Clustering of settling charged particles in turbulence: theory and experiments
Energy Technology Data Exchange (ETDEWEB)
Lu Jiang; Nordsiek, Hansen; Shaw, Raymond A, E-mail: rashaw@mtu.edu [Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 (United States)
2010-12-15
Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.
Clustering of settling charged particles in turbulence: theory and experiments
International Nuclear Information System (INIS)
Atmospheric clouds, electrosprays and protoplanetary nebula (dusty plasma) contain electrically charged particles embedded in turbulent flows, often under the influence of an externally imposed, approximately uniform gravitational or electric force. We have developed a theoretical description of the dynamics of such systems of charged, sedimenting particles in turbulence, allowing radial distribution functions (RDFs) to be predicted for both monodisperse and bidisperse particle size distributions. The governing parameters are the particle Stokes number (particle inertial time scale relative to turbulence dissipation time scale), the Coulomb-turbulence parameter (ratio of Coulomb 'terminal' speed to the turbulence dissipation velocity scale) and the settling parameter (the ratio of the gravitational terminal speed to the turbulence dissipation velocity scale). The theory is compared to measured RDFs for water particles in homogeneous, isotropic air turbulence. The RDFs are obtained from particle positions measured in three dimensions using digital holography. The measurements verify the general theoretical expression, consisting of a power law increase in particle clustering due to particle response to dissipative turbulent eddies, modulated by an exponential electrostatic interaction term. Both terms are modified as a result of the gravitational diffusion-like term, and the role of 'gravity' is explored by imposing a macroscopic uniform electric field to create an enhanced, effective gravity.
Large-eddy simulations of contrails in a turbulent atmosphere
Directory of Open Access Journals (Sweden)
J. Picot
2014-11-01
Full Text Available In this work, the evolution of contrails in the vortex and dissipation regimes is studied by means of fully three-dimensional large-eddy simulation (LES coupled to a Lagrangian particle tracking method to treat the ice phase. This is the first paper where fine-scale atmospheric turbulence is generated and sustained by means of a stochastic forcing that mimics the properties of stably stratified turbulent flows as those occurring in the upper troposphere lower stratosphere. The initial flow-field is composed by the turbulent background flow and a wake flow obtained from separate LES of the jet regime. Atmospheric turbulence is the main driver of the wake instability and the structure of the resulting wake is sensitive to the intensity of the perturbations, primarily in the vertical direction. A stronger turbulence accelerates the onset of the instability, which results in shorter contrail decent and more effective mixing in the interior of the plume. However, the self-induced turbulence that is produced in the wake after the vortex break-up dominates over background turbulence at the end of the vortex regime and dominates the mixing with ambient air. This results in global microphysical characteristics such as ice mass and optical depth that are be slightly affected by the intensity of atmospheric turbulence. On the other hand, the background humidity and temperature have a first order effect on the survival of ice crystals and particle size distribution, which is in line with recent and ongoing studies in the literature.
Advanced ThioClear process testing. Final report
Energy Technology Data Exchange (ETDEWEB)
Lani, B.
1998-03-01
Wet scrubbing is the leading proven commercial post-combustion FGD technology available to meet the sulfur dioxide reductions required by the Clean Air Act Amendments. To reduce costs associated with wet FGD, Dravo Lime Company has developed the ThioClear process. ThioClear is an ex-situ forced oxidation magnesium-enhanced lime FGD process. ThioClear process differs from the conventional magnesium-enhanced lime process in that the recycle liquor has minimal suspended solids and the by-products are wallboard quality gypsum and magnesium hydroxide, an excellent reagent for water treatment. The process has demonstrated sulfur dioxide removal efficiencies of +95% in both a vertical spray scrubber tower and a horizontal absorber operating at gas velocities of 16 fps, respectively. This report details the optimization studies and associated economics from testing conducted at Dravo Lime Company`s pilot plant located at the Miami Fort Station of the Cincinnati Gas and Electric Company.
Turbulent buoyant jets and plumes
Rodi, Wolfgang
The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami
Statistical theory of turbulent incompressible multimaterial flow
Energy Technology Data Exchange (ETDEWEB)
Kashiwa, B.
1987-10-01
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of kappa-epsilon modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy kappa, and the rate of fluctuational energy dissipation epsilon, for each material. Hence a set of kappa and epsilon equations must be solved, together with mean mass and momentum conservation equations, for each material. Both kappa and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a
Statistical theory of turbulent incompressible multimaterial flow
International Nuclear Information System (INIS)
Interpenetrating motion of incompressible materials is considered. ''Turbulence'' is defined as any deviation from the mean motion. Accordingly a nominally stationary fluid will exhibit turbulent fluctuations due to a single, slowly moving sphere. Mean conservation equations for interpenetrating materials in arbitrary proportions are derived using an ensemble averaging procedure, beginning with the exact equations of motion. The result is a set of conservation equations for the mean mass, momentum and fluctuational kinetic energy of each material. The equation system is at first unclosed due to integral terms involving unknown one-point and two-point probability distribution functions. In the mean momentum equation, the unclosed terms are clearly identified as representing two physical processes. One is transport of momentum by multimaterial Reynolds stresses, and the other is momentum exchange due to pressure fluctuations and viscous stress at material interfaces. Closure is approached by combining careful examination of multipoint statistical correlations with the traditional physical technique of κ-ε modeling for single-material turbulence. This involves representing the multimaterial Reynolds stress for each material as a turbulent viscosity times the rate of strain based on the mean velocity of that material. The multimaterial turbulent viscosity is related to the fluctuational kinetic energy κ, and the rate of fluctuational energy dissipation ε, for each material. Hence a set of κ and ε equations must be solved, together with mean mass and momentum conservation equations, for each material. Both κ and the turbulent viscosities enter into the momentum exchange force. The theory is applied to (a) calculation of the drag force on a sphere fixed in a uniform flow, (b) calculation of the settling rate in a suspension and (c) calculation of velocity profiles in the pneumatic transport of solid particles in a pipe
Energy Technology Data Exchange (ETDEWEB)
Gupta, Kamlesh G.; Echekki, Tarek [Department of Mechanical and Aerospace Engineering, North Carolina State University, NC (United States)
2011-02-15
The autoignition of hydrogen/carbon monoxide in a turbulent jet with preheated co-flow air is studied using the one-dimensional turbulence (ODT) model. The simulations are performed at atmospheric pressure based on varying the jet Reynolds number and the oxidizer preheat temperature for two compositions corresponding to varying the ratios of H{sub 2} and CO in the fuel stream. Moreover, simulations for homogeneous autoignition are implemented for similar mixture conditions for comparison with the turbulent jet results. The results identify the key effects of differential diffusion and turbulence on the onset and eventual progress of autoignition in the turbulent jets. The differential diffusion of hydrogen fuels results in a reduction of the ignition delay relative to similar conditions of homogeneous autoignition. Turbulence may play an important role in delaying ignition at high-turbulence conditions, a process countered by the differential diffusion of hydrogen relative to carbon monoxide; however, when ignition is established, turbulence enhances the overall rates of combustion of the non-premixed flame downstream of the ignition point. (author)
Samanta, Devranjan; Holzner, Markus; Schäfer, Christof; Morozov, Alexander; Wagner, Christian; Hof, Björn
2013-01-01
Turbulence is ubiquitous in nature yet even for the case of ordinary Newtonian fluids like water our understanding of this phenomenon is limited. Many liquids of practical importance however are more complicated (e.g. blood, polymer melts or paints), they exhibit elastic as well as viscous characteristics and the relation between stress and strain is nonlinear. We here demonstrate for a model system of such complex fluids that at high shear rates turbulence is not simply modified as previously believed but it is suppressed and replaced by a new type of disordered motion, elasto-inertial turbulence (EIT). EIT is found to occur at much lower Reynolds numbers than Newtonian turbulence and the dynamical properties differ significantly. In particular the drag is strongly reduced and the observed friction scaling resolves a longstanding puzzle in non-Newtonian fluid mechanics regarding the nature of the so-called maximum drag reduction asymptote. Theoretical considerations imply that EIT will arise in complex fluid...
Scrambled and Unscrambled Turbulence
Ramaprabhu, P; Lawrie, A G W
2013-01-01
The linked fluid dynamics videos depict Rayleigh-Taylor turbulence when driven by a complex acceleration profile involving two stages of acceleration interspersed with a stage of stabilizing deceleration. Rayleigh-Taylor (RT) instability occurs at the interface separating two fluids of different densities, when the lighter fluid is accelerated in to the heavier fluid. The turbulent mixing arising from the development of the miscible RT instability is of key importance in the design of Inertial Confinement Fusion capsules, and to the understanding of astrophysical events, such as Type Ia supernovae. By driving this flow with an accel-decel-accel profile, we have investigated how structures in RT turbulence are affected by a sudden change in the direction of the acceleration first from destabilizing acceleration to deceleration, and followed by a restoration of the unstable acceleration. By studying turbulence under such highly non-equilibrium conditions, we hope to develop an understanding of the response and ...
Zare, Armin; Georgiou, Tryphon T
2016-01-01
Second-order statistics of turbulent flows can be obtained either experimentally or via direct numerical simulations. Statistics reflect fundamentals of flow physics and can be used to develop low-complexity turbulence models. Due to experimental or numerical limitations it is often the case that only partial flow statistics can be reliably known, i.e., only certain correlations between a limited number of flow field components are available. Thus, it is of interest to complete the statistical signature of the flow field in a way that is consistent with the known dynamics. This is an inverse problem and our approach utilizes stochastically-forced linearization around turbulent mean velocity profile. In general, white-in-time stochastic forcing is not sufficient to explain turbulent flow statistics. In contrast, colored-in-time forcing of the linearized equations allows for exact matching of available correlations. To accomplish this, we develop dynamical models that generate the required stochastic excitation...
Turbulence in magnetohydrodynamics
Beresnyak, Andrey
2016-01-01
Magnetohydrodynamics describes dynamics in electrically conductive fluids. These occur in our environment as well as in our atmosphere and magnetosphere, and play a role in the sun's interaction with our planet. This work gives the basic information on turbulence in nature, comprising the needed equations, notions and numerical simulations. The current state of our knowledge and future implications of MHD turbulence are outlined systematically. It is indispensable for all scientists engaged in research of our atmosphere and in space science.
Stochastic tools in turbulence
Lumey, John L
2012-01-01
Stochastic Tools in Turbulence discusses the available mathematical tools to describe stochastic vector fields to solve problems related to these fields. The book deals with the needs of turbulence in relation to stochastic vector fields, particularly, on three-dimensional aspects, linear problems, and stochastic model building. The text describes probability distributions and densities, including Lebesgue integration, conditional probabilities, conditional expectations, statistical independence, lack of correlation. The book also explains the significance of the moments, the properties of the
Turbulent Flames in Supernovae
Khokhlov, A. M.
1994-05-01
First results of three-dimensional simulations of a thermonuclear flame in Type Ia supernovae are obtained using a new flame-capturing algorithm, and a PPM hydrodynamical code. In the absence of gravity, the flame is stabilized with respect to the Landau (1944) instability due to the difference in the behaviour of convex and concave portions of the perturbed flame front. The transition to turbulence in supernovae occurs on scales =~ 0.1 - 10 km in agreement with the non-linear estimate lambda =~ 2pi D(2_l/geff) based on the Zeldovich (1966) model for a perturbed flame when the gravity acceleration increases; D_l is the normal speed of the laminar flame, and geff is the effective acceleration. The turbulent flame is mainly spread by large scale motions driven by the Rayleigh-Taylor instability. Small scale turbulence facilitates rapid incineration of the fuel left behind the front. The turbulent flame speed D_t approaches D_t =~ U', where U' is the root mean square velocity of turbulent motions, when the turbulent flame forgets initial conditions and reaches a steady state. The results indicate that in a steady state the turbulent flame speed should be independent of the normal laminar flame speed D_l. The three-dimensional results are in sharp contrast with the results of previous two-dimensional simulations which underestimate flame speed due to the lack of turbulent cascade directed in three dimensions from big to small spatial scales. The work was supported by the NSF grants AST 92-18035 and AST 93-005P.
Kim, Eun-Jin; Diamond, P. H.
2001-01-01
We examine the dynamics of turbulent reconnection in 2D and 3D reduced MHD by calculating the effective dissipation due to coupling between small-scale fluctuations and large-scale magnetic fields. Sweet-Parker type balance relations are then used to calculate the global reconnection rate. Two approaches are employed -- quasi-linear closure and an eddy-damped fluid model. Results indicate that despite the presence of turbulence, the reconnection rate remains inversely proportional to $\\sqrt{R...
International Nuclear Information System (INIS)
The Ohm's law is modified when turbulent processes are accounted for. Besides an hyper-resistivity, already well known, pinch terms appear in the electron momentum flux. Moreover it appears that turbulence is responsible for a source term in the Ohm's law, called here turbulent current drive. Two terms contribute to this source. The first term is a residual stress in the momentum flux, while the second contribution is an electro-motive force. A non zero average parallel wave number is needed to get a finite source term. Hence a symmetry breaking mechanism must be invoked, as for ion momentum transport. E × B shear flows and turbulence intensity gradients are shown to provide similar contributions. Moreover this source term has to compete with the collision friction term (resistivity). The effect is found to be significant for a large scale turbulence in spite of an unfavorable scaling with the ratio of the electron to ion mass. Turbulent current drive appears to be a weak effect in the plasma core, but could be substantial in the plasma edge where it may produce up to 10 % of the local current density
Turbulent Plasmoid Reconnection
Widmer, Fabien; Yokoi, Nobumitsu
2016-01-01
The plasmoid instability may lead to fast magnetic reconnection through long current sheets(CS). It is well known that large-Reynolds-number plasmas easily become turbulent. We address the question whether turbulence enhances the energy conversion rate of plasmoid-unstable current sheets. We carry out appropriate numerical MHD simulations, but resolving simultaneously the relevant large-scale (mean-) fields and the corresponding small-scale, turbulent, quantities by means of direct numerical simulations (DNS) is not possible. Hence we investigate the influence of small scale turbulence on large scale MHD processes by utilizing a subgrid-scale (SGS) turbulence model. We verify the applicability of our SGS model and then use it to investigate the influence of turbulence on the plasmoid instability. We start the simulations with Harris-type and force-free CS equilibria in the presence of a finite guide field in the direction perpendicular to the reconnection plane. We use the DNS results to investigate the growt...
Intermittency exponent of the turbulent energy cascade
International Nuclear Information System (INIS)
We consider the turbulent energy dissipation from one-dimensional records in experiments using air and gaseous helium at cryogenic temperatures, and obtain the intermittency exponent via the two-point correlation function of the energy dissipation. The air data are obtained in a number of flows in a wind tunnel and the atmospheric boundary layer at a height of about 35 m above the ground. The helium data correspond to the centerline of a jet exhausting into a container. The air data on the intermittency exponent are consistent with each other and with a trend that increases with the Taylor microscale Reynolds number, Rλ, of up to about 1000 and saturates thereafter. On the other hand, the helium data cluster around a constant value at nearly all Rλ, this being about half of the asymptotic value for the air data. Some possible explanation is offered for this anomaly. (author)
Intermittent Turbulence in the Very Stable Ekman Layer
Energy Technology Data Exchange (ETDEWEB)
Barnard, James C.
2001-01-05
INTERMITTENT TURBULENCE IN THE VERY STABLE EKMAN LAYER This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman layer in which a constant downward heat flux is applied at the lower boundary, thus cooling the fluid above. Numerical experiments were performed in which the strength of the imposed heat flux was varied. For downward heat fluxes above a certain critical value the turbulence becomes intermittent and, as the heat flux increases beyond this value, the flow tends to relaminarize because of the very strong ambient stratification. We adopt Mahrt?s (1999) definition of the very stable boundary layer as a boundary layer in which intermittent, rather than continuous turbulence, is observed. Numerical experiments were used to test various hypothesis of where in ?stability parameter space? the very stable boundary layer is found. These experiments support the findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency and therefore be categorized as ?very stable?, when the stability parameter, z/L, exceeds unity. Another marker for the very stable boundary layer, Derbyshire?s (1990) maximum heat flux criterion, was also examined. Using a case study drawn from the simulations where turbulence intermittency was observed, the mechanism that causes the intermittence was investigated. It was found that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- a roll cell -- that lifts colder air over warmer air. The resulting convective instability causes an intense burst of turbulence. This turbulence is short-lived because the lifting motion of the roll cell, as well as the roll cell itself, is partially destroyed after the patchy turbulence is generated. Examples of intermittent turbulence obtained from the simulations appear to be consistent with observations of intermittency even though the Reynolds number of the DNS is relatively low (400).
Experimental study of temperature fluctuations in forced stably stratified turbulent flows
Eidelman, A.; Elperin, T.; Gluzman, I.; Kleeorin, N.; Rogachevskii, I.
2012-01-01
We study experimentally temperature fluctuations in stably stratified forced turbulence in air flow. In the experiments with an imposed vertical temperature gradient, the turbulence is produced by two oscillating grids located nearby the side walls of the chamber. Particle Image Velocimetry is used to determine the turbulent and mean velocity fields, and a specially designed temperature probe with sensitive thermocouples is employed to measure the temperature field. We found that the ratio $\\...
Experimental study of temperature fluctuations in forced stably stratified turbulent flows
Eidelman, A; Gluzman, Y; Kleeorin, N; Rogachevskii, I
2013-01-01
We study experimentally temperature fluctuations in stably stratified forced turbulence in air flow. In the experiments with an imposed vertical temperature gradient, the turbulence is produced by two oscillating grids located nearby the side walls of the chamber. Particle Image Velocimetry is used to determine the turbulent and mean velocity fields, and a specially designed temperature probe with sensitive thermocouples is employed to measure the temperature field. We found that the ratio [(\\ell_x \
Zunino, Luciano; Perez, Dario G.; Rosso, Osvaldo A.; Garavaglia, Mario
2003-01-01
The propagation of a laser beam through turbulent media is modeled as a fractional Brownian motion (fBm). Time series corresponding to the center position of the laser spot (coordinates x and y) after traveling across air in turbulent motion, with different strength, are analyzed by the wavelet theory. Two quantifiers are calculated, the Hurst exponent and the mean Normalized Total Wavelet Entropy. It is verified that both quantifiers gives complementary information about the turbulence state.
Measurement of turbulence in the oceanic mixed layer using Synthetic Aperture Radar (SAR)
George, S.G.; Tatnall, A. R. L.
2012-01-01
Turbulence in the surface layer of the ocean contributes to the transfer of heat, gas and momentum across the air-sea boundary. As such, study of turbulence in the ocean surface layer is becoming increasingly important for understanding its effects on climate change. Direct Numerical Simulation (DNS) techniques were implemented to examine the interaction of small-scale wake turbulence in the upper ocean layer with incident electromagnetic radar waves. Hydrodynamic-electromag...
Hyalinizing clear cell carcinoma: A rare entity
P Venkat Baghirath; J Vijay Kumar; B Hari Vinay
2011-01-01
Hyalinizing clear cell carcinoma (HCCC) is an uncommon malignant salivary gland tumor accounting for about 1% of all intra-oral salivary gland tumors. Microscopic diagnosis of clear cell carcinoma may be challenging because of the spectrum of features which frequently overlaps with the other salivary gland tumors that contain clear cells, and thus it may be a diagnosis of exclusion. Here we, report a case of HCCC in a 36 years old female with detailed histological, histochemical and immunohis...
Clear cell carcinoma of the lung.
Edwards, C; Carlile, A
1985-01-01
Six tumours of the lung initially classified as clear cell carcinoma, were studied. Examination of further material by light and electron microscopy showed adenocarcinomatous differentiation in three cases and squamous differentiation in two. One case showed the features of a large cell anaplastic carcinoma. The clear appearance of the cytoplasm in paraffin sections was due to accumulations of glycogen that were partially removed during processing. It is concluded that clear cell carcinoma is...
Primary clear cell sarcoma of bone
International Nuclear Information System (INIS)
Clear cell sarcoma is a rare soft tissue sarcoma of young adults with melanocytic differentiation. It occurs predominantly in the soft tissue of extremities, typically involving tendons and aponeuroses. Primary clear cell sarcoma of bone is extremely rare. We report a case of primary clear cell sarcoma of the right first metatarsal in a 48-year-old woman and provide a literature review of the entity. (orig.)
Clearing over-the-counter derivatives
Ed Nosal
2011-01-01
Prior to the financial crisis of 2008, the over-the-counter derivatives market was not required to “clear” transactions. This changed with the signing of the new financial reform legislation, the Dodd–Frank Act on July 21, 2010. Going forward, most OTC derivatives will be cleared through a particular set of institutional arrangements: a regulated clearinghouse. This article provides an overview of how clearing works, the potential benefits of central clearing for OTC derivatives, and the opti...
A Baroclinic Model of turbulent dusty flows
Energy Technology Data Exchange (ETDEWEB)
Kuhl, A.L.
1992-04-01
The problem considered here is the numerical simulation of the turbulent dusty flow induced by explosions over soil surfaces. Some of the unresolved issues are: (1) how much dust is scoured from such surfaces; (2) where does the dust go in the boundary layer; (3) what is the dusty boundary layer height versus time; (4) what are the dusty boundary layer profiles; (5) how much of the dust mass becomes entrained into the dust stem; and (6) where does the dust go in the buoyant cloud? The author proposes a Baroclinic Model for flows with large density variations that actually calculates the turbulent mixing and transport of dust on an adaptive grid. The model is based on the following idealizations: (1) a loose dust bed; (2) an instantaneous shock fluidization of the dust layer; (3) the dust and air are in local equilibrium (so air viscosity enforces the no-slip condition); (4) the dust-air mixture is treated as a continuum dense fluid with zero viscosity; and (5) the turbulent mixing is dominated by baroclinically-generated vorticity. These assumptions lead to an inviscid set of conservation laws for the mixture, which are solved by means of a high-order Godunov algorithm for gasdynamics. Adaptive Mesh Refinement (AMR) is used to capture the turbulent mixing processes on the grid. One of the unique characteristics of these flows is that mixing occurs because vorticity is produced by an inviscid, baroclinic mechanism. A number of examples are presented to illustrate these baroclinic effects including shock interactions with dense-gas layers and dust beds, and dusty wall jets of airblast precursors. The conclusion of these studies is that dusty boundary layers grow because of mass entrainment from the fluidized bed (and not because of viscous wall drag) as proven by the Mass Integral Equation.
Self-similarity and structures of plasma turbulence
International Nuclear Information System (INIS)
Plasma edge fluctuations and induced fluxes measured in several types of confinement devices have been found to be self-similar over time scales between 10 times the turbulence decorrelation time and the plasma confinement time. These self-similarity parameters vary little from one device to another. In exploring the self-similarity properties, it has become clear that time and space measurements lead to different information on the structure of turbulence. Therefore, it is often not possible to clearly separate the poloidal and temporal structures of the turbulence with a single-point measure. This in turn implies that using the standard Taylor frozen flow hypothesis can be very misleading when applied to plasma turbulence. We have used simple 2 and 3-D turbulence models to investigate how 1) the multiple nonlinearities intrinsic to plasmas affect the self-similarity parameter for both temporal and poloidal structures and 2) how poloidal flows influence the single-point measurements. Understanding the temporal and spatial dynamics individually, as well as the relationships between the temporal and spatial dynamics for turbulent plasma systems is crucial to improving the comparison between model and experiment. (author)
Turbulence and Fossil Turbulence in Oceans and Lakes
Institute of Scientific and Technical Information of China (English)
Pak-Tao Leung; Carl H. Gibson
2004-01-01
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. Quantitative hydrodynamic-phase-diagrams (HPDs) from the theory are used to classify microstructure patches according to their hydrodynamic states. When analyzed in HPD space, previously published oceanic datasets showed their dominant microstructure patches are fossilized at large scales in all layers. Laboratory and field measurements suggested phytoplankton species with different swimming abilities adjust their growth strategies by pattern recognition of turbulence-fossil-turbulence dissipation and persistence times that predict survival-relevant surface layer sea changes. New data collected near a Honolulu waste-water outfall showed the small-to-large evolution of oceanic turbulence microstructure from active to fossil states, and revealed the ability of fossil-density-turbulence patches to absorb, and vertically radiate, internal wave energy, information, and enhanced turbulent
Turbulence assessment at potential turbine sites
Energy Technology Data Exchange (ETDEWEB)
Daniels, A. [Univ. of Hawaii, Honolulu, HI (United States)
1996-12-31
As opposed to a fixed anemometer, the Tala kite is free to move in the air. The motion of the kite is not random, it moves with or against the speed gradient towards the center of passing turbulence events of higher or lower speeds thus allowing the kite to measure event maximum or minimum speed rather than the speed at some unknown distance from the event center like a fixed anemometer. This behavior is confirmed both by a theoretical aerodynamics analysis of the kite motion and by data from a field study where kite and hot film anemometer (HFA) events, defined by the rain flow count method, were compared with flap events on a rotating turbine blade. The HFAs simulated too few events lasting too long while the kites reproduced both the number of events and event periods remarkably close. It is concluded that the kite is the optimal tool for measuring turbulence at potential turbine sites. Kite turbulence can form the bases for economic return estimates and an example is given where less windy sites could be more economical than other more turbulent higher speed sites. 13 refs., 8 figs.
Chaotic radiation/turbulence interactions in flames
Energy Technology Data Exchange (ETDEWEB)
Menguec, M.P.; McDonough, J.M.
1998-11-01
In this paper, the authors present a review of their recent efforts to model chaotic radiation-turbulence interactions in flames. The main focus is to characterize soot volume fraction fluctuations in turbulent diffusion flames, as they strongly contribute to these interaction. The approach is based on the hypothesis that the fluctuations of properties in turbulent flames are deterministic in nature, rather than random. The authors first discuss the theoretical details and then they briefly outline the experiments conducted to measure the scattered light signals from fluctuating soot particles along the axis of an ethylene-air diffusion flame. They compare the power spectra and time series obtained from experiments against the ad-hoc and rigorous models derived using a series of logistic maps. These logistic maps can be used in simulation of the fluctuations in these type of flames, without extensive computational effort or sacrifice of physical detail. Availability of accurate models of these kinds allows investigation of radiation-turbulence interactions at a more fundamental level than it was previously possible.
2010-04-01
... product until its registration as a derivatives clearing organization is reinstated under the procedures... clearing a new product that is not traded on a designated contract market or a registered derivatives... of the product that make it acceptable for clearing with a certification that the clearing of...
76 FR 45724 - Clearing Member Risk Management
2011-08-01
... techniques or other forms of information technology. Comments may be submitted directly to the Office of... COMMISSION 17 CFR Parts 1 and 23 RIN 3038-AD51 Clearing Member Risk Management AGENCY: Commodity Futures... extensive regulations addressing open access and risk management at the derivatives clearing...
Internalization, Clearing and Settlement, and Liquidity
Degryse, H.A.; van Achter, M.; Wuyts, G.
2012-01-01
Abstract: We study the relation between liquidity in financial markets and post-trading fees (i.e. clearing and settlement fees). The clearing and settlement agent (CSD) faces different marginal costs for different types of transactions. Costs are lower for an internalized transaction, i.e. when buy
Acoustics of Clear Speech: Effect of Instruction
Lam, Jennifer; Tjaden, Kris; Wilding, Greg
2012-01-01
Purpose: This study investigated how different instructions for eliciting clear speech affected selected acoustic measures of speech. Method: Twelve speakers were audio-recorded reading 18 different sentences from the Assessment of Intelligibility of Dysarthric Speech (Yorkston & Beukelman, 1984). Sentences were produced in habitual, clear,…
Keep Your Kidneys Clear: Kicking Kidney Stones
... Your Kidneys Clear Keep Your Kidneys Clear Kicking Kidney Stones Some say that passing a kidney stone is like delivering a baby made of razor ... is that, although they can be excruciatingly painful, kidney stones rarely cause permanent damage, and you may be ...
Thirty Meter Telescope Site Testing VI: Turbulence Profiles
Els, S G; Schoeck, M; Riddle, R; Skidmore, W; Seguel, J; Bustos, E; Walker, D
2009-01-01
The results on the vertical distribution of optical turbulence above the five mountains which were investigated by the site testing for the Thirty Meter Telescope (TMT) are reported. On San Pedro Martir in Mexico, the 13 North site on Mauna Kea and three mountains in northern Chile Cerro Tolar, Cerro Armazones and Cerro Tolonchar, MASS-DIMM turbulence profilers have been operated over at least two years. Acoustic turbulence profilers - SODARs - were also operated at these sites. The obtained turbulence profiles indicate that at all sites the lowest 200m are the main source of the total seeing observed, with the Chilean sites showing a weaker ground layer than the other two sites. The two northern hemisphere sites have weaker turbulence at altitudes above 500m, with 13N showing the weakest 16km turbulence, being responsible for the large isoplanatic angle at this site. The influence of the jetstream and wind speeds close to the ground on the clear sky turbulence strength throughout the atmosphere are discussed...
Modeling water droplet condensation and evaporation in DNS of turbulent channel flow
Russo, E.; Kuerten, J.G.M.; Geld, van der C.W.M.; Geurts, B.J.
2011-01-01
In this paper a point particle model for two-way coupling in water droplet-laden incompressible turbulent flow of air is proposed. The model is based on conservation laws and semi-empirical correlations. It has been implemented and tested in a DNS code based for turbulent channel flow with an Euleri
A projection method for LES of incompressible turbulent combustion
Institute of Scientific and Technical Information of China (English)
LIU Yi; GUO Yincheng
2004-01-01
In this paper, the "incompressible" property of a turbulent combustion with Ma<<1 is analyzed, and a projection method for simulation of low Ma number turbulent combustions is discussed. The density is calculated explicitly,and the projection is only applied to the momentum equations and thus greatly saves the calculation cost. Large eddy simulation of methane-air turbulent planar jet combustion is performed using this projection method. A reduced four-step chemical kinetic mechanism is applied for the simulation of methane-air combustion. A dynamic eddy viscosity model is utilized for the sub-grid scales turbulence modulation. The SGS model for the filtered reaction rate is a dynamic similarity model. Simulation results depict the detailed coherent structures in the jet flame along with the vortex-flame interactions in the flow field. Besides, it is found that the chemical reaction has the effect of "energy rearrangement" in the flow field, which may greatly reduce the turbulence. Simulation results show the satisfactory performance of this projection method in simulating turbulent combustion under the condition of Ma<<1.
SNOW CLEARING SERVICE WINTER 2001-2002
ST-HM Group; Tel. 72202
2001-01-01
As usual at this time of the year, the snowing clearing service, which comes under the control of the Transport Group (ST-HM), is preparing for the start of snow-clearing operations (timetable, stand-by service, personnel responsible for driving vehicles and machines, preparation of useful and necessary equipment, work instructions, etc.) in collaboration with the Cleaning Service (ST-TFM) and the Fire Brigade (TIS-FB). The main difficulty for the snow-clearing service is the car parks, which cannot be properly cleared because of the presence of CERN and private vehicles parked there overnight in different parts of the parking areas. The ST-HM Transport Group would therefore like to invite you to park vehicles together in order to facilitate the access of the snow ploughs, thus allowing the car parks to be cleared more efficiently before the personnel arrives for work in the mornings.
Turbulent Damping without Eddy Viscosity
Thalabard, Simon
2015-11-01
The intrinsic Non-Gaussianity of turbulence may explain why the standard Quasi-Normal cumulant discard closures can fail dramatically, an example being the development of negative energy spectra in Millionshtchikov's 1941 Quasi-Normal (QN) theory. While Orszag's 1977 EDQNM provides an ingenious patch to the issue, the reason why QN fails so badly is not so clear. Is it because of the Gaussian Ansatz itself? Or rather its inconsistent use? The purpose of the talk is to argue in favor of the latter option, using the lights of a new ``optimal closure'' recently exposed by [Turkington,2013], which allows Gaussians to be used consistently with an intrinsic damping. The key to this apparent paradox lies in a clear distinction between the ensemble averages and their proxies, most easily grasped provided one uses the Liouville equation rather than the cumulant hierarchy as a starting point. Schematically said, closure is achieved by minimizing a lack-of-fit residual, that retains the intrinsic features of the dynamics. For the sake of clarity, I will discuss the optimal closure on a problem where it can be entirely implemented and compared to DNS: the relaxation of an arbitrarily far from equilibrium energy shell towards the Gibbs equilibrium for truncated Euler dynamics.
Three-dimensional numerical simulation of air exhausted from submerged nozzles
Liu, J. T.; Qin, S. J.; Miao, T. C.; Wu, D. Z.
2015-01-01
Underwater exhaust produces an intricate unsteady two-phase flow field. For exploring the methods to predict the structure of air-water flow field and revealing the interaction of gas and water, three-dimensional underwater gas jet model with the VOF multiphase flow tracking method was adopted to simulate the transient flow field of gas jet into water. The air-water two-phase flow and its acoustic characteristic of turbulent gas exhausted from underwater nozzles were experimentally investigated in the early stages. Process of bubbles formation, detachment, fragmentation and coalescence were recorded clearly. The simulated results which were compared with the prior experimental results proved that the model almost accurately catches the behaviour of underwater bubbles. A few points were set in the two phase flow field to monitor pressure fluctuation. It had shown that higher air flow rate causes intense gas-column contraction and consequent bubble fragmentation, leading to higher amplitude and frequency of pressure fluctuation.
Bilodeau, Elizabeth A.; Hoschar, Aaron P.; Barnes, E. Leon; Hunt, Jennifer L.; Seethala, Raja R.
2011-01-01
Clear cell carcinoma or hyalinizing clear cell carcinoma (CCC) and clear cell odontogenic carcinoma (CCOC) are rare, low-grade and typically indolent malignancies that can be diagnostically challenging. In this study the clinicopathologic, histologic, and immunohistochemical features of 17 CCCs and 12 CCOCs are examined. The differential diagnosis of clear cell malignancies in the head and neck is discussed. The relationship of CCCs and CCOCs to other clear cell tumors on the basis of their i...
Wave turbulent statistics in non-weak wave turbulence
Yokoyama, Naoto
2011-01-01
In wave turbulence, it has been believed that statistical properties are well described by the weak turbulence theory, in which nonlinear interactions among wavenumbers are assumed to be small. In the weak turbulence theory, separation of linear and nonlinear time scales derived from the weak nonlinearity is also assumed. However, the separation of the time scales is often violated even in weak turbulent systems where the nonlinear interactions are actually weak. To get rid of this inconsiste...
Turbulence introduction to theory and applications of turbulent flows
Westerweel, Jerry; Nieuwstadt, Frans T M
2016-01-01
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises.
Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus
Energy Technology Data Exchange (ETDEWEB)
Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology
1997-10-01
In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction
Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence
Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor
2010-01-01
We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.
Drizzle formation in stratocumulus clouds: effects of turbulent mixing
Magaritz-Ronen, L.; Pinsky, M.; Khain, A.
2016-02-01
The mechanism of drizzle formation in shallow stratocumulus clouds and the effect of turbulent mixing on this process are investigated. A Lagrangian-Eularian model of the cloud-topped boundary layer is used to simulate the cloud measured during flight RF07 of the DYCOMS-II field experiment. The model contains ~ 2000 air parcels that are advected in a turbulence-like velocity field. In the model all microphysical processes are described for each Lagrangian air volume, and turbulent mixing between the parcels is also taken into account. It was found that the first large drops form in air volumes that are closest to adiabatic and characterized by high humidity, extended residence near cloud top, and maximum values of liquid water content, allowing the formation of drops as a result of efficient collisions. The first large drops form near cloud top and initiate drizzle formation in the cloud. Drizzle is developed only when turbulent mixing of parcels is included in the model. Without mixing, the cloud structure is extremely inhomogeneous and the few large drops that do form in the cloud evaporate during their sedimentation. It was found that turbulent mixing can delay the process of drizzle initiation but is essential for the further development of drizzle in the cloud.
Turbulence and Fossil Turbulence in Oceans and Lakes
Leung, P T; Leung, Pak Tao; Gibson, Carl H.
2003-01-01
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified flu...
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids. PMID:25768746
Abarzhi, S I; Sreenivasan, K R
2010-04-13
Turbulence is a supermixer. Turbulent mixing has immense consequences for physical phenomena spanning astrophysical to atomistic scales under both high- and low-energy-density conditions. It influences thermonuclear fusion in inertial and magnetic confinement systems; governs dynamics of supernovae, accretion disks and explosions; dominates stellar convection, planetary interiors and mantle-lithosphere tectonics; affects premixed and non-premixed combustion; controls standard turbulent flows (wall-bounded and free-subsonic, supersonic as well as hypersonic); as well as atmospheric and oceanic phenomena (which themselves have important effects on climate). In most of these circumstances, the mixing phenomena are driven by non-equilibrium dynamics. While each article in this collection dwells on a specific problem, the purpose here is to seek a few unified themes amongst diverse phenomena. PMID:20211872
Energy Technology Data Exchange (ETDEWEB)
Mann, Jakob [Risoe National Lab., Wind Energy and Atmosheric Physics Dept., Roskilde (Denmark)
1999-03-01
The purpose of this work is to develop a model of the spectral velocity-tensor in neutral flow over complex terrain. The resulting equations are implemented in a computer code using the mean flow generated by a linear mean flow model as input. It estimates turbulence structure over hills (except on the lee side if recirculation is present) in the so-called outer layer and also models the changes in turbulence statistics in the vicinity roughness changes. The generated turbulence fields are suitable as input for dynamic load calculations on wind turbines and other tall structures and is under implementation in the collection of programs called WA{sup s}P Engineering. (au) EFP-97; EU-JOULE-3. 15 refs.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-01
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability—which is triggered above a certain perturbation amplitude threshold—akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies—a phenomenon reminiscent of the inverse cascade displayed by (2 +1 )-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
Beresnyak, A
2007-01-01
We consider imbalanced, or cross-helical MHD Alfvenic turbulence where the waves traveling in one direction have higher amplitudes than the opposite waves. This paper is dedicated to so-called strong turbulence, which cannot be treated perturbatively. Our main result is that the anisotropy of the weak waves is stronger than the anisotropy of a strong waves. This seemingly contradicts the conventional interpretation of so-called critical balance (Goldreich, Sridhar 1995). We propose that critical balance, that was originally conceived as a causality argument, has to be amended by what we call a propagation argument. This revised formulation is consistent with the old one in the balanced case, and is able to include the imbalanced case. We also provide phenomenological model of energy cascading and discuss possibility of self-similar solutions in a realistic setup of driven turbulence.
Turbulence and galactic structure
Elmegreen, Bruce G
2004-01-01
Interstellar turbulence is driven over a wide range of scales by processes including spiral arm instabilities and supernovae, and it affects the rate and morphology of star formation, energy dissipation, and angular momentum transfer in galaxy disks. Star formation is initiated on large scales by gravitational instabilities which control the overall rate through the long dynamical time corresponding to the average ISM density. Stars form at much higher densities than average, however, and at much faster rates locally, so the slow average rate arises because the fraction of the gas mass that forms stars at any one time is low, ~10^{-4}. This low fraction is determined by turbulence compression, and is apparently independent of specific cloud formation processes which all operate at lower densities. Turbulence compression also accounts for the formation of most stars in clusters, along with the cluster mass spectrum, and it gives a hierarchical distribution to the positions of these clusters and to star-forming...
Magnetic turbulence in Tokamaks
International Nuclear Information System (INIS)
From a discussion of the disruption process, it is concluded that this process plausibly consists of the onset of a fine grain turbulence. This turbulence must be able to produce the large values of the inductive electric field which are associated with the reorganization of the poloidal flux and the current density on the magnetic surfaces. It is then plausible that the turbulence belongs to a class of 'rippling' modes, that may explain the experimental values for the magnetic perturbations corresponding to a substantial radial ergodicity of the flux lines. The stability of the modes in the presence of such an ergodicity is accordingly considered. It is found that the modes may be unstable even in collisionless regime, the ergodicity playing a role similar to the resistivity to partially remove the M.H.D. constraint
A Fast-Response Atmospheric Turbulence (FRAT) Probe with Gas-Sampling Ducts Project
National Aeronautics and Space Administration — The objective of this proposal is to design, construct and test a high-frequency-response air-data probe, the Fast Response Atmospheric Turbulence probe (FRAT...
Weak turbulence of gravity waves
Dyachenko, A. I.; Korotkevich, A. O.; Zakharov, V. E.
2003-01-01
For the first time weak turbulent theory was demonstrated for the surface gravity waves. Direct numerical simulation of the dynamical equations shows Kolmogorov turbulent spectra as predicted by analytical analysis from kinetic equation.
Protostellar outflow-driven turbulence
Matzner, C D
2007-01-01
Protostellar outflows crisscross the regions of star cluster formation, stirring turbulence and altering the evolution of the forming cluster. We model the stirring of turbulent motions by protostellar outflows, building on an observation that the scaling law of supersonic turbulence implies a momentum cascade analogous to the energy cascade in Kolmogorov turbulence. We then generalize this model to account for a diversity of outflow strengths, and for outflow collimation, both of which enhance turbulence. For a single value of its coupling coefficient the model is consistent with turbulence simulations by Li & Nakamura and, plausibly, with observations of the NGC 1333 cluster-forming region. Outflow-driven turbulence is strong enough to stall collapse in cluster-forming regions for several crossing times, relieving the mismatch between star formation and turbulent decay rates. The predicted line-width-size scaling implies radial density indices between -1 and -2 for regions supported by outflow-driven tu...
Zhou, Libo
2016-04-01
The Southeast Tibet is an important region of the Tibetan Plateau bearing the interaction between the Tibetan and the neighbor atmospheric systems. The South Asian summer monsoon (SASM) as a basic climate system in Asia could impact the local atmosphere and the near-surface heat exchange process in the Southeast Tibet. An observational campaign, OSEP2013, was carried out in this region during SASM in 2013. The atmospheric parameters and turbulent heat fluxes were observed and averaged over three different land surfaces of the inhomogeneous landscape during the observation campaign. Results show clear SASM impacts on the local atmosphere and near-surface heat exchange in the Southeast Tibet. The South Asian summer monsoon was onset on June 1, 2013, and experienced a south phase and north phase during OSEP2013. The convection and humidity were increased in the Southeast Tibet by SASM, especially during the north phase. The observation domain received low radiation energy due to the convective clouds brought by SASM, and the soil and air temperatures were lowered as consequence. In addition, the air humidity was increased over this region by the wet air transportation of SASM circulation. The sensible and latent heat transfers were decreased by the low land-air temperature difference and high air humidity during SASM. The latent heat transfer dominated the total heat transfer in the Southeast Tibet due to the low sensible heat transfer in the SASM situation, and the domination was increased as the sensible heat transfer was further decreased during the SASM north phase.
TOURIST BUSINESS IN TURBULENCE
KLIMOVA T.B.; VISHNEVSKAYA E.V.
2015-01-01
Russian tourist business works in an extreme mode, and the basic tone is set by turbulence, risk and uncertainty. The article deals with the factors of turbulence which engulfed the tourism industry with a «whirling flood». The main causes of the impact on the tourist market are: devaluation of the rouble, the bankruptcy of the largest tour operators and Transaero Airlines, the sanctions of the West, the introduction of fingerprinting for Russian tourists, as well as the causes of non-economi...
Artificial ionospheric turbulence (review)
International Nuclear Information System (INIS)
This study is an analysis of artificial ionospheric turbulence (AIT) arising near the level at which a powerful wave is reflected with ordinary polarization. AIT is an inhomogeneous structure in the ionosphere with a size on the order of centimeters or tens of kilometers and with characteristic frequencies from a fraction of a hertz (aperiodic inhomogeneity) to several megahertz (plasma waves). The authors are primarily concerned with small-scale artificial ionospheric turbulence (SAIT), i.e., with inhomogeneities that are greatly extended along the geomagnetic field with transverse dimensions that are less than the wavelengths of the perturbing waves - the pumping waves (PW) - in a vacuum
LDV measurements of turbulent baroclinic boundary layers
Energy Technology Data Exchange (ETDEWEB)
Neuwald, P.; Reichenbach, H. [Fraunhofer-Institut fuer Kurzzeitdynamik - Ernst-Mach-Institut (EMI), Freiburg im Breisgau (Germany); Kuhl, A.L. [Lawrence Livermore National Lab., El Segundo, CA (United States)
1993-07-01
Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.
Turbulent Dynamos and Magnetic Helicity
Ji, H
1999-01-01
It is shown that the turbulent dynamo $\\alpha$-effect converts magnetic helicity from the turbulent field to the mean field when the turbulence is electromagnetic while the magnetic helicity of the mean-field is transported across space when the turbulence is electrostatic or due to the electron diamagnetic effect. In all cases, however, the dynamo effect strictly conserves the total helicity except for resistive effects and a small battery effect. Implications for astrophysical situations, especially for the solar dynamo, are discussed.
Primary clear cell carcinoma of the larynx.
G.Pesavento; Ferlito, A; Recher, G.
1980-01-01
The clinical and pathological findings in three patients with clear cell carcinoma of the larynx are described. This type of neoplasm in the larynx is extremely rare. The aggressiveness of the tumour and its high biological malignancy are stressed.
Clear corneal incision in cataract surgery
Directory of Open Access Journals (Sweden)
Ammar M Al Mahmood
2014-01-01
Full Text Available Since the introduction of sutureless clear corneal cataract incisions, the procedure has gained increasing popularity worldwide because it offers several advantages over the traditional sutured scleral tunnels and limbal incisions. Some of these benefits include lack of conjunctival trauma, less discomfort and bleeding, absence of suture-induced astigmatism, and faster visual rehabilitation. However, an increasing incidence of postoperative endophthalmitis after clear corneal cataract surgery has been reported. Different authors have shown a significant increase up to 15-fold in the incidence of endophthalmitis following clear corneal incision compared to scleral tunnels. The aim of this report is to review the advantages and disadvantages of clear corneal incisions in cataract surgery, emphasizing on wound construction recommendations based on published literature.
Energy Technology Data Exchange (ETDEWEB)
Bozoki, E.S.; Halama, H.
1990-01-01
The mechanism of ion capture by the beam, their effects on the beam as well as ways to clear the ions are discussed. Special attention is given to these questions for the SXLS ring. 20 refs., 5 figs., 4 tabs.
International Nuclear Information System (INIS)
The mechanism of ion capture by the beam, their effects on the beam as well as ways to clear the ions are discussed. Special attention is given to these questions for the SXLS ring. 20 refs., 5 figs., 4 tabs
Time resolved density measurements in premixed turbulent flames
Dandekar, K. V.; Gouldin, F. C.
1982-01-01
Premixed, turbulent flames are important in connection with investigations of fundamental, turbulent-reacting-flow processes and the study of practical combustion devices, such as spark ignition engines and premixed, prevaporized gas turbine combustors which burn premixed reactants. The considered investigation is concerned with the application of laser induced Rayleigh scattering to measure the gas density in premixed, methane-air flames. A description is provided of the results of density and velocity measurements in an open, lean, premixed methane-air flame stabilized in grid turbulence of low Reynolds number. It is found that where applicable, Rayleigh scattering can be used to good advantage to measure molecular number density. Mean and rms density results show that the mean flame thickens with axial distance but that the maximum in rms does not change appreciably.
Experimental investigation of turbulent flows in pipe junctions
International Nuclear Information System (INIS)
Branching, three-dimensional, incompressible internal flows are examined in detail in circular pipe configurations at an experimental plant for water and at a test bench for air. Laminar and turbulent flows are made visible in water for Re4. Typical phenomena are described in detail, e.g. separations, secondary flows and locally non-stationary behavior under stationary inflow conditions and outflow conditions. Wall pressure distributions for turbulent flows up to Re=105 measured at the same test bench supply a good explanation for a number of observed effects. A quantitative investigation of turbulent velocity fields of selected flow cases up to outflow lengths of 10D is carried out in air with the aid of hot-wire anemometry. (orig./DG)
An overview of turbulence compensation
Schutte, K.; Eekeren, A.W.M. van; Dijk, J.; Schwering, P.B.W.; Iersel, M. van; Doelman, N.J.
2012-01-01
In general, long range visual detection, recognition and identification are hampered by turbulence caused by atmospheric conditions. Much research has been devoted to the field of turbulence compensation. One of the main advantages of turbulence compensation is that it enables visual identification
komunikace značky Clean & Clear
Nováková, Kateřina
2009-01-01
The objective of this thesis is to describe a communication campaign of Clean & Clear brand. A brand owned by Johnson & Johnson company specializing in cosmetics for teenage girls. Campaign is described into details, evaluated in terms of effectiveness of its communication tools by achieving marketing goals over a specified period of time. This thesis should confirm the suitability and effectivity of the communication mix applied for Clean & Clear brand in a specific enviroment of anti-acne c...
Governance of securities clearing and settlement systems
Daniela Russo; Terry L. Hart; Chryssa Papathanassiou
2004-01-01
In the context of securities clearing and settlement systems, the nature of governance arrangements acquires a dimension that goes beyond their traditional function in corporate law. They constitute a tool for regulators and central banks to achieve their respective policy goals relating to market operation, market integrity, and systemic stability. In the light of the analysis of this paper, and pending a further evolution in the regulation of securities clearing and settlement in the Commun...
Helicity of mean and turbulent flow with coherent structures in Rayleigh-Benard convective cell
Eidelman, A; Gluzman, I; Golbraikh, E
2013-01-01
We present results of the study of a turbulent air flow with a large scale circulation in Rayleigh-Benard rectangular convective cell with a heated bottom wall and a cooled top wall. The mean horizontal velocity of the main roll and the mean vorticity of eddy rings are almost aligned in a large part of the flow. The helicity of the mean flow is quite high, and is the source of turbulent helicity. Since helicity of the mean flow and turbulence is quite large, the flow in Rayleigh-Benard convective cell is well suited to study properties of helical turbulence.
Skin optical clearing potential of disaccharides.
Feng, Wei; Shi, Rui; Ma, Ning; Tuchina, Daria K; Tuchin, Valery V; Zhu, Dan
2016-08-01
Skin optical clearing can significantly enhance the ability of biomedical optical imaging. Some alcohols and sugars have been selected to be optical clearing agents (OCAs). In this work, we paid attention to the optical clearing potential of disaccharides. Sucrose and maltose were chosen as typical disaccharides to compare with fructose, an excellent monosaccharide-OCA, by using molecular dynamics simulation and an ex vivo experiment. The experimental results indicated that the optical clearing efficacy of skin increases linearly with the concentration for each OCA. Both the theoretical predication and experimental results revealed that the two disaccharides exerted a better optical clearing potential than fructose at the same concentration, and sucrose is optimal. Since maltose has an extremely low saturation concentration, the other two OCAs with saturation concentrations were treated topically on rat skin in vivo, and optical coherence tomography imaging was applied to monitor the optical clearing process. The results demonstrated that sucrose could cause a more significant increase in imaging depth and signal intensity than fructose. PMID:27108771
CO2 efflux from cleared mangrove peat.
Directory of Open Access Journals (Sweden)
Catherine E Lovelock
Full Text Available BACKGROUND: CO(2 emissions from cleared mangrove areas may be substantial, increasing the costs of continued losses of these ecosystems, particularly in mangroves that have highly organic soils. METHODOLOGY/PRINCIPAL FINDINGS: We measured CO(2 efflux from mangrove soils that had been cleared for up to 20 years on the islands of Twin Cays, Belize. We also disturbed these cleared peat soils to assess what disturbance of soils after clearing may have on CO(2 efflux. CO(2 efflux from soils declines from time of clearing from ∼10,600 tonnes km(-2 year(-1 in the first year to 3000 tonnes km(2 year(-1 after 20 years since clearing. Disturbing peat leads to short term increases in CO(2 efflux (27 umol m(-2 s(-1, but this had returned to baseline levels within 2 days. CONCLUSIONS/SIGNIFICANCE: Deforesting mangroves that grow on peat soils results in CO(2 emissions that are comparable to rates estimated for peat collapse in other tropical ecosystems. Preventing deforestation presents an opportunity for countries to benefit from carbon payments for preservation of threatened carbon stocks.
Simulating colors of clear and partly cloudy skies.
Gedzelman, Stanley David
2005-09-20
A model (SKYCOLOR) is developed that simulates the light and color of the sky and open cloud decks in the vertical plane including the Sun and the observer and animates the changes as the Sun goes down. Model skylight consists of sunbeams that are scattered toward the observer, but depleted by scattering and absorption in the Chappuis bands of ozone. SKYCOLOR includes the Earth's curvature, atmospheric refraction, cloud shadows, and solar eclipses. Scattering is given a wavelength (lambda) dependence of lambda(-4) for air molecules (Rayleigh scattering), lambda(-1) for tropospheric aerosols, and lambda(+1) for volcanic aerosol particles. Multiple scattering is calculated directly in clouds but is parameterized in clear air by decreasing the scattering rates of sunlight and of skylight in the Earth's shadow by 30%. PMID:16201435
On the coupled solution of diffusion and chemistry in air pollution models
Verwer, Jan; Blom, Joke
1995-01-01
A numerical comparison is presented between different techniques considered for the coupled, implicit solution of vertical turbulent diffusion and nonlinear chemical transformations in air pollution models.
Wave turbulent statistics in non-weak wave turbulence
International Nuclear Information System (INIS)
In wave turbulence, which is made by nonlinear interactions among waves, it has been believed that statistical properties are well described by the weak turbulence theory, where separation of linear and nonlinear time scales derived from weak nonlinearity is assumed. However, the separation of the time scales is often violated. To get rid of this inconsistency, closed equations are derived in wave turbulence without assuming the weak nonlinearity according to Direct-Interaction Approximation (DIA), which has been successful in Navier–Stokes turbulence. The DIA equations is a natural extension of the conventional kinetic equation to not-necessarily-weak wave turbulence. -- Highlights: ► Direct-Interaction Approximation is applied to wave turbulence. ► The DIA equations describe non-weak wave turbulent statistics. ► They can be applied to spatio-temporal intermittent structures. ► The conventional kinetic equation is recoverable in the weak nonlinear limit.
Multilevel turbulence simulations
Energy Technology Data Exchange (ETDEWEB)
Tziperman, E. [Princeton Univ., NJ (United States)
1994-12-31
The authors propose a novel method for the simulation of turbulent flows, that is motivated by and based on the Multigrid (MG) formalism. The method, called Multilevel Turbulence Simulations (MTS), is potentially more efficient and more accurate than LES. In many physical problems one is interested in the effects of the small scales on the larger ones, or in a typical realization of the flow, and not in the detailed time history of each small scale feature. MTS takes advantage of the fact that the detailed simulation of small scales is not needed at all times, in order to make the calculation significantly more efficient, while accurately accounting for the effects of the small scales on the larger scale of interest. In MTS, models of several resolutions are used to represent the turbulent flow. The model equations in each coarse level incorporate a closure term roughly corresponding to the tau correction in the MG formalism that accounts for the effects of the unresolvable scales on that grid. The finer resolution grids are used only a small portion of the simulation time in order to evaluate the closure terms for the coarser grids, while the coarse resolution grids are then used to accurately and efficiently calculate the evolution of the larger scales. The methods efficiency relative to direct simulations is of the order of the ratio of required integration time to the smallest eddies turnover time, potentially resulting in orders of magnitude improvement for a large class of turbulence problems.
Bass, J; Agostini, L
1955-01-01
The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.
Sun, Jielun; Mahrt, Larry; Nappo, Carmen; Lenschow, Donald
2015-04-01
We investigate atmospheric internal gravity waves (IGWs): their generation and induction of global intermittent turbulence in the nocturnal stable atmospheric boundary layer based on the new concept of turbulence generation discussed in Sun et al. (2012). The IGWs are generated by air lifted by convergence forced by the colliding background flow and cold currents near the ground. The buoyancy-forced IGWs enhance wind speed at the wind-speed wave crests such that the bulk shear instability generates large coherent eddies, which augment local turbulent mixing and vertically redistribute momentum and heat. The periodically enhanced turbulent mixing, in turn, modifies the air temperature and flow oscillations of the original IGWs. These turbulence-forced oscillations (TFOs) resemble waves and coherently transport momentum and sensible heat. The observed momentum and sensible heat fluxes at the IGW frequency, which are either due to the buoyancy-forced IGWs themselves or by the TFOs, are larger than turbulent fluxes near the surface. The IGWs enhance not only the bulk shear at the wave crests, but also local shear over the wind speed troughs of the surface IGWs. Temporal and spatial variations of turbulent mixing as a result of this wave-induced turbulent mixing change the mean air flow and the shape of the IGWs.
76 FR 47529 - Customer Clearing Documentation and Timing of Acceptance for Clearing; Correction
2011-08-05
... Street, NW., Washington, DC 20581. SUPPLEMENTARY INFORMATION: In FR Doc. 2011-19365 appearing on page... COMMISSION 17 CFR Parts 1, 23, and 39 RIN 3038-AD51 Customer Clearing Documentation and Timing of Acceptance... August 1, 2011, regarding Customer Clearing Documentation and Timing of Acceptance for Clearing....
Analysis of turbulent boundary layers
Cebeci, Tuncer
2012-01-01
Analysis of Turbulent Boundary Layers focuses on turbulent flows meeting the requirements for the boundary-layer or thin-shear-layer approximations. Its approach is devising relatively fundamental, and often subtle, empirical engineering correlations, which are then introduced into various forms of describing equations for final solution. After introducing the topic on turbulence, the book examines the conservation equations for compressible turbulent flows, boundary-layer equations, and general behavior of turbulent boundary layers. The latter chapters describe the CS method for calculati
Remarks on turbulent constitutive relations
Shih, Tsan-Hsing; Lumley, John L.
1993-01-01
The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form.
Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels
Energy Technology Data Exchange (ETDEWEB)
Seitzman, Jerry [Georgia Inst. of Technology, Atlanta, GA (United States); Lieuwen, Timothy [Georgia Inst. of Technology, Atlanta, GA (United States)
2014-09-30
This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These
Directory of Open Access Journals (Sweden)
K Talbi
2011-01-01
Full Text Available An experimental study and a numerical simulation are presented concerning the three dimensional turbulent flow of air in a cyclone separator in the region underneath the vortex finder. The computations are carried out using the Fluent CFD code. The turbulence effects on the mean flow are taken into account using the standard k- model and the standard Reynolds stress Model (RSM. The axial and tangential mean velocity components and the turbulence intensities are measured using Laser Doppler Anemometry. The LDA system is mounted in such a way that radial traverses at different angles of the cyclone cylindrical geometry and at different axial positions could be possible. The obtained results show interesting phenomena such as the three dimensional nature of the flow behaviour, the turbulence decay and its evolution towards an isotropic state in the quasi-free vortex region as the flow proceeds downstream in the cyclone. In the region underneath the vortex finder, the surface separating the descending and the ascending streams (set of points where the axial velocity component is nil is located approximately in the fictitious prolongation of the vortex finder cylindrical wall. The existence of a quasi-forced vortex in the central region of the cyclone surrounded by a coaxial quasi-free vortex is confirmed. The radial distance separating the central vortex and the surrounding annular vortex, at a given angle and axial position, can be clearly defined as the distance from the axis to the point of intersection between two characteristic straight lines: the first line representing, ln Ut vs ln r, of slope +1, in the quasi-forced vortex and the second line, ln Ut vs ln r, of slope -1, in the quasi-free vortex, where Ut is the tangential component of the mean velocity.
Turbulent flow and heat transfer in vertical tubes under strong effects of lifting forces
International Nuclear Information System (INIS)
The problem is studied of the turbulent flow and heat transfer in vertical tubes, considering the lifting forces effect on the averaged flow as well on the turbulent transfer. Expressions for the pulse turbulent transfer coefficient and for the Prandtl turbulent number have been obtained by approximate solution of the turbulence energy balance equations and of the enthalpy pulsation intensity equations. The averaged motion and energy equation system of the boundary layers type is solved numerically. The calculated and experimentally measured profiles of the velocity, of the pulse turbulent transfer coefficient distribution, of the heat emission and resistance coefficients are given. The results of calculations performed for water and air at the lifting and dipping flow in the heated vertical tubes, are in a good agreement with the experimental data
Laboratory Experiments on Wave Turbulence
Falcon, Eric
2010-01-01
This review paper is devoted to a presentation of recent progress in wave turbulence. I first present the context and state of the art of this field of research both experimentally and theoretically. I then focus on the case of wave turbulence on the surface of a fluid, and I discuss the main results obtained by our group: caracterization of the gravity and capillary wave turbulence regimes, the first observation of intermittency in wave turbulence, the occurrence of strong fluctuations of injected power in the fluid, the observation of a pure capillary wave turbulence in low gravity environment and the observation of magnetic wave turbulence on the surface of a ferrofluid. Finally, open questions in wave turbulence are discussed.
The Clear Creek Envirohydrologic Observatory: From Vision Toward Reality
Just, C.; Muste, M.; Kruger, A.
2007-12-01
) measurements has been finalized. The software package provides mean flow field and turbulence characteristics obtained by operating the ADCP at fixed points or using the moving-boat approach. Current Work: The current development work is focused on extracting and populating the Clear Creek database with in-situ measurements acquired and transmitted in real time with sensors deployed in the Clear Creek watershed.
Broken Ergodicity in MHD Turbulence in a Spherical Domain
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
Satellite sensing of submerged fossil turbulence and zombie turbulence
Gibson, Carl H.
2004-11-01
Surface brightness anomalies from a submerged municipal wastewater outfall trapped by buoyancy in an area 0.1 km^2 are surprisingly detected from space satellites in areas > 200 km^2. How is this possible? Microstructure measurements near the outfall diffuser reveal enhanced turbulence and temperature dissipation rates above the 50 m trapping depth. Near-vertical radiation of internal waves by fossil and zombie turbulence microstructure patches produce wind ripple smoothing with 30-50 m internal wave patterns in surface Fourier brightness anomalies near the outfall. Detections at 10-14 km distances are at 100-220 m bottom boundary layer (BBL) fossil turbulence scales. Advected outfall fossils form zombie turbulence patches in internal wave patterns as they extract energy, vorticity, turbulence and ambient vertical internal wavelength information as their density gradients are tilted by the waves. As the zombies fossilize, patterned energy radiates near-vertically to produce the detected Fourier anomalies. Zombie turbulence patches beam extracted energy in a preferred direction with a special frequency, like energized metastable molecules in a chemical maser. Thus, kilowatts to produce the submerged field of advected fossil outfall turbulence patches are amplified by beamed zombie turbulence maser action (BZTMA) into megawatts of turbulence dissipation to affect sea surface brightness on wide surface areas using gigawatts of BBL fossil turbulence wave energy available.
Oral Cavity Clear Cell Odontogenic Carcinoma.
Ginat, Daniel Thomas; Villaflor, Victoria; Cipriani, Nicole A
2016-06-01
A case of clear cell odontogenic carcinoma of the oral cavity is described in this sine qua non radiology-pathology correlation article. CT demonstrated a solid and cystic mass arising from the mandible. Histology demonstrated variably-sized nests of clear to pale eosinophilic cells with occasional central necrosis embedded in a hyalinized to fibrocellular stroma. The specimen was also positive for the characteristic rearrangement of the EWSR1 (22q12) locus in 93.5 % of interphase cells. PMID:25994920
Two-Dimensional Low-Turbulence Tunnel
1938-01-01
Manometer for the Two-Dimensional Low-Turbulence Tunnel. The Two-Dimensional Low-Turbulence Tunnel was originally called the Refrigeration or 'Ice' tunnel because it was intended to support research on aircraft icing. The tunnel was built of wood, lined with sheet steel, and heavily insulated on the outside. Refrigeration equipment was installed to generate icing conditions inside the test section. The NACA sent out a questionnaire to airline operators, asking them to detail the specific kinds of icing problems they encountered in flight. The replies became the basis for a comprehensive research program begun in 1938 when the tunnel commenced operation. Research quickly focused on the concept of using exhaust heat to prevent ice from forming on the wing's leading edge. This project was led by Lewis Rodert, who later would win the Collier Trophy for his work on deicing. By 1940, aircraft icing research had shifted to the new Ames Research Laboratory, and the Ice tunnel was refitted with screens and honeycomb. Researchers were trying to eliminate all turbulence in the test section. From TN 1283: 'The Langley two-dimensional low-turbulence pressure tunnel is a single-return closed-throat tunnel.... The tunnel is constructed of heavy steel plate so that the pressure of the air may be varied from approximately full vacuum to 10 atmospheres absolute, thereby giving a wide range of air densities. Reciprocating compressors with a capacity of 1200 cubic feet of free air per minute provide compressed air. Since the tunnel shell has a volume of about 83,000 cubic feet, a compression rate of approximately one atmosphere per hour is obtained. ... The test section is rectangular in shape, 3 feet wide, 7 1/2 feet high, and 7 1/2 feet long. ... The over-all size of the wind-tunnel shell is about 146 feet long and 58 feet wide with a maximum diameter of 26 feet. The test section and entrance and exit cones are surrounded by a 22-foot diameter section of the shell to provide a space
Turbulence and heat exchange under ice
Sirevaag, Anders
2003-01-01
Turbulent fluxes of heat and salt were measured under sea ice at four different locations around Spitsbergen. In Kongsfjorden on West Spitsbergen additional measurements of heat fluxes in the ice and in the atmosphere were done and compared in an air/sea/ice heat budget. Ocean heat flux in Kongsfjorden is about 13 W/m2 and comparison with the other heat fluxes at the ice/ocean interface shows a good agreement. From the heat budget at the ice/ocean interface, the ice growth during three subseq...
Turbulent transport in the atmospheric surface layer
Energy Technology Data Exchange (ETDEWEB)
Tagesson, Torbern [Dept. of Physical Geography and Ecosystem Science, Lund Univ., Lund (Sweden)
2012-04-15
of increased turbulence is included in the eddy diffusivity model. The turbulent transport gets complicated when we enter the plant canopy. The profiles are then not only affected by the changes in turbulence, but also by the spatial distribution of sinks and sources for C within the plant canopy. The exchange of C within the plant community mainly goes through the stomata of leafs. The sink and source distribution of C is hereby influenced by vertical and horizontal distribution of leaf area density and incoming radiation. Because of this sink and source distribution and the change in turbulence, the eddy diffusivity model is no longer applicable. An alternative model is briefly described, the Lagrangian model. The Lagrangian model aims to predict the probability that a moving air parcel in the canopy space will encounter a source or a sink of C. The C concentration will decrease when it passes a sink or increase if it passes a source. The aim is to predict the C concentration profile within the plant canopy.
Mechanics of inhomogeneous turbulence and interfacial layers
Hunt, J.C.R; Eames, I; Westerweel, J.
2006-01-01
The mechanics of inhomogeneous turbulence in and adjacent to interfacial layers bounding turbulent and non-turbulent regions are analysed. Different mechanisms are identified according to the straining by the turbulent eddies in relation to the strength of the mean shear adjacent to, or across, the interfacial layer. How the turbulence is initiated and the topology of the region of turbulence are also significant factors. Specifically the cases of a layer of turbulence bounded on one, or two,...
International Nuclear Information System (INIS)
Transport of airborne radioactive substances directly from air to food products that are being processed at the time of a nuclear power plant accident, a nuclear weapon explosion, or other radiation danger situation is studied. Air is used in food industry, e.g., for pneumatic transport of products. The production is to be interrupted before the radioactive substances reach the locality via winds and when there is not necessarily yet a clear general view of the radiation danger situation. From this point of view, the contamination directly from the air differs clearly from that due to use of contaminated raw material. Radioactive aerosol particles are attached to the product particles in the air mainly due to turbulent and thermal coagulation. The activity concentration of the product particles increases by approximately 0,003 Bq/kg per second due to turbulent coagulation when the activity concentration in the air is 1 Bq/m3. The activity concentration of small product particles (134Cs and 137Cs are the most significant radionuclides released in nuclear power plant accidents considering products with a long storage time. Iodine isotopes, such as 131I, are released easier than cesium but they decay already during storage. The total activity concentration of products contaminated from a nuclear weapon explosion can be estimated to lower with time proportional to t-1,2. The activity concentration decreases rapidly at first, so that the products contaminated due to a nuclear weapon explosion may be only slightly contaminated after the storage time, even if the external radiation during the fabrication of the products had required protection of people at the time. (orig.)
Released air during vapor and air cavitation
Jablonská, Jana; Kozubková, Milada
2016-06-01
Cavitation today is a very important problem that is solved by means of experimental and mathematical methods. The article deals with the generation of cavitation in convergent divergent nozzle of rectangular cross section. Measurement of pressure, flow rate, temperature, amount of dissolved air in the liquid and visualization of cavitation area using high-speed camera was performed for different flow rates. The measurement results were generalized by dimensionless analysis, which allows easy detection of cavitation in the nozzle. For numerical simulation the multiphase mathematical model of cavitation consisting of water and vapor was created. During verification the disagreement with the measurements for higher flow rates was proved, therefore the model was extended to multiphase mathematical model (water, vapor and air), due to release of dissolved air. For the mathematical modeling the multiphase turbulence RNG k-ɛ model for low Reynolds number flow with vapor and air cavitation was used. Subsequently the sizes of the cavitation area were verified. In article the inlet pressure and loss coefficient depending on the amount of air added to the mathematical model are evaluated. On the basis of the approach it may be create a methodology to estimate the amount of released air added at the inlet to the modeled area.
Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence
International Nuclear Information System (INIS)
We investigate the influence of a uniform magnetic field B0=B0eparallel on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B0 is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B0, with distinct power laws for energy decay of shear- and pseudo-Alfven waves. Numerical results from the kinetic equations of Alfven wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes
Business Planning for Turbulent Times New Methods for Applying Scenarios
Ramirez, Rafael; Van der Heijden, Kees
2010-01-01
The world is increasingly turbulent and complex, awash with disruptions, tipping points and knock-on effects exemplified by the implosion of financial markets and economies around the globe. This book is for business and organizational leaders who want and need to think through how best to deal with increasing turbulence, and with the complexity and uncertainty that come with it. The authors explain in clear language how future orientation and, specifically, modern scenario techniques help to address these conditions. They draw on examples from a wide variety of international settings and circ
超声速H2/Air湍流扩散燃烧RANS数值模拟%RANS Simulation of Turbulent Non-Premixed H2/Air Combustion in a Scramjet
Institute of Scientific and Technical Information of China (English)
曹长敏; 叶桃红
2015-01-01
为了研究修正的火焰面反应进度变量燃烧模型在超声速湍流扩散燃烧问题中的适用性，对德国宇航中心（DLR）超声速燃烧室开展RANS数值模拟。基于OpenFoam软件平台中密度求解器分别对三维冷态场和燃烧场进行模拟分析。将网格自适应加密技术用于流场的计算；燃烧场计算中，通过分析不同压力下层流火焰面数据库，引入了反应进度变量源项的压力修正系数，压力修正系数α等于2.2。计算结果表明，冷态场中压力分布、波系分布、速度分布以及燃烧场中波系分布、速度分布、温度分布结果均与实验值符合较好。压力修正方法能够较好地解决超声速湍流扩散燃烧问题。湍流Schmidt数敏感性分析表明，湍流Schmidt数Sct对湍流火焰结构有较大影响，文中Sct等于0.7时能得到与实验值较为一致的分布。%Reynolds-averaged-Navier-Stokes (RANS) simulations of the scramjet of the German Aero⁃space Center (DLR) has been performed to investigate the validity of revised flamelet/progress variable turbu⁃lent combustion model. Both three dimensional non-reacting and reacting flows have been investigated using den⁃sity based solver of open CFD software, OpenFoam. The adaptive mesh refinement technique was used in the present simulations. In the reacting flow, pressure correction coefficient for the source term of reaction progress variable was introduced by analyzing laminar flamelet thermo-chemistry table under different pressure. The value of the pressure correction coefficient is suggested to be 2.2. The numerical results for pressure, wave distribu⁃tion and velocity in non-reacting flow as well as for wave distribution, velocity and temperature in reacting flow are in good agreement with experimental data. It shows that the revised chemistry model can be used to predict the supersonic turbulent non-premixed combustion. The sensitivity analysis shows that the
Clear Liquor Scrubbing with Anhydrite Production
International Nuclear Information System (INIS)
The objective of this project to develop an advanced flue gas desulfurization (FGD) process that has decreased capital and operating costs, higher SO2 removal efficiency, and better by-product solids quality than existing, commercially available technology. A clear liquor process (which uses a scrubbing liquid with no solids) will be used to accomplish this objective rather than a slurry liquor process (which contains solids). This clear liquor scrubbing (CLS) project is focused on three research areas: (1) Development of a clear liquor scrubbing process that uses a clear solution to remove SO2 from flue gas and can be operated under inhibited-oxidation conditions; (2) Development of an anhydrite process that converts precipitated calcium sulfite to anhydrous calcium sulfate (anhydrite); and (3) Development of an alkali/humidification process to remove HCl from flue gas upstream of the FGD system. The anhydrite process also can be retrofit into existing FGD systems to produce a valuable by-product as an alternative to gypsum. This fits well into another of FETC's PRDA objectives of developing an advanced byproduct recovery subsystem capable of transforming SO2 into a useable byproduct or high-volume valuable commodities of interest. This paper describes the proposed processes, outlines the test approach, and preliminary Phase I test results
Wessells, Stephen M.; Rosen, Michael
2013-01-01
“Lake Mead – Clear and Vital” is a 13 minute documentary relating the crucial role of science in maintaining high water quality in Lake Mead. The program was produced coincident with release of the Lakes Mead and Mohave Circular a USGS publication covering past and on-going research in the lakes and tributaries of the Lake Mead National Recreation Area.
77 FR 66219 - Clearing Agency Standards
2012-11-02
... Payment System Risk, 72 FR 2518 (Jan. 12, 2007). \\34\\ See FMI Report, supra note 32. II. Overview of... to clear credit default swaps. See Exchange Act Release Nos. 60372 (July 23, 2009), 74 FR 37748 (July 29, 2009), 61973 (Apr. 23, 2010), 75 FR 22656 (Apr. 29, 2010) and 63389 (Nov. 29, 2010), 75 FR...
Plant Histology: Clearing and the Optical Section.
Freeman, H. E.
1985-01-01
Clearing is a simple and rapid technique in which 75 percent lactic acid is used to remove pigments and cytoplasmic contents of fresh leaves, enabling microscopic view of various internal leaf layers. Procedures for using the technique (which helps students gain a more thorough understanding of plant anatomy) are given. (DH)
The potential of clear-sky carbon dioxide satellite retrievals
Nelson, Robert R.; O'Dell, Christopher W.; Taylor, Thomas E.; Mandrake, Lukas; Smyth, Mike
2016-04-01
Since the launch of the Greenhouse Gases Observing Satellite (GOSAT) in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2) from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only retrievals, which neglected these effects, often incurred unacceptably large errors, even for scenes with optically thin cloud or aerosol layers. However, these "full-physics" retrievals tend to be computationally expensive and may incur biases from trying to deduce the properties of clouds and aerosols when there are none present. Additionally, algorithms are now available that can quickly and effectively identify and remove most scenes in which cloud or aerosol scattering plays a significant role. In this work, we test the hypothesis that non-scattering, or "clear-sky", retrievals may perform as well as full-physics retrievals for sufficiently clear scenes. Clear-sky retrievals could potentially avoid errors and biases brought about by trying to infer properties of clouds and aerosols when none are present. Clear-sky retrievals are also desirable because they are orders of magnitude faster than full-physics retrievals. Here we use a simplified version of the Atmospheric Carbon Observations from Space (ACOS) XCO2 retrieval algorithm that does not include the scattering and absorption effects of clouds or aerosols. It was found that for simulated Orbiting Carbon Observatory-2 (OCO-2) measurements, the clear-sky retrieval had errors comparable to those of the full-physics retrieval. For real GOSAT data, the clear-sky retrieval had errors 0-20 % larger than the full-physics retrieval over land and errors roughly 20-35 % larger over ocean, depending on filtration level. In general, the clear-sky retrieval had XCO2 root-mean-square errors (RMSEs) of less than 2.0 ppm, relative to
The potential of clear-sky carbon dioxide satellite retrievals
Directory of Open Access Journals (Sweden)
R. R. Nelson
2015-12-01
Full Text Available Since the launch of the Greenhouse Gases Observing Satellite (GOSAT in 2009, retrieval algorithms designed to infer the column-averaged dry-air mole fraction of carbon dioxide (XCO2 from hyperspectral near-infrared observations of reflected sunlight have been greatly improved. They now generally include the scattering effects of clouds and aerosols, as early work found that absorption-only retrievals, which neglected these effects, often incurred unacceptably large errors, even for scenes with optically thin cloud or aerosol layers. However, these "full-physics" retrievals tend to be computationally expensive and may incur biases from trying to deduce the properties of clouds and aerosols when there are none present. Additionally, algorithms are now available that can quickly and effectively identify and remove most scenes in which cloud or aerosol scattering plays a significant role. In this work, we test the hypothesis that non-scattering, or "clear-sky", retrievals may perform as well as full-physics retrievals for sufficiently clear scenes. Clear-sky retrievals could potentially avoid errors and biases brought about by trying to infer properties of clouds and aerosols when none are present. Clear-sky retrievals are also desirable because they are orders of magnitude faster than full-physics retrievals. Here we use a simplified version of the Atmospheric Carbon Observations from Space (ACOS XCO2 retrieval algorithm that does not include the scattering and absorption effects of clouds or aerosols. It was found that for simulated Orbiting Carbon Observatory-2 (OCO-2 measurements, the clear-sky retrieval had errors comparable to those of the full-physics retrieval. For real GOSAT data, the clear-sky retrieval had nearly indistinguishable error characteristics over land, but roughly 30–60 % larger errors over ocean, depending on filtration level, compared to the full-physics retrieval. In general, the clear-sky retrieval had XCO2 root
Lagrangian Analysis of Premixed Turbulent Flames
Briner, Clarissa; Hamlington, Peter; Poludnenko, Alexei
2015-11-01
Turbulent premixed combustion is a complicated problem that requires understanding of turbulence and chemistry, as well as their interactions. By contrast to the Eulerian approach, Lagrangian analyses track the evolution of chemical species and flow properties for an advecting fluid parcel. This approach permits detailed analysis of chemical reaction rates and validation of chemical reaction models. Lagrangian trajectories also allow changes in chemical species and flow properties to be examined locally and instantaneously through premixed flamelets. In this study, a Lagrangian analysis has been performed on data from direct numerical simulations of premixed H2-air flames for two different turbulence intensities, using a 8-species chemical reaction mechanism. The relative contributions of dynamical budget terms are calculated for both chemical species, including reaction and diffusion terms, as well as vorticity, which depends on baroclinic torque, dilatation, and viscous effects. Scales of motion throughout the flame are also characterized using multi-point correlations. The results reveal complicated dynamics, including non-monotonic behavior of temperature and fuel mass fractions along trajectories, as well as changing scales of motion through the flameout.
Oscillating grids turbulence generator for turbulent transport studies
Directory of Open Access Journals (Sweden)
A. Eidelman
2002-01-01
Full Text Available An oscillating grids turbulence generator was constructed for studies of two new effects associated with turbulent transport of particles, turbulent thermal diffusion and clustering instability. These effects result in formation of large-scale and small-scale inhomogeneities in the spatial distribution of particles. The advantage of this experimental set-up is the feasibility to study turbulent transport in mixtures with controllable composition and unlimited observation time. For flow measurements we used Particle Image Velocimetry with the adaptive multi-pass algorithm to determine a turbulent velocity field and its statistical characteristics. Instantaneous velocity vector maps, flow streamlines and probability density function of velocity field demonstrate properties of turbulence generated in the device.
Anaïs Schaeffer
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed. The last day of data collection, tired but satisfied after seven intense days of measurements. Around the cryostat, from left to right: Philippe-E. Roche, Éléonore Rusaouen (CNRS), Olivier Pirotte, Jean-Marc Quetsch (CERN), Nicolas Friedlin (CERN), Vladislav Benda (CERN). Not in the photo: Laurent Le Mao (CERN), Jean-Marc Debernard (CERN), Jean-Paul Lamboy (CERN), Nicolas Guillotin (CERN), Benoit Chabaud (Grenoble Uni), and Gregory Garde (CNRS). CERN has a unique cryogenic facility in hall SM18, consisting of 21 liquid-helium-cooled test stations. While this equipment was, of course, designed for testing parts of CERN's acce...
Faeth, G. M.
1989-01-01
Measurements and predictions of the structure of several multiphase flows are considered. The properties of dense sprays near the exits of pressure-atomizing injectors and of noncombusting and combusting dilute dispersed flows in round-jet configurations are addressed. It is found that the properties of dense sprays exhibit structure and mixing properties similar to variable-density single-phase flows at high Reynolds numbers within the atomization regime. The degree of development and turbulence levels at the injector exit have a surprisingly large effect on the structure and mixing properties of pressure-atomized sprays, particularly when the phase densities are large. Contemporary stochastic analysis of dilute multiphase flows provides encouraging predictions of turbulent dispersion for a wide variety of jetlike flows, particle-laden jets in gases and liquids, noncondensing and condensing bubbly jets, and nonevaporating, evaporating, and combusting sprays.
Nihoul, J.C.J.
1980-01-01
The variability of the ocean over a wide range of scales, from the megameter to the millimeter, is examined in the light of turbulence theory.The geophysical constraints which arise from the Earth's rotation and curvature and from the stratification are discussed with emphasis on the role they can play at different scales in inducing instabilities and a transfer of energy to other scales of motion.
Turbulent General Magnetic Reconnection
Eyink, G. L.
2015-07-01
Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian-Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.
International Nuclear Information System (INIS)
Flow, particles dispersion and heat transfer of dilute gas-droplet turbulent flow downstream of a pipe sudden expansion have been numerically investigated for the conditions of heated dry wall. An Euler two-fluid model with additional turbulence transport equations for gas and particulate phases was employed in the study. Gas phase turbulence was modelled using the elliptic blending Reynolds stress model of Fadai-Ghotbi et al. (2008). Two-way coupling is achieved between the dispersed and carrier phases. The partial equations of Reynolds stresses and temperature fluctuations, and the turbulent heat flux equations in dispersed phase by Zaichik (1999) were applied. Fine droplets get readily entrained with the detached flow, spread throughout the whole pipe cross-section. On the contrary, large particles, due to their inertia, do not appear in the recirculation zone and are presented only in the shear layer region. The presence of fine dispersed droplets in the flow attenuates the gas phase turbulence of up 25 %. Heat transfer in the mist flow increased (more than twice in comparison with the single-phase air flow). Intensification of heat transfer is observed both in the recirculation zone and flow development region in the case of fine particles. Large particles enhanced heat transfer only in the reattachment zone. Comparison between simulated results and experimental data of Hishida et al. (1995) for mist turbulent separated flow behind a backward-facing step shows quite good agreement.
Wave turbulent statistics in non-weak wave turbulence
Yokoyama, Naoto
2011-01-01
In wave turbulence, which is made by nonlinear interactions among waves, it has been believed that statistical properties are well described by the weak turbulence theory, where separation of linear and nonlinear time scales derived from weak nonlinearity is assumed. However, the separation of the time scales is often violated. To get rid of this inconsistency, closed equations are derived in wave turbulence without assuming the weak nonlinearity according to Direct-Interaction Approximation ...
Turbulent General Magnetic Reconnection
Eyink, Gregory L
2014-01-01
Plasma flows with an MHD-like turbulent inertial range, such as the solar wind, require a generalization of General Magnetic Reconnection (GMR) theory. We introduce the slip-velocity source vector, which gives the rate of development of slip velocity per unit arc length of field line. The slip source vector is the ratio of the curl of the non ideal electric field in the Generalized Ohm's Law and the magnetic field strength. It diverges at magnetic nulls, unifying GMR with magnetic null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of the quasi potential (integral of parallel electric field along field lines). In a turbulent inertial range the curl becomes extremely large while the parallel component is tiny, so that line slippage occurs even while ideal MHD becomes accurate. The resolution of this paradox is that ideal MHD is valid for a turbulent inertial-range only in a weak sense which does not imply magnetic line freezing. The notion of weak solution i...
Zooplankton intermittency and turbulence
Schmitt, François G.
2010-05-01
Planktonic organisms usually live in a turbulent world. Since marine turbulence is characterized by very high Reynolds numbers, it possesses very intermittent fluctuations which in turn affect marine life. We consider here such influence on zooplankton on 2 aspects. First we consider zooplankton motion in the lab. Many copepods display swimming abilities. More and more species have been recently recorded using normal or high speed cameras, and many trajectories have been extracted from these movies and are now available for analysis. These trajectories can be complex, stochastic, with random switching from low velocity to high velocity events and even jumps. These complex trajectories show that an adequate modeling is necessary to understand and characterize them. Here we review the results published in the literature on copepod trajectories. We discuss the random walk, Levy walk modeling and introduce also multifractal random walks. We discuss the way to discriminate between these different walks using experimental data. Stochastic simulations will be performed to illustrate the different families. Second, we consider zooplankton contact rates in the framework of intermittent turbulence. Intermittency may have influence on plankton contact rates. We consider the Particle Stokes number of copepods, in a intermediate dissipation range affected by intermittent fluctuations. We show that they may display preferential concentration effects, and we consider the influence on contact rates of this effect in the intermediate dissipation range.
Ohashi, Satoshi; Tatematsu, Ken'ichi; Sanhueza, Patricio; Nguyen Luong, Quang; Hirota, Tomoya; Choi, Minho; Mizuno, Norikazu
2016-04-01
We report the detection of a wing component in NH3 emission toward the starless core TUKH122 with subthermal turbulence in the Orion A cloud. This NH3 core is suggested to be on the verge of star formation because the turbulence inside the NH3 core is almost completely dissipated, and also because it is surrounded by CCS, which resembles the prestellar core L1544 in Taurus showing infall motions. Observations were carried out with the Nobeyama 45 m telescope at 0.05 km s-1 velocity resolution. We find that the NH3 line profile consists of two components. The quiescent main component has a small linewidth of 0.3 km s-1 dominated by thermal motions, and the red-shifted wing component has a large linewidth of 1.36 km s-1 representing turbulent motions. These components show kinetic temperatures of 11 K and < 30 K, respectively. Furthermore, there is a clear velocity offset between the NH3 quiescent gas (VLSR = 3.7 km s-1) and the turbulent gas (VLSR = 4.4 km s-1). The centroid velocity of the turbulent gas corresponds to that of the surrounding gas traced by the 13CO (J = 1 - 0) and CS (J = 2 - 1) lines. LVG model calculations for CS and CO show that the turbulent gas has a temperature of 8 - 13 K and an H2 density of ∼ 104 cm-3, suggesting that the temperature of the turbulent component is also ∼ 10 K. The detections of both NH3 quiescent and wing components may indicate a sharp transition from the turbulent parent cloud to the quiescent dense core.
Suppression of turbulent resistivity in turbulent Couette flow
Energy Technology Data Exchange (ETDEWEB)
Si, Jiahe, E-mail: jsi@nmt.edu; Sonnenfeld, Richard G.; Colgate, Arthur S.; Westpfahl, David J.; Romero, Van D.; Martinic, Joe [New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801 (United States); Colgate, Stirling A.; Li, Hui [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Nornberg, Mark D. [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)
2015-07-15
Turbulent transport in rapidly rotating shear flow very efficiently transports angular momentum, a critical feature of instabilities responsible both for the dynamics of accretion disks and the turbulent power dissipation in a centrifuge. Turbulent mixing can efficiently transport other quantities like heat and even magnetic flux by enhanced diffusion. This enhancement is particularly evident in homogeneous, isotropic turbulent flows of liquid metals. In the New Mexico dynamo experiment, the effective resistivity is measured using both differential rotation and pulsed magnetic field decay to demonstrate that at very high Reynolds number rotating shear flow can be described entirely by mean flow induction with very little contribution from correlated velocity fluctuations.
Turbulence and fossil turbulence lead to life in the universe
International Nuclear Information System (INIS)
Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than all the other forces that tend to damp the eddies out. Fossil turbulence is a perturbation produced by turbulence that persists after the fluid ceases to be turbulent at the scale of the perturbation. Because vorticity is produced at small scales, turbulence must cascade from small scales to large, providing a consistent physical basis for Kolmogorovian universal similarity laws. Oceanic and astrophysical mixing and diffusion are dominated by fossil turbulence and fossil turbulent waves. Observations from space telescopes show turbulence and vorticity existed in the beginning of the universe and that their fossils persist. Fossils of big bang turbulence include spin and the dark matter of galaxies: clumps of ∼1012 frozen hydrogen planets that make globular star clusters as seen by infrared and microwave space telescopes. When the planets were hot gas, they hosted the formation of life in a cosmic soup of hot-water oceans as they merged to form the first stars and chemicals. Because spontaneous life formation according to the standard cosmological model is virtually impossible, the existence of life falsifies the standard cosmological model. (paper)
K. Talbi; Z. Nemouchi; A. Donnot; N. Belghar
2011-01-01
An experimental study and a numerical simulation are presented concerning the three dimensional turbulent flow of air in a cyclone separator in the region underneath the vortex finder. The computations are carried out using the Fluent CFD code. The turbulence effects on the mean flow are taken into account using the standard k- model and the standard Reynolds stress Model (RSM). The axial and tangential mean velocity components and the turbulence intensities are measured u...
Measurement of Turbulence Modulation by Non-Spherical Particles
DEFF Research Database (Denmark)
Mandø, Matthias; Rosendahl, Lasse
2010-01-01
The change in the turbulence intensity of an air jet resulting from the addition of particles to the flow is measured using Laser Doppler Anemometry. Three distinct shapes are considered: the prolate spheroid, the disk and the sphere. Measurements of the carrier phase and particle phase velocities...... particle size, the particle mass flow and the integral length scale of the flow. The expression developed on basis of spherical particles only is applied on the data for the non-spherical particles. The results suggest that non-spherical particles attenuate the carrier phase turbulence significantly more...
Shell Model for Buoyancy-driven Turbulence
Kumar, Abhishek
2014-01-01
In this paper we construct shell models for convective turbulence, e.g., Rayleigh B\\'{e}nard convection, and stably-stratified turbulence. We simulate these models in the turbulent regime and show that the convective turbulence exhibits Kolmogorov spectrum for the kinetic energy, while the stably-stratified turbulence show Bolgiano-Obukhbov scaling.
Statistical properties of turbulence: An overview
Indian Academy of Sciences (India)
Rahul Pandit; Prasad Perlekar; Samriddhi Sankar Ray
2009-07-01
We present an introductory overview of several challenging problems in the statistical characterization of turbulence. We provide examples from fluid turbulence in three and two dimensions, from the turbulent advection of passive scalars, turbulence in the one-dimensional Burgers equation, and fluid turbulence in the presence of polymer additives.
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
L Velikovich (Naval Research Laboratory, USA) and the Local Organizing Committee at the International Centre for Theoretical Physics, Italy Joseph J Niemela Katepalli R Sreenivasan with the assistance of Suzie Radosic (administrator and assistant, ICTP) Daniil Ilyin (web-master, University of Chicago Laboratory Schools, Chicago, USA) The Conference and the School were sponsored by several Agencies and Institutions in the USA, Europe and Japan. The Organizing Committee of TMB-2009 gratefully acknowledges the support of International Centre for Theoretical Physics (ICTP), Italy National Science Foundation (NSF), USA Programs: Plasma Physics; Astronomy and Astrophysics; Computational Mathematics; Applied Mathematics; Fluid Dynamics; Combustion, Fire and Plasma Systems; Cyber-Physical Systems; Computer and Network Systems Air Force Office of Scientific Research (AFOSR), US Programs: Hypersonics and Turbulence; Flow Control and Aeroelasticity European Office of Aerospace Research and Development (EOARD) of the AFOSR, UK Programs: Aeronautical Sciences Department of Energy (DOE), USA, DOE Office of Science US Department of Energy Lawrence Livermore National Laboratory (LLNL), USA Programs: National Ignition Facility; Fusion Energy US Department of Energy Los Alamos National Laboratory (LANL), USA US Department of Energy Argonne National Laboratory (ANL), USA Commissariat à l'Energie Atomique (CEA), France Institute for Laser Engineering (ILE), Japan The University of Chicago, USA ASC Alliance Center for Astrophysical Thermonuclear Flashes, USA Photron (Europe) Ltd, UK and thank them for making this event possible. We express our gratitude for the help with the Conference Program to the members of the Scientific Advisory Committee: S I Abarzhi (University of Chicago, USA) Y Aglitskiy (Science Applications International Corporation, USA) H Azechi (Institute for Laser Engineering, Osaka, Japan) M J Andrews (Los Alamos National Laboratory, USA) S I Anisimov (Landau Institute
Tackling turbulent flows in engineering
Energy Technology Data Exchange (ETDEWEB)
Dewan, Anupam [Indian Institute of Technology Delhi, New Delhi (India). Dept. of Applied Mechanics
2011-07-01
The emphasis of this book is on engineering aspects of fluid turbulence. The book explains for example how to tackle turbulence in industrial applications. It is useful to several disciplines, such as, mechanical, civil, chemical, aerospace engineers and also to professors, researchers, beginners, under graduates and post graduates. The following issues are emphasized in the book: - Modeling and computations of engineering flows: The author discusses in detail the quantities of interest for engineering turbulent flows and how to select an appropriate turbulence model; Also, a treatment of the selection of appropriate boundary conditions for the CFD simulations is given. - Modeling of turbulent convective heat transfer: This is encountered in several practical situations. It basically needs discussion on issues of treatment of walls and turbulent heat fluxes. - Modeling of buoyancy driven flows, for example, smoke issuing from chimney, pollutant discharge into water bodies, etc. (orig.)
Transition to turbulence in ferrofluids
Altmeyer, Sebastian; Lai, Ying-Cheng
2015-01-01
It is known that in classical fluids turbulence typically occurs at high Reynolds numbers. But can turbulence occur at low Reynolds numbers? Here we investigate the transition to turbulence in the classic Taylor-Couette system in which the rotating fluids are manufactured ferrofluids with magnetized nanoparticles embedded in liquid carriers. We find that, in the presence of a magnetic field turbulence can occur at Reynolds numbers that are at least one order of magnitude smaller than those in conventional fluids. This is established by extensive computational ferrohydrodynamics through a detailed bifurcation analysis and characterization of behaviors of physical quantities such as the energy, the wave number, and the angular momentum through the bifurcations. A striking finding is that, as the magnetic field is increased, the onset of turbulence can be determined accurately and reliably. Our results imply that experimental investigation of turbulence can be greatly facilitated by using ferrofluids, opening up...
EVOLUTION OF SHOCKS AND TURBULENCE IN MAJOR CLUSTER MERGERS
International Nuclear Information System (INIS)
We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h-1, and the turbulent velocity dispersion in this region is larger than 100 km s-1. We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M5/3, which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the 'symmetrical
Evolution of Shocks and Turbulence in Major Cluster Mergers
Paul, S.; Iapichino, L.; Miniati, F.; Bagchi, J.; Mannheim, K.
2011-01-01
We performed a set of cosmological simulations of major mergers in galaxy clusters, in order to study the evolution of merger shocks and the subsequent injection of turbulence in the post-shock region and in the intra-cluster medium (ICM). The computations have been performed with the grid-based, adaptive mesh refinement hydrodynamical code Enzo, using a refinement criterion especially designed for refining turbulent flows in the vicinity of shocks. When a major merger event occurs, a substantial amount of turbulence energy is injected in the ICM of the newly formed cluster. Our simulations show that the shock launched after a major merger develops an ellipsoidal shape and gets broken by the interaction with the filamentary cosmic web around the merging cluster. The size of the post-shock region along the direction of shock propagation is of the order of 300 kpc h -1, and the turbulent velocity dispersion in this region is larger than 100 km s-1. We performed a scaling analysis of the turbulence energy within our cluster sample. The best fit for the scaling of the turbulence energy with the cluster mass is consistent with M 5/3, which is also the scaling law for the thermal energy in the self-similar cluster model. This clearly indicates the close relation between virialization and injection of turbulence in the cluster evolution. As for the turbulence in the cluster core, we found that within 2 Gyr after the major merger (the timescale for the shock propagation in the ICM), the ratio of the turbulent to total pressure is larger than 10%, and after about 4 Gyr it is still larger than 5%, a typical value for nearly relaxed clusters. Turbulence at the cluster center is thus sustained for several gigayears, which is substantially longer than typically assumed in the turbulent re-acceleration models, invoked to explain the statistics of observed radio halos. Striking similarities in the morphology and other physical parameters between our simulations and the
Volino, Ralph John
1995-01-01
Measurements from transitional, heated boundary layers along a concave-curved test wall are presented and discussed. A boundary layer subject to low free-stream turbulence intensity (FSTI), which contains stationary streamwise (Gortler) vortices, is documented. The low FSTI measurements are followed by measurements in boundary layers subject to high (initially 8%) free-stream turbulence intensity and moderate to strong (K = {nuover U_sp{infty} {2}}{dUinftyover dx} as high as 9times 10^{ -6}) acceleration. The high FSTI experiments are the main focus of the work. Conditions were chosen to simulate those present on the downstream half of the pressure side of a gas turbine airfoil. The high FSTI boundary layers undergo transition from a strongly disturbed non-turbulent state to a fully-turbulent state. Due to the stabilizing effect of strong acceleration, the transition zones are of extended length in spite of the high FSTI. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low FSTI, turbulent flow correlations, but remain well above laminar flow values. Mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. Turbulence statistics, including the turbulent shear stress, turbulent heat flux, and turbulent Prandtl number, are documented. Turbulent transport is strongly suppressed below values in unaccelerated turbulent boundary layers. A technique called "octant analysis" is introduced and applied to several cases from the literature as well as to data from the present study. Octant analysis shows a fundamental difference between transitional and fully-turbulent boundary layers. Transitional boundary layers are characterized by incomplete mixing compared to fully-turbulent boundary layers. Similar octant analysis results are observed in both low and high FSTI cases. Spectral analysis suggests that the non-turbulent zone of the high FSTI flow is dominated by large scale
Roadmap-Based Level Clearing of Buildings
Rodriguez, Samuel
2011-01-01
In this paper we describe a roadmap-based approach for a multi-agent search strategy to clear a building or multi-story environment. This approach utilizes an encoding of the environment in the form of a graph (roadmap) that is used to encode feasible paths through the environment. The roadmap is partitioned into regions, e.g., one per level, and we design region-based search strategies to cover and clear the environment. We can provide certain guarantees within this roadmap-based framework on coverage and the number of agents needed. Our approach can handle complex and realistic environments where many approaches are restricted to simple 2D environments. © 2011 Springer-Verlag.
Clear cell odontogenic carcinoma: A rare case
Directory of Open Access Journals (Sweden)
Garima Jain
2015-01-01
Full Text Available Clear cell odontogenic carcinoma is a rare neoplasm with very few cases reported in the literature. We report a case of a 50-year-old female patient with the malignancy at a less common location. Diagnosis was given based on the histopathologic findings. The demographic data and understanding for this tumor needs to be strengthened by reporting all new cases, which are diagnosed, in literature.
Imaging of ovarian clear cell carcinoma
International Nuclear Information System (INIS)
The aim of this study is to examine the appearance of ovarian clear cell adenocarcinoma (OCCA) on MR, CT, US. In 39 cases with OCCA, the imaging characteristics of OCCA were evaluated morphologically and classified into three groups, that was, monomural nodule type, multi-mural nodule type and predominantly solid type. Forty-three percent of the patients had endometriosis. Contrast material-enhanced MRI was the most useful method for diagnosis of OCCA. (author)
Renal Clear Cell Carcinoma and Tonsil Metastasis
Dario Marcotullio; Giannicola Iannella; Gian Franco Macri; Caterina Marinelli; Melissa Zelli; Giuseppe Magliulo
2013-01-01
Renal cell carcinoma is the most common renal tumor in adults. Clear cell carcinoma represents 85% of all histological subtypes. In February 2012 a 72-year-old woman came to our department due to the appearance of massive hemoptysis and pharyngodinia. Previously, this patient was diagnosed with a renal cell carcinoma treated with left nephrectomy. We observed an exophytic, grayish, and ulcerated mass in the left tonsillar lodge and decided to subject the patient to an immediate tonsillectomy....
Internet compromise clears way for WSIS agreement
Ermert, M
2003-01-01
A working group under the leadership of United Nations Secretary General Kofi Annan himself will try to resolve the deep differences on the question of Internet governance, officials said here. The group, whose exact membership wasn't immediately clear, is to propose a solution to the controversial issue that has given negotiators at the World Summit of the Information Society (WSIS) a headache (1/2 page).
Imaging of ovarian clear cell carcinoma
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Toshihiko; Sawano, Seishi; Yamada, Keiko [Japanese Foundation for Cancer Research, Tokyo (Japan). Hospital] (and others)
1999-12-01
The aim of this study is to examine the appearance of ovarian clear cell adenocarcinoma (OCCA) on MR, CT, US. In 39 cases with OCCA, the imaging characteristics of OCCA were evaluated morphologically and classified into three groups, that was, monomural nodule type, multi-mural nodule type and predominantly solid type. Forty-three percent of the patients had endometriosis. Contrast material-enhanced MRI was the most useful method for diagnosis of OCCA. (author)
Invariants of free turbulent decay
Llor, Antoine
2006-01-01
In practically all turbulent flows, turbulent energy decay is present and competes with numerous other phenomena. In Kolmogorov's theory, decay proceeds by transfer from large energy-containing scales towards small viscous scales through the "inertial cascade." Yet, this description cannot predict an actual decay rate, even in the simplest case of homogeneous isotropic turbulence (HIT). As empirically observed over 50 years, the steepness of the "infrared" spectrum - at scales larger than ene...
Rapid radiative clearing of protoplanetary discs
Haworth, Thomas J; Owen, James E
2015-01-01
The lack of observed transition discs with inner gas holes of radii greater than ~50AU implies that protoplanetary discs dispersed from the inside out must remove gas from the outer regions rapidly. We investigate the role of photoevaporation in the final clearing of gas from low mass discs with inner holes. In particular, we study the so-called "thermal sweeping" mechanism which results in rapid clearing of the disc. Thermal sweeping was originally thought to arise when the radial and vertical pressure scale lengths at the X-ray heated inner edge of the disc match. We demonstrate that this criterion is not fundamental. Rather, thermal sweeping occurs when the pressure maximum at the inner edge of the dust heated disc falls below the maximum possible pressure of X-ray heated gas (which depends on the local X-ray flux). We derive new critical peak volume and surface density estimates for rapid radiative clearing which, in general, result in rapid dispersal happening less readily than in previous estimates. Thi...
Front dynamics in turbulent media
Martí, A C; Sancho, J M
1997-01-01
A study of a stable front propagating in a turbulent medium is presented. The front is generated through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a Langevin equation. Numerical simulations indicate the presence of two different dynamical regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring intensities appropriate to each case are found and fitted when possible according to theoretically predicted laws. Different turbulent spectra are considered.
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Modelling atmospheric turbulence effects on ground-based telescope systems
Energy Technology Data Exchange (ETDEWEB)
Bradford, L.W.; Flatte, S.M. [California Univ., Santa Cruz, CA (United States). Dept. of Physics; Max, C.E. [Lawrence Livermore National Lab., CA (United States)
1993-09-30
Questions still exist concerning the appropriate model for turbulence- induced phase fluctuations seen in ground-based telescopes. Bester et al. used a particular observable (slope of the Allan variance) with an infrared interferometer in an attempt to distinguish models. The authors have calculated that observable for Kolmogorov and {open_quotes}random walk{close_quotes} models with a variety of outer scales and altitude-dependent turbulence and wind velocity. The authors have found that clear distinction between models requires good data on the vertical distribution of wind and turbulence. Furthermore, measurements at time separations of order 60 s are necessary to distinguish the {open_quotes}random walk{close_quotes} model from the Kolmogorov model.
Optimal thermalization in a shell model of homogeneous turbulence
Thalabard, Simon
2015-01-01
We investigate the turbulence-induced dissipation of the large scales in a statistically homogeneous flow using an "optimal closure," which one of us (BT) has recently exposed in the context of Hamiltonian dynamics. This statistical closure employs a Gaussian model for the turbulent scales, with corresponding vanishing third cumulant, and yet it captures an intrinsic damping. The key to this apparent paradox lies in a clear distinction between true ensemble averages and their proxies, most easily grasped when one works directly with the Liouville equation rather than the cumulant hierarchy. We focus on a simple problem for which the optimal closure can be fully and exactly worked out: the relaxation arbitrarily far-from-equilibrium of a single energy shell towards Gibbs equilibrium in an inviscid shell model of 3D turbulence. The predictions of the optimal closure are validated against DNS and contrasted with those derived from EDQNM closure.
Optimal thermalization in a shell model of homogeneous turbulence
Thalabard, Simon; Turkington, Bruce
2016-04-01
We investigate the turbulence-induced dissipation of the large scales in a statistically homogeneous flow using an ‘optimal closure,’ which one of us (BT) has recently exposed in the context of Hamiltonian dynamics. This statistical closure employs a Gaussian model for the turbulent scales, with corresponding vanishing third cumulant, and yet it captures an intrinsic damping. The key to this apparent paradox lies in a clear distinction between true ensemble averages and their proxies, most easily grasped when one works directly with the Liouville equation rather than the cumulant hierarchy. We focus on a simple problem for which the optimal closure can be fully and exactly worked out: the relaxation arbitrarily far-from-equilibrium of a single energy shell towards Gibbs equilibrium in an inviscid shell model of 3D turbulence. The predictions of the optimal closure are validated against DNS and contrasted with those derived from EDQNM closure.
International Nuclear Information System (INIS)
Highlights: • We study the stably thermally-stratified turbulent boundary layer by means of DNS. • The counter diffusion phenomenon is discovered in both the velocity and thermal fields in our DNS. • The detailed turbulent statistics and structures in stably thermally-stratified turbulent boundary layer are discussed. • The anisotropy tensor, turbulent heat flux tensor, vortex structure, and fluctuation Reynolds shear stress are indicated. - Abstract: The objectives of this study are to investigate the counter diffusion phenomenon (CDP) in a stably thermally-stratified turbulent boundary layer by means of direct numerical simulation (DNS). In this study, four cases of stably thermally-stratified turbulent boundary layers are simulated to reproduce the CDP, in which two Reynolds numbers and four Richardson numbers are set. The CDP is discovered in both the velocity and thermal fields in three cases. DNS clearly shows the CDP, which indicates the negative sign of the Reynolds shear stress and the wall-normal turbulent heat flux with the positive sign of mean velocity and temperature gradients. The turbulent heat flux tensor is also shown in order to indicate the variation of the thermal field, in which the streamwise turbulent heat flux tensor maintains a high value even in the case of strong CDP occurrence. The relation between the vortex structure and the Reynolds shear stress fluctuation is shown, where the negative value of Reynolds shear stress fluctuation frequently appears around the vortex structure in the case of CDP occurrence
Premixed Turbulent Flame Propagation in Microgravity
Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.
1997-01-01
Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2009-03-01
Full Text Available This paper extends a turbulence closure-like model for stably stratified flows into a new dynamic domain in which turbulence is generated by internal gravity waves rather than mean shear. The model turbulent kinetic energy (TKE, K balance, its first equation, incorporates a term for the energy transfer from internal waves to turbulence. This energy source is in addition to the traditional shear production. The second variable of the new two-equation model is the turbulent enstrophy (Ω. Compared to the traditional shear-only case, the Ω-equation is modified to account for the effect of the waves on the turbulence time and space scales. This modification is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean shear when turbulence is produced exclusively by internal waves. This paper is part 1 of a continuing theoretical development. It accounts for mean shear- and internal wave-driven mixing only in the two limits of mean shear and no waves and waves but no mean shear, respectively.
The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000b. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the highly energetic tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
14 CFR 25.1517 - Rough air speed, VRA.
2010-01-01
... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...
Simulation of particle distribution in a room with air cleaner
DEFF Research Database (Denmark)
Ardkapan, Siamak Rahimi; Afshari, Alireza; Nielsen, Peter V.;
2012-01-01
Ventilation is one of the ways that humans can keep the indoor air quality at the proper level. Portable air cleaners have been developed to improve indoor air quality while reducing the energy consumption of the ventilation system. The aim of this study is to find the correct turbulence model an...
A study of occupant cooling by personally controlled air movement
Arens, Edward A.; Xu, T.; Miura, K; Zhang, H.; Fountain, M.; Bauman, Fred
1997-01-01
This study addresses the effectiveness of air movement cooling, an alternative to compressor-based cooling of the air itself. Subjects in an environmental chamber were exposed to a range of warm temperatures and allowed to adjust air movement to suit their individual preferences, while answering a series of questions about their comfort. Air movement was from the subject's side, in two modes of turbulent flow. The air speeds chosen by the subjects, and their subjective responses, are evaluate...
Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels
Directory of Open Access Journals (Sweden)
Elena-Carmen Teleman
2008-01-01
Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.
Cloud microphysical effects of turbulent mixing and entrainment
Kumar, Bipin; Shaw, Raymond A
2013-01-01
Turbulent mixing and entrainment at the boundary of a cloud is studied by means of direct numerical simulations that couple the Eulerian description of the turbulent velocity and water vapor fields with a Lagrangian ensemble of cloud water droplets that can grow and shrink by condensation and evaporation, respectively.The focus is on detailed analysis of the relaxation process of the droplet ensemble during the entrainment of subsaturated air, in particular the dependence on turbulence time scales, droplet number density, initial droplet radius and particle inertia. We find that the droplet evolution during the entrainment process is captured best by a phase relaxation time that is based on the droplet number density with respect to the entire simulation domain and the initial droplet radius. Even under conditions favoring homogeneous mixing, the probability density function of supersaturation at droplet locations exhibits initially strong negative skewness, consistent with droplets near the cloud boundary be...
Nitrous oxide flux following tropical land clearing
Luizao, Flavio; Luizao, Regina; Matson, Pamela; Livingston, Gerald; Vitousek, Peter
1989-01-01
The importance of seasonal cycles of N2O flux from tropical ecosystems and the possibility that tropical deforestation could contribute to the ongoing global increase in N2O concentrations were assessed by measuring N2O flux from forest, cleared land, and pasture over an annual cycle in the central Amazon. A pasture that had been converted from tropical forest had threefold greater annual N2O flux than a paired forest site; similar results were obtained in spot measurements in other pastures. If these results are general, such tropical pastures represent a globally significant source of increased N2O.
A gap clearing kicker for Main Injector
Kourbanis, I; Biggs, J; Brown, B; Capista, D; Jensen, C C; Krafczyk, G E; Morris, D K; Scott, D; Seiya, K; Ward, S R; Wu, G; Yang, M -J
2012-01-01
Fermilab Main Injector has been operating at high Beam Power levels since 2008 when multi-batch slip stacking became operational. In order to maintain and increase the beam power levels the localized beam loss due to beam left over in the injection kicker gap during slip stacking needs to be addressed. A set of gap clearing kickers that kick any beam left in the injection gap to the beam abort have been built. The kickers were installed in the summer of 2009 and became operational in November of 2010. The kicker performance and its effect on the beam losses will be described.
Greenhouse problem in the Amazon jungle clearing
International Nuclear Information System (INIS)
This paper discusses the contribution of Amazon jungle clearing to the greenhouse problem and makes an assessment of long-run prospects. The introductory sections pose the problem from both international and Brazilian perspectives. The next section describes major features of the Amazonia ecosystems and presents methods and evidence on deforestation and on its impact on carbon dioxide emissions. Based upon cross-section information for a sample of municipalities in the Brazilian Amazon, the following section estimates elasticities of deforestation in relation to major economic factors- government policies included- and uses them to make projections for the future pace of deforestation. The last section discusses policy alternatives to slow down forest conversion
CHINA'S WORST OIL LEAK CLEARED EXPENSIVELY
Institute of Scientific and Technical Information of China (English)
无
2004-01-01
@@ Eight days and nights of clean-up efforts after the worst oil leak ever in Chinese waters, the aftermath of a collision between two foreign ships happening at 9:35 pm on December 7 about 8 nautical miles away from the mouth of the Pearl River and near the Danjiang Island, have finally paid off. So far, hundreds of tons of waste oil and polluted water have been cleared up. A large area of oil spills has been cleaned thanks to the prompt and proper operation launched just two hours after the accident.
PLANETARY CHAOTIC ZONE CLEARING: DESTINATIONS AND TIMESCALES
Energy Technology Data Exchange (ETDEWEB)
Morrison, Sarah; Malhotra, Renu [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States)
2015-01-20
We investigate the orbital evolution of particles in a planet's chaotic zone to determine their final destinations and their timescales of clearing. There are four possible final states of chaotic particles: collision with the planet, collision with the star, escape, or bounded but non-collision orbits. In our investigations, within the framework of the planar circular restricted three body problem for planet-star mass ratio μ in the range 10{sup –9} to 10{sup –1.5}, we find no particles hitting the star. The relative frequencies of escape and collision with the planet are not scale-free, as they depend upon the size of the planet. For planet radius R{sub p} ≥ 0.001 R{sub H} where R{sub H} is the planet's Hill radius, we find that most chaotic zone particles collide with the planet for μ ≲ 10{sup –5}; particle scattering to large distances is significant only for higher mass planets. For fixed ratio R{sub p} /R{sub H} , the particle clearing timescale, T {sub cl}, has a broken power-law dependence on μ. A shallower power law, T {sub cl} ∼ μ{sup –1/3}, prevails at small μ where particles are cleared primarily by collisions with the planet; a steeper power law, T {sub cl} ∼ μ{sup –3/2}, prevails at larger μ where scattering dominates the particle loss. In the limit of vanishing planet radius, we find T {sub cl} ≈ 0.024 μ{sup –3/2}. The interior and exterior boundaries of the annular zone in which chaotic particles are cleared are increasingly asymmetric about the planet's orbit for larger planet masses; the inner boundary coincides well with the classical first order resonance overlap zone, Δa {sub cl,} {sub int} ≅ 1.2 μ{sup 0.28} a{sub p} ; the outer boundary is better described by Δa {sub cl,} {sub ext} ≅ 1.7 μ{sup 0.31} a{sub p} , where a{sub p} is the planet-star separation.
Compressibility, turbulence and high speed flow
Gatski, Thomas B
2013-01-01
Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and
Global simulations of magnetorotational turbulence II: turbulent energetics
Parkin, E R
2013-01-01
Magnetorotational turbulence draws its energy from gravity and ultimately releases it via dissipation. However, the quantitative details of this energy flow have not been assessed for global disk models. In this work we examine the energetics of a well-resolved, three-dimensional, global magnetohydrodynamic accretion disk simulation by evaluating statistically-averaged mean-field equations for magnetic, kinetic, and internal energy using simulation data. The results reveal that turbulent magnetic (kinetic) energy is primarily injected by the correlation between Maxwell (Reynolds) stresses and shear in the (almost Keplerian) mean flow, and removed by dissipation. This finding differs from previous work using local (shearing-box) models, which indicated that turbulent kinetic energy was primarily sourced from the magnetic energy reservoir. Lorentz forces provide the bridge between the magnetic and kinetic energy reservoirs, converting ~ 1/5 of the total turbulent magnetic power input into turbulent kinetic ener...
He, Jiansen; Marsch, Eckart; Chen, Christopher H K; Wang, Linghua; Pei, Zhongtian; Zhang, Lei; Salem, Chadi S; Bale, Stuart D
2015-01-01
Magnetohydronamic turbulence is believed to play a crucial role in heating the laboratorial, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. Different from the traditional paradigm with counter-propagating Alfv\\'en waves, anti-sunward Alfv\\'en waves (AWs) are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond respectively to the dominant and sub-dominant populations of the imbalanced Els\\"asser variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orth...
Planetary chaotic zone clearing: destinations and timescales
Morrison, Sarah
2014-01-01
We investigate the orbital evolution of particles in a planet's chaotic zone to determine their final destinations and their timescales of clearing. There are four possible final states of chaotic particles: collision with the planet, collision with the star, escape, or bounded but non-collision orbits. In our investigations, within the framework of the planar circular restricted three body problem for planet-star mass ratio $\\mu$ in the range $10^{-9}$ to $10^{-1.5}$, we find no particles hitting the star. The relative frequencies of escape and collision with the planet are not scale-free, as they depend upon the size of the planet. For planet radius $R_p\\ge0.001R_H$ where $R_H$ is the planet's Hill radius, we find that most chaotic zone particles collide with the planet for $\\mu\\lesssim10^{-5}$; particle scattering to large distances is significant only for higher mass planets. For fixed ratio $R_p/R_H$, the particle clearing timescale, $T_{cl}$, has a broken power-law dependence on $\\mu$. A shallower power...
Advances in compressible turbulent mixing
International Nuclear Information System (INIS)
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately
Stochastic Subspace Modelling of Turbulence
DEFF Research Database (Denmark)
Sichani, Mahdi Teimouri; Pedersen, B. J.; Nielsen, Søren R.K.
Turbulence of the incoming wind field is of paramount importance to the dynamic response of civil engineering structures. Hence reliable stochastic models of the turbulence should be available from which time series can be generated for dynamic response and structural safety analysis. In the paper...
Advances in compressible turbulent mixing
Energy Technology Data Exchange (ETDEWEB)
Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.
1992-01-01
This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.
Magnetized Turbulent Dynamo in Protogalaxies
Energy Technology Data Exchange (ETDEWEB)
Leonid Malyshkin; Russell M. Kulsrud
2002-01-28
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached.
Magnetized Turbulent Dynamo in Protogalaxies
International Nuclear Information System (INIS)
The prevailing theory for the origin of cosmic magnetic fields is that they have been amplified to their present values by the turbulent dynamo inductive action in the protogalactic and galactic medium. Up to now, in calculation of the turbulent dynamo, it has been customary to assume that there is no back reaction of the magnetic field on the turbulence, as long as the magnetic energy is less than the turbulent kinetic energy. This assumption leads to the kinematic dynamo theory. However, the applicability of this theory to protogalaxies is rather limited. The reason is that in protogalaxies the temperature is very high, and the viscosity is dominated by magnetized ions. As the magnetic field strength grows in time, the ion cyclotron time becomes shorter than the ion collision time, and the plasma becomes strongly magnetized. As a result, the ion viscosity becomes the Braginskii viscosity. Thus, in protogalaxies the back reaction sets in much earlier, at field strengths much lower than those which correspond to field-turbulence energy equipartition, and the turbulent dynamo becomes what we call the magnetized turbulent dynamo. In this paper we lay the theoretical groundwork for the magnetized turbulent dynamo. In particular, we predict that the magnetic energy growth rate in the magnetized dynamo theory is up to ten times larger than that in the kinematic dynamo theory. We also briefly discuss how the Braginskii viscosity can aid the development of the inverse cascade of magnetic energy after the energy equipartition is reached
An overview of turbulence compensation
Schutte, Klamer; van Eekeren, Adam W. M.; Dijk, Judith; Schwering, Piet B. W.; van Iersel, Miranda; Doelman, Niek J.
2012-09-01
In general, long range visual detection, recognition and identification are hampered by turbulence caused by atmospheric conditions. Much research has been devoted to the field of turbulence compensation. One of the main advantages of turbulence compensation is that it enables visual identification over larger distances. In many (military) scenarios this is of crucial importance. In this paper we give an overview of several software and hardware approaches to compensate for the visual artifacts caused by turbulence. These approaches are very diverse and range from the use of dedicated hardware, such as adaptive optics, to the use of software methods, such as deconvolution and lucky imaging. For each approach the pros and cons are given and it is indicated for which type of scenario this approach is useful. In more detail we describe the turbulence compensation methods TNO has developed in the last years and place them in the context of the different turbulence compensation approaches and TNO's turbulence compensation roadmap. Furthermore we look forward and indicate the upcoming challenges in the field of turbulence compensation.
MHD turbulence and distributed chaos
Bershadskii, A
2016-01-01
It is shown, using results of recent direct numerical simulations, that spectral properties of distributed chaos in MHD turbulence with zero mean magnetic field are similar to those of hydrodynamic turbulence. An exception is MHD spontaneous breaking of space translational symmetry, when the stretched exponential spectrum $\\exp(-k/k_{\\beta})^{\\beta}$ has $\\beta=4/7$.
Improving Lidar-Derived Turbulence Estimates for Wind Energy
Energy Technology Data Exchange (ETDEWEB)
Newman, Jennifer F.; Clifton, Andrew
2016-07-08
Remote sensing devices such as lidars are currently being investigated as alternatives to cup anemometers on meteorological towers. Although lidars can measure mean wind speeds at heights spanning an entire turbine rotor disk and can be easily moved from one location to another, they measure different values of turbulence than an instrument on a tower. Current methods for improving lidar turbulence estimates include the use of analytical turbulence models and expensive scanning lidars. While these methods provide accurate results in a research setting, they cannot be easily applied to smaller, commercially available lidars in locations where high-resolution sonic anemometer data are not available. Thus, there is clearly a need for a turbulence error reduction model that is simpler and more easily applicable to lidars that are used in the wind energy industry. In this work, a new turbulence error reduction algorithm for lidars is described. The algorithm, L-TERRA, can be applied using only data from a stand-alone commercially available lidar and requires minimal training with meteorological tower data. The basis of L-TERRA is a series of corrections that are applied to the lidar data to mitigate errors from instrument noise, volume averaging, and variance contamination. These corrections are applied in conjunction with a trained machine-learning model to improve turbulence estimates from a vertically profiling WINDCUBE v2 lidar. L-TERRA was tested on data from three sites -- two in flat terrain and one in semicomplex terrain. L-TERRA significantly reduced errors in lidar turbulence at all three sites, even when the machine-learning portion of the model was trained on one site and applied to a different site. Errors in turbulence were then related to errors in power through the use of a power prediction model for a simulated 1.5 MW turbine. L-TERRA also reduced errors in power significantly at all three sites, although moderate power errors remained for periods when
Directory of Open Access Journals (Sweden)
H. Z. Baumert
2008-11-01
Full Text Available A new two-equation, closure-like turbulence model for stably stratified flows is introduced which uses the turbulent kinetic energy (K and the turbulent enstrophy (Ω as primary variables. It accounts for mean shear – and internal wave-driven mixing in the two limits of mean shear and no waves and waves but no mean shear, respectively. The traditional TKE balance is augmented by an explicit energy transfer from internal waves to turbulence. A modification of the Ω-equation accounts for the effect of the waves on the turbulence time and space scales. The latter is based on the assumption of a non-zero constant flux Richardson number in the limit of vanishing mean-flow shear when turbulence is produced exclusively by internal waves. The new model reproduces the wave-turbulence transition analyzed by D'Asaro and Lien (2000. At small energy density E of the internal wave field, the turbulent dissipation rate (ε scales like ε~E^{2}. This is what is observed in the deep sea. With increasing E, after the wave-turbulence transition has been passed, the scaling changes to ε~E^{1}. This is observed, for example, in the swift tidal flow near a sill in Knight Inlet. The new model further exhibits a turbulent length scale proportional to the Ozmidov scale, as observed in the ocean, and predicts the ratio between the turbulent Thorpe and Ozmidov length scales well within the range observed in the ocean.
DNS of turbulent channel flow at ReΤ=395, 590 AND Pr=0.01
International Nuclear Information System (INIS)
The paper presents results of the Direct Numerical Simulation of turbulent channel flow at friction Reynolds numbers 395 and 590 with passive scalar at Prandtl number 0.01, which corresponds to the Prandtl number of liquid sodium. Fluctuating and non-fluctuating temperature boundary conditions are analyzed and compared. Results clearly describe the minor role of the turbulent Prandtl number in the integral wall-to-fluid heat transfer. (author)
Wake turbulence observed behind an upstream "extra" particle in a complex (dusty) plasma
Zhdanov, S; Schwabe, M; Nosenko, V; Thomas, H M; Morfill, G E
2016-01-01
An interaction of upstream extra particles with a monolayer highly-ordered complex plasma is studied. A principally new abnormal turbulent wake formed behind the supersonic upstream particle is discovered. An anomalous type of the turbulence wake clearly manifests in anomalously low thermal diffusivity and two orders of magnitude larger particle kinetic temperature compared to that of the 'normal' wake (Mach cone) observed by Du et al [Europhys. Lett. 99, 55001 (2012)].
Wake turbulence observed behind an upstream “extra” particle in a complex (dusty) plasma
Zhdanov, S.; Du, C.-R.; Schwabe, M.; Nosenko, V.; Thomas, H. M.; Morfill, G. E.
2016-06-01
An interaction of upstream extra particles with a monolayer highly ordered complex plasma is studied. A principally new abnormal turbulent wake formed behind the supersonic upstream particle is discovered. An anomalous type of the turbulence wake clearly manifests in anomalously low thermal diffusivity and two orders of magnitude larger particle kinetic temperature compared to that of the “normal” wake (Mach cone) observed by Du et al. (EPL, 99 (2012) 55001).
Wave Turbulence on Water Surface
Nazarenko, Sergey; Lukaschuk, Sergei
2016-03-01
We overview the wave turbulence approach by example of one physical system: gravity waves on the surface of an infinitely deep fluid. In the theoretical part of our review, we derive the nonlinear Hamiltonian equations governing the water-wave system and describe the premises of the weak wave turbulence theory. We outline derivation of the wave-kinetic equation and the equation for the probability density function, and most important solutions to these equations, including the Kolmogorov-Zakharov spectra corresponding to a direct and an inverse turbulent cascades, as well as solutions for non-Gaussian wave fields corresponding to intermittency. We also discuss strong wave turbulence as well as coherent structures and their interaction with random waves. We describe numerical and laboratory experiments, and field observations of gravity wave turbulence, and compare their results with theoretical predictions.
Calculations of turbulent separated flows
Zhu, J.; Shih, T. H.
1993-01-01
A numerical study of incompressible turbulent separated flows is carried out by using two-equation turbulence models of the K-epsilon type. On the basis of realizability analysis, a new formulation of the eddy-viscosity is proposed which ensures the positiveness of turbulent normal stresses - a realizability condition that most existing two-equation turbulence models are unable to satisfy. The present model is applied to calculate two backward-facing step flows. Calculations with the standard K-epsilon model and a recently developed RNG-based K-epsilon model are also made for comparison. The calculations are performed with a finite-volume method. A second-order accurate differencing scheme and sufficiently fine grids are used to ensure the numerical accuracy of solutions. The calculated results are compared with the experimental data for both mean and turbulent quantities. The comparison shows that the present model performs quite well for separated flows.
A spray-suppression model for turbulent combustion
Energy Technology Data Exchange (ETDEWEB)
DESJARDIN,PAUL E.; TIESZEN,SHELDON R.; GRITZO,LOUIS A.
2000-02-14
A spray-suppression model that captures the effects of liquid suppressant on a turbulent combusting flow is developed and applied to a turbulent diffusion flame with water spray suppression. The spray submodel is based on a stochastic separated flow approach that accounts for the transport and evaporation of liquid droplets. Flame extinguishment is accounted for by using a perfectly stirred reactor (PSR) submodel of turbulent combustion. PSR pre-calculations of flame extinction times are determined using CHEMKIN and are compared to local turbulent time scales of the flow to determine if local flame extinguishment has occurred. The PSR flame extinguishment and spray submodels are incorporated into Sandia's flow fire simulation code, VULCAN, and cases are run for the water spray suppression studies of McCaffrey for turbulent hydrogen-air jet diffusion flames. Predictions of flame temperature decrease and suppression efficiency are compared to experimental data as a function of water mass loading using three assumed values of drop sizes. The results show that the suppression efficiency is highly dependent on the initial droplet size for a given mass loading. A predicted optimal suppression efficiency was observed for the smallest class of droplets while the larger drops show increasing suppression efficiency with increasing mass loading for the range of mass loadings considered. Qualitative agreement to the experiment of suppression efficiency is encouraging, however quantitative agreement is limited due to the uncertainties in the boundary conditions of the experimental data for the water spray.
Turbulence Modeling of Flows with Extensive Crossflow Separation
Directory of Open Access Journals (Sweden)
Argyris G. Panaras
2015-07-01
Full Text Available The reasons for the difficulty in simulating accurately strong 3-D shock wave/turbulent boundary layer interactions (SBLIs and high-alpha flows with classical turbulence models are investigated. These flows are characterized by the appearance of strong crossflow separation. In view of recent additional evidence, a previously published flow analysis, which attributes the poor performance of classical turbulence models to the observed laminarization of the separation domain, is reexamined. According to this analysis, the longitudinal vortices into which the separated boundary layer rolls up in this type of separated flow, transfer external inviscid air into the part of the separation adjacent to the wall, decreasing its turbulence. It is demonstrated that linear models based on the Boussinesq equation provide solutions of moderate accuracy, while non-linear ones and others that consider the particular structure of the flow are more efficient. Published and new Reynolds Averaged Navier–Stokes (RANS simulations are reviewed, as well as results from a recent Large Eddy Simulation (LES study, which indicate that in calculations characterized by sufficient accuracy the turbulent kinetic energy of the reverse flow inside the separation vortices is very low, i.e., the flow is almost laminar there.
Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...
Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...
Plasma Turbulence in the Scrape-off Layer of the ISTTOK Tokamak
Jorge, Rogerio; Halpern, Federico D; Loureiro, Nuno F; Silva, Carlos
2016-01-01
The properties of plasma turbulence in a poloidally limited scrape-off layer (SOL) are addressed, with focus on ISTTOK, a large aspect ratio tokamak with a circular cross section. Theoretical investigations based on the drift-reduced Braginskii equations are carried out through linear calculations and non-linear simulations, in two- and three-dimensional geometries. The linear instabilities driving turbulence and the mechanisms that set the amplitude of turbulence as well as the SOL width are identified. A clear asymmetry is shown to exist between the low-field and the high-field sides of the machine. A comparison between experimental measurements and simulation results is presented.
The Protease Ste24 Clears Clogged Translocons.
Ast, Tslil; Michaelis, Susan; Schuldiner, Maya
2016-01-14
Translocation into the endoplasmic reticulum (ER) is the first step in the biogenesis of thousands of eukaryotic endomembrane proteins. Although functional ER translocation has been avidly studied, little is known about the quality control mechanisms that resolve faulty translocational states. One such faulty state is translocon clogging, in which the substrate fails to properly translocate and obstructs the translocon pore. To shed light on the machinery required to resolve clogging, we carried out a systematic screen in Saccharomyces cerevisiae that highlighted a role for the ER metalloprotease Ste24. We could demonstrate that Ste24 approaches the translocon upon clogging, and it interacts with and generates cleavage fragments of the clogged protein. Importantly, these functions are conserved in the human homolog, ZMPSTE24, although disease-associated mutant forms of ZMPSTE24 fail to clear the translocon. These results shed light on a new and critical task of Ste24, which safeguards the essential process of translocation. PMID:26771486
Turbulent premixed flames on fractal-grid-generated turbulence
International Nuclear Information System (INIS)
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)
Turbulent premixed flames on fractal-grid-generated turbulence
Energy Technology Data Exchange (ETDEWEB)
Soulopoulos, N; Kerl, J; Sponfeldner, T; Beyrau, F; Hardalupas, Y; Taylor, A M K P [Mechanical Engineering Department, Imperial College London, London SW7 2AZ (United Kingdom); Vassilicos, J C, E-mail: ns6@ic.ac.uk [Department of Aeronautics, Imperial College London, London SW7 2AZ (United Kingdom)
2013-12-15
A space-filling, low blockage fractal grid is used as a novel turbulence generator in a premixed turbulent flame stabilized by a rod. The study compares the flame behaviour with a fractal grid to the behaviour when a standard square mesh grid with the same effective mesh size and solidity as the fractal grid is used. The isothermal gas flow turbulence characteristics, including mean flow velocity and rms of velocity fluctuations and Taylor length, were evaluated from hot-wire measurements. The behaviour of the flames was assessed with direct chemiluminescence emission from the flame and high-speed OH-laser-induced fluorescence. The characteristics of the two flames are considered in terms of turbulent flame thickness, local flame curvature and turbulent flame speed. It is found that, for the same flow rate and stoichiometry and at the same distance downstream of the location of the grid, fractal-grid-generated turbulence leads to a more turbulent flame with enhanced burning rate and increased flame surface area. (paper)
A COMPARATIVE STUDY WITH FLOW VISUALIZATION OF TURBULENT FLUID FLOW IN AN ELBOW
Directory of Open Access Journals (Sweden)
RABIN DEBNATH,
2010-09-01
Full Text Available The analysis of the turbulent fluid flow in an elbow is important for a wide range of engineering applications like heat exchangers, particle transport piping system, air conditioning devices, pneumatic conveying system etc. Elbow is an important component of pneumatic conveying system and the flow structure within it plays an important role to covey materials. In this paper, a comparative study has been made between three types of turbulent models e.g. standard
Data set from chemical sensor array exposed to turbulent gas mixtures
Jordi Fonollosa; Irene Rodríguez-Luján; Marco Trincavelli; Ramón Huerta
2015-01-01
A chemical detection platform composed of 8 chemo-resistive gas sensors was exposed to turbulent gas mixtures generated naturally in a wind tunnel. The acquired time series of the sensors are provided. The experimental setup was designed to test gas sensors in realistic environments. Traditionally, chemical detection systems based on chemo-resistive sensors include a gas chamber to control the sample air flow and minimize turbulence. Instead, we utilized a wind tunnel with two independent gas...
Turbulent Flow Characteristics and Dynamics Response of a Vertical-Axis Spiral Rotor
Yuli Wang; Xin Yang; Can Kang
2013-01-01
The concept of a vertical-axis spiral wind rotor is proposed and implemented in the interest of adapting it to air flows from all directions and improving the rotorâ€™s performance. A comparative study is performed between the proposed rotor and conventional Savonius rotor. Turbulent flow features near the rotor blades are simulated with Spalart-Allmaras turbulence model. The torque coefficient of the proposed rotor is satisfactory in terms of its magnitude and variation through the rotationa...
Brocchini, M
2006-01-01
This book contains a collection of 11 research and review papers devoted to the topic of fluid-structure interaction.The subject matter is divided into chapters covering a wide spectrum of recognized areas of research, such as: wall bounded turbulence; quasi 2-D turbulence; canopy turbulence; large eddy simulation; lake hydrodynamics; hydraulic hysteresis; liquid impacts; flow induced vibrations; sloshing flows; transient pipe flow and air entrainment in dropshaft.The purpose of each chapter is to summarize the main results obtained by the individual research unit through a year-long activity
Effect of entrained liquid on turbulent mixing rate between subchannels in annular two-phase flows
International Nuclear Information System (INIS)
Turbulent mixing rates of gas and liquid phases between the subchannels have been measured for various air-water two-phase annular flows in a multiple channel consisting of the two identical circular subchannels. In order to study effect of entrained liquid in the gas core on the turbulent mixing rates, experiments were conducted for two types of liquid injection method, i.e., a small bore nozzle placed in the subchannel center and a porous wall, at a fixed gas injection method. The result showed that the effect of entrained liquid on the turbulent mixing rates of both phases is negligibly small. (author)
Turbulent deflagrations, autoignitions, and detonations
Bradley, Derek
2012-09-01
Measurements of turbulent burning velocities in fan-stirred explosion bombs show an initial linear increase with the fan speed and RMS turbulent velocity. The line then bends over to form a plateau of high values around the maximum attainable burning velocity. A further increase in fan speed leads to the eventual complete quenching of the flame due to increasing localised extinctions because of the flame stretch rate. The greater the Markstein number, the more readily does flame quenching occur. Flame propagation along a duct closed at one end, with and without baffles to increase the turbulence, is subjected to a one-dimensional analysis. The flame, initiated at the closed end of the long duct, accelerates by the turbulent feedback mechanism, creating a shock wave ahead of it, until the maximum turbulent burning velocity for the mixture is attained. With the confining walls, the mixture is compressed between the flame and the shock plane up to the point where it might autoignite. This can be followed by a deflagration to detonation transition. The maximum shock intensity occurs with the maximum attainable turbulent burning velocity, and this defines the limit for autoignition of the mixture. For more reactive mixtures, autoignition can occur at turbulent burning velocities that are less than the maximum attainable one. Autoignition can be followed by quasi-detonation or fully developed detonation. The stability of ensuing detonations is discussed, along with the conditions that may lead to their extinction. © 2012 by Pleiades Publishing, Ltd.
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
S Sridhar
2011-07-01
Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.
Turbulence, Spontaneous Stochasticity and Climate
Eyink, Gregory
Turbulence is well-recognized as important in the physics of climate. Turbulent mixing plays a crucial role in the global ocean circulation. Turbulence also provides a natural source of variability, which bedevils our ability to predict climate. I shall review here a recently discovered turbulence phenomenon, called ``spontaneous stochasticity'', which makes classical dynamical systems as intrinsically random as quantum mechanics. Turbulent dissipation and mixing of scalars (passive or active) is now understood to require Lagrangian spontaneous stochasticity, which can be expressed by an exact ``fluctuation-dissipation relation'' for scalar turbulence (joint work with Theo Drivas). Path-integral methods such as developed for quantum mechanics become necessary to the description. There can also be Eulerian spontaneous stochasticity of the flow fields themselves, which is intimately related to the work of Kraichnan and Leith on unpredictability of turbulent flows. This leads to problems similar to those encountered in quantum field theory. To quantify uncertainty in forecasts (or hindcasts), we can borrow from quantum field-theory the concept of ``effective actions'', which characterize climate averages by a variational principle and variances by functional derivatives. I discuss some work with Tom Haine (JHU) and Santha Akella (NASA-Goddard) to make this a practical predictive tool. More ambitious application of the effective action is possible using Rayleigh-Ritz schemes.
Andrejczuk, M; Blyth, A
2015-01-01
This article discusses a potential impact of turbulent velocity fluctuations of the air on a drizzle formation in Cumulus clouds. Two different representations of turbulent velocity fluctuations for a microphysics formulated in a Lagrangian framework are discussed - random walk model and the interpolation, and its effect on microphysical properties of the cloud investigated. Turbulent velocity fluctuations significantly enhances velocity differences between colliding droplets, especially those having small sizes. As a result drizzle forms faster in simulations including a representation of turbulence. Both representations of turbulent velocity fluctuations, random walk and interpolation, have similar effect on droplet spectrum evolution, but interpolation of the velocity does account for a possible anisotropy in the air velocity. All discussed simulations show relatively large standard deviation ($\\sim$1${\\mu}m$) of the cloud droplet distribution from the onset of cloud formation is observed. Because coalesen...
Mixing in manipulated turbulence
Kuczaj, A K; Geurts, Bernard J.; Kuczaj, Arkadiusz K.
2006-01-01
A new computational framework for the simulation of turbulent flow through complex objects and along irregular boundaries is presented. This is motivated by the application of metal foams in compact heat-transfer devices, or as catalyst substrates in process-engineering. The flow-consequences of such complicated objects are incorporated by adding explicit multiscale forcing to the Navier-Stokes equations. The forcing represents the simultaneous agitation of a wide spectrum of length-scales when flow passes through the complex object. It is found that a considerable modulation of the traditional energy cascading can be introduced with a specific forcing strategy. In spectral space, forcing yields strongly localized deviations from the common Kolmogorov scaling law, directly associated with the explicitly forced scales. In addition, the accumulated effect of forcing induces a significant non-local alteration of the kinetic energy including the spectrum for the large scales. Consequently, a manipulation of turbu...
Unsteady turbulent buoyant plumes
Woodhouse, Mark J; Hogg, Andrew J
2015-01-01
We model the unsteady evolution of turbulent buoyant plumes following temporal changes to the source conditions. The integral model is derived from radial integration of the governing equations expressing the conservation of mass, axial momentum and buoyancy. The non-uniform radial profiles of the axial velocity and density deficit in the plume are explicitly described by shape factors in the integral equations; the commonly-assumed top-hat profiles lead to shape factors equal to unity. The resultant model is hyperbolic when the momentum shape factor, determined from the radial profile of the mean axial velocity, differs from unity. The solutions of the model when source conditions are maintained at constant values retain the form of the well-established steady plume solutions. We demonstrate that the inclusion of a momentum shape factor that differs from unity leads to a well-posed integral model. Therefore, our model does not exhibit the mathematical pathologies that appear in previously proposed unsteady i...
Helically Decomposed Turbulence
Alexakis, Alexandros
2016-01-01
A decomposition of the energy and helicity fluxes in a turbulent hydrodynamic flow is proposed. The decomposition is based on the projection of the flow to a helical basis that allows to investigate separately the role of interactions among modes of different helicity. The proposed formalism is then applied in large scale numerical simulations of a non-helical and a helical flow, where the decomposed fluxes are explicitly calculated. It is shown that the total energy flux can be split in to three fluxes that independently remain constant in the inertial range. One of these fluxes that corresponds to the interactions of fields with the same helicity is negative implying the presence of an inverse cascade that is `hidden' inside the forward cascade. Similar to the energy flux the helicity flux is also shown that it can be decomposed to two fluxes that remain constant in the inertial range. Implications of these results as well possible new directions for investigations are discussed.
A study on turbulence modulation via an analysis of turbulence anisotropy-invariants
Institute of Scientific and Technical Information of China (English)
Michael; MANHART
2010-01-01
We investigate the turbulence modulation by particles in a turbulent two-phase channel flow via an analysis of turbulence anisotropy-invariants. The fluid turbulence is calculated by a large eddy simulation with a point-force two-way coupling model and particles are tracked by the Lagrangian trajectory method. The channel turbulence follows the two-component turbulence state within the viscous sub-layer region and outside the region the turbulence tends to follow the right curve of the anisotropy-invariant. The channel turbulence, interacting with heavy particles, is modulated to the two-component turbulence limit state near the wall and is separate from the axisymmetric turbulence state in the turbulence anisotropy-invariants map. The fluctuations of streamwise component are transferred to the other two components and hence the anisotropy decreases due to particle modulation. The study has deepened the understanding of the turbulence modulation mechanism in two-phase turbulent flows.
Particle-Interaction Effects in Turbulent Channel Flow
M Afkhami; A. Hassanpour; Fairweather, M.; Njobuenwu, DO
2013-01-01
Large eddy simulation and a discrete element method are applied to study the flow, particle dispersion and agglomeration in a horizontal channel. The particle-particle interaction model is based on the Hertz-Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different particle surface energies on agglomeration, and the impact of fluid turbulence, are investigated. The agglomeration rate is found to be stro...
Reynolds number effects on particle agglomeration in turbulent channel flow
M Afkhami; A. Hassanpour; Fairweather, M.; Njobuenwu, DO
2014-01-01
The work described in this paper employs large eddy simulation and a discrete element method to study particle-laden flows, including particle dispersion and agglomeration, in a horizontal channel. The particle-particle interaction model is based on the Hertz- Mindlin approach with Johnson-Kendall-Roberts cohesion to allow the simulation of Van der Waals forces in a dry air flow. The influence of different flow Reynolds numbers, and therefore the impact of turbulence, on particle agglomeratio...
Strong Turbulence in Partially Ionized Plasmas
DEFF Research Database (Denmark)
Mikkelsen, Torben; Pécseli, Hans
1980-01-01
Experimental investigations of strong turbulence in partially ionized, low-β plasmas are reported. The observed spectra are interpreted by applying Taylor's hypothesis and related to turbulent fluctuations in the ionosphere.......Experimental investigations of strong turbulence in partially ionized, low-β plasmas are reported. The observed spectra are interpreted by applying Taylor's hypothesis and related to turbulent fluctuations in the ionosphere....
Impurity transport in plasma edge turbulence
Naulin, Volker; Priego Wood, Martin; Juul Rasmussen, Jens
2004-01-01
The turbulent transport of minority species/impurities is investigated in 2D drift-wave turbulence as well as in 3D toroidal drift-Alfven edge turbulence. The full effects of perpendicular and -- in 3D -- parallel advection are kept for the impurity species. Anomalous pinch effects are recovered and explained in terms of Turbulent EquiPartition (TEP)
Nuclear threat. A clear and present danger
International Nuclear Information System (INIS)
It was disappointed at the discussion in the review conference of the NPT held in 2005. The fact may be caused by the estrangement between the international urgent issues related to the non-proliferation and the effectiveness of archaic measures through the NPT. However, it should not be recognized that the international obligation and worth of NPT has been gone. The NPT referred the typical international situation under the cold war era. Although several permanent issues of the nuclear non-proliferation exist in current discussions, the activities relevant to the NPT may not be effect against newly unstable situations after the September 11th of 2001. Urgent challenges to be taken are that we must strictly analyze the interventions between 'the clear and present danger' of our world and the nuclear herms, and must take appropriate actions toward them without influences from previous international situations that might be subsisted in current international treaties and agreements. This paper identified the features of nuclear threats based on the four categories and examined the possibilities of nuclear terrorism from previous facts with the inductive inference. The results identified the possibility of nuclear facility attack and of radioactive materials theft by the Polico-Religious Groups and others are stood out. The authors would suggest the important of urgent recognition to establish the certain security system against nuclear terrorism. (author)
Clumps in drift wave turbulence
DEFF Research Database (Denmark)
Pecseli, H. L.; Mikkelsen, Torben
1986-01-01
, two-dimensional random flow serves as a particularly simple illustration. For this case particles can be trapped for all times in a local vortex (macro-clump). A small test-cloud of particles (micro-clump) chosen arbitrarily in a realization will on the other hand expand on average. A formulation is...... proposed in terms of conditional eddies, in order to discriminate turbulent flows where macro-clumps may be observed. The analysis is illustrated by results from experimental investigations of strongly turbulent, resistive drift-wave fluctuations. The related problem for electrostatic turbulence in...
Potential turbulence in tokamak plasmas
International Nuclear Information System (INIS)
Microscopic potential turbulence in tokamak plasmas are investigated by a multi-sample-volume heavy ion beam probe. The wavenumber/frequency spectra S(k,ω) of the plasmas potential fluctuation as well as density fluctuation are obtained for the first time. The instantaneous turbulence-driven particle flux, calculated from potential and density turbulence has oscillations of which amplitude is about 100 times larger than the steady-state outwards flux, showing sporadic behaviours. We also observed large-scale coherent potential oscillations with the frequency around 10-40 kHz. (author)
Wind energy impact of turbulence
Hölling, Michae; Ivanell, Stefan
2014-01-01
This book presents the results of the seminar ""Wind Energy and the Impact of Turbulence on the Conversion Process"" which was supported from three societies, namely the EUROMech, EAWE and ERCOFATC and took place in Oldenburg, Germany in spring 2012.The seminar was one of the first scientific meetings devoted to the common topic of wind energy and basic turbulence. The established community of researchers working on the challenging puzzle of turbulence for decades met the quite young community of researchers, who face the upcoming challenges in the fast growing field of wind energy application
Fragmentation in turbulent primordial gas
Glover, S C O; Klessen, R S; Bromm, V
2010-01-01
We report results from numerical simulations of star formation in the early universe that focus on the role of subsonic turbulence, and investigate whether it can induce fragmentation of the gas. We find that dense primordial gas is highly susceptible to fragmentation, even for rms turbulent velocity dispersions as low as 20% of the initial sound speed. The resulting fragments cover over two orders of magnitude in mass, ranging from 0.1 to 40 solar masses. However, our results suggest that the details of the fragmentation depend on the local properties of the turbulent velocity field and hence we expect considerable variations in the resulting stellar mass spectrum in different halos.
Subcritical excitation of plasma turbulence
International Nuclear Information System (INIS)
Theory of current-diffusive interchange mode turbulence in plasmas is developed in the presence of collisional transport. Double-valued amplitude of stationary fluctuations is expressed in terms of the pressure gradient. The backward bifurcation is shown to appear near the linear stability boundary. The subcritical nature of the turbulence is explicitly illustrated. Critical pressure gradient at which the transition from collisional transport to the turbulent one is to occur is predicted. This provides a prototype of the transport theory for nonlinear-non-equilibrium systems. (author)
Bumblebee flight in heavy turbulence
Engels, T; Schneider, K; Lehmann, F -O; Sesterhenn, J
2016-01-01
High-resolution numerical simulations of a tethered model bumblebee in forward flight are performed superimposing homogeneous isotropic turbulent fluctuations to the uniform inflow. Despite tremendous variation in turbulence intensity, between 17% and 99% with respect to the mean flow, we do not find significant changes in cycle-averaged aerodynamic forces, moments or flight power when averaged over realizations, compared to laminar inflow conditions. The variance of aerodynamic measures, however, significantly increases with increasing turbulence intensity, which may explain flight instabilities observed in freely flying bees.
Turbulent Mixing of Multiphase Flow
Young, Y.-N.; Ferziger, J.; Ham, F. E.; Herrmann, M.
2003-01-01
Thus we conduct numerical simulations of multiphase fluids stirred by two-dimensional turbulence to assess the possibility of self-similar drop size distribution in turbulence. In our turbulence simulations, we also explore the non-diffusive limit, where molecular mobility for the interface is vanishing. Special care is needed to transport the non-diffusive interface. Numerically, we use the particle level set method to evolve the interface. Instead of using the usual methods to calculate the surface tension force from the level set function, we reconstruct the interface based on phase- field modeling, and calculate the continuum surface tension forcing from the reconstructed interface.
Anisotropic spectra of acoustic turbulence
International Nuclear Information System (INIS)
We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society
Turbulence evolution in MHD plasmas
Wisniewski, M; Spanier, F
2013-01-01
Turbulence in the interstellar medium has been an active field of research in the last decade. Numerical simulations are the tool of choice in most cases. But while there are a number of simulations on the market some questions have not been answered finally. In this paper we are going to examine the influence of compressible and incompressible driving on the evolution of turbulent spectra in a number of possible interstellar medium scenarios. We conclude that the driving not only has an influence on the ratio of compressible to incompressible component but also on the anisotropy of turbulence.
Fundamentals of premixed turbulent combustion
Lipatnikov, Andrei
2012-01-01
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine engines. This book highlights the phenomenology of premixed turbulent flames. The text provides experimental data on the general appearance of premixed turbulent flames, physical mechanisms that could affect flame behavior, and physical and numerical models aimed at predicting the key features of premixed turbulent combustion. The author aims to provide a simple introduction to the field for advanced graduate and postgraduate students. Topics covered include La
Two-dimensional elastic turbulence
Berti, S; Boffetta, G; Celani, A; Musacchio, S; 10.1103/PhysRevE.77.055306
2010-01-01
We investigate the effect of polymer additives on a two-dimensional Kolmogorov flow at very low Reynolds numbers by direct numerical simulations of the Oldroyd-B viscoelastic model. We find that above the elastic instability threshold the flow develops the elastic turbulence regime recently observed in experiments. We observe that both the turbulent drag and the Lyapunov exponent increase with Weissenberg, indicating the presence of a disordered, turbulent-like mixing flow. The energy spectrum develops a power-law scaling range with an exponent close to the experimental and theoretical expectations.
Turbulence Modeling Verification and Validation
Rumsey, Christopher L.
2014-01-01
Computational fluid dynamics (CFD) software that solves the Reynolds-averaged Navier-Stokes (RANS) equations has been in routine use for more than a quarter of a century. It is currently employed not only for basic research in fluid dynamics, but also for the analysis and design processes in many industries worldwide, including aerospace, automotive, power generation, chemical manufacturing, polymer processing, and petroleum exploration. A key feature of RANS CFD is the turbulence model. Because the RANS equations are unclosed, a model is necessary to describe the effects of the turbulence on the mean flow, through the Reynolds stress terms. The turbulence model is one of the largest sources of uncertainty in RANS CFD, and most models are known to be flawed in one way or another. Alternative methods such as direct numerical simulations (DNS) and large eddy simulations (LES) rely less on modeling and hence include more physics than RANS. In DNS all turbulent scales are resolved, and in LES the large scales are resolved and the effects of the smallest turbulence scales are modeled. However, both DNS and LES are too expensive for most routine industrial usage on today's computers. Hybrid RANS-LES, which blends RANS near walls with LES away from walls, helps to moderate the cost while still retaining some of the scale-resolving capability of LES, but for some applications it can still be too expensive. Even considering its associated uncertainties, RANS turbulence modeling has proved to be very useful for a wide variety of applications. For example, in the aerospace field, many RANS models are considered to be reliable for computing attached flows. However, existing turbulence models are known to be inaccurate for many flows involving separation. Research has been ongoing for decades in an attempt to improve turbulence models for separated and other nonequilibrium flows. When developing or improving turbulence models, both verification and validation are important
Effects of Turbulence on NOx Emissions from Lean Perfectly-Premixed Combustion
AlAdawy, Ahmed Saad Ahmed
Effect of turbulence on NOx emissions is studied for a perfectly-premixed combustor running on methane/air at the mixture inlet temperature of 495 K and the combustor pressure of 5 atm over a range of equivalence ratios (0.54--0.85). Turbulence level is varied by a factor of 2--3 by changing the length of a portion of channels in a perforated plate on which the flame is stabilized. Simultaneous PIV and OH-PLIF measurements are used to calculate the relevant turbulence parameters such as turbulence intensity and turbulence mixing time scales, and define the flame structure such as average flame height and hence flame zone residence time scales, respectively. Effect of turbulence level is found to have negligible effect on NOx emissions level. NOx emissions are predicted by using a partially-stirred reactor (PaSR) model in CHEMKIN-PRO package with the measured turbulence parameters as the input. The modeling results agree very well with the measured NO x emission level but show that it slightly increases with the increase of turbulence level.
Measurement of turbulence in the oceanic mixed layer using Synthetic Aperture Radar (SAR
Directory of Open Access Journals (Sweden)
S. G. George
2012-09-01
Full Text Available Turbulence in the surface layer of the ocean contributes to the transfer of heat, gas and momentum across the air-sea boundary. As such, study of turbulence in the ocean surface layer is becoming increasingly important for understanding its effects on climate change. Direct Numerical Simulation (DNS techniques were implemented to examine the interaction of small-scale wake turbulence in the upper ocean layer with incident electromagnetic radar waves. Hydrodynamic-electromagnetic wave interaction models were invoked to demonstrate the ability of Synthetic Aperture Radar (SAR to observe and characterise surface turbulent wake flows. A range of simulated radar images are presented for a turbulent surface current field behind a moving surface vessel, and compared with the surface flow fields to investigate the impact of turbulent currents on simulated radar backscatter. This has yielded insights into the feasibility of resolving small-scale turbulence with remote-sensing radar and highlights the potential for extracting details of the flow structure and characteristics of turbulence using SAR.
Solar wind fluctuations: Not your grandmother's turbulence
Roberts, D. Aaron
2013-06-01
For a while it seemed like a simple fluid-like, self-similar, Kolomogoroff cascade was the easy explanation for the nature and evolution of the majority of solar wind fluctuations. More recently we have found that the cascade is not driven by stirring at large scales; the velocity and magnetic spectra evolve differently with different "inertial ranges" in both slope (until far from the Sun) and wavenumber range (everywhere); anisotropy in both variances and spectral characteristics are the order of the day and are strongly scale dependent; and it is not clear what fraction of the fluctuations should be considered to be turbulent as opposed to, for example, convected structures. This paper gives a brief history and reviews some recent results in these areas.
Turbulent mixing of a passive scalar in grid turbulence
Ito, Y.; Watanabe, T.; Nagata, K.; Sakai, Y.
2016-07-01
Fractal grids have attracted attention as a new-type of turbulence-generating grid due to their unique characteristics. Recent studies have revealed that such uniqueness appears in the near field of regular grid-generated turbulence. Scalar transport in those flows is also of great interest as it is not yet fully understood. In this study, we investigate the scalar mixing in the near field of regular grid-generated turbulence with various grid configurations. Experiments have been carried out in liquid mixing layers with a Reynolds number of 5000 based on the mesh size of the grid and uniform velocity. Simultaneous measurements of two-component velocities and concentration have been performed by particle image velocimetry and a planar laser-induced fluorescence technique, respectively. The results show that the scaling law using the wake-interaction length scale is applicable for the turbulence intensity in the grid turbulence with different mesh sizes and the same thickness of the grid bar. The turbulence intensity increases as the thickness of the grid bar increases; thus, consequently increasing the scalar diffusion. The streamwise development of the scalar mixing layer thickness collapses onto a single curve by normalization based on the thickness of the grid bar.
MI Gap Clearing Kicker Magnet Design Review
Energy Technology Data Exchange (ETDEWEB)
Jensen, Chris; /Fermilab
2008-10-01
The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets
Orbital angular momentum entanglement in turbulence
Ibrahim, Alpha Hamadou; Roux, Filippus S.; McLaren, Melanie; Konrad, Thomas; Forbes, Andrew
2013-01-01
The turbulence induced decay of orbital angular momentum (OAM) entanglement between two photons is investigated numerically and experimentally. To compare our results with previous work, we simulate the turbulent atmosphere with a single phase screen based on the Kolmogorov theory of turbulence. We consider two different scenarios: in the first only one of the two photons propagates through turbulence, and in the second both photons propagate through uncorrelated turbulence. Comparing the ent...
Stochastic differential equations and turbulent dispersion
Durbin, P. A.
1983-01-01
Aspects of the theory of continuous stochastic processes that seem to contribute to an understanding of turbulent dispersion are introduced and the theory and philosophy of modelling turbulent transport is emphasized. Examples of eddy diffusion examined include shear dispersion, the surface layer, and channel flow. Modeling dispersion with finite-time scale is considered including the Langevin model for homogeneous turbulence, dispersion in nonhomogeneous turbulence, and the asymptotic behavior of the Langevin model for nonhomogeneous turbulence.
Drake, M. C.; Pitz, R. W.; Lapp, M.; Fenimore, C. P.; Lucht, R. P.
1985-01-01
The first quantitative, time- and space-resolved measurements have been obtained for probability density functions of OH concentration in nonpremixed flames. Measurements using single-pulse, laser-saturated fluorescence in laminar, transitional, and turbulent nonpremixed H2-air flames provide unambiguous evidence for substantial OH superequilibrium concentrations, in qualitative agreement with predictions of laminar and turbulent combustion models. The average degree of superequilibrium, OH/OH(AE), is typically 4-5 near the jet exit and approaches unity far downstream. The maximum instantaneous OH concentration measured in transitional and turbulent H2-air flames is about 6 x 10 to the 16th molecules/cc, in accord with the maximum determined by partial equilibrium thermodynamic calculations and with the maximum OH concentrations measured in premixed H2-air flames.
Clear cell renal cell tumors: Not all that is "clear" is cancer.
Williamson, Sean R; Cheng, Liang
2016-07-01
Continued improvement of our understanding of the clinical, histologic, and genetic features of renal cell tumors has progressively evolved renal tumor classification, revealing an expanding array of distinct tumor types with different implications for prognosis, patient counseling, and treatment. Although clear cell renal cell carcinoma is unequivocally the most common adult renal tumor, there is growing evidence that some "clear cell" renal neoplasms, such as exemplified by multilocular cystic clear cell renal neoplasm of low malignant potential (formerly multilocular cystic renal cell carcinoma), do not have the same potential for insidious progression and metastasis, warranting reclassification as low malignant potential tumors or benign neoplasms. Still other novel tumor types such as clear cell papillary renal cell carcinoma have been more recently recognized, which similarly have shown a conspicuous absence of aggressive behavior to date, suggesting that these too may be recategorized as noncancerous or may be premalignant neoplasms. This importance for prognosis is increasingly significant in the modern era, in which renal masses are increasingly found incidentally by imaging techniques at a small tumor size, raising consideration for less aggressive management options guided by renal mass biopsy diagnosis, including imaging surveillance, tumor ablation, or partial nephrectomy. PMID:26988177
When a Cleared Rape Is Not Cleared: A Multilevel Study of Arrest and Exceptional Clearance.
Walfield, Scott M
2016-05-01
As rape remains one of the most underreported and least likely to be cleared of the violent crimes, it is of paramount importance to understand the factors associated with the likelihood of a case being cleared by law enforcement. This study uses data from the National Incident-Based Reporting System (NIBRS) and the Law Enforcement Management and Administrative Statistics (LEMAS), and a multilevel modeling approach to examine the relationship between victim, offender, incident, and police department characteristics contrasting the two types of clearance: arrest and exceptional clearance. The latter occurs due to reasons outside of law enforcement's control and despite being considered cleared, the offender is not arrested, charged, nor turned over for prosecution. Of the 16,231 cleared rapes in 238 departments, nearly half (47%) results in exceptional clearance when the victim refuses to cooperate or when prosecution is declined. Incident-level variables have a greater effect on the likelihood of exceptional clearance than victim and offender variables. The department explained a nontrivial amount of variation in the dependent variable, as 37% of the variance in type of clearance was between-department variation. Implications for future research on exceptional clearance and NIBRS are discussed. PMID:25646164
76 FR 45730 - Customer Clearing Documentation and Timing of Acceptance for Clearing
2011-08-01
... derivatives clearing organization (DCO) level.\\4\\ \\4\\ See, e.g., 76 FR 3698 (Jan. 20, 2011) (Risk Management... permitting them to do so. \\5\\ 75 FR 70152 (Nov. 17, 2010) (Implementation of Conflicts of Interest Policies and Procedures by Futures Commission Merchants and Introducing Brokers); 75 FR 71391 (Nov. 23,...
MODIS Collection 6 Clear Sky Restoral (CSR): Filtering Cloud Mast 'Not Clear' Pixels
Meyer, Kerry G.; Platnick, Steven Edward; Wind, Galina; Riedi, Jerome
2014-01-01
Correctly identifying cloudy pixels appropriate for the MOD06 cloud optical and microphysical property retrievals is accomplished in large part using results from the MOD35 1km cloud mask tests (note there are also two 250m subpixel cloud mask tests that can convert the 1km cloudy designations to clear sky). However, because MOD35 is by design clear sky conservative (i.e., it identifies "not clear" pixels), certain situations exist in which pixels identified by MOD35 as "cloudy" are nevertheless likely to be poor retrieval candidates. For instance, near the edge of clouds or within broken cloud fields, a given 1km MODIS field of view (FOV) may in fact only be partially cloudy. This can be problematic for the MOD06 retrievals because in these cases the assumptions of a completely overcast homogenous cloudy FOV and 1-dimensional plane-parallel radiative transfer no longer hold, and subsequent retrievals will be of low confidence. Furthermore, some pixels may be identified by MOD35 as "cloudy" for reasons other than the presence of clouds, such as scenes with thick smoke or lofted dust, and should therefore not be retrieved as clouds. With such situations in mind, a Clear Sky Restoral (CSR) algorithm was introduced in C5 that attempts to identify pixels expected to be poor retrieval candidates. Table 1 provides SDS locations for CSR and partly cloudy (PCL) pixels.
Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.
2009-01-01
The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.
Toy models of developed turbulence
Directory of Open Access Journals (Sweden)
M.Hnatich
2005-01-01
Full Text Available We have investigated the advection of a passive scalar quantity by incompressible helical turbulent flow within the framework of extended Kraichnan model. Turbulent fluctuations of velocity field are assumed to have the Gaussian statistics with zero mean and defined noise with finite time-correlation. Actual calculations have been done up to two-loop approximation within the framework of field-theoretic renormalization group approach. It turned out that space parity violation (helicity of turbulent environment does not affect anomalous scaling which is a peculiar attribute of the corresponding model without helicity. However, stability of asymptotic regimes, where anomalous scaling takes place, strongly depends on the amount of helicity. Moreover, helicity gives rise to the turbulent diffusivity, which has been calculated in one-loop approximation.
Scaling laws of turbulent dynamos
Fauve, Stephan; Petrelis, Francois
2007-01-01
We consider magnetic fields generated by homogeneous isotropic and parity invariant turbulent flows. We show that simple scaling laws for dynamo threshold, magnetic energy and Ohmic dissipation can be obtained depending on the value of the magnetic Prandtl number.
TEM turbulence optimisation in stellarators
Proll, J H E; Xanthopoulos, P; Lazerson, S A; Faber, B J
2015-01-01
With the advent of neoclassically optimised stellarators, optimising stellarators for turbulent transport is an important next step. The reduction of ion-temperature-gradient-driven turbulence has been achieved via shaping of the magnetic field, and the reduction of trapped-electron mode (TEM) turbulence is adressed in the present paper. Recent analytical and numerical findings suggest TEMs are stabilised when a large fraction of trapped particles experiences favourable bounce-averaged curvature. This is the case for example in Wendelstein 7-X [C.D. Beidler $\\textit{et al}$ Fusion Technology $\\bf{17}$, 148 (1990)] and other Helias-type stellarators. Using this knowledge, a proxy function was designed to estimate the TEM dynamics, allowing optimal configurations for TEM stability to be determined with the STELLOPT [D.A. Spong $\\textit{et al}$ Nucl. Fusion $\\bf{41}$, 711 (2001)] code without extensive turbulence simulations. A first proof-of-principle optimised equilibrium stemming from the TEM-dominated stella...
Reactive Rayleigh-Taylor Turbulence
Chertkov, M; Vladimirova, N
2008-01-01
The Rayleigh-Taylor (RT) instability develops and leads to turbulence when a heavy fluid falls under the action of gravity through a light one. We consider this phenomenon accompanied by a reactive transformation between the fluids, and study with Direct Numerical Simulations (DNS) how the reaction (flame) affects the turbulent mixing in the Boussinesq approximation. We discuss "slow" reactions where the characteristic reaction time exceeds the temporal scale of the RT instability. In the early turbulent stage, effects of the flame are distributed over a maturing mixing zone, whose development is weakly influenced by the reaction. At later times, the fully mixed zone transforms into a conglomerate of pure-fluid patches of sizes proportional to the mixing zone width. In this "stirred flame'' regime, temperature fluctuations are consumed by reactions in the regions separating the pure-fluid patches. This DNS-based qualitative description is followed by a phenomenology suggesting that thin turbulent flame is of ...
Broken Ergodicity in MHD Turbulence
Shebalin, John V.
2010-01-01
Ideal magnetohydrodynamic (MHD) turbulence may be represented by finite Fourier series, where the inherent periodic box serves as a surrogate for a bounded astrophysical plasma. Independent Fourier coefficients form a canonical ensemble described by a Gaussian probability density function containing a Hermitian covariance matrix with positive eigenvalues. The eigenvalues at lowest wave number can be very small, resulting in a large-scale coherent structure: a turbulent dynamo. This is seen in computations and a theoretical explanation in terms of 'broken ergodicity' contains Taylor s theory of force-free states. An important problem for future work is the case of real, i.e., dissipative flows. In real flows, broken ergodicity and coherent structure are still expected to occur in MHD turbulence at the largest scale, as suggested by low resolution simulations. One challenge is to incorporate coherent structure at the largest scale into the theory of turbulent fluctuations at smaller scales.
Structure and modeling of turbulence
Energy Technology Data Exchange (ETDEWEB)
Novikov, E.A. [Univ. of California, San Diego, La Jolla, CA (United States)
1995-12-31
The {open_quotes}vortex strings{close_quotes} scale l{sub s} {approximately} LRe{sup -3/10} (L-external scale, Re - Reynolds number) is suggested as a grid scale for the large-eddy simulation. Various aspects of the structure of turbulence and subgrid modeling are described in terms of conditional averaging, Markov processes with dependent increments and infinitely divisible distributions. The major request from the energy, naval, aerospace and environmental engineering communities to the theory of turbulence is to reduce the enormous number of degrees of freedom in turbulent flows to a level manageable by computer simulations. The vast majority of these degrees of freedom is in the small-scale motion. The study of the structure of turbulence provides a basis for subgrid-scale (SGS) models, which are necessary for the large-eddy simulations (LES).
Cloud Dispersal in Turbulent Flows
Heitsch, F.; Slyz, A. D.; Devriendt, J. E. G.; A. Burkert
2006-01-01
Cold clouds embedded in warm media are very common objects in astrophysics. Their disruption timescale depends strongly on the dynamical configuration. We discuss the evolution of an initially homogeneous cold cloud embedded in warm turbulent gas. Within a couple of dynamical timescales, the filling factor of the cold gas within the original cloud radius drops below 50%. Turbulent diffusivities estimated from the time evolution of radial filling factor profiles are not constant with time. Col...
GEOMETRIC TURBULENCE AND QUANTUM THEORY
Directory of Open Access Journals (Sweden)
Trunev A. P.
2014-06-01
Full Text Available The parabolic equation describing the evolution of the gravitational field is derived from Einstein equation. The instability of metric leads to a geometric pattern of turbulence. Microscopic turbulent pulsations generate two kinds of matter with positive and negative energy density, respectively. It is shown that in the case of negative energy density parabolic equation leads to an equation of Schrödinger type