WorldWideScience

Sample records for cleaning generated concentrate

  1. Update-processing steam generator cleaning solvent at Palo Verde

    International Nuclear Information System (INIS)

    Peters, G.

    1996-01-01

    Framatome Technologies Inc.(FTI) recently completed the steam generator chemical cleanings at the Palo Verde Nuclear Generating Station Units 1, 2 and 3. Over 500,000 gallons of low-level radioactive solvents were generated during these cleanings and were processed on-site. Chemical cleaning solutions containing high concentrations of organic chelating wastes are difficult to reduce in volume using standard technologies. The process that was ultimately used at Palo Verde involved three distinct processing steps: The evaporation step was conducted using FTI's submerged combustion evaporator (SCE) that has also been successfully used at Arkansas Nuclear One - Unit 1, Three Mile Island - Unit 1, and Oconee on similar waste. The polishing step of the distillate used ultrafiltration (UF) and reverse osmosis (RO) technology that was also used extensively by Ontario Hydro to assist in their processing of chemical cleaning solvent. This technology, equipment, and operations personnel were provided by Zenon Environmental, Inc. The concentrate from the evaporator was absorbed with a special open-quotes peat mossclose quotes based media that allowed it to be shipped and buried at the Environcare of Utah facility. This is the first time that this absorption media or burial site has been used for chemical cleaning solvent

  2. Chemical cleaning - essential for optimal steam generator asset management

    International Nuclear Information System (INIS)

    Ammann, Franz

    2009-01-01

    Accumulation of deposits in Steam Generator is intrinsic during the operation of Pressurized Water Reactors. Such depositions lead to reduction of thermal performance, loss of component integrity and, in some cases, to power restrictions. Accordingly, removal of such deposits is an essential part of the asset management program of Steam Generators. Every plant has specific conditions, history and constraints which must be considered when planning and performing a chemical cleaning. Typical points are: -Constitution of the deposits or sludge - Sludge load - Sludge distribution in the steam generator - Existing or expected corrosion problems - Amount and tendency of fouling for waste treatment The strategy for chemical cleaning is developed from these points. The range of chemical cleaning treatments starts with very soft cleanings which can remove approximately 100kg per steam generator and ends with full scale, i.e., hard, cleanings which can remove several thousand kilograms of deposits from a steam generator. Dependent upon the desired goal for the operating plant and the steam generator material condition, the correct cleaning method can be selected. This requires flexible cleaning methods that can be adapted to the individual needs of a plant. Such customizing of chemical cleaning methods is a crucial factor for an optimized asset management program of steam generators in a nuclear power plant

  3. Quantitative assessment of airborne exposures generated during common cleaning tasks: a pilot study

    Directory of Open Access Journals (Sweden)

    Perry Melissa J

    2010-11-01

    Full Text Available Abstract Background A growing body of epidemiologic evidence suggests an association between exposure to cleaning products with asthma and other respiratory disorders. Thus far, these studies have conducted only limited quantitative exposure assessments. Exposures from cleaning products are difficult to measure because they are complex mixtures of chemicals with a range of physicochemical properties, thus requiring multiple measurement techniques. We conducted a pilot exposure assessment study to identify methods for assessing short term, task-based airborne exposures and to quantitatively evaluate airborne exposures associated with cleaning tasks simulated under controlled work environment conditions. Methods Sink, mirror, and toilet bowl cleaning tasks were simulated in a large ventilated bathroom and a small unventilated bathroom using a general purpose, a glass, and a bathroom cleaner. All tasks were performed for 10 minutes. Airborne total volatile organic compounds (TVOC generated during the tasks were measured using a direct reading instrument (DRI with a photo ionization detector. Volatile organic ingredients of the cleaning mixtures were assessed utilizing an integrated sampling and analytic method, EPA TO-17. Ammonia air concentrations were also measured with an electrochemical sensor embedded in the DRI. Results Average TVOC concentrations calculated for 10 minute tasks ranged 0.02 - 6.49 ppm and the highest peak concentrations observed ranged 0.14-11 ppm. TVOC time concentration profiles indicated that exposures above background level remained present for about 20 minutes after cessation of the tasks. Among several targeted VOC compounds from cleaning mixtures, only 2-BE was detectable with the EPA method. The ten minute average 2- BE concentrations ranged 0.30 -21 ppm between tasks. The DRI underestimated 2-BE exposures compared to the results from the integrated method. The highest concentration of ammonia of 2.8 ppm occurred

  4. Atmospheric plasma generation for LCD panel cleaning

    Science.gov (United States)

    Kim, Gyu-Sik; Won, Chung-Yuen; Choi, Ju-Yeop; Yim, C. H.

    2007-12-01

    UV lamp systems have been used for cleaning of display panels of TFT LCD or Plasma Display Panel (PDP). However, the needs for high efficient cleaning and low cost made high voltage plasma cleaning techniques to be developed and to be improved. Dielectric-barrier discharges (DBDs), also referred to as barrier discharges or silent discharges have for a long time been exclusively related to ozone generation. In this paper, a 6kW high voltage plasma power supply system was developed for LCD cleaning. The -phase input voltage is rectified and then inverter system is used to make a high frequency pulse train, which is rectified after passing through a high-power transformer. Finally, bi-directional high voltage pulse switching circuits are used to generate the high voltage plasma. Some experimental results showed the usefulness of atmospheric plasma for LCD panel cleaning.

  5. Chemical cleaning an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Amman, Franz

    2008-01-01

    Chemical Cleaning an essential part of Steam Generator asset management accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: - Sludge load amount and constitution of the deposits - Sludge distribution in the steam generator - Existing or expected corrosion problems - Amount and tendency of fouling for waste treatment Depending on this points the strategy for chemical cleaning shall be evolved. the range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. This requires flexible and 'customisable' cleaning methods that can be adapted to the individual needs of a plant. Such customizing of chemical cleaning methods is an essential factor for an optimized asset management of the steam generator in a nuclear power plant

  6. The potential of nuclear energy to generate clean electric power in Brazil

    International Nuclear Information System (INIS)

    Stecher, Luiza C.; Sabundjian, Gaiane; Menzel, Francine; Giarola, Rodrigo S.; Coelho, Talita S.

    2013-01-01

    The generation of electricity in Brazil is concentrated in hydroelectric generation, renewable and clean source, but that does not satisfy all the demand and leads to necessity of a supplementary thermal sources portion. Considering the predictions of increase in demand for electricity in the next years, it becomes necessary to insert new sources to complement the production taking into account both the volume being produced and the needs of environmental preservation. Thus, nuclear power can be considered a potential supplementary source for electricity generation in Brazil as well as the country has large reserves of fissile material, the generation emits no greenhouse gases, the country has technological mastery of the fuel cycle and it enables the production of large volumes of clean energy. The objective of this study is to demonstrate the potential of nuclear energy in electricity production in Brazil cleanly and safely, ensuring the supplies necessary to maintain the country's economic growth and the increased demand sustainable. For this, will be made an analysis of economic and social indicators of the characteristics of our energy matrix and the availability of our sources, as well as a description of the nuclear source and arguments that justify a higher share of nuclear energy in the matrix of the country. Then, after these analysis, will notice that the generation of electricity from nuclear source has all the conditions to supplement safely and clean supply of electricity in Brazil. (author)

  7. Three Mile Island Nuclear Station steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Hansen, C.A.

    1992-01-01

    The Three Mile Island-1 steam generators were chemically cleaned in 1991 by the B and W Nuclear Service Co. (BWNS). This secondary side cleaning was accomplished through application of the EPRI/SGOG (Electric Power Research Institute - Steam Generator Owners Group) chemical cleaning iron removal process, followed by sludge lancing. BWNS also performed on-line corrosion monitoring. Corrosion of key steam generator materials was low, and well within established limits. Liquid waste, subsequently processed by BWNS was less than expected. 7 tabs

  8. Evaporation and wet oxidation of steam generator cleaning solutions

    International Nuclear Information System (INIS)

    Baldwin, P.N. Jr.

    1996-01-01

    Ethylene diamine tetra acetic acid (EDTA) is used in metal-cleaning formulations. Usually the form of the EDTA used is the tetra ammonium salt. When these powerful cleaning solutions are used in steam generators, they attract the key metals of interest--iron and copper. A reduction in the volume of these cleaners and EDTA destruction is required to meet waste management and disposal standards. One method of volume reduction is described: concentration by evaporation. Once volume is reduced, the liquid waste can then be further volume reduced and treated for EDTA content through the use of wet oxidation. The effect of this process on the total organic carbon (TOC) in the form of EDTA contained in the copper as well as the iron spent cleaning solutions is reviewed, including regression analysis of selected benchmark and production data. A regressive analysis is made of the relationship between the EDTA and the TOC analyzed in the wet-oxidation batch residuals as well as the summary effects of hydrogen peroxide, sulfuric acid, and reaction time on the percentage of TOC destroyed

  9. Chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Stiepani, C.; Ammann, F.; Jones, D.; Evans, S.; Harper, K.

    2010-01-01

    Accumulation of deposits is intrinsic for the operation of Steam Generators in PWRs. Such depositions often lead to reduction of thermal performance, loss of component integrity and, in some cases to power restrictions. Accordingly removal of such deposits is an essential part of the asset management of the Steam Generators in a Nuclear Power Plant. Every plant has its individual condition, history and constraints which need to be considered when planning and performing a chemical cleaning. Typical points are: Sludge load amount and constitution of the deposits; Sludge distribution in the steam generator; Existing or expected corrosion problems; Amount and treatment possibilities for the waste generated. Depending on these points the strategy for chemical cleaning shall be evolved. The range of treatment starts with very soft cleanings with a removal of approx 100 kg per steam generator and goes to a full scale cleaning which can remove up to several thousand kilograms of deposits from a steam generator. Depending on the goal to be achieved and the steam generator present an adequate cleaning method shall be selected. Flexible and 'customizable' cleaning methods that can be adapted to the individual needs of a plant are therefore a must. Particular for the application of preventive cleanings where repeated or even regular application are intended, special focus has to be put on low corrosion and easy waste handling. Therefore AREVA has developed the 'C3' concept, Customized Chemical Cleaning concept. This concept covers the entire range of steam generator cleaning. Particular for the preventive maintenance cleanings processes with extreme low corrosion rates and easy waste handling are provided which make repeated applications safe and cost efficient. (author)

  10. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids.

    Science.gov (United States)

    Singer, B C; Destaillats, H; Hodgson, A T; Nazaroff, W W

    2006-06-01

    excessive exposures to these pollutants owing to cleaning product emissions. Mitigation options include screening of product ingredients and increased ventilation during and after cleaning. Certain practices, such as the use of some products in dilute solution vs. full-strength and the prompt removal of cleaning supplies from occupied spaces, can reduce emissions and exposures to 2-butoxyethanol and other volatile constituents. Also, it may be prudent to limit use of products containing ozone-reactive constituents when indoor ozone concentrations are elevated either because of high ambient ozone levels or because of the indoor use of ozone-generating equipment.

  11. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  12. Power generation from chemically cleaned coals: do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning?

    DEFF Research Database (Denmark)

    Ryberg, Morten W.; Owsianiak, Mikolaj; Laurent, Alexis

    2015-01-01

    Power generation from high-ash coals is a niche technology for power generation, but coal cleaning is deemed necessary to avoid problems associated with low combustion efficiencies and to minimize environmental burdens associated with emissions of pollutants originating from ash. Here, chemical...... beneficiation of coals using acid and alkali–acid leaching procedures is evaluated as a potential coal cleaning technology employing life cycle assessment (LCA). Taking into account the environmental benefits from firing cleaner coal in pulverized coal power plants and the environmental burden of the cleaning...... itself, it is demonstrated that for a wide range of cleaning procedures and types of coal, chemical cleaning generally performs worse than combustion of the raw coals and physical cleaning using dense medium separation. These findings apply for many relevant impact categories, including climate change...

  13. PWR steam generator chemical cleaning. Phase I: solvent and process development. Volume II

    International Nuclear Information System (INIS)

    Larrick, A.P.; Paasch, R.A.; Hall, T.M.; Schneidmiller, D.

    1979-01-01

    A program to demonstrate chemical cleaning methods for removing magnetite corrosion products from the annuli between steam generator tubes and the tube support plates in vertical U-tube steam generators is described. These corrosion products have caused steam generator tube ''denting'' and in some cases have caused tube failures and support plate cracking in several PWR generating plants. Laboratory studies were performed to develop a chemical cleaning solvent and application process for demonstration cleaning of the Indian Point Unit 2 steam generators. The chemical cleaning solvent and application process were successfully pilot-tested by cleaning the secondary side of one of the Indian Point Unit 1 steam generators. Although the Indian Point Unit 1 steam generators do not have a tube denting problem, the pilot test provided for testing of the solvent and process using much of the same equipment and facilities that would be used for the Indian Point Unit 2 demonstration cleaning. The chemical solvent selected for the pilot test was an inhibited 3% citric acid-3% ascorbic acid solution. The application process, injection into the steam generator through the boiler blowdown system and agitation by nitrogen sparging, was tested in a nuclear environment and with corrosion products formed during years of steam generator operation at power. The test demonstrated that the magnetite corrosion products in simulated tube-to-tube support plate annuli can be removed by chemical cleaning; that corrosion resulting from the cleaning is not excessive; and that steam generator cleaning can be accomplished with acceptable levels of radiation exposure to personnel

  14. Results of the secondary side chemical cleaning of the steam generators

    International Nuclear Information System (INIS)

    Doma, A.; Patek, G.

    2001-01-01

    A significant amount of deposit has developed on the secondary side of the heat transfer tubes of the steam generators (SG) of the Paks Nuclear Power Plant units in course of the years. More than 99.5% of the deposit is made up of magnetite (Fe 3 O 4 ) generated in the secondary circuit of the power plant. Those deposits lead to the decrease of the heat transfer. Even more important is its role from the point of view of operational reliability of the steam generators, leak tightness between the primary and secondary sides. The first series of cleaning took place following 8-9 years of operation of the units. Following the first cleaning cycle the transport of the corrosion products into the steam generators did not change, and thus obviously new cleaning was required. Periodical cleaning of the steam generators shall be assured. (R.P.)

  15. Bioinspired Bifunctional Membrane for Efficient Clean Water Generation.

    Science.gov (United States)

    Liu, Yang; Lou, Jinwei; Ni, Mengtian; Song, Chengyi; Wu, Jianbo; Dasgupta, Neil P; Tao, Peng; Shang, Wen; Deng, Tao

    2016-01-13

    Solving the problems of water pollution and water shortage is an urgent need for the sustainable development of modern society. Different approaches, including distillation, filtration, and photocatalytic degradation, have been developed for the purification of contaminated water and the generation of clean water. In this study, we explored a new approach that uses solar light for both water purification and clean water generation. A bifunctional membrane consisting of a top layer of TiO2 nanoparticles (NPs), a middle layer of Au NPs, and a bottom layer of anodized aluminum oxide (AAO) was designed and fabricated through multiple filtration processes. Such a design enables both TiO2 NP-based photocatalytic function and Au NP-based solar-driven plasmonic evaporation. With the integration of these two functions into a single membrane, both the purification of contaminated water through photocatalytic degradation and the generation of clean water through evaporation were demonstrated using simulated solar illumination. Such a demonstration should also help open up a new strategy for maximizing solar energy conversion and utilization.

  16. Ultrasonic Cleaning of Nuclear Steam Generator by Micro Bubble

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo Tae [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of); Kim, Sang Tae; Yoon, Sang Jung [Sae-An Engineering Co., Seoul (Korea, Republic of)

    2012-05-15

    In this paper, we present ultrasonic cleaning technology for a nuclear steam generator using micro bubble. We could extend the boundary of ultrasonic cleaning by using micro bubbles in water. Ultrasonic energy measured was increased about 5 times after the generation of micro bubbles in water. Furthermore, ultrasound energy was measured to be strong enough to create cavitation even though the ultrasound sensor was about 2 meters away from the ultrasonic transducer

  17. Steam generator secondary side chemical cleaning at Gentilly-2

    International Nuclear Information System (INIS)

    Plante, S.

    2006-01-01

    After more than 20 years of operation, the secondary side of the four steam generators at Gentilly-2 were chemically cleaned during the 2005 annual outage. The FRAMATOME ANP high temperature cleaning process used to remove magnetite loading involved stepwise injection of solvent with PHT temperature in the range 160 o C to 175 o C. The heat required to maintain the PHT temperature was provided by the operation of the main PHT pumps and the reactor core residual heat. The temperature control was accomplished by the shutdown cooling system heat exchangers. A total of 1280 kg of magnetite was removed from the four steam generators. A copper-cleaning step was applied after the iron step. The PHT has been cooled down and the steam generators drained to temporary tanks and dried in preparation of the copper step. The process has been applied at room temperature, two boilers at a time. The solvent removed a total of 116 kg of copper. During the iron step, steam flow to the feedwater tank chemically contaminate the Balance Of Plant (BOP) systems. The isolation of this path should have been part of the G2 procedures. Around 700 m3 of water had to be drained to interim storage tanks for subsequent resin treatment before disposal. Visual inspection of BO1 tubesheet and first support plate showed clean surfaces without measurable sludge pile. Upper support plates visual inspection of BO4 revealed that broach holes blockage reported in 2000 is still present in peripheral area. Following the plant restart, the medium range level measurement instability observed since several years for BO3 was no more present. As anticipated, it also has been observed that the medium and wide range level measurements have shifted down as a result of downcomer flow increase after the cleaning. The cleaning objectives were achieved regarding the fouling reduction on the steam generators secondary side but broach holes blockage of the upper support plate is still present in periphery. (author)

  18. PWR steam generator chemical cleaning. Phase I: Final report, Volume I

    International Nuclear Information System (INIS)

    1978-07-01

    Two chemical cleaning solvent systems and two application methods were developed to remove the sludge in nuclear steam generators and to remove the corrosion products in the annuli between the steam generator tubes and the support plates. Laboratory testing plus subsequent pilot testing has demonstrated that, in a reasonable length of time, both solvents are capable of dissolving significant amounts of sludge, and of dissolving tightly packed magnetite in tube/support plate crevices. Further, tests have demonstrated that surface losses of the materials of construction in steam generators can be controlled to acceptable limits for the duration of the required cleaning period. Areas requiring further study and test have been identified, and a preliminary procedure for chemical cleaning nuclear steam generators has been chosen subject to quantification based on additional tests prior to actual in-plant demonstration

  19. Evaluation of EDTA based chemical formulations for the cleaning of monel-400 tubed steam generators

    International Nuclear Information System (INIS)

    Velmurugan, S.; Rufus, A.L.; Sathyaseelan, V.S.; Kumar, P.S.; Veena, S.N.; Srinivasan, M.P.; Narasimhan, S.V.

    1998-01-01

    The Steam Generator (SG) is an important component in any nuclear power plant which contributes significantly for the over all performance of the reactor. The failure of SG tubes occurs mainly by corrosion under accelerated conditions caused by fouling. There is continuous ingress of the corrosion products and ionic impurities from the condenser and feed train of the secondary heat transfer system. The corrosion products accumulate in the stagnant areas near the tube sheet, over the tube support plates and in the tube to tube support plate crevices. These accumulated deposits help to concentrate the aggressive impurities and induce a variety of corrosion processes affecting the structural materials and finally leading to failure of the SG tube. Scale forming impurities can deposit over the tube surfaces and result in reduction of heat transfer efficiency and over heating of the surfaces. Every effort is being made to control the transport of impurities to the steam generator. Increased blow down, installation of condensate polishers and use of all volatile amines have helped to reduce the corrosion product and ionic impurities input into the steam generators of PHWRs. Despite these efforts, failures of SG tubes in PHWRs have been reported. Hence, attempts are being made to develop chemical formulations to clean the deposits accumulated in the steam generators. The EPRI-SGOG chemical cleaning process has been tried with good success in steam generators of different designs including the steam generators of PHWRs. This paper discusses the work on the evaluation of EDTA based chemical cleaning formulations for monel-400 tubed steam generators of PHWRs. (author)

  20. Chemical cleaning of steam generators: application to Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1991-01-01

    EDF has patented a chemical cleaning process for PWR steam generators, based on the use of a mixture or organic acids in order to dissolve iron oxides and copper with a single solution and clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its innocuousness related to steam generator materials. The process, the licence of which belongs to SOMAFER RA and Framatome has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units. (author)

  1. Cleaning of OPR1000 Steam Generator by Ultrasonic Cavitation in Water

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Wootae [Korea Hydro and Nuclear Power Co., Ltd, Daejeon (Korea, Republic of); Kim, Sangtae; Yoon, Sangjung; Choi, Yongseok [Saean Engineering Corporation, Seoul (Korea, Republic of)

    2013-05-15

    Magnetic wheels are attached to the transducers to prevent tube damage which may be caused by wear between the transducers and SG tubes. To remove heat generated by transducers, we used water to water heat exchanger. Sludge removed from tube sheet area of the steam generator was pumped to filtering station for removing impurities in it. We designed an ultrasonic cleaning system for application to OPR1000 S/G. The technology was developed for removing sludge in OPR1000 S/G. However, the technology could easily be applied to other types of S/Gs. For cleaning OPR1000 SG, we designed an ultrasonic cleaning system with 12 transducers, 15 generators, a WRS, and a water treatment system. An experiment with a single transducer and the full scale OPR1000 S/G mock-up did not show very satisfactory result in ultrasound energy level. However, we expect sufficient effects if we apply 12 or more transducers in this case considering our previous experimental results as shown in the references. The ultrasonic cleaning system will be ready in August this year for performance test. After several experiments and the experiments followed, we are planning to apply this cleaning system for removing sludge in Korean OPR1000 S/Gs.

  2. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water.

    Science.gov (United States)

    Zhang, Panpan; Li, Jing; Lv, Lingxiao; Zhao, Yang; Qu, Liangti

    2017-05-23

    Efficient utilization of solar energy for clean water is an attractive, renewable, and environment friendly way to solve the long-standing water crisis. For this task, we prepared the long-range vertically aligned graphene sheets membrane (VA-GSM) as the highly efficient solar thermal converter for generation of clean water. The VA-GSM was prepared by the antifreeze-assisted freezing technique we developed, which possessed the run-through channels facilitating the water transport, high light absorption capacity for excellent photothermal transduction, and the extraordinary stability in rigorous conditions. As a result, VA-GSM has achieved average water evaporation rates of 1.62 and 6.25 kg m -2 h -1 under 1 and 4 sun illumination with a superb solar thermal conversion efficiency of up to 86.5% and 94.2%, respectively, better than that of most carbon materials reported previously, which can efficiently produce the clean water from seawater, common wastewater, and even concentrated acid and/or alkali solutions.

  3. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemen's high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.

    1996-01-01

    The secondary sides of all four steam generators at the Point Lepreau Nuclear Generating Stations were cleaned during the 1995 annual outage run-down using the Siemens high temperature chemical cleaning process. Traditionally all secondary side chemical cleaning exercises in CANDU as well as the other nuclear power stations in North America have been conducted using a process developed in conjunction with the Electric Power Research Institute (EPRI). The Siemens high temperature process was applied for the first time in North America at the Point Lepreau Nuclear Generating Station (PLGS). The paper discusses experiences related to the pre and post award chemical cleaning activities, chemical cleaning application, post cleaning inspection results and waste handling activities. (author)

  4. Chemical cleaning for sludge in steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Lu Yucheng; Zhang Binyong; Yu Jinghua

    2002-01-01

    The sludge induced corrosion damage to secondary side of tubes of Steam Generator (SG), effect of chemical cleaning technique on maintenance integrity of tubes of SG NPP and use of chemical cleaning technique in SG NPP have been summarized. The engineering technique of chemical cleaning for removing sludge in secondary side of SG NPP has been studied and qualified by CIAE (China Institute of Atomic Energy). Chemical cleaning engineering technique is introduced (main agent is EDTA, temp. <100 degree C), including chemical cleaning technology for tube plate and full tube nest of secondary side of SG, the monitoring technique of chemical cleaning process (effectiveness and safety), the disposal method of wastage of chemical cleaning, the system of chemical cleaning. The method for preventing sludge deposition in secondary side and the research on advanced water chemistry of secondary loop are introduced

  5. Chemical-Cleaning Demonstration Test No. 2 in a mock-up steam generator

    International Nuclear Information System (INIS)

    Jevec, J.M.; Leedy, W.S.

    1983-04-01

    This report describes the results of the mockup demonstration test of the first modified baseline process under Contract S-127, Chemical Cleaning of Nuclear Steam Generators. The objective of this program is to determine the feasibility of cleaning the secondary side of nuclear steam generators with state-of-the-art chemical cleaning technology. The first step was to benchmark a baseline process. This process was then modified to attempt to eliminate the causes of unacceptable cleaning performance. The modified baseline process consists of an EDTA/H 2 O 2 -based copper solvent and a near-neutral, EDTA/N 2 H 4 -based magnetite and crevice solvent. This report also presents the results of three inhibitor evaluation mockup runs used in the evaluation of the modified baseline process

  6. Disposal and handling of nuclear steam generator chemical cleaning wastes

    International Nuclear Information System (INIS)

    Larrick, A.P.; Schneidmiller, D.

    1978-01-01

    A large number of pressurized water nuclear reactor electrical generating plants have experienced a corrosion-related problem with their steam generators known as denting. Denting is a mechanical deformation of the steam generator tubes that occurs at the tube support plates. Corrosion of the tube support plates occurs within the annuli through which the tubes pass and the resulting corrosion oxides, which are larger in volume than the original metal, compress and deform the tubes. In some cases, the induced stresses have been severe enough to cause tube and/or support cracking. The problem was so severe at the Turkey Point and Surrey plants that the tubing is being replaced. For less severe cases, chemical cleaning of the oxides, and other materials which deposit in the annuli from the water, is being considered. A Department of Energy-sponsored program was conducted by Consolidated Edison Co. of New York which identified several suitable cleaning solvents and led to in-plant chemical cleaning pilot demonstrations in the Indian Point Unit 1 steam generators. Current programs to improve the technology are being conducted by the Electric Power Research Institute, and the three PWR NSSS vendors with the assistance of numerous consultants, vendors, and laboratories. These programs are expected to result in more effective, less corrosive solvents. However, after a chemical cleaning is conducted, a large problem still remains- that of disposing of the spent wastes. The paper summarizes some of the methods currently available for handling and disposal of the wastes

  7. Chemical cleaning of the Bruce A steam generators

    International Nuclear Information System (INIS)

    Le Surf, J.E.; Mason, J.B.; Symmons, W.R.; Yee, F.

    1992-01-01

    Deposits consisting mostly of oxides and salts and copper metal in the secondary side of the steam generators at the Bruce A Nuclear Generating Station have caused instability in the steam flow and loss of heat capacity, resulting in derating of the units and reduction in power production. Attempts to remove the deposits by pressure pulsing were unsuccessful. Water lancing succeeded in restoring stability, but restrictions on access prevented complete lancing of the tube support plate holes. Chemical cleaning using a modified EPRI-SGOG process has been selected as the best method of removing the deposits. A complete chemical cleaning system has been designed and fabricated for Ontario Hydro by Pacific Nuclear, with support from AECL CANDU and their suppliers. The system consists of self contained modules which are easily interconnected on site. The whole process is controlled from the Control Module, where all parameters are monitored on a computer video screen. The operator can control motorized valves, pumps and heaters from the computer key board. This system incorporates all the advanced technologies and design features that have been developed by Pacific Nuclear in the design, fabrication and operation of many systems for chemical decontamination and cleaning of nuclear systems. 2 figs

  8. Chemical cleaning of PWR steam generators: application at Nogent 1

    International Nuclear Information System (INIS)

    Fiquet, J.M.; Veysset, J.P.; Esteban, L.; Saurin, P.

    1990-01-01

    EDF has developed and patented a chemical cleaning process for PWR steam generators, based on the use of a mixture of organic acids in order to: - dissolve iron oxides and copper with a single solution; - clean dented crevices. Qualification tests have permitted to demonstrate effectiveness of the solution and its inocuousness related to steam generator materials. The process, the license of which belongs to SOMAFER R.A. and FRAMATOME, has been implemented in France at Nogent. The goal was to dissolve iron oxides allowing metallic particles, aggregated on the tubesheet, to be released and mechanically removed. The effectiveness was satisfactory and this treatment is to be extended to other units [fr

  9. Problems of clean coals production as a sources of clean energy generation; Problemy produkcji czystych wegli jako zrodlo wytwarzania czystej energii

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, W. [Polish Academy of Sciences, Krakow (Poland). Mineral and Energy Economy Institute

    2004-07-01

    The paper advises of clean coal technology programme objectives. Issues connected with clean coals preparation for combustion have been discussed. The quality of steam fine coals has been presented, including those used in the commercial power industry. A small supply of 'clean coals' has been started in Poland, related however to a limited demand. Factors affecting the reduction in clean coal production have been discussed. The fact that there are no significant reasons to constrain supplies of clean coals has been emphasised. The quality of coal in deposits is very good, and the condition of preparation enables production of clean coal. Clean energy generation from clean coal requires only cooperation between the hard coal mining industry and the commercial power industry, passing over particular sectoral interests. 15 refs.

  10. Design of segmental ultrasonic cleaning equipment for removing the sludge in a steam generator

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Byeon, Min Suk; Lee, Ho One

    2010-01-01

    In nuclear power plants, the water in the coolant system is managed to be clean but metallic sludge is accumulated on the top of tube-sheet in a steam generator. The sludge causes the corrosion of the tubesheet. The electric utility company in Korea removes the sludge with a lancing system for every outage of nuclear power plants. But the sludge is not perfectly removed with lancing system because the pressurized water of the lancing system cannot reach all area in a steam generator. Therefore the steam generator cleaning system with ultrasonic energy has been developed in KEPCO Research Institute. In this paper, the ultrasonic cleaning system is designed for removing the sludge on the steam generator

  11. Steam Generator Chemical Cleaning Application: Korean Experience in PWR NPP

    International Nuclear Information System (INIS)

    Hwang, In-Ho; Varrin-Jr, Robert-D.; Little, Michael-J.; Oh, Yeon-Ok; Choo, Seong-Jib; Park, Jin-Hyeok

    2012-09-01

    Korea Hydro and Nuclear Power (KHNP) performed an EPRI/SGOG chemical cleaning of the secondary side of the steam generators at Ulchin Unit 3 (UCN3) in March 2011 and at Ulchin Unit 4 (UCN4) in September 2011. The steam generator chemical cleaning (SGCC) was performed with venting at the top-of-tube sheet (TTS) and at tube support plates (TSPs) 4, 5, 6, 7, 8, 9, and 10. A primary objective of this SGCC was to address outer diameter stress corrosion cracking (ODSCC), which has been observed at the TTS and TSPs in the UCN3 SGs. The EPRI/SGOG process has been shown to effectively reduce prevailing ODSCC rates at the TTS and TSPs, particularly when applied with periodic venting in this application. This was the first full-length SGCC campaign with venting performed in Korea. Ulchin Unit 3 commenced commercial operation in August 1998 and Ulchin Unit 4 commenced commercial operation in December 1999. UCN3 and UCN4 are a two-loop pressurized water reactor (PWR) of the Korea Standard Nuclear Plant (KSNP) design. The SGs contain high-temperature mill annealed (HTMA) Alloy 600 tubing and are similar in design to the Combustion Engineering CE-80. The KSNP SGs have been susceptible to outer diameter stress corrosion cracking (ODSCC), which is consistent with operating experience for other SGs containing Alloy 600HTMA tubing material. The UCN3/4 SGs have recently begun to experience ODSCC. Hankook Jungsoo Industries Co., Ltd (HaJI) was selected as the cleaning vendor by KHNP. To date, HaJI has completed five Advanced Scale Conditioning Agent (ASCA) cleaning applications and two EPRI/SGOG Steam Generator Chemical Cleaning (SGCC) campaigns for KHNP. The goal of total deposit removal of the applications were successfully achieved and the amounts are 3,579 kg at UCN3 and 3,786 kg at UCN4 which values were estimated before each cleaning by analysing ECT signal and liquid samples from the SGs. The deposits from the SGs were primarily composed of magnetite. There were no chemical

  12. Comparison of the performance, advantages and disadvantages of nuclear power generation compared to other clean sources of electricity

    Energy Technology Data Exchange (ETDEWEB)

    Mata, Jônatas F.C. da; Neto, Rieder O., E-mail: jonatasfmata@yahoo.com.br, E-mail: rieder.neto@gmail.com [Universidade do Estado de Minas Gerais (UEMG), João Monlevade, MG (Brazil); Mesquita, Amir Z., E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Nowadays, there is an increase in the demand for electricity in emerging countries, such as India, China and Brazil. There are several alternatives to increase energy generation, and each country has followed certain strategies to achieve this goal. For a long time, developed countries, such as the United States, the United Kingdom and Germany, had focused their efforts on the use of thermoelectric generators through the combustion of non-renewable sources such as coal, natural gas and oil. These examples were followed, also, by the emerging countries. However, pollution levels, generated by these sources, have required the breakdown of this paradigm, and the consequent reversal of large investments in clean energy sources, such as hydraulics, solar and wind. Nucleo-electric energy is also considered a clean energy source, since it does not generate polluting gases during the processing of concentrated uranium in nuclear reactors. In addition, all radioactive waste occupying relatively small volumes and being stored in controlled deposits, in aspects of health, environment and safety. The objective of this article is to compare the performance, in economic, environmental and safety aspects, of nuclear power in relation to renewable energy sources. The results show that nuclear energy has become increasingly competitive in all these fields, justifying the growth of investments in new nuclear technologies. Therefore, the coexistence between the use of clean sources of electricity and the thermonuclear matrix will bring, for humanity, truly sustainable systems of energy generation. (author)

  13. Comparison of the performance, advantages and disadvantages of nuclear power generation compared to other clean sources of electricity

    International Nuclear Information System (INIS)

    Mata, Jônatas F.C. da; Neto, Rieder O.; Mesquita, Amir Z.

    2017-01-01

    Nowadays, there is an increase in the demand for electricity in emerging countries, such as India, China and Brazil. There are several alternatives to increase energy generation, and each country has followed certain strategies to achieve this goal. For a long time, developed countries, such as the United States, the United Kingdom and Germany, had focused their efforts on the use of thermoelectric generators through the combustion of non-renewable sources such as coal, natural gas and oil. These examples were followed, also, by the emerging countries. However, pollution levels, generated by these sources, have required the breakdown of this paradigm, and the consequent reversal of large investments in clean energy sources, such as hydraulics, solar and wind. Nucleo-electric energy is also considered a clean energy source, since it does not generate polluting gases during the processing of concentrated uranium in nuclear reactors. In addition, all radioactive waste occupying relatively small volumes and being stored in controlled deposits, in aspects of health, environment and safety. The objective of this article is to compare the performance, in economic, environmental and safety aspects, of nuclear power in relation to renewable energy sources. The results show that nuclear energy has become increasingly competitive in all these fields, justifying the growth of investments in new nuclear technologies. Therefore, the coexistence between the use of clean sources of electricity and the thermonuclear matrix will bring, for humanity, truly sustainable systems of energy generation. (author)

  14. Chemical cleaning of nuclear (PWR) steam generators

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Mundis, J.A.

    1982-01-01

    This paper reports on a significant research program sponsored by a group of utilities (the Steam Generator Owners Group), which was undertaken to develop a process to chemically remove corrosion product deposits from the secondary side of pressurized water reactor (PWR) power plant steam generators. Results of this work have defined a process (solvent system and application methods) that is capable of removing sludge and tube-to-tube support plate crevice corrosion products generated during operation with all-volatile treatment (AVT) water chemistry. Considers a plant-specific test program that includes all materials in the steam generator to be cleaned and accounts for the physical locations (proximity and contact) of those materials. Points out that prior to applying the process in an operational unit, the utility, with the participation of the NSSR vendor, must define allowable total corrosion to the materials of construction of the unit

  15. Carbon steel corrosion prevention during chemical cleaning of steam generator secondary side components

    International Nuclear Information System (INIS)

    Fulger, M.; Lucan, D.; Velciu, L.

    2009-01-01

    During operation of a nuclear power plant, many contaminants, such as solid particles or dissolved species are formed in the secondary circuit, go into steam generator and deposit as scales on heat transfer tubing, support plate or as sludge on tube sheet. By accumulation of these impurities, heat transfer is reduced and the integrity of the steam generator tubing is influenced. Chemical cleaning is a qualified, efficient measure to improve steam generator corrosion performance. The corrosion mechanism can be counteracted by the chemical cleaning of the deposits on the tube sheet and the scales on the heat transfer tubing. The major component of the scales is magnetite, which can be dissolved using an organic chelating agent (ethylenediaminetetraacetic acid, EDTA) in combination with a complexing agent such as citric acid in an alkaline reducing environment. As the secondary side of SG is a conglomerate of alloys it is necessary to choose an optimal chemical cleaning solution for an efficient cleaning properties and at the same time with capability of corrosion prevention of carbon steel components during the process. The paper presents laboratory tests initiated to confirm the ability of this process to clean the SG components. The experiments followed two paths: - first, carbon steel samples have been autoclavized in specific secondary circuit solutions of steam generator to simulate the deposits constituted during operation of this equipment; - secondly, autoclavized samples have been cleaned with a solvent composed of EDTA citric acid, hydrazine of pH = 5 and temperature of 85 deg. C. Before chemical cleaning, the oxide films were characterized by surface analysis techniques including optical microscopy, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Applied to dissolve corrosion products formed in a steam generator, the solvents based on chelating agents are aggressive toward carbon steels and corrosion inhibitors are

  16. Material compatibility and corrosion control of the KWU chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1994-01-01

    The concentrations of salt impurities within the deposits on the tube sheet and in the tube to tube-support-plate crevices can induce a variety of corrosion mechanisms on steam generator tubes. One of the most effective ways of counteracting corrosion mechanisms and thus of improving steam generator performance is to clean the steam generators and keep them in a clean condition. As shown by field results chemical cleaning is a way of removing hazardous deposits from steam generators. All available chemical cleaning processes use inhibitors to control the corrosion except the KWU chemical cleaning process. In this article the corrosion control technique of KWU Chemical Cleaning Process without using conventional inhibitors will be explained and the state of the field experience with respect to material compatibility will be presented. (author). 4 figs., 1 tab., 8 refs

  17. The AREVA customized chemical cleaning C3-concept as part of the steam generator asset management

    International Nuclear Information System (INIS)

    Weiss, Steffen; Drexler, Andreas

    2012-09-01

    In pressurized water reactors corrosion products and impurities are transported into the steam generators by feed water. Corrosion products and impurities are accumulated in the SGs as deposits and scales on the tubes, the tube support structures and the tube sheet. Depending on the location, the composition and the morphology such deposits may negatively affect the performance of the steam generators by reducing the thermal performance, changing the flow patterns and producing localized corrosion promoting conditions. Accordingly removal of deposits or deposit minimization strategies are an essential part of the asset management program of the steam generators in Nuclear Power Plants. It is evident that such a program is plant specific, depending on the individual condition prevailing. Parameters to be considered are for example: - Steam generator and balance of plant design; - Secondary side water chemistry treatment; - Deposit amount and constitution; - Deposit distribution in the steam generator; - Existing or expected corrosion problems. After evaluation of the steam generator condition a strategy for deposit minimization has to be developed. Depending on the individual situation such strategies may span from curative full scale cleanings which are capable of removing the entire sludge inventory in the range of several 1000 kg per SG to preventive cleanings that remove only a portion of the deposits in the range of several 100 kg per SG. But also other goals depending on the specific plant situation, like tube sheet sludge piles or hard scale removal, may be considered. Beside the chemical cleaning process itself also the integration of the process into the outage schedule and considerations about its impact on other maintenance activities is of great importance. It is obvious that all these requirements cannot be met easily by a standardized cleaning method, thus a customisable chemical cleaning technology is required. Based on its comprehensive experience

  18. Steam generator chemical cleaning demonstration test No. 1 in a pot boiler

    International Nuclear Information System (INIS)

    Key, G.L.; Helyer, M.H.

    1981-04-01

    The effectiveness of the Electric Power Research Institute (EPRI Mark I) chemical cleaning solvent process was tested utilizing a 12 tube pot boiler that had previously been fouled and dented under 30 days of high chloride fault chemistry operation. Specifically, the intent of this chemical cleaning test was to: (1) dissolve sludge from the tubesheet, (2) remove non-protective magnetite from dented tube/support crevice regions, and (3) quantify the extent of corrosion of steam generator material during the test. Two laboratory cleaning demonstrations of 191 and 142 hours were performed

  19. Experience with vacuum distillation cleaning of a full-size steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Smit, C C

    1975-07-01

    In the 50 MW Sodium Component Test Facility at Hengelo tests are conducted on several types of full size prototype steam generators and an intermediate heat exchanger. The necessary post-test examination of these prototype components requires a complete removal of all sodium. Since in some cases the endurance test has to be continued after internal inspection, the cleaning-method should be such that no damage occurs to the component. After partial disassembly and internal inspection the component will be reassembled and must be acceptable for further use. The qualification tests of the Neratoom straight tube steam generator were concluded in June 1974. The evaporator module was decided to be partially disassembled in order to meet the requirement of a thorough examination before fabrication of the SNR-generators is started. In preparation for the most suitable cleaning procedure, several methods of sodium removal were considered.

  20. Experience with vacuum distillation cleaning of a full-size steam generator

    International Nuclear Information System (INIS)

    Smit, C.C.

    1975-01-01

    In the 50 MW Sodium Component Test Facility at Hengelo tests are conducted on several types of full size prototype steam generators and an intermediate heat exchanger. The necessary post-test examination of these prototype components requires a complete removal of all sodium. Since in some cases the endurance test has to be continued after internal inspection, the cleaning-method should be such that no damage occurs to the component. After partial disassembly and internal inspection the component will be reassembled and must be acceptable for further use. The qualification tests of the Neratoom straight tube steam generator were concluded in June 1974. The evaporator module was decided to be partially disassembled in order to meet the requirement of a thorough examination before fabrication of the SNR-generators is started. In preparation for the most suitable cleaning procedure, several methods of sodium removal were considered

  1. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  2. Field experience with KWU SG chemical cleaning process

    International Nuclear Information System (INIS)

    Odar, S.

    1989-01-01

    The ingress of corrosion products into PWR steam generators (SG's) their deposition and the subsequent concentration of salt impurities can induce a variety of mechanisms for corrosion attack on SG tubing. Already, some plants have had to replace their steam generators due to severe corrosion damage and others are seriously considering the same costly action in the near future. One of the most effective ways to counteract corrosion mechanisms and thus to reduce the likelihood of SG replacement becoming necessary is to clean the SG's and to keep them clean. For many years, the industry has been involved in developing different types of cleaning techniques. Among these, chemical cleaning has been shown to be especially effective. In this article, the KWU chemical cleaning process, for which there is considerable application experience, is described. The results of field applications will be presented together with material compatibility data and information on cleaning effectiveness. (author)

  3. Steam generator cleaning campaigns at Bruce A: 1993-1996

    International Nuclear Information System (INIS)

    Puzzuoli, F.V.; Leinonen, P.J.; Lowe, G.A.

    1997-01-01

    Boiler chemical cleaning (BOCC) and high-pressure water lancing operations were performed during the Bruce A 1993 Unit 3, 1994 Unit 3, 1995 Unit 1 and 1996 Unit 3 outages to remove secondary side deposits. High-pressure water lancing focused on three boiler areas: tube support plates, to remove broached hole deposits, hot leg U-bend supports to dislodge deposits contributing to boiler tube stress corrosion cracking and tube sheets with the aim of removing accumulated sludge piles and post BOCC insoluble residues. The chemical cleaning processes applied were modified versions of the one developed by the Electric Power Research Institute/Steam Generator Owners Group. During these BOCC operations, corrosion for several key boiler materials was monitored and was well below the specified allowances

  4. Radiocesium Removal From Synthetic Steam-Generator Cleaning Solutions. Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    Narbutt, H; Bartos, B [Department of Radiochemistry, Institute of Nuclear Chemistry and Technology, PL-03185 Warsaw (Poland); Taleb, H [On leave from Tajoura Nuclear Research Center, Tripoli (Libyan Arab Jamahiriya)

    1996-03-01

    Adjustment of {sup 137} Cs{sup +} on ion exchangers from aqueous solutions containing ammonia and various chelating agents was studied. The solutions simulated radioactive waste obtained after chemical cleaning of steam generators (SG) in nuclear power plants according to the technology developed by Siemens KWU and contained ammonia and one of the following chelating agents; nitrilotriacetic acid (NTA), ethylenediamine tetraacetic acid (EDTA), and ethylenediamine(EDA), to dissolve iron and/or copper corrosion deposits. The ion exchangers used were of the composite type, and consisted of powdered cobalt(II) hexacyanoferrate incorporated into beads of a phenolsulphonic resin. Another composite adsorbent with titanium hexacyanoferrate has proved to adsorb {sup 137} Cs{sup +} from the NTA and EDA solutions more effectively than commercial caesium- selective resin Lewatit DN-KR. However, because of high concentration of competitive ammonium ions at PH 7.2(at higher PH the sorbent decomposed), the removal of radiocaesium was still insufficient. 3 figs.

  5. PWR steam generator chemical cleaning. Phase II. Final report

    International Nuclear Information System (INIS)

    1980-01-01

    Two techniques believed capable of chemically dissolving the corrosion products in the annuli between tubes and support plates were developed in laboratory work in Phase I of this project and were pilot tested in Indian Point Unit No. 1 steam generators. In Phase II, one of the techniques was shown to be inadequate on an actual sample taken from an Indian Point Unit No. 2 steam generator. The other technique was modified slightly, and it was demonstrated that the tube/support plate annulus could be chemically cleaned effectively

  6. Development of ultra low dew-point clean air generator; Cho tei roten seijo kuki hassei sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, H.; Okamura, N. [Takasago thermal Engineering Co., Ltd., Kanagawa (Japan)

    2000-05-10

    To reduce the manufacturing cost of semiconductors, some systems have been proposed that use a cheap and high purity Clean Dry Air (CDA). CDA can reduce process step such as wafer cleaning, because CDA flow in stocker prevents the wafer surface from adsorbing of moisture and organic impurities. We have already optimized a two-stage rotary dehumidifier and have conducted a study of methods for cheaply manufacturing air that has a low dew-point of -70 degree C to -50 degree C. We have further developed the method in which a dry dehumidifier is used, and developed an ultra low dew-point air generator. The air generator is a three-stage rotary dehumidifier in which a further stage is added to the two-stage rotary dehumidifier. The main component of the rotors is metal silicate. The air generator can supply dry air with a dew-point of -110 degree C. or less, in which the concentration in all gaseous contaminants is far below 1 ppb. We made a trial calculation of the manufacturing cost, and an average cost of 0.25 yen/m{sup 3} was obtained. (author)

  7. Processing method for chemical cleaning liquid on the secondary side of steam generator

    International Nuclear Information System (INIS)

    Nishihara, Yukio; Inagaki, Yuzo.

    1993-01-01

    Upon processing nitrilotriacetate (NTA), Fe liquid wastes mainly comprising Fe and Cu liquid wastes mainly comprising ethylene diamine and Cu generated upon chemical cleaning on the secondary side of a steam generator, pH of the Fe liquid wastes is lowered to deposit and separate NTA. Then, Fe ions in a filtrates are deposited on a cathode by electrolysis, as well as remaining NTA is decomposed by oxidation at an anode by O 2 gas. Cu liquid wastes are reacted with naphthalene disulfate and Ba ions and the reaction products are separated by deposition as sludges. Remaining Cu ions in the filtrates are deposited on the cathode by electrolysis. With such procedures, concentration of COD(NTA), Fe ions and Cu ions can greatly be reduced. Further, since capacity of the device can easily be increased in this method, a great amount of liquid wastes can be processed in a relatively short period of time. (T.M.)

  8. Importance of deposit information in the design and execution of steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Flores, O.; Remark, J.

    1997-01-01

    During the planning stages of the chemical cleaning of the San Onofre Nuclear Generating Station (SONGS) units 2 and 3 steam generators, it was determined that an understanding of the steam generator deposit loading and composition was essential to the design and success of the project. It was also determined that qualification testing, preferably with actual deposits from the SONGS steam generators, was also essential. SONGS units 2 and 3 have Combustion Engineering (CE)-designed pressurized water reactors. Each unit has two CE model 3410 steam generators. Each steam generator has 9350 alloy 600 tubes with 1.9-cm (3/4 in.) outside diameter. Unit 2 began commercial operation in 1983, and unit 3, in 1984. The purpose of this technical paper is to explain the effort and methodology for deposit composition, characterization, and quantification. In addition, the deposit qualification testing and design of the cleaning are discussed

  9. Atomistic Modelling of Materials for Clean Energy Applications : hydrogen generation, hydrogen storage, and Li-ion battery

    OpenAIRE

    Qian, Zhao

    2013-01-01

    In this thesis, a number of clean-energy materials for hydrogen generation, hydrogen storage, and Li-ion battery energy storage applications have been investigated through state-of-the-art density functional theory. As an alternative fuel, hydrogen has been regarded as one of the promising clean energies with the advantage of abundance (generated through water splitting) and pollution-free emission if used in fuel cell systems. However, some key problems such as finding efficient ways to prod...

  10. Evaluating The Operation Of Three Air Cleaners Working Individually In A Clean Room

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2011-01-01

    The use of portable air cleaners is becoming increasingly popular in many countries including Denmark. Portable air cleaners are known for not only removing but also generating particles and gases. To clarify this, three air cleaning technologies were evaluated. They were nonthermal plasma......, photochemical air purifier and corona discharge ionizer. The concentrations of ultrafine particles, ozone and total volatile organic compounds were measured both in a duct and in a clean room. It was found that the studied air cleaning technologies increased the ozone level in the clean room and the duct....... The increase of ozone level in the clean room was more than that was measured in the duct. Additionally, it was found that the number of ultrafine particles in the room increased due to the generated ozone. The number of generated particles changed with the season. The study leads to the recommendation...

  11. Evaluation of air cleaning technologies existing in the Danish market

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2014-01-01

    Five portable air cleaning technologies including one new technology were evaluated to find their effectiveness in removing ultrafine particles. Measurements were carried out both in a duct and in a test room. The results showed that the technologies that use/create ozone to clean air can increase...... the ozone level significantly in the room. Moreover, they can cause generation of ultrafine particles and consequently increase ultrafine particle concentration in the room. The study suggests using a mechanical filter with low pressure drop as a recommended air cleaning technology in order to remove...

  12. Laser paper cleaning: the method of cleaning historical books

    Science.gov (United States)

    Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.

    2016-01-01

    Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.

  13. PWR steam generator chemical cleaning, Phase I. Final report

    International Nuclear Information System (INIS)

    Rothstein, S.

    1978-07-01

    United Nuclear Industries (UNI) entered into a subcontract with Consolidated Edison Company of New York (Con Ed) on August 8, 1977, for the purpose of developing methods to chemically clean the secondary side tube to tube support crevices of the steam generators of Indian Point Nos. 1 and 2 PWR plants. This document represents the first reporting on activities performed for Phase I of this effort. Specifically, this report contains the results of a literature search performed by UNI for the purpose of determining state-of-the-art chemical solvents and methods for decontaminating nuclear reactor steam generators. The results of the search sought to accomplish two objectives: (1) identify solvents beyond those proposed at present by UNI and Con Ed for the test program, and (2) confirm the appropriateness of solvents and methods of decontamination currently in use by UNI

  14. Cleaning of spent solvent and method of processing cleaning liquid waste

    International Nuclear Information System (INIS)

    Ozawa, Masaki; Kawada, Tomio; Tamura, Nobuhiko.

    1993-01-01

    Spent solvents discharged from a solvent extracting step mainly comprise n-dodecane and TBP and contain nuclear fission products and solvent degradation products. The spent solvents are cleaned by using a sodium chloride free detergent comprising hydrazine oxalate and hydrazine carbonate in a solvent cleaning device. Nitric acid is added to the cleaning liquid wastes containing spent detergents extracted from the solvent cleaning device, to control an acid concentration. The detergent liquid wastes of controlled acid concentration are sent to an electrolysis oxidation bath as electrolytes and electrochemically decomposed in carbonic acid gas, nitrogen gas and hydrogen gas. The decomposed gases are processed as off gases. The decomposed liquid wastes are processed as a waste nitric acid solution. This can provide more effective cleaning. In addition, the spent detergent can be easily decomposed in a room temperature region. Accordingly, the amount of wastes can be decreased. (I.N.)

  15. Benefits of integrating chemical and mechanical cleaning processes for steam generator sludge removal

    International Nuclear Information System (INIS)

    Varrin, R.D.; Ferriter, A.M.; Oliver, T.W.; Le Surf, J.E.

    1992-01-01

    This paper discusses the benefits of performing in-bundle tubesheet lancing in conjunction with chemical cleaning of PWR and PHWR steam generators in which a hard sludge pile is known to exist. The primary benefits of in-bundle lancing are to: (1) increase the exposed area of the sludge pile by cutting furrows in the surface thereby enhancing dissolution of sludge, (2) reduce the volume of solvents required since material removed by lancing does not have to be dissolved chemically, (3) improve rinsing and removal of residual solvent between iron and copper dissolution steps, and (4) allow for verification of process effectiveness by providing high quality in-bundle visual inspection. The reduction in solvent volumes can lead to a significant reduction in solvent costs and waste processing. A case study which includes an economic evaluation for a combined chemical and mechanical cleaning shows a potential cost saving of up to US$ 300,000 over use of chemical cleaning alone. 14 refs., 2 tabs., 2 figs

  16. Characterization of high concentration dust generator

    International Nuclear Information System (INIS)

    Shimura, Toichiro; Yokochi, Akira

    1999-01-01

    This paper describes the development of fluidized bed type high concentration dust generator that keeps for long period dust concentration range of about 10 mg/m 3 for the study of working place monitoring system and evaluation of respirator. The generator is keeping constant powder in fluidized bed for keeping the dust concentration. It is necessary to keep constant feeding rate of powder in order to keep the quantity of dust in the fluidized bed. Our generator enables to obtain constant feeding rate by a screw feeder and by using mixed powder with fluidising particles (glass beads) before feeding. The generator produces high concentration dust of 11.3 mg/m 3 ± 1.0 mg/m 3 for about 5 hours and keeps the dust size 4.2-4.6 μm in mass median aerodynamic diameter with reasonable reproducibility. (author)

  17. Bio-Inspired Polymer Membrane Surface Cleaning

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2017-03-01

    Full Text Available To generate polyethersulfone membranes with a biocatalytically active surface, pancreatin was covalently immobilized. Pancreatin is a mixture of digestive enzymes such as protease, lipase, and amylase. The resulting membranes exhibit self-cleaning properties after “switching on” the respective enzyme by adjusting pH and temperature. Thus, the membrane surface can actively degrade a fouling layer on its surface and regain initial permeability. Fouling tests with solutions of protein, oil, and mixtures of both, were performed, and the membrane’s ability to self-clean the fouled surface was characterized. Membrane characterization was conducted by investigation of the immobilized enzyme concentration, enzyme activity, water permeation flux, fouling tests, porosimetry, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  18. High resolution 4-D spectroscopy with sparse concentric shell sampling and FFT-CLEAN.

    Science.gov (United States)

    Coggins, Brian E; Zhou, Pei

    2008-12-01

    Recent efforts to reduce the measurement time for multidimensional NMR experiments have fostered the development of a variety of new procedures for sampling and data processing. We recently described concentric ring sampling for 3-D NMR experiments, which is superior to radial sampling as input for processing by a multidimensional discrete Fourier transform. Here, we report the extension of this approach to 4-D spectroscopy as Randomized Concentric Shell Sampling (RCSS), where sampling points for the indirect dimensions are positioned on concentric shells, and where random rotations in the angular space are used to avoid coherent artifacts. With simulations, we show that RCSS produces a very low level of artifacts, even with a very limited number of sampling points. The RCSS sampling patterns can be adapted to fine rectangular grids to permit use of the Fast Fourier Transform in data processing, without an apparent increase in the artifact level. These artifacts can be further reduced to the noise level using the iterative CLEAN algorithm developed in radioastronomy. We demonstrate these methods on the high resolution 4-D HCCH-TOCSY spectrum of protein G's B1 domain, using only 1.2% of the sampling that would be needed conventionally for this resolution. The use of a multidimensional FFT instead of the slow DFT for initial data processing and for subsequent CLEAN significantly reduces the calculation time, yielding an artifact level that is on par with the level of the true spectral noise.

  19. Significant OH production under surface cleaning and air cleaning conditions: Impact on indoor air quality.

    Science.gov (United States)

    Carslaw, N; Fletcher, L; Heard, D; Ingham, T; Walker, H

    2017-11-01

    We report measurements of hydroxyl (OH) and hydroperoxy (HO 2 ) radicals made by laser-induced fluorescence spectroscopy in a computer classroom (i) in the absence of indoor activities (ii) during desk cleaning with a limonene-containing cleaner (iii) during operation of a commercially available "air cleaning" device. In the unmanipulated environment, the one-minute averaged OH concentration remained close to or below the limit of detection (6.5×10 5  molecule cm -3 ), whilst that of HO 2 was 1.3×10 7  molecule cm -3 . These concentrations increased to ~4×10 6 and 4×10 8  molecule cm -3 , respectively during desk cleaning. During operation of the air cleaning device, OH and HO 2 concentrations reached ~2×10 7 and ~6×10 8  molecule cm -3 respectively. The potential of these OH concentrations to initiate chemical processing is explored using a detailed chemical model for indoor air (the INDCM). The model can reproduce the measured OH and HO 2 concentrations to within 50% and often within a few % and demonstrates that the resulting secondary chemistry varies with the cleaning activity. Whilst terpene reaction products dominate the product composition following surface cleaning, those from aromatics and other VOCs are much more important during the use of the air cleaning device. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Heat exchanger cleaning

    International Nuclear Information System (INIS)

    Gatewood, J.R.

    1980-01-01

    A survey covers the various types of heat-exchange equipment that is cleaned routinely in fossil-fired generating plants, the hydrocarbon-processing industry, pulp and paper mills, and other industries; the various types, sources, and adverse effects of deposits in heat-exchange equipment; some details of the actual procedures for high-pressure water jetting and chemical cleaning of some specific pieces of equipment, including nuclear steam generators. (DN)

  1. Impurity studies and discharge cleaning in Doublet III

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges.

  2. Impurity studies and discharge cleaning in Doublet III

    International Nuclear Information System (INIS)

    Marcus, F.B.

    1979-10-01

    The goal of present and next generation tokamak experiments is to produce high-density, high-purity plasmas during high-power, extended-duration discharges. Plasma discharges with Z/sub eff/ values near unity and low concentrations of medium and high-Z metallic impurities have been obtained in Doublet III using a combination of low-power hydrogen discharge cleaning, gas puffing, precise plasma shape and position control, and high-Z limiters. Analysis of the first wall surface and residual gas impurities confirmed that clean conditions have been achieved. The high-Z limiters showed very limited amounts of melting or arcing. The progress of the wall cleaning process was monitored by three diagnostic techniques: Auger electron spectroscopy of metallic samples at the vessel wall, residual gas analysis, and the resistivity of full power discharges

  3. Chemical cleaning review

    International Nuclear Information System (INIS)

    Dow, B.L.; Thomas, R.C.

    1995-01-01

    Three main chemical processes for cleaning steam generators have evolved from the early work of the industry. Of the more than 50 chemical cleanings carried out to date most have been considered a success by the utilities performing them. (author)

  4. L-Reactor 186-basin cleaning alternatives

    International Nuclear Information System (INIS)

    Turcotte, M.D.S.

    1983-01-01

    Operation of L Reactor will necessitate annual cleaning of the L Area 186 basins. Alternatives are presented for sediment discharge due to 186-basin cleaning activities as a basis for choosing the optimal cleaning method. Current cleaning activities (i.e. removal of accumulated sediments) for the P, C and K-Area 186 basins result in suspended solids concentrations in the effluent waters above the NPDES limits, requiring an exemption from the NPDES permit for these short-term releases. The objective of mitigating the 186-basin cleaning activities is to decrease the suspended solids concentrations to within permit limits while continuing satisfactory operation of the basins

  5. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  6. Microbial water quality in clean water tanks following inspection and cleaning

    DEFF Research Database (Denmark)

    Christensen, Sarah Christine Boesgaard; Esbjørn, Anne; Mollerup, Finn

    Increased bacterial counts are often registered in drinking water leaving clean water tanks after the tanks have been emptied, inspected and cleaned by flushing. To investigate the reason for the increased bacterial concentrations and consequently limit it, samples from two clean water tanks befo...... start-up of the tanks, which may indicate that a substantial part of the bacteria in the drinking water leaving the tanks originated from the sand filter. This was supported by 16S DNA analyses....

  7. Dynamics of clean coal-fired power generation development in China

    International Nuclear Information System (INIS)

    Yue, Li

    2012-01-01

    Coal-fired power technology will play an important role over a long period in China. Clean coal-fired power technology is essential for the global GHG emission reduction. Recently, advanced supercritical (SC)/ultra-supercritical (USC) technology has made remarkable progress in China and greatly contributed to energy saving and emission reduction. This study analyzes the dynamics of SC/USC development in China from an integrated perspective. The result indicates that, besides the internal demand, the effective implementation of domestic public policy and technology transfer contributed greatly to the development of SC/USC technology in China. In future low carbon scenario, SC/USC coal-fired power technology might still be the most important power generation technology in China until 2040, and will have a significant application prospect in other developing countries. The analysis makes a very useful introduction for other advanced energy technology development, including a renewable energy technology, in China and other developing countries. - Highlights: ► The US/USC technology is the key clean coal-fired power technology in current China. ► The domestic policy and technology transfer largely contributed to their development. ► This makes a useful introduction for the development of renewable energy in China.

  8. Bifunctional Au@TiO_2 core–shell nanoparticle films for clean water generation by photocatalysis and solar evaporation

    International Nuclear Information System (INIS)

    Huang, Jian; He, Yurong; Wang, Li; Huang, Yimin; Jiang, Baocheng

    2017-01-01

    Highlights: • Au@TiO_2 core-shell nanoparticles were prepared in this study. • Bifunctional films for photocatalysis and solar evaporation were designed. • The evaporation and photodegradation with core-shell structures were investigated. - Abstract: With water scarcity becoming an increasingly critical issue for modern society, solar seawater desalination represents a promising approach to mitigating water shortage. In addition, solar seawater desalination shows great potential for mitigating the energy crisis due to its high photo-thermal conversion efficiency. However, the increasing contamination of seawater makes it difficult to generate clean water through simple desalination processes. In this work, clean water is generated by a newly designed bifunctional Au@TiO_2 core-shell nanoparticle film with a high photo-thermal conversion efficiency that is capable of photocatalysis and solar evaporation for seawater desalination. Bifunctional films of Au@TiO_2 core-shell nanoparticles with good stability were prepared. It was found that the formation of the core-shell structures played a key role in promoting the photo-thermal conversion efficiency and the evaporation of seawater, while the photocatalytic function demonstrated herein could contribute to the purification of polluted seawater. Furthermore, the film structure can serve to concentrate the NPs for the photo-reaction, as well as heat for water evaporation, improving both the photo-reaction efficiency and photo-thermal conversion efficiency. This efficient approach to solar seawater desalination, which combines evaporation with the photodegradation of pollutants, could help to address the dual issues of water scarcity and water pollution.

  9. Hot fuel gas dedusting after sorbent-based gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Advanced power generation technologies, such as Air Blown Gasification Cycle (ABGC), require gas cleaning at high temperatures in order to meet environmental standards and to achieve high thermal efficiencies. The primary hot gas filtration process, which removes particulates from the cooled raw fuel gas at up to 600{degree}C is the first stage of gas cleaning prior to desulphurization and ammonia removal processes. The dust concentration in the fuel gas downstream of the sorbent processes would be much lower than for the hot gas filtration stage and would have a lower sulphur content and possibly reduced chlorine concentration. The main aim of this project is to define the requirements for a hot gas filter for dedusting fuel gas under these conditions, and to identify a substantially simpler and more cost effective solution using ceramic or metal barrier filters.

  10. Highly concentrated EDTA gel improves cleaning efficiency of root canal preparation in vitro.

    Science.gov (United States)

    Putzer, P; Hoy, L; Günay, H

    2008-12-01

    Debris and smear layer, as a product of mechanical root canal instrumentation, reduce the effectiveness of pharmacological substances to prevent post-treatment diseases and impair direct contact of filling materials with a clean dentinal surface. The aim of this in vitro study was to investigate the presence and localization of debris and smear layer via scanning electron microscope analysis after standardized root canal preparation with different chelating agents. Dentin surfaces received treatment with: (1) 15% ethylenediaminetetraacetic acid (EDTA), (2) 18.6% EDTA (3) and 24% EDTA or without any demineralizing chemicals as control. Forty vertically split human premolars were sputtered and divided into coronal, middle, and apical sections, followed by a randomized, blinded score evaluation using five scores. Pairwise comparisons of all treatment groups against a control group have been performed by Mann-Whitney U test and the Kruskal-Wallis test. Debris grades showed no significant difference between the three regions of the root canals, except for 18.6% EDTA in the central third. Smear layer and smear plug removal was concentration-dependent. Removal of the smear layer in the three areas showed that there was a statistically significant difference between all parts when using 18.6% and 24% EDTA concentrations compared with the control. The best smear layer removal in the apical region was observed using a 24% EDTA gel as chelating agent and lubricant. The usage of EDTA gel >/=18.6% presented a better cleaning regime when compared to the control group.

  11. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  12. Clean room actuators

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Toshiro

    1987-06-01

    This report explains on the present status of the clean room actuators including the author's research results. In a clean room, there exists a possibility of dust generation, even when a direct human work is eliminated by the use of robots or automatic machines, from the machines themselves. For this, it is important to develop such clean robots and transfer/positioning mechanism that do not generate dusts, and to develop an actuator and its control technique. Topics described in the report are as follows: 1. Prevention of dust diffusion by means of sealing. 2. Elimination of mechanical contact (Linear induction motor and pneumatic float, linear motor and magnetic attraction float, linear motor and air bearing, and magnetic bearing). 3. Contactless actuator having a positioning mechanism (Use of linear step motor and rotary contactless actuator). (15 figs, 11 refs)

  13. 40 CFR 262.213 - Laboratory clean-outs.

    Science.gov (United States)

    2010-07-01

    ... eligible academic entity is not required to count a hazardous waste that is an unused commercial chemical..., subpart C) generated solely during the laboratory clean-out toward its hazardous waste generator status... out, the date the laboratory clean-out begins and ends, and the volume of hazardous waste generated...

  14. Laser surface cleaning

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1994-01-01

    The objective of this work is a laboratory demonstration that red-lead primer and two-part epoxy paints can be stripped from concrete and metal surfaces using surface cleaning systems based on pulsed-repetition CO 2 lasers. The three goals are to: (1) demonstrate coatings removal, including surface pore cleaning; (2) demonstrate that there is negligible release of ablated contaminants to the environment; and (3) demonstrate that the process will generate negligible amounts of additional waste compared to competing technologies. Phase 1 involved site visits to RMI and Fernald to assess the cleaning issues for buildings and parts. In addition, Phase 1 included detailed designs of a more powerful system for industrial cleaning rates, including laser, articulating optics, ablated-material capture suction nozzle attached to a horizontal raster scanner for floor cleaning, and filtration system. Some concept development is also being done for using robots, and for parts cleaning. In Phase 2 a transportable 6 kW system will be built and tested, with a horizontal surface scanner for cleaning paint from floors. The laboratory tests will again be instrumented. Some concept development will continue for using robots, and for parts cleaning. This report describes Phase 1 results

  15. Weld region corrosion during chemical cleaning of PWR [pressurized-water reactor] steam generators: Volume 2, Tests and analyses: Final report

    International Nuclear Information System (INIS)

    Barna, J.L.; Bozeka, S.A.; Jevec, J.M.

    1987-07-01

    The potential for preferential corrosion of steam generator weld regions during chemical cleaning using the generic SGOG solvents was investigated. The investigations included development and use of a corrosion assessment test facility which measured corrosion currents in a realistic model of the steam generator geometry in the vicinity of a specific weld during a simulated chemical dissolution of sludge consisting of essentially pure magnetite. A corrosion monitoring technique was developed and qualified. In this technique free corrosion rates measured by linear polarization techniques are added to corrosion rates calculated from galvanic current measured using a zero resistance ammeter to give an estimate of total corrosion rate for a galvanically corroding material. An analytic modeling technique was developed and proved useful in determining the size requirements for the weld region mockup used in the corrosion assessment test facility. The technique predicted galvanic corrosion rates consistent with that observed in a corrosion assessement test when polarization data used as model input were obtained on-line during the test. The test results obtained during this investigation indicated that chemical cleaning using the SGOG magnetite dissolution solvent can be performed with a small amount of corrosion of secondary side internals and pressure boundary welds. The maximum weld region corrosion measured during a typical chemical cleaning cycle to remove essentially pure magnetite sludge was about 8 mils. However, additional site specific weld region corrosion assessment testing and qualification will be required prior to chemical cleaning steam generators at a specific plant. Recommendations for site specific qualification of chemical cleaning processes and for use of process monitors and on-line corrosion instrumentation are included in this report

  16. Development of S/G Lancing System for Upper Bundle Hydraulic Cleaning

    International Nuclear Information System (INIS)

    Jeong, Woo Tae; Kim, Suk Tae; Hong, Sung Yull

    2005-01-01

    Steam generators of nuclear power plants are recommended to be cleaned during plant outages. Various lancing equipments are developed for the cleaning of tube sheet area of nuclear steam generators. However, no lancing system has been developed in Korea for cleaning upper bundle area of steam generators. Therefore, we developed an upper bundle cleaning system for removing sludge deposited on the tube support plates of nuclear steam generators

  17. Effect of ammonia on ozone-initiated formation of indoor secondary products with emissions from cleaning products

    Science.gov (United States)

    Huang, Yu; Lee, Shun Cheng; Ho, Kin Fai; Ho, Steven Sai Hang; Cao, Nanying; Cheng, Yan; Gao, Yuan

    2012-11-01

    Biogenic volatile organic compounds (BVOCs) emitted from cleaning products and air fresheners indoors are prone to oxidation resulting in the formation of secondary pollutants that can pose health risks on residents. Ammonia (NH3) is ubiquitous in ambient and indoor environments. In this study, we investigated the effect of ammonia (NH3) on secondary pollutants formation from the ozonolysis of BVOCs emitted from cleaning products including floor cleaner (FC), kitchen cleaner (KC) and dishwashing detergent (DD) in a large environmental chamber. Our results demonstrated that the presence of NH3 (maximum concentration is 240 ppb) could significantly enhance secondary organic aerosols (SOAs) formation from the ozonolysis of all the three categories of cleaning products. For example, for the FC sample, the maximum total particle concentration was up to 2.0 × 104 # cm-3 in the presence of NH3, while it was 1.3 × 104 # cm-3 which was 35% lower without NH3. However, it was found that the extent of NH3 effect on SOAs formation from the ozonolysis of BVOCs emissions was component-dependent. The presence of NH3 in the reaction systems could increase the consumptions of d-limonene that is the dominant BVOC species as identified in cleaning products. The percent yields (%) of secondary carbonyl compounds generated from the ozonolysis of BVOCs emitted from three categories of cleaning products were identified in the presence and absence of NH3, respectively. The increase in SOAs particle number concentration can be attributed to the formation of condensable salts from reactions between NH3 and organic compounds generated from the BVOCs ozonolysis processes. By investigating the NH3 effect on the ozonolysis of BVOCs mixtures in contrast to the chemistry of individual compounds, a better assessment can be made of the overall impact cleaning products have on real indoor environments.

  18. Steam generators secondary side chemical cleaning at Point Lepreau using the Siemens high temperature process

    International Nuclear Information System (INIS)

    Verma, K.; MacNeil, C.; Odar, S.; Kuhnke, K.

    1997-01-01

    This paper describes the chemical cleaning of the four steam generators at the Point Lepreau facility, which was accomplished as a part of a normal service outage. The steam generators had been in service for twelve years. Sludge samples showed the main elements were Fe, P and Na, with minor amounts of Ca, Mg, Mn, Cr, Zn, Cl, Cu, Ni, Ti, Si, and Pb, 90% in the form of Magnetite, substantial phosphate, and trace amounts of silicates. The steam generators were experiencing partial blockage of broached holes in the TSPs, and corrosion on tube ODs in the form of pitting and wastage. In addition heat transfer was clearly deteriorating. More than 1000 kg of magnetite and 124 kg of salts were removed from the four steam generators

  19. Cleaning the feed-water pipeline internal surfaces

    International Nuclear Information System (INIS)

    Podkopaev, V.A.

    1984-01-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washing by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones

  20. Cleaning the feed-water pipeline internal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Podkopaev, V.A.

    1984-12-01

    The procedure of cleaning the feed-water pipeline internal surfaces at the Chernobylsk-4 power unit is described. Cleaning was conducted in five stages. Pipelines were cleaned from mechanical impurities at the first stage. At the second stage the pipelines were washed by water heated up to 80 deg C. At the third stage nitric acid was added to 95-100 deg C water with the acid concentration in the circuit = 60 mg/l, purification period = 14 h. At the fourth stage hydrogen peroxide was added to the circuit at 95-100 deg C (the solution concentration was equal to 5-6 mg/l, the solution stayed in the circuit for 1 h 20 min). At the fifth stage sodium nitrite concentrated to 20 mg/l was introduced to the circuit in 75 minutes; this promoted strengthening of the oxide layer in the circuit on the base of nitric acid and hydrogen peroxide. Data on the water acidity in the circuit, water electric conductivity and iron concentration after the fourth stage and on completion of the circuit cleaning are presented. The described method of cleaning enables to save scarce reagents and use cheaper ones.

  1. Acid leaching of coal: to produce clean fuels from Turkish lignite

    Energy Technology Data Exchange (ETDEWEB)

    Seferinoglu, Meryem [Mineral Research and Exploration Directorate (Turkey)], email: meryem_seferinoglu66@yahoo.com; Duzenli, Derya [Ankara Central Laboratory (Turkey)

    2011-07-01

    With the increasing concerns about the environment, energy producers and governments are looking at developing clean energy sources. However, Turkey has limited clean energy resources and is using low grade coal which has high sulphur content as an alternative energy source. The aim of this paper is to study the possibility of generating clean fuel from Edirne Lignite and to get a better understanding of chemical mechanisms involved in coal leaching with hydrofluoric acid (HF) solutions. Leaching was conducted on Edirne Lignite with HF solution at ambient temperature and the effects of parameters such as reaction time and concentration of acid solutions on the process were evaluated. The optimum conditions were found and it was shown that ash levels can be reduced from 28.9% to 10.5% and the calorific value increased by 500kcal/kg with the HF leaching method. This study demonstrated that the production of clean fuel from high sulphur lignite is possible.

  2. Automated cleaning of electronic components

    International Nuclear Information System (INIS)

    Drotning, W.; Meirans, L.; Wapman, W.; Hwang, Y.; Koenig, L.; Petterson, B.

    1994-01-01

    Environmental and operator safety concerns are leading to the elimination of trichloroethylene and chlorofluorocarbon solvents in cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates from electronic components. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations

  3. Keeping condensers clean

    Energy Technology Data Exchange (ETDEWEB)

    Wicker, K.

    2006-04-15

    The humble condenser is among the biggest contributors to a steam power plant's efficiency. But although a clean condenser can provide great economic benefit, a dirty one can raise plant heat rate, resulting in large losses of generation revenue and/or unnecessarily high fuel bills. Conventional methods for cleaning fouled tubes range form chemicals to scrapers to brushes and hydro-blasters. This article compares the available options and describes how one power station, Omaha Public Power District's 600 MW North Omaha coal-fired power station, cleaned up its act. The makeup and cooling water of all its five units comes from the Missouri River. 6 figs.

  4. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  5. Effect of Time in Chemical Cleaning of Ultrafiltration Membranes

    NARCIS (Netherlands)

    Levitsky, I.; Naim, R.; Duek, A.; Gitis, V.

    2012-01-01

    Chemical cleaning of ultrafiltration membranes is often considered successful when the flux through a cleaned membrane is much higher than through a pristine one. Here, a novel definition of cleaning intensity is proposed as the product of the concentration of the cleaning agent and the cleaning

  6. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  7. Corrosion Behavior of SA508 Coupled with and without Magnetite in Chemical Cleaning Environments

    International Nuclear Information System (INIS)

    Son, Yeong-Ho; Jeon, Soon-Hyeok; Song, Geun Dong; Hur, Do Haeng; Lee, Jong-Hyeon

    2017-01-01

    To mitigate these problems, chemical cleaning process has been widely used. However, the chemical cleaning solution can affect the corrosion of SG structural materials as well as the magnetite dissolution. During the chemical cleaning process, the galvanic corrosion between SG materials and magnetite is also anticipated because they are in electrical connection. However, the corrosion measurement or monitoring for the materials has been performed without consideration of galvanic effect coupled with magnetite during the chemical cleaning process. In this study, the effect of temperature and EDTA concentration on the corrosion behavior of SA508 tubesheet material with and without magnetite was studied in chemical cleaning solutions. The galvanic corrosion behavior between SA508 and magnetite is predicted by using the mixed potential theory and its effect on the corrosion rate of SA508 is also discussed. By newly designed immersion test, it was confirmed that the extent of galvanic corrosion effect between SA508 and magnetite increased with increasing temperature and EDTA concentration. The galvanic corrosion behavior of SA508 coupled with magnetite in chemical cleaning environments was predicted by the mixed potential theory and verified by ZRA and LP technique. Galvanic coupling increased the corrosion rate of SA508 due to the shift in its potential to the anodic direction. Therefore, the galvanic corrosion effect between SA508 and magnetite should be considered when the corrosion measurement is performed during the chemical cleaning process in steam generators.

  8. Use of acoustic field in gas cleaning

    International Nuclear Information System (INIS)

    Boulaud, D.; Madelaine, G.; Malherbe, C.

    1985-01-01

    The use of acoustic field in gas cleaning can be done in two ways: the first is the conditioning of an aerosol by acoustic agglomeration before filtration by conventional methods (cyclones, granular beds, etc.), the second is the collection efficiency improvement of granular bed filters exposed to an acoustic field. In a first part, experimental results are given on the acoustic agglomeration of a polydisperse aerosol of mass concentration between 0.5 and 1 g/m 3 . An important effect of wall precipitation of particles is described and deposition velocity due to the presence of an acoustic field are measured as a function of particle diameter, sound pressure level and acoustic frequency. A dimensionless relationship between the deposition velocity and particle relaxation time is established for these results. At the end of this part energetic criteria for the use of acoustic agglomeration in a gas cleaning train is given. In a second part, experimental results are given to the influence of acoustic field on the collection efficiency of monodispersed aerosols ranging from 0.1 to 1 μm. For these both uses of acoustic field in industrial gas cleaning the different alternatives for the acoustic field generation are discussed

  9. Fire protection for clean rooms

    International Nuclear Information System (INIS)

    Kirson, D.

    1990-01-01

    The fire protection engineer often must decide what size fire can be tolerated before automatic fire suppression systems actuate. Is it a wastepaper basket fire, a bushel basket fire...? In the case of state-of-the-art clean rooms, the answer clearly is not even an incipient fire. Minor fires in clean rooms can cause major losses. This paper discusses what a clean room is and gives a brief overview of the unique fire protection challenges encountered. The two major causes of fire related to clean rooms in the semiconductor industry are flammable/pyrophoric gas fires in plastic ducts and polypropylene wet bench fires. This paper concentrates on plastic ductwork in clean rooms, sprinkler protection in ductwork, and protection for wet benches

  10. Chemical cleaning-associated generation of dissolved organic matter and halogenated byproducts in ceramic MBR: Ozone versus hypochlorite.

    Science.gov (United States)

    Sun, Huifang; Liu, Hang; Han, Jiarui; Zhang, Xiangru; Cheng, Fangqin; Liu, Yu

    2018-04-24

    This study characterized the dissolved organic matter (DOM) and byproducts generated after the exposure of activated sludge to ozone and NaClO in ceramic MBR. It was found that NaClO triggered more significant release of DOM than ozone. Proteins with the molecular weight greater than 20 kDa and humic acid like-substances were the principal components of DOM generated by NaClO, while ozone was found to effectively degrade larger biopolymers to low molecular weight substances. The results showed that more than 80% of DOM generated by NaClO and ozone could pass through the 0.2-μm ceramic membrane. Furthermore, total organic chlorine (TOCl) was determined to be the principal species of halogenated byproducts in both cases, while the generation of TOCl by NaClO was much more significant than that by ozone. Only a small fraction of TOCl was removed by the 0.2-μm ceramic membrane. More importantly, the toxic bioassays further revealed that the supernatant of sludge suspension and permeate in the MBR with NaClO cleaning exhibited higher developmental toxicity to the polychaete embryos than those by ozone. The results clearly showed that on-line chemical cleaning with ozone should be a more eco-friendly and safer approach for sustaining long-term membrane permeability in ceramic MBR. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  12. Problems of cleaning of gas releases from heat generating facilities

    International Nuclear Information System (INIS)

    Tret'yakov, V.; Burdejnaya, T.

    2000-01-01

    The paper deals with the problem of flue gases cleaning in the situation of a significant increasing use of fossil fuels in the Russian energy production. Information is given about the methods used in TPPs in different countries for cleaning of the gases released to the atmosphere from SO 2 and NO x . The main ways for solving the problem of decreasing of air pollution are outlined

  13. Development of the ultra-clean dry cleanup process for coal-based syngases: pilot-scale evaluation

    Energy Technology Data Exchange (ETDEWEB)

    R.B. Slimane; P.V. Bush; J.L. Aderhold, Jr.; B.G. Bryan; R.A. Newby; D. A. Horazak; S.C. Jain [Gas Technology Institute, Des Plaines, IL (United States)

    2005-07-01

    This paper reports on a recent successful pilot-scale evaluation of the Ultra-Clean Process performance at a 10-ton/day coal gasifier facility. In these tests, carbonaceous feedstocks were gasified, using GTI's fluidized bed U-GAS{reg_sign} gasification technology, to generate syngas. The raw syngas was then conditioned and fed to the UCP test section for deep cleaning to meet very stringent cleaning requirements for chemical feedstocks or liquid-fuel synthesis applications, or for fuel-cell power generation. Fine particle sorbents for sulfur, halide, and mercury removal were injected into the syngas upstream of two stages of particulate controlled devices, 'barrier filter-reactors', coupling efficient particle capture with an effective entrained and filter cake reaction environment for very effective multiple contaminant removal. The goal of the test program was to confirm sorbent selection, filter-reactor operating parameters and sorbent-to-contaminant ratios, which were previously determined in the laboratory to have potential to reduce contaminant concentrations to very low levels. The pilot-scale data developed are being used to update conceptual evaluations, which have shown the technical feasibility, cost effectiveness and commercial merit for the Ultra-Clean Process compared to conventional, Rectisol-based syngas cleaning. 10 refs., 5 figs.

  14. HangOut: generating clean PSI-BLAST profiles for domains with long insertions.

    Science.gov (United States)

    Kim, Bong-Hyun; Cong, Qian; Grishin, Nick V

    2010-06-15

    Profile-based similarity search is an essential step in structure-function studies of proteins. However, inclusion of non-homologous sequence segments into a profile causes its corruption and results in false positives. Profile corruption is common in multidomain proteins, and single domains with long insertions are a significant source of errors. We developed a procedure (HangOut) that, for a single domain with specified insertion position, cleans erroneously extended PSI-BLAST alignments to generate better profiles. HangOut is implemented in Python 2.3 and runs on all Unix-compatible platforms. The source code is available under the GNU GPL license at http://prodata.swmed.edu/HangOut/. Supplementary data are available at Bioinformatics online.

  15. National Alliance for Clean Energy Incubators New Mexico Clean Energy Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Suzanne S.

    2004-12-15

    The National Alliance for Clean Energy Incubators was established by the National Renewable Energy Laboratory (NREL) to develop an emerging network of business incubators for entrepreneurs specializing in clean energy enterprises. The Alliance provides a broad range of business services to entrepreneurs in specific geographic locales across the U.S. and in diverse clean energy technology areas such as fuel cells, alternative fuels, power generation, and renewables, to name a few. Technology Ventures Corporation (TVC) participates in the Alliance from its corporate offices in Albuquerque, NM, and from its sites in Northern and Southern New Mexico, California, and Nevada. TVC reports on the results of its attempts to accelerate the growth and success of clean energy and energy efficiency companies through its array of business support services. During the period from September 2002 through September 2004, TVC describes contributions to the Alliance including the development of 28 clients and facilitating capital raises exceeding $35M.

  16. Clean Coal Day '94 Hokkaido International Seminar; Clean coal day '94 Hokkaido kokusai seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-01

    The lectures given at the seminar were 1) Coal energy be friendly toward the earth, 2) Clean coal technology in the United Kingdom, and 3) How clean coal should be in Australia. In lecture 1), remarks are made on the importance of coal and its future, coal that protects forest, whether coal is a dirty fuel, coal combustion tests started relative to environmental pollution, acid rain in China and coal combustion, briquets effective in energy conservation, etc. In lecture 2), remarks are made on the importance of coal utilization in the United Kingdom, current state of coal utilization in power generation, problems related to gasification furnaces, problems related to combustors, problems related to high-temperature gas cleaning, function of cleaning filters, advantages of high-temperature gas treatment, actualities of gas combustors, studies of gas combustors, etc. In lecture 3), remarks are made on Australia's coal situation, problems related to clean coal technology, problems related to coal preparation technology, potentialities of Australian brown coal, coal utilization in power generation, need of new technology development, current state of coal utilization in Australia, coal utilization in metal-making industry, international cooperation on technology, etc. (NEDO)

  17. A study for estimate of contamination source with numerical simulation method in the turbulent type clean room

    International Nuclear Information System (INIS)

    Han, Sang Mok; Hwang, Young Kyu; Kim, Dong Kwon

    2015-01-01

    Contamination in a clean room may appear even more complicated by the effect of complicated manufacturing processes and indoor equipment. For this reason, detailed information about the concentration of pollutant particles in the clean room is needed to control the level of contamination financially and efficiently without any problem in manufacturing process. Allocation method has been developed as one of main ideas to fulfill a function of controlling contamination under the situation. By using this method, weighting factor can be predicted based on cleanliness on sampling spots and the values based on numerical analysis. In this point, the weighting factor indicates how each of contaminant sources influences the concentration of pollutant in the clean room. In this paper, when applied allocation method, we propose zoning method to accelerate the calculation time. And it was applied to cleanliness the actual improvement of the turbulent type clean room. As a result, we could estimate quantitatively the amount of contamination generated from the pollution sources. And was proved by experiments that it is possible to improve the level of cleanliness of the clean rooms by using these results.

  18. Effectiveness of HVAC duct cleaning procedures in improving indoor air quality.

    Science.gov (United States)

    Ahmad, I; Tansel, B; Mitrani, J D

    2001-12-01

    Indoor air quality has become one of the most serious environmental concerns as an average person spends about 22 hr indoors on a daily basis. The study reported in this article, was conducted to determine the effectiveness of three commercial HVAC (Heating Ventilation Air Conditioning) duct cleaning processes in reducing the level of airborne particulate matter and viable bioaerosols. The three HVAC sanitation processes were: (1) Contact method (use of conventional vacuum cleaning of interior duct surfaces); (2) Air sweep method (use of compressed air to dislodging dirt and debris); (3) Rotary brush method (insertion of a rotary brush into the ductwork to agitate and dislodge the debris). Effectiveness of these sanitation processes was evaluated in terms of airborne particulate and viable bioaerosol concentrations in residential homes. Eight identical homes were selected in the same neighborhood. Two homes were cleaned using each procedure and two were used as controls. It was found that both particle count readings and bioaerosol concentrations were higher when cleaning was being performed than before or after cleaning, which suggests that dirt, debris and other pollutants may become airborne as a result of disturbances caused by the cleaning processes. Particle count readings at 0.3 micron size were found to have increased due to cigarette smoking. Particle counts at 1.0 micron size were reduced due to HVAC duct cleaning. Post-level bioaerosol concentrations, taken two days after cleaning, were found to be lower than the pre-level concentrations suggesting that the cleaning procedures were effective to some extent. Homes cleaned with the Air Sweep procedure showed the highest degree of reduction in bioaerosol concentration among the three procedures investigated.

  19. Chemical cleaning specification: few tube test model

    International Nuclear Information System (INIS)

    Hampton, L.V.; Simpson, J.L.

    1979-09-01

    The specification is for the waterside chemical cleaning of the 2 1/4 Cr - 1 Mo steel steam generator tubes. It describes the reagents and conditions for post-chemical cleaning passivation of the evaporator tubes

  20. Moderator clean-up system in a heavy water reactor

    International Nuclear Information System (INIS)

    Sasada, Yasuhiro; Hamamura, Kenji.

    1983-01-01

    Purpose: To decrease the fluctuation of the poison concentration in heavy water moderator due to a heavy water clean-up system. Constitution: To a calandria tank filled with heavy water as poison-containing moderators, are connected both end of a pipeway through which heavy water flows and to which a clean-up device is provided. Strongly basic resin is filled within the clean-up device and a cooler is disposed to a pipeway at the upstream of the clean-up device. In this structure, the temperature of heavy water at the inlet of the clean-up device at a constant level between the temperature at the exit of the cooler and the lowest temperature for the moderator to thereby decrease the fluctuation in the poison concentration in the heavy water moderator due to the heavy water clean-up device. (Moriyama, K.)

  1. Risk in cleaning: chemical and physical exposure.

    Science.gov (United States)

    Wolkoff, P; Schneider, T; Kildesø, J; Degerth, R; Jaroszewski, M; Schunk, H

    1998-04-23

    Cleaning is a large enterprise involving a large fraction of the workforce worldwide. A broad spectrum of cleaning agents has been developed to facilitate dust and dirt removal, for disinfection and surface maintenance. The cleaning agents are used in large quantities throughout the world. Although a complex pattern of exposure to cleaning agents and resulting health problems, such as allergies and asthma, are reported among cleaners, only a few surveys of this type of product have been performed. This paper gives a broad introduction to cleaning agents and the impact of cleaning on cleaners, occupants of indoor environments, and the quality of cleaning. Cleaning agents are usually grouped into different product categories according to their technical functions and the purpose of their use (e.g. disinfectants and surface care products). The paper also indicates the adverse health and comfort effects associated with the use of these agents in connection with the cleaning process. The paper identifies disinfectants as the most hazardous group of cleaning agents. Cleaning agents contain evaporative and non-evaporative substances. The major toxicologically significant constituents of the former are volatile organic compounds (VOCs), defined as substances with boiling points in the range of 0 degree C to about 400 degrees C. Although laboratory emission testing has shown many VOCs with quite different time-concentration profiles, few field studies have been carried out measuring the exposure of cleaners. However, both field studies and emission testing indicate that the use of cleaning agents results in a temporal increase in the overall VOC level. This increase may occur during the cleaning process and thus it can enhance the probability of increased short-term exposure of the cleaners. However, the increased levels can also be present after the cleaning and result in an overall increased VOC level that can possibly affect the indoor air quality (IAQ) perceived by

  2. Study of chemical cleaning technique for removing sludge in secondary side of PWR SG

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Pan Qingchun; Yu Jinghua; Hou Shufeng

    1993-12-01

    The effect of components, concentration, pH, temperature, cleaning time and flowrate of chemical cleaning solvent made from EDTA mainly on Fe 3 O 4 solubility and corrosion rate of A3 carbon steel, S271 low alloy steel and 800 alloy are introduced. A small chemical cleaning test loop (30L) was built to study the cleaning technique. The effect of residue of chemical cleaning solvent on anti-corrosion performance of materials has been studied under the simulation condition of PWR (pressure water reactor) SG (steam generator) secondary side. The results show that the chemical solvent (pH = 7, 10% EDTA, 1% assistance solvent and 0.25% inhibitor A) can dissolve Fe 3 O 4 18 ∼23 g/L under the conditions of 93 +- 5 degree C, 8 hours and 112 r/min (1.8 ∼ 2.0 t/h). The corrosion rate of material is low. When the residue of EDTA is less than 0.01% there is no impact on the anti-corrosion performance of materials in PWR SG secondary side at normal operation condition (260 +- 5 degree C)

  3. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  4. NOVEL GAS CLEANING/CONDITIONING FOR INTEGRATED GASIFICATION COMBINED CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Dennis A. Horazak; Richard A. Newby; Eugene E. Smeltzer; Rachid B. Slimane; P. Vann Bush; James L. Aderhold Jr; Bruce G. Bryan

    2005-12-01

    Development efforts have been underway for decades to replace dry-gas cleaning technology with humid-gas cleaning technology that would maintain the water vapor content in the raw gas by conducting cleaning at sufficiently high temperature to avoid water vapor condensation and would thus significantly simplify the plant and improve its thermal efficiency. Siemens Power Generation, Inc. conducted a program with the Gas Technology Institute (GTI) to develop a Novel Gas Cleaning process that uses a new type of gas-sorbent contactor, the ''filter-reactor''. The Filter-Reactor Novel Gas Cleaning process described and evaluated here is in its early stages of development and this evaluation is classified as conceptual. The commercial evaluations have been coupled with integrated Process Development Unit testing performed at a GTI coal gasifier test facility to demonstrate, at sub-scale the process performance capabilities. The commercial evaluations and Process Development Unit test results are presented in Volumes 1 and 2 of this report, respectively. Two gas cleaning applications with significantly differing gas cleaning requirements were considered in the evaluation: IGCC power generation, and Methanol Synthesis with electric power co-production. For the IGCC power generation application, two sets of gas cleaning requirements were applied, one representing the most stringent ''current'' gas cleaning requirements, and a second set representing possible, very stringent ''future'' gas cleaning requirements. Current gas cleaning requirements were used for Methanol Synthesis in the evaluation because these cleaning requirements represent the most stringent of cleaning requirements and the most challenging for the Filter-Reactor Novel Gas Cleaning process. The scope of the evaluation for each application was: (1) Select the configuration for the Filter-Reactor Novel Gas Cleaning Process, the arrangement of the

  5. An intense lithium ion beam source using vacuum baking and discharge cleaning techniques

    International Nuclear Information System (INIS)

    Moschella, J.J.; Kusse, B.R.; Longfellow, J.P.; Olson, J.C.

    1991-01-01

    We have developed a high-purity, intense, lithium ion beam source which operates at 500 kV and 120 A/cm 2 with pulse widths of 125 ns full width half maximum. The beams were generated using a lithium chloride anode in planar magnetically insulated geometry. We have found that the combination of vacuum baking of the anode at 250 degree C followed by the application of 100 W of pure argon, steady-state, glow discharge cleaning reduced the impurity concentration in the beam to approximately 10% (components other than chlorine or lithium were considered impurities). Although the impurities were low, the concentration of chlorine in the 1+ and 2+ charge states was significant (∼25%). The remaining 65% of the beam consisted of Li + ions. Without the special cleaning process, over half the beam particles were impurities. It was determined that these impurities entered the beam at the anode surface but came originally from material in the vacuum chamber. After the cleaning process, recontamination was observed to occur in approximately 6 min. This long recontamination time, which was much greater than the expected monolayer formation time, was attributed to the elevated temperature of the anode. We also compared the electrical characteristics of the beams produced by LiCl anodes to those generated by a standard polyethylene proton source. In contrast to the polyethylene anode, the LiCl source exhibited a higher impedance, produced beams of lower ion current efficiency and had longer turn on times

  6. Deep cleaning of a metallurgical zinc leaching residue and recovery of valuable metals

    Science.gov (United States)

    Xing, Peng; Ma, Bao-zhong; Zeng, Peng; Wang, Cheng-yan; Wang, Ling; Zhang, Yong-lu; Chen, Yong-qiang; Wang, Shuo; Wang, Qiu-yin

    2017-11-01

    Huge quantities of zinc leaching residues (ZLRs) generated from zinc production are dumped continuously around the world and pose a potential environmental threat because of their considerable amounts of entrained heavy metals (mainly lead). Most ZLRs have not been properly treated and the valuable metals in them have not yet been effectively recovered. Herein, the deep cleaning of a ZLR and recovery of valuable metals via a hydrometallurgical route were investigated. The cleaning process consists of two essential stages: acid leaching followed by calcium chloride leaching. The optimum conditions for extracting zinc, copper, and indium by acid leaching were a sulfuric acid concentration of 200 g·L-1, a liquid/solid ratio of 4:1 (mL/g), a leaching time of 2 h, and a temperature of 90°C. For lead and silver extractions, the optimum conditions were a calcium chloride concentration of 400 g·L-1, a pH value of 1.0, a leaching time of 1 h, and a temperature of 30°C. After calcium chloride leaching, silver and lead were extracted out and the lead was finally recovered as electrolytic lead by electrowinning. The anglesite phase, which poses the greatest potential environmental hazard, was removed from the ZLR after deep cleaning, thus reducing the cost of environmental management of ZLRs. The treatment of chlorine and spent electrolyte generated in the process was discussed.

  7. Study on the flotation technology for deep-cleaning of coal slime

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiao-heng; Shan Xiao-yun; Jiang He-jin; Li Xiang-li [China University of Mining and Technology, Beijing (China). School of Chemical and Environmental Engineering

    2006-07-01

    The paper introduced the basic principle and special features of deep-cleaning of coal slime by flotation, first, separating the slime by conventional flotation to give a relatively low ash concentrate, a tailing containing an ash as high as possible, followed by flocculation-flotation to recover additional low ash concentrate. The regressive release flotation test and microphoto indicated that the middling consists mainly of intergrowth particles of coal and minerals. Comparison between deep-cleaning and conventional flotation results denoted that, at approximately same concentrate ash, its yield by deep-cleaning was 46.06 percent point higher, and at similar yield, its concentrate ash, 1.78 percent point lower. The performance by deep-cleaning is even better than that by regressive release flotation test. 4 refs., 2 figs., 6 tabs.

  8. Clean Power Generation from the Intractable Natural Coalfield Fires: Turn Harm into Benefit.

    Science.gov (United States)

    Shi, Bobo; Su, Hetao; Li, Jinshi; Qi, Haining; Zhou, Fubao; Torero, José L; Chen, Zhongwei

    2017-07-13

    The coal fires, a global catastrophe for hundreds of years, have been proved extremely difficult to control, and hit almost every coal-bearing area globally. Meanwhile, underground coal fires contain tremendous reservoir of geothermal energy. Approximately one billion tons of coal burns underground annually in the world, which could generate ~1000 GW per annum. A game-changing approach, environmentally sound thermal energy extraction from the intractable natural coalfield fires, is being developed by utilizing the waste energy and reducing the temperature of coalfield fires at the same time. Based on the Seebeck effect of thermoelectric materials, the temperature difference between the heat medium and cooling medium was employed to directly convert thermal energy into clean electrical energy. By the time of December 2016, the power generation from a single borehole at Daquan Lake fire district in Xinjiang has been exceeded 174.6 W. The field trial demonstrates that it is possible to exploit and utilize the waste heat resources in the treated coal fire areas. It promises a significant impact on the structure of global energy generation and can also promote progress in thermoelectric conversion materials, geothermal exploration, underground coal fires control and other energy related areas.

  9. Plasma cleaning of ITER first mirrors

    Science.gov (United States)

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  10. Hot gas cleaning, a targeted project

    Energy Technology Data Exchange (ETDEWEB)

    Romey, I. [University of Essen, Essen (Germany)

    1998-11-01

    Advanced hot gas cleaning systems will play a key role in future integrated combined cycle technologies. IGCC demonstration plants in operation or under construction are at present equipped with conventional wet gas scrubbing and cleaning systems. Feasibility studies for those IGCC plants have shown that the total efficiency of the processes can be improved using hot gas cleaning systems. However, this technology has not been developed and tested at a technical scale. Six well-known European industrial companies and research centres jointly worked together since January 1996 on a Targeted Project `Hot Gas Cleaning` to investigate and develop new hot gas cleaning systems for advanced clean coal power generation processes. In addition project work on chemical analysis and modelling was carried out in universities in England and Germany. The latest main findings were presented at the workshop. The main project aims are summarised as follows: to increase efficiency of advanced power generation processes; to obtain a reduction of alkalis and environmental emissions e.g. SO{sub 2}, NO{sub x}, CO{sub 2} and dust; and to develop the design basis for future industrial plants based on long-term operation of laboratory, pilot and demo-plants. To cover a range of possible process routes for future hot gas cleaning systems the following research programme is under investigation: removal of trace elements by different commercial and self developed sorbents; gas separation by membranes; separation of gas turbine relevant pollutants by hot filter dust and; H{sub 2}S removal and gas dedusting at high temperatures. 13 figs.

  11. Emulsion type dry cleaning system

    International Nuclear Information System (INIS)

    Kohanawa, Osamu; Matsumoto, Hiroyo.

    1988-01-01

    Protective clothing against radioactive contamination used in the radiation controlled areas of nuclear plants has been washed by the same wet washing as used for underwear washing, but recently dry cleaning is getting used in place of wet washing, which generates a large quantity of laundry drain. However, it was required to use wet washing once every five to ten dry cleanings for washing protective clothing, because conventional dry cleaning is less effective in removing water-soluble soils. Therefore, in order to eliminate wet washing, and to decrease the quantity of laundry drains, the emulsion type dry cleaning system capable of removing both oil-soluble and water-soluble soils at a time has been developed. The results of developmental experiments and actual application are presented in this paper. (author)

  12. Decontamination of polypropylene fabrics by dry cleaning

    International Nuclear Information System (INIS)

    Severa, J.; Knajfl, J.

    1983-01-01

    Polypropylene fabrics can efficiently be decontaminated by dry cleaning in benzine or perchloroethylene, this also in case the fabric was greased in addition to radioactive contamination. For heavily soiled fabric, it is advantageous to first dry clean it and then wash it. The positive effect was confirmed of intensifiers on the cleaning process, especially of benzine soap. In practice, its concentration should be selected within 1 and 10 g.dm - 3 . Decontamination by dry cleaning and subsequent washing is advantageous in that that the resulting activity of waste water from the laundry is low. Radioactive wastes from the dry cleaning process have a low weight and can be handled as solid waste. (M.D.)

  13. Techno-economic evaluation of concentrating solar power generation in India

    International Nuclear Information System (INIS)

    Purohit, Ishan; Purohit, Pallav

    2010-01-01

    The Jawaharlal Nehru National Solar Mission (JNNSM) of the recently announced National Action Plan on Climate Change (NAPCC) by the Government of India aims to promote the development and use of solar energy for power generation and other uses with the ultimate objective of making solar competitive with fossil-based energy options. The plan includes specific goals to (a) create an enabling policy framework for the deployment of 20,000 MW of solar power by 2022; (b) create favourable conditions for solar manufacturing capability, particularly solar thermal for indigenous production and market leadership; (c) promote programmes for off grid applications, reaching 1000 MW by 2017 and 2000 MW by 2022, (d) achieve 15 million m 2 solar thermal collector area by 2017 and 20 million by 2022, and (e) deploy 20 million solar lighting systems for rural areas by 2022. The installed capacity of grid interactive solar power projects were 6 MW until October 2009 that is far below from their respective potential. In this study, a preliminary attempt towards the technical and economic assessment of concentrating solar power (CSP) technologies in India has been made. To analyze the techno-economic feasibility of CSP technologies in Indian conditions two projects namely PS-10 (based on power tower technology) and ANDASOL-1 (based on parabolic trough collector technology) have been taken as reference cases for this study. These two systems have been simulated at several Indian locations. The preliminary results indicate that the use of CSP technologies in India make financial sense for the north-western part of the country (particularly in Rajasthan and Gujarat states). Moreover, internalization of secondary benefits of carbon trading under clean development mechanism of the Kyoto Protocol further improves the financial feasibility of CSP systems at other locations considered in this study. It may be noted that the locations blessed with annual direct solar radiation more than 1800 k

  14. Electric Utility Generating Units: Repealing the Clean Power Plan

    Science.gov (United States)

    The Clean Power Plan established emission guidelines for states to follow in limiting carbon dioxide (CO2) emissions from existing power plants. EPA is proposing to repeal the CPP and rescind the accompanying legal memorandum.

  15. Gentilly 2 steam generators Spring 2000 outage: tubesheet waterlance cleaning and inspection; upper bundle inspection

    International Nuclear Information System (INIS)

    Akeroyd, J.K.; Plante, S.

    2000-01-01

    A review of the secondary side maintenance activities recently completed during the Gentilly 2 Annual Spring 2000 Maintenance Outage. Activities included: 1) Tubesheet intertube waterlance cleaning and visual inspection, 2) First tube support plate, in-bundle visual inspection of the hot leg, and 3) Upper bundle tube support plate visual inspection. A description of the waterlancing and inspection equipment and setup in the RB at Gentilly 2 is provided. Several innovative techniques were successfully employed and yielded savings in critical path duration, labour and personnel radiation dose. These included accessing the SG tubesheet region through one handhole only and sludge removal utilizing the SG blowdown system. Plant personnel judged tubesheet sludge removal successful. Before and after results of the cleaning process along with samples of the visual inspection results are provided. Inspection of the first support plate, which was a repeat of an inspection done in 1997, was conducted along with an in-bundle inspection of the upper tube supports. Results are presented along with a discussion of the implications for future steam generator maintenance. (author)

  16. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  17. Laser-assisted cleaning

    Indian Academy of Sciences (India)

    Experiments conducted with loose contamination on metal and transparent dielectric surfaces proved conclusively the dominant role played by the absorption of the incident radiation by the surface towards the generation of the cleaning force as against the absorption in the particulates alone. Further, the presence of ...

  18. The clean coal technologies for lignitic coal power generation in Pakistan

    International Nuclear Information System (INIS)

    Mir, S.; Raza, Z.; Aziz-ur-Rehman, A.

    1995-01-01

    Pakistan contains huge reserves of lignitic coals. These are high sulphur, high ash coals. In spite of this unfortunate situation, the heavy demand for energy production, requires the development utilization of these indigenous coal reserves to enhance energy production. The central of the environmental pollution caused by the combustion of these coals has been a major hindrance in their utilization. Recently a substantial reduction in coal combustion emissions have been achieved through the development of clean coal technologies. Pakistan through the transfer and adaptation of the advanced clean coal technologies can utilize incurring the high sulphur coals for energy production without incurring the environmental effects that the developed countries have experienced in the past. The author discusses the recently developed clean coal utilization technologies, their applications economies and feasibility of utilization with specific reference to Pakistan''s coal. (author)

  19. Extractable trace elements and sodium in Illinois coal-cleaning wastes: correlation with concentrations in tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, B.G.

    1983-07-01

    Trace element concentrations in shoots of tall fescue (Festuca arundinacea Schreb.) were correlated with extractable element concentrations in five southern Illinois coal-cleaning wastes limed to pH 6.5, in a greenhouse study to determine applicability of soil tests to coal-waste evaluation. There was little or no correlation between shoot concentrations of Fe, and Fe extracted from the wastes by dilute acid (r equals 0.60), DTPA at pH 6.4 (r equals 0.47) or DTPA at pH 8.4 (r equals -0.17). The corresponding r values for Mn were 0.94, 0.97, and 0.96; for Zn, 0.96, 0.96, and 0.88; and for Cu, 0.67, 0.90, and 0.88, respectively. Shoot B correlated well with hot water-soluble B(r equals 0.96) and acid-soluble B(r equals 0.91). Correlations for shoot Na were also good with water-soluble Na and acid-soluble Na (r equals 0.96 in both cases). Concentrations of Al, As, Cd, Ni, Pb, and Se in the shoots were well below reported upper critical levels, and similar to concentrations in the grass grown on a silt loam under the same greenhouse conditions. 21 references.

  20. Comparison between polluted and clean air masses over Lake Michigan

    International Nuclear Information System (INIS)

    Alkezweeny, A.J.; Laulainen, N.S.

    1981-01-01

    Clean and polluted air masses, advected over Lake Michigan, were studied using instrumental aircraft during the summers of 1976 and 1978. The results show that regardless of the degree of pollution, the particle size distribution is bimodal. The concentrations of sulfate, nitrate and trace metals in a clean air mass are more than an order of magnitude lower than those in polluted air masses. Furthermore, these concentrations are comparable with those measured in remote areas of the world. In clean air the ratio of the total light scattering to Rayleigh scattering is very close to one, indicating very low concentrations of particulates in the optically active size classes

  1. The Clean Coal Program's contributions to addressing the requirements of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    Miller, R.L.

    1992-01-01

    The purpose of this paper is to examine the potential contributions of the US Department of Energy's Clean Coal Program (CCP) to addressing the requirements of the Clean Air Act (CAA) Amendments of 1990 (CAA90). Initially funded by Congress in 1985, the CCP is a government and industry co-funded effort to demonstrate a new generation of more efficient, economically feasible, and environmentally acceptable coal technologies in a series of full- scale ''showcase'' facilities built across the country. The CCP is expected to provide funding for more than $5 billion of projects during five rounds of competition, with at least half of the funding coming from the private sector. To date, 42 projects have been selected in the first 4 rounds of the CCP. The CAA and amendments form the basis for regulating emissions of air pollutants to protect health and the environment throughout the United States. Although the origin of the CAA can be traced back to 1955, many amendments passed since that time are testimony to the iterative process involved in the regulation of air pollution. Three key components of CAA90, the first major amendments to the CAA since 1977, include mitigation measures to reduce levels of (1) acid deposition, (2) toxic air pollutants, and (3) ambient concentrations of air pollutants. This paper focuses on the timeliness of clean coal technologies in contributing to these provisions of CAA90

  2. Concentrated solar power generation using solar receivers

    Science.gov (United States)

    Anderson, Bruce N.; Treece, William Dean; Brown, Dan; Bennhold, Florian; Hilgert, Christoph

    2017-08-08

    Inventive concentrated solar power systems using solar receivers, and related devices and methods, are generally described. Low pressure solar receivers are provided that function to convert solar radiation energy to thermal energy of a working fluid, e.g., a working fluid of a power generation or thermal storage system. In some embodiments, low pressure solar receivers are provided herein that are useful in conjunction with gas turbine based power generation systems.

  3. Solar photocatalytic cleaning of polluted water

    International Nuclear Information System (INIS)

    Bockelmann, D.

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI) [de

  4. The AREVA C3 concept. Customized chemical cleaning as an essential part of steam generator asset management

    International Nuclear Information System (INIS)

    Weiss, Steffen

    2011-01-01

    As the nuclear industry moves forward and the world's power demand increases, the continued safe, reliable, and efficient operation of existing plants has become indispensable. For these plants asset management is an essential factor. A crucial part of the plant assets are the steam generators (SG). Not only that the SG tubes are by far the largest boundary between the primary and secondary sides, they are also instrumental in the overall performance of the plant. The main concern for operational lifetime is tube degradation due to either ID or OD corrosion. At the secondary side, sludge and corrosion products accumulate in the SG resulting in the buildup of secondary side deposits. Such deposits can negatively affect the SG performance in different ways, not only by reduction of the heat transfer rates and, thus, by reducing the efficiency of the SG but also as cause or promotion of different types of corrosion phenomena. The cleanliness of the secondary side of SG is of essential interest to all utilities. There is not just one solution for SG asset optimization. The utilities must weigh the pros and cons of SG cleaning, with the associated impact on outage time and cost, versus the potential benefits. Each plant that considers a SG chemical cleaning has different objectives and goals. AREVA has developed the C 3 (Customized Chemical Cleaning - or in short 'C cubed') concept in order to provide the utility with a chemical cleaning method that is tailored to the needs of the individual units and that addresses them directly. (orig.)

  5. Long-term impact of radiation on plasma concentrations of cytokines (IL-1 and IL-6) and adhesion molecules (ICAM-1 and P-selectin) in Chernobyl clean-up workers from Latvia

    International Nuclear Information System (INIS)

    Kurjane, N.; Kirsfinks, M.; Hagina, E.; Socnevs, A.

    2001-01-01

    Study was undertaken to evaluate plasma concentrations of interleukin-1beta (IL-1), interleukin-6 (IL-6), and adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and P-selectin in persons who participated in the clean-up work of the Chernobyl NPP explosion aftereffects. 40 Chernobyl clean-up workers suffering from most common neurological diseases - polyneuropathy and encephalopathy, and 40 healthy blood donors were analyzed for plasma levels of IL-6, IL1-β, sICAM-1 and sP-selectin 13 years after the accident. The documented external radiation dosage to the investigated Chernobyl clean-up workers was exposed from 0,009 to 0,28 Gy. Significantly elevated plasma concentrations of IL-6 and P-selectin but not of IL-1β were found in Chernobyl clean-up labourers as compared to those in healthy blood donors. (p<0.01). There was no obvious association of cytokine and adhesion molecule levels with radiation doses, as individuals working in the Chernobyl area in 1986 at a time when the external radiation exposure was higher revealed similar plasma concentrations if compared to those of a later period of time (1987-1990). (authors)

  6. A study on the Stress Corrosion Cracking reduction method of Steam Generator secondary side of KSNP

    International Nuclear Information System (INIS)

    Kim, June Hoon; Lee, Goune Jin

    2014-01-01

    In order to avoid sludge accumulation affecting the life of the steam generator, the best way is to prevent the sludge inflow in advance by optimization of water quality management through chemical concentration and pH control etc. However it is very difficult to prevent sludge accumulation under the weak condition of corrosion, such as condensation, boiling and high temperature of feed-water in NPPs. Particularly stress corrosion cracking occurs in a top-of-tube sheet area of steam generator with an increase in number of operation years of Korea Standard Nuclear Plant(KSNP)... The purpose of this study is to improve suppression of stress corrosion cracking and life extension for steam generator and improve plant efficiency by performing full length bulk high chemical cleaning in order to remove iron oxide of steam generator secondary side in KSNP Hanbit Unit 6. This study analyzed the Free EDTA and Fe concentrations and sludge removal after performed full length bulk high temperature chemical cleaning for removing the iron oxide of steam generator secondary side, which of Hanbit unit 6 of KSNP. 1) It showed a typical pattern that Fe concentration increased in accordance with to decrease Free EDTA(Ethylene Diamine Tetea acetic Acid) concentration. 2) Sludge removal based on iron oxide after performing the full length bulk high temperature chemical cleaning was 3001kg and sludge removal by lancing additionally was 200.1kg

  7. Qualification test of chemical cleaning for secondary side of steam generator in Qinshan Nuclear Power Plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Zhang Shufeng; Yu Jinghua; Hou Shufeng

    1997-07-01

    The chemical cleaning technique for removing sludge on the secondary side in Qinshan Nuclear Power Plant has been qualified. The chemical cleaning process will carry out during shutdown refuelling. The qualification test has studied the effect of chemical cleaning agent component, cleaning time on dissolution effectiveness of sludge (Fe 3 O 4 ) and to evaluate corrosion situation of main materials of SG in the cleaning process. The main component of cleaning agent is EDTA. The cleaning temperature is 20∼30 degree C. It is determined that allowable remains amount of cleaning agent (EDTA). The technique of cleaning, rinse, passivation for the chemical cleaning in Qinshan Nuclear Power Plant has been made. The qualification test shown that the technique can dissolve Fe 3 O 4 >1 g/L, the corrosion of materials is in allowable value, the allowable remains of EDTA is <0.01%. The technique character is static, ambient temperature. (9 refs., 12 tabs.)

  8. Acrylic vessel cleaning tests

    International Nuclear Information System (INIS)

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-01-01

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory

  9. Gas plant cleaning case history

    Energy Technology Data Exchange (ETDEWEB)

    Woods, B

    1971-03-22

    Basic steps to be taken before using any cleaning method are select a responsible group and give it full responsibility; know the problem, what type of fouling, lab samples, amount of material, time and cost; sell the idea to management; maintain the cleaning equipment; and follow up each cleaning operation. These principles have been applied to advantage in the amine contractor at Taylor, a vessel 60 ft high with 78-in. OD, containing carbon steel deck trays with stainless steel caps. The original attempt to clean with wire scrapers manually involved much lost time and several crews. There was limited space in the tray vessels, design created areas difficult to clean, working conditions were unpleasant, equipment downtime was extended, labor cost was high, and the final result was not satisfactory. Chemical cleaning was substituted, preceded by a water wash. Five hours of caustic wash with a 3% solution at 170$F were followed by a water wash, an acid wash, 1-hr neutralization with a weak soda ash solution, and finally passivation to eliminate iron oxide. For the acid wash, sulfamic acid was found best, in 10% concentration for 4 hr. Cascading was most economical, but flooding has been employed sometimes at 2-1/2 times the cost, to reach all the dark corners.

  10. Clean energy utilization technology

    International Nuclear Information System (INIS)

    Honma, Takuya

    1992-01-01

    The technical development of clean energy including the utilization of solar energy was begun in 1973 at the time of the oil crisis, and about 20 years elapsed. Also in Japan, the electric power buying system by electric power companies for solar light electric power and wind electric power has been started in 1992, namely their value as a merchandise was recognized. As for these two technologies, the works of making the international standards and JIS were begun. The range of clean energy or natural energy is wide, and its kinds are many. The utilization of solar heat and the electric power generation utilizing waves, tide and geotherm already reached the stage of practical use. Generally in order to practically use new energy, the problem of price must be solved, but the price is largely dependent on the degree of spread. Also the reliability, durability and safety must be ensured, and the easiness of use, effectiveness and trouble-saving maintenance and operation are required. For the purpose, it is important to packaging those skillfully in a system. The cases of intelligent natural energy systems are shown. Solar light and wind electric power generation systems and the technology of transporting clean energy are described. (K.I.)

  11. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  12. CPV performance versus soiling effects: Cleaning policies

    Science.gov (United States)

    Sanchez, D.; Trujillo, P.; Martinez, M.; Ferrer, J. P.; Rubio, F.

    2012-10-01

    In order to improve the performance of the CPV Plants in a cost effective way it is important to define the best cleaning policies, analyzing the effect of soiling in the surface of CPV modules. The energy generation of a CPV technology based in Fresnel Lens improves up to 7% when the surface of the module is cleaned. Some experimental measurements have been carried out over CPV modules and a model has been defined to analyze what is the best cleaning policy for that Technology in Puertollano. The power losses because of soiling and the critical time until the power losses stabilizes are obtained from the measurements; they are used as an input for the simulation. Using an established cleaning cost and the feeding tariff from Spain in 2007 it has been obtained that cleaning only reports a profit during the summer. The conclusion of the work is that the cleaning tasks have to be carefully planned together with the meteorological forecast in order to maximize the investment made in the cleaning.

  13. The role of clean coal technologies in post-2000 power generation

    International Nuclear Information System (INIS)

    Salvador, L.A.; Bajura, R.A.; Mahajan, K.

    1994-01-01

    A substantial global market for advanced power systems is expected to develop early in the next century for both repowering and new capacity additions, Although natural gas-fueled systems, such as gas turbines, are expected to dominate in the 1990's, coal-fueled systems are expected to emerge in the 2000's as systems of choice for base-load capacity because of coal's lower expected cost. Stringent environmental regulations dictate that all advanced power systems must be clean, economical, and efficient in order to meet both the environmental and economic performance criteria of the future. Recognizing these needs, the DOE strategy is to carry out an effective RD ampersand D program, in partnership with the private sector, to demonstrate these technologies for commercial applications in the next century. These technologies are expected to capture a large portion of the future power generation market. The DOE: expects that, domestically, advanced power systems products will be selected on the basis of varying regional needs and the needs of individual utilities. A large international demand is also expected for the new products, especially in developing nations

  14. Removal of NO2 and O3 generated from corona discharge in indoor air cleaning with MnO2 catalyst

    International Nuclear Information System (INIS)

    Ge, H; Yu, R; Zhu, Y M; Mi, D

    2013-01-01

    The production rules and removal efficiency of harmful byproducts such as NO 2 and O 3 generated from DC corona discharge in indoor air cleaning were investigated. The production behaviours of NO 2 and O 3 and the relationship between the amount of catalyst (MnO 2 ) and the removal rate of harmful byproducts were experimentally studied. Further, indoor application tests were carried out in a closed room with 90 m 3 . The results showed that the concentrations of NO 2 and O 3 produced by corona discharge linearly increased with discharge time. The NO 2 yield is larger than O 3 by almost one order of magnitude under the same discharge power. To satisfy the demand of Standard of Indoor Air Quality (GB/T18883-2002), the power consumption of unit volume should be less than 1 W m −3 and the catalyst MnO 2 consumptions in positive-negative corona discharge were 200 cm 3 W −1 and 100 cm 3 W −1 , respectively.

  15. New Clean Air Act complicates power plant operation, design

    International Nuclear Information System (INIS)

    Smock, R.W.

    1991-01-01

    In November the president signed into law the new Clean Air Act, ushering in a new era in the power generation industry. This paper reviews the six important sections of the Clean Air Act and their impact on power plant operation and design

  16. Clean vehicles as an enabler for a clean electricity grid

    Science.gov (United States)

    Coignard, Jonathan; Saxena, Samveg; Greenblatt, Jeffery; Wang, Dai

    2018-05-01

    California has issued ambitious targets to decarbonize transportation through the deployment of electric vehicles (EVs), and to decarbonize the electricity grid through the expansion of both renewable generation and energy storage. These parallel efforts can provide an untapped synergistic opportunity for clean transportation to be an enabler for a clean electricity grid. To quantify this potential, we forecast the hourly system-wide balancing problems arising out to 2025 as more renewables are deployed and load continues to grow. We then quantify the system-wide balancing benefits from EVs modulating the charging or discharging of their batteries to mitigate renewable intermittency, without compromising the mobility needs of drivers. Our results show that with its EV deployment target and with only one-way charging control of EVs, California can achieve much of the same benefit of its Storage Mandate for mitigating renewable intermittency, but at a small fraction of the cost. Moreover, EVs provide many times these benefits if two-way charging control becomes widely available. Thus, EVs support the state’s renewable integration targets while avoiding much of the tremendous capital investment of stationary storage that can instead be applied towards further deployment of clean vehicles.

  17. [Reduction of exposure to particulate matter in classrooms by improved cleaning: extent of exposure and results of a pilot study in Bavaria].

    Science.gov (United States)

    Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C

    2009-02-01

    The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at

  18. Correlating Cleaning Thoroughness with Effectiveness and Briefly Intervening to Affect Cleaning Outcomes: How Clean Is Cleaned?

    Directory of Open Access Journals (Sweden)

    Robert Clifford

    Full Text Available The most efficient approach to monitoring and improving cleaning outcomes remains unresolved. We sought to extend the findings of a previous study by determining whether cleaning thoroughness (dye removal correlates with cleaning efficacy (absence of molecular or cultivable biomaterial and whether one brief educational intervention improves cleaning outcomes.Before-after trial.Newly built community hospital.90 minute training refresher with surface-specific performance results.Dye removal, measured by fluorescence, and biomaterial removal and acquisition, measured with culture and culture-independent PCR-based assays, were clandestinely assessed for eight consecutive months. At this midpoint, results were presented to the cleaning staff (intervention and assessments continued for another eight consecutive months.1273 surfaces were sampled before and after terminal room cleaning. In the short-term, dye removal increased from 40.3% to 50.0% (not significant. For the entire study period, dye removal also improved but not significantly. After the intervention, the number of rooms testing positive for specific pathogenic species by culturing decreased from 55.6% to 36.6% (not significant, and those testing positive by PCR fell from 80.6% to 53.7% (P = 0.016. For nonspecific biomaterial on surfaces: a removal of cultivable Gram-negatives (GN trended toward improvement (P = 0.056; b removal of any cultivable growth was unchanged but acquisition (detection of biomaterial on post-cleaned surfaces that were contaminant-free before cleaning worsened (P = 0.017; c removal of PCR-based detection of bacterial DNA improved (P = 0.046, but acquisition worsened (P = 0.003; d cleaning thoroughness and efficacy were not correlated.At this facility, a minor intervention or minimally more aggressive cleaning may reduce pathogen-specific contamination, but not without unintended consequences.

  19. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu; Xu, Wei; Wang, Cong; Chau, Yeungyeung; Zeng, Xiping; Zhang, Xixiang; Shen, Rong; Wen, Weijia

    2014-01-01

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios

  20. CPICOR{trademark}: Clean power from integrated coal-ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wintrell, R.; Miller, R.N.; Harbison, E.J.; LeFevre, M.O.; England, K.S.

    1997-12-31

    The US steel industry, in order to maintain its basic iron production, is thus moving to lower coke requirements and to the cokeless or direct production of iron. The US Department of Energy (DOE), in its Clean Coal Technology programs, has encouraged the move to new coal-based technology. The steel industry, in its search for alternative direct iron processes, has been limited to a single process, COREX{reg_sign}. The COREX{reg_sign} process, though offering commercial and environmental acceptance, produces a copious volume of offgas which must be effectively utilized to ensure an economical process. This volume, which normally exceeds the internal needs of a single steel company, offers a highly acceptable fuel for power generation. The utility companies seeking to offset future natural gas cost increases are interested in this clean fuel. The COREX{reg_sign} smelting process, when integrated with a combined cycle power generation facility (CCPG) and a cryogenic air separation unit (ASU), is an outstanding example of a new generation of environmentally compatible and highly energy efficient Clean Coal Technologies. This combination of highly integrated electric power and hot metal coproduction, has been designated CPICOR{trademark}, Clean Power from Integrated Coal/Ore Reduction.

  1. Aerosol challenges to air cleaning systems during severe accidents in nuclear plants

    International Nuclear Information System (INIS)

    Gieseke, J.A.

    1985-01-01

    A variety of air cleaning systems may be operating in nuclear power plants and under severe accident conditions, these systems may be treating airborne concentrations of aerosols which are very high. Predictions of airborne aerosol concentrations in nuclear power plant containments under severe accident conditions are reviewed to provide a basis for evaluating the potential effects on the air cleaning systems. The air cleaning systems include filters, absorber beds, sprays, water pools, ice beds, and condensers. Not all of these were intended to operate as air cleaners but will in fact be good aerosol collectors. Knowledge of expected airborne concentrations will allow better evaluation of system performances

  2. Multi-generational effects of propranolol on Daphnia magna at different environmental concentrations

    International Nuclear Information System (INIS)

    Jeong, Tae-Yong; Kim, Hyun Young; Kim, Sang Don

    2015-01-01

    To evaluate the effects of propranolol on Daphnia magna (D. magna), we employed a multi-generational exposure period for eight generations and an environmentally relevant low concentration with 1.5 ng/L, 0.2 μg/L and 26 μg/L to reflect a realistic exposure scenario. Physiological endpoints were checked, including growth, number of neonates, heart rate, frequency of abdominal appendage movement and malformation rate of neonates. In the results, growth and abdominal appendage movement were affected by environmental concentration during several generations, and the responses showed consistent tendencies of response increase with concentration increase. Heart rate was the only endpoint affected throughout all exposure generations. Inhibitory and acceleratory effects on heart rate, growth and abdominal appendage movement suggest that it is necessary to cover sub-lethal endpoints of non-targeted organisms in eco-toxicity study because the physiological responses were detected at much lower concentrations than the results of traditional toxicity tests, including environmental concentration. - Highlights: • Multi-generational exposure was conducted to evaluate the effect of propranolol on Daphnia magna. • Heart rate was the only endpoint affected throughout all exposure generations. • Growth and abdominal appendage movement were affected at environmental concentrations. • Time series fluctuations in responses appeared with no tendencies throughout all generations. • It is necessary to cover sub-organismal endpoints and long-term exposure in ecotoxicity test. - Heart rate, growth and abdominal appendage movement of D. magna were affected by the multigenerational exposure of propranolol at environmental levels.

  3. Energy concentration on S-300 pulsed power generator

    Energy Technology Data Exchange (ETDEWEB)

    Bakshaev, Yu Z; Chernenko, A S; Korolev, V D; Mizhiritskij, V I; Zazhivikhin, V V [Kurchatov Institute, Moscow (Russian Federation)

    1997-12-31

    Energy concentration in fast Z-pinch investigation experiments on an 8-module 10 TW pulsed power S-300 generator (1.3 MV, 45 ns FWHM, 0.15 Ohm) is realized by a 3-d vacuum energy concentrator. The concentrator was constructed on the basis of triplate MITLs connected in parallel at the central unit where the Z-pinch is formed. At some start-up experiments on the 8-module installation version at 700 kV incident wave amplitude on concentrator for a gas puff load current of 4 MA with rise time of about 60 ns was obtained. The efficiency or current transfer from the concentrator input to the load for both a gas liner and a short-circuited case was practically the same. (author). 4 figs., 4 refs.

  4. Experimental study on air cleaning effect of clean air heat pump and its impact on ventilation requirement

    DEFF Research Database (Denmark)

    Fang, Lei; Sheng, Ying; Nie, Jinzhe

    2017-01-01

    This study investigated air purification effect of a Clean-Air Heat Pump (CAHP) which combined a desiccant wheel with a heat pump for both air cleaning and HVAC of buildings. The experiment was conducted in a field lab at four different outdoor air supply rates with and without air cleaning by CAHP....... Both sensory assessments of perceived air quality and chemical measurements of TVOC concentrations were conducted for evaluating the air cleaning performance of the CAHP. The results of experiment showed that running the CAHP improved significantly perceived air quality. At 2 L/s per person of outdoor...... air supply rate with operating the CAHP, the air quality was equivalent to the value at the higher outdoor air supply rate of 10 L/s per person without running CAHP. The TVOC measurements observed over 92% of efficiency on removal of indoor air VOCs and no VOCs accumulation on the desiccant wheel...

  5. Electric utilities and clean air

    International Nuclear Information System (INIS)

    Evans, J.E.

    1991-01-01

    This paper reports that electricity has become essential to American life. Approximately 70 percent of the nation's electricity is produced by burning fossil fuels, with coal, the most abundant, domestically-available, extracted natural resource, providing over 55 percent of the total electricity consumed. Emissions resulting from the burning of fossil fuels are regulated by both the federal and state governments. In 1970, Congress passed the comprehensive Clean Air Act which established a national program to protect the nation's air quality. In 1977, additional strict regulations were passed, which mandated even more stringent emission controls for factories, power plants and auto emissions. Prior to passage of the Clean Air Act of 1990, utilities were required to adhere to three major types of clean air regulations: National Ambient Air Quality Standards (NAAQS), New Source Performance Standards (NSPS), and Prevention of Significant Deterioration (PSD) review. NAAQS established limits for the maximum concentration levels of specific air pollutants in the ambient atmosphere. For example, for an area to be in compliance with the NAAQS for sulfur dioxide (SO 2 ), its annual average SO 2 concentration must not exceed 0.03 ppm of SO 2 and a peak 24 hour level of 0.14 ppm of SO 2 must not be exceeded more than once per year

  6. The Clean Development Mechanism and Sustainable Development in China's Electricity Sector

    Institute of Scientific and Technical Information of China (English)

    Paul A. Steenhof

    2005-01-01

    The Clean Development Mechanism,a flexibility mechanism contained in the Kyoto Protocol, offers China an important tool to attract investment in clean energy technology and processes into its electricity sector. The Chinese electricity sector places centrally in the country's economy and environment, being a significant contributor to the acid rain and air pollution problems that plague many of China's cities and regions, and therefore a focus of many related energy and environmental policies.China's electricity sector has also been the subject of a number of economic analyses that have showed that it contains the highest potential for clean energy investment through the Clean Development Mechanism of any economic sector in China. This mechanism, through the active participation from investors in more industrialized countries, can help alleviate the environmental problems attributable to electricity generation in China through advancing such technology as wind electricity generation, dean coal technology, high efficient natural gas electricity generation, or utilization of coal mine methane. In this context, the Clean Development Mechanism also compliments a range of environmental and energy policies which are strategizing to encourage the sustainable development of China's economy.

  7. EPRI/Alberta Research Council Clean Soil Process

    International Nuclear Information System (INIS)

    Spear, C.E.

    1992-12-01

    The EPRI/Alberta Research Council Clean Soil Process can remove hydrocarbon contamination from waste material from manufactured gas plants. The process uses coal as an absorbent to remove hydrocarbons. For petroleum contaminated soils, the process can bring residual concentration of petroleum below 0.1 percent and polycyclic aromatic hydrocarbon (PAH) concentration to 1--5 ppM. For coal tar contaminated soils, the process can reduce tar concentrations to about 0.05-0.5 percent and the PAH concentration to about 10--60 ppM. Additional post-treatment may be required for some precleaned soils. The process yields by-product agglomerates suitable for combustion in industrial boilers. Light hydrocarbons such as benzene are vaporized from the soil, condensed and collected in the Process and disposed of off-site. The Clean Soil Process has been tested at pilot-plant scale. A conceptual design for a 200-tons-per-day plant yielded a capital cost estimated at $3.1 million with a per-ton operating cost of $40

  8. Changes of the more relevant PHTS parameters after the cleaning of the steam generators primary side at Embalse nuclear power plant

    International Nuclear Information System (INIS)

    Moreno, Carlos A.; Coutsiers, Ernesto; Acevedo, Paul; Pomerantz, Marcelo E.

    2003-01-01

    During the operation of the plant magnetite deposition occurs at the inner walls of Primary Heat Transport System (PHTS). This deposition is particularly significant at the U-tubes of steam generators. The consequence of this is the deterioration of heat transfer to the Secondary System. In order to minimize this impact, during the annual outage of 2000, the steam generators primary side cleaning by the SIVABLAST technique was carried out. This technique consists in blasting the inner walls with tiny stainless steel balls propelled by air at high pressure. This paper presents the change of the more relevant parameters of PHTS after that cleaning. The parameters analyzed and the main results are the following: 1) Inlet header temperature dropped 4.7 C degrees at full power; 2) Exit quality at the outlet headers decreased from 3,5% to 1,5%; 3) Global PHTS flow in single phase evaluated from: a) In-site instrumentation increased 4,6%; b) Thermalhydraulic code NUCIRC 1.0 increased 3,2%; c) measured flows at the instrumented fuel channels increased 4.4%. (author)

  9. Continuing challenges in nuclear air cleaning

    International Nuclear Information System (INIS)

    Moeller, D.W.

    1976-01-01

    The safe operation of nuclear facilities is heavily dependent upon the adequate performance of air cleaning systems. Although many problems have been solved, new questions and new challenges continue to arise. These are well illustrated by weaknesses in air cleaning and ventilating systems revealed by the Browns Ferry fire, and the need to develop additional data on the reliability of such systems, particularly under emergency conditions, as revealed by the Reactor Safety Study. Assessments of the degree to which engineered safety features can compensate for deficiencies in nuclear power plant sites continue to challenge those involved in risk/benefit evaluations. Additional challenges are being generated by the air cleaning requirements associated with the commercial development of the liquid metal fast breeder reactor

  10. Clean-up criteria for remediation of contaminated soils

    International Nuclear Information System (INIS)

    Nguyen, H.D.; Wilson, J.R.; Sato, Chikashi

    1997-01-01

    'How clean is clean?' is a question commonly raised in the remediation of contaminated soils. To help with the answer, criteria are proposed to serve as guidelines for remedial actions and to define a clean-up level such that the remaining contaminant residuals in the soil will not violate the Drinking Water Standards (DWS). The equations for computing those criteria are developed from the principle of conservation of mass and are functions of the maximum concentration level in the water (MCL) and the sorption coefficient. A multiplier, ranging from 10 to 1000, is also factored into the soil standard equation to reflect the effectiveness of various remediation techniques. Maximum allowable concentration in the soil (MSCL) is presented for several contaminants which are being regulated at the present time. Future modifications are recommended for better estimates of the MSCLs as additional transport mechanisms are incorporated to account for other potentially dominant effects

  11. Development and evaluation of DOP generators for special uses

    International Nuclear Information System (INIS)

    Mielke, R.L.

    1976-01-01

    The Environmental Standards Group at Mound Laboratory uses ''cold'' DOP generators to produce background aerosol concentration for testing HEPA filters in clean-room operations. Two simple, portable, air-operated aerosol generators were built and tested to determine their performance. The results show the particle size distribution is in the 0.3 to 0.8 μm range and that 1 / 4 or 3 / 8 in. i.d. tubing to the nozzles should be used

  12. Ultrasonic cleaning of electrodes of wire chambers

    International Nuclear Information System (INIS)

    Krasnov, V.A.; Kurepin, A.B.; Razin, V.I.

    1980-01-01

    A technological process of cleaning electrodes and working volume surfaces of wire chambers from contaminations by the simultaneous mechanical action of the energy of ultrasonic oscillations and the chemical action of detergents is discussed. A device for cleaning wire electrodes of proportional chambers of 0.3x0.4 m is described. The device uses two ultrasonic generators with a total power of 0.5 kW. As a detergent use is made of a mixture of ethyl alcohol, gasoline and freon. In the process of cleaning production defects can be detected in the wire chambers which makes it possible to timely remove the defects. Measurements of the surface resistance of fiberglass laminate of printed drift chamber electrodes at a voltage of 2 kV showed that after completing the cleaning process the resistance increases 15-20%

  13. Human-Like Room Segmentation for Domestic Cleaning Robots

    Directory of Open Access Journals (Sweden)

    David Fleer

    2017-11-01

    Full Text Available Autonomous mobile robots have recently become a popular solution for automating cleaning tasks. In one application, the robot cleans a floor space by traversing and covering it completely. While fulfilling its task, such a robot may create a map of its surroundings. For domestic indoor environments, these maps often consist of rooms connected by passageways. Segmenting the map into these rooms has several uses, such as hierarchical planning of cleaning runs by the robot, or the definition of cleaning plans by the user. Especially in the latter application, the robot-generated room segmentation should match the human understanding of rooms. Here, we present a novel method that solves this problem for the graph of a topo-metric map: first, a classifier identifies those graph edges that cross a border between rooms. This classifier utilizes data from multiple robot sensors, such as obstacle measurements and camera images. Next, we attempt to segment the map at these room–border edges using graph clustering. By training the classifier on user-annotated data, this produces a human-like room segmentation. We optimize and test our method on numerous realistic maps generated by our cleaning-robot prototype and its simulated version. Overall, we find that our method produces more human-like room segmentations compared to mere graph clustering. However, unusual room borders that differ from the training data remain a challenge.

  14. Optimization of Ultrasonic Fabric Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hand, T.E.

    1998-05-13

    The fundamental purpose of this project was to research and develop a process that would reduce the cost and improve the environmental efficiency of the present dry-cleaning industry. This second phase of research (see report KCP-94-1006 for information gathered during the first phase) was intended to allow the optimal integration of all factors of ultrasonic fabric cleaning. For this phase, Garment Care performed an extensive literature search and gathered data from other researchers worldwide. The Garment Care-AlliedSignal team developed the requirements for a prototype cleaning tank for studies and acquired that tank and the additional equipment required to use it properly. Garment Care and AlliedSignal acquired the transducers and generators from Surftran Martin-Walter in Sterling Heights, Michigan. Amway's Kelly Haley developed the test protocol, supplied hundreds of test swatches, gathered the data on the swatches before and after the tests, assisted with the cleaning tests, and prepared the final analysis of the results. AlliedSignal personnel, in conjunction with Amway and Garment Care staff, performed all the tests. Additional planning is under way for future testing by outside research facilities. The final results indicated repeatable performance and good results for single layered fabric swatches. Swatches that were cleaned as a ''sandwich,'' that is, three or more layers.

  15. Solar-Panel Dust Accumulation and Cleanings

    Science.gov (United States)

    2005-01-01

    Air-fall dust accumulates on the solar panels of NASA's Mars Exploration Rovers, reducing the amount of sunlight reaching the solar arrays. Pre-launch models predicted steady dust accumulation. However, the rovers have been blessed with occasional wind events that clear significant amounts of dust from the solar panels. This graph shows the effects of those panel-cleaning events on the amount of electricity generated by Spirit's solar panels. The horizontal scale is the number of Martian days (sols) after Spirit's Jan. 4, 2005, (Universal Time) landing on Mars. The vertical scale indicates output from the rover's solar panels as a fraction of the amount produced when the clean panels first opened. Note that the gradual declines are interrupted by occasional sharp increases, such as a dust-cleaning event on sol 420.

  16. Chemical cleaning's role in tube failure prevention and correction

    International Nuclear Information System (INIS)

    Shields, K.J.; Dooley, R.B.

    2002-01-01

    Properly applied, chemical cleaning is a valuable tool used to prevent tube failures involving overheating and corrosion due to waterside deposits. In many cases, however, cleaning becomes yet an additional cost associated with correction of tube failure incidents. Discussion is focused on approaches taken to appraise tube waterside cleanliness and determine the need to clean, as typically practiced in conventional fossil plants. Also presented is an assessment of the suitability and limitations of these approaches to plants with heat recovery steam generator (HRSG) units. (orig.)

  17. Concentrated Windings in Compact Permanent Magnet Synchronous Generators: Managing Efficiency

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    2016-01-01

    Full Text Available In electric power generation, customers want generators with high efficiency. Nowadays, modern turbo-generators have efficiencies greater than 98%. Although this amount should not be obtained for all kind of machines, efficiency will remain one of the main parameters for customer choice. Efficiency is also linked to the life of the machine: the higher the efficiency is, the longer the machine’s lifetime. During the past decade, new forms of energy production have appeared and generators have been developed to fit well into this market. For example, wind generators evolved towards permanent magnet generators having high polarity and running at low speed. Nevertheless, their structure is not fixed. An industrial company has built a prototype of such a generator which uses fractional-slot concentrated-windings (FSCW. This kind of winding is not the structure used by default in such electrical machines. Another field of interest is in autonomous generators which can be used on boats. Even if everyone has in mind large merchant ships, we must not forget smaller ships, such as fishing boats and short-range cruise ships, which spend the most of their time near the coast. This kind of ship does nothave large areas for installing the electric generation or the electric propulsion. It is the reason why, in this article, we focus on the efficiency of machines using fractional-slot concentrated-windings. In many publications which compare performances between distributed and concentrated windings, the result is almost the same. The efficiency of FSCW is not as high as the efficiency associated to the machines which are using distributed windings. Design methods have to be redrawn to integrate, as soon as possible, the loss mitigation in order to provide the best efficiency in power conversion. The following discussion, step by step, introduces the loss mitigation in every part of a machine using FSCW. To close the discussion, a design is produced and it

  18. Generation of dissolved organic matter and byproducts from activated sludge during contact with sodium hypochlorite and its implications to on-line chemical cleaning in MBR.

    Science.gov (United States)

    Cai, Weiwei; Liu, Jiaqi; Zhang, Xiangru; Ng, Wun Jern; Liu, Yu

    2016-11-01

    On-line chemical cleaning of membranes with sodium hypochlorite (NaClO) has been commonly employed for maintaining a constant permeability of membrane bioreactor (MBR) due to its simple and efficient operation. However, activated sludge is inevitably exposed to NaClO during this cleaning process. In spite of the broad applications of on-line chemical cleaning in MBR such as chemical cleaning-in-place (CIP) and chemical enhanced backwash (CEB), little information is currently available for the release of emerging dissolved organic matter (DOM) and byproducts from this prevalent practice. Therefore, in this study, activated sludge suspended in a phosphate buffered saline solution was exposed to different doses of NaClO in order to determine the generation of potential DOM and byproducts. The results showed the occurrence of significant DOM release (up to 24.7 mg/L as dissolved organic carbon) after exposure to NaClO for 30 min. The dominant components of the released DOM were characterized to be humic acid-like as well as protein-like substances by using an excitation-emission matrix fluorescence spectrophotometer. Furthermore, after the contact of activated sludge with NaClO, 19 kinds of chlorinated and brominated byproducts were identified by ultra performance liquid chromatography/electrospray ionization-triple quadrupole mass spectrometry, eight of which were confirmed and characterized with standard compounds. Many byproducts were found to be halogenated aromatic compounds, including halopyrroles and halo(hydro)benzoquinones, which had been reported to be significantly more toxic than the halogenated aliphatic ones. Consequently, this study offers new insights into the practice of on-line chemical cleaning, and opens up a window to re-examine the current operation of MBR by looking into the generation of micropollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  20. Cleaner generation, free-riders, and environmental integrity: clean development mechanism and the power sector

    Energy Technology Data Exchange (ETDEWEB)

    Bernow, Stephen; Kartha, Sivan; Lazarus, Michael; Page, Tom [Tellus Institute and Stockholm Environmental Institute-Boston Center, Boston, MA (United States)

    2001-06-01

    This article provides a first-cut estimate of the potential impacts of the clean development mechanism (CDM) on electricity generation and carbon emissions in the power sector of non-Annex 1 countries. We construct four illustrative CDM regimes that represent a range of approaches under consideration within the climate community. We examine the impact of these CDM regimes on investments in new generation, under illustrative carbon trading prices of US$ 10 and 100/tC. In the cases that are most conductive to CDM activity, roughly 94% of new generation investments remains identical to the without-CDM situation, with only 6% shifting from higher to lower carbon intensity technologies. We estimate that the CDM would bolster renewable energy generation by as little as 15% at US$ 10/tC, or as much as 300% at US$ 100/tC. A striking finding comes from our examination of the potential magnitude of the 'free-rider' problem, i.e. crediting of activities that will occur even in the absence of the CDM. The CDM is intended to be globally carbon-neutral --- a project reduces emissions in the host country but generates credits that increase emissions in the investor country. However, to the extent that unwarranted credits are awarded to non-additional projects, the CDM would increase global carbon emissions above the without-CDM emissions level. Under two of the CDM regimes considered, cumulative free-riders credits total 250-600MtC through the end of the first budget period in 2012. This represents 10-23% of the likely OECD emissions reduction requirement during the first budget period. Since such a magnitude of free-rider credits from non-additional CDM projects could threaten the environmental integrity of the Kyoto protocol, it is imperative that policy makers devise CDM rules that encourage legitimate projects, while effectively screening out non-additional activities. (Author)

  1. Forward Osmosis/Low Pressure Reverse Osmosis for Water Reuse: Removal of Organic Micropollutants, Fouling and Cleaning

    KAUST Repository

    Linares, Rodrigo

    2011-07-01

    Forward osmosis (FO) is a natural process in which a solution with high concentration of solutes is diluted when being in contact, through a semipermeable membrane, with a low concentration solution. This osmotic process has been demonstrated to be efficient to recover wastewater effluents while diluting a saline draw solution. Nevertheless, the study of the removal of micropollutants by FO is barely described in the literature. This research focuses on the removal of these substances spiked in a secondary wastewater effluent, while diluting water from the Red Sea, generating feed water that can be desalinated with a low pressure reverse osmosis (LPRO) system. Another goal of this work is to characterize the fouling of the FO membrane, and its effect on micropollutants rejection, as well as the membrane cleaning efficiency of different methods. When considering only FO with a clean membrane, the rejection of the hydrophilic neutral compounds was between 48.6% and 84.7%, for the hydrophobic neutrals the rejection ranged from 40.0% to 87.5%, and for the ionic compounds the rejections were between 92.9% and 96.5%. With a fouled membrane, the rejections were between 44.6% to 95.2%, 48.7% to 91.5% and 96.9% to 98.6%, respectively. These results suggest that, except for the hydrophilic neutral compounds, the rejection of the micropollutants is increased by the fouling layer, possibly due to the higher hydrophilicity of the FO fouled membrane compared to the clean one, the increased adsorption capacity and reduced mass transport capacity, membrane swelling, and the higher negative charge of the surface, related to the foulants. However, when coupled with low pressure reverse osmosis, the rejections for both, the clean and fouled membrane, increased above 98%. The fouling layer, after characterizing the wastewater effluent and the concentrated wastewater after the FO process, proved to be composed of biopolymers, which can be removed with air scouring during short periods

  2. Sizing of air cleaning systems for access to nuclear plant spaces

    International Nuclear Information System (INIS)

    Estreich, P.J.

    A mathematical basis is developed to provide the practicing engineer with a method for sizing air-cleaning systems for nuclear facilities. In particular, general formulas are provided to relate cleaning and contamination dynamics of an enclosure such that safe conditions are obtained when working crews enter. Included in these considerations is the sizing of an air-cleaning system to provide rapid decontamination of airborne radioactivity. Multiple-nuclide contamination sources, leak rate, direct radiation, contaminant mixing efficiency, filter efficiencies, air-cleaning-system operational modes, and criteria for maximum permissible concentrations are integrated into the procedure. (author)

  3. FY1995 development of a clean CVD process by evaluation and control of gas phase nucleation phenomena; 1995 nendo kisokaku seisei gensho no hyoka to seigyo ni yoru clean CVD process no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this study is to develop a high-rate and clean chemical vapor deposition (CVD) process as a breakthrough technique to overcome the problems that particles generated in the gas phase during CVD process for preparation of functional thin films cause reduced product yield and deterioration of the films. In the CVD process proposed here, reactant gas and generated particles are electrically charged to control the motion of them with an electric field. In this study, gas-phase nucleation phenomena are evaluated both theoretically and experimentally. A high-rate, ionized CVD method is first developed, in which reactant gas and generated particles are charged with negative ions generated from a radioisotope source and the UV/photoelectron method, and the motion of the charged gas and particles is controlled with an electric field. Charging and transport processes of fine particles are then investigated experimentally and theoretically to develop a clean CVD method in which generated particles are removed with the electric forces. As a result, quantitative evaluation of the charging and transport process was made possible. We also developed devices for measuring the size distribution and concentration of fine particles in low pressure gas such as those found in plasma CVD processes. In addition, numerical simulation and experiments in this study for a TEOS/O{sub 3} CVD process to prepare thin films could determine reaction rates which have not been known so far and give information on selecting good operation conditions for the process. (NEDO)

  4. Noncontact COS charge analysis for in-line monitoring of wet cleaning processes

    Science.gov (United States)

    Zhang, Xiafang; Juang, Min; Tai, Sung-Shan; Chen, Kuo-in; Wossen, Ejigu; Horner, Gregory

    1998-08-01

    Contamination levels in chemical cleaning equipment and wafer cleanliness in general are very critical to semiconductor manufacturers. In this work, a Keithley Instruments non contact electrical tester (Quantox) is used to measure the mobile ion (Qm) contamination in a variety of cleaning processes. Results show that photoresist strip cleaning process has a higher mobile ion concentration than standard pre-diffusion cleaning process. RCA1, RCA2 and HF solutions mapping measured by the Quantox indicates some negative static charges on the surface after cleaning. This negative field appears to assist Qm removal during wet chemical cleaning. The dependence of flatband voltage and other oxide charges on various cleaning processes has also been investigated using the Quantox. The data suggests that a dipole layer has been formed by a surface reaction during chemical cleaning.

  5. Solar panel cleaning robot

    Science.gov (United States)

    Nalladhimmu, Pavan Kumar Reddy; Priyadarshini, S.

    2018-04-01

    As the demand of electricity is increasing, there is need to using the renewable sources to produce the energy at present of power shortage, the use of solar energy could be beneficial to great extent and easy to get the maximum efficiency. There is an urgent in improving the efficiency of solar power generation. Current solar panels setups take a major power loss when unwanted obstructions cover the surface of the panels. To make solar energy more efficiency of solar array systems must be maximized efficiency evaluation of PV panels, that has been discussed with particular attention to the presence of dust on the efficiency of the PV panels have been highlighted. This paper gives the how the solar panel cleaning system works and designing of the cleaning system.

  6. Electrospun Superhydrophobic Self-Cleaning Materials

    Science.gov (United States)

    Zhao, Yong; Wang, Nü

    In this chapter, we introduce the wettability of electrospinning products. Especially, we concentrate on the fabrication, characteristics, and applications of the electrospun self-cleaning materials. Self-cleaning materials are typical nature-inspired artificial materials learning from such as lotus leaf and many other plants or animals. Self-cleaning materials usually rely on a superhydrophobic surface, which should be of low surface free energy as well as large surface roughness. Electrospinning method is such a method that could facilely shape various hydrophobic polymers into ultrathin fibers with tunable surface microstructures. It means the electrospun products are of very large specific area, which satisfy the two basic conditions in preparing superhydrophobic surfaces. Therefore, in the last decade, scientists put forward a good few of elegant approaches to fabricate superhydrophobic materials by electrospinning. These methods can be generally classified into two routes. One is a direct route that creates superhydrophobic electrospun films from hydrophobic materials. Another is an indirect route that decorates electrospun nanofibers (no matter hydrophobic or hydrophilic) with hydrophobic chemicals. We first introduce some representative works on the fabrication of superhydrophobic self-cleaning materials by electrospinning method. Then we show some applications of these superhydrophobic materials. Finally, we give a brief personal perspective on this area.

  7. Should you get your heating ducts cleaned?

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    Canada Mortgage and Housing Corporation conducted research into duct cleaning during which time several houses were tested for hot air furnace duct performance before and after cleaning. Duct cleaning is a major industry which claims that cleaning of ducts will provide you with better indoor air quality, reduce household molds and allergens, get rid of house dust, result in more airflow and better delivery of warm air and reduce energy costs. This report does not substantiate those claims. Researchers found little or no discernible differences in the concentrations of house airborne particles or in duct airflows due to duct cleaning. This is because ducts are metal passages that cannot create dust. Most household dusts come from outdoors that has been tracked in or blows through windows and other openings. While duct cleaning may be justifiable personally, it does not change the quality of the air you breathe, nor will it significantly affect airflow or heating costs. Some filters effectively clean the air in the ducts but they do not create a dust-free environment because of the above-mentioned dust sources. The only time that duct cleaning may make sense is if you have water in your ducts that can result in mold growth, if you are moving into a newly constructed house to remove drywall dust, if your are having trouble with furnace airflow, or if you see an accumulation of debris in the return air ducts. It was emphasized that broadcast spraying of biocides within the duct system should not be performed.

  8. The Solubility of Ozone in Deionized Water and its Cleaning Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.H.; Park, J.G. [Hanyang University, Seoul (Korea, Republic of); Kwak, Y.S. [Hanyang Technology Co., Ltd., Ansan (Korea, Republic of)

    1998-06-01

    The purpose of this study was to investigate the behavior of ozone in DI water and the reaction with wafers during the semiconductor wet cleaning process. The solubility of ozone in DI water was not only dependent on the temperature but also directly proportional to the input concentration of ozone. The lower the initial ozone concentration and the temperature, the longer the half-life time of ozone. The reaction order of ozone in DI water was calculated to be around 1.5. The redox potential reached a saturation value in 5min and slightly increased as the input ozone concentrations increased. The completely hydrophilic surface was created in 1min when HF etched silicon wafer was cleaned in ozonized DI water containing higher ozone concentrations than 2ppm. Spectroscopic ellipsometry measurements showed that the chemical oxide formed by ozonized DI water was measured to be thicker than that by piranha solution. The wafers contaminated with a non-ionic surfactant were more effectively cleaned in ozonized DI water than in piranha and ozonized piranha solutions. (author). 19 refs., 11 figs., 1 tab.

  9. International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen: Book of Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, R.; Symko-Davies, M.; Hayden, H.

    2005-05-01

    The International Conference on Solar Concentrators for the Generation of Electricity or Hydrogen provides an opportunity to learn about current significant research on solar concentrators for generating electricity or hydrogen. The conference will emphasize in-depth technical discussions of recent achievements in technologies that convert concentrated solar radiation to electricity or hydrogen, with primary emphasis on photovoltaic (PV) technologies. Very high-efficiency solar cells--above 37%--were recently developed, and are now widely used for powering satellites. This development demands that we take a fresh look at the potential of solar concentrators for generating low-cost electricity or hydrogen. Solar electric concentrators could dramatically overtake other PV technologies in the electric utility marketplace because of the low capital cost of concentrator manufacturing facilities and the larger module size of concentrators. Concentrating solar energy also has advantages for th e solar generation of hydrogen. Around the world, researchers and engineers are developing solar concentrator technologies for entry into the electricity generation market and several have explored the use of concentrators for hydrogen production. The last conference on the subject of solar electric concentrators was held in November of 2003 and proved to be an important opportunity for researchers and developers to share new and crucial information that is helping to stimulate projects in their countries.

  10. Chip cleaning and regeneration for electrochemical sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bhalla, Vijayender [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Carrara, Sandro, E-mail: sandro.carrara@epfl.c [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy); Stagni, Claudio [Department DEIS, University of Bologna, viale Risorgimento 2, 40136 Bologna (Italy); Samori, Bruno [Biochemistry Department ' G.Moruzzi' , University of Bologna, Via Irnerio 48, 40126 Bologna (Italy)

    2010-04-02

    Sensing systems based on electrochemical detection have generated great interest because electronic readout may replace conventional optical readout in microarray. Moreover, they offer the possibility to avoid labelling for target molecules. A typical electrochemical array consists of many sensing sites. An ideal micro-fabricated sensor-chip should have the same measured values for all the equivalent sensing sites (or spots). To achieve high reliability in electrochemical measurements, high quality in functionalization of the electrodes surface is essential. Molecular probes are often immobilized by using alkanethiols onto gold electrodes. Applying effective cleaning methods on the chip is a fundamental requirement for the formation of densely-packed and stable self-assembly monolayers. However, the available well-known techniques for chip cleaning may not be so reliable. Furthermore, it could be necessary to recycle the chip for reuse. Also in this case, an effective recycling technique is required to re-obtain well cleaned sensing surfaces on the chip. This paper presents experimental results on the efficacy and efficiency of the available techniques for initial cleaning and further recycling of micro-fabricated chips. Piranha, plasma, reductive and oxidative cleaning methods were applied and the obtained results were critically compared. Some interesting results were attained by using commonly considered cleaning methodologies. This study outlines oxidative electrochemical cleaning and recycling as the more efficient cleaning procedure for electrochemical based sensor arrays.

  11. Clean Coal Technology Demonstration Program. Program update 1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The Clean Coal Technology Demonstration Program (CCT Program) is a $7.14 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Clean coal technologies being demonstrated under the CCT program are creating the technology base that allows the nation to meet its energy and environmental goals efficiently and reliably. The fact that most of the demonstrations are being conducted at commercial scale, in actual user environments, and under conditions typical of commercial operations allows the potential of the technologies to be evaluated in their intended commercial applications. The technologies are categorized into four market sectors: advanced electric power generation systems; environmental control devices; coal processing equipment for clean fuels; and industrial technologies. Sections of this report describe the following: Role of the Program; Program implementation; Funding and costs; The road to commercial realization; Results from completed projects; Results and accomplishments from ongoing projects; and Project fact sheets. Projects include fluidized-bed combustion, integrated gasification combined-cycle power plants, advanced combustion and heat engines, nitrogen oxide control technologies, sulfur dioxide control technologies, combined SO{sub 2} and NO{sub x} technologies, coal preparation techniques, mild gasification, and indirect liquefaction. Industrial applications include injection systems for blast furnaces, coke oven gas cleaning systems, power generation from coal/ore reduction, a cyclone combustor with S, N, and ash control, cement kiln flue gas scrubber, and pulse combustion for steam coal gasification.

  12. Control of cavitation using dissolved carbon dioxide for damage-free megasonic cleaning of wafers

    Science.gov (United States)

    Kumari, Sangita

    equilibria revealed that the loss of released CO2(aq) upon increase in pH can be compensated by moderate increase in added NH4HCO3. Using this method, simultaneous control of SL and solution pH was demonstrated in two systems, NH4HCO3/HCl and NH4OH/CO2, at two nominal pH values; 5.7 and 7.0. Damage studies were performed on wafer samples with line/space patterns donated by IMEC and FSI International bearing Si/metal/a-Si gate stacks of thickness ~36 nm and Si/Poly-Si gate stacks of thickness ~67 nm, respectively. A single wafer spin cleaning tool MegPieRTM was used for the generation of megasonic energy for inducing damage to the structures. It was demonstrated that CO2 dissolution in DI water suppresses damage to the gate stacks in a dose-dependent manner. Together, these studies establish a systematic and strong correlation between CO2(aq) concentration, SL suppression and damage suppression. Significant damage reduction (~50 % to ~90 %) was observed at [CO2(aq)] > ~300 ppm. It was also demonstrated that CO2(aq) suppresses damage under alkaline pH condition too. This demonstration was made possible by the successful design of two new cleaning systems NH4HCO3/NH4OH and CO2/NH 4OH that could generate CO2(aq) under alkaline conditions. Damage suppressing ability of the newly designed cleaning systems were compared to the standard cleaning system NH4OH at pH 8.2 and it was found that NH4HCO3/NH4OH and CO2/NH 4OH systems were 80 % more efficient in suppressing damage compared to the standard NH4OH cleaning system. Finally, megasonic cleaning studies were conducted in the same single wafer spin cleaning tool MegPieRTM, using SiO2 particles (size 185 nm) deposited on 200 mm oxide Si wafers, as the contaminant. It was found that the standard cleaning chemical, NH4OH, pH 8.2, was effective in achieving > 95 % particle removal for 2 min irradiation of megasonic energy at power densities > 0.7 W/cm2. Based on these results, a new system, NH4HCO3/NH4OH, was designed with an aim to

  13. Preventive acid chemical cleaning operation (PACCO) on steam generator in French nuclear power plants

    International Nuclear Information System (INIS)

    Traino, Jules; Ruiz Martinez, Jose Thomas; Rottner, Bernard; Vedova, Eric

    2014-01-01

    Steam Generators (SG) usually present important deposit loading and Tube Support Blockage, resulting from Secondary Side corrosion products. These phenomena modify SG behavior which can lead to safety, heat exchange performance and lifetime problems. In this context, a Chemical Cleaning Process (PACCO) was designed to solve the issue. After almost two years of intensive lab tests, pilot simulation and mock-ups, the chemical process was finally qualified by EDF. The aim of the work was firstly the development in laboratory of a chemical process that could eliminate partially the deposit loading, respecting the integrity of materials and gas emission limits. Secondly, the objective was the design and the implementation of the process on-site. The process has been applied successfully in 3 SG in Dampierre nuclear power plant in France on July 2013. The main results were: - Corrosion < 100 μm. - 40% of the initial deposit loading, removed by SG. (authors)

  14. Novel denture-cleaning system based on hydroxyl radical disinfection.

    Science.gov (United States)

    Kanno, Taro; Nakamura, Keisuke; Ikai, Hiroyo; Hayashi, Eisei; Shirato, Midori; Mokudai, Takayuki; Iwasawa, Atsuo; Niwano, Yoshimi; Kohno, Masahiro; Sasaki, Keiichi

    2012-01-01

    The purpose of this study was to evaluate a new denture-cleaning device using hydroxyl radicals generated from photolysis of hydrogen peroxide (H2O2). Electron spin resonance analysis demonstrated that the yield of hydroxyl radicals increased with the concentration of H2O2 and light irradiation time. Staphylococcus aureus, Pseudomonas aeruginosa, and methicillin-resistant S aureus were killed within 10 minutes with a > 5-log reduction when treated with photolysis of 500 mM H2O2; Candida albicans was killed within 30 minutes with a > 4-log reduction with photolysis of 1,000 mM H2O2. The clinical test demonstrated that the device could effectively reduce microorganisms in denture plaque by approximately 7-log order within 20 minutes.

  15. [Indoor volatile organic compounds: concentrations, sources, variation factors].

    Science.gov (United States)

    Palot, A; Charpin-Kadouch, C; Ercoli, J; Charpin, D

    2008-06-01

    Volatile organic compounds (V.O.C.) are part of urban air pollution and are also generated indoors from cleaning and maintenance products. VOC measurements are, on average, 10 times higher within homes than outside. Results of the national survey led by the Observatoire National de la Qualité de l'Air Intérieur demonstrated that up to 25% of French homes have very high or high concentrations of VOC. Indoor levels depend mainly on indoor sources. Aldehydes are included in many everyday life products. VOC originate from various household decorating and cleaning products. Some products are less detrimental to the environment and health and have special labelling. Indoor VOC levels also depend on the rate of air exchange and on household characteristics such as indoor temperature and humidity, age of the building, presence of smokers, and communication with a garage. The public may participate in maintaining good indoor air quality and the authorities should also improve regulations. VOC are part of everyday air pollution. Their sources and concentrations should be better monitored.

  16. Ecological effectiveness of oil spill countermeasures: how clean is clean?

    International Nuclear Information System (INIS)

    Baker, J.M.

    1999-01-01

    This paper with 94 references examines background levels of hydrocarbons and the difficulty of defining clean. Processes and timescales for natural cleaning, and factors affecting natural cleaning timescales are considered. Ecological advantages and disadvantages of clean-up methods are highlighted, and five case histories of oil spills are summarised. The relationships between ecological and socio-economic considerations, and the need for a net environmental benefit analysis which takes into account the advantages and disadvantages of clean-up responses and natural clean-up are discussed. A decision tree for evaluating the requirement for shore clean-up is illustrated. (UK)

  17. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    OpenAIRE

    Mohan, Gowtham; Dahal, Sujata; Kumar, Uday; Martin, Andrew; Kayal, Hamid

    2014-01-01

    Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases) liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a) electricity by combining steam rankine cycle using heat recovery steam generator (HRSG); (b) clean water by air gap membrane distillation (AGMD) plant; and (c) cooling by single stage vapor absorption chiller (VAC). The flue gases liber...

  18. Evidence for self-cleaning in gecko setae

    Science.gov (United States)

    Hansen, W. R.; Autumn, K.

    2005-01-01

    A tokay gecko can cling to virtually any surface and support its body mass with a single toe by using the millions of keratinous setae on its toe pads. Each seta branches into hundreds of 200-nm spatulae that make intimate contact with a variety of surface profiles. We showed previously that the combined surface area of billions of spatulae maximizes van der Waals interactions to generate large adhesive and shear forces. Geckos are not known to groom their feet yet retain their stickiness for months between molts. How geckos manage to keep their feet clean while walking about with sticky toes has remained a puzzle until now. Although self-cleaning by water droplets occurs in plant and animal surfaces, no adhesive has been shown to self-clean. In the present study, we demonstrate that gecko setae are a self-cleaning adhesive. Geckos with dirty feet recovered their ability to cling to vertical surfaces after only a few steps. Self-cleaning occurred in arrays of setae isolated from the gecko. Contact mechanical models suggest that self-cleaning occurs by an energetic disequilibrium between the adhesive forces attracting a dirt particle to the substrate and those attracting the same particle to one or more spatulae. We propose that the property of self-cleaning is intrinsic to the setal nanostructure and therefore should be replicable in synthetic adhesive materials in the future. adhesion | contact mechanics | locomotion | reptilia | nanotechnology

  19. 2727-S Nonradioactive Dangerous Waste Storage Facility clean closure evaluation report

    International Nuclear Information System (INIS)

    Luke, S.N.

    1994-01-01

    This report presents the analytical results of 2727-S NRDWS facility closure verification soil sampling and compares these results to clean closure criteria. The results of this comparison will determine if clean closure of the unit is regulatorily achievable. This report also serves to notify regulators that concentrations of some analytes at the site exceed sitewide background threshold levels (DOE-RL 1993b) and/or the limits of quantitation (LOQ). This report also presents a Model Toxics Control Act Cleanup (MTCA) (WAC 173-340) regulation health-based closure standard under which the unit can clean close in lieu of closure to background levels or LOQ in accordance with WAC 173-303-610. The health-based clean closure standard will be closure to MTCA Method B residential cleanup levels. This report reconciles all analyte concentrations reported above background or LOQ to this health-based cleanup standard. Regulator acceptance of the findings presented in this report will qualify the TSD unit for clean closure in accordance with WAC 173-303-610 without further TSD unit soil sampling, or soil removal and/or decontamination. Nondetected analytes require no further evaluation

  20. USE CELLULOSE FOR CLEANING CONCENTRATED SUGAR SOLUTIONS

    Directory of Open Access Journals (Sweden)

    N. G. Kul’neva

    2015-01-01

    Full Text Available Summary. Producing high quality intermediate products in the boiling-crystallization station is an actual problem of sugar production. In the production of white sugar brown sugar syrup is not further purified that decreases the quality of the end product. Studies have been conducted using cellulose as an adsorbent for the purification of concentrated sugar solutions, having affinity to dyes and other impurities. Research have been carried out with the intermediate products of the Lebedyan sugar plant. Test results have shown cellulose ability to adsorb the dyes in sugar production. The influence of the adsorbent concentration and the mass fraction of solids in the syrup on the decolorization effect has been studied; rational process parameters have been obtained. It has been found that proceeding an additional adsorption purification of brown sugars syrup allows to reduce the solution color, increase the amount and quality of the end product. Adsorbing means, received from production wastes on the basis of organic resources, have many advantages: economical, environmentally friendly for disposal, safe to use, reliable and efficient in use. Conducted research on using cellulose as adsorbent for treatment of concentrated sugar solutions, having an affinity for colouring matter and other impurities. The experiments were carried out on the intermediates Lebedyanskiy sugar factory. The test results showed the ability of cellulose to adsorb coloring matter of sugar production. To evaluate the effect of bleaching depending on the mass fraction of dry substances prepared yellow juice filtration of sugar concentration of 55, 60, 65 % with subsequent adsorption purification of cellulose. The results of the experiment built adsorption isotherm of dyestuffs. The influence of the concentration of the adsorbent and a mass fraction of solids of juice filtration on the efficiency of decolorization obtained by rational parameters of the process. It is

  1. Hawaii Clean Energy Initiative 2008-2018: Celebrating 10 Years of Success

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-04

    Launched in January 2008, the Hawaii Clean Energy Initiative (HCEI) set out transform Hawaii into a world model for energy independence and sustainability. With its leading-edge vision to transition to a Hawaii-powered clean energy economy within a single generation, HCEI established the most aggressive clean energy goals in the nation. Ten years after its launch, HCEI has significantly outdistanced the lofty targets established as Hawaii embarked on its ambitious quest for energy independence. The state now generates 27 percent of its electricity sales from clean energy sources like wind and solar, placing it 12 percentage points ahead of HCEI's original 2015 RPS target of 15 percent. This brochure highlights some of HCEI's key accomplishments and impacts during its first decade and reveals how its new RPS goal of 100 percent by 2045, which the Hawaii state legislature adopted in May 2015, has positioned Hawaii to become the first U.S. state to produce all of its electricity from indigenous renewable sources.

  2. Dynamic self-cleaning in gecko setae via digital hyperextension

    Science.gov (United States)

    Hu, Shihao; Lopez, Stephanie; Niewiarowski, Peter H.; Xia, Zhenhai

    2012-01-01

    Gecko toe pads show strong adhesion on various surfaces yet remain remarkably clean around everyday contaminants. An understanding of how geckos clean their toe pads while being in motion is essential for the elucidation of animal behaviours as well as the design of biomimetic devices with optimal performance. Here, we test the self-cleaning of geckos during locomotion. We provide, to our knowledge, the first evidence that geckos clean their feet through a unique dynamic self-cleaning mechanism via digital hyperextension. When walking naturally with hyperextension, geckos shed dirt from their toes twice as fast as they would if walking without hyperextension, returning their feet to nearly 80 per cent of their original stickiness in only four steps. Our dynamic model predicts that when setae suddenly release from the attached substrate, they generate enough inertial force to dislodge dirt particles from the attached spatulae. The predicted cleaning force on dirt particles significantly increases when the dynamic effect is included. The extraordinary design of gecko toe pads perfectly combines dynamic self-cleaning with repeated attachment/detachment, making gecko feet sticky yet clean. This work thus provides a new mechanism to be considered for biomimetic design of highly reuseable and reliable dry adhesives and devices. PMID:22696482

  3. Likely-clean concrete disposition at Chalk River Laboratories

    International Nuclear Information System (INIS)

    Betts, J.A.

    2011-01-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  4. Likely-clean concrete disposition at Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Betts, J.A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2011-07-01

    The vast majority of wastes produced at nuclear licensed sites are no different from wastes produced from other traditional industrial activities. Radiation and contamination control practices ensure that the small amounts of waste materials that contain a radiation and or contamination hazard are segregated and managed appropriately according to the level of hazard. Part of the segregation process involves additional clearance checks of wastes generated in areas where the potential to become radioactively contaminated exists, but is very small and contamination control practices are such that the wastes are believed to be 'likely-clean'. This important clearance step helps to ensure that radioactive contamination is not inadvertently released during disposition of inactive waste materials. Clearance methods for bagged likely-clean wastes (i.e. small volumes of low density wastes) or discreet non-bagged items are well advanced. Clearance of bagged likely-clean wastes involves measuring small volumes of bagged material within purpose built highly sensitive bag monitors. For non-bagged items the outer surfaces are scanned to check for surface contamination using traditional hand-held contamination instrumentation. For certain very bulky and porous materials (such as waste concrete), these traditional clearance methods are impractical or not fully effective. As a somewhat porous (and dense) material, surface scanning cannot always be demonstrated to be conclusive. In order to effectively disposition likely-clean concrete, both the method of clearance (i.e. conversion from likely-clean to clean) and method of disposition have to be considered. Likely-clean concrete wastes have been produced at Chalk River Laboratories (CRL) from demolitions of buildings and structures, as well as small amounts from site maintenance activities. A final disposition method for this material that includes the secondary clearance check that changes the classification of this

  5. High-performance flat-panel solar thermoelectric generators with high thermal concentration

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J. Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m-2) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity.

  6. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    Science.gov (United States)

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-05-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. © 2011 Macmillan Publishers Limited. All rights reserved

  7. Infrasonic backpulsed membrane cleaning of micro- and ...

    African Journals Online (AJOL)

    2011-08-29

    Aug 29, 2011 ... become prominent in water treatment for domestic and indus- trial water ... fouling and cleaning in a reverse osmosis (RO) system, and showed that the .... used to make yeast suspensions with concentrations of 1 g/ℓ. Alumina ...

  8. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  9. Generation of tunable and pulsatile concentration gradients via microfluidic network

    KAUST Repository

    Zhou, Bingpu

    2014-06-04

    We demonstrate a compact Polydimethylsiloxane microfluidic chip which can quickly generate ten different chemical concentrations simultaneously. The concentration magnitude of each branch can be flexibly regulated based on the flow rate ratios of the two injecting streams. The temporal/pulsatile concentration gradients are achieved by integrating on-chip pneumatic actuated valves controlled by the external signals. The temporal concentration gradients can also be tuned precisely by varying applied frequency and duty cycle of the trigger signal. It is believed that such microdevice will be potentially used for some application areas of producing stable chemical gradients as well as allowing fast, pulsatile gradient transformation in seconds.

  10. Decontamination of radioactive contaminated protective wear using dry cleaning solvent

    International Nuclear Information System (INIS)

    Muthiah, Pushpa; Chitra, S.; Paul, Biplob

    2013-01-01

    Liquid waste generated by conventional decontamination of radioactive contaminated cotton protective wear using detergent affects the chemical treatment of the plant. To reduce the generation of aqueous detergent waste, dry cleaning of cotton protective wear, highly soiled with oil and grease towards decontamination was tried with organic solvents. Mineral turpentine oil (MTO) among various other organic solvents was identified as a suitable organic solvent. As MTO leaves characteristic odour on the cloth, various commercial fragrances for the removal of the odour were tried. Application of the optimised dry cleaning solvent and commercial fragrance was adopted in plant scale operation. (author)

  11. Second annual clean coal technology conference: Proceedings

    International Nuclear Information System (INIS)

    1993-01-01

    This report contains paper on the following topics: coal combustion/coal processing; advanced electric power generation systems; combined nitrogen oxide/sulfur dioxide control technologies; and emerging clean coal issues and environmental concerns. These paper have been cataloged separately elsewhere

  12. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  13. Chemical cleaning of Dresden Unit 1: Final report

    International Nuclear Information System (INIS)

    1986-05-01

    The introduction of NS-1 solvent into the full primary system of Dresden Unit-1 nuclear power reactor on September 12, 1984, represented the culmination of several years of development, testing, planning, and construction. The requirement was to dissolve the highly radioactive deposits of primarily nickel ferrite without any corrosion which might compromise the reactor systems. During the actual cleaning with the NS-1 solvent, the chemical condition of the circulating solvent was measured. Iron, nickel, and radioactive cobalt all dissolved smoothly. The amount of copper in solution decreased in concentration, verifying expectations that metallic copper would plate on to clean metal surfaces. A special rinse formulation was employed after the primary cleaning steps and the ''lost'' copper was thus redissolved and removed from the system. After the cleaning was complete and the reactor had been refilled with pure water, radiation levels were measured. The most accurate of these measurements gave decontamination factors ranging well above 100, which indicated a significant removal of the radioactive deposits, and demonstrated the success of this project. Treatment of the radioactive liquid wastes from this operation required volume reduction and water purification. The primary method of processing the spent cleaning solvent and rinse water was evaporation. The resulting concentrate has been stored as a liquid, awaiting solidification to allow burial at a designated site. Water which was separated during evaporation, along with the dilute rinses, was processed by various chemical means, reevaporated, treated with activated carbon, and/or demineralized before its radionuclide and chemical content was low enough to allow it to be returned to Dresden Station for treatment or disposal. 60 figs., 31 tabs

  14. Cleaning IBL secondary sludge in the tubular plate steam generators

    International Nuclear Information System (INIS)

    Montoro de Frutos, E.; Gonzalez Carballo, S.

    2012-01-01

    After cleanings Sludge Lancing using 250bar made from the center lane, identifies an area of solidified remaining sludge on the tube plate. Since late 2010, IBERDROLA-SAVAC has developed Inner System Bundle Lancing (IBL), which locally involves shooting a jet of water at high pressure 590bar directly impacting sludge areas within the tube bundle hard to detach and break into small pieces that can be extracted from GV through a closed circuit suction.

  15. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-12-08

    The use of low-pressure membranes, mainly ultrafiltration (UF), has emerged in the last decade and began to show acceptance as a novel pretreatment process for seawater reverse osmosis (SWRO) desalination. This is mainly due to the superior water quality provided by these membranes, in addition to reduction in chemicals consumption compared to conventional methods. However, membrane fouling remains the main drawback of this technology. Therefore, frequent cleaning of these membranes is required to maintain water flux and its quality. Usually, after a series of backwash using UF permeate chemical cleaning is required under some conditions to fully recover the operating flux. Frequent chemical cleaning will probably decrease the life time of the membrane, increase costs, and will have some effects on the environment. The new cleaning method proposed in this study consists of using a solution saturated with carbon dioxide (CO2) to clean UF membranes. Under the drop in pressure, this solution will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions including the use of organic compounds such as sodium alginate and colloidal 5 silica with different concentrations were studied using synthetic seawater with different concentrations. This cleaning method was then compared to the backwash using Milli-Q water and showed an improved performance compared to it. An operational modification to this cleaning technique was then investigated which includs a series of sudden pressure drop during the backwash process. This enhanced technique showed an even better performance in cleaning the membrane, especially at severe fouling conditions. In most cases, the membrane permeability was fully recovered even at harsh conditions where conventional backwash failed to maintain a stable

  16. Cleaning efficiency enhancement by ultrasounds for membranes used in dairy industries.

    Science.gov (United States)

    Luján-Facundo, M J; Mendoza-Roca, J A; Cuartas-Uribe, B; Álvarez-Blanco, S

    2016-11-01

    Membrane cleaning is a key point for the implementation of membrane technologies in the dairy industry for proteins concentration. In this study, four ultrafiltration (UF) membranes with different molecular weight cut-offs (MWCOs) (5, 15, 30 and 50kDa) and materials (polyethersulfone and ceramics) were fouled with three different whey model solutions: bovine serum albumin (BSA), BSA plus CaCl2 and whey protein concentrate solution (Renylat 45). The purpose of the study was to evaluate the effect of ultrasounds (US) on the membrane cleaning efficiency. The influence of ultrasonic frequency and the US application modes (submerging the membrane module inside the US bath or applying US to the cleaning solution) were also evaluated. The experiments were performed in a laboratory plant which included the US equipment and the possibility of using two membrane modules (flat sheet and tubular). The fouling solution that caused the highest fouling degree for all the membranes was Renylat 45. Results demonstrated that membrane cleaning with US was effective and this effectiveness increased at lower frequencies. Although no significant differences were observed between the two different US applications modes tested, slightly higher cleaning efficiencies values placing the membrane module at the bottom of the tank were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Controlling the cost of clean air - A new clean coal technology

    International Nuclear Information System (INIS)

    Kindig, J.K.; Godfrey, R.L.

    1991-01-01

    This article presents the authors' alternative to expensive coal combustion products clean-up by cleaning the coal, removing the sulfur, before combustion. Topics discussed include sulfur in coal and the coal cleaning process, the nature of a new coal cleaning technology, the impact on Clean Air Act compliance, and the economics of the new technology

  18. Plasma-assisted cleaning of extreme UV optics

    NARCIS (Netherlands)

    Dolgov, Alexandr Alexeevich

    2018-01-01

    Plasma-assisted cleaning of extreme UV optics EUV-induced surface plasma chemistry of photo-active agents The next generation of photolithography, extreme ultraviolet (EUV) lithography, makes use of 13.5 nm radiation. The ionizing photon flux, and vacuum requirements create a challenging operating

  19. ATP Bioluminometers Analysis on the Surfaces of Removable Orthodontic Aligners after the Use of Different Cleaning Methods

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2016-01-01

    Full Text Available Purpose. The aim was to quantify the bacteria concentration on the surface of orthodontic clear aligners using three different cleaning methods. Furthermore the objective was to validate the efficacy of the bioluminometer in assessing the bacteria concentration. Materials and Methods. Twenty subjects (six males and fourteen females undergoing orthodontic therapy with clear aligners (Invisalign® Align Technology, Santa Clara, California were enrolled in this study. The observation time was of six weeks. The patients were instructed to use different cleaning methods (water, brushing with toothpaste, and brushing with toothpaste and use of sodium carbonate and sulphate tablet. At the end of each phase a microbiological analysis was performed using the bioluminometer. Results. The highest bacteria concentration was found on aligners cleaned using only water (583 relative light units; a value of 189 relative light units was found on aligners cleaned with brushing and toothpaste. The lowest bacteria concentration was recorded on aligners cleaned with brushing and toothpaste and the use of sodium carbonate and sulfate tablet. Conclusions. The mechanical removal of the bacterial biofilm proved to be effective with brushing and toothpaste. The best results in terms of bacteria concentration were achieved adding the use of sodium carbonate and sulfate tablet.

  20. ATP Bioluminometers Analysis on the Surfaces of Removable Orthodontic Aligners after the Use of Different Cleaning Methods.

    Science.gov (United States)

    Levrini, Luca; Mangano, Alessandro; Margherini, Silvia; Tenconi, Camilla; Vigetti, Davide; Muollo, Raffaele; Marco Abbate, Gian

    2016-01-01

    Purpose. The aim was to quantify the bacteria concentration on the surface of orthodontic clear aligners using three different cleaning methods. Furthermore the objective was to validate the efficacy of the bioluminometer in assessing the bacteria concentration. Materials and Methods. Twenty subjects (six males and fourteen females) undergoing orthodontic therapy with clear aligners (Invisalign® Align Technology, Santa Clara, California) were enrolled in this study. The observation time was of six weeks. The patients were instructed to use different cleaning methods (water, brushing with toothpaste, and brushing with toothpaste and use of sodium carbonate and sulphate tablet). At the end of each phase a microbiological analysis was performed using the bioluminometer. Results. The highest bacteria concentration was found on aligners cleaned using only water (583 relative light units); a value of 189 relative light units was found on aligners cleaned with brushing and toothpaste. The lowest bacteria concentration was recorded on aligners cleaned with brushing and toothpaste and the use of sodium carbonate and sulfate tablet. Conclusions. The mechanical removal of the bacterial biofilm proved to be effective with brushing and toothpaste. The best results in terms of bacteria concentration were achieved adding the use of sodium carbonate and sulfate tablet.

  1. Chemical cleaning, decontamination and corrosion

    International Nuclear Information System (INIS)

    Gadiyar, H.S.; Das Chintamani; Gaonkar, K.B.

    1991-01-01

    Chemical cleaning of process equipments and pipings in chemical/petrochemical industries is necessitated for improving operation, for preventing premature failures and for avoiding contamination. In developing a chemical formulation for cleaning equipments, the important aspects to be considered include (i) effective removal of corrosion products and scales, (ii) minimum corrosion of the base metal, (iii) easy to handle chemicals and (iv) economic viability. As on date, a wide variety of chemical formulations are available, many of them are either proprietory or patented. For evolving an effective formulation, knowledge of the oxides of various metals and alloys on the one hand and acid concentration, complexing agents and inhibitors to be incorporated on the other, is quite essential. Organic acids like citric acid, acetic acid and formic acid are more popular ones, often used with EDTA for effective removal of corrosion products from ferrous components. The report enumerates some of the concepts in developing effective formulations for chemical cleaning of carbon steel components and further, makes an attempt to suggest simple formulations to be developed for chemical decontamination. (author). 6 refs., 3 fi gs., 4 tabs

  2. Number concentrations of solid particles from the spinning top aerosol generator

    International Nuclear Information System (INIS)

    Mitchell, J.P.

    1983-02-01

    A spinning top aerosol generator has been used to generate monodisperse methylene blue particles in the size range from 0.6 to 6 μm. The number concentrations of these aerosols have been determined by means of an optical particle counter and compared with the equivalent measurements obtained by filter collection and microscopy. (author)

  3. An experience of cleaning and decontamination of the BN-350 reactor components

    International Nuclear Information System (INIS)

    Vasilenko, K.T.; Kochetkov, L.A.; Arkhipov, V.M.; Baklushin, R.P.; Gorlov, A.I.; Kiselev, G.V.; Rezinkin, P.S.; Samarkin, A.A.; Tverdovsky, N.D.

    1978-01-01

    In the course of start-up, adjustment and operation of the BN-350 reactor there arose a need for cleaning from sodium and decontamination of primary and secondary equipment components. Design schemes of the systems provided for this purpose as well as those specially designed for cleaning of steam generator evaporators are considered. Technological processes of cleaning and decontamination for some reactor components (removable parts of circulating pumps, evaporators, valves) are described, the results are presented. (author)

  4. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  5. Evaluation of boiler chemical cleaning techniques

    International Nuclear Information System (INIS)

    1993-04-01

    The EPRI/SGOG process, which has been selected by Ontario Hydro for use at the Bruce A station, is described. This process consists of alternating iron removal and copper removal steps, the two metals which comprise the bulk of the deposit in the Bruce A SGs. The iron removal solvent consists of ethylenediameinetetraacetic acid (EDTA), hydrazine, ammonium hydroxide and a proprietary corrosion inhibitor CCI-801. The copper removal solvent consists of EDTA, ethylene diamine and hydrogen peroxide. Ontario Hydro proposes to clean a bank of four SGs in parallel employing a total of six copper removal steps and four iron removal steps. Cleaning all eight SGs in a single Bruce A unit will generate 2,200 m 3 of liquid waste which will be treated by a wet air oxidation process. The iron and copper sludges will be buried in a landfill site while the liquid waste will be further treated by the Bruce sewage treatment plant. Some ammonia vapour will be generated through the wet air oxidation process and will be vented through a stack on top of the high bay of the spent solvent treatment plant. With the exception of the proprietary corrosion inhibitor, all chemicals that will be employed in the cleaning and waste treatment operations are standard industrial chemicals which are well characterized. No extraordinary hazards are anticipated with their use as long as adequate safety precautions are taken

  6. [Analysis and research on cleaning points of HVAC systems in public places].

    Science.gov (United States)

    Yang, Jiaolan; Han, Xu; Chen, Dongqing; Jin, Xin; Dai, Zizhu

    2010-03-01

    To analyze cleaning points of HVAC systems, and to provides scientific base for regulating the cleaning of HVAC systems. Based on the survey results on the cleaning situation of HVAC systems around China for the past three years, we analyzes the cleaning points of HVAC systems from various aspects, such as the major health risk factors of HVAC systems, the formulation strategy of the cleaning of HVAC systems, cleaning methods and acceptance points of the air ducts and the parts of HVAC systems, the onsite protection and individual protection, the waste treatment and the cleaning of the removed equipment, inspection of the cleaning results, video record, and the final acceptance of the cleaning. The analysis of the major health risk factors of HVAC systems and the formulation strategy of the cleaning of HVAC systems is given. The specific methods for cleaning the air ducts, machine units, air ports, coil pipes and the water cooling towers of HVAC systems, the acceptance points of HVAC systems and the requirements of the report on the final acceptance of the cleaning of HVAC systems are proposed. By the analysis of the points of the cleaning of HVAC systems and proposal of corresponding measures, this study provides the base for the scientific and regular launch of the cleaning of HVAC systems, a novel technology service, and lays a foundation for the revision of the existing cleaning regulations, which may generate technical and social benefits to some extent.

  7. Study on the technology of decreasing ash and sulfur in coking coal concentrate by deep-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, A.; Li, P.; Chen, S. [Hefei Design and Research Institute of Coal Industry, Hefei (China)

    2007-06-15

    Middling fractions of coking coal, a rare resource in China, were analysed for their embedded minerals both in kind and distribution. Observation with a microscope shows that most are clay minerals of very small particle size. The embedded minerals can be liberated from middling by grinding. Clean coal can be obtained from ground middling by the flocculation-flotation process. The yield of clean coal could thus be increased and its ash and sulfur content decreased. 3 refs., 2 figs., 4 tabs.

  8. Simple and Environmentally Friendly Fabrication of Superhydrophobic Alkyl Ketene Dimer Coated MALDI Concentration Plates.

    Science.gov (United States)

    Romson, Joakim; Jacksén, Johan; Emmer, Åsa

    2017-08-01

    Here we present a method to manufacture peptide-concentrating MALDI-plates with alkyl ketene dimer (AKD) as a new superhydrophobic coating. The fabrication of the hydrophobic plates included application of AKD by airbrush, and negative contact printing to generate the concentration sites. Deposited sample droplets were contained within the prestructured sites, and self-adjusted onto the site if slightly misplaced. No AKD contamination was observed, and the plates could easily be cleaned and regenerated. The S/N values for four model peptides was about twice as high compared with a standard steel plate and a commercial concentration plate. Graphical Abstract ᅟ.

  9. Simple and Environmentally Friendly Fabrication of Superhydrophobic Alkyl Ketene Dimer Coated MALDI Concentration Plates

    Science.gov (United States)

    Romson, Joakim; Jacksén, Johan; Emmer, Åsa

    2017-08-01

    Here we present a method to manufacture peptide-concentrating MALDI-plates with alkyl ketene dimer (AKD) as a new superhydrophobic coating. The fabrication of the hydrophobic plates included application of AKD by airbrush, and negative contact printing to generate the concentration sites. Deposited sample droplets were contained within the prestructured sites, and self-adjusted onto the site if slightly misplaced. No AKD contamination was observed, and the plates could easily be cleaned and regenerated. The S/N values for four model peptides was about twice as high compared with a standard steel plate and a commercial concentration plate.

  10. Matrix solid-phase dispersion on column clean-up/pre-concentration as a novel approach for fast isolation of abuse drugs from human hair.

    Science.gov (United States)

    Míguez-Framil, Martha; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar; Alvarez-Freire, Iván; Tabernero, María Jesús; Bermejo, Ana María

    2010-10-08

    A simple and fast sample pre-treatment method based on matrix solid-phase dispersion (MSPD) for isolating cocaine, benzoylecgonine (BZE), codeine, morphine and 6-monoacethylmorphine (6-MAM) from human hair has been developed. The MSPD approach consisted of using alumina (1.80 g) as a dispersing agent and 0.6M hydrochloric acid (4 mL) as an extracting solvent. For a fixed hair sample mass of 0.050 g, the alumina mass to sample mass ratio obtained was 36. A previously conditioned Oasis HLB cartridge (2 mL methanol, plus 2 mL ultrapure water, plus 1 mL of 0.2M/0.2M sodium hydroxide/boric acid buffer solution at pH 9.2) was attached to the end of the MSPD syringe for on column clean-up of the hydrochloric acid extract and for transferring the target compounds to a suitable solvent for gas chromatography (GC) analysis. Therefore, the adsorbed analytes were directly eluted from the Oasis HLB cartridges with 2 mL of 2% acetic acid in methanol before concentration by N(2) stream evaporation and dry extract derivatization with N-methyl-tert-butylsilyltrifluoroacetamide (BSTFA) and chlorotrimethylsilane (TMCS). The optimization/evaluation of all the factors affecting the MSPD and on column clean-up procedures has led to a fast sample treatment, and analytes extraction and pre-concentration can be finished in approximately 30 min. The developed method has been applied to eight hair samples from poli-drug abusers and measured analyte concentrations have been found to be statistically similar (95% confidence interval) to those obtained after a conventional enzymatic hydrolysis method (Pronase E). Copyright © 2010. Published by Elsevier B.V.

  11. Microfabricated Collector-Generator Electrode Sensor for Measuring Absolute pH and Oxygen Concentrations.

    Science.gov (United States)

    Dengler, Adam K; Wightman, R Mark; McCarty, Gregory S

    2015-10-20

    Fast-scan cyclic voltammetry (FSCV) has attracted attention for studying in vivo neurotransmission due to its subsecond temporal resolution, selectivity, and sensitivity. Traditional FSCV measurements use background subtraction to isolate changes in the local electrochemical environment, providing detailed information on fluctuations in the concentration of electroactive species. This background subtraction removes information about constant or slowly changing concentrations. However, determination of background concentrations is still important for understanding functioning brain tissue. For example, neural activity is known to consume oxygen and produce carbon dioxide which affects local levels of oxygen and pH. Here, we present a microfabricated microelectrode array which uses FSCV to detect the absolute levels of oxygen and pH in vitro. The sensor is a collector-generator electrode array with carbon microelectrodes spaced 5 μm apart. In this work, a periodic potential step is applied at the generator producing transient local changes in the electrochemical environment. The collector electrode continuously performs FSCV enabling these induced changes in concentration to be recorded with the sensitivity and selectivity of FSCV. A negative potential step applied at the generator produces a transient local pH shift at the collector. The generator-induced pH signal is detected using FSCV at the collector and correlated to absolute solution pH by postcalibration of the anodic peak position. In addition, in oxygenated solutions a negative potential step at the generator produces hydrogen peroxide by reducing oxygen. Hydrogen peroxide is detected with FSCV at the collector electrode, and the magnitude of the oxidative peak is proportional to absolute oxygen concentrations. Oxygen interference on the pH signal is minimal and can be accounted for with a postcalibration.

  12. Identifying optimal cleaning cycles for heat exchangers subject to fouling and ageing

    International Nuclear Information System (INIS)

    Pogiatzis, Thomas; Ishiyama, Edward M.; Paterson, William R.; Vassiliadis, Vassilios S.; Wilson, D. Ian

    2012-01-01

    Fouling of heat exchangers causes reduced heat transfer and other penalties. Regular cleaning represents one widely used fouling mitigation strategy, where the schedule of cleaning actions can be optimised to minimise the cost of fouling. This paper investigates, for the first time, the situation where there are two cleaning methods available so that the mode of cleaning has to be selected as well as the cleaning interval. Ageing is assumed to convert the initial deposit, labelled 'gel', into a harder and more conductive form, labelled 'coke', which cannot be removed by one of the cleaning methods. The second method can remove both the gel layer and the coke layer, but costs more and requires the unit to be off-line longer for cleaning. Experimental data demonstrating the effects of ageing are presented. The industrial application is the comparison of cleaning-in-place methods with off-line mechanical cleaning. A process model is constructed for an isolated counter-current heat exchanger subject to fouling, where ageing is described by a simple two-layer model. Solutions generated by an NLP-based approach prove to be superior to a simpler heuristic. A series of case studies demonstrate that combinations of chemical and mechanical cleaning can be superior to mechanical cleaning alone for certain combinations of parameters.

  13. Waste processing of chemical cleaning solutions

    International Nuclear Information System (INIS)

    Peters, G.A.

    1991-01-01

    This paper reports on chemical cleaning solutions containing high concentrations of organic chelating wastes that are difficult to reduce in volume using existing technology. Current methods for evaporating low-level radiative waste solutions often use high maintenance evaporators that can be costly and inefficient. The heat transfer surfaces of these evaporators are easily fouled, and their maintenance requires a significant labor investment. To address the volume reduction of spent, low-level radioactive, chelating-based chemical cleaning solutions, ECOSAFE Liquid Volume Reduction System (LVRS) has been developed. The LVRS is based on submerged combustion evaporator technology that was modified for treatment of low-level radiative liquid wastes. This system was developed in 1988 and was used to process 180,000 gallons of waste at Oconee Nuclear Station

  14. Platelet-rich fibrin: Evolution of a second-generation platelet concentrate

    Directory of Open Access Journals (Sweden)

    Sunitha Raja V

    2008-01-01

    Full Text Available Platelet-rich plasma (PRP is a platelet concentrate that has been used widely to accelerate soft-tissue and hard-tissue healing. The preparation of PRP has been described by several authors. Platelet-rich fibrin (PRF was first described by Choukroun et al. in France. It has been referred to as a second-generation platelet concentrate, which has been shown to have several advantages over traditionally prepared PRP. Its chief advantages include ease of preparation and lack of biochemical handling of blood, which makes this preparation strictly autologous. This article describes the evolution of this novel platelet concentrate, referred to as PRF.

  15. Alkali-assisted membrane cleaning for fouling control of anaerobic ceramic membrane bioreactor.

    Science.gov (United States)

    Mei, Xiaojie; Quek, Pei Jun; Wang, Zhiwei; Ng, How Yong

    2017-09-01

    In this study, a chemically enhanced backflush (CEB) cleaning method using NaOH solution was proposed for fouling mitigation in anaerobic membrane bioreactors (AnMBRs). Ex-situ cleaning tests revealed that NaOH dosages ranging from 0.05 to 1.30mmol/L had positive impacts on anaerobic biomass, while higher dosages (>1.30mmol/L) showed inhibition and/or toxic impacts. In-situ cleaning tests showed that anaerobic biomass could tolerate much higher NaOH concentrations due to the alkali consumption by anaerobic process and/or the buffering role of mixed liquor. More importantly, 10-20mmol-NaOH/L could significantly reduce membrane fouling rates (4-5.5 times over the AnMBR with deionized water backflush) and slightly improve methanogenic activities. COD removal efficiencies were over 87% and peaked at 20mmol-NaOH/L. However, extremely high NaOH concentration had adverse effects on filtration and treatment performance. Economic analysis indicated that 12mmol/L of NaOH was the cost-efficient and optimal fouling-control dosage for the CEB cleaning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Performances in Tank Cleaning

    Directory of Open Access Journals (Sweden)

    Fanel-Viorel Panaitescu

    2018-03-01

    Full Text Available There are several operations which must do to maximize the performance of tank cleaning. The new advanced technologies in tank cleaning have raised the standards in marine areas. There are many ways to realise optimal cleaning efficiency for different tanks. The evaluation of tank cleaning options means to start with audit of operations: how many tanks require cleaning, are there obstructions in tanks (e.g. agitators, mixers, what residue needs to be removed, are cleaning agents required or is water sufficient, what methods can used for tank cleaning. After these steps, must be verify the results and ensure that the best cleaning values can be achieved in terms of accuracy and reliability. Technology advancements have made it easier to remove stubborn residues, shorten cleaning cycle times and achieve higher levels of automation. In this paper are presented the performances in tank cleaning in accordance with legislation in force. If tank cleaning technologies are effective, then operating costs are minimal.

  17. Raman spectroscopy for in-situ characterisation of steam generator deposits

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Guzonas, D.A.; Turner, C.W.

    1997-12-01

    This report describes the effort to develop in-situ characterisation of steam generator deposits using remote raman spectroscopy to determine the chemical composition and semi-quantitative measurement of their concentrations. Information on the composition of the deposits is necessary in order to establish the optimal cleaning conditions and procedures. Furthermore, the composition of the deposits also provides information on the conditions that exist within the steam generator and the feedtrain. The raman spectra of the three most common iron oxide phases found in the CANDU deposits (hematite, magnetite and nickel ferrite) are shown

  18. Fabrication Processes to Generate Concentration Gradients in Polymer Solar Cell Active Layers

    Science.gov (United States)

    Inaba, Shusei; Vohra, Varun

    2017-01-01

    Polymer solar cells (PSCs) are considered as one of the most promising low-cost alternatives for renewable energy production with devices now reaching power conversion efficiencies (PCEs) above the milestone value of 10%. These enhanced performances were achieved by developing new electron-donor (ED) and electron-acceptor (EA) materials as well as finding the adequate morphologies in either bulk heterojunction or sequentially deposited active layers. In particular, producing adequate vertical concentration gradients with higher concentrations of ED and EA close to the anode and cathode, respectively, results in an improved charge collection and consequently higher photovoltaic parameters such as the fill factor. In this review, we relate processes to generate active layers with ED–EA vertical concentration gradients. After summarizing the formation of such concentration gradients in single layer active layers through processes such as annealing or additives, we will verify that sequential deposition of multilayered active layers can be an efficient approach to remarkably increase the fill factor and PCE of PSCs. In fact, applying this challenging approach to fabricate inverted architecture PSCs has the potential to generate low-cost, high efficiency and stable devices, which may revolutionize worldwide energy demand and/or help develop next generation devices such as semi-transparent photovoltaic windows. PMID:28772878

  19. 76 FR 68381 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean...

    Science.gov (United States)

    2011-11-04

    ... Promulgation of Air Quality Implementation Plans; Pennsylvania; Pennsylvania Clean Vehicles Program AGENCY... Implementation Plan (SIP) revision submitted by the Commonwealth of Pennsylvania. This SIP revision contains Pennsylvania's Clean Vehicle Program, which adopts California's second generation low emission vehicle program...

  20. Operating experience in cleaning sodium-wetted components at the KNK nuclear power plant

    International Nuclear Information System (INIS)

    Stade, K.Ch.

    1978-01-01

    Since 1969, components of the KNK facility, the first sodium cooled nuclear power plant in the Federal Republic of Germany, have been cleaned both by the alcohol and the wet gas techniques. This paper outlines the experience accumulated In the application of these methods, especially in cleaning steam generators and fuel elements. Some preliminary results are indicated of the attempt to clean a cold trap from the primary circuit of the KNK facility. (author)

  1. Application of surface-enhanced Raman spectroscopy (SERS) for cleaning verification in pharmaceutical manufacture.

    Science.gov (United States)

    Corrigan, Damion K; Cauchi, Michael; Piletsky, Sergey; Mccrossen, Sean

    2009-01-01

    Cleaning verification is the process by which pharmaceutical manufacturing equipment is determined as sufficiently clean to allow manufacture to continue. Surface-enhanced Raman spectroscopy (SERS) is a very sensitive spectroscopic technique capable of detection at levels appropriate for cleaning verification. In this paper, commercially available Klarite SERS substrates were employed in order to obtain the necessary enhancement of signal for the identification of chemical species at concentrations of 1 to 10 ng/cm2, which are relevant to cleaning verification. The SERS approach was combined with principal component analysis in the identification of drug compounds recovered from a contaminated steel surface.

  2. The 1990 Clean Air Act amendments

    International Nuclear Information System (INIS)

    Torrens, I.M.; Cichanowicz, J.E.; Platt, J.B.

    1992-01-01

    The impacts of the 1990 Clean Air Act Amendments on utilities are substantial, presenting a host of new technical challenges, introducing new business risks, changing costs of electric generation, creating new winners and losers, and calling for new organizational responses capable of dealing with the complexity and short time for decisions. The magnitude of costs and unknowns puts clean air compliance into a new league of energy issues, in which the decisions utilities must make are not simply technological or engineering economic choices, but rather are very complex business decisions with numerous stakeholders, pitfalls, and opportunities. This paper summarizes the key regulatory requirements of the CAAA, outlines compliance options and questions facing the utility industry, and addresses how utility strategic business decisions could be affected

  3. Improving the cleaning procedure to make kitchen floors less slippery.

    Science.gov (United States)

    Quirion, F; Poirier, P; Lehane, P

    2008-12-01

    This investigation shows that, in most cases, the floor cleaning procedure of typical restaurants could be improved, resulting in a better cleaning efficiency and a better floor friction. This simple approach could help reduce slips and falls in the workplace. Food safety officers visited ten European style restaurants in the London Borough of Bromley (UK) to identify their floor cleaning procedure in terms of the cleaning method, the concentration and type of floor cleaner and the temperature of the wash water. For all 10 restaurants visited, the cleaning method was damp mopping. Degreasers were used in three sites while neutral floor cleaners were used in seven sites. Typically, the degreasers were over diluted and the neutrals were overdosed. The wash water temperature ranged from 10 to 72 degrees C. The on-site cleaning procedures were repeated in the laboratory for the removal of olive oil from new and sealed quarry tiles, fouled and worn quarry tiles and new porcelain tiles. It is found that in 24 out of 30 cases, cleaning efficiency can be improved by simple changes in the floor cleaning procedure and that these changes result in a significant improvement of the floor friction. The nature of the improved floor cleaning procedure depends on the flooring type. New and properly sealed flooring tiles can be cleaned using damp mopping with a degreaser diluted as recommended by the manufacturer in warm or hot water (24 to 50 degrees C). But as the tiles become worn and fouled, a more aggressive floor cleaning is required such as two-step mopping with a degreaser diluted as recommended by the manufacturer in warm water (24 degrees C).

  4. Clean Cities Fact Sheet

    Energy Technology Data Exchange (ETDEWEB)

    2004-01-01

    This fact sheet explains the Clean Cities Program and provides contact information for all coalitions and regional offices. It answers key questions such as: What is the Clean Cities Program? What are alternative fuels? How does the Clean Cities Program work? What sort of assistance does Clean Cities offer? What has Clean Cities accomplished? What is Clean Cities International? and Where can I find more information?

  5. Dry cleaning of fluorocarbon residues by low-power electron cyclotron resonance hydrogen plasma

    CERN Document Server

    Lim, S H; Yuh, H K; Yoon Eui Joon; Lee, S I

    1988-01-01

    A low-power ( 50 W) electron cyclotron resonance hydrogen plasma cleaning process was demonstrated for the removal of fluorocarbon residue layers formed by reactive ion etching of silicon dioxide. The absence of residue layers was confirmed by in-situ reflection high energy electron diffraction and cross-sectional high resolution transmission electron microscopy. The ECR hydrogen plasma cleaning was applied to contact cleaning of a contact string structure, resulting in comparable contact resistance arising during by a conventional contact cleaning procedure. Ion-assisted chemical reaction involving reactive atomic hydrogen species generated in the plasma is attributed for the removal of fluorocarbon residue layers.

  6. Concentration processes under tubesheet sludge piles in nuclear steam generators

    International Nuclear Information System (INIS)

    Gonzalez, F.; Spekkens, P.

    1987-01-01

    The process by which bulk water solutes are concentrated under tubesheet sludge piles in nuclear steam generators was investigated in the laboratory under simulated CANDU operating conditions. Concentration rates were found to depend on the tube heat flux and pile depth, although beyond a critical depth the concentration efficiency decreased. This efficiency could be expressed by a concentration coefficient, and was found to depend also on the sludge pile porosity. Solute concentration profiles in the sludge pile suggested that the concentration mechanism in a high-porosity/permeability pile is characterized by boiling mainly near or at the tube surface, while in low-porosity piles, the change of phase may also become important in the body of the sludge pile. In all cases, the full depth of the pile was active to some extent in the concentration process. As long as the heat transfer under the pile was continued, the solute remained under the pile and slowly migrated toward the bottom. When the heat transfer was stopped, the solute diffused back into the bulk solution at a rate slower than that of the concentration process

  7. Resources for future generations – understanding earth and people

    OpenAIRE

    Thompson, J.; Eagle, L.; Bonham, O.

    2017-01-01

    Earth’s growing population requires resources for the basics of life and increasing standards of living. Energy from many sources, numerous minerals and water are critical for human existence, and are increasingly linked in the context of sustainability. For future generations, resources must be discovered and cleanly exploited, even as efforts to improve efficiency and increase recycling continue. To succeed, we must fully understand the earth, from the critical processes that concentrate r...

  8. Ultra-clean

    International Nuclear Information System (INIS)

    Hergenroether, K.

    1987-01-01

    No other method guarantees such a thorough cleaning of contaminated materials' surfaces. Only ultrasound can reach those cavities crevices and corners where any manual cleaning fails. Furthermore there is no cumbersome and time-consuming manual decontamination which often has to be carried out in glove boxes and hot cells. Depending on the design the cleaning effect can reach from removing adhering dirt particles to removing complete surface layers. (orig./PW) [de

  9. Comprehensive Report to Congress Clean Coal Technology Program: Clean power from integrated coal/ore reduction

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    This report describes a clean coal program in which an iron making technology is paired with combined cycle power generation to produce 3300 tons per day of hot metal and 195 MWe of electricity. The COREX technology consists of a metal-pyrolyzer connected to a reduction shaft, in which the reducing gas comes directly from coal pyrolysis. The offgas is utilized to fuel a combined cycle power plant.

  10. Clean Energy Solutions Center: Assisting Countries with Clean Energy Policy

    Science.gov (United States)

    advice on financing instruments. In a recent keynote to the Climate and Clean Energy Investment Forum renewable energy technologies in the country. Informing Energy Access and Clean Energy Project Finance understanding and knowledge of how to design policies that enable financing and encourage investment in clean

  11. Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rudisill, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); King, W. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hay, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jones, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-11-19

    Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions during tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.

  12. Cleanliness criteria to improve steam generator performance

    International Nuclear Information System (INIS)

    Schwarz, T.; Bouecke, R.; Odar, S.

    2005-01-01

    High steam generator performance is a prerequisite for high plant availability and possible life time extension. The major opponent to that is corrosion and fouling of the heating tubes. Such steam generator degradation problems arise from the continuous ingress of non-volatile contaminants, i.e. corrosion products and salt impurities may accumulate in the steam generators. These impurities have their origin in the secondary side systems. The corrosion products generally accumulate in the steam generators and form deposits not only in the flow restricted areas, such as on top of tube sheet and tube support structure, but also build scales on the steam generator heating tubes. In addition, the tube scales in general affect the steam generator thermal performance, which ultimately causes a reduction of power output. The most effective ways of counteracting all these degradation problems, and thus of improving the steam generator performance is to keep them in clean conditions or, if judged necessary, to plan cleaning measures such as mechanical tube sheet lancing or chemical cleaning. This paper presents a methodology how to assess the cleanliness condition of a steam generator by bringing together all available operational and inspection data such as thermal performance and water chemistry data. By means of this all-inclusive approach the cleanliness condition is quantified in terms of a fouling index. The fouling index allows to monitor the condition of a specific steam generator, compare it to other plants and, finally, to serve as criterion for cleaning measures such as chemical cleaning. The application of the cleanliness criteria and the achieved field results with respect to improvements of steam generator performance will be presented. (author)

  13. Investigation of the remaining major and trace elements in clean coal generated by organic solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Jie Wang; Chunqi Li; Kinya Sakanishi; Tetsuya Nakazato; Hiroaki Tao; Toshimasa Takanohashi; Takayuki Takarada; Ikuo Saito [National Institute Advanced Industrial Science and Technology (AIST), Ibaraki (Japan). Energy Technology Research Institute

    2005-09-01

    A sub-bituminous Wyodak coal (WD coal) and a bituminous Illinois No. 6 coal (IL coal) were thermally extracted with 1-methylnaphthalene (1-MN) and N-methyl-2-pyrrolidone (NMP) to produce clean extract. A mild pretreatment with acetic acid was also carried out. Major and trace inorganic elements in the raw coals and resultant extracts were determined by means of inductively coupled plasma optical emission spectrometry (ICP-OES), flow injection inductively coupled plasma mass spectrometry (FI-ICP-MS), and cold vapor atomic absorption spectrometry (CV-AAS). It was found that the extraction with 1-MN resulted in 73-100% reductions in the concentration of Li, Be, V, Ga, As, Se, Sr, Cd, Ba, Hg, and Pb. The extraction with NMP yielded more extract than that with 1-MN, but it retained more organically associated major and trace metals in the extracts. In the extraction of WD coal with NMP, the acid pretreatment not only significantly enhanced the extraction yield but also significantly reduced the concentrations of alkaline earth elements such as Be, Ca, Mg, Sr, and Ba in the extract. In addition, the modes of occurrence of trace elements in the coals were discussed according to their extraction behaviors. 30 refs., 2 figs., 5 tabs.

  14. Specialised cleaning associated with antimicrobial coatings for reduction of hospital acquired infection. Opinion of the COST Action Network AMiCI (CA15114).

    Science.gov (United States)

    Dunne, Suzanne S; Ahonen, Merja; Modic, Martina; Crijns, Francy Rl; Keinänen-Toivola, Minna M; Meinke, Ruth; Keevil, C William; Gray, Jim; O'Connell, Nuala H; Dunne, Colum P

    2018-03-14

    Recognized issues with poor hand hygiene compliance among healthcare workers, and reports of re-contamination of previously chemically disinfected surfaces through hand contact, emphasize need for novel hygiene methods in addition to those currently available. One such approach involves antimicrobial (nano)-coatings (AMC), whereby integrated active ingredients are responsible for elimination of microorganisms that come into contact with treated surfaces. While widely studied under laboratory conditions with promising results, studies under real life healthcare conditions are scarce. The views of 75 contributors from 30 European countries were collated regarding specialised cleaning associated with antimicrobial coatings for reduction of hospital acquired infection. There was unanimous agreement that generation of scientific guidelines for cleaning of antimicrobial coatings, using traditional or new processes, are needed. Specific topics included: understanding mechanisms of action of cleaning materials and their physical interactions with conventional and antimicrobial coatings; that assessments mimic the life-cycle of coatings to determine the impact of repetitive cleaning and other aspects of ageing (e.g., exposure to sunlight); determining concentrations of AMC-derived biocides in effluents, and development of effective de-activation and sterilisation treatments for cleaning effluents. Further, the consensus opinion was that prior to widespread implementation of AMCs, the varying responsibilities of involved clinical, healthcare management, cleaning services, and environmental safety stakeholders need clarification. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Rapid probing of photocatalytic activity on titania-based self-cleaning materials using 7-hydroxycoumarin fluorescent probe

    International Nuclear Information System (INIS)

    Guan Huimin; Zhu Lihua; Zhou Hehui; Tang Heqing

    2008-01-01

    Self-cleaning materials are widely applied, but the available methods for determining their photocatalytic activity are time consuming. A simple analysis method was proposed to evaluate rapidly the photocatalytic activity of self-cleaning materials. This method is based on monitoring of a highly fluorescent product generated by the self-cleaning materials after illumination. Under UV irradiation, holes photo-induced on the surface of self-cleaning materials can oxidize water molecules (or hydroxide ions) adsorbed on the surface to produce hydroxyl radicals, which then quantitatively oxidize coumarin to highly fluorescent 7-hydroxycoumarin. It was observed that the fluorescence intensity of photo-generated 7-hydroxycoumarin at 456 nm (excited at 346 nm) linearly increased with irradiation time, and the fluorescence intensity at a given irradiation time was linearly proportional to the photocatalytic activity of self-cleaning materials. Consequently, the photocatalytic activity of self-cleaning materials was able to be probed simply by using this new method, which requires an analysis time of 40 min, being much less than 250 min required for a dye method

  16. Can agriculture generate clean energy?

    International Nuclear Information System (INIS)

    Van Zeijts, H.; Oosterveld, E.B.; Timmerman, E.A.

    1994-01-01

    Fossil fuels meet a large part of the energy requirements in Europe. The carbon dioxide produced by using these fuels contributes to the greenhouse effect. By generating energy from vegetable fibres (biomass) the emission of greenhouse gasses can be reduced. As well as an ecological advantage, the cultivation of crops for the supply of energy could also improve the moderate to bad economical results of Dutch arable farms. So far research into the use of biomass as a source of energy has been mainly concerned with its technical and economic feasibility. Our research also assesses the ecological sustainability of the cultivation and use of energy crops. The principal questions we have answered are: how harmful to the environment is the cultivation of energy crops?; what are the direct and indirect environmental effects of fitting energy crops into the cropping plan?; what indirect effects are to be expected at a regional and national level?; on balance, how much energy is produced in the entire cultivation, transport and processing chain?; What effect does this have on the emission of greenhouse gases?; what is the overall conclusion for the various crops with regard to sustainability? The conclusions of this research could help policy makers answer the question whether it is useful from the point of view of sustainability to stimulate the generation of energy from biomass. We have assessed the effects of the cultivation and use of energy crops on: the emission of minerals and pesticides; the use of energy and the emission of greenhouse gases; the fixation of carbon from CO2; the use of by-products and waste products; dehydration; erosion; the contribution to natural values; the contribution to scenic values; and use of space. In the overall assessment each criterion was given equal weight. This choice is arbitrary: in practice, the ratios are different in each situation. We have studied nine crops and their processing chains. Rape is converted into bio-diesel oil by

  17. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  18. How clean is clean?---How clean is needed?

    International Nuclear Information System (INIS)

    Hays, A.K.

    1991-01-01

    This paper will provide an overview of cleaning qualifications used in a variety of industries: from small-scale manufacturer's of precision-machined products to large-scale manufacturer's of electronics (printed wiring boards and surface mount technology) and microelectronics. Cleanliness testing techniques used in the production of precision-machined products, will be described. The on-going DOD program to obtain high-reliability electronics, through the use of military specifications for cleaning and cleanliness levels, will be reviewed. In addition, the continually changing cleanroom/materials standards of the microelectronics industry will be discussed. Finally, we will speculate on the role that new and improved analytical techniques and sensor technologies will play in the factories of the future. 4 refs., 1 tab

  19. Clean nuclear power (2. part)

    International Nuclear Information System (INIS)

    Rocherolles, R.

    1998-01-01

    The 450 nuclear power plants which produce 24% of world electricity do not generate greenhouse gas effects, but 8,000 tonnes per year of irradiated, radioactive fuel. The first article which was published in the July-August 1997 issue of this journal, described the composition and management of these fuels. This article wish to show the advantage of 'advanced re-processing', which would separate fission products from actinides, in order to incinerate them separately in dedicated fuels and reactors, which, from an ecological point of view, seems more efficient than burying them underground in deep, geological layers. To rid the planet of waste which is continuing to build up, the first step is to build 'incinerators' which will eliminate fission products by slow neutron assisted neutronic capture, and actinides by fast neutron assisted fission. Various projects have been set up, in particular, in Los Alamos, Japan and the CERN. The Carlo Rubbia hybrid machine operating on the well-known thorium cycle is the most advanced project. An incinerator connected up to standard PWR reactor produces no actinide, and reduces the existing stock of plutonium. However, the proper solution, obviously, is to no longer produce waste along with power; second generation nuclear fission will do this. The CERN team bas studied a clean reactor, producing practically no actinides, or fission products, more or less. Thus, the solution to the problem of waste is at hand, and nuclear power will be cleaner that all other types of power. The world market opening up to clean nuclear power is about 1,300 Gigawatts, or 1,300 plants of 1,000 Megawatts. Remarkable progress is taking place under our very eyes; soon we will have clean power in sufficient quantities, at a lower cost than that of other forms of power. (authors)

  20. ODS - modified TiO2 nanoparticles for the preparation of self-cleaning superhydrophobic coating

    Science.gov (United States)

    Kokare, Ashvini M.; Sutar, Rajaram S.; Deshmukh, S. G.; Xing, Ruimin; Liu, Shanhu; Latthe, Sanjay S.

    2018-05-01

    Rolling water drops takes off dust particles from lotus leaf showing self-cleaning performance. Self-cleaning effect has great importance in industry as well as in daily life. The present paper describes the preparation of self-cleaning superhydrophobic coating through simple and low cost dip coating technique. The prepared superhydrophobic surface enact as lotus leaf. Firstly TiO2 nanoparticles were dispersed in ethanol and different concentration of octadecyltrichlorosilane (ODS) was added in TiO2 dispersion. The effect of number of deposition layer on the wettability of the coating was studied. The coating prepared from five deposition layers showed contact angle higher than 150° and sliding angle less than 10°. The superhydrophobicity increases with increasing concentration of ODS. The hierarchical rough morphology which is preferable for superhydrophobicity was obtained. The prepared coatings were stable against water jet impact and showed repellent towards colored and muddy water. Such superhydrophobic coating can find enormous scope in self-cleaning application.

  1. Entropy Generation of Shell and Double Concentric Tubes Heat Exchanger

    Directory of Open Access Journals (Sweden)

    basma abbas abdulmajeed

    2016-06-01

    Full Text Available Entropy generation was studied for new type of heat exchanger (shell and double concentric tubes heat exchanger. Parameters of hot oil flow rate, temperature of inlet hot oil and pressure drop were investigated with the concept of entropy generation. The results showed that the value of entropy generation increased with increasing the flow rate of hot oil and when cold water flow rate was doubled from 20 to 40 l/min, these values were larger. On the other hand, entropy generation increased with increasing the hot oil inlet temperature at a certain flow rate of hot oil. Furthermore, at a certain hot oil inlet temperature, the entropy generation increased with the pressure drop at different hot oil inlet flow rates. Finally, in order to keep up with modern technology, infrared thermography camera was used in order to measure the temperatures. The entropy generation was determined with lower values when infrared thermography camera was used to measure the temperatures, compared with the values obtained by using thermocouples.

  2. McClean Lake. Site Guide

    International Nuclear Information System (INIS)

    2016-09-01

    Located over 700 kilometers northeast of Saskatoon, Areva's McClean Lake site is comprised of several uranium mines and one of the most technologically advanced uranium mills in the world - the only mill designed to process high-grade uranium ore without dilution. Areva has operated several open-pit uranium mines at the McClean Lake site, and is evaluating future mines at and near the site. The McClean Lake mill has recently undergone a multimillion-dollar upgrade and expansion, which has doubled its annual production capacity of uranium concentrate to 24 million pounds. It is the only facility in the world capable of processing high-grade uranium ore without diluting it. The mill processes the ore from the Cigar Lake mine, the world's second largest and highest-grade uranium mine. The McClean Lake site operates 365 days a year on a week-in/week-out rotation schedule for workers, over 50% of whom reside in northern Saskatchewan communities. Tailings are waste products resulting from milling uranium ore. This waste is made up of leach residue solids, waste solutions and chemical precipitates that are carefully engineered for long-term disposal. The TMF serves as the repository for all resulting tailings. This facility allows proper waste management, which minimizes potential adverse environmental effects. Mining projections indicate that the McClean Lake mill will produce tailings in excess of the existing capacity of the TMF. After evaluating a number of options, Areva has decided to pursue an expansion of this facility. Areva is developing the Surface Access Borehole Resource Extraction (SABRE) mining method, which uses a high-pressure water jet placed at the bottom of the drill hole to extract ore. Areva has conducted a series of tests with this method and is evaluating its potential for future mining operations. McClean Lake maintains its certification in ISO 14001 standards for environmental management and OHSAS 18001 standards for occupational health

  3. Solar photocatalytic cleaning of polluted water. Solare Reinigung verschmutzter Waesser mittels Photokatalyse

    Energy Technology Data Exchange (ETDEWEB)

    Bockelmann, D

    1994-01-01

    Alternatively to biological, physical and chemical methods of waste water cleaning, photocatalysis can be employed. In this residue-free method, titanium dioxide particles are brought into contact with polluted water as photocatalysts. Under UV irradiation at wave-lengths below 400 nm, change carriers are generated in the semiconductor particles that act so intensely oxidizing as to completely degrade almost all organic pollutants in waste water. In this process, the ultra-violet part of the solar spectrum can be harnessed to generate oxidation equivalents. Thus, solar photocatalytic waste water cleaning is excellently suited for developing countries. (BWI)

  4. Coolant clean-up system in the primary coolant circuit for nuclear reactor

    International Nuclear Information System (INIS)

    Saito, Michio.

    1981-01-01

    Purpose: To maintain the quality of coolants at a prescribed level by distillating coolants in the primary coolant circuit for a BWR type reactor to remove impurities therefrom, taking out the condensates from the top of the distillation column and extracting impurities in a concentrated state from the bottom. Constitution: Coolant water for cooling the core is recycled by a recycling pump by way of a recycling pipeway in a reactor. The coolants extracted from an extraction pipeway connected to the recycling pipeway are fed into a distillation column, where distillation is taken place. Impurities in the coolants, that is, in-core corrosion products, fission products generated in the reactor core, etc. are separated by the distillation, concentrated and solidified in the bottom of the distillation column. While on the other hand, condensates removed with the impurities, that is, coolants cleaned-up are recycled to the coolant water for cooling the reactor core. (Moriyama, K.)

  5. Ontario's long-term energy plan, building our clean energy future

    International Nuclear Information System (INIS)

    2010-01-01

    The first energy priority of the plan is to provide all Ontarians with a clean, modern and reliable electricity system. It gives a summary of the means implemented to help families and businesses with increasing electricity costs. The plan is to shift the province from a coal-dependent system. Over the next 20 years, 15,000 MW (megawatt) of generating capacity will have to be rebuilt or constructed to replace older Ontario's energy infrastructures. In Ontario, an increase of about 3.5% per year in residential prices, resulting from the need to enjoy clean air, reliable generation and modernized transmission, is expected to occur over the next two decades. The expected electricity needs in Ontario and efficient means to satisfy them are described in this plan.

  6. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  7. Ultrasonic and immersion cleaning: a comparison using aqueous and fluorocarbon solvents

    International Nuclear Information System (INIS)

    Bond, R.D.; Kearsey, A.

    1984-11-01

    Decontamination is a necessary process in reducing radiation levels in the working environment in the nuclear industry. Components from active areas which require decontamination for re-use or maintenance operations. In this report, a typical chemical cleaning process using liquid pumping, airagitation and physical movement for agitation is compared with ultrasonic cleaning, now an established cleaning process in many industries. The chosen traditional method is immersion in an agitated solution of warm SDG.3 solution; an established decontaminating reagent. The decontamination effect of this process is compared with the effect of cleaning in an ultrasonic bath containing the same reagent at the same concentration and temperature. Fluorocarbon reagents are of particular interest to the nuclear industry for they offer the ability to clean electrical components without damage, and can clean product contaminated material without the risk of criticality. Such reagents are based on 1,1,2-trichloro, 1,2,2-trifluoroethane and azeotropic mixtures. This reagent and one mixture with 6% methanol were tested under agitation and ultrasonic immersion at the same temperature. Parallel control experiments were conducted using demineralised water as the cleaning media in an agitated bath. SGG3 is a good reagent for general purpose cleaning (it can remove 99% of particulate contamination) using scrubbing, immersion or spraying techniques. There is little evidence to show that ultrasonic cleaning increases its effectiveness. For special purpose fluorocarbon solvents will give satisfactory results when used in an ultrasonic system. (author)

  8. MIT Clean Energy Prize: Final Technical Report May 12, 2010 - May 11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Chris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Campbell, Georgina [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Salony, Jason [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Aulet, Bill [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2011-08-09

    The MIT Clean Energy Prize (MIT CEP) is a venture creation and innovation competition to encourage innovation in the energy space, specifically with regard to clean energy. The Competition invited student teams from any US university to submit student-led ventures that demonstrate a high potential of successfully making clean energy more affordable, with a positive impact on the environment. By focusing on student ventures, the MIT CEP aims to educate the next generation of clean energy entrepreneurs. Teams receive valuable mentoring and hard deadlines that complement the cash prize to accelerate development of ventures. The competition is a year-long educational process that culminates in the selection of five category finalists and a Grand Prize winner and the distribution of cash prizes to each of those teams. Each entry was submitted in one of five clean energy categories: Renewables, Clean Non-Renewables, Energy Efficiency, Transportation, and Deployment.

  9. Cleaning up commingled uranium mill tailings: is Federal assistance necessary

    International Nuclear Information System (INIS)

    1979-01-01

    GAO was asked to determine whether Federal assistance should be given to operating mill owners that have processed uranium for sale to both government and industry and, thus, generated residual radioactive wastes. The wastes generated for both government and commercial use are called commingled uranium mill tailings. GAO recommends that the Congress provide assistance to active mill owners to share in the cost of cleaning up that portion of the tailings which were produced under Federal contract. Further, GAO believes that the Congress should also consider having the Federal government assist those mills who acted in good faith in meeting all legal requirements pertaining to controlling the mill tailings that were generated for commercial purposes and for which the Federal government is now requiring retroactive remedial action. At the same time, the Congress should make sure that this action establishes no precedent for the Federal government assuming the financial responsibility of cleaning up other non-Federal nuclear facilities and wastes, including those mill tailings generated after the date when the Federal government notified industry that the failings should be controlled

  10. Chemical cleaning/disinfection and ageing of organic UF membranes: a review.

    Science.gov (United States)

    Regula, C; Carretier, E; Wyart, Y; Gésan-Guiziou, G; Vincent, A; Boudot, D; Moulin, P

    2014-06-01

    Membrane separation processes have become a basic unit operation for process design and product development. These processes are used in a variety of separation and concentration steps, but in all cases, the membranes must be cleaned regularly to remove both organic and inorganic material deposited on the surface and/or into the membrane bulk. Cleaning/disinfection is a vital step in maintaining the permeability and selectivity of the membrane in order to get the plant to its original capacity, to minimize risks of bacteriological contamination, and to make acceptable products. For this purpose, a large number of chemical cleaning/disinfection agents are commercially available. In general, these cleaning/disinfection agents have to improve the membrane flux to a certain extent. However, they can also cause irreversible damages in membrane properties and performances over the long term. Until now, there is considerably less literature dedicated to membrane ageing than to cleaning/disinfection. The knowledge in cleaning/disinfection efficiency has recently been improved. But in order to develop optimized cleaning/disinfection protocols there still remains a challenge to better understand membrane ageing. In order to compensate for the lack of correlated cleaning/disinfection and ageing data from the literature, this paper investigates cleaning/disinfection efficiencies and ageing damages of organic ultrafiltration membranes. The final aim is to provide less detrimental cleaning/disinfection procedures and to propose some guidelines which should have been taken into consideration in term of membrane ageing studies. To carry out this study, this article will detail the background of cleaning/disinfection and aging membrane topics in a first introductive part. In a second part, key factors and endpoints of cleaning/disinfection and aging membranes will be discussed deeply: the membrane role and the cleaning parameters roles, such as water quality, storing conditions

  11. Occupational radon expositions during cleaning processes of water reservoirs

    International Nuclear Information System (INIS)

    Hingmann, H.; Ehret, V.; Hegenbart, L.; Krieg, K.

    2002-01-01

    According to the new German ''Strahlenschutzverordnung'' (Radiation Protection Directive) the annual dose due to the exposition to radon has to be estimated for employees of water works. This includes employees of service companies. While the job of employees of water works usually covers a broad spectrum of different activities, employees of service companies may spend a considerable amount of time of their total working hours cleaning water reservoirs. This investigation is concerned with this type of employees. The radon exposition of one or more cleaning processes were determined by passive dosimeters. The mean radon concentration was calculated for the duration of the cleaning process. In some cases, members of the project team accompanied cleaning processes and performed stationary radon measurements on site. Sometimes, parallel to the passive dosimeters, electronic dosimeters were used to measure personal exposure. The results - and results from additional laboratory reference measurements - are compared. All results until January 2002 are considered. The project still goes on and will end in summer of 2002. Experiences made during this investigation are described in the end of this report. (orig.)

  12. Environmental issues affecting clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.J. [Electric Power Research Inst., Palo Alto, CA (United States)

    1997-12-31

    The author outlines what he considers to be the key environmental issues affecting Clean Coal Technology (CCT) deployment both in the US and internationally. Since the international issues are difficult to characterize given different environmental drivers in various countries and regions, the primary focus of his remarks is on US deployment. However, he makes some general remarks, particularly regarding the environmental issues in developing vs. developed countries and how these issues may affect CCT deployment. Further, how environment affects deployment depends on which particular type of clean coal technology one is addressing. It is not the author`s intention to mention many specific technologies other than to use them for the purposes of example. He generally categorizes CCTs into four groups since environment is likely to affect deployment for each category somewhat differently. These four categories are: Precombustion technologies such as coal cleaning; Combustion technologies such as low NOx burners; Postcombustion technologies such as FGD systems and postcombustion NOx control; and New generation technologies such as gasification and fluidized bed combustion.

  13. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  14. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  15. Performance evaluation of control room HVAC and air cleaning systems under accident conditions

    International Nuclear Information System (INIS)

    Almerico, F.; Machiels, A.J.; Ornberg, S.C.; Lahti, G.P.

    1985-01-01

    In light water reactors, control rooms and technical support centers must be designed to provide habitable environments in accordance with the requirements specified in General Design Criterion 19 of Appendix A, 10 CFR Part 50. Therefore, the effectiveness of HVAC and air cleaning system designs with respect to plant operator protection has to be evaluated by the system designer. Guidance for performing the analysis has been previously given in ANSI/ASME N509-1980 as well as in presentations at past Air Cleaning Conferences. The previous work is extended and the methodology used in a generic, interactive computer program that performs Main Control Room and Technical Support Center (TSC) habitability analyses for LWR nuclear power plants is presented. For given accident concentrations of radionuclides or hazardous gases in the outdoor air intakes and plant spaces surrounding the Main Control Room (or TSC), the program models the performance of the HVAC and air cleaning system designs, and determines control room (or TSC) contaminant concentrations and plant operator protection factors. Calculated or actual duct leakage, air cleaning efficiency, and airborne contamination are taken into account. Flexibility of the model allows for the representation of most control rooms (or TSC) and associated HVAC and air cleaning system conceptual designs that have been used by the US architect/engineers. The program replaced tedious calculations to determine the effects of HVAC ductwork and equipment leakage and permits (1) parametric analyses of various HVAC system design options early in the conceptual phase of a project, and (2) analysis of the effects of leakage test results on contaminant room concentrations, and therefore operator doses

  16. Clean energy: Revisiting the challenges of industrial policy

    International Nuclear Information System (INIS)

    Morris, Adele C.; Nivola, Pietro S.; Schultze, Charles L.

    2012-01-01

    Large public investments in clean energy technology arguably constitute an industrial policy. One rationale points to market failures that have not been corrected by other policies, most notably greenhouse gas emissions and dependence on oil. Another inspiration for clean energy policy reflects economic arguments of the 1980s. It suggests strategic government investments would increase U.S. firms' market share of a growing industry and thus help American firms and workers. This paper examines the reasoning for clean energy policy and concludes that: •While a case can be made that subsidizing clean energy might help address market failures, the case may be narrower than some assert, and turning theory into sound practice is no simple feat. •An appropriate price on greenhouse gases is an essential precondition to ensuring efficient incentives to develop and deploy cost-effective emissions-abating technologies. However, efficient prices alone are unlikely to generate efficient levels of basic research and development by private firms. •Government investments in clean energy are unlikely to produce net increases in employment in the long run, in part because pushing home-grown technologies at taxpayers' expense offers no guarantee that the eventual products ultimately would not be manufactured somewhere else. •Spending on clean energy technologies is not well suited to fiscal stimulus. The authors recommend that: •Federal energy spending should invest in technologies with the lowest expected cost of abatement and highest probability of market penetration. •Funding decisions ought to be insulated – as much as possible – from rent-seeking by interest groups, purely political distortions, and the parochial preferences of legislators. - Highlights: ► Clean energy technology policy may be less justifiable than many assert, and doing it well is hard. ► The government should appropriately price greenhouse gas emissions and fund technology R and D.

  17. High-resolution clean-sc

    NARCIS (Netherlands)

    Sijtsma, P.; Snellen, M.

    2016-01-01

    In this paper a high-resolution extension of CLEAN-SC is proposed: HR-CLEAN-SC. Where CLEAN-SC uses peak sources in “dirty maps” to define so-called source components, HR-CLEAN-SC takes advantage of the fact that source components can likewise be derived from points at some distance from the peak,

  18. Catching the wind - clean and sustainable solutions to China's energy shortfall

    International Nuclear Information System (INIS)

    Hayes, D.

    2002-01-01

    China's power generating capacity has increased markedly in recent years largely due new coal-fired power stations, but sadly, the environmental consequences were largely ignored. Apart from the coal used for power generation, coal is also used to fuel industrial boilers and in houses: some of the world's most polluted cities are in China. In the late 1990s, China began to curb the environmental impact by closing smaller power stations and retrofitting clean-up plant to the bigger stations, but there is still a lot of cleaning-up still to do. The government of China is now offering incentives for the development of renewable sources of energy, and wind power is seen as a clean and sustainable solution to the air pollution problem. The government has identified various geographical regions suitable for wind farms. Solar energy is also seen as a promising source of energy and is being employed in areas remote from power grids. The paper discusses incentives and bank loans for the development and application of renewables

  19. On a clean power generation system with the co-gasification of biomass and coal in a quadruple fluidized bed gasifier.

    Science.gov (United States)

    Yan, Linbo; He, Boshu

    2017-07-01

    A clean power generation system was built based on the steam co-gasification of biomass and coal in a quadruple fluidized bed gasifier. The chemical looping with oxygen uncoupling technology was used to supply oxygen for the calciner. The solid oxide fuel cell and the steam turbine were combined to generate power. The calcium looping and mineral carbonation were used for CO 2 capture and sequestration. The aim of this work was to study the characteristics of this system. The effects of key operation parameters on the system total energy efficiency (ŋ ten ), total exergy efficiency (ŋ tex ) and carbon sequestration rate (R cs ) were detected. The energy and exergy balance calculations were implemented and the corresponding Sankey and Grassmann diagrams were drawn. It was found that the maximum energy and exergy losses occurred in the steam turbine. The system ŋ ten and ŋ tex could be ∼50% and ∼47%, and R cs could be over unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    DEFF Research Database (Denmark)

    Nazaroff, W.; Weschler, Charles J.

    2004-01-01

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated...... by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals...... that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which...

  1. Controlling the clean room atmosphere

    International Nuclear Information System (INIS)

    Meeks, R.F.

    1979-01-01

    Several types of clean rooms are commonly in use. They include the conventional clean room, the horizontal laminar flow clean room, the vertical laminar flow clean room and a fourth type that incorporates ideas from the previous types and is known as a clean air bench or hood. These clean rooms are briefly described. The origin of contamination and methods for controlling the contamination are discussed

  2. Solution-derived photocatalytic films for environmental cleaning applications

    International Nuclear Information System (INIS)

    Štangar, U Lavrencic; Kete, M; Šuligoj, A; Tasbihi, M

    2012-01-01

    When photocatalytic water treatment is concerned, suspended catalyst in the aqueous phase is usually more efficient than immobilized on an inert support, but in the former case an undesirable separation/recycling step is needed. We have therefore concentrated on the preparation of immobilized catalysts in the form of films on glass and aluminium supports. The low-temperature sol-gel processing route to obtain transparent thin TiO 2 /SiO 2 films for self-cleaning purposes and thicker TiO 2 /SiO 2 coatings for efficient removal of pollutants in water and air are presented. The synthesis is based on a production of a nanocrystalline titania sol with a silica binder that after deposition does not require thermal treatment at high temperatures. Depending on the target application, some specific synthesis parameters and photocatalytic activity testing conditions are illustrated. For water-cleaning coatings fast kinetics is required, which was achieved by addition of a highly active titania powder into the sol. The same preparation procedure was used to prepare efficient air-cleaning coatings. On the other hand, self-cleaning films were thinner and transparent to keep the original appearance of the substrate and they solidified at ambient conditions. Advanced methodologies to evaluate photocatalytic activity of the films were applied.

  3. Field test of thermoelectric generator using parabolic trough solar concentrator for power generation

    Science.gov (United States)

    Viña, Rommel R.; Alagao, Feliciano B.

    2018-03-01

    A 2.4587 square meter effective area cylindrical parabolic solar concentrator was fabricated. The trough concentrator is a 4-ft by 8-ft metal sheet with solar mirror film adhered on it and it is laid on a frame with steel tubes bent in a shape of a parabola. On the focal region of the parabolic trough is the 1.22-m by 0.10-m absorber plate made of copper and coated flat black. This plate served as high temperature reservoir of the eight equally spaced TEC1-12710T125 thermoelectric modules. On the cold side of the modules is a 2.5-in. by 1-in. rectangular aluminum tube with coolant flowing inside. The coolant loop included a direct contact cooling tower which maintained the module cold side assembly inlet temperature of about 28°C. Collector temperature was also kept below the 125°C module maximum operating temperature by controlling the effective area. This was accomplished by adjusting the reflector covering. Using a dummy load and with 8 modules in series, tests results indicated current readings up to 179.4 mA with a voltage of 10.6 VDC and 27% of reflector area or voltage reading up to 12.7 VDC with a current of 165 mA. A steady voltage of 12 VDC was achieved with the use of a voltage regulator. A voltage above 12 VDC will be required to charge a storage battery. Overall results showed the potential of thermoelectric generator (TEG) in combination with solar energy in power generation.

  4. Clean Development Mechanism: Core of Kyoto Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Kyun [United Nations Environment Programme (Denmark)

    2000-06-01

    Kyoto protocol is a foundation for achieving an ultimate goal of UNFCCC, which is to stabilizing greenhouse gas concentration in the air. The clean development system is a core element for successful implementation of Kyoto protocol with other Kyoto mechanisms. While UNFCCC requires a new paradigm changing to sustainable development considering demand and future environment from the past supply-oriented resource consumption, the clean development system will be used as a means of successful establishment of a new paradigm in 21st century. As environmental problem is integrated with economic problem and each country is thriving for securing its own economic benefit in the issue of environmental conservation, Korea should do its best to have both of global environmental conservation and economic benefit for its own. 1 tab.

  5. Sweet carbon: An analysis of sugar industry carbon market opportunities under the clean development mechanism

    International Nuclear Information System (INIS)

    McNish, Tyler; Jacobson, Arne; Kammen, Dan; Gopal, Anand; Deshmukh, Ranjit

    2009-01-01

    Bagasse power generation projects provide a useful framework for evaluating several key aspects of the Clean Development Mechanism of the Kyoto Protocol. On the positive side, our analysis, which draws in part from a data set of 204 bagasse electricity generation projects at sugar mills, indicates that these projects provide Annex I country investors with a cost-effective means to achieve greenhouse gas emissions reductions. Our analysis also confirms that the marketplace for Clean Development Mechanism-derived offsets is robust and competitive. Moreover, bagasse projects appear to provide a positive example in a 'new wave' of clean energy investment that has replaced the earlier industrial gas projects. At the same time, we also identify two aspects of the CDM that demand improvement. First, the additionality standard needs to be tightened and made more transparent and consistent. Financial additionality should be required for all projects; however, any financial additionality test applied by the Clean Development Mechanism's Executive Board must be informed by the significant barriers faced by many projects. Second, the administrative processes for registration and verification of offsets need to be streamlined in order to prevent long registration time lags from chilling clean energy investment.

  6. WRF modeling of PM2.5 remediation by SALSCS and its clean air flow over Beijing terrain.

    Science.gov (United States)

    Cao, Qingfeng; Shen, Lian; Chen, Sheng-Chieh; Pui, David Y H

    2018-06-01

    Atmospheric simulations were carried out over the terrain of entire Beijing, China, to investigate the effectiveness of an air-pollution cleaning system named Solar-Assisted Large-Scale Cleaning System (SALSCS) for PM 2.5 mitigation by using the Weather Research and Forecasting (WRF) model. SALSCS was proposed to utilize solar energy to generate airflow therefrom the airborne particulate pollution of atmosphere was separated by filtration elements. Our model used a derived tendency term in the potential temperature equation to simulate the buoyancy effect of SALSCS created with solar radiation on its nearby atmosphere. PM 2.5 pollutant and SALSCS clean air were simulated in the model domain by passive tracer scalars. Simulation conditions with two system flow rates of 2.64 × 10 5  m 3 /s and 3.80 × 10 5  m 3 /s were tested for seven air pollution episodes of Beijing during the winters of 2015-2017. The numerical results showed that with eight SALSCSs installed along the 6 th Ring Road of the city, 11.2% and 14.6% of PM 2.5 concentrations were reduced under the two flow-rate simulation conditions, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. The importance of chemical components in cleaning agents for the indoor environment

    DEFF Research Database (Denmark)

    Vejrup, Karl Ventzel

    In order to evaluate the importance for the indoor environment of chemical compounds in cleaning agents, the emission of VOCs (Volatile Organic Compounds) from 10 selected cleaning agents and the content of LAS (Linear AlkanbenzeneSulfonate) in dust samples from 7 buildings were investigated.The...... of LAS between smooth floored corridors to carpeted offices, are apparently also of importance for the LAS content in individual rooms.The amounts of LAS found in the dust samples indicated that LAS may be of importance for the indoor environment, but inadequate knowledge about how low concentrations...... investigation of VOC emission from 10 selected cleaning agents showed that it was useful to classify the VOCs into two groups: nonpolar VOCs and polar VOCs.The nonpolar VOCs consisted of several hundred different compounds, mainly terpenes typically used as perfume in cleaning agents. The nonpolar VOC...

  8. Investigation of Solar Hybrid Electric/Thermal System with Radiation Concentrator and Thermoelectric Generator

    Directory of Open Access Journals (Sweden)

    Edgar Arturo Chávez Urbiola

    2013-01-01

    Full Text Available An experimental study of a solar-concentrating system based on thermoelectric generators (TEGs was performed. The system included an electrical generating unit with 6 serially connected TEGs using a traditional semiconductor material, Bi2Te3, which was illuminated by concentrated solar radiation on one side and cooled by running water on the other side. A sun-tracking concentrator with a mosaic set of mirrors was used; its orientation towards the sun was achieved with two pairs of radiation sensors, a differential amplifier, and two servomotors. The hot side of the TEGs at midday has a temperature of around 200°C, and the cold side is approximately 50°C. The thermosiphon cooling system was designed to absorb the heat passing through the TEGs and provide optimal working conditions. The system generates 20 W of electrical energy and 200 W of thermal energy stored in water with a temperature of around 50°C. The hybrid system studied can be considered as an alternative to photovoltaic/thermal systems, especially in countries with abundant solar radiation, such as Mexico, China, and India.

  9. Clean coal technologies

    International Nuclear Information System (INIS)

    Aslanyan, G.S.

    1993-01-01

    According to the World Energy Council (WEC), at the beginning of the next century three main energy sources - coal, nuclear power and oil will have equal share in the world's total energy supply. This forecast is also valid for the USSR which possesses more than 40% of the world's coal resources and continuously increases its coal production (more than 700 million tons of coal are processed annually in the USSR). The stringent environmental regulations, coupled with the tendency to increase the use of coal are the reasons for developing different concepts for clean coal utilization. In this paper, the potential efficiency and environmental performance of different clean coal production cycles are considered, including technologies for coal clean-up at the pre-combustion stage, advanced clean combustion methods and flue gas cleaning systems. Integrated systems, such as combined gas-steam cycle and the pressurized fluidized bed boiler combined cycle, are also discussed. The Soviet National R and D program is studying new methods for coal utilization with high environmental performance. In this context, some basic research activities in the field of clean coal technology in the USSR are considered. Development of an efficient vortex combustor, a pressurized fluidized bed gasifier, advanced gas cleaning methods based on E-beam irradiation and plasma discharge, as well as new catalytic system, are are presented. In addition, implementation of technological innovations for retrofitting and re powering of existing power plants is discussed. (author)

  10. Modeling and field studies of fouling in once-through steam generators

    International Nuclear Information System (INIS)

    Thompson, R.; Gaudreau, T.

    1995-01-01

    Efforts of the past 10 years to minimize fouling of the Crystal River-3 once-through steam generators are reviewed. The major focus has been on improving at-temperature pH control in the secondary cycle. Various concentrations of different pH control agents were tested in the field for hundreds of days to determine their effect on steam generator fouling. High concentrations of morpholine (50--100 ppm) in the feedwater were found to apparently produce de-fouling of the steam generators without an associated decrease in feedwater iron concentration as compared to that at lower levels of morpholine. Computer modeling of the pH(t) within the OTSG for the various chemistries tested indicates that the pH can change significantly with elevation within the steam generator by varying the pH control agent or its concentration. It is postulated that these variations in pH may change the surface charge of the tubes, tube support plates, and/or corrosion product particles in solution, to favor either deposition or repulsion of the particles, and thereby producing conditions that either favor fouling or de-fouling of the OTSG. Crystal River-3 experience indicates that corrosion product deposition and release processes inside the steam generator can be chemically manipulated to favor release, and thereby maximize plant performance, and delay or avoid costly hydraulic or chemical cleanings

  11. Is dry cleaning all wet?

    International Nuclear Information System (INIS)

    Ryan, M.

    1993-01-01

    Chemical solvents from dry cleaning, particularly perchloroethylene (perc), have contributed to groundwater contamination, significant levels of air pollution in and around cleaners, and chemical accumulation in food. Questions are being raised about the process of cleaning clothes with chemical, and other less toxic cleaning methods are being explored. The EPA has focused attention on the 50 year old Friedburg method of cleaning, Ecoclean, which uses no dangerous chemicals and achieves comparable results. Unfortunately, the cleaning industry is resistant to change, so cutting back on amount of clothes that need dry cleaning and making sure labels aren't exaggerating when they say dry clean only, is frequently the only consumer option now

  12. Flux recovery of ceramic tubular membranes fouled with whey proteins: Some aspects of membrane cleaning

    Directory of Open Access Journals (Sweden)

    Popović Svetlana S.

    2008-01-01

    Full Text Available Efficiency of membrane processes is greatly affected by the flux reduction due to the deposits formation at the surface and/or in the pores of the membrane. Efficiency of membrane processes is affected by cleaning procedure applied to regenerate flux. In this work, flux recovery of ceramic tubular membranes with 50 and 200 nm pore size was investigated. The membranes were fouled with reconstituted whey solution for 1 hour. After that, the membranes were rinsed with clean water and then cleaned with sodium hydroxide solutions or formulated detergents (combination of P3 Ultrasil 67 and P3 Ultrasil 69. Flux recovery after the rinsing step was not satisfactory although fouling resistance reduction was significant so that chemical cleaning was necessary. In the case of 50 nm membrane total flux recovery was achieved after cleaning with 1.0% (w/w sodium hydroxide solution. In the case of 200 nm membrane total flux recovery was not achieved irrespective of the cleaning agent choice and concentration. Cleaning with commercial detergent was less efficient than cleaning with the sodium hydroxide solution.

  13. Cleaning lateral morphological features of the root canal: the role of streaming and cavitation.

    Science.gov (United States)

    Robinson, J P; Macedo, R G; Verhaagen, B; Versluis, M; Cooper, P R; van der Sluis, L W M; Walmsley, A D

    2018-01-01

    To investigate the effects of ultrasonic activation file type, lateral canal location and irrigant on the removal of a biofilm-mimicking hydrogel from a fabricated lateral canal. Additionally, the amount of cavitation and streaming was quantified for these parameters. An intracanal sonochemical dosimetry method was used to quantify the cavitation generated by an IrriSafe 25 mm length, size 25 file inside a root canal model filled with filtered degassed/saturated water or three different concentrations of NaOCl. Removal of a hydrogel, demonstrated previously to be an appropriate biofilm mimic, was recorded to measure the lateral canal cleaning rate from two different instruments (IrriSafe 25 mm length, size 25 and K 21 mm length, size 15) activated with a P5 Suprasson (Satelec) at power P8.5 in degassed/saturated water or NaOCl. Removal rates were compared for significant differences using nonparametric Kruskal-Wallis and/or Mann-Whitney U-tests. Streaming was measured using high-speed particle imaging velocimetry at 250 kfps, analysing both the oscillatory and steady flow inside the lateral canals. There was no significant difference in amount of cavitation between tap water and oversaturated water (P = 0.538), although more cavitation was observed than in degassed water. The highest cavitation signal was generated with NaOCl solutions (1.0%, 4.5%, 9.0%) (P streaming. The oscillatory velocities were higher inside the lateral canal 3 mm compared to 6 mm from WL and were higher for NaOCl than for saturated water, which in turn was higher than for degassed water. Measurements of cavitation and acoustic streaming have provided insight into their contribution to cleaning. Significant differences in cleaning, cavitation and streaming were found depending on the file type and size, lateral canal location and irrigant used. In general, the IrriSafe file outperformed the K-file, and NaOCl performed better than the other irrigants tested. The cavitation and

  14. Contamination spike simulation and measurement in a clean metal vapor laser

    International Nuclear Information System (INIS)

    Lin, C.E.; Yang, C.Y.

    1990-01-01

    This paper describes a new method for the generation of contamination-induced voltage spikes in a clean metal vapor laser. The method facilitates the study of the characteristics of this troublesome phenomenon in laser systems. Analysis of these artificially generated dirt spikes shows that the breakdown time of the laser tube is increased when these spike appear. The concept of a Townsend discharge is used to identify the parameter which changes the breakdown time of the discharges. The residual ionization control method is proposed to generate dirt spikes in a clean laser. Experimental results show that a wide range of dirt spike magnitudes can be obtained by using the proposed method. The method provides easy and accurate control of the magnitude of the dirt spike, and the laser tube does not become polluted. Results based on the measurements can be used in actual laser systems to monitor the appearance of dirt spikes and thus avoid the danger of thyratron failure

  15. Clean coal technology: The new coal era

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Clean Coal Technology Program is a government and industry cofunded effort to demonstrate a new generation of innovative coal processes in a series of full-scale showcase`` facilities built across the country. Begun in 1986 and expanded in 1987, the program is expected to finance more than $6.8 billion of projects. Nearly two-thirds of the funding will come from the private sector, well above the 50 percent industry co-funding expected when the program began. The original recommendation for a multi-billion dollar clean coal demonstration program came from the US and Canadian Special Envoys on Acid Rain. In January 1986, Special Envoys Lewis and Davis presented their recommendations. Included was the call for a 5-year, $5-billion program in the US to demonstrate, at commercial scale, innovative clean coal technologies that were beginning to emerge from research programs both in the US and elsewhere in the world. As the Envoys said: if the menu of control options was expanded, and if the new options were significantly cheaper, yet highly efficient, it would be easier to formulate an acid rain control plan that would have broader public appeal.

  16. Cleaning the Soil from Zinc Using Red Clovers “Arimaičiai”

    OpenAIRE

    Audronė Mikalajūnė; Giedrė Jasulaitytė

    2011-01-01

    Zinc as a nutrition element is required to plants in small quantities to maintain normal functions of metabolism mechanisms. Our work analyses the efficiency of red clovers “Arimaičiai” for cleaning zinc from the soil contaminated with zinc under laboratory conditions. Seeds were sown in three differently polluted soils: clean soil, once contaminated with zinc and periodically contaminated with zinc soil. Zinc concentration in one time contaminated soil was 45 mg/kg. After 6 months of phytore...

  17. Waste water cleaning in high-performance bioreactors; Abwasserreinigung in Hochleistungsbioreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Holler, S.; Sternad, W.; Troesch, W. [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik (IGB), Stuttgart (Germany)

    1999-07-01

    Cleaning of municipal sewage in bioreactors with biomass retention constitutes a modern and sustainable way of cleaning sewage. Contrary to conventional aerated sludge techniques, such systems achieve high productivity at high biomass concentrations. Reactor volume can be kept low, and short retention times are realized. It is shown that a loop reactor in combination with a crossflow microfiltration unit constitutes an appropriate system to meet future demands on sewage cleaning. Such a system can realize a COD turnover of 95 % at retention times of 0.5 hours. Crossflow microfiltration can set the concentration of biomass in the bioreactor to up to 30 grammes of dry substance per litre. (orig.) [German] Die Reinigung kommunaler Abwaesser in Bioreaktoren mit Biomasserueckhaltung stellt ein modernes und nachhaltiges Verfahren zur Abwasserreinigung dar. Im Gegensatz zu konventionellen Belebungsverfahren laesst sich in einem solchen System bei hohen Biomassekonzentrationen eine hohe Produktivitaet erreichen. Das Reaktorvolumen kann gering gehalten werden, und kurze Verweilzeiten koennen realisiert werden. Es wird gezeigt, dass ein Strahlschlaufenreaktor in Kombination mit einer Crossflow-Mikrofiltration ein geeignetes System dargestellt, um die Anforderungen an eine zukuenftige Abwasserreinigung zu gewaehrleisten. In einem solchen System kann ein CSB-Umsatz von 95% bei Verweilzeiten von 0,5 Stunden realisiert werden. Durch Crossflow-Mikrofiltration wird eine Biomassekonzentration bis 30 g TS/l im Bioreaktor eingestellt. (orig.)

  18. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part II

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  19. A study of drying and cleaning methods used in preparation for fluorescent penetrant inspection - Part I

    International Nuclear Information System (INIS)

    Brasche, L.; Lopez, R.; Larson, B.

    2003-01-01

    Fluorescent penetrant inspection is the most widely used method for aerospace components such as critical rotating components of gas turbine engines. Successful use of FPI begins with a clean and dry part, followed by a carefully controlled and applied FPI process, and conscientious inspection by well trained personnel. A variety of cleaning methods are in use for cleaning of titanium and nickel parts with selection based on the soils or contamination to be removed. Cleaning methods may include chemical or mechanical methods with sixteen different types studied as part of this program. Several options also exist for use in drying parts prior to FPI. Samples were generated and exposed to a range of conditions to study the effect of both drying and cleaning methods on the flaw response of FPI. Low cycle fatigue (LCF) cracks were generated in approximately 40 nickel and 40 titanium samples for evaluation of the various cleaning methods. Baseline measurements were made for each of the samples using a photometer to measure sample brightness and a UVA videomicroscope to capture digital images of the FPI indications. Samples were exposed to various contaminants, cleaned and inspected. Brightness measurements and digital images were also taken to compare to the baseline data. A comparison of oven drying to flash dry in preparation for FPI has been completed and will be reported in Part I. Comparison of the effectiveness of various cleaning methods for the contaminants will be presented in Part II. The cleaning and drying studies were completed in cooperation with Delta Airlines using cleaning, drying and FPI processes typical of engine overhaul processes and equipment. The work was completed as part of the Engine Titanium Consortium and included investigators from Honeywell, General Electric, Pratt and Whitney, and Rolls Royce

  20. Generation, concentration and purification for ionic entangled states

    International Nuclear Information System (INIS)

    Yang Ming; Cao Zhuoliang

    2007-01-01

    In cavity QED, the atoms would be sent through the sequential arrays of cavities for the generation of multi-cavity entanglement, or several atoms would be sent into the same cavity mode one bye one for the generation of multi-atom entanglement. The complexity of these processes will impose limitations on the experimental feasibility of it. So, following our previous publication [International Journal Of Quantum Information 2, 231 (2004)] we will propose an alternative scheme for the preparation of multi-cavity W state via cavity QED, which uses the geometrical method to do what other authors have proposed previously using sequential arrays of cavities. Due to the impossibility that one quantum system can be isolated from the environment absolutely, the entanglement of the entangled objects will decrease exponentially with the propagating distance of the objects, and the practically available quantum entangled states are all non-maximally entangled states or the more general case--mixed states. Following our previous publications [Phys. Rev. A 72, 042307 (2005), ibid. 71, 012308 (2005)], we will propose an entanglement generation, concentration and purification scheme for atomic or ionic system, which is mainly based on Cavity QED and linear optical elements. This purification process avoids the controlled-NOT (C-NOT) operations needed in the original purification protocol, which simplifies the whole purification process

  1. Optimized high temperature oxidation and cleaning at Bugey 3

    International Nuclear Information System (INIS)

    Ranchoux, Gilles; Wintergerst, Matthieu; Bachet, Martin; Leclercq, Stephanie; Duron, Jean-Daniel; Meunier, Jean-Pierre; Blond, Serge; Dacquait Frederic

    2012-09-01

    As a part of the EDF Source Term Reduction project, an experimental procedure was carried out at Bugey 3 further to the steam generator replacement. This innovative procedure consists in theory in two complementary phases /1/: - Phase 1: a SG tubes optimized oxidation performed during pre-critical hot functional tests (basic and reducing chemistry) aims to generate an as protective as possible inner oxide layer allowing to reduce the later nickel release, - Phase 2: a cleaning procedure of the primary circuit performed under acid and reducing chemical conditioning at 170 deg. C intends to dissolve and eliminate the outer oxide layer by a simultaneous purification. The objective of such a procedure is to reduce corrosion products inventory (mainly nickel) generated by the first SG tube oxidation during hot functional tests and first operation months by carrying out an appropriate cleaning procedure. Gains were expected not only on RCS and auxiliary systems contamination, dose rates and thus collective dose but also on next outages duration. The objective of this paper is to describe the process implementation at Bugey 3: effective procedure put in place, monitoring program (chemistry and dose rate measurements, EMECC campaign) and firsts results. (authors)

  2. Advances in ultrasonic fuel cleaning

    International Nuclear Information System (INIS)

    Blok, J.; Frattini, P.; Moser, T.

    2002-01-01

    The economics of electric generation is requiring PWR plant operators to consider higher fuel duty and longer cycles. As a result, sub-cooled nucleate boiling is now an accepted occurrence in the upper spans of aggressively driven PWR cores. Thermodynamic and hydraulic factors determine that the boiling surfaces of the fuel favor deposition of corrosion products. Thus, the deposits on high-duty fuel tend to be axially distributed in an inhomogeneous manner. Axial offset anomaly (AOA) is the result of axially non-homogeneous distribution of boron compounds in these axially variable fuel deposits. Besides their axial asymmetry, fuel deposits in boiling cores tend to be qualitatively different from deposits on non-boiling fuel. Thus, deposits on moderate-duty PWR fuel are generally iron rich, predominating in nickel ferrites. Deposits on cores with high boiling duty, on the other hand, tend to be rich in nickel, with sizeable fractions of NiO or elemental nickel. Other unexpected compounds such as m-ZrO 2 and Ni-Fe oxy-borates have been found in significant quantity in deposits on boiling cores. This paper describes the ultrasonic fuel cleaning technology developed by EPRI. Data will be presented to confirm that the method is effective for removing fuel deposits from both high-duty and normal-duty fuel. The report will describe full-core fuel cleaning using the EPRI technology for Callaway Cycle 12 reload fuel. The favorable impact of fuel cleaning on Cycle 12 AOA performance will also be presented. (authors)

  3. Enhanced Chemical Cleaning: Effectiveness Of The UV Lamp To Decompose Oxalates

    International Nuclear Information System (INIS)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-01

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  4. Plasma cleaning for waste minimization

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.P.

    1993-07-01

    Although plasma cleaning is a recognized substitute for solvent cleaning in removing organic contaminants, some universal problems in plasma cleaning processes prevent wider use of plasma techniques. Lack of understanding of the fundamental mechanisms of the process, unreliable endpoint detection techniques, and slow process times make plasma cleaning processes less than desirable. Our approach to address these plasma cleaning problems is described. A comparison of plasma cleaning rates of oxygen and oxygen/sulfur hexafluoride gases shows that fluorine-containing plasmas can enhance etch rates by 400% over oxygen alone. A discussion of various endpoint indication techniques is discussed and compared for application suitability. Work toward a plasma cleaning database is discussed. In addition to the global problems of plasma cleaning, an experiment where the specific mixed-waste problem of removal of machine oils from radioactive scrap metal is discussed.

  5. Clean Air Slots Amid Dense Atmospheric Pollution in Southern Africa

    Science.gov (United States)

    Hobbs, Peter V.

    2003-01-01

    During the flights of the University of Washington's Convair-580 in the Southern African Regional Science Initiative (SAFARI 2000) in southern Africa, a phenomenon was observed that has not been reported previously. This was the occurrence of thin layers of remarkably clean air, sandwiched between heavily polluted air, which persisted for many hours during the day. Photographs are shown of these clean air slots (CAS), and particle concentrations and light scattering coefficients in and around such slot are presented. An explanation is proposed for the propensity of CAS to form in southern Africa during the dry season.

  6. The element technology of clean fuel alcohol plant construction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, D S [Sam-Sung Engineering Technical Institute (Korea, Republic of); Choi, C Y [Seoul National University, Seoul (Korea, Republic of); and others

    1996-02-01

    The fuel alcohol has been highlighted as a clean energy among new renewable energy sources. However, the production of the fuel alcohol has following problems; (i)bulk distillate remains is generated and (ii) benzene to be used as a entertainer in the azeotropic distillation causes the environmental problem. Thus, we started this research on the ground of preserving the cleanness in the production of fuel alcohol, a clean energy. We examined the schemes of replacing the azotropic distillation column which causes the problems with MSDP(Molecular Sieve Dehydration Process) system using adsorption technology and of treating the bulk distillate remains to be generated as by-products. In addition, we need to develop the continuous yea station technology for the continuous operation of fuel alcohol plant as a side goal. Thus, we try to develop a continuous ethanol fermentation process by high-density cell culture from tapioca, a industrial substrate, using cohesive yeast. For this purpose, we intend to examine the problem of tapioca, a industrial substrate, where a solid is existed and develop a new process which can solve the problem. Ultimately, the object of this project is to develop each element technology for the construction of fuel alcohol plant and obtain the ability to design the whole plant. (author) 54 refs., 143 figs., 34 tabs.

  7. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  8. A novel polymer inclusion membrane based method for continuous clean-up of thiocyanate from gold mine tailings water.

    Science.gov (United States)

    Cho, Youngsoo; Cattrall, Robert W; Kolev, Spas D

    2018-01-05

    Thiocyanate is present in gold mine tailings waters in concentrations up to 1000mgL -1 and this has a serious environmental impact by not allowing water reuse in the flotation of gold ore. This significantly increases the consumption of fresh water and the amount of wastewater discharged in tailings dams. At the same time thiocyanate in tailings waters often leads to groundwater contamination. A novel continuous membrane-based method for the complete clean-up of thiocyanate in concentrations as high as 1000mgL -1 from its aqueous solutions has been developed. It employs a flat sheet polymer inclusion membrane (PIM) of composition 70wt% PVC, 20wt% Aliquat 336 and 10wt% 1-tetradecanol which separates counter-current streams of a feed thiocyanate solution and a 1M NaNO 3 receiving solution. The PIM-based system has been operated continuously for 45days with 99% separation efficiency. The volume of the receiving solution has been drastically reduced by recirculating it and continuously removing thiocyanate by precipitating it with in-situ generated Cu(I). The newly developed PIM-based thiocyanate clean-up method is environmentally friendly in terms of reagent use and inexpensive with respect to both equipment and running costs. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cleaning the Soil from Zinc Using Red Clovers “Arimaičiai”

    Directory of Open Access Journals (Sweden)

    Audronė Mikalajūnė

    2011-02-01

    Full Text Available Zinc as a nutrition element is required to plants in small quantities to maintain normal functions of metabolism mechanisms. Our work analyses the efficiency of red clovers “Arimaičiai” for cleaning zinc from the soil contaminated with zinc under laboratory conditions. Seeds were sown in three differently polluted soils: clean soil, once contaminated with zinc and periodically contaminated with zinc soil. Zinc concentration in one time contaminated soil was 45 mg/kg. After 6 months of phytoremediation, the remained zinc concentration in the soil was 3 times lower comparing with the initial concentration. It was also determined that under such conditions, the uptake of red clovers made approximately 65% of zinc. Permanent soil contamination with zinc increased concentration before phytoremediation up to 80 mg/kg. After 6 months of phytoremediation, zinc concentration was determined to be 1.9 times lower. Otherwise, the soil was permanently contaminated with larger zinc quantities and after application of which reached 300 mg/kg. In this case, following half a year of phytoremediation, zinc concentration in the soil was 1.7 times lower comparing with the initial concentration after contamination. It was determined that the uptake of red clovers made approximately 17% of zinc.Article in Lithuanian

  10. Clean Coal Day '93. Hokkaido Seminar; Clean Coal Day '93. Hokkaido Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The titles of the lectures in this record are 1) Coal energy be friendly toward the earth, 2) Future development of coal-fired thermal power generation, 3) Current status of research and development of coalbed methane in the U.S., and 4) PFBC (pressurized fluidized bed combustion combined cycle) system. Under title 1), the reason is explained why coal is back as an energy source and is made much of. The actualities of coal being labelled as a dirty energy source are explained. The rapid growth of demand for coal in Asia is commented on and what is expected of clean coal technology is stated. Under title 2), it is predicted that atomic energy, LNG (liquefied natural gas), and coal will be the main energy sources for electric power in Japan. Under title 3), it is stated that 10% of America's total amount of methane production is attributable to coal mining, that methane is the cleanest of the hydrocarbon fuels although it is a pollution source from an environmental point of view, and that it is therefore reasonable to have its collection and utilization placed in the domain of clean coal technology. Under title 4), a PFBC system to serve as the No. 3 machine for the Tomahigashi-Atsuma power plant is described. (NEDO)

  11. Clean-up of a radioactive spill

    International Nuclear Information System (INIS)

    Fish, W.

    1987-01-01

    Bikini Atoll in the Marshall Islands of the South Pacific was extensively contaminated with radionuclides deposited by thermonuclear weapons testing in the 1940s and 1950s. In recent years, the U.S. government has attempted to restore the habitability of the islands by cleaning up the remaining radioactive material. Although the island no longer presents an acute radiation risk to inhabitants, plants growing on the island concentrate cesium-137 from the soil, presenting an unacceptable risk to the future population. The behavior of Cs-137 has proved to be an intractable problem that has major implications for the risks associated with transporting and processing high-level nuclear wastes in the U.S. Various proposed soil treatment strategies for Bikini are discussed, including ion-exchange treatments and competing-ion strategies. No fully satisfactory treatment currently exists and the problems and prospects of cleaning up after a major nuclear waste spill are presented

  12. Air and gas cleaning technology for nuclear applications

    International Nuclear Information System (INIS)

    First, M.W.

    1986-01-01

    All large-scale uses of radioactive materials require rigid control of off-gases and generated aerosols. Nuclear air and gas cleaning technology has answered the need from the days of the Manhattan Project to the present with a variety of devices. The one with the longest and most noteworthy service is the HEPA (high efficiency particulate air) filter that originally was referred to as an absolute filter in recognition of its extraordinary particle retention characteristics. Activated-charcoal adsorbers have been employed worldwide for retention of volatile radioiodine in molecular and combined forms and, less frequently, for retention of radioactive noble gases. HEPA filters and activated -charcoal adsorbers are often used with auxiliary devices that serve to extend their effective service life or significantly improve collection efficiency under unfavorable operating conditions. Use of both air cleaning devices and their auxiliaries figure prominently in atomic energy, disposal of high- and low-level nuclear wastes, and in the production of fissile materials. The peaceful uses of nuclear energy would be impossible without these, or equivalent, air- and gas-cleaning devices

  13. Clean and Secure Energy from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Davies, Lincoln [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey [Univ. of Utah, Salt Lake City, UT (United States); Uchitel, Kirsten [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.

  14. Studies of post-elution concentration of 99m-Tc eluted from a gel type chromatographic generator

    International Nuclear Information System (INIS)

    Suzuki, Katia N.; Osso Junior, Joao Alberto

    2007-01-01

    The radiopharmaceuticals most used in Diagnostic Nuclear Medicine are those labeled with the metastable technetium ( 99m Tc) due to its ideal physical properties of decay (t 1/2 6.01 h, Eγ 140 keV), low cost and availability facilitated through the commercial generator 99 Mo / 99m Tc. This radionuclide is formed by the β - decay of 99 Mo adsorbed on an alumina column of the generator and collected in the form of sodium pertechnetate (Na 99m TcO 4 ) by elution with saline solution (0.9%). The Radiopharmacy Center (CR) of the IPEN-CNEN/SP developed a gel type chromatographic generator of MoZr with 99 Mo produced by 98 Mo(n, γ) 99 Mo reaction that occurs in IEA-R1 Nuclear Reactor. The gel is composed of zirconium molybdate with elution volume of 12 ml with an activity of 11100 MBq (300 mCi) producing a radioactive concentration of 925 MBq (34 mCi) / ml. The fission generator gives a higher radioactive concentration around 1850 MBq (69 mCi) / ml. The aim of this work is to study a system of post-elution concentration using ion exchange cartridges in tandem (cation - anion) for the attainment of a high enough radioactive concentration to meet the demand of market, with a proved quality. This system of concentration will be made based in the technique of solid phase extraction (SPE) using commercial cartridges of extraction, which contains the solid phase and eluent saline solution (0.9%). As the eluent results of this system used in the gel generator of MoZr will be compared with the fission generator currently produced by IPEN-CNEN/SP. (author)

  15. Sodium cleaning from sodium contaminated components and operation for experimental equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. H.; Kim, J. M.; Kim, T. J.; Nam, H. Y.; Jeong, J. Y.; Choi, B. H.; Choi, J. H

    2007-11-15

    An objective of washing technology development for sodium contaminated equipment is to clean and reuse safely and effectively the used equipment through a washing and maintenance, and recovery of the sodium wastes generated during washing.

  16. Concentration of radionuclides in fresh water fish downstream of Rancho Seco Nuclear Generating Plant

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Eagle, R.J.; Dawson, J.M.; Brunk, J.L.; Wong, X.M.

    1984-01-01

    Fish were collected for radionuclide analysis over a 5-month period in 1984 from creeks downstream of the Rancho Seco Nuclear Generating Plant, which has been discharging quantities of some fission and activation products to the waterway since 1981. Among the fish, the bluegill was selected for intensive study because it is very territorial and the radionuclide concentrations detected should be representative of the levels in the local environment at the downstream locations sampled. Among the gamma-emitting radionuclides routinely released, only 134 Cs and 137 Cs were detected in the edible flesh of fish. Concentrations in the flesh of fish decreased with distance from the plant. The relationship between concentration and distance was determined to be exponential. Exponential equations were generated to estimate concentrations in fish at downstream locations where no site-specific information was available. Mean concentrations of 137 Cs in bluegill collected during April, May, July and August from specific downstream stations were not significantly different in spite of the release of 131 mCi to the creeks between April and August. The concentrations in fish are not responding to changes in water concentrations brought about by plant discharges. Diet appears to be a more significant factor than size or weight or water concentration in regulating body burdens of 137 Cs in these fish

  17. FY 2001 report on the results of the trend survey of introduction of clean energy vehicle for the transport industry; 2001 nendo unso yo clean energy jidosha no donyu doko chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-03-01

    Survey/analysis were made on the details of the plan on the leading introduction of clean energy vehicle by 632 transporters who applied for the project on promotion of clean energy vehicle in FY 2001. As a result of the survey, the following were made clear. The clean energy vehicles to be planned to be introduced by transporters are all natural gas vehicles. The transporters planning the leading introduction are mostly in large cities and are spreading also in the periphery. Fifty three percent of the transporters predicts that the predicted average running distance of the clean energy vehicle to be introduced is the same as those of the vehicles they owns, and 39% predicts that it is shorter. About the form of utilization, they use it overwhelmingly for the regional collection/delivery. It is considered that the improvement in running distance per 1 fuel filling of clean energy vehicle will contribute to the spread. Fuel supply stations that the clean energy cars to be introduced use concentrate in the good location. It is necessary to strongly promote preparation of the infrastructure. (NEDO)

  18. Evaluating exposure of pedestrians to airborne contaminants associated with non-potable water use for pavement cleaning.

    Science.gov (United States)

    Seidl, M; Da, G; Ausset, P; Haenn, S; Géhin, E; Moulin, L

    2016-04-01

    Climate change and increasing demography press local authorities to look after affordable water resources and replacement of drinking water for city necessities like street and pavement cleaning by more available raw water. Though, the substitution of drinking by non-drinking resources demands the evaluation of sanitary hazards. This article aims therefore to evaluate the contribution of cleaning water to the overall exposure of city dwellers in case of wet pavement cleaning using crossed physical, chemical and biological approaches. The result of tracer experiments with fluorescein show that liquid water content of the cleaning aerosol produced is about 0.24 g m(-3), rending possible a fast estimation of exposure levels. In situ analysis of the aerosol particles indicates a significant increase in particle number concentration and particle diameter, though without change in particle composition. The conventional bacterial analysis using total coliforms as tracer suggests that an important part of the contamination is issued from the pavement. The qPCR results show a more than 20-fold increase of background genome concentration for Escherichia coli and 10-fold increase for Enterococcus but a negligible contribution of the cleaning water. The fluorescence analysis of the cleaning aerosol confirms the above findings identifying pavement surface as the major contributor to aerosol organic load. The physical, chemical and microbiological approaches used make it possible to describe accurately the cleaning bioaerosol and to identify the existence of significantly higher levels of all parameters studied during the wet pavement cleaning. Though, the low level of contamination and the very short time of passage of pedestrian in the zone do not suggest a significant risk for the city dwellers. As the cleaning workers remain much longer in the impacted area, more attention should be paid to their chronic exposure.

  19. Feasibility, safety, and economic implications of whey-recovered water in cleaning-in-place systems: A case study on water conservation for the dairy industry.

    Science.gov (United States)

    Meneses, Yulie E; Flores, Rolando A

    2016-05-01

    Water scarcity is threatening food security and business growth in the United States. In the dairy sector, most of the water is used in cleaning applications; therefore, any attempt to support water conservation in these processes will have a considerable effect on the water footprint of dairy products. This study demonstrates the viability for recovering good quality water from whey, a highly pollutant cheese-making by-product, to be reused in cleaning-in-place systems. The results obtained in this study indicate that by using a combined ultrafiltration and reverse osmosis system, 47% of water can be recovered. This system generates protein and lactose concentrates, by-products that once spray-dried fulfill commercial standards for protein and lactose powders. The physicochemical and microbiological quality of the recovered permeate was also analyzed, suggesting suitable properties to be reused in the cleaning-in-place system without affecting the quality and safety of the product manufactured on the cleaned equipment. A cost analysis was conducted for 3 cheese manufacturing levels, considering an annual production of 1, 20, and 225 million liters of whey. Results indicate the feasibility of this intervention in the dairy industry, generating revenues of $0.18, $3.05, and $33.4 million per year, respectively. The findings provide scientific evidence to promote the safety of reuse of reconditioned water in food processing plants, contributing to building a culture of water conservation and sustainable production throughout the food supply chain. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  1. Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser

    Science.gov (United States)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-05-01

    The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.

  2. Comparison of glow discharge cleaning with Taylor-type discharge cleaning on JFT-2

    International Nuclear Information System (INIS)

    Yokokura, Kenji; Matsuzaki, Yoshimi; Tani, Takashi

    1983-01-01

    Method of glow discharge cleaning (GDC) was applied to JFT-2 tokamak and the cleaning effect of GDC was compared with that of taylor-type discharge cleaning (TDC) on the same machin. Results show clearly their individual characteristics to remove light impurities. Their abilities of surface cleaning were compared each other by observing cleanliness of sample surfaces with a AES and by measuring decay times of produced gas pressures during discharge cleanings with a mass-analyser. It was shown that TDC method is better by several times than GDC method from a mass-analyser measurement. Moreover discharge cleaning time necessary to reduce light impurities in the normal plasma to a certain level was compared by monitoring time evolution of radiation loss power with a bolometer, and the time by TDC was only one fifth of that by GDC. The advantage of TDC may come from the excellently high hydrogen flux which interacts with the limiter and the wall. (author)

  3. Investigation of efficiency of air cleaning from acetone using a segmental construction biofilter

    Directory of Open Access Journals (Sweden)

    Denas Bacevičius

    2015-10-01

    Full Text Available Volatile organic compounds, e. g. acetone, have a direct impact on climate change, decrease of ozone in the air, and on the growth of greenhouse effect. One of the most popular air purifying methods from VOC is a biological air cleaning. Experimental investigations were conducted to determine the efficiency of the new structure of biofilter with polypropylene plates segments. During the investigations the efficiency of segmental construction biofilter of air purification at different initial concentrations of pollutants was determined. Different concentrations of pollutants were estimated during the acetone dilution with water. During the tests the efficiency of biofilter air purification from acetone vapor and its change under different concentrations of vapors was set. Based on test results, the maximum efficiency of biofilter air purification was up to 93%. Studies have shown that increasing the allowable pollutant concentration, the efficiency of air purification unit decreases. Increasing the concentration of supplied acetone vapor into the biofilter from 232 to 701 mg/m3, cleaning efficiency decreased from 92.8 to 82.3%. Since microorganisms fail to oxidize organic compounds, the filter works better at lower initial concentrations of pollutants.

  4. Limonene and tetrahydrofurfuryl alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1996-05-07

    The present invention is a tetrahydrofurfuryl alcohol and limonene or terpineol cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  5. Limonene and tetrahydrofurfurly alcohol cleaning agent

    Science.gov (United States)

    Bohnert, George W.; Carter, Richard D.; Hand, Thomas E.; Powers, Michael T.

    1997-10-21

    The present invention is a tetrahydrofurfuryl alcohol and limonene cleaning agent and method for formulating and/or using the cleaning agent. This cleaning agent effectively removes both polar and nonpolar contaminants from various electrical and mechanical parts and is readily used without surfactants, thereby reducing the need for additional cleaning operations. The cleaning agent is warm water rinsable without the use of surfactants. The cleaning agent can be azeotropic, enhancing ease of use in cleaning operations and ease of recycling.

  6. Emission allowance trading under the Clean Air Act Amendments: An incentive mechanism for the adoption of Clean Coal Technologies

    International Nuclear Information System (INIS)

    South, D.W.; McDermott, K.A.

    1993-01-01

    Title IV of the Clean Air Act Amendments of 1990 (P.L. 101-549) uses tradeable SO 2 allowances as a means of reducing acidic emissions from the electricity generating industry. The use of emission allowances generates two important results; first, utilities are given the flexibility to choose their optimal (least cost) compliance strategies and second, the use of emission allowances creates greater incentives for the development and commercialization of innovative emissions control technology. Clean Coal Technologies (CCTs) are able to generate electricity more efficiently, use a wide variety of coal grades and types, and dramatically reduce emissions of SO 2 , NO x , CO 2 , and PM per kWh. However, development and adoption of the technology is limited by a variety of regulatory and technological risks. The use of SO 2 emission allowances may be able to provide incentives for utility (and nonutility) adoption of this innovative technology. Emission allowances permit the utility to minimize costs on a systemwide basis and provides rewards for addition emission reductions. As CCTs are a more efficient and low emitting source of electricity, the development and implementation of this technology is desirable. This paper will explore the relationship between the incentives created by the SO 2 allowance market and CCT development. Regulatory hindrances and boons for the allowance market shall also be identified to analyze how market development, state mandates, and incentive regulation will effect the ability of allowances to prompt CCT adoption

  7. Clean Hands Count

    Medline Plus

    Full Text Available ... has been rented. This feature is not available right now. Please try again later. Published on May ... 34 How The Clean Hands - Safe Hands System Works - Duration: 3:38. Clean Hands-Safe Hands 5, ...

  8. Technology options for clean coal power generation with CO2 capture

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Song; Bergins, Christian; Kikkawa, Hirofumi; Kobayashi, Hironobu; Kawasaki, Terufumi

    2010-09-15

    The state-of-the-art coal-fired power plant today is about 20% more efficient than the average operating power plants, and can reduce emissions such as SO2, NOx, and mercury to ultra-low levels. Hitachi is developing a full portfolio of clean coal technologies aimed at further efficiency improvement, 90% CO2 reduction, and near-zero emissions, including 700 deg C ultrasupercritical boilers and turbines, post-combustion CO2 absorption, oxyfuel combustion, and IGCC with CCS. This paper discusses the development status, performance and economic impacts of these technologies with focus on post combustion absorption and oxyfuel combustion - two promising CO2 solutions for new and existing power plants.

  9. Exploring surface cleaning strategies in hospital to prevent contact transmission of methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Lei, Hao; Jones, Rachael M; Li, Yuguo

    2017-01-18

    Cleaning of environmental surfaces in hospitals is important for the control of methicillin-resistant Staphylococcus aureus (MRSA) and other hospital-acquired infections transmitted by the contact route. Guidance regarding the best approaches for cleaning, however, is limited. In this study, a mathematical model based on ordinary differential equations was constructed to study MRSA concentration dynamics on high-touch and low-touch surfaces, and on the hands and noses of two patients (in two hospitals rooms) and a health care worker in a hypothetical hospital environment. Two cleaning interventions - whole room cleaning and wipe cleaning of touched surfaces - were considered. The performance of the cleaning interventions was indicated by a reduction in MRSA on the nose of a susceptible patient, relative to no intervention. Whole room cleaning just before first patient care activities of the day was more effective than whole room cleaning at other times, but even with 100% efficiency, whole room cleaning only reduced the number of MRSA transmitted to the susceptible patient by 54%. Frequent wipe cleaning of touched surfaces was shown to be more effective that whole room cleaning because surfaces are rapidly re-contaminated with MRSA after cleaning. Wipe cleaning high-touch surfaces was more effective than wipe cleaning low-touch surfaces for the same frequency of cleaning. For low wipe cleaning frequency (≤3 times per hour), high-touch surfaces should be targeted, but for high wipe cleaning frequency (>3 times per hour), cleaning should target high- and low-touch surfaces in proportion to the surface touch frequency. This study reproduces the observations from a field study of room cleaning, which provides support for the validity of our findings. Daily whole room cleaning, even with 100% cleaning efficiency, provides limited reduction in the number of MRSA transmitted to susceptible patients via the contact route; and should be supplemented with frequent targeted

  10. Evaluation of indoor aerosol control devices and their effects on radon progeny concentrations

    International Nuclear Information System (INIS)

    Sextro, R.G.; Offermann, F.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles, and their concomitant effects on radon progeny concentrations have been investigated. Of the devices we examined the electrostatic precipitators and extended surface filters had significant particle removal rates, while the particle removal rates for several small panel-filters, an ion-generator, and a pair of mixing fans were found to be negligible. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in reducing radon progeny concentrations. Furthermore, at the low particle concentrations, plateout of the unattached radon progeny was found to be a significant removal mechanism. The overall removal rates due to deposition of attached and unattached progeny have been estimated from these data, and the equilibrium factors for total and unattached progeny concentrations have been calculated as a function of particle concentration. 7 references, 2 figures

  11. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  12. Impact of Clean Energy R&D on the U.S. Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul [Dept. of Energy (DOE), Washington DC (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group; Mowers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group; Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group

    2017-01-01

    The U.S. government, along with other governments, private corporations and organizations, invests significantly in research, development, demonstration and deployment (RDD&D) activities in clean energy technologies, in part to achieve the goal of a clean, secure, and reliable energy system. While specific outcomes and breakthroughs resulting from RDD&D investment are unpredictable, it can be instructive to explore the potential impacts of clean energy RDD&D activities in the power sector and to place those impacts in the context of current and anticipated market trends. This analysis builds on and leverages analysis by the U.S. Department of Energy (DOE) titled “Energy CO2 Emissions Impacts of Clean Energy Technology Innovation and Policy” (DOE 2017). Similar to DOE (2017), we explore how additional improvements in cost and performance of clean energy technologies could impact the future U.S. energy system; however, unlike the economy-wide modeling used in DOE (2017) our analysis is focused solely on the electricity sector and applies a different and more highly spatially-resolved electric sector model. More specifically, we apply a scenario analysis approach to explore how assumed further advancements in clean electricity technologies would impact power sector generation mix, electricity system costs, and power sector carbon dioxide (CO2) emissions.

  13. Radioactive Waste and Clean-up: Introduction

    International Nuclear Information System (INIS)

    Collard, G.

    2007-01-01

    The primary mission of the Radioactive Waste and Clean-up division is to propose, to develop and to evaluate solutions for a safe, acceptable and sustainable management of radioactive waste. The Radioactive Waste and Clean-up division programme consists in research, studies, development and demonstration aiming to realise the objective of Agenda 21 on sustainable development in the field of radioactive waste and rehabilitation on radioactively contaminated sites. Indeed, it participates in the realisation of an objective which is to ensure that radioactive wastes are safely managed, transported, stored and disposed of, with a view to protecting human health and the environment, within a wider framework of an interactive and integrated approach to radioactive waste management and safety. We believe that nuclear energy will be necessary for the sustainable development of mankind in the 21st century, but we well understand that it would not be maintained if it is not proven that within benefits of nuclear energy a better protection of the environment is included. Although the current waste management practices are both technically and from the environmental point of view adequate, efforts in relation of future power production and waste management technologies should be put on waste minimisation. Therefore, the new and innovative reactors, fuel cycle and waste management processes and installations should be designed so that the waste generation can be kept in minimum. In addition to the design, the installations should be operated so as to create less waste; consideration should be given e.g. to keeping water chemistry clean and other quality factors. SCK-CEN in general and the Radioactive Waste and Clean-up division in particular are present in international groups preparing the development of innovative nuclear reactors, as Generation 4 and INPRO. Because performance assessments are often black boxes for the public, demonstration is needed for the acceptation of

  14. Clean coal technologies: A business report

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The book contains four sections as follows: (1) Industry trends: US energy supply and demand; The clean coal industry; Opportunities in clean coal technologies; International market for clean coal technologies; and Clean Coal Technology Program, US Energy Department; (2) Environmental policy: Clean Air Act; Midwestern states' coal policy; European Community policy; and R ampersand D in the United Kingdom; (3) Clean coal technologies: Pre-combustion technologies; Combustion technologies; and Post-combustion technologies; (4) Clean coal companies. Separate abstracts have been prepared for several sections or subsections for inclusion on the data base

  15. Financing clean energy market creation. Clean energy ventures, venture capitalists and other investors

    Energy Technology Data Exchange (ETDEWEB)

    Teppo, T. [Helsinki Univ. of Technology, Espoo (Finland). Development and Management in Industry

    2006-07-01

    Many factors have emerged for change towards cleaner and more efficient technologies and services: climate change, increasing oil demands, and rising living standards in many parts of the world are putting an ever-increasing strain on the environment. Recently, these drivers have fueled the formation of a clean energy venture capital market where both independent venture capitalists (VCs) and corporate venture capitalists (CVCs) have invested in clean energy start-ups. Financing of clean energy market creation is the focus of this dissertation. The dissertation contributes to several bodies of literature in the area of entrepreneurship, new industry creation, corporate venturing, and venture capital research. The dissertation uses a grounded theory approach. The study is guided by three data collection approaches with an emphasis on the first two. First, interviews with European and North American VC and CVC firms that have invested in the clean energy sector were carried out. Second, a clean energy venture financing survey that consisted of qualitative, essay-format questions and some quantitative questions was carried out. Third, interviews with clean energy stakeholders were carried out in order to gain a better understanding of the emerging sector. The research results consist of three main findings. First, the research results suggest that clean energy ventures face the following three main entrepreneurial challenges: financing, market education, and growth management. A further study of three clean energy industry categories revealed additional challenges that varied according to the industry development stage. Second, the results demonstrate that, from a venture capitalist perspective, clean energy venture risk characteristics can be divided into two groups: generally recognized risk characteristics and cognitive risk characteristics. The identified generally recognized risk characteristics were market demand and adaptation, incompatibility with the VC model

  16. Tube micro-fouling, boiling and steam pressure after chemical cleaning

    International Nuclear Information System (INIS)

    Hu, M.H.

    1998-01-01

    This paper presents steam pressure trends after chemical cleaning of steam generator tubes at four plants. The paper also presents tube fouling factor that serves as an objective parameter to assess tubing boiling conditions for understanding the steam pressure trend. Available water chemistry data helps substantiate the concept of tube micro-fouling, its effect on tubing boiling, and its impact on steam pressure. All four plants experienced a first mode of decreasing steam pressure in the post-cleaning operation. After 3 to 4 months of operation, the decreasing trend stopped for three plants and then restored to a pre-cleaning value or better. The fourth plant is soil in decreasing trend after 12 months of operation. Dissolved chemicals, such as silica, titanium can precipitate on tube surface. The precipitate micro-fouling can deactivate or eliminate boiling nucleation sites. Therefore, the first phase of the post-cleaning operation suffered a decrease in steam pressure or an increase in fouling factor. It appears that micro fouling by magnetite deposit can activate or create more bubble nucleation sites. Therefore, the magnetite deposit micro-fouling results in a decrease in fouling factor, and a recovery in steam pressure. Fully understanding the boiling characteristics of the tubing at brand new, fouled and cleaned conditions requires further study of tubing surface conditions. Such study should include boiling heat transfer tests and scanning electronic microscope examination. (author)

  17. Short communication: Reactivity of diacetyl with cleaning and sanitizing agents.

    Science.gov (United States)

    Rincon-Delgadillo, M I; Lopez-Hernandez, A; Rankin, S A

    2013-01-01

    Diacetyl is used to impart a buttery flavor to numerous food products such as sour cream, cottage cheese, vegetable oil-based spreads, baked goods, and beverages. Recent studies have linked exposure to high concentrations of diacetyl and the onset of bronchiolitis obliterans. Due to the reported risks that diacetyl may pose, many food companies have altered practices to reduce worker exposure to diacetyl, including the use of personal respirators, improved air handling systems, and adequate cleaning practices. Commonly used cleaning and sanitizing agents may be reactive with diacetyl; however, the efficacy of these chemicals has not been studied in detail and remains unclear. The objective of this work was to study the reaction chemistry of diacetyl with common industrial cleaning and sanitizing chemicals. The reactions were assessed at equimolar concentrations and analyzed by gas chromatography-mass spectrometry. Peroxyacetic acid was most reactive with diacetyl (95% reduction in diacetyl), followed by sodium hypochlorite (76% reduction), and hydrogen peroxide (26% reduction). Benzalkonium chloride (BAC) did not react with diacetyl. Acetic acid was detected as the main product of reactions of diacetyl with peroxyacetic acid, sodium hypochlorite, and hydrogen peroxide. 1,1-Dichloro-2-propanone and 1,1,1-trichloropropanone were also identified as volatile reaction products in the sodium hypochlorite reactions. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Chemical cleaning of UK AGR boilers

    International Nuclear Information System (INIS)

    Rudge, A.; Turner, P.; Ghosh, A.; Clary, W.; Tice, D.

    2002-01-01

    For the first time in their operational lives, UK advanced gas-cooled reactor once-through boilers have been chemically cleaned. Chemical cleaning was necessary to avoid lost output resulting from boiler pressure drops, which had been increasing for a number of years. Chemical cleaning of these boilers presents a number of unique difficulties. These include lack of access to the boilers, highly sensitised 316H superheater sections that cannot be excluded from the cleaning flow path, relatively thin boiler tube walls and an intolerance to boiler tube failure because of the role of the boilers in nuclear decay heat removal. The difficulties were overcome by implementing the clean in a staged manner, starting with an extensive materials testwork programme to select and then to substantiate the cleaning process. The selected process was based on ammoniated citric acid plus formic acid for the principal acid cleaning stage. Materials testwork was followed by an in-plant trial clean of six boiler tubes, further materials testwork and the clean of a boiler tube in a full-scale test rig. An overview is presented of the work that was carried out to demonstrate that the clean could be carried out safely, effectively and without leading to unacceptable corrosion losses. Full-scale chemical cleaning was implemented by using as much of the existing plant as possible. Careful control and monitoring was employed to ensure that the cleaning was implemented according to the specified design, thus ensuring that a safe and effective clean was carried out. Full-scale cleaning has resulted in significant boiler pressure drop recovery, even though the iron burden was relatively low and cleaning was completed in a short time. (orig.)

  19. Extending CO2 cryogenic aerosol cleaning for advanced optical and EUV mask cleaning

    Science.gov (United States)

    Varghese, Ivin; Bowers, Charles W.; Balooch, Mehdi

    2011-11-01

    Cryogenic CO2 aerosol cleaning being a dry, chemically-inert and residue-free process is used in the production of optical lithography masks. It is an attractive cleaning option for the mask industry to achieve the requirement for removal of all printable soft defects and repair debris down to the 50nm printability specification. In the technique, CO2 clusters are formed by sudden expansion of liquid from high to almost atmospheric pressure through an optimally designed nozzle orifice. They are then directed on to the soft defects or debris for momentum transfer and subsequent damage free removal from the mask substrate. Unlike aggressive acid based wet cleaning, there is no degradation of the mask after processing with CO2, i.e., no critical dimension (CD) change, no transmission/phase losses, or chemical residue that leads to haze formation. Therefore no restriction on number of cleaning cycles is required to be imposed, unlike other cleaning methods. CO2 aerosol cleaning has been implemented for several years as full mask final clean in production environments at several state of the art mask shops. Over the last two years our group reported successful removal of all soft defects without damage to the fragile SRAF features, zero adders (from the cleaning and handling mechanisms) down to a 50nm printability specification. In addition, CO2 aerosol cleaning is being utilized to remove debris from Post-RAVE repair of hard defects in order to achieve the goal of no printable defects. It is expected that CO2 aerosol cleaning can be extended to extreme ultraviolet (EUV) masks. In this paper, we report advances being made in nozzle design qualification for optimum snow properties (size, velocity and flux) using Phase Doppler Anemometry (PDA) technique. In addition the two new areas of focus for CO2 aerosol cleaning i.e. pellicle glue residue removal on optical masks, and ruthenium (Ru) film on EUV masks are presented. Usually, the residue left over after the pellicle

  20. REVIEW OF ALTERNATIVE ENHANCED CHEMICAL CLEANING OPTIONS FOR SRS WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Hay, M.; Koopman, D.

    2009-08-01

    A literature review was conducted to support the Task Technical and Quality Assurance Plan for Alternative Enhanced Chemical Cleaning (AECC) for sludge heel removal funded as part of the EM-21 Engineering and Technology program. The goal was to identify potential technologies or enhancements to the baseline oxalic acid cleaning process for chemically dissolving or mobilizing Savannah River Site (SRS) sludge heels. The issues with the potentially large volume of oxalate solids generated from the baseline process have driven an effort to find an improved or enhanced chemical cleaning technology for the tank heels. This literature review builds on a previous review conducted in 2003. A team was charged with evaluating the information in these reviews and developing recommendations of alternative technologies to pursue. The new information in this report supports the conclusion of the previous review that oxalic acid remains the chemical cleaning agent of choice for dissolving the metal oxides and hydroxides found in sludge heels in carbon steel tanks. The potential negative impact of large volumes of sodium oxalate on downstream processes indicates that the amount of oxalic acid used for chemical cleaning needs to be minimized as much as possible or the oxalic acid must be destroyed prior to pH adjustment in the receipt tank. The most straightforward way of minimizing the volume of oxalic acid needed for chemical cleaning is through more effective mechanical cleaning. Using a mineral acid to adjust the pH of the sludge prior to adding oxalic acid may also help to minimize the volume of oxalic acid used in chemical cleaning. If minimization of oxalic acid proves insufficient in reducing the volume of oxalate salts, several methods were found that could be used for oxalic acid destruction. For some waste tank heels, another acid or even caustic treatment (or pretreatment) might be more appropriate than the baseline oxalic acid cleaning process. Caustic treatment of high

  1. Cleaning Of Black Crust From Marble Substrate By Short Free Running μs Nd: YAG Laser

    International Nuclear Information System (INIS)

    Khedr, A.; Harith, M. A.; Pouli, P.; Fotakis, C.

    2009-01-01

    One of the most important aspects in laser cleaning of artworks is the possibility for on-line monitoring the cleaning process. This ensures that the cleaning intervention is satisfactory without any damage to the underlying original surface. In this work it is shown that following and observing the integrated densities of the plumes generated during laser cleaning may be a simple, safe and straightforward methodology to monitor the removal process. A series of experiments on reference marble with simulated thick encrustation were considered to evaluate the plume monitoring technique. Parameters influencing the cleaning process and ablation threshold of the black crust (such as laser fluence, number of pulses etc.) were considered while the results were also evaluated under the microscope. The results of this study will be presented and discussed with the aim to establish accurate and reliable monitoring tools to follow the laser cleaning process.

  2. ENHANCED CHEMICAL CLEANING: EFFECTIVENESS OF THE UV LAMP TO DECOMPOSE OXALATES

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E.; Huff, T.; Sudduth, C.

    2010-01-19

    Enhanced Chemical Cleaning is a new process scheduled to begin cleaning Savannah River Site High Level Waste Tanks in 2012. It is an improvement over the current chemical cleaning method, in that it minimizes downstream impacts on the High Level Waste System. It is based on a state of the art scale removal process used on the secondary side of nuclear power plants, with modifications to accommodate the unique constraints created by the tanks. Both Enhanced Chemical Cleaning and the scale removal process are founded on dissolving metal oxides/hydroxides using oxalic acid, with subsequent oxalate decomposition via hydroxylation using ozone or peroxide, and UV light as a catalyst. A divergence Enhanced Chemical Cleaning has from nuclear power scale removal is the significantly increased solids concentration during oxalate decomposition. These solids can limit the ability of the UV light to create hydroxyl radicals, either by limiting the ability of the light to penetrate through the solution, or by increasing the fouling rate on the UV light. Both will decrease the overall catalytic effectiveness, thereby decreasing the concentration of formed hydroxyl radicals. The hydroxyl radicals are the driving force behind the oxalate decomposition. To understand the impact of increased solids, testing was performed using a medium pressure UV light inside an ozone supplied Oxalate Decomposition Reactor. Using a dissolved metal sludge simulant with an initial oxalate concentration greater than 12,000 ppm, and an initial pH of about 2.0, the spent acid solution was recirculated through the reactor, while the UV light was allowed to foul. For the first few hours, the oxalate decomposition rate was about 1,300 ppm/hour. After about 3 hours, enough time for the UV lamp to foul, the oxalate decomposition rate decreased to about 500 ppm/hour. The decomposition rate then remained roughly constant for the next 16 hours. Overall, testing showed that the oxalate destruction rate decreased

  3. Numerical Simulation and Experimental Study on Formation of High Concentration of H2 Generated by Gas Explosion

    Directory of Open Access Journals (Sweden)

    Lei Baiwei

    2016-10-01

    Full Text Available In coal mine fire rescues, if the abnormal increase of gas concentration occurs, it is the primary thing to analyze the reasons and identify sources of the abnormal forming, which is also the basis of judge the combustion state of fire area and formulate proper fire reliefs. Nowadays, related researches have recognized the methane explosion as the source of high concentration of H2 formation, but there are few studies about the conditions and reaction mechanism of gas explosion generating high concentration of H2.Therefore, this paper uses the chemical kinetic calculation software, ChemKin, and the 20L spherical explosion experimental device to simulate the generating process and formation conditions of H2 in gas explosion. The experimental results show that: the decomposition of water vapor is the main base element reaction (R84 which leads to the generation of H2.The free radical H is the key factor to influence the formation of H2 generated from gas explosion. With the gradual increase of gas explosion concentration, the explosive reaction becomes more incomplete, and then the generating quantity of H2 increases gradually. Experimental results of 20L spherical explosion are consistent with the change trend about simulation results, which verifies the accuracy of simulation analysis. The results of explosion experiments show that when gas concentration is higher than 9%, the incomplete reaction of methane explosion increases which leads to the gradual increase of H2 formation.

  4. Duke Power Company - McGuire Nuclear Station: steam-generator hideout return and cleanup

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    McGuire Nuclear Station steam generator hideout return and cleanup are discussed. Hideout return data are presented for Unit 1 shutdowns that occurred on November 23, 1984, and April 19, 1985, and a Unit 2 shutdown on January 25, 1985. The data are presented as the concentrations of various species as a function of time after power reduction and primary water temperature. The steam generator blowdown as a function of time after power reduction is also presented. The concentrations of sodium, potassium, calcium, magnesium, aluminum, iron, and copper cations, and chloride, fluoride, sulfate, phosphate and nitrite anions were monitored during the each shutdown. Silica was also measured in the two 1985 shutdowns. The return of sulfate, phosphate, calcium and magnesium showed retrograde solubility. Silica concentrations showed an increase as the temperature decreased to about 450 to 500 0 F and then they decreased as the temperature decreased. McGuire has a holf point at 300 at 350 0 F to clean up the steam generator secondary water. The return of sulfates should occur within 4 to 6 hours. The blowdown is maximized to reduce the secondary water impurity concentrations. Cleanup continues until the sulfate concentration is reduced to below 100 ppb. At that point cooldown is continued

  5. Renewable Energy Zones for the Africa Clean Energy Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Grace C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Deshmukh, Ranjit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Ndhlukula, Kudakwashe [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Radojicic, Tijana [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Reilly, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-07-01

    Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmental impacts. The Renewable Energy Zones for the Africa Clean Energy Corridor study sought to identify and comprehensively value high-quality wind, solar photovoltaic (PV), and concentrating solar power (CSP) resources in 21 countries in the East and Southern Africa Power Pools to support the prioritization of areas for development through a multi-criteria planning process. These countries include Angola, Botswana, Burundi, Djibouti, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozambique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. The study includes the methodology and the key results including renewable energy potential for each region.

  6. Method of estimating changes in vapor concentrations continuously generated from two-component organic solvents.

    Science.gov (United States)

    Hori, Hajime; Ishidao, Toru; Ishimatsu, Sumiyo

    2010-12-01

    We measured vapor concentrations continuously evaporated from two-component organic solvents in a reservoir and proposed a method to estimate and predict the evaporation rate or generated vapor concentrations. Two kinds of organic solvents were put into a small reservoir made of glass (3 cm in diameter and 3 cm high) that was installed in a cylindrical glass vessel (10 cm in diameter and 15 cm high). Air was introduced into the glass vessel at a flow rate of 150 ml/min, and the generated vapor concentrations were intermittently monitored for up to 5 hours with a gas chromatograph equipped with a flame ionization detector. The solvent systems tested in this study were the methanoltoluene system and the ethyl acetate-toluene system. The vapor concentrations of the more volatile component, that is, methanol in the methanol-toluene system and ethyl acetate in the ethyl acetate-toluene system, were high at first, and then decreased with time. On the other hand, the concentrations of the less volatile component were low at first, and then increased with time. A model for estimating multicomponent organic vapor concentrations was developed, based on a theory of vapor-liquid equilibria and a theory of the mass transfer rate, and estimated values were compared with experimental ones. The estimated vapor concentrations were in relatively good agreement with the experimental ones. The results suggest that changes in concentrations of two-component organic vapors continuously evaporating from a liquid reservoir can be estimated by the proposed model.

  7. Purification and solidification of reactor wastes at a Canadian nuclear generating station

    International Nuclear Information System (INIS)

    Buckley, L.P.; Burt, D.A.

    1981-06-01

    Chalk River Nuclear Laboratories are developing methods to condition power reactor wastes and to immobilize their radionuclides. Evaporation alone and combined with bituminization has been an important part of the program. After testing at the laboratories a 0.5 m 2 wiped-film evaporator was sent to the Douglas Point Nuclear Generating Station (220 MWe) to demonstrate its suitability to handle typical reactor liquid wastes. Two specific tasks undertaken with the wiped-film evaporator were successfully completed. The first was purification of contaminated heavy water which had leaked from the moderator circuit. The heavy water is normally recovered, cleaned by filters and ion-exchange resin and then upgraded by electrolysis. Cleaning the heavy water with the wiped-film evaporator produced better quality water for upgrading than had been achieved by any previous method and at much lower operating cost. The second task was to concentrate and immobilize a decontamination waste. The waste was generated from the decontamination of pump bowls used in the primary heat transport circuit. The simultaneous addition of the liquid waste and bitumen emulsion to the wiped-film evaporator produced a solid containing 30 wt% waste solids in a bitumen matrix. The volume reduction achieved was 16:1 based on the volumes of initial liquid waste and the final product generated. The quantity sent to storage was 20 times less than had the waste been immobilized in a cement matrix. The successful demonstration has resulted in a proposal to install a wiped-film evaporator at the station to clean heavy water and immobilize decontamination wastes. (author)

  8. Steam cleaning device

    International Nuclear Information System (INIS)

    Karaki, Mikio; Muraoka, Shoichi.

    1985-01-01

    Purpose: To clean complicated and long objects to be cleaned having a structure like that of nuclear reactor fuel assembly. Constitution: Steams are blown from the bottom of a fuel assembly and soon condensated initially at the bottom of a vertical water tank due to water filled therein. Then, since water in the tank is warmed nearly to the saturation temperature, purified water is supplied from a injection device below to the injection device above the water tank on every device. In this way, since purified water is sprayed successively from below to above and steams are condensated in each of the places, the entire fuel assembly elongated in the vertical direction can be cleaned completely. Water in the reservoir goes upward like the steam flow and is drained together with the eliminated contaminations through an overflow pipe. After the cleaning has been completed, a main steam valve is closed and the drain valve is opened to drain water. (Kawakami, Y.)

  9. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Li, X.W., E-mail: lynnww@sohu.com [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China); Li, J.X. [Tianjin Polytechnic University, Tianjin 300160 (China); Gao, C.Y. [Chinese Peoples Armed Police Forces Academy, Langfang 065000 (China); Chang, M. [School of Electronic and Information Engieering, Tianjin university, Tianjin, 300072 (China); School of Electronics Information Engieering, Tianjin University of Technology, Tianjin, 300384 (China)

    2011-10-15

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  10. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    International Nuclear Information System (INIS)

    Li, X.W.; Li, J.X.; Gao, C.Y.; Chang, M.

    2011-01-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of Key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  11. Ensuring clean air: Developing a clean air strategy for British Columbia

    International Nuclear Information System (INIS)

    1992-04-01

    In 1992, a clean air strategy will be developed to incorporate views of British Columbians on ways to meet goals related to air quality. A discussion paper is presented to provide information to those interested in participation in developing this strategy. The paper gives information on air quality issues important to the province, including local air quality, urban smog, ozone layer depletion, and global climate change. The views and concerns expressed by stakeholders who attended the Clean Air Conference in 1991 are summarized. The process used to develop the clean air strategy is outlined and some outcomes to be anticipated from the strategy are suggested, including policies and priorities for action to ensure clean air. Air pollutants of concern are total reduced sulfur, mainly from pulp mills and gas processing plants; smoke from wood burning; sulfur dioxide from pulp mills and gas plants; hydrogen fluoride from aluminum smelting; ground-level ozone in urban areas; and acid rain. Elements of a clean air strategy include a smoke management policy, management strategies for greenhouse gases and ozone smog, ozone layer protection measures, regional air quality management plans, and long-term planning efforts in energy use, transportation modes, community design, and land use. 12 refs., 14 figs., 2 tabs

  12. Overview of shoreline cleaning agents

    International Nuclear Information System (INIS)

    Clayton, J.

    1992-01-01

    Chemical cleaning agents may be used to promote release of stranded oil from shorelines for reasons including biological sensitivity of indigenous fauna and flora to the oil, amenity considerations of the shoreline, or concern about refloating of the oil and subsequent stranding on adjacent shorelines. While use of chemical cleaning agents may be appropriate under proper toxic responses in circumstances, certain limitations should be recognized. The potential for toxic responses in indigenous fauna and flora to the cleaning agents must be considered. Enhanced penetration of oil into permeable shorelines following treatment with chemical cleaning agents also is not desirable. However, if conditions related to toxicity and substrate permeability are determined to be acceptable, the use of chemical cleaning agents for treatment of stranded oil can be considered. Chemical agents for cleaning oiled shorelines can be grouped into three categories: (1) non-surfactant-based solvents, (2) chemical dispersants, and (3) formulations especially designed to release stranded oil from shoreline substrates (i.e., shoreline-cleaning-agents). Depending on the specific circumstances present on an oiled shoreline, it is generally desirable that chemical agents used for cleaning will release oil from shoreline substrate(s) to surface waters. Recovery of the oil can then be accomplished by mechanical procedures such as booming and skimming operations

  13. ''How clean is clean'' in the United States federal and Washington State cleanup regulations

    International Nuclear Information System (INIS)

    Landau, H.G.

    1993-01-01

    The enactment of legislation and promulgation of implementing regulations generally involves the resolution of conflicting goals. Defining ''How Clean is Clean?'' in federal and state cleanup laws, regulations, and policies is no exception. Answering the ''How Clean is Clean?'' question has resulted in the identification of some important and sometimes conflicting goals. Continuing resolution of the following conflicting goals is the key to effect cleanup of hazardous waste sites: Expediency vs. Fairness; Flexibility vs. Consistency; Risk Reduction vs. Risk Causation; and Permanence vs. Cost Effectiveness

  14. CHEMICAL CLEANING OF NANOFILTRATION MEMBRANES FOULED BY ORGANIC MATTERS

    Directory of Open Access Journals (Sweden)

    CHARLENE C. H. KOO

    2016-07-01

    Full Text Available Membrane fouling is a term to describe non-integral substance on membrane surface which results in rapid decline of permeation flux and deteriorate the performance of membrane. Chemical cleaning agents especially like alkaline cleaners are most widely employed to restore the membrane performance. This research mainly investigated the potential use of sodium hydroxide (NaOH and sodium hypochlorite (NaOCl as the chemical cleaning agents to restore the permeate flux of organically fouled nanofiltration (NF membranes under varying applied pressure and flow condition. The performances of the cleaning protocols were quantified using flux recovery and resistance removal. The results demonstrated that NaOCl is more effective than NaOH. This observation is also in line with FTIR analysis in which the transmittance intensity showed by FTIR spectra of NaOCl is higher than that of NaOH. The results also reported that higher flux recovery and resistance removal were achieved when the fouled NF membranes were cleaned with higher concentration of chemical agents and applied pressure. However, the improvements of flux recovery and resistance removal by increasing the applied pressure were found insignificant at higher applied pressure range (16 to 18 bar than the lower applied pressure range (i.e. 12 to 14 bar. This research plays an important role by identifying the key parameters that could restore the flux of organically fouled NF membranes significantly.

  15. Development of Natural Gas Fired Combined Cycle Plant for Tri-Generation of Power, Cooling and Clean Water Using Waste Heat Recovery: Techno-Economic Analysis

    Directory of Open Access Journals (Sweden)

    Gowtham Mohan

    2014-10-01

    Full Text Available Tri-generation is one of the most efficient ways for maximizing the utilization of available energy. Utilization of waste heat (flue gases liberated by the Al-Hamra gas turbine power plant is analyzed in this research work for simultaneous production of: (a electricity by combining steam rankine cycle using heat recovery steam generator (HRSG; (b clean water by air gap membrane distillation (AGMD plant; and (c cooling by single stage vapor absorption chiller (VAC. The flue gases liberated from the gas turbine power cycle is the prime source of energy for the tri-generation system. The heat recovered from condenser of steam cycle and excess heat available at the flue gases are utilized to drive cooling and desalination cycles which are optimized based on the cooling energy demands of the villas. Economic and environmental benefits of the tri-generation system in terms of cost savings and reduction in carbon emissions were analyzed. Energy efficiency of about 82%–85% is achieved by the tri-generation system compared to 50%–52% for combined cycles. Normalized carbon dioxide emission per MW·h is reduced by 51.5% by implementation of waste heat recovery tri-generation system. The tri-generation system has a payback period of 1.38 years with cumulative net present value of $66 million over the project life time.

  16. Corrosion and cleaning aspects of sodium side crevices in components of LMFBR's

    International Nuclear Information System (INIS)

    Chirer, E.G.

    1978-01-01

    Although the presence of crevices is excluded in critical areas of sodium components by design, their occurrence in other areas cannot be eliminated completely. During the lifetime of a component high concentrations of sodium compounds, such as caustics, may be formed in crevices. These compounds can remain within the crevices for some time. In this respect the following situations are recognized: - Reaction products from initial contaminants such as oxide scales. The component with crevices containing oxide scale either from the manufacturing process or insufficient cleaning after water pressure testing is exposed to sodium during actual operation. - Reaction products formed during or after cleaning. Sodium in the crevices of a drained component reacts with water vapour or water during cleaning or during subsequent storing or handling under non-perfect conditions. Before refilling with sodium the component is heated to preheat temperature. Same situation as above, however the component is exposed to sodium at operating temperature. These cycles can be repeated several times. - Products from a small sodium-water reaction. Caustic products from a small sodium-water reaction may be present in crevices or dead ends of a component which is exposed to high temperature during sodium operation or during vacuum distillation. The aims of the investigations are: determination of the corrosive aspects of high concentration of caustic reaction products of sodium in crevices on the structural materials of the component; comparison of the effectiveness of different cleaning procedures in respect to removal of sodium from crevices, e.g. water, steam, alcohol cleaning, vacuum distillation. Concerning the first item, in particular the possibility of the occurrence of intercrystalline corrosion and stress corrosion cracking is investigated. Materials investigated are the Cr-Mo steels 2 1/4Cr1Mo stabilized with Nb, 9Cr1Mo, 12Cr1Mo and the austenitic stainless steal AISI 304. The

  17. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  18. Diamond-cleaning investigations

    International Nuclear Information System (INIS)

    Derry, T.E.

    Four parcels of diamonds which either had or had not been cleaned using the usual techniques, chiefly involving etch in molten potassium nitrate were supplied by De Beers Diamond Research Laboratories. Each parcel contained about 40 stones, amounting to about 10 carats. Half the diamonds in each parcel were cleaned by a standard procedure involving half an hours ultrasonic agitation in a 20% solution of the commercial detergent 'Contrad' which is effectively a surfactant and chelating agent. Visual comparisons by a number of observers who were not told the stones' histories, established that these diamonds generally had a more sparkling appearance after the cleaning procedure had been applied

  19. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  20. OH and HO2 chemistry in clean marine air during SOAPEX-2

    Directory of Open Access Journals (Sweden)

    R. Sommariva

    2004-01-01

    Full Text Available Model-measurement comparisons of HOx in extremely clean air ([NO] The free-radical chemistry was studied using a zero-dimensional box-model based upon the Master Chemical Mechanism (MCM. Two versions of the model were used, with different levels of chemical complexity, to explore the role of hydrocarbons upon free-radical budgets under very clean conditions. The "detailed" model was constrained to measurements of CO, CH4 and 17 NMHCs, while the "simple" model contained only the CO and CH4 oxidation mechanisms, together with inorganic chemistry. The OH and HO2 (HOx concentrations predicted by the two models agreed to within 5–10%. The model results were compared with the HOx concentrations measured by the FAGE (Fluorescence Assay by Gas Expansion technique during four days of clean Southern Ocean marine boundary layer (MBL air. The models overestimated OH concentrations by about 10% on two days and about 20% on the other two days. HO2 concentrations were measured during two of these days and the models overestimated the measured concentrations by about 40%. Better agreement with measured HO2 was observed by using data from several MBL aerosol measurements to estimate the aerosol surface area and by increasing the HO2 uptake coefficient to unity. This reduced the modelled HO2 overestimate by ~40%, with little effect on OH, because of the poor HO2 to OH conversion at the low ambient NOx concentrations. Local sensitivity analysis and Morris One-At-A-Time analysis were performed on the "simple" model, and showed the importance of reliable measurements of j(O1D and [HCHO] and of the kinetic parameters that determine the efficiency of O(1D to OH and HCHO to HO2 conversion. A 2σ standard deviation of 30–40% for OH and 25–30% for HO2 was estimated for the model calculations using a Monte Carlo technique coupled with Latin Hypercube Sampling (LHS.

  1. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  2. Exposure of ventilation system cleaning workers to harmful microbiological agents.

    Science.gov (United States)

    Gołofit-Szymczak, Małgorzata; Ławniczek-Wałczyk, Anna; Górny, Rafał L

    2013-01-01

    Regular inspection of the cleanliness of the ventilation systems, as well as their periodic cleaning and disinfection, if necessary, are the main factors of the proper maintenance of each system. Performing maintenance operations on the ventilation system, workers are exposed to risk associated with the exposure to harmful biological agents. The aim of this study was to assess the employees' exposure to bioaerosols during maintenance work on ventilation systems. Bioaerosol measurements were carried out using a button sampler. The microbial particles were collected on gelatin filters. Settled-dust samples from the inner surface of the air ducts and filter-mat samples were selected for the microbiological analysis. In the collected air, dust and filter samples the concentration of bacteria and fungi were determined. Bacteria and fungi concentrations ranged between 3.6 x 10(2)-2.2 x 10(4) CFU/m3 and 4.7 x 10(2)-4.5 x 10(3) CFU/m3 at workplaces where the operations connected with mechanical ventilation cleaning were performed and 2.2 x 10(4)-1.2 x 10(5) CFU/m2 and 9.8 x 10(1)-2.5 x 10(2) CFU/m3 at workplaces where filter exchange was performed, respectively. The qualitative analysis of microorganisms isolated from the air in all studied workplaces revealed that the most prevalent bacteria belonged to Bacillus genus. The average concentrations of bacteria and fungi in filter-mat samples were 3.3 x 10(3) CFU/cm2 and 1.4 x 10(4) CFU/cm2, respectively. In settled-dust samples, average concentrations were 591 CFU/100 cm2 and 52 CFU/100 cm2, for bacteria and fungi respectively. Workers cleaning ventilation systems are exposed to harmful biological agents classified into risk groups, 1 and 2, according to their level of the risk of infection. The research conducted in the workplace can be the basis of risk assessment related to exposure to harmful biological agents during maintenance work in ventilation.

  3. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  4. Studies of post-elution concentration of {sup 99m}-Tc eluted from a gel type chromatographic generator

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Katia N.; Osso Junior, Joao Alberto [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: norisuzuki6@yahoo.com.br; jaosso@ipen.br

    2007-07-01

    The radiopharmaceuticals most used in Diagnostic Nuclear Medicine are those labeled with the metastable technetium ({sup 99m}Tc) due to its ideal physical properties of decay (t{sub 1/2} 6.01 h, E{gamma} 140 keV), low cost and availability facilitated through the commercial generator {sup 99}Mo /{sup 99m}Tc. This radionuclide is formed by the {beta}{sup -} decay of {sup 99}Mo adsorbed on an alumina column of the generator and collected in the form of sodium pertechnetate (Na{sup 99m}TcO{sub 4}) by elution with saline solution (0.9%). The Radiopharmacy Center (CR) of the IPEN-CNEN/SP developed a gel type chromatographic generator of MoZr with {sup 99}Mo produced by {sup 98}Mo(n, {gamma}){sup 99}Mo reaction that occurs in IEA-R1 Nuclear Reactor. The gel is composed of zirconium molybdate with elution volume of 12 ml with an activity of 11100 MBq (300 mCi) producing a radioactive concentration of 925 MBq (34 mCi) / ml. The fission generator gives a higher radioactive concentration around 1850 MBq (69 mCi) / ml. The aim of this work is to study a system of post-elution concentration using ion exchange cartridges in tandem (cation - anion) for the attainment of a high enough radioactive concentration to meet the demand of market, with a proved quality. This system of concentration will be made based in the technique of solid phase extraction (SPE) using commercial cartridges of extraction, which contains the solid phase and eluent saline solution (0.9%). As the eluent results of this system used in the gel generator of MoZr will be compared with the fission generator currently produced by IPEN-CNEN/SP. (author)

  5. Multi-Generation Concentrating Solar-Hydrogen Power System for Sustainable Rural Development

    Energy Technology Data Exchange (ETDEWEB)

    Krothapalli, A.; Greska, B.

    2007-07-01

    This paper describes an energy system that is designed to meet the demands of rural populations that currently have no access to grid-connected electricity. Besides electricity, it is well recognized that rural populations need at least a centralized refrigeration system for storage of medicines and other emergency supplies, as well as safe drinking water. Here we propose a district system that will employ a multi-generation concentrated solar power (CSP) system that will generate electricity and supply the heat needed for both absorption refrigeration and membrane distillation (MD) water purification. The electricity will be used to generate hydrogen through highly efficient water electrolysis and individual households can use the hydrogen for generating electricity, via affordable proton exchange membrane (PEM) fuel cells, and as a fuel for cooking. The multi-generation system is being developed such that its components will be easy to manufacture and maintain. As a result, these components will be less efficient than their typical counterparts but their low cost-to-efficiency ratio will allow for us to meet our installation cost goal of $1/Watt for the entire system. The objective of this paper is to introduce the system concept and discuss the system components that are currently under development. (auth)

  6. Calculation of aerodynamics of aerosol filter designs for cleaning of heavy liquid metal cooler reactor gas loops

    International Nuclear Information System (INIS)

    Valery P Melnikov; Pyotr N Martynov; Albert K Papovyants; Ivan V Yagodkin

    2005-01-01

    Full text of publication follows: One of the basic performances of aerosol filters is the aerodynamic resistance to the flow of gaseous medium to be cleaned. Calculation of the aerodynamics of aerosol filters in reference to the gas loops of reactor installations with heavy liquid metal coolant (HLMC) allows the design of the structural components of filters to be optimized to provide minimum initial resistance values. It is established that owing to various factors aerosol particles of different concentration and disperse composition are present always in the gas spaces of heavy liquid metal cooled reactor gas loops. To prevent the negative effect of aerosols on the equipment of the gas loops, it is reasonable to use filters of multistep design with sections of preliminary and fine cleaning to catch micron and submicron particles, respectively. A computer program and technique have been developed to evaluate the aerodynamics of folded aerosol filters for different parameters of their structural components, taking account of the aerosol spectrum and concentration. The algorithm of the calculation is presented by the example of a two-step design assembled in single vessel; the filter dimensions and pattern of the air flow to be cleaned are determined under the given boundary conditions. The evaluation of the aerodynamic resistance of filters was performed with consideration for local resistances and resistances of all the structural components of the filter (sudden constriction, expansion, the flow in air channels, filtering material and so on). Correlations have been derived for the resistance of air channels, filtering materials of preliminary and fine cleaning sections as a function of such parameters as the section depth (50-500 mm), the height of separators (3,5-20 mm), the filtering surface area (1,5-30 m 2 ). Based on the calculation results, the auto-similarity domain was brought out for the minimal values of filter resistances as a function of the ratio of

  7. Laser cleaning of Rakowicze sandstone

    NARCIS (Netherlands)

    Nijland, T.G.; Wijffels, T.J.

    2003-01-01

    Decisions about the cleaning of natural stone should always be made within the awareness of direct and indirect damage that may be the result of cleaning. During the last decade, laser cleaning of objects and monuments of natural stone has become increasingly popular. Whereas a considerable amount

  8. Characterization and dissolution studies of Bruce Unit 3 steam generator secondary side deposits

    International Nuclear Information System (INIS)

    Semmler, J.

    1998-01-01

    The physical and chemical properties of secondary side steam generator deposits in the form of powder and flake obtained from Bruce Nuclear Generating Station A (BNGS A) Unit 3 were studied. The chemical phases present in both types of deposits, collected prior to the 1994 chemical cleaning during the pre-clean water lancing campaign, were magnetite (Fe 3 O 4 ), metallic copper (Cu), hematite (Fe 2 O 3 ) and cuprous oxide (Cu 2 O). The major difference between the chemical composition of the powder and the flake was the presence of zinc silicate (Zn 2 SiO 4 ) and several unidentified silicate phases containing Ca, Al, Mn, and Mg in the flake. The flake deposit had high hardness values, high electrical resistivity, low porosity and a lower dissolution rate in the EPRI-SGOG (Electric Power Research Institute-Steam Generator Owner's Group) chemical cleaning solvents compared to the powder deposit. Differences in the deposit properties after chemical cleaning of the Unit 3 steam generators and after laboratory cleaning were noted. The presence of silicates in the deposit inhibit magnetite dissolution

  9. Dynamic analysis of the CRBRP clean-up system (three stage aqueous scrubber)

    International Nuclear Information System (INIS)

    Kyi, R.; Bijlani, C.; Fazekas, P.; Dajani, A.

    1981-01-01

    The CRBRP containment clean-up system design required the determination of the thermal-hydraulic performance of the system during its projected operating cycle. The reduced scale component tests at HEDL provided valuable information about the generic performance of the components; however, due to the limitations of the test facility the exact simulation of the actual CRBRP conditions was not feasible. A computer program was developed to permit dynamic system analysis of the full size air cleaning system. The dynamic system analysis considered the mass and energy balances across each component. In addition to the major filtration system components, the system modeling included the supporting fluid system components such as pumps, tanks and heat exchangers. Variable gas flow, temperature, chemical concentrations, and other system parameters were also modeled. Fission product heat, chemical reaction heat and heat of solution were considered. The analysis results provided sodium hydroxide solution concentrations and temperatures, gas temperatures and other variables at the various components within the air cleaning system for each calculated time interval. The accuracy of the computer modeling was verified by comparing the calculated results with HEDL test data. The comparison indicated a better than +-10% agreement with the test data. The analysis results provided the basis for the selection of the system components

  10. Surface cleaning in thin film technology

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1978-01-01

    A ''clean surface'' is one that contains no significant amounts of undesirable material. This paper discusses the types and origin of various contaminants. Since cleaning is often equated with adhesion, the mechanisms of adhesion to oxide, metal, and organic surfaces are reviewed and cleaning processes for these surfaces are outlined. Techniques for monitoring surface cleaning are presented, and the importance of storage of clean surfaces is discussed. An extensive bibliography is given. 4 figs., 89 references

  11. Distributed Generation of Electricity and its Environmental Impacts

    Science.gov (United States)

    Distributed generation refers to technologies that generate electricity at or near where it will be used. Learn about how distributed energy generation can support the delivery of clean, reliable power to additional customers.

  12. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces

    Directory of Open Access Journals (Sweden)

    Marina A. González Lazo

    2016-08-01

    Full Text Available A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA within a low-shrinkage acrylated hyperbranched polymer (HBP and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125° and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10° and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5° and also featured self-cleaning properties.

  13. Netherlands export country for electricity? New developments in power plants and the impact on the Clean and Efficient programme

    International Nuclear Information System (INIS)

    Seebregts, A.J.; Daniels, B.W.

    2008-07-01

    This report explores part of the effects of the Dutch Climate Programme 'Clean and Efficient - Opportunities for Tomorrow' on the emissions of air pollutants, as included in the National Emissions Ceilings. The starting point for the analysis is the ex ante evaluation of Clean and Efficient as published in September 2007. Specifically for the Netherlands, the role of the power generation sector is important. For the near future (up to 2015), about 11 to 15 GW of new fossil generation capacity is being planned. In combination with the Clean and Efficient Programme, this will have a large impact on the resulting national emissions of air pollutants. Strong climate policies and high CO2 prices are likely to result in a lower electricity demand than the original reference projection (the Global Economy High Oil Price scenario). In addition, more renewable electricity generation and more cogeneration are expected. These changes are likely to improve the international competitiveness of the Dutch electricity generation. As a result, electricity exports rise and part of the emission reductions materialize outside the Netherlands, rather than within its borders [nl

  14. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    International Nuclear Information System (INIS)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-01-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies

  15. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Energy Technology Data Exchange (ETDEWEB)

    Fromer, Neil A., E-mail: nafromer@caltech.edu [California Institute of Technology, Resnick Sustainability Institute (United States); Diallo, Mamadou S., E-mail: diallo@wag.caltech.edu [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2013-11-15

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  16. Nanotechnology and clean energy: sustainable utilization and supply of critical materials

    Science.gov (United States)

    Fromer, Neil A.; Diallo, Mamadou S.

    2013-11-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving the sustainable utilization and supply of critical materials in clean and renewable energy technologies could be addressed using (i) nanostructured materials with enhanced electronic, optical, magnetic and catalytic properties and (ii) nanotechnology-based separation materials and systems that can recover critical materials from non-traditional sources including mine tailings, industrial wastewater and electronic wastes with minimum environmental impact. This article discusses the utilization of nanotechnology to improve or achieve materials sustainability for energy generation, conversion and storage. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address materials sustainability for clean and renewable energy technologies.

  17. Steam generators - problems and prognosis

    International Nuclear Information System (INIS)

    Tapping, R.L.

    1997-05-01

    Steam-generator problems, largely a consequence of corrosion and fouling, have resulted in increased inspection requirements and more regulatory attention to steam-generator integrity. In addition, utilities have had to develop steam-generator life-management strategies, including cleaning and replacement, to achieve design life. This paper summarizes the pertinent data to 1993/1994, and presents an overview of current steam-generator management practices. (author)

  18. 7 CFR 51.2083 - Clean.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Clean. 51.2083 Section 51.2083 Agriculture Regulations... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States Standards for Grades of Almonds in the Shell Definitions § 51.2083 Clean. Clean means that the shell is...

  19. Dry-cleaning of graphene

    International Nuclear Information System (INIS)

    Algara-Siller, Gerardo; Lehtinen, Ossi; Kaiser, Ute; Turchanin, Andrey

    2014-01-01

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy

  20. Dry-cleaning of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Algara-Siller, Gerardo [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Department of Chemistry, Technical University Ilmenau, Weimarer Strasse 25, Ilmenau 98693 (Germany); Lehtinen, Ossi; Kaiser, Ute, E-mail: ute.kaiser@uni-ulm.de [Central Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, Albert-Einstein-Allee 11, Ulm 89081 (Germany); Turchanin, Andrey [Faculty of Physics, University of Bielefeld, Universitätsstr. 25, Bielefeld 33615 (Germany)

    2014-04-14

    Studies of the structural and electronic properties of graphene in its pristine state are hindered by hydrocarbon contamination on the surfaces. Also, in many applications, contamination reduces the performance of graphene. Contamination is introduced during sample preparation and is adsorbed also directly from air. Here, we report on the development of a simple dry-cleaning method for producing large atomically clean areas in free-standing graphene. The cleanness of graphene is proven using aberration-corrected high-resolution transmission electron microscopy and electron spectroscopy.

  1. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  2. Self-Cleaning Photocatalytic Polyurethane Coatings Containing Modified C60 Fullerene Additives

    Directory of Open Access Journals (Sweden)

    Jeffrey G. Lundin

    2014-08-01

    Full Text Available Surfaces are often coated with paint for improved aesthetics and protection; however, additional functionalities that impart continuous self-decontaminating and self-cleaning properties would be extremely advantageous. In this report, photochemical additives based on C60 fullerene were incorporated into polyurethane coatings to investigate their coating compatibility and ability to impart chemical decontaminating capability to the coating surface. C60 exhibits unique photophysical properties, including the capability to generate singlet oxygen upon exposure to visible light; however, C60 fullerene exhibits poor solubility in solvents commonly employed in coating applications. A modified C60 containing a hydrophilic moiety was synthesized to improve polyurethane compatibility and facilitate segregation to the polymer–air interface. Bulk properties of the polyurethane films were analyzed to investigate additive–coating compatibility. Coatings containing photoactive additives were subjected to self-decontamination challenges against representative chemical contaminants and the effects of additive loading concentration, light exposure, and time on chemical decontamination are reported. Covalent attachment of an ethylene glycol tail to C60 improved its solubility and dispersion in a hydrophobic polyurethane matrix. Decomposition products resulting from oxidation were observed in addition to a direct correlation between additive loading concentration and decomposition of surface-residing contaminants. The degradation pathways deduced from contaminant challenge byproduct analyses are detailed.

  3. Pickering Unit 1 chemical cleaning

    International Nuclear Information System (INIS)

    Smee, J.L.; Fiola, R.J.; Brennenstuhl, K.R.; Zerkee, D.D.; Daniel, C.M.

    1995-01-01

    The secondary sides of all 12 boilers at Pickering Unit 1 were chemically cleaned in 1994 by the team of Ontario Hydro, B and W International (Cambridge, Ontario) and B and W Nuclear Technologies (Lynchburg, Virginia). A multi-step EPRI/SGOG process was employed in a similar manner to previous clearings at Units 5 and 6 in 1992 and 1993, respectively. A major innovation with the Unit 1 cleaning was the incorporation of a crevice cleaning step, the first time this had been done on Ontario Hydro plants. In addition, six boilers were cleaned in parallel compared to three at a time in previous Pickering cleanings. This significantly reduced cleaning time. A total of 6,770 kg of sludge was removed through direct chemical dissolution. It consisted of 66% iron/nickel oxides and 28% copper metal. A total of 1,600,000 L (420,000 US gallons) of liquid waste was produced. It was processed through the spent solvent treatment facility located at the Bruce Nuclear Power Development site. Visual inspection performed after the cleaning indicated that the crevices between the boiler tubes and the tube support structure were completely clear of deposit and the general condition of the tubing and lattice bars appeared to be in 'as new' condition. (author)

  4. An evaluation of short-term exposures of brake mechanics to asbestos during automotive and truck brake cleaning and machining activities.

    Science.gov (United States)

    Richter, Richard O; Finley, Brent L; Paustenbach, Dennis J; Williams, Pamela R D; Sheehan, Patrick J

    2009-07-01

    Historically, the greatest contributions to airborne asbestos concentrations during brake repair work were likely due to specific, short-duration, dust-generating activities. In this paper, the available short-term asbestos air sampling data for mechanics collected during the cleaning and machining of vehicle brakes are evaluated to determine their impact on both short-term and daily exposures. The high degree of variability and lack of transparency for most of the short-term samples limit their use in reconstructing past asbestos exposures for brake mechanics. However, the data are useful in evaluating how reducing short-term, dust-generating activities reduced long-term exposures, especially for auto brake mechanics. Using the short-term dose data for grinding brake linings from these same studies, in combination with existing time-weighted average (TWA) data collected in decades after grinding was commonplace in rebuilding brake shoes, an average 8-h TWA of approximately 0.10 f/cc was estimated for auto brake mechanics that performed arc grinding of linings during automobile brake repair (in the 1960s or earlier). In the 1970s and early 1980s, a decline in machining activities led to a decrease in the 8-h TWA to approximately 0.063 f/cc. Improved cleaning methods in the late 1980s further reduced the 8-h TWA for most brake mechanics to about 0.0021 f/cc. It is noteworthy that when compared with the original OSHA excursion level, only 15 of the more than 300 short-term concentrations for brake mechanics measured during the 1970s and 1980s possibly exceeded the standard. Considering exposure duration, none of the short-term exposures were above the current OSHA excursion level.

  5. National Ignition Facility Incorporates P2/E2 in Aqueous Parts Cleaning of Optics Hardware

    International Nuclear Information System (INIS)

    Gabor, K

    2001-01-01

    When completed, Lawrence Livermore National Laboratory's (LLNL) National Ignition Facility (NIF) will be the world's largest laser with experimental capabilities applicable to stockpile stewardship, energy research, science and astrophysics. As construction of the conventional facilities nears completion, operations supporting the installation of specialized laser equipment have come online. Playing a critical role in the precision cleaning of mechanical parts from the NIF beamline are three pieces of aqueous cleaning equipment. Housed in the Optics Assembly Building (OAB), adjacent to NIF's laser bay, are the large mechanical parts gross cleaner (LMPGC), the large mechanical parts precision cleaner (LMPPC), and the small mechanical parts gross and precision cleaner (SMPGPC). These aqueous units, designed and built by Sonic Systems, Inc., of Newtown, Pennsylvania, not only accommodate parts that vary greatly in size, weight, geometry, surface finish and material, but also produce cleaned parts that meet the stringent NIF cleanliness standards (MIL-STD-1246C Level 83 for particles and A/10 for non-volatile residue). Each unit was designed with extensive water- and energy-conserving features, and the technology used minimizes hazardous waste generation associated with solvent wipe cleaning, the traditional method for cleaning laser mechanical components. The LMPGC provides preliminary gross cleaning for large mechanical parts. Collection, filtration and reuse of the wash and primary rinse water in the LMPGC limit its routine discharge to the volume of the low-pressure, deionized secondary rinse. After an initial gross cleaning in the LMPGC, a large mechanical part goes to the LMPPC. This piece of equipment, unique because of its size, consists of four 2700-gallon tanks. Parts held securely on specialized metal pallets (jointly weighing up to 1500 pounds) move through the tanks on an automated system. Operators program all movement, speeds and process times to

  6. Increase in the amount of evaporator concentrate from nuclear power plants in cemented products

    International Nuclear Information System (INIS)

    Costa, Bruna S.; Tello, Clédola C.O.

    2017-01-01

    Nuclear power plants, research centers and other nuclear facilities are sources of radioactive liquid waste generation. These wastes can come from cooling of the primary reactor system, cleaning spent pool of fuel, washing contaminated clothing, among others. One of the most used methods for the treatment of these aqueous flows is the evaporation, which generates the concentrate of the evaporator, waste classified as low and medium level of radiation. Norms determine that radioactive waste must be minimized, and that to be accepted in repositories, they must be solidified. The work sought to reduce the volume of the evaporated concentrate waste and its subsequent solidification in cement. In order to carry out the tests, the evaporator concentrate (CE) simulation solution was prepared and then dried in an oven. Subsequently, cementation of the dry material was made using cement, fluidizer, NaOH and water. After a curing time of 28 days, the compressive strength tests were made for all specimens obtained, and for the samples that obtained resistance above that required by the norm, which is 10MPa, the percentages of reject incorporated and volume reduction. The results showed that, by drying the evaporator concentrate, it was possible to reduce the volume of the waste generated by up to 27% in relation to the waste without drying, which shows that drying is an effective way to increase the incorporation of the evaporator concentrate in packaged waste

  7. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  8. The possibility of using clean coal in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wong, H.K.; Khairudin, M.Y. [Tenaga Nasional Berhad, Perai (Malaysia)

    1994-12-31

    The Asia-Pacific region will see tremendous growth in demand for electricity in the next few decades and will be an important market for generation equipment and associated services. The Association of Southeast Asian Nations (ASEAN) countries alone anticipate additional power demand of more than 37,000 NM by the year 2000, with an estimated total expenditure of US $85 billion. Trends in recent years show natural gas-fired combined cycle in plants to be fast gaining in popularity over conventional thermal plants. The advantages include increased primary energy conversion efficiency coupled with significant reduction in pollutant emissions, shorter construction times, faster loading rates and reduced staffing requirements. In the computer model used for generation capacity expansion planning in Tenaga Nasional Berhad, clean coal technology models are not used as candidate plants. In the opinion of the authors, this results from a lack of comprehensive data regarding the operating characteristics and the capital and operating costs of such plants, making it difficult to compare to more proven technologies. We also believe that the economics of such plants have not been sufficiently demonstrated at full scale. The authors believe, however, that in the future, coal-fired combined cycle plants will offer enormous possibilities in Malaysia as an urgency to develop this form of clean coal technology in other countries will assure widespread commercial realization of the technology. The anticipated increase in electricity demand brings to the region many business opportunities. As an example, gas turbine component parts, which are used both in conventional systems and clean coal systems, initially can be locally manufactured with technology transfer from original equipment manufacturers; these technology transfers can progress into fall-licenses to local manufacturers.

  9. Wavelet imaging cleaning method for atmospheric Cherenkov telescopes

    Science.gov (United States)

    Lessard, R. W.; Cayón, L.; Sembroski, G. H.; Gaidos, J. A.

    2002-07-01

    We present a new method of image cleaning for imaging atmospheric Cherenkov telescopes. The method is based on the utilization of wavelets to identify noise pixels in images of gamma-ray and hadronic induced air showers. This method selects more signal pixels with Cherenkov photons than traditional image processing techniques. In addition, the method is equally efficient at rejecting pixels with noise alone. The inclusion of more signal pixels in an image of an air shower allows for a more accurate reconstruction, especially at lower gamma-ray energies that produce low levels of light. We present the results of Monte Carlo simulations of gamma-ray and hadronic air showers which show improved angular resolution using this cleaning procedure. Data from the Whipple Observatory's 10-m telescope are utilized to show the efficacy of the method for extracting a gamma-ray signal from the background of hadronic generated images.

  10. A safe, effective, and facility compatible cleaning in place procedure for affinity resin in large-scale monoclonal antibody purification.

    Science.gov (United States)

    Wang, Lu; Dembecki, Jill; Jaffe, Neil E; O'Mara, Brian W; Cai, Hui; Sparks, Colleen N; Zhang, Jian; Laino, Sarah G; Russell, Reb J; Wang, Michelle

    2013-09-20

    Cleaning-in-place (CIP) for column chromatography plays an important role in therapeutic protein production. A robust and efficient CIP procedure ensures product quality, improves column life time and reduces the cost of the purification processes, particularly for those using expensive affinity resins, such as MabSelect protein A resin. Cleaning efficiency, resin compatibility, and facility compatibility are the three major aspects to consider in CIP process design. Cleaning MabSelect resin with 50mM sodium hydroxide (NaOH) along with 1M sodium chloride is one of the most popular cleaning procedures used in biopharmaceutical industries. However, high concentration sodium chloride is a leading cause of corrosion in the stainless steel containers used in large scale manufacture. Corroded containers may potentially introduce metal contaminants into purified drug products. Therefore, it is challenging to apply this cleaning procedure into commercial manufacturing due to facility compatibility and drug safety concerns. This paper reports a safe, effective and environmental and facility-friendly cleaning procedure that is suitable for large scale affinity chromatography. An alternative salt (sodium sulfate) is used to prevent the stainless steel corrosion caused by sodium chloride. Sodium hydroxide and salt concentrations were optimized using a high throughput screening approach to achieve the best combination of facility compatibility, cleaning efficiency and resin stability. Additionally, benzyl alcohol is applied to achieve more effective microbial control. Based on the findings, the recommended optimum cleaning strategy is cleaning MabSelect resin with 25 mM NaOH, 0.25 M Na2SO4 and 1% benzyl alcohol solution every cycle, followed by a more stringent cleaning using 50 mM NaOH with 0.25 M Na2SO4 and 1% benzyl alcohol at the end of each manufacturing campaign. A resin life cycle study using the MabSelect affinity resin demonstrates that the new cleaning strategy

  11. Installation of Tc-99m generator manufacturing facilities

    International Nuclear Information System (INIS)

    Shin, B. C.; Choung, W. M.; Park, J. H.; Park, S. H.; Kim, S. J.; Park, K. B.

    2004-01-01

    For the characteristics of radiopharmaceuticals, the manufacturing facility should be complied with the radiation safety standards for operators as well as GMP (Good Manufacturing Practice) cleanness standards for production. We intensively modified the existing Radioisotope production facilities, which were installed only in radiation safety points of view, to meet cleanness criteria. And the concept of multi-barrier buffer zones was introduced to apply negative air pressure for hot cell with first priority and to continue relative positive air pressure for clean room. The manufacturing area for Tc-99m Generator can be entered only through a second change. The doors of each change area are interlocked to maintain air pressure differentials. The pass box for material transfer are also interlocked so that only one side may be opened at any one time to keep cleanness. Two door-type autoclave was installed crossing the wall between preparing room and aseptic room to keep cleanness after sterilization. Three lead hot cells were installed and final inspection including gamma survey test were performed. The clean room was installed and TAB for this facility was performed in order to acquire the necessary air flow. The filter bank for filtration of exhausted radiation air was installed and its efficiency test was performed. In this facility, radiation shielding utilities and manufacturing instruments were set up and their operating manuals were documented. Efficiency tests for every utilities and instruments were satisfied and the approval for use of the facilities was achieved from MOST (Ministry of Science and Technology). The Sam Young Unitech, the lessee of the facilities set up the equipment in the hot cell, which is needed to produce Tc-99m Generator, supported by IPPE in Russia. They are composing the systems complied with the guidelines and the regulations, and keep in contact to KFDA for acquiring its approval. It is expected to produce Tc-99m Generator within

  12. Survey for preparing the database for R and D of new engines. Waste power generation, solar heat system, geothermal power generation, clean energy vehicle, coal liquefaction/gasification, and combined systems; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki tema

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The present developmental conditions and issues of new energies are systematically arranged for effective promotion of their diffusion. One hundred and forty six general waste power generation facilities of 558,000kW are in operation in 1995, and among them 89 facilities supplies 1,080 GWh to power companies. 50 industrial waste power facilities of 247,000kW are in operation. 20,000 solar systems and 180,000 hot water heaters are in operation in 1995. Commercial geothermal power generation facilities of 490,000kW and private ones of 36,000kW are in operation. Introduction of expensive clean energy vehicles is making very slow progress. The pilot study on bituminous coal liquefaction is in promotion mainly by NEDO. The experiment of entrained bed coal gasification in Nakoso was successfully completed, and development of a commercial plant is to be expected. Power rates of 10 power companies were reduced in 1996, and unit purchase prices of surplus power of photovoltaic and wind power generation were also revised. The new menu and unit purchase price were announced in 1996 for surplus power of waste power generation and fuel cell. 67 figs., 284 tabs.

  13. Rectification cleaning AsCl3 from the admixture of oxygen

    Directory of Open Access Journals (Sweden)

    Maznitska O. V.

    2008-06-01

    Full Text Available The process of the rectification cleaning of three-chlorous arsenic from the admixtures of products of his hydrolysis in the atmosphere of chlorous hydrogen has been considered in the article. Dependence of coefficient of relative volatility a three-chlorous arsenic from his concentration in muriatic solution is explored. The conduct of coefficient of relative volatility with concentrations of HCl and AsCl3 is compared. Saving of equalization of balance and equalization of working curve of column at such conduct of process of rectification is shown.

  14. Reaction of water vapor with a clean liquid uranium surface

    International Nuclear Information System (INIS)

    Siekhaus, W.

    1985-01-01

    To study the reaction of water vapor with uranium, we have exposed clean liquid uranium surfaces to H 2 O under UHV conditions. We have measured the surface concentration of oxygen as a function of exposure, and determined the maximum attainable surface oxygen concentration X 0 /sup s/ as a function of temperature. We have used these measurements to estimate, close to the melting point, the solubility of oxygen (X 0 /sup b/, -4 ) and its surface segregation coefficient β/sup s/(> 10 3 ). 8 refs., 5 figs., 1 tab

  15. Summary report of the Banff clean energy dialogue : towards a truly Canadian clean energy strategy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    A clean energy strategy will allow Canada to seize opportunities for prosperity in a low-carbon future, while also contributing to the country's economic growth. This report outlined the conclusions drawn by representatives of major energy corporations and policy-makers who gathered to discuss Canada's clean energy plans for the future. Attendants at the meeting concluded that energy conservation and energy efficiency will play a prominent role in a successful clean energy strategy. However, a price on carbon is needed to emphasize the fundamental relationship between energy and the environment. A successful strategy will feature the following 4 overarching principles: (1) economic opportunity, (2) social responsibility, (3) environmental stewardship, and (4) international strategy in relation to trade and development of new markets. The role that federal, provincial and municipal governments will play in developing and implementing the strategy was also presented. The meeting was divided into the following 6 working sessions: (1) global context for a clean energy strategy, (2) why a Canadian clean energy strategy? Why now?, (3) key pillars of a Canadian clean energy strategy, (4) key building blocks of a national clean energy strategy, (5) a balanced Canadian framework, and (6) next steps. 1 fig.

  16. An assessment of greenhouse gas emissions-weighted clean energy standards

    International Nuclear Information System (INIS)

    Coffman, Makena; Griffin, James P.; Bernstein, Paul

    2012-01-01

    This paper quantifies the relative cost-savings of utilizing a greenhouse gas emissions-weighted Clean Energy Standard (CES) in comparison to a Renewable Portfolio Standard (RPS). Using a bottom-up electricity sector model for Hawaii, this paper demonstrates that a policy that gives “clean energy” credit to electricity technologies based on their cardinal ranking of lifecycle GHG emissions, normalizing the highest-emitting unit to zero credit, can reduce the costs of emissions abatement by up to 90% in comparison to a typical RPS. A GHG emissions-weighted CES provides incentive to not only pursue renewable sources of electricity, but also promotes fuel-switching among fossil fuels and improved generation efficiencies at fossil-fired units. CES is found to be particularly cost-effective when projected fossil fuel prices are relatively low. - Highlights: ► Proposes a GHG Emissions-Weighted Clean Energy Standard (CES) mechanism. ► Compares CES to RPS using a case study of Hawaii. ► Finds CES is up to 90% more cost-effective as a GHG abatement tool.

  17. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  18. Steam generator waterlancing at DNGS

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.

    1995-01-01

    Darlington Nuclear Generating Station (DNGS) is a four 900 MW Unit nuclear station forming part of the Ontario Hydro East System. There are four identical steam generators(SGs) per reactor unit. The Darlington SGs are vertical heat exchangers with an inverted U-tube bundle in a cylindrical shell. The DNGS Nuclear Plant Life Assurance Group , a department of DNGS Engineering Services have taken a Proactive Approach to ensure long term SG integrity. Instead of waiting until the tubesheets are covered by a substantial and established hard deposit; DNGS plan to clean each steam generator's tubesheet, first half lattice tube support assembly and bottom of the thermal plate every four years. The ten year business plan provides for cleaning and inspection to be conducted on all four SGs in each unit during maintenance outages (currently scheduled for every four years)

  19. Cheap non-toxic non-corrosive method of glass cleaning evaluated by contact angle, AFM, and SEM-EDX measurements.

    Science.gov (United States)

    Dey, Tania; Naughton, Daragh

    2017-05-01

    Glass surface cleaning is the very first step in advanced coating deposition and it also finds use in conserving museum objects. However, most of the wet chemical methods of glass cleaning use toxic and corrosive chemicals like concentrated sulfuric acid (H 2 SO 4 ), piranha (a mixture of concentrated sulfuric acid and 30% hydrogen peroxide), and hydrogen fluoride (HF). On the other hand, most of the dry cleaning techniques like UV-ozone, plasma, and laser treatment require costly instruments. In this report, five eco-friendly wet chemical methods of glass cleaning were evaluated in terms of contact angle (measured by optical tensiometer), nano-scale surface roughness (measured by atomic force microscopy or AFM), and elemental composition (measured by energy dispersive x-ray spectroscopy or SEM-EDX). These glass cleaning methods are devoid of harsh chemicals and costly equipment, hence can be applied in situ in close proximity with plantation such as greenhouse or upon subtle objects such as museum artifacts. Out of these five methods, three methods are based on the chemical principle of chelation. It was found that the citric acid cleaning method gave the greatest change in contact angle within the hydrophilic regime (14.25° for new glass) indicating effective cleansing and the least surface roughness (0.178 nm for new glass) indicating no corrosive effect. One of the glass sample showed unique features which were traced backed to the history of the glass usage.

  20. A Study on an Executive Technique and Activation of Clean Production in Chemical Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Seong Yong; Lee, Hee Seok; Kim, Kang Seok [Korea Environment Institute, Seoul (Korea)

    2000-12-01

    Clean production does not only make the sustainable development possible through preventing the deterioration of the environmental pollution from the expansion of industrialization but also enhance the company's competitiveness. Clean production is required by all industrial fields but is the most important in chemical industry. The Government has made efforts to change the domestic industrial structure to the environmental-friendly structure through developing the research. However, the domestic industry has not yet activated overall except some large companies, which has concretized the activation of clean production. Especially, the medium and small companies are more sluggish due to the inferiority of capital and technology. With recognizing that the main body of clean production is a company, the effort based on the Government and the academic world, without companies' positive, will cannot help being limited in effects. Therefore, it is necessary to trigger the schemes that urge the companies' motivation to show the effects from the support that have concentrated in hardware like technology until now. It seems to be very important that the guidebook for clean production, which a company can easily adopt, is developed and spread. This report provides the guidebook for clean production that managers and engineers can easily understand and approach in a producing field and presents the scheme to promote clean production, for chemical industry that is seriously required clean production. Even if the presented contents are not perfect, they can be applied to the development of the Government's policy and the administrative activities of companies for clean production as a useful data. 53 refs., 5 figs., 30 tabs.

  1. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  2. Collimation Cleaning at the LHC with Advanced Secondary Collimator Materials

    CERN Document Server

    AUTHOR|(CDS)2085459; Bruce, Roderik; Mereghetti, Alessio; Redaelli, Stefano; Rossi, A

    2015-01-01

    The LHC collimation system must ensure efficient beam halo cleaning in all machine conditions. The first run in 2010-2013 showed that the LHC performance may be limited by collimator material-related concerns, such as the contribution from the present carbon-based secondary collimators to the machine impedance and, consequently, to the beam instability. Novel materials based on composites are currently under development for the next generation of LHC collimators to address these limitations. Particle tracking simulations of collimation efficiency were performed using the Sixtrack code and a material database updated to model these composites. In this paper, the simulation results will be presented with the aim of studying the effect of the advanced collimators on the LHC beam cleaning.

  3. TNO experience on sodium cleaning of large plant components by vacuum distillation

    Energy Technology Data Exchange (ETDEWEB)

    Smit, C Ch [MT-TNO Dept. 50-MW Sodium Component Test Facility, Hengelo (Netherlands)

    1978-08-01

    The Intermediate Heat Exchanger and Steam generators developed within the framework of the SNR-programme are being tested in the 50 MW Test facility at Hengelo - The Netherlands. The facility was designed and built by Neratoom, and is operated by TNO, the Dutch Organisation for Applied Scientific Research. Sodium technology work, such as reported in this paper, is done in close cooperation with Neratoom and with TNO-laboratories at Apeldoorn, where several smaller sodium rigs and other facilities are available. The operation and maintenance of a large sodium test facility and sodium rigs lead to frequent cleaning of small plant components, test sections and sampling devices. The choice of method usually depends on the size of the component and the cleaning quality needed. The results are predictable and satisfactory. For large components, however, the situation is different. Although the basic cleaning methods using alcohol and moist gas are well-known, and procedures for the cleaning of small components are available, complete cleaning of tight crevices and threaded bolds cannot be guaranteed, and consequently the requalification procedure needs to include a complete disassembly and inspection of the cleaned component. For large components this policy cannot always be followed. In those cases for instance where an in-between internal inspection is required, or where only small modifications of the test object are necessary, other possibilities have to be considered. For this reason some work has been done to develop reliable vacuum distillation procedures for large components, based on the cleaning experience with small plant components. The results of these procedures applied to large plant components are reported in this paper.

  4. TNO experience on sodium cleaning of large plant components by vacuum distillation

    International Nuclear Information System (INIS)

    Smit, C.Ch.

    1978-01-01

    The Intermediate Heat Exchanger and Steam generators developed within the framework of the SNR-programme are being tested in the 50 MW Test facility at Hengelo - The Netherlands. The facility was designed and built by Neratoom, and is operated by TNO, the Dutch Organisation for Applied Scientific Research. Sodium technology work, such as reported in this paper, is done in close cooperation with Neratoom and with TNO-laboratories at Apeldoorn, where several smaller sodium rigs and other facilities are available. The operation and maintenance of a large sodium test facility and sodium rigs lead to frequent cleaning of small plant components, test sections and sampling devices. The choice of method usually depends on the size of the component and the cleaning quality needed. The results are predictable and satisfactory. For large components, however, the situation is different. Although the basic cleaning methods using alcohol and moist gas are well-known, and procedures for the cleaning of small components are available, complete cleaning of tight crevices and threaded bolds cannot be guaranteed, and consequently the requalification procedure needs to include a complete disassembly and inspection of the cleaned component. For large components this policy cannot always be followed. In those cases for instance where an in-between internal inspection is required, or where only small modifications of the test object are necessary, other possibilities have to be considered. For this reason some work has been done to develop reliable vacuum distillation procedures for large components, based on the cleaning experience with small plant components. The results of these procedures applied to large plant components are reported in this paper

  5. Combustion gas cleaning in the ceramic tile industry: technical guide; Nettoyage des fumees de combustion dans l'industrie ceramique: guide technique

    Energy Technology Data Exchange (ETDEWEB)

    Lezaun, F.J. [ENAGAS-Grupo Gas Natural (Spain); Mallol, G.; Monfort, E. [instituto de Tecnologia Ceramica, ITC (Spain); Busani, G. [Agenzia Regionale per la Prevenzione e l' Amiente, ARPA (Spain)

    2000-07-01

    This document presents a summary of a technical guide drawn up on combustion gas cleaning systems in ceramic frit and tile production. The guide describes the method to be followed for selecting the best possible solutions for reducing pollutant concentrations in different emission sources, in accordance with current regulatory requirements and the CET recommendation. There are three sources of combustion gas air emissions that need to be cleaned in ceramic tile and frit production and they are usually related to the following process stages: slip spray drying, tile firing and frit melting. The different nature of the emissions means that different substances will need to be cleaned in each emission. Thus, in spray drying and frit melting, the only species to be cleaned are suspended particles, while in tile firing, it is also necessary to reduce the fluorine concentration. The systems analysed in this guide are mainly wet cleaning systems, bag filters and electrostatic precipitators. In the study, the efficiency of these cleaning systems is compared at each emission source from a technical and economic point of view, and concrete solutions are put forward in each case, together with a list of suppliers of the technologies involved. (authors)

  6. Mechanical cleaning of graphene

    NARCIS (Netherlands)

    Goossens, A.M.; Calado, V.E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L.M.K.

    2012-01-01

    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces electron mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode atomic force

  7. TECHNOLOGY OF REVERSE-BLAST CORROSION CLEANING OF STEEL SHEETS PRIOR TO LASER CUTTING

    Directory of Open Access Journals (Sweden)

    A. N. Zguk

    2017-01-01

    Full Text Available Quality of surface cleaning against corrosion influences on efficiency in realization of a number of technological processes. While using bentonite clays in power fluid reverse-blast cleaning ensures formation of anticorrosion protective coating with light absorbing properties on the cleaned surface and prevents formation of the repeated corrosion. The paper presents results of the investigations pertaining to influence of reverse-blast cleaning parameters of steel sheets on quality of the cleaned surface prior to laser cutting. Processing conditions, applied compositions of power fluid and also properties of the protective film coatings on the cleaned surface have been given in the paper. The paper considers topography, morphology and chemical composition of the given coating while applying complex metal micrographic, X-ray diffraction and electronic and microscopic investigations. A complex of laser cutting (refer to gas lasers with output continuous capacity of 2.5/4.0 kW has been applied for experimental works to evaluate influence of the formed surface quality on efficiency of laser cutting process. Specimens having dimension 120×120 mm, made of steel Ст3пс, with thickness from 3 to 10 mm have been prepared for the experiments. An analysis has shown that the application of reverse-blast cleaning ensures higher speed in laser cutting by a mean of 10–20 %. The investigations have made it possible to determine optimum cleaning modes: distance from a nozzle to the surface to be cleaned, jet velocity, pressure. It has been revealed that after drying of the specimens processed by power fluid based on water with concentrations of bentonite clay and calcined soda a protective film coating with thickness of some 5–7 µm has been formed on the whole cleaned specimen surfaces. Chemical base of the coating has been formed by the elements which are included in the composition of bentonite clay being the basic component of the power fluid. 

  8. National Clean Fleets Partnership (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-01-01

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  9. The construction, fouling and enzymatic cleaning of a textile dye surface.

    Science.gov (United States)

    Onaizi, Sagheer A; He, Lizhong; Middelberg, Anton P J

    2010-11-01

    The enzymatic cleaning of a rubisco protein stain bound onto Surface Plasmon Resonance (SPR) biosensor chips having a dye-bound upper layer is investigated. This novel method allowed, for the first time, a detailed kinetic study of rubisco cleanability (defined as fraction of adsorbed protein removed from a surface) from dyed surfaces (mimicking fabrics) at different enzyme concentrations. Analysis of kinetic data using an established mathematical model able to decouple enzyme transfer and reaction processes [Onaizi, He, Middelberg, Chem. Eng. Sci. 64 (2008) 3868] revealed a striking effect of dyeing on enzymatic cleaning performance. Specifically, the absolute rate constants for enzyme transfer to and from a dye-bound rubisco stain were significantly higher than reported previously for un-dyed surfaces. These increased transfer rates resulted in higher surface cleanability. Higher enzyme mobility (i.e., higher enzyme adsorption and desorption rates) at the liquid-dye interface was observed, consistent with previous suggestions that enzyme surface mobility is likely correlated with overall enzyme cleaning performance. Our results show that reaction engineering models of enzymatic action at surfaces may provide insight able to guide the design of better stain-resistant surfaces, and may also guide efforts to improve cleaning formulations. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Clean air and energy: from conflict to reconciliation

    International Nuclear Information System (INIS)

    Kolstad, C.D.; Schulze, W.D.; Williams, M.D.

    1982-01-01

    Unconstrained energy resource development in the Rocky Mountain west is likely to threaten the environment and the health and well-being of the people. Impacts may be associated with visibility degradation, toxic concentrations of gases, and deposition of acidic or toxic substances. Because the possible benefits of energy development in the region are very large, there is great concern that constraints imposed by air quality regulation may preclude the use of important resources or make unduly expensive energy produced from the region. The conflict between energy and clean air in the region is exacerbated by non-energy sources, such as copper smelters and urban areas, that already pose significant environmental threats. The hard policy question is not how to preserve clean air resources or how to develop energy but how to achieve and balance both goals. The effects and regulatory costs and benefits of air pollution control are discussed, and policy directions to protect air quality while pursuing energy development are presented

  11. Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation

    Directory of Open Access Journals (Sweden)

    Ichim Christine V

    2011-08-01

    Full Text Available Abstract Background Viral vectors provide a method of stably introducing exogenous DNA into cells that are not easily transfectable allowing for the ectopic expression or silencing of genes for therapeutic or experimental purposes. However, some cell types, in particular bone marrow cells, dendritic cells and neurons are difficult to transduce with viral vectors. Successful transduction of such cells requires preparation of highly concentrated viral stocks, which permit a high virus concentration and multiplicity of infection (MOI during transduction. Pseudotyping with the vesicular stomatitis virus G (VSV-G envelope protein is common practice for both lentiviral and retroviral vectors. The VSV-G glycoprotein adds physical stability to retroviral particles, allowing concentration of virus by high-speed ultracentrifugation. Here we describe a method report for concentration of virus from large volumes of culture supernatant by means of successive rounds of ultracentrifugation into the same ultracentrifuge tube. Method Stable retrovirus producer cell lines were generated and large volumes of virus-containing supernatant were produced. We then tested the transduction ability of virus following varying rounds of concentration by ultra-centrifugation. In a second series of experiments lentivirus-containing supernatant was produced by transient transfection of 297T/17 cells and again we tested the transduction ability of virus following multiple rounds of ultra-centrifugation. Results We report being able to centrifuge VSV-G coated retrovirus for as many as four rounds of ultracentrifugation while observing an additive increase in viral titer. Even after four rounds of ultracentrifugation we did not reach a plateau in viral titer relative to viral supernatant concentrated to indicate that we had reached the maximum tolerated centrifugation time, implying that it may be possible to centrifuge VSV-G coated retrovirus even further should it be necessary

  12. Development of a matrix approach to estimate soil clean-up levels for BTEX compounds

    International Nuclear Information System (INIS)

    Erbas-White, I.; San Juan, C.

    1993-01-01

    A draft state-of-the-art matrix approach has been developed for the State of Washington to estimate clean-up levels for benzene, toluene, ethylbenzene and xylene (BTEX) in deep soils based on an endangerment approach to groundwater. Derived soil clean-up levels are estimated using a combination of two computer models, MULTIMED and VLEACH. The matrix uses a simple scoring system that is used to assign a score at a given site based on the parameters such as depth to groundwater, mean annual precipitation, type of soil, distance to potential groundwater receptor and the volume of contaminated soil. The total score is then used to obtain a soil clean-up level from a table. The general approach used involves the utilization of computer models to back-calculate soil contaminant levels in the vadose zone that would create that particular contaminant concentration in groundwater at a given receptor. This usually takes a few iterations of trial runs to estimate the clean-up levels since the models use the soil clean-up levels as ''input'' and the groundwater levels as ''output.'' The selected contaminant levels in groundwater are Model Toxic control Act (MTCA) values used in the State of Washington

  13. Transition through co-optation: Harnessing carbon democracy for clean energy

    Science.gov (United States)

    Meng, Kathryn-Louise

    This dissertation explores barriers to a clean energy transition in the United States. Clean energy is demonstrably viable, yet the pace of clean energy adoption in the U.S. is slow, particularly given the immediate threat of global climate change. The purpose of this dissertation is to examine the factors inhibiting a domestic energy transition and to propose pragmatic approaches to catalyzing a transition. The first article examines the current political-economic and socio-technical energy landscape in the U.S. Fossil fuels are central to the functioning of the American economy. Given this centrality, constellations of power have been constructed around the reliable and affordable access of fossil fuels. The fossil fuel energy regime is comprised of: political-economic networks with vested interests in continued fossil fuel reliance, and fixed infrastructure that is minimally compatible with distributed generation. A transition to clean energy threatens the profitability of fossil fuel regime actors. Harnessing structural critiques from political ecology and process and function-oriented socio-technical systems frameworks, I present a multi-level approach to identifying pragmatic means to catalyzing an energy transition. High-level solutions confront the existing structure, mid-level solutions harness synergy with the existing structure, and low-level solutions lie outside of the energy system or foster the TIS. This is exemplified using a case study of solar development in Massachusetts. Article two presents a case study of the clean energy technological innovation system (TIS) in Massachusetts. I examine the actors and institutions that support cleantech development. Further, I scrutinize the actors and institutions that help sustain the TIS support system. The concept of a catalyst is presented; a catalyst is an actor that serves to propel TIS functions. Catalysts are critical to facilitating anchoring. Strategic corporate partners are identified as powerful

  14. Electro-oxidation of reverse osmosis concentrates generated in tertiary water treatment.

    Science.gov (United States)

    Pérez, G; Fernández-Alba, A R; Urtiaga, A M; Ortiz, I

    2010-05-01

    This work investigates the application of the electro-oxidation technology provided with boron doped diamond (BDD), an electrode material which has shown outstanding properties in oxidation of organic and inorganic compounds, for the treatment of reverse osmosis (RO) concentrates generated in tertiary wastewater treatment plants (WWTP). Chemical oxygen demand (COD), ammonium and several anions were measured during the electro-oxidation process, and the influence of the applied current density (20-200A/m(2)) was analysed on process kinetics. Analytical assessment showed that several emerging pollutants (pharmaceuticals, personal care products, stimulants, etc.) were presented both in the effluent of the secondary WWTP as well as in the RO concentrate. For this reason, a group of 10 emerging pollutants, those found with higher concentrations, was selected in order to test whether electro-oxidation can be also applied for their mitigation. In the removal of emerging pollutants the electrical current density in the range 20-100A/m(2) did not show influence likely due to the mass transfer resistance developed in the process when the oxidized solutes are present in such low concentrations. Their removal rates were fitted to first order expressions, and the apparent kinetic constants for the anodic oxidation of each compound were calculated. Finally, the formation of trihalomethanes (THMs) has been checked; concluding that after selecting the appropriate operational conditions the attained concentration is lower than the standards for drinking water established in European and EPA regulations. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. [Effects of rice cleaning and cooking process on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice].

    Science.gov (United States)

    Satoh, Motoaki; Sakaguchi, Masayuki; Kobata, Masakazu; Sakaguchi, Yoko; Tanizawa, Haruna; Miura, Yuri; Sasano, Ryoichi; Nakanishi, Yutaka

    2003-02-01

    We studied the effect of cleaning and cooking on the residues of flutolanil, fenobucarb, silafluofen and buprofezin in rice. The rice had been sprayed in a paddy field in Wakayama city, with 3 kinds of pesticide application protocols: spraying once at the usual concentration of pesticides, repeated spraying (3 times) with the usual concentration of pesticides and spraying once with 3 times the usual concentration of pesticides. The residue levels of pesticide decreased during the rice cleaning process. Silafluofen, which has a higher log Pow value, remained in the hull of the rice. Fenobucarb, which has a lower log Pow value, penetrated inside the rice. The residue concentration of pesticide in polished rice was higher than that in pre-washed rice processed ready for cooking. During the cooking procedure, the reduction of pesticides in polished rice was higher than that in brown rice.

  16. Environmental characteristics of clean coal technologies

    International Nuclear Information System (INIS)

    Bossart, S.J.

    1992-01-01

    The Department of Energy's (DOE) Clean Coal Technology (CCT) Program is aimed at demonstrating the commercial readiness of advanced coal-based technologies. A major goal of the CCT program is to introduce into the US energy marketplace those coal-based power generation technologies that have superior economic and environmental performance over the current suite of commercial coal-based power generation technologies. The commercialization of CCTs will provide the electric utility industry with technology options for replacing aging power plants and meeting future growth in electricity demand. This paper discusses the environmental advantages of two CCTs used for electric power generation: pressurized fluidized-bed combustion (PFBC) and integrated gasification combined-cycle (IGCC). These CCTs are suitable for repowering existing power plants or for grassroots construction. Due to their high efficiency and advanced environmental control systems, they emit less sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), particulate matter, and carbon dioxide (CO 2 ) than a state-of-the-art, pulverized coal power plant with flue gas desulfurization (PC/FGD)

  17. An efficient marker-free vector for clean gene transfer into plants ...

    African Journals Online (AJOL)

    A marker-free vector, pBINMF, for clean gene transfer was constructed based on the binary vector pBINPLUS. Vector pBINMF, carrying only a multiple cloning site (MCS) between the left and the right T-DNA border, was suitable to directly generate marker-free transgenic plants (MFTPs) without any vector sequences ...

  18. 5. annual clean coal technology conference: powering the next millennium. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Fifth Annual Clean Coal Technology Conference focuses on presenting strategies and approaches that will enable clean coal technologies to resolve the competing, interrelated demands for power, economic viability, and environmental constraints associated with the use of coal in the post-2000 era. The program addresses the dynamic changes that will result from utility competition and industry restructuring, and to the evolution of markets abroad. Current projections for electricity highlight the preferential role that electric power will have in accomplishing the long-range goals of most nations. Increase demands can be met by utilizing coal in technologies that achieve environmental goals while keeping the cost- per-unit of energy competitive. Results from projects in the DOE Clean Coal Technology Demonstration Program confirm that technology is the pathway to achieving these goals. The industry/government partnership, cemented over the past 10 years, is focused on moving the clean coal technologies into the domestic and international marketplaces. The Fifth Annual Clean Coal Technology Conference provides a forum to discuss these benchmark issues and the essential role and need for these technologies in the post-2000 era. This volume contains technical papers on: advanced coal process systems; advanced industrial systems; advanced cleanup systems; and advanced power generation systems. In addition, there are poster session abstracts. Selected papers from this proceedings have been processed for inclusion in the Energy Science and Technology database.

  19. Air cleaning using regenerative silica gel wheel

    DEFF Research Database (Denmark)

    Fang, Lei

    2011-01-01

    This paper discussed the necessity of indoor air cleaning and the state of the art information on gas-phase air cleaning technology. The performance and problems of oxidation and sorption air cleaning technology were summarized and analysed based on the literature studies. Eventually, based...... on an experimental study, a technology called clean air heat pump is proposed as a practical approach for indoor air cleaning....

  20. Green Cleaning Label Power

    Science.gov (United States)

    Balek, Bill

    2012-01-01

    Green cleaning plays a significant and supportive role in helping education institutions meet their sustainability goals. However, identifying cleaning products, supplies and equipment that truly are environmentally preferable can be daunting. The marketplace is inundated with products and services purporting to be "green" or environmentally…

  1. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P [Gas Turbine Efficiency, Jarfalla (Sweden)

    1999-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  2. Gas turbine cleaning upgrade (compressor wash)

    Energy Technology Data Exchange (ETDEWEB)

    Asplund, P. [Gas Turbine Efficiency, Jarfalla (Sweden)

    1998-12-31

    The influence of gas turbine degradation on operating costs is high. Gas turbine cleaning is one of many actions taken for power recovery and is to consider as preventive maintenance. It is generally performed within the industrial field and occasionally within the aero sector. In order to meet the gas turbine development win high blade loads and ever-increasing temperatures, together with emission Aces and environmental regulations, more efficient and careful cleaning methods are needed. Following a survey about potentials for cost reduction in gas turbine operation a new man-hour and water saving cleaning method has been evaluated for a standard process. Compared with traditional cleaning methods, the new method is water,- cost,- weight and space saving due to a new washing technique. Traditional methods are based on using different nozzles for ON and OFF-line cleaning, which rise the demand for complicated systems. In the new method the same nozzle installation, same liquid flow and pressure is used for both ON and OFF-line cleaning. This gives a cost reduction of appr. 20.000 - 30.000 USD per gas turbine depending on installation and size. Evaluation of the new method shows significantly improved ON -line cleaning performance and thus OFF -line cleaning is required only during scheduled stops. (orig.) 10 refs.

  3. Clean fossil-fuelled power generation

    International Nuclear Information System (INIS)

    Oliver, Tony

    2008-01-01

    Using fossil fuels is likely to remain the dominant means of producing electricity in 2030 and even 2050, partly because power stations have long lives. There are two main ways of reducing CO 2 emissions from fossil-fuelled power plants. These are carbon capture and storage (CCS), which can produce near-zero CO 2 emissions, and increases in plant efficiency, which can give rise to significant reductions in CO 2 emissions and to reduced costs. If a typical UK coal-fired plant was replaced by today's best available technology, it would lead to reductions of around 25% in emissions of CO 2 per MW h of electricity produced. Future technologies are targeting even larger reductions in emissions, as well as providing a route, with CCS, to zero emissions. These two routes are linked and they are both essential activities on the pathway to zero emissions. This paper focuses on the second route and also covers an additional third route for reducing emissions, the use of biomass. It discusses the current status of the science and technologies for fossil-fuelled power generation and outlines likely future technologies, development targets and timescales. This is followed by a description of the scientific and technological developments that are needed to meet these challenges. Once built, a power plant can last for over 40 years, so the ability to upgrade and retrofit a plant during its lifetime is important

  4. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    Science.gov (United States)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  5. Isotropically etched radial micropore for cell concentration, immobilization, and picodroplet generation.

    Science.gov (United States)

    Perroud, Thomas D; Meagher, Robert J; Kanouff, Michael P; Renzi, Ronald F; Wu, Meiye; Singh, Anup K; Patel, Kamlesh D

    2009-02-21

    To enable several on-chip cell handling operations in a fused-silica substrate, small shallow micropores are radially embedded in larger deeper microchannels using an adaptation of single-level isotropic wet etching. By varying the distance between features on the photolithographic mask (mask distance), we can precisely control the overlap between two etch fronts and create a zero-thickness semi-elliptical micropore (e.g. 20 microm wide, 6 microm deep). Geometrical models derived from a hemispherical etch front show that micropore width and depth can be expressed as a function of mask distance and etch depth. These models are experimentally validated at different etch depths (25.03 and 29.78 microm) and for different configurations (point-to-point and point-to-edge). Good reproducibility confirms the validity of this approach to fabricate micropores with a desired size. To illustrate the wide range of cell handling operations enabled by micropores, we present three on-chip functionalities: continuous-flow particle concentration, immobilization of single cells, and picoliter droplet generation. (1) Using pressure differentials, particles are concentrated by removing the carrier fluid successively through a series of 44 shunts terminated by 31 microm wide, 5 microm deep micropores. Theoretical values for the concentration factor determined by a flow circuit model in conjunction with finite volume modeling are experimentally validated. (2) Flowing macrophages are individually trapped in 20 microm wide, 6 microm deep micropores by hydrodynamic confinement. The translocation of transcription factor NF-kappaB into the nucleus upon lipopolysaccharide stimulation is imaged by fluorescence microscopy. (3) Picoliter-sized droplets are generated at a 20 microm wide, 7 microm deep micropore T-junction in an oil stream for the encapsulation of individual E. coli bacteria cells.

  6. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  7. A study on the chemical cleaning process and its qualification test by eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [KHNP Central Research Institute, Daejeon (Korea, Republic of); Min, Kyoung Mahn [UMI Inc., Daejeon (Korea, Republic of)

    2013-12-15

    Steam Generator (SG) tube, as a barrier isolating the primary coolant system from the secondary side of nuclear power plants (NPP), must maintain the structural integrity for the public safety and their efficient power generation. So, SG tubes are subject to the periodic examination and the repairs if needed so that any defective tubes are not in service. Recently, corrosion related degradations were detected in the tubes of the domestic OPR-1000 NPP, as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). According to the studies on the factors causing the heat fouling as well as developing corrosion cracking, densely scaled deposits on the secondary side of the SG tubes are mainly known to be problematic causing the adverse impacts against the soundness of the SG tubes. Therefore, the processes of various cleaning methods efficiently to dissolve and remove the deposits have been applied as well as it is imperative to maintain the structural integrity of the tubes after exposing to the cleaning agent. So qualification test (QT) should be carried out to assess the perfection of the chemical cleaning and QT is to apply the processes and to do ECT. In this paper, the chemical cleaning processes to dissolve and remove the scaled deposits are introduced and results of ECT on the artificial crack specimens to determine the effectiveness of those processes are represented.

  8. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  9. 40 CFR 63.744 - Standards: Cleaning operations.

    Science.gov (United States)

    2010-07-01

    ... system with equivalent emission control. (e) Exempt cleaning operations. The following cleaning...) Cleaning of aircraft and ground support equipment fluid systems that are exposed to the fluid, including... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Standards: Cleaning operations. 63.744...

  10. Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant

    Energy Technology Data Exchange (ETDEWEB)

    Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

    2009-03-01

    The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

  11. Processes of elimination of activated corrosion products. Chemical decontamination - fuel cleaning

    International Nuclear Information System (INIS)

    Viala, C.; Brun, C.; Neuhaus, R.; Richier, S.; Bachet, M.

    2007-01-01

    The abatement of the individual and collective dose of a PWR imposes to control the source term through different processes implemented during the plant exploitation. When the limits of these different optimization processes are reached, the abatement of dose rates requires the implementation of curative processes. The objective is thus to eliminate the contaminated oxides and deposits present on surfaces free of radiation flux, and eventually on surfaces under radiation flux and on the fuel itself. The chemical decontamination of equipments and systems is the main and universal remedy implemented at different levels. On the other hand, the ultrasonic cleaning of fuel assemblies is a promising process. This paper aims at illustrating these different techniques using concrete examples of application in France and abroad (decontamination during steam generator replacement, decontamination of primary pump scroll in hot workshop, decontamination of loop sections, ultrasonic cleaning of fuel). The description of these different operations stresses on their efficiency in terms of dosimetric gain, duration of implementation, generation of wastes, and recontamination following their implementation. (J.S.)

  12. Optical cleaning of lithium niobate crystals

    International Nuclear Information System (INIS)

    Koesters, Michael

    2010-01-01

    An all-optical method for the removal of photoexcitable electrons from photorefractive centers to get rid of optical damage in lithium niobate crystals is presented, the so-called ''optical cleaning''. The method combines the photovoltaic drift of electrons with ionic charge compensation at sufficiently high temperatures of about 180 C. Optimum choice of the light pattern plus heat dramatically decreases the concentration of photoexcitable electrons in the exposed region leading to a suppression of optical damage. Experiments with slightly iron-doped lithium niobate crystals have shown an increase of the threshold for optical damage of more than 1000 compared to those of untreated crystals. (orig.)

  13. Optical cleaning of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Koesters, Michael

    2010-01-15

    An all-optical method for the removal of photoexcitable electrons from photorefractive centers to get rid of optical damage in lithium niobate crystals is presented, the so-called ''optical cleaning''. The method combines the photovoltaic drift of electrons with ionic charge compensation at sufficiently high temperatures of about 180 C. Optimum choice of the light pattern plus heat dramatically decreases the concentration of photoexcitable electrons in the exposed region leading to a suppression of optical damage. Experiments with slightly iron-doped lithium niobate crystals have shown an increase of the threshold for optical damage of more than 1000 compared to those of untreated crystals. (orig.)

  14. Carbon Dioxide Nucleation as a Novel Cleaning Method for Sodium Alginate Fouling Removal from Reverse Osmosis Membranes desalination

    KAUST Repository

    Alnajjar, Heba

    2017-05-01

    The use of Reverse osmosis (RO) membranes have been significantly increasing in water desalination, and the main operational obstacle in RO desalination plants is membrane fouling. Among other solutes, dissolved biopolymers, such as polysaccharides can lead to severe membrane fouling especially with the addition of calcium ions because of the complexation formation between the surface of membrane and foulants materials. However, this complexation can also take place in the feed bulk, resulting in foulants aggregates formation. Although there are some physical techniques that can maintain the membrane performance without reducing its lifetime, only chemical cleanings are still commonly used in RO plants. In this study, a novel cleaning method is proposed to restore the membrane performance by removing the deposited foulants without reducing the membrane lifetime. The cleaning method is based on using water saturated with dissolved CO2 gas, and its principle is based on producing spontaneous CO2 bubbles due to local pressure difference leading to nucleation of bubbles throughout the membrane surface, especially at nucleation sites, which improve the cleaning efficiency. Alginic acid sodium salt was used as a model of polysaccharides foulants in presence of different concentrations of NaCl and calcium ions aiming to enhance membrane fouling, and then CO2 cleaning solution efficiency, in terms flux recovery (FR), was tested under different operating conditions and compared to other cleaning methods. Average FR of 20%±3, 25%±3 and 80%±3 for MilliQ water, a cleaning solution at pH4, and CO2 solution at 6 bar, 0.17 m/s, and 23 ̊C ±0.2 for 6 minutes were obtained, respectively. The efficiency of this novel cleaning method was also compared to direct osmosis overnight, and the average flux was comparable (about 60%±3), though that the cleaning time was significantly different. Various calcium concentrations (0-10 mM) were added in the alginate solution to study the

  15. Clean Coal Technology: Region 4 Market Description, South Atlantic

    International Nuclear Information System (INIS)

    1993-09-01

    The Region 4 Market Description Summary provides information that can be used in developing an understanding of the potential markets for clean coal technologies (CCTs) in the South Atlantic Region. This region (which geographically is Federal Region 4) consists of the following eight states: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, and Tennessee. In order to understand the potential market. A description is provided of the region's energy use, power generation capacity, and potential growth. Highlights of state government activities that could have a bearing on commercial deployment of CCTs are also presented. The potential markets characterized in this summary center on electric power generation by investor-owned, cooperative, and municipal electric utilities and involve planned new capacity additions and actions taken by utilities to comply with Phases I and II of the Clean Air Act Amendments (CAAA) of 1990. Regulations, policies, utility business strategies, and organizational changes that could impact the role of CCTs as a utility option are identified and discussed. The information used to develop the Region 4 Market Description is based mainly on an extensive review of plans and annual reports of 29 investor-owned, cooperative, and municipal coal-using electric utilities and public information on strategies and actions for complying with the CAAA of 1990

  16. The 3R anthracite clean coal technology: Economical conversion of brown coal to anthracite type clean coal by low temperature carbonization pre-treatment process

    Directory of Open Access Journals (Sweden)

    Someus Edward

    2006-01-01

    heated rotary kiln. The flexible operation provides wide range of 25 to 125% of nominal capacities. The volatile hazardous air pollutants are safely removed in the reduced volume of gas-vapour stream and burned out in the post burner at 850 °C2s ± 50 °C, while the Clean Coal solid end product is utilized for clean energy production. "Product like" pilot plant with >100 kg/h through-put capacity has been built and successfully tested in Hungary in 2005. The 3R anthracite Clean Coal technology opens new technological and economical opportunities for solid fuel power generation with sustainable near zero emission performance and safe CCS operations. The 3R technology provides revolutionary solution for climate impact prevention, protection and preservation by safety improvement of the optimized GHG storage conditions. Achievable goal: safe CCS with zero emission seepage. The input 3R CO2 for CCS geological structure injection is clean, low in volume and high in concentration, all in order to optimize the "once for all" stabilized chemical fixation of the CO2, to the mineral matrix. .

  17. Manufacturing of NAA laboratory clean room

    International Nuclear Information System (INIS)

    Suwoto; Hasibuan, Djaruddin

    2001-01-01

    The ''NAA laboratory clean room'' has been built in the Reactor Serba Guna G.A. Siwabessy building. The erection of ''AAN laboratory clean room'' doing by started of preparation of the ''manufacturing procedure'' refer to ''Design and manufacturing neutron activation analysis clean room laboratory''. Manufacturing process and erection doing refer to procedures makes. By providing of the ''AAN laboratory clean room'' can be cocluded that the research activity and the user sevises in P2TRR well meet to be done

  18. Private Exploration Primitives for Data Cleaning

    OpenAIRE

    Ge, Chang; Ilyas, Ihab F.; He, Xi; Machanavajjhala, Ashwin

    2017-01-01

    Data cleaning, or the process of detecting and repairing inaccurate or corrupt records in the data, is inherently human-driven. State of the art systems assume cleaning experts can access the data (or a sample of it) to tune the cleaning process. However, in many cases, privacy constraints disallow unfettered access to the data. To address this challenge, we observe and provide empirical evidence that data cleaning can be achieved without access to the sensitive data, but with access to a (no...

  19. Device and process for cleaning a steam generator plate by a sludge lance

    International Nuclear Information System (INIS)

    Michel, D.; Berard, P.; Denuit, J.

    1995-01-01

    The cleaning system comprises a carriage which is able to move along a rail and is equipped with a serie of oscillating nozzles. The carriage is made up of a first subassembly with a reversible lance module carrying the nozzles and is equipped at each end with a male hydraulic coupling which is able to connect either with a pressurized water circuit. Its second subassembly comprises the module which connects with and rotates the nozzles, a reversible observation and detection unit and an independent drive mechanism with at least two toothed wheels able to engage with racks. 11 figs

  20. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Science.gov (United States)

    2011-03-24

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc.), Collectible Concepts Group, Inc., Communitronics of... is a lack of current and accurate information concerning the securities of Clean Energy Combustion...

  1. Carbon pricing comes clean

    International Nuclear Information System (INIS)

    De Wit, Elisa

    2011-01-01

    Together with the Clean Energy Bill, the implications of the Australian Federal Government's climate change legislative package are far reaching. Norton Rose gives business a heads-up in this breakdown of the draft legislation underpinning the carbon pricing and clean energy scheme. It is a summary of Norton Rose's full analysis.

  2. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  3. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  4. Indoor secondary pollutants from cleaning product and air freshener use in the presence of ozone

    DEFF Research Database (Denmark)

    Singer, B.C.; Coleman, B.K.; Destaillats, H.

    2006-01-01

    introduction. In the absence of reactive chemicals, the chamber ozone level was approximately 60 ppb. Ozone was substantially consumed following cleaning product use, mainly by homogeneous reaction. For the AFR, ozone consumption was weaker and heterogeneous reaction with sorbed AFR-constituent VOCs...... than 100 mu g m(-3)) in some experiments. Ozone consumption and elevated hydroxyl radical concentrations persisted for 10-12 h following brief cleaning events, indicating that secondary pollutant production can persist for extended periods. (c) 2006 Elsevier Ltd. All rights reserved....

  5. Sonochemical cleaning efficiencies in dental instruments

    Science.gov (United States)

    Tiong, T. Joyce; Walmsley, A. Damien; Price, Gareth J.

    2012-05-01

    Ultrasound has been widely used for cleaning purposes in a variety of situations, including in dental practice. Cleaning is achieved through a combination of acoustically driven streaming effects and sonochemical effects arising from the production of inertial cavitation in a liquid. In our work, various dental instruments used for endodontic (root canal) treatment have been evaluated for their efficiency in producing sonochemical effects in an in-vitro cleaning environment. The areas where cavitation was produced were mapped by monitoring chemiluminescence from luminol solutions and this was correlated with their cleaning efficiencies - assessed by the ability to bleach a dye, to form an emulsion by mixing immiscible components and also to remove ink from a glass surface. The results showed good correlation (Pearson's coefficient > 0.9) between the cavitation and cleaning efficiencies, suggesting that the former plays an important role in cleaning. The methods developed and the results will be beneficial in endodontics research in order to optimise future root canal instruments and treatments.

  6. Quasibound states in graphene quantum-dot nanostructures generated by concentric potential barrier rings

    International Nuclear Information System (INIS)

    Jiang Zhao-Tan; Yu Cheng-Long; Dong Quan-Li

    2012-01-01

    We study the quasibound states in a graphene quantum-dot structure generated by the single-, double-, and triple-barrier electrostatic potentials. It is shown that the strongest quasibound states are mainly determined by the innermost barrier. Specifically, the positions of the quasibound states are determined by the barrier height, the number of the quasibound states is determined by the quantum-dot radius and the angular momentum, and the localization degree of the quasibound states is influenced by the width of the innermost barrier, as well as the outside barriers. Furthermore, according to the study on the double- and triple-barrier quantum dots, we find that an effective way to generate more quasibound states with even larger energy level spacings is to design a quantum dot defined by many concentric barriers with larger barrier-height differences. Last, we extend our results into the quantum dot of many barriers, which gives a complete picture about the formation of the quasibound states in the kind of graphene quantum dot created by many concentric potential barrier rings. (rapid communication)

  7. Oscillations and concentrations generated by A-free mappings and weak lower semicontinuity of integral functionals

    Czech Academy of Sciences Publication Activity Database

    Fonseca, I.; Kružík, Martin

    Roč.16, č. 2 (2010), s. 472-502 ISSN 1262-3377 R&D Projects: GA AV ČR IAA1075402 Institutional research plan: CEZ:AV0Z10750506 Keywords : oscillations * concentrations Subject RIV: BA - General Mathematics Impact factor: 1.084, year: 2009 http://library.utia.cas.cz/separaty/2009/MTR/kruzik-oscillations and concentrations generated by a-free mappings and weak lower semicontinuity of integral functionals.pdf

  8. The community takes charge : story and success of Clean Air Hamilton

    International Nuclear Information System (INIS)

    McCarry, B.

    2004-01-01

    Clean Air Hamilton was established in 2001 to identify priority air quality issues, pollution sources, and evaluate impacts and solutions for air quality issues. Clean Air Hamilton also assesses the human health effects of ambient air exposures in Hamilton. A 1997 survey of Hamilton residents showed that most citizens were extremely concerned about health effects, black fallout, smog visibility, and odours. Clean Air Hamilton has established an air monitoring network which includes 19 member companies and 22 industrial sites. The objective is to determine recent contaminant trends in upwind/downwind air quality. The timeline for establishing the Hamilton air monitoring network was presented. The network, which serves as a model for Ontario and Canada, monitors the impact of vehicular and industrial emissions and establishes ten-year air quality trends for benzo(a)pyrene, sulphur, nitrogen dioxide, and ozone at industrial sites and the downtown core. Analysis of air quality trends shows that there has been improvement in levels of some locally-generated contaminants. The data has also been used for epidemiological studies to determine the health effects of industry on Hamiltonians. figs

  9. Uniquely Strongly Clean Group Rings

    Institute of Scientific and Technical Information of China (English)

    WANG XIU-LAN

    2012-01-01

    A ring R is called clean if every element is the sum of an idempotent and a unit,and R is called uniquely strongly clean (USC for short) if every element is uniquely the sum of an idempotent and a unit that commute.In this article,some conditions on a ring R and a group G such that RG is clean are given.It is also shown that if G is a locally finite group,then the group ring RG is USC if and only if R is USC,and G is a 2-group.The left uniquely exchange group ring,as a middle ring of the uniquely clean ring and the USC ring,does not possess this property,and so does the uniquely exchange group ring.

  10. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin [Houston Advanced Research Center, TX (United States)

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  11. Rudimentary Cleaning Compared to Level 300A

    Science.gov (United States)

    Arpin, Christina Y. Pina; Stoltzfus, Joel

    2012-01-01

    A study was done to characterize the cleanliness level achievable when using a rudimentary cleaning process, and results were compared to JPR 5322.1G Level 300A. While it is not ideal to clean in a shop environment, some situations (e.g., field combat operations) require oxygen system hardware to be maintained and cleaned to prevent a fire hazard, even though it cannot be sent back to a precision cleaning facility. This study measured the effectiveness of basic shop cleaning. Initially, three items representing parts of an oxygen system were contaminated: a metal plate, valve body, and metal oxygen bottle. The contaminants chosen were those most likely to be introduced to the system during normal use: oil, lubricant, metal shavings/powder, sand, fingerprints, tape, lip balm, and hand lotion. The cleaning process used hot water, soap, various brushes, gaseous nitrogen, water nozzle, plastic trays, scouring pads, and a controlled shop environment. Test subjects were classified into three groups: technical professionals having an appreciation for oxygen hazards; professional precision cleaners; and a group with no previous professional knowledge of oxygen or precision cleaning. Three test subjects were in each group, and each was provided with standard cleaning equipment, a cleaning procedure, and one of each of the three test items to clean. The results indicated that the achievable cleanliness level was independent of the technical knowledge or proficiency of the personnel cleaning the items. Results also showed that achieving a Level 300 particle count was more difficult than achieving a Level A nonvolatile residue amount.

  12. Cleaning metal filters by pulse-jet

    International Nuclear Information System (INIS)

    Pickard, P.; Perry, R.A.

    1986-01-01

    Cleanable metal filters have an established use in the Nuclear Industry. The filters that have been installed in the past have not proved to be sufficiently cleanable. A series of tests were undertaken to study the application of pulse-jet cleaning to metal fibre filter elements. The efficiency of dust removal was examined under various operating conditions. A very high degree of particulate removal was achieved, with a return to almost clean pressure drop. The effectiveness of cleaning was found to vary inversely with blowback pressure. The position of the blowback nozzle with respect to the filter element throat was also found to be important to cleaning efficiency. Under the test conditions the effect of re-entrainment when cleaning on line was found to be minimal. (author)

  13. Washing away your sins in the brain: physical cleaning and priming of cleaning recruit different brain networks after moral threat.

    Science.gov (United States)

    Tang, Honghong; Lu, Xiaping; Su, Rui; Liang, Zilu; Mai, Xiaoqin; Liu, Chao

    2017-07-01

    The association between moral purity and physical cleanliness has been widely discussed recently. Studies found that moral threat initiates the need of physical cleanliness, but actual physical cleaning and priming of cleaning have inconsistent effects on subsequent attitudes and behaviors. Here, we used resting-state functional magnetic resonance imaging to explore the underlying neural mechanism of actual physical cleaning and priming of cleaning. After recalling moral transgression with strong feelings of guilt and shame, participants either actually cleaned their faces with a wipe or were primed with cleanliness through viewing its pictures. Results showed that actual physical cleaning reduced the spontaneous brain activities in the right insula and MPFC, regions that involved in embodied moral emotion processing, while priming of cleaning decreased activities in the right superior frontal gyrus and middle frontal gyrus, regions that participated in executive control processing. Additionally, actual physical cleaning also changed functional connectivity between insula/MPFC and emotion related regions, whereas priming of cleaning modified connectivity within both moral and sensorimotor areas. These findings revealed that actual physical cleaning and priming of cleaning led to changes in different brain regions and networks, providing neural evidence for the inconsistent effects of cleanliness on subsequent attitudes and behaviors. © The Author (2017). Published by Oxford University Press.

  14. Energy Zones Study: A Comprehensive Web-Based Mapping Tool to Identify and Analyze Clean Energy Zones in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Koritarov, V.; Kuiper, J.; Hlava, K.; Orr, A.; Rollins, K.; Brunner, D.; Green, H.; Makar, J.; Ayers, A.; Holm, M.; Simunich, K.; Wang, J.; Augustine, C.; Heimiller, D.; Hurlbut, D. J.; Milbrandt, A.; Schneider, T. R.; et al.

    2013-09-01

    and is publicly available at http://eispctools.anl.gov. In addition to enabling EISPC members and other stakeholders to identify areas with a high concentration of clean energy resources that could provide significant power generation in the future, another objective of the study was to promote open and transparent collaboration among state-level energy planning and regulatory agencies and to foster consistent and coordinated direction for regional and interconnection-level electricity analyses and planning. Funding for the project was provided by DOE’s Office of Electricity Delivery and Energy Reliability (DOE/OE) under the American Recovery and Reinvestment Act. Page

  15. Advances in telescope mirror cleaning

    Science.gov (United States)

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  16. Coolant clean-up system in nuclear reactor

    International Nuclear Information System (INIS)

    Tsuburaya, Hirobumi; Akita, Minoru; Shiraishi, Tadashi; Kinoshita, Shoichiro; Okura, Minoru; Tsuji, Akio.

    1987-01-01

    Purpose: To ensure a sufficient urging pressure at the inlet of a coolant clean-up system pump in a nuclear reactor and eliminate radioactive contaminations to the pump. Constitution: Coolant clean-up system (CUW) pump in a nuclear reactor is disposed to the downstream of a filtration desalter and, for compensating the insufficiency of the urging pressure at the pump inlet, the reactor water intake port to the clean-up system is disposed to the downstream of the after-heat removing pump and the heat exchanger. By compensating the net positive suction head (NPSH) of the clean-up system from the residual heat removing system, the problems of insufficient NPSH for the CUW pump upon reactor shut-down can be dissolved and, accordingly, the reactor clean-up system can be arranged in the order of the heat exchanger, clean-up device and pump. Thus, the CUW pump acts on reactor water after cleaned-up in the clean-up device to reduce the radioactivity contamination to the pump. (Kawakami, Y.)

  17. 49 CFR 174.615 - Cleaning cars.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Cleaning cars. 174.615 Section 174.615... Requirements for Division 6.1 (Poisonous) Materials § 174.615 Cleaning cars. (a) [Reserved] (b) After Division 6.1 (poisonous) materials are unloaded from a rail car, that car must be thoroughly cleaned unless...

  18. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  19. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling.

    Science.gov (United States)

    Suleiman, Abdulqadir M; Svendsen, Kristin V H

    2015-12-01

    Goal-oriented communication of risk of hazards is necessary in order to reduce risk of workers' exposure to chemicals. Adequate training of workers and enterprise priority setting are essential elements. Cleaning enterprises have many challenges and the existing paradigms influence the risk levels of these enterprises. Information on organization and enterprises' prioritization in training programs was gathered from cleaning enterprises. A measure of enterprises' conceptual level of importance of chemical health hazards and a model for working out the risk index (RI) indicating enterprises' conceptual risk level was established and used to categorize the enterprises. In 72.3% of cases, training takes place concurrently with task performances and in 67.4% experienced workers conduct the trainings. There is disparity between employers' opinion on competence level of the workers and reality. Lower conceptual level of importance was observed for cleaning enterprises of different sizes compared with regional safety delegates and occupational hygienists. Risk index values show no difference in risk level between small and large enterprises. Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  20. Discharge cleaning for a tokamak

    International Nuclear Information System (INIS)

    Ishii, Shigeyuki

    1983-01-01

    Various methods of discharge cleaning for tokamaks are described. The material of the first walls of tokamaks is usually stainless steel, inconel, titanium and so on. Hydrogen is exclusively used as the discharge gas. Glow discharge cleaning (GDC), Taylor discharge cleaning (TDC), and electron cyclotron resonance discharge cleaning (ECR-DC) are discussed in this paper. The cleaning by GDC is made by moving a movable anode to the center of a tokamak vassel. Taylor found the good cleaning effect of induced discharge by high pressure and low power discharge. This is called TDC. When the frequency of high frequency discharge in a magnetic field is equal to that of the electron cyclotron resonance, the break down potential is lowered if the pressure is sufficiently low. The ECR-CD is made by using this effect. In TDC and ECR-DC, the electron temperature, which has a close relation to the production rate of H 0 , can be controlled by the pressure. In GDC, the operating pressure was improved by the radio frequency glow (RG) method. However, there is still the danger of arcing. In case of GDC and ECR-DC, the position of plasma can be controlled, but not in case of TDC. The TDC is accepted by most of takamak devices in the world. (Kato, T.)

  1. Examining factors that influence the effectiveness of cleaning antineoplastic drugs from drug preparation surfaces: a pilot study.

    Science.gov (United States)

    Hon, Chun-Yip; Chua, Prescillia Ps; Danyluk, Quinn; Astrakianakis, George

    2014-06-01

    Occupational exposure to antineoplastic drugs has been documented to result in various adverse health effects. Despite the implementation of control measures to minimize exposure, detectable levels of drug residual are still found on hospital work surfaces. Cleaning these surfaces is considered as one means to minimize the exposure potential. However, there are no consistent guiding principles related to cleaning of contaminated surfaces resulting in hospitals to adopt varying practices. As such, this pilot study sought to evaluate current cleaning protocols and identify those factors that were most effective in reducing contamination on drug preparation surfaces. Three cleaning variables were examined: (1) type of cleaning agent (CaviCide®, Phenokil II™, bleach and chlorhexidine), (2) application method of cleaning agent (directly onto surface or indirectly onto a wipe) and (3) use of isopropyl alcohol after cleaning agent application. Known concentrations of antineoplastic drugs (either methotrexate or cyclophosphamide) were placed on a stainless steel swatch and then, systematically, each of the three cleaning variables was tested. Surface wipes were collected and quantified using high-performance liquid chromatography-tandem mass spectrometry to determine the percent residual of drug remaining (with 100% being complete elimination of the drug). No one single cleaning agent proved to be effective in completely eliminating all drug contamination. The method of application had minimal effect on the amount of drug residual. In general, application of isopropyl alcohol after the use of cleaning agent further reduced the level of drug contamination although measureable levels of drug were still found in some cases.

  2. Clean-room robot implementation

    International Nuclear Information System (INIS)

    Comeau, J.L.

    1982-01-01

    A robot has been incorporated in a clean room operation in which vacuum tube parts are cleaned just prior to final assembly with a 60 lb/in 2 blast of argon gas. The robot is programmed to pick up the parts, manipulate/rotate them as necessary in the jet pattern and deposit them in a tray precleaned by the robot. A carefully studied implementation plan was followed in the procurement, installation, modification and programming of the robot facility. An unusual configuration of one tube part required a unique gripper design. A study indicated that the tube parts processed by the robot are 12% cleaner than those manually cleaned by an experienced operator

  3. Improvement of sludge removal performance for steam generators

    International Nuclear Information System (INIS)

    Nishida, K.; Sakai, K.; Ito, H.; Tanahashi, A.; Nakao, F.

    2002-01-01

    Scale, mainly consisting of magnetite, flows on the secondary side of steam generators (SGs), causing the formation of concentrations of impurities on the tubesheet (TS), increasing the fouling of tube heat transfer, and blocking the broached egg crates (BEC) on the tube support plates (TSP). Accumulation of sludge on the tubesheet forms environment in which impurities are highly concentrated on the tubes. And we have experienced tube degradation, in the past, from the concentration of impurities. In Japan, the first tubesheet sludge lancing, via water jets, was done at the Mihama-2 plant in 1975. And that is why this pile sludge becomes hard depending on time, removal made an effort toward removal with CECIL* (in bundle cleaning system) us very difficulty. However, sludge remained in localized areas and it had possibility of concentration. So that we improve the CECIL for the purpose of removing it, and we improved removal performance of the device. In addition to the improvement of CECIL, we install a sludge collector in order to decrease accumulation of sludge on the tubesheet. This paper introduces these improvements in sludge removal performance. (authors)

  4. Outsourcing Housekeeping: An insight into two cleaning companies, SOL and N-Clean, in Helsinki, Finland

    OpenAIRE

    Hussain, Samra

    2016-01-01

    The purpose of the author was to find to get an insight into the cleaning companies, in Helsin-ki, Finland, which the hotel industry is using as an external supplier for their housekeeping de-partment. The author has looked into the cleaning companies training process for the cleaning staff, employee demographics, quality control and process of handling complaints. The ad-vantages and disadvantages of outsourcing housekeeping in the hotel sector are also investi-gated. The research method...

  5. Ultrasonic aqueous cleaning as a replacement for chlorinated solvent cleaning

    International Nuclear Information System (INIS)

    Thompson, L.M.; Simandl, R.F.

    1992-01-01

    The Oak Ridge Y-12 Plant has been involved in the replacement of chlorinated solvents since 1982. One of the most successful replacement efforts has been the substitution of vapor degreasers or soak tanks using chlorinated solvents with ultrasonic cleaning using aqueous detergents. Recently, funding was obtained from the Department of Energy Office (DOE) of Technology Development to demonstrate this technology. A unit has been procured and installed in the vacuum pump shop area to replace the use of a solvent soak tank. Initially, the solvents used in the shop were CFC-113 and a commercial brand cleaner which contained both perchloroethylene and methylene chloride. While the ultrasonic unit was being procured, a terpene-based solvent was used. Generally, parts were soaked overnight in order to soften baked-on vanish. Many times, wire brushing was used to help remove remaining contamination. Initial testing with the ultrasonic cleaner indicated cleaning times of 20 min were as effective as the overnight solvent soaks in removing contamination. Wire brushing was also not required following the ultrasonic cleaning as was sometimes required with the solvent soak

  6. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  7. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Langlois, J.; Viala, J.

    1975-01-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  8. Prototype Development and Evaluation of Self-Cleaning Concentrated Solar Power Collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mazumder, Malay K. [Boston Univ., MA (United States); Horenstein, Mark N. [Boston Univ., MA (United States); Joglekar, Nitin R. [Boston Univ., MA (United States)

    2015-03-31

    The feasibility of integrating and retrofitting transparent electrodynamic screens (EDS) on the front surfaces of solar collectors was established as a means to provide active self-cleaning properties for parabolic trough and heliostat reflectors, solar panels, and Fresnel lenses. Prototype EDS-integrated solar collectors, including second-surface glass mirrors, metallized Acrylic-film mirrors, and dielectric mirrors, were produced and tested in environmental test chambers for removing the dust layer deposited on the front surface of the mirrors. The evaluation of the prototype EDS-integrated mirrors was conducted using dust and environmental conditions that simulate the field conditions of the Mojave Desert. Test results showed that the specular reflectivity of the mirrors could be maintained at over 90% over a wide range of dust loadings ranging from 0 to 10 g/m2, with particle diameter varying from 1 to 50 μm. The measurement of specular reflectivity (SR) was performed using a D&S Reflectometer at wavelength 660 nm. A non-contact reflectometer was designed and constructed for rapid measurement of specular reflectivity at the same wavelength. The use of this new noncontact instrument allowed us to measure SR before and after EDS activation. Several EDS prototypes were constructed and evaluated with different electrode configurations, electrode materials, and encapsulating dielectric materials.

  9. Modeling a clean energy standard for electricity: Policy design implications for emissions, supply, prices, and regions

    International Nuclear Information System (INIS)

    Paul, Anthony; Palmer, Karen; Woerman, Matt

    2013-01-01

    The electricity sector is responsible for roughly 40% of U.S. carbon dioxide (CO 2 ) emissions, and a reduction in CO 2 emissions from electricity generation is an important component of the U.S. strategy to reduce greenhouse gas emissions. Toward that goal, several proposals for a clean energy standard (CES) have been put forth, including one espoused by the Obama administration that calls for 80% clean electricity by 2035 phased in from current levels of roughly 40%. This paper looks at the effects of such a policy on CO 2 emissions from the electricity sector, the mix of technologies used to supply electricity, electricity prices, and regional flows of clean energy credits. The CES leads to a 30% reduction in cumulative CO 2 emissions between 2013 and 2035 and results in dramatic reductions in generation from conventional coal. The policy also results in fairly modest increases on national electricity prices, but this masks a wide variety of effects across regions. - Highlights: ► We model a clean energy standard (CES) for electricity at 80% by 2035. ► We analyze effects on CO 2 emissions, investment, prices, and credit trading. ► 80% CES leads to 30% reduction in cumulative CO 2 emissions by 2035. ► Modest national average electricity price increase masks regional heterogeneity

  10. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  11. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  12. Bench for mechanical cleaning of circular welded joints

    International Nuclear Information System (INIS)

    Sklifasovskij, V.M.

    1986-01-01

    A special bench for weld reinforcement removal and mechanical cleaning of the heat affected zones was designed to provide for a possibility of an ultrasonic testing of welded joints in the course of steam generator section fabrication. The bench comprises a mechanized roller support for fixing and rotating the workpiece; a lap-cutting device for external machining; milling/grinding tractor for internal machining and a delivery table for tractor approach and departure. The bench performance and overall view are presented. The operation succession is described

  13. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    Science.gov (United States)

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  14. The assessment of the impurities concentration into CANDU steam generator crevices

    International Nuclear Information System (INIS)

    Lucan, D.; Fulger, M.; Florea, S.; Jinescu, Ghe.; Woinaroschy, Al.

    2001-01-01

    Crevice corrosion involves a number of simultaneous and interacting operations, including mass transfer processes, production of metal ions within the crevice and hydrolysis reactions, resulting in a very aggressive solution from the point of view of corrosion. These intermediary corrosion processes are in a complex interdependence and they imply a number of important parameters, including both the crevice gap and depth. The major goal of this paper was development of a mathematical model for the calculation of the concentrations of impurities (Na + , Cl - , Fe 2+ ) into crevices and experimental research related to this process. There were identified the important experimental parameters that require further experimental research. This model considers all the processes that interfere in the impurities concentration mechanism achieved into the crevice but it also makes some assumptions for the easy solving of mathematical equations. Because the measurement of the impurities concentration into the steam generator and/or deposition in the crevices solutions is not achievable, one cannot estimate the corrosion intensity inside these locations. The mathematical model presented in this paper may predict the impurities concentration in the crevices. Based on the results obtained in the study of corrosion one can appreciate the corrosion intensity in the materials with crevices or conceive an experimental program, which could lead to results. The predictive quality of the model may contribute to the choice of new design solutions, development of new alloys and criteria of material selection. (authors)

  15. The influence of lead on stress corrosion cracking of steam generator tubing

    International Nuclear Information System (INIS)

    Ryan Curtis Wolfe

    2015-01-01

    Lead (Pb) is present at low concentrations on the secondary side of steam generators, but is known to accumulate in steam generator sludge and become concentrated in crevices and cracks. Pb is known to have played a role in the degradation of Alloy 600MA tubing, necessitating the replacement of those steam generators. There is new evidence which indicates that Pb has also played a role in the stress corrosion cracking (SCC) of Alloy 600TT. Furthermore. laboratory testing indicates that advanced tubing alloys such as Alloy 690TT and Alloy 800NG area also susceptible to this attack. In response to these vulnerabilities, utilities are attempting to manufacture tubing using processes which will impart optimal corrosion resistance, fabricate and operate SG's to minimize stress in the tubing, undertake efforts to identify and remove the sources of Pb, reduce the existing inventory of Pb using chemical or mechanical cleaning processes, and maintain rigorous chemistry controls. Research is warranted to qualify chemical methods to mitigate PbSCC that may be observed in service. This presentation will review work performed through the Electric Power Research Institute (EPRI) to address the issue of Pb-assisted stress corrosion cracking of steam generator tubing. (author)

  16. The effects of oil contamination and cleaning on sea otters (Enhydra lutris); II. Metabolism, thermoregulation, and behavior

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R W; Williams, T M; Thomas, J A; DasSelein, R A; Cornell, L H [Hubbs marine Research Center, San Diego, CA (USA)

    1988-12-01

    The purpose of this study was to develop a method to clean and rehabilitate sea otters that might become contaminated during an oil spill and to determine which physiological and behavioral factors were important in restoring the insulation provided by the fur. Tests were conducted on 12 sea otters; measurements of average metabolic rate, core body temperature, behavior, and squalene concentration on the fur were made before oiling 1-3 days after 20% of the body surface area was covered with fresh crude oil, and after cleaning. Under base-line conditions in water at 13{degrees}C, average metabolic rate was 8.0 W/kg, core body temperature was 38.9{degrees}C, and whole body thermal conductance was 10.7 W/(m2/{degrees}C). The squalene concentration on the fur averaged 3.7 mg/g fur. Oiling increased thermal conductance 1.8 times. To compensate for the loss of insulation and maintain a normal core body temperature (39{degrees}C), the otters increased average metabolic rate (1.9 times) through voluntary activity and shivering; the time spent grooming and swimming increased 1.7 times. Using detergent, the oiled fur could be cleaned during 40 min. of washing and rinsing. Grooming activity by the otters was essential for restoring the water-repellent quality of the fur. Core body temperature, average metabolic rate, and thermal conductance returned to base-line levels 3-6 days after cleaning. Squalene was removed by cleaning and did not return to normal levels in the oiled area after 7 days. Veterinary care was important to keep the otters healthy. At least 1-2 weeks should be allowed for otters to restore the insulation of their fur and for recovery from the stress of oiling and cleaning. 29 ref., 5 figs., 6 tabs.

  17. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-01-01

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water

  18. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    Science.gov (United States)

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  19. Webinar: Green Cleaning for Improved Health: The Return on Investment of Green Cleaning in Schools

    Science.gov (United States)

    A page to register to view the June 22, 2017, webinar in the IAQ Knowledge-to-Action Professional Training Webinar Series: Green Cleaning for Improved Health: The Return on Investment of Green Cleaning in Schools

  20. Comprehensive work plan for the Well Driller's Steam Cleaning Facility at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-02-01

    The purpose of this Comprehensive Work Plan is to address the history of the site as well as the scope, roles and responsibilities, documentation, training, environmental compliance requirements, and field actions needed to close the Oak Ridge National Laboratory (ORNL) Well Driller's Steam Cleaning Facility, hereinafter referred to as the Facility. The Facility was constructed in 1989 to provide a central area suitable to conduct steam cleaning operations associated with cleaning drilling equipment, containment boxes, and related accessories. Three basins were constructed of crushed stone (with multiple plastic and fabric liners) over a soil foundation to collect drill cuttings and wastewater generated by the cleaning activities. The scope of this task will be to demolish the Facility by using a bulldozer and backhoe to recontour and dismantle the area

  1. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  2. Incineration and flue gas cleaning in China - a Review

    International Nuclear Information System (INIS)

    Buekens, Alfons; Yan, Mi; Jiang, Xuguan; Li, Xiaodong; Lu, Shengyong; Chi, Yong; Yan, Jianhua; Cen, Kefa

    2010-01-01

    Waste incineration is rapidly developing in China. Different technologies are proposed for Municipal Solid Waste (MSW), Hazardous Waste (HW), and Medical Waste (MW). The required technologies are either imported, or developed locally. Some data are cited to illustrate these rapid developments. Incinerator flue gas arises at rather limited scale (10,000-100,000 Nm 3 /h), compared to power generation, yet the number of pollutants to be counted with is huge: dust and grit, acid gases, NO x , selected heavy metals, aerosols and nanoparticles, Polycyclic Aromatic Hydrocarbons, and dioxins. Major options in flue gas cleaning can be derived from Best Available Technologies (BAT), as were developed in the European Union. Hence, E.U. practice is analyzed in some detail, by considering the present situation in selected E.U. countries (Germany, Sweden, the Netherlands, Denmark, Belgium). A comparison is made with China. Also, the situation in Japan is examined. Based on this wide experience, a number of technical suggestions regarding incineration, flue gas cleaning, and emission control are formulated. Also, the possibility of co incineration is considered. Starting from the particular experience of Zhejiang University (as a designer of Fluid Bed and Rotary Kiln plant, with large experience in Fluid Bed processes, coal firing, gasification and pyrolysis, and actively monitoring thermal units throughout China) some specific Case Studies are examined, e.g., a fluidized bed incinerator and its gas cleaning system (MSWI and HWI from ITPE). Some attention is paid to the potential threats in China from uncontrolled combustion sources. As a conclusion, some recommendations are formulated regarding flue gas cleaning in Developing Nations at large and in China in particular. (author)

  3. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert P. [International District Energy Association, Westborough, MA (United States)

    2013-12-20

    /feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and theDistrict of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEAC’s for EPA’s Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the award’s incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

  4. Clean energy, non-clean energy, and economic growth in the MIST countries

    International Nuclear Information System (INIS)

    Pao, Hsiao-Tien; Li, Yi-Ying; Hsin-Chia Fu

    2014-01-01

    This paper explores the causal relationship between clean (renewable/nuclear) and non-clean energy consumption and economic growth in emerging economies of the MIST (Mexico, Indonesia, South Korea, and Turkey) countries. The panel co-integration tests reveal that there is a long-term equilibrium relationship among GDP, capital formation, labor force, renewable/nuclear, and fossil fuel energy consumption. The panel causality results indicate that (1) there is a positive unidirectional short-run causality from fossil fuel energy consumption to economic growth with a bidirectional long-run causality; (2) there is a unidirectional long-run causality from renewable energy consumption to economic growth with positive bidirectional short-run causality, and a long-run causality from renewable to fossil fuel energy consumption with negative short-run feedback effects; and (3) there is a bidirectional long-run causality between nuclear energy consumption and economic growth and a long-run causality from fossil fuel energy consumption to nuclear energy consumption with positive short-run feedback effects. These suggest that MIST countries should be energy-dependent economies and that energy conservation policies may depress their economic development. However, developing renewable and nuclear energy is a viable solution for addressing energy security and climate change issues, and creating clean and fossil fuel energy partnerships could enhance a sustainable energy economy. - Highlights: • This novel study can provide more robust bases to strengthen sustainable energy policy settings. • Fossil fuel/nuclear energy use and economic growth is bidirectional causality. • Renewable energy consumption long term causes economic growth. • There is substitutability between renewable and fossil fuel energy. • Clean and non-clean energy partnerships can achieve a sustainable energy economy

  5. Clean Cast Steel Technology, Phase IV

    Energy Technology Data Exchange (ETDEWEB)

    Charles E. Bates

    2003-02-24

    The objective of the Clean Cast Steel Technology Program was to improve casting product quality by removing or minimizing oxide defects and to allow the production of higher integrity castings for high speed machining lines. Previous research has concentrated on macro-inclusions that break, chip, or crack machine tool cutters and drills and cause immediate shutdown of the machining lines. The overall goal of the project is to reduce the amount of surface macro-inclusions and improve the machinability of steel castings. Macro-inclusions and improve the machinability of steel castings. Macro-inclusions have been identified by industrial sponsors as a major barrier to improving the quality and marketability of steel castings.

  6. Apparatuses, Systems and Methods for Cleaning Photovoltaic Devices

    KAUST Repository

    Eitelhuber, Georg

    2013-02-14

    Embodiments of solar panel cleaning apparatuses, solar panel cleaning systems, and solar panel cleaning methods are disclosed. In certain embodiments, the disclosed solar panel cleaning apparatuses, systems and methods do may not require any water or other cleaning liquids in the whole cleaning process, which makes them prominent well suited in for water-deficit environments such as deserts. In one embodiment, the solar panel cleaning apparatus comprises one or more rotatable brushes each having a rotational axis and a drive configured to move each of the one or more rotatable brushes in a direction that is not perpendicular to the rotational axis. The solar panel cleaning apparatus is may be configured such that the angle of the rotational axis of at least one of the one or more rotatable brushes is adjustable relative to the direction of travel.

  7. Studies of techniques for the post-elution concentration of 99mTc obtained from gel type 99Mo/99mTc generators

    International Nuclear Information System (INIS)

    Suzuki, Katia Noriko

    2009-01-01

    On average 80% of the radiopharmaceuticals used in Nuclear Medicine are labeled with 99 mTc due to its physical properties and easy attainment through of 99 Mo/ 99 mTc generators. The Directory of Radiopharmacy (DIRF) of IPEN-CNEN/SP developed a gel type chromatographic generator of MoZr with 99 Mo produced by 98 Mo(n,γ) 99 Mo reaction that occurs at the IEA-R1 Nuclear Reactor. The gel is composed of zirconium molybdate with elution volume of 12 mL with an activity of 11100 MBq (300 mCi) producing a radioactive concentration of 925 MBq (25 mCi)/mL. The fission generator gives a higher radioactive concentration around 1850 MBq (50 mCi)/mL. The aim of this work is to study a system of post-elution concentration of 99 mTc for the attainment of a high enough radioactive concentration to meet the demands of the market, with a proved quality. Two types of systems of post-elution concentration were developed: the single and the tandem. The most appropriate system for the gel generator of 99 Mo/ 99 mTc, being at the same time sterile and vacuum automated, was the tandem system using Dionex 2.5 cc/QMA cartridges. The gel generator is eluted with 10 mL of solution of 0.1% NaCl and the pertechnetate anion is retained in the QMA cartridge and further eluted with 4 mL of saline. The process takes no more than 30 minutes. The elution efficiency of the system of concentration was 90 %. At the beginning of 2009 a global crisis in the supply of 99 Mo took place making it necessary the development of alternative technologies for the production of 99 Mo/ 99 mTc generators using fission produced 99 Mo and the development of an appropriate method to extend the useful life of this generator. The results of this study showed that the same system developed for the post- concentration of the gel generator can be employed for the fission generator, using the tandem system, giving a concentration factor of 3 for the elution of 99 mTc. (author)

  8. The role of sludge and fouling on local concentration processes in PWR steam generators

    International Nuclear Information System (INIS)

    Millett, D.J.; Paine, J.P.N.; Fenton, J.M.

    1992-01-01

    A detailed model of the transport processes in heated crevices is used to understand the role of corrosion product deposits on local concentration processes in PWR steam generators (SG). The model describes the heat, mass and momentum transfer processes which occur in the porous deposits found in tube support and tube sheet crevices and in the sludge pile on top of the tube sheet. The model is used to predict the concentration of a given specie in the liquid pore solution at steady-state, as a function of time, and may be readily expanded to multi-component solutions by the use of chemical thermodynamic models. In a previous paper the authors investigated the role of SG design and SG operating parameters on the concentration process. In this paper, several parametric studies were performed to investigate the sensitivity of the local concentration process to the corrosion product properties

  9. Clean Coal Technology Demonstration Program: Program update 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-01

    The Clean Coal Technology Demonstration Program (also referred to as the CCT Program) is a $6.9 billion cost-shared industry/government technology development effort. The program is to demonstrate a new generation of advanced coal-based technologies, with the most promising technologies being moved into the domestic and international marketplace. Technology has a vital role in ensuring that coal can continue to serve U.S. energy interests and enhance opportunities for economic growth and employment while meeting the national committment to a clean and healthy global environment. These technologies are being advanced through the CCT Program. The CCT Program supports three substantive national objectives: ensuring a sustainable environment through technology; enhancing energy efficiency and reliability; providing opportunities for economic growth and employment. The technologies being demonstrated under the CCT Program reduce the emissions of sulfur oxides, nitrogen oxides, greenhouse gases, hazardous air pollutants, solid and liquid wastes, and other emissions resulting from coal use or conversion to other fuel forms. These emissions reductions are achieved with efficiencies greater than or equal to currently available technologies.

  10. Cleaning Process Development for Metallic Additively Manufactured Parts

    Science.gov (United States)

    Tramel, Terri L.; Welker, Roger; Lowery, Niki; Mitchell, Mark

    2014-01-01

    Additive Manufacturing of metallic components for aerospace applications offers many advantages over traditional manufacturing techniques. As a new technology, many aspects of its widespread utilization remain open to investigation. Among these are the cleaning processes that can be used for post finishing of parts and measurements to verify effectiveness of the cleaning processes. Many cleaning and drying processes and measurement methods that have been used for parts manufactured using conventional techniques are candidates that may be considered for cleaning and verification of additively manufactured parts. Among these are vapor degreasing, ultrasonic immersion and spray cleaning, followed by hot air drying, vacuum baking and solvent displacement drying. Differences in porosity, density, and surface finish of additively manufactured versus conventionally manufactured parts may introduce new considerations in the selection of cleaning and drying processes or the method used to verify their effectiveness. This presentation will review the relative strengths and weaknesses of different candidate cleaning and drying processes as they may apply to additively manufactured metal parts for aerospace applications. An ultrasonic cleaning technique for exploring the cleanability of parts will be presented along with an example using additively manufactured Inconel 718 test specimens to illustrate its use. The data analysis shows that this ultrasonic cleaning approach results in a well-behaved ultrasonic cleaning/extraction behavior. That is, it does not show signs of accelerated cavitation erosion of the base material, which was later confirmed by neutron imaging. In addition, the analysis indicated that complete cleaning would be achieved by ultrasonic immersion cleaning at approximately 5 minutes, which was verified by subsequent cleaning of additional parts.

  11. Underwater cleaning techniqued used for removal of zebra mussels at the FitzPatrick Nuclear Power Plant

    International Nuclear Information System (INIS)

    Hobbs, B.; Kahabka, J.

    1995-01-01

    This paper discusses the use of a mechanical brush cleaning technology recently used to remove biofouling from the Circulating Water (CW) System at New York Power Authority's James A. FitzPatrick Nuclear Power Plant. The FitzPatrick plant had previously used chemical molluscicide to treat zebra mussels in the CW system. Full system treatment was performed in 1992 with limited forebay/screenwell treatment in 1993. The New York Power Authority (NYPA) decided to conduct a mechanical cleaning of the intake system in 1994. Specific project objectives included: (1) Achieve a level of surface cleaniness greater than 98%; (2) Remove 100% of debris, both existing sediment and debris generated as a result of cleaning; (3) Inspect all surfaces and components, identifying any problem areas; (4) Complete the task in a time frame within the 1994-95 refueling outage schedule window, and; (5) Determine if underwater mechanical cleaning is a cost-effective zebra mussel control method suitable for future application at FitzPatrick. A pre-cleaning inspection, including underwater video photography, was conducted of each area. Cleaning was accomplished using diver-controlled, multi-brush equipment included the electro-hydraulic powered Submersible Cleaning and Maintenance Platform (SCAMP), and several designs of hand-held machines. The brushes swept all zebra mussels off surfaces, restoring concrete and metal substrates to their original condition. Sensitive areas including pump housings, standpipes, sensor piping and chlorine injection tubing, were cleaned without degradation. Submersible vortex vacuum pumps were used to remove debris from the cavity. More than 46,000 ft 2 of surface area was cleaned and over 460 cubic yards of dewatered debris were removed. As each area was completed, a post-clean inspection with photos and video was performed

  12. The Ontario-Manitoba clean energy transfer initiative

    International Nuclear Information System (INIS)

    Clarkson, J.

    2006-01-01

    Manitoba currently generates 5500 MW of electricity, and has the potential to add another 5000 MW of clean energy. Nearly 2000 MW of Manitoba's electricity is currently being sold to the United States. New transmission sites will ensure both grid reliability and energy security for Ontario, and power exchanges are expected to reduce costs. This presentation provided details of a memorandum of understanding (MOU) between Ontario and Manitoba concerning energy sales across existing and future transmission infrastructure. Peak energy sales were expected to reach 1000 MW in the near future. Options for the interconnection included direct high voltage direct current (HVDC) lines to Sudbury as well as lines through Thunder Bay and Winnipeg. Manitoba's existing hydro sites were outlined, and potential sites were reviewed. In addition to presenting new supply options, this presentation described generation and transmission approval processes, as well as construction schedules for new sites and interconnection points. It was concluded that while there is currently a provincial focus on electricity supply and demand, new generation technologies will make interprovincial electricity agreements economically viable. tabs., figs

  13. Clean fuel for demanding environmental markets

    Energy Technology Data Exchange (ETDEWEB)

    Josewicz, W.; Natschke, D.E. [Acurex Environmental Corp., Research Triangle Park, NC (United States)

    1995-12-31

    Acurex Environmental Corporation is bringing Clean Fuel to the environmentally demand Krakow market, through the cooperative agreement with the U.S. Department of Energy. Clean fuel is a proprietary clean burning coal-based energy source intended for use in stoves and hand stoked boilers. Clean Fuel is a home heating fuel that is similar in form and function to raw coal, but is more environmentally friendly and lower in cost. The heating value of Clean Fuel is 24,45 kJ/kg. Extensive sets of confirmation runs were conducted in the Academy of Mining and Metallurgy in the Krakow laboratories. It demonstrated up to 54 percent reduction of particulate matter emission, up to 35 percent reduction of total hydrocarbon emissions. Most importantly, polycyclic aromatic hydrocarbons (toxic and carcinogens compounds) emissions were reduced by up to 85 percent, depending on species measured. The above comparison was made against premium chunk coal that is currently available in Krakow for approximately $83 to 93/ton. Clean Fuel will be made available in Krakow at a price approximately 10 percent lower than that of the premium chunk coal.

  14. WWW expert system on producer gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Schouten, E.J.; Lammers, G.; Beenackers, A.A.C.M. [University of Groningen (Netherlands)

    1999-07-01

    The University of Groningen (RUG) has developed an expert system on cleaning of biomass producer gas. This work was carried out in close co-operation with the Biomass Technology Group B.V. (BTG) in Enschede, The Netherlands within the framework of the EC supported JOR3-CT95-0084 project. The expert system was developed as a tool for the designer-engineer of downstream gas cleaning equipment and consists of an information package and a flowsheet package. The packages are integrated in a client/server system. The flowsheeting package of the expert system has been designed for the evaluation of different gas cleaning methods. The system contains a number of possible gas cleaning devices such as: cyclone, fabric filter, ceramic filter, venturi scrubber and catalytic cracker. The user can select up to five cleaning steps in an arbitrary order for his specific gas cleaning problem. After specification of the required design parameters, the system calculates the main design characteristics of the cleaning device. The information package is a collection of HTML{sup TM} files. It contains a large amount of information, tips, experience data, literature references and hyperlinks to other interesting Internet sites. This information is arranged per cleaning device. (orig.)

  15. Clean coal technologies in Japan: technological innovation in the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-15

    This brochure reviews the history clean coal technologies (CCT) in Japan and systematically describes the present state of CCT insofar. The brochure contains three parts. Part 1. CCT classifications; Part 2. CCT overview; and Part 3. Future outlook for CCT. The main section is part 2 which includes 1) technologies for coal resources development; 2) coal-fired power generation technologies - combustion technologies and gasification technologies; 3) iron making and general industry technologies; 4) multi-purpose coal utilization technologies - liquefaction technologies, pyrolysis technologies, powdering, fluidization, and co-utilisation technologies, and de-ashing and reforming technologies; 5) Environmental protection technologies - CO{sub 2} recovery technologies; flue gas treatment and gas cleaning technologies, and technologies to effectively use coal has; 6) basic technologies for advanced coal utilization; and 7) co-production systems.

  16. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials.

    Science.gov (United States)

    Ma, Xuezhi; Liu, Qiushi; Xu, Da; Zhu, Yangzhi; Kim, Sanggon; Cui, Yongtao; Zhong, Lanlan; Liu, Ming

    2017-11-08

    A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 10 10 cm -2 ) and high carrier mobility (up to 48 820 cm 2 V -1 s -1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.

  17. Energy Servers Deliver Clean, Affordable Power

    Science.gov (United States)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  18. Southwest Regional Clean Energy Incubation Initiative (SRCEII)

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Michael [Univ. of Texas, Austin, TX (United States)

    2017-10-31

    The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).

  19. Canyon solvent cleaning with activated alumina

    International Nuclear Information System (INIS)

    Reif, D.J.

    1987-01-01

    This paper presents recent work at SRL concerning the cleaning of solvent extraction solvent used at SRP. The paper explains why we undertook the work, and some laboratory studies on two approaches to solvent cleaning, namely extended carbonate washing and use of solid adsorbents. The paper then discusses scale-up of the preferred method and the results of the full-scale cleaning. 19 figs

  20. Barriers to clean development mechanism renewable energy projects in Mexico

    International Nuclear Information System (INIS)

    Lokey, Elizabeth

    2009-01-01

    Mexico is not reaching its full potential to capture benefits from clean development mechanism (CDM) projects because of its limited market for independent power producers (IPPs) and the barriers imposed on these entities by the state-run electric utility that controls most of the country's generation and transmission. This state-run entity has pursued CDM revenues only in isolated cases where international financial assistance was given because it is bound by law to pursue the least-cost generation option for its customers. Recent changes in Mexican legislation that provide incentives for renewable energy development could open the marketplace for these types of projects. (author)

  1. Clean technology for the small auriferous mining

    International Nuclear Information System (INIS)

    Wotruba, Herrnann

    2004-01-01

    The concentration of gold in the small auriferous mining is characterized by several deficiencies, among them low recovery, emissions of mercury in form of milled mercury; amalgams and vapor, cyanide emissions and of its compounds, low level of industrial security. The mercury is used for the amalgamation of concentrated (taken place by several methods of gravimetric separation), for the amalgamation of the whole mineral load. The last case represents a mercury use in open circuit, with lost discharges of mercury to the process tales. The cyanidation is used in most of the cases for the residuals of the gravimetric concentration. This means that combines amalgamation with cyanidation that is in double cost and double environmental impact. To minimize operation costs and environmental impacts, the following steps of the mineral benefit, are advisable: controlled mill and appropriate to liberate the gold and not over miller; gravimetric concentration to recover a pre-concentrated with lost minimum of gold; Separation of the thick gold (if it exists) of the pre-concentrate. The free and thick gold can separate for gravimetric processes of the pre-concentrate and to smelt it directly; the amalgamation is not more necessary. The pre-concentrated cyanidation for agitation generally has bigger recovery and it is quicker than the traditional method for percolation. The realization of the new process has a gold recovery more high, less operation costs, less cyanide emissions, any emission of mercury and a higher work security. It should be mentioned that the viability and efficiency of the clean process depends of the mineral nature

  2. Study on tar generated from downdraft gasification of oil palm fronds.

    Science.gov (United States)

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar

    2014-01-01

    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.

  3. Study on Tar Generated from Downdraft Gasification of Oil Palm Fronds

    Directory of Open Access Journals (Sweden)

    Samson Mekbib Atnaw

    2014-01-01

    Full Text Available One of the most challenging issues concerning the gasification of oil palm fronds (OPF is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3 in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study.

  4. Study on Tar Generated from Downdraft Gasification of Oil Palm Fronds

    Science.gov (United States)

    Atnaw, Samson Mekbib; Kueh, Soo Chuan; Sulaiman, Shaharin Anwar

    2014-01-01

    One of the most challenging issues concerning the gasification of oil palm fronds (OPF) is the presence of tar and particulates formed during the process considering its high volatile matter content. In this study, a tar sampling train custom built based on standard tar sampling protocols was used to quantify the gravimetric concentration of tar (g/Nm3) in syngas produced from downdraft gasification of OPF. The amount of char, ash, and solid tar produced from the gasification process was measured in order to account for the mass and carbon conversion efficiency. Elemental analysis of the char and solid tar samples was done using ultimate analysis machine, while the relative concentration of the different compounds in the liquid tar was determined making use of a liquid gas chromatography (GC) unit. Average tar concentration of 4.928 g/Nm3 and 1.923 g/Nm3 was obtained for raw gas and cleaned gas samples, respectively. Tar concentration in the raw gas sample was found to be higher compared to results for other biomass materials, which could be attributed to the higher volatile matter percentage of OPF. Average cleaning efficiency of 61% which is comparable to that of sand bed filter and venturi scrubber cleaning systems reported in the literature was obtained for the cleaning system proposed in the current study. PMID:24526899

  5. In-Water Hull Cleaning & Filtration System

    Science.gov (United States)

    George, Dan

    2015-04-01

    Dan George R & D Mining Technology LinkedIn GRD Franmarine have received the following prestigious awards in 2014 for their research & development of an in-water hull cleaning and filtration system "The Envirocart: Golden Gecko Award for Environmental Excellence; WA Innovator of the Year - Growth Sector; Department of Fisheries - Excellence in Marine Biosecurity Award - Innovation Category; Lloyd's List Asia Awards - Environmental Award; The Australian Innovation Challenge - Environment, Agriculture and Food Category; and Australian Shipping and Maritime Industry Award - Environmental Transport Award. The Envirocart developed and patented by GRD Franmarine is a revolutionary new fully enclosed capture and containment in-water hull cleaning technology. The Envirocart enables soft Silicon based antifouling paints and coatings containing pesticides such as Copper Oxide to be cleaned in situ using a contactless cleaning method. This fully containerised system is now capable of being deployed to remote locations or directly onto a Dive Support Vessel and is rated to offshore specifications. This is the only known method of in-water hull cleaning that complies with the Department of Agriculture Fisheries and Forestry (DAFF) and Department of Fisheries WA (DoF) Guidelines. The primary underwater cleaning tool is a hydraulically powered hull cleaning unit fitted with rotating discs. The discs can be fitted with conventional brushes for glass or epoxy based coatings or a revolutionary new patented blade system which can remove marine biofouling without damaging the antifouling paint (silicone and copper oxide). Additionally there are a patented range of fully enclosed hand cleaning tools for difficult to access niche areas such as anodes and sea chests, providing an innovative total solution that enables in-water cleaning to be conducted in a manner that causes no biological risk to the environment. In full containment mode or when AIS are present, material is pumped

  6. The BC energy plan : a vision for clean energy leadership

    International Nuclear Information System (INIS)

    2007-02-01

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs

  7. The BC energy plan : a vision for clean energy leadership

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-02-15

    Global warming is a pertinent environmental issue. This report presented a vision and plan for clean energy leadership in British Columbia (BC). The intent of the plan is make the province energy self-sufficient while taking responsibility for the natural environment and climate. The BC energy plan set out targets as well as a strategy for reducing greenhouse gas emissions. The plan outlines the steps that industry, environmental agencies, communities and citizens must take to reach goals for conservation, energy efficiency and clean energy. This report provided highlights of the BC energy plan and discussed energy conservation and efficiency targets. It also discussed electricity security and public ownership of electricity in addition to strategies and policy options for reducing greenhouse gas emissions from electricity. The report presented several policy options for alternative energy including an innovative clean energy fund; generating electricity from mountain pine beatlewood to turn wood waste into energy; and transportation strategies. The report also discussed electricity options such as bioenergy; coal thermal power; geothermal; hydrogen and fuel cell technology; large hydroelectric dams; natural gas; small hydro; solar; tidal energy; and wind. Other topics that were addressed in the report included skills, training and labour; and, oil and gas policy actions. A summary of policy actions was also presented. tabs., figs.

  8. A seasonal copula mixture for hedging the clean spark spread with wind power futures

    DEFF Research Database (Denmark)

    Christensen, Troels Sønderby; Pircalabu, Anca; Høg, Esben

    2018-01-01

    The recently introduced German wind power futures have brought the opportunity to address the problem of volume risk in wind power generation directly. In this paper we study the hedging benefits of these instruments in the context of gas-fired power plants by employing a strategy that allows...... and the dependence structure, while being straightforward and easy to implement. Based on Monte Carlo simulations from the proposed model, the results indicate that significant benefits can be achieved by using wind power futures to hedge the spot clean spark spread. Moreover, a comparison study shows...... trading in the spot clean spark spread and wind power futures. To facilitate hedging decisions, we propose a time-varying copula mixture for the joint behavior of the spot clean spark spread and the daily wind index. The model describes the data surprisingly well, both in terms of the marginals...

  9. Effectuality of Cleaning Workers' Training and Cleaning Enterprises' Chemical Health Hazard Risk Profiling

    Directory of Open Access Journals (Sweden)

    Abdulqadir M. Suleiman

    2015-12-01

    Conclusion: Training of cleaning workers lacks the prerequisite for suitability and effectiveness to counter risks of chemical health hazards. There is dereliction of duty by management in the sector resulting in a lack of competence among the cleaning workers. Instituting acceptable easily attainable safety competence level for cleaners will conduce to risk reduction, and enforcement of attainment of the competence level would be a positive step.

  10. Benzotriazole removal on post-Cu CMP cleaning

    International Nuclear Information System (INIS)

    Tang Jiying; Liu Yuling; Sun Ming; Fan Shiyan; Li Yan

    2015-01-01

    This work investigates systematically the effect of FA/O II chelating agent and FA/O I surfactant in alkaline cleaning solutions on benzotriazole (BTA) removal during post-Cu CMP cleaning in GLSI under the condition of static etching. The best detergent formulation for BTA removal can be determined by optimization of the experiments of single factor and compound cleaning solution, which has been further confirmed experimentally by contact angle (CA) measurements. The resulting solution with the best formulation has been measured for the actual production line, and the results demonstrate that the obtained cleaning solution can effectively and efficiently remove BTA, CuO and abrasive SiO 2 without basically causing interfacial corrosion. This work demonstrates the possibility of developing a simple, low-cost and environmentally-friendly cleaning solution to effectively solve the issues of BTA removal on post-Cu CMP cleaning in a multi-layered copper wafer. (paper)

  11. The TMI-2 clean-up project collection and databases

    International Nuclear Information System (INIS)

    Osif, B.A.; Conkling, T.W.

    1996-01-01

    A publicly accessible collection containing several thousand of the videotapes, photographs, slides and technical reports generated during the clean-up of the TMI-2 reactor has been established by the Pennsylvania State University Libraries. The collection is intended to serve as a technical resource for the nuclear industry as well as the interested public. Two Internet-searchable databases describing the videotapes and technical reports have been created. The development and use of these materials and databases are described in this paper. (orig.)

  12. Clean cars

    Energy Technology Data Exchange (ETDEWEB)

    Piffaretti, M.

    2008-07-01

    This well-illustrated presentation made at the Swiss 2008 research conference on traffic by the Protoscar company takes a look at research, design, engineering and communication topics in the area of 'clean cars'. The present situation with electrically driven and hybrid-drive cars is reviewed and the chances and problems of the present-day vehicles are examined. New developments and a number of vehicles that should be on the market in the period from 2012 to 2015 are presented. Also, 'clean' specialist vehicles such as trucks and buses are reviewed. Battery systems and associated problems and new developments are looked at. The promotion scheme in Mendrisio, Switzerland is reviewed. Bottom-up and top-down approaches are discussed and future market developments are looked at, as are promotional activities in various countries.

  13. Energy and exergy analysis of the Kalina cycle for use in concentrated solar power plants with direct steam generation

    DEFF Research Database (Denmark)

    Knudsen, Thomas; Clausen, Lasse Røngaard; Haglind, Fredrik

    2014-01-01

    In concentrated solar power plants using direct steam generation, the usage of a thermal storage unit based only on sensible heat may lead to large exergetic losses during charging and discharging, due to a poor matching of the temperature profiles. By the use of the Kalina cycle, in which...... evaporation and condensation takes place over a temperature range, the efficiency of the heat exchange processes can be improved, possibly resulting also in improved overall performance of the system. This paper is aimed at evaluating the prospect of using the Kalina cycle for concentrated solar power plants...... with direct steam generation. The following two scenarios were addressed using energy and exergy analysis: generating power using heat from only the receiver and using only stored heat. For each of these scenarios comparisons were made for mixture concentrations ranging from 0.1 mole fraction of ammonia to 0...

  14. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  15. Cleaning of Sodium in the Cold Trap

    International Nuclear Information System (INIS)

    Kim, Byung Ho; Jeong, Ji Young; Kim, Jong Man; Choi, Byung Hae; Nam, Ho Yun

    2005-01-01

    The purpose of a cleaning process is to remove the residual sodium adhering to the component walls once it has been properly drained. It is necessary to clean and decontaminate a component, especially the large components of the primary coolant system; such as the intermediate heat exchangers and the primary pump. Improper and inadequate cleaning has in a number of cases resulted in problems in the storage, handling, and reuse of components. Several types of failures due to improper cleaning procedures have been defined in the past. Inadequate and incomplete removal of sodium results in residues which may contain metallic sodium and alkaline compounds such as sodium hydroxide, sodium oxide, sodium carbonate, and various types of alcoholates. Reinsertion of components containing these compounds into a high-temperature sodium system can result in either the intergranular penetration characteristic of a high- oxygen sodium or an accelerated corrosion due to oxygen. The methods used for cleaning sodium equipment depend on the condition and types of equipment to be cleaned and whether the equipment is to be reused. Cleaning methods are needed that will avoid a deleterious local overheating, material surface degradation or deposits, chemical, physical, or mechanical damage, and external effects. This paper discusses a steam-nitrogen gas cleaning method for the routine applications that permits the reuse of the cold trap in sodium

  16. Theoretical modelling of solar dish concentrator

    International Nuclear Information System (INIS)

    Yaaseen Rafeeu; Mohd Zainal Abidin Abdul Kadir; Senan Mohamed Abdulla; Nor Mariah Adam

    2009-01-01

    Full text: Concentrating solar power (CSP) technologies could be one of the major contributor to worlds future energy needs and which would be cheap and clean sources of energy. This would improve energy utilization, higher conversion efficiency with reliable and affordable supply of electricity to the public. The proposed approach is using different size and depth of solar dish concentrators to improve solar fraction using the aluminium foil as reflector. In this paper, different measurement of solar concentrators is investigated and aims to aims to introducing an improved methodology for solar fraction on incoming solar energy in wet climate. (author)

  17. Ex vivo analysis of root canal cleaning using Endo-PTC associated to NaOCl and different irrigant solutions

    Directory of Open Access Journals (Sweden)

    Andrea Kanako Yamazaki

    2010-03-01

    Full Text Available The aim of this study was to assess qualitatively, by means of SEM images, the cleaning of the dentin walls of root canals after chemical-surgical preparation using Endo-PTC cream with 0.5% and 1% sodium hypochlorite and different final irrigating solutions. Seventy-two single-rooted human teeth were divided into eight groups and prepared using Endo-PTC cream with sodium hypochlorite (NaOCl at different concentrations, and irrigated with NaOCl at different concentrations. Final irrigation was performed with either EDTA-T or EDTA-C. The best results were obtained with Group 1, followed by Groups 5, 2, 7, 8, 3, 6 and 4. We can conclude that the use of 0.5% NaOCl during instrumentation and final flush of the root canals was more efficient in cleaning than was 1% sodium hypochlorite. EDTA-T was more efficient in removing smear layer than EDTA-C, and the cervical third presented better cleaning of the root canal walls than did the middle third, which showed cleaner dentin walls than the apical third.

  18. Cleaning up a GNU/Linux operating system

    OpenAIRE

    Oblak , Denis

    2018-01-01

    The aim of the thesis is to develop an application for cleaning up the Linux operating system that would be able to function on most distributions. The theoretical part discusses the cleaning of the Linux operating system that frees up disk space and allows a better functioning. The cleaning techniques and the existing tools for Linux are systematically reviewed and presented. The following part examines the cleaning of the Windows and MacOS operating systems. The thesis also compares all...

  19. Worker exposure to methanol vapors during cleaning of semiconductor wafers in a manufacturing setting.

    Science.gov (United States)

    Gaffney, Shannon; Moody, Emily; McKinley, Meg; Knutsen, Jeffrey; Madl, Amy; Paustenbach, Dennis

    2008-05-01

    An exposure simulation was conducted to characterize methanol exposure of workers who cleaned wafers in quality control departments within the semiconductor industry. Short-term (15 min) and long-term (2-4 hr) personal and area samples (at distances of 1 m and 3-6 m from the source) were collected during the 2-day simulation. On the first day, 45 mL of methanol were used per hour by a single worker washing wafers in a 102 m(3) room with a ventilation rate of about 10 air changes per hour (ACH). Virtually all methanol volatilized. To assess exposures under conditions associated with higher productivity, on the second day, two workers cleaned wafers simultaneously, together using methanol at over twice the rate of the first day (95 mL/hr). On this day, the ventilation rate was halved (5 ACH). Personal concentrations on the first day averaged 60 ppm (SD = 46 ppm) and ranged from 10-140 ppm. On the second day, personal concentrations for both workers averaged 118 ppm (SD = 50 ppm; range: 64-270 ppm). Area concentrations measured on the first day at 1 m from the source and throughout the balance of the room averaged 29 ppm (SD = 19 ppm; range: 4-83 ppm) and 18 ppm (SD = 12 ppm; range: 3-42 ppm), respectively. As expected, area concentrations measured on the second day were higher than the first and averaged 73 ppm (SD = 25 ppm; range: 27-140 ppm) at 1 meter and 48 ppm (SD = 13 ppm; range: 21-67 ppm) throughout the balance of the room. The results of this simulation suggest that the use of methanol to clean semiconductor wafers without the use of local exhaust ventilation and with relatively low room ventilation rates is unlikely to result in worker exposures exceeding the current ACGIH(R) threshold limit value of 200 ppm. This study also confirmed prior studies suggesting that when a relatively volatile chemical is located within arm's length (near field), breathing zone concentrations will be about two- to threefold greater than the room concentration when the air

  20. Estimation of Toxicity Equivalent Concentration (TEQ) of ...

    African Journals Online (AJOL)

    Estimation of Toxicity Equivalent Concentration (TEQ) of carcinogenic polycyclic aromatic hydrocarbons in soils from Idu Ekpeye playground and University of Port ... Effective soil remediation and detoxification method like Dispersion by chemical reaction technology should be deployed to clean-up sites to avoid soil toxicity ...