WorldWideScience

Sample records for clean metal surfaces

  1. Surface cleaning of metal wire by atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, T., E-mail: tsubasa@oshima-k.ac.jp [Electronic-Mechanical Engineering Department, Oshima National College of Maritime Technology, 1091-1 Komatsu, Suo-Oshima, Yamaguchi (Japan); Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan); Buttapeng, C. [School of Electrical and Energy Engineering, University of the Thai Chamber of Commerce, 126/1, Vibhavadee-Rungsit, Dindaeng, Bangkok 10400 (Thailand); Furuya, S. [Faculty of Education, Gunma University, 4-2 Aramaki, Maebashi (Japan); Harada, N. [Department of Electrical Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka (Japan)

    2009-11-30

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  2. Phonons on the clean metal surfaces and in adsorption structures

    Science.gov (United States)

    Rusina, Galina G.; Chulkov, Evgenii V.

    2013-06-01

    The state-of-the-art studies of the vibrational dynamics of clean metal surfaces and metal surface structures formed upon the sub-monolayer adsorption of the atoms of various elements are considered. A brief historical survey of the milestones of investigations of surface phonons is presented. The results of studies of the atomic structure and vibration characteristics of surfaces with low and high Miller indices and adsorption structures are analyzed. It is demonstrated that vicinal surfaces of FCC metals tend to exhibit specific vibrational modes located on the step and polarized along the step. Irrespective of the type and position of adsorption or the substrate structure, the phonon spectra of sub-monolayer adsorption structures always tend to display two modes for combined translational displacements of adatoms and for coupled vibrations of substrate atoms and adatoms polarized in the direction normal to the surface. The bibliography includes 202 references.

  3. Recommended values of clean metal surface work functions

    Energy Technology Data Exchange (ETDEWEB)

    Derry, Gregory N., E-mail: gderry@loyola.edu; Kern, Megan E.; Worth, Eli H. [Department of Physics, Loyola University Maryland, 4501 N. Charles St., Baltimore, Maryland 21210 (United States)

    2015-11-15

    A critical review of the experimental literature for measurements of the work functions of clean metal surfaces of single-crystals is presented. The tables presented include all results found for low-index crystal faces except cases that were known to be contaminated surfaces. These results are used to construct a recommended value of the work function for each surface examined, along with an uncertainty estimate for that value. The uncertainties are based in part on the error distribution for all measured work functions in the literature, which is included here. The metals included in this review are silver (Ag), aluminum (Al), gold (Au), copper (Cu), iron (Fe), iridium (Ir), molybdenum (Mo), niobium (Nb), nickel (Ni), palladium (Pd), platinum (Pt), rhodium (Rh), ruthenium (Ru), tantalum (Ta), and tungsten (W)

  4. Laser-assisted surface cleaning of metallic components

    Indian Academy of Sciences (India)

    Aniruddha Kumar; R B Bhatt; P G Behere; Mohd Afzal; Arun Kumar; J P Nilaya; D J Biswas

    2014-02-01

    Removal of a thin oxide layer from a tungsten ribbon and ThO2 particulates from zircaloy surface was achieved using a pulsed Nd:YAG laser. The removal mechanism of the oxide layer from the tungsten ribbon was identified as spallation or sublimation depending on the wavelength and fluence of the coherent radiation. The oxidized and cleaned surfaces were analysed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and atomic force microscopy (AFM). Laser-cleaned tungsten ribbons were used in a thermal ionization mass spectrometer (TIMS) to determine isotopic composition of neodymium atoms. The fundamental (1064 nm) and the third harmonic (355 nm) radiations were found to be the most effective in removing ThO2 particulates from the zircaloy surface. Decontamination efficiency was found to be critically dependent on the wavelength of the coherent radiation and number of exposures. The mechanism of cleaning of ThO2 particulates from the zircaloy surface at different wavelengths of the incident radiation has been explained qualitatively.

  5. Temperature field modeling in laser-heated metals for laser cleaning of surfaces

    Science.gov (United States)

    Oane, Mihai; Apostol, Ileana; Timcu, Adrian

    2003-10-01

    Laser induced surface cleaning is the adequate method in a large variety of industrial domains as microelectronics, optics, photonics. By comparison to chemical and/or mechanical cleaning, laser cleaning has the advantage of a very good selectivity on the surface and in depth of the material, no surface contamination, without stress in the material volume and environmental safe. It seems that laser cleaning can be developed in a method to be currently used in microelectronic industry. For an efficient laser cleaning of metallic thin films without damage of the silicon wafer, a careful optimization of the incident laser energy, fluence, intensity and number of laser pulses is needed. We have developed an analytical procedure to study the temperature fields in pulsed laser heated solids, for a deeper knowledge of the laser-thin film substrate interaction.

  6. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Bin, E-mail: bindong@my.unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Driver, M. Sky, E-mail: Marcus.Driver@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States); Emesh, Ismail, E-mail: Ismail_Emesh@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Shaviv, Roey, E-mail: Roey_Shaviv@amat.com [Applied Materials Inc., 3050 Bowers Ave, Santa Clara, CA, 95054 (United States); Kelber, Jeffry A., E-mail: Jeffry.Kelber@unt.edu [Department of Chemistry, University of North Texas, 1155 Union Circle 305070, Denton, TX, 76203 (United States)

    2016-10-30

    Highlights: • O{sub 2}-free plasma treatment of air-exposed Co or Cu surfaces yields remnant C layers inert to further plasma cleaning. • The formation of the remnant C layer is graphitic (Cu) or carbidic (Co). • The formation of a remnant C layer is linked to plasma cleaning of a metal surface. - Abstract: In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1–3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H{sub 2} or NH{sub 3} plasma cleaning of Co, and He or NH{sub 3} plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiO{sub x}N{sub y}), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp{sup 3} adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  7. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    Science.gov (United States)

    Dong, Bin; Driver, M. Sky; Emesh, Ismail; Shaviv, Roey; Kelber, Jeffry A.

    2016-10-01

    In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1-3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H2 or NH3 plasma cleaning of Co, and He or NH3 plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiOxNy), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp3 adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  8. Laser cleaning of the metallic thin films from silicon wafer surface with UV laser radiation

    Science.gov (United States)

    Apostol, Ileana; Apostol, Dan; Victor, Damian; Timcu, Adrian; Iordache, Iuliana; Castex, Marie-Claude C.; Galli, Roberta; Ulieru, Dumitru G.

    2004-10-01

    The interest to use laser surface processing in microtechnology as a friendly method from the technologic and environmental point of view lead our studies about laser radiation interaction with photo-resist and metallic thin films. In this view we have tried in our experiments to process metallic thin films deposited on silicon substrate by using laser radiation. To obtain a good quality of the metallic thin film removal from the silicon surface a careful selection of the incident laser intensity, number of pulses and irradiation geometry is needed. The threshold value for the laser cleaning intensity depends on the number of incident laser pulses. A careful experimental estimation of the cleaning conditions from the point of view of incident laser energy, fluence, intensity and irradiation geometry was realized for aluminum, copper, and chromium thin films.

  9. Comparative first-principles study of clean-surface properties of metals

    Science.gov (United States)

    Patra, Abhirup; Sun, Jianwei; Perdew, John P.

    Metal surfaces are widely used in different applications from nano-devices to heterogeneous catalysis. Clean-surface properties such as the surface energy, work function and interlayer spacing importantly determine the behavior of metal surfaces. Prior work has been done to understand these properties using high-level methods including the local density approximation (LDA) and the generalized gradient approximation (PBE). In this work, we study (111) (100) and (110) surfaces of Pt, Pd, Cu, Al, Au, Ag, Rh and Ru by extrapolation from a finite number of layers. These surfaces are studied using SCAN, a new member of the computationally-efficient meta-GGA family of density functionals. We have compared the performance of SCAN and three other standard density functionals - LDA, PBE and PBEsol - to available experimental results. We find that the performance of the general-purpose SCAN is at the level of the more-specialized PBEsol, giving accurate metallic properties. Ref: Jianwei Sun, Adrienn Ruzsinszky, John P Perdew, Strongly Constrained and Appropriately Normed Semilocal Density Functional, Physical Review Letters115 (3), 036402 (2015). Supported by NSF under DMR-1305135, CNS-09-5884, and by DOE under DE-SC0012575, DE-AC02-05CH11231.

  10. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    Science.gov (United States)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  11. Cleaning and surface properties

    CERN Document Server

    Taborelli, M

    2007-01-01

    Principles of precision cleaning for ultra high vacuum applications are reviewed together with the techniques for the evaluation of surface cleanliness. Methods to verify the effectiveness of cleaning procedures are discussed. Examples are presented to illustrate the influence of packaging and storage on the recontamination of the surface after cleaning. Finally, the effect of contamination on some relevant surface properties, like secondary electron emission and wettability is presented.

  12. AN ELECTROLYTIC CIP-CLEANING PROCESS FOR REMOVING IMPURITIES FROM THE INNER SURFACE OF A METALLIC CONTAINER

    DEFF Research Database (Denmark)

    2008-01-01

    The invention relates to a novel electrolytic process for removing impurities from the inner surface of a metallic container. The process is particularly useful for cleaning process reactors used for culturing microorganisms, and storage tanks used for storing metabolites formed in the process...... reactor, as well as containers for dairy products....

  13. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2012-12-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  14. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2013-02-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  15. Negative transferred arc cleaning: a method for roughening and removing surface contamination from beryllium and other metallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Castro, R.G.; Hollis, K.J.; Maggiore, C.J.; Ayala, A.; Bartram, B.D. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.; Doerner, R.P. [California Univ., San Diego (United States). Fusion Energy Res.

    2000-04-01

    TA cleaning has been investigated for preparing the surface of beryllium plasma facing components (PFC's) inside of the international thermonuclear experimental reactor (ITER) prior to depositing beryllium by plasma spraying. Plasma spraying of beryllium was evaluated during the ITER engineering design activity (EDA) for in-situ repair and initial fabrication of the beryllium first wall armor. Results have shown that surface roughening of beryllium, during the TA cleaning process, can result in bond strengths greater than 100 MPa between beryllium surfaces and plasma sprayed beryllium. In addition, the TA cleaning process was shown to be an effective method for removing contaminate layers of carbon and tungsten from the surface of beryllium. Investigations have been performed to characterize the different arc-types that occur during the TA cleaning process (type I, I and III arcs) and the effectiveness of the TA cleaning process for potentially removing co-deposited layers of carbon and deuterium from the surface of beryllium, stainless steel and tungsten. (orig.)

  16. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  17. Clean Metal Finishing Alternatives

    Science.gov (United States)

    2006-05-01

    metals. Hard coating deposition unproven. 3 N/A Weld coating Electrospark Deposition / Alloying (ESD/ ESA) Microarc welding Localized repair of non...mostly soft metals. Hard coating deposition unproven. 3 N/A Weld coating Electrospark Deposition / Alloying (ESD/ ESA) Microarc welding Localized...microwelding process, electrospark deposition , ESD (or electrospark alloying, ESA), has been validated as a localized repair technology11. It is used by

  18. Demonstration/Validation of a Surface Cleaning Control Practice to Mitigate Storm Water Metal Contaminants

    Science.gov (United States)

    2014-04-01

    sites. Effective removal of contaminant loads can be used in meeting requirements under Total Maximum Daily Load compliance scenarios and potentially... scenarios . The technical approach to evaluate the effectiveness of particle, copper, and zinc removal was to measure their amounts collected and...scaffolding, metal piping and connectors, trailers, miscellaneous hardware; and 55-gal drums and wooden crates /wood storage. Additionally, the piers

  19. Demonstration/Validation of a Surface Cleaning Control to Mitigate Storm Water Metal Contaminants

    Science.gov (United States)

    2014-04-01

    sites. Effective removal of contaminant loads can be used in meeting requirements under Total Maximum Daily Load compliance scenarios and potentially... scenarios . The technical approach to evaluate the effectiveness of particle, copper, and zinc removal was to measure their amounts collected and...scaffolding, metal piping and connectors, trailers, miscellaneous hardware; and 55-gal drums and wooden crates /wood storage. Additionally, the piers

  20. Chemical Cleaning of Metal Surfaces in Vacuum Systems by Exposure to Reactive Gases.

    Science.gov (United States)

    1987-11-10

    Phys. Letters 39 (1976) 113. 196. P.E. Luscher , Surface Sci. 66 (1977) 167. 197. M. Housley and C.A. King, Surface Sci. 62 (1977) 81, 93. 193. M.K. Debe... Physics and Astronomy Barrows Hall University of Maine Orono, ME 04469 ............... November 10, 1987 Reproduction in whole or in part is permitted...Exposure to Reactive Gases M. Grunze*, H. Ruppender and 0. Elshazly Laboratory for Surface Science and Technology and Department of Physics and

  1. Cathodic ARC surface cleaning prior to brazing

    Energy Technology Data Exchange (ETDEWEB)

    Dave, V. R. (Vivek R.); Hollis, K. J. (Kendall J.); Castro, R. G. (Richard G.); Smith, F. M. (Frank M.); Javernick, D. A. (Daniel A.)

    2002-01-01

    Surface cleanliness is one the critical process variables in vacuum furnace brazing operations. For a large number of metallic components, cleaning is usually accomplished either by water-based alkali cleaning, but may also involve acid etching or solvent cleaning / rinsing. Nickel plating may also be necessary to ensure proper wetting. All of these cleaning or plating technologies have associated waste disposal issues, and this article explores an alternative cleaning process that generates minimal waste. Cathodic arc, or reserve polarity, is well known for welding of materials with tenacious oxide layers such as aluminum alloys. In this work the reverse polarity effect is used to clean austenitic stainless steel substrates prior to brazing with Ag-28%Cu. This cleaning process is compared to acid pickling and is shown to produce similar wetting behavior as measured by dynamic contact angle experiments. Additionally, dynamic contact angle measurements with water drops are conducted to show that cathodic arc cleaning can remove organic contaminants as well. The process does have its limitations however, and alloys with high titanium and aluminum content such as nickel-based superalloys may still require plating to ensure adequate wetting.

  2. Investigation of aluminum surface cleaning using cavitating fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ralys, Aurimas; Striška, Vytautas; Mokšin, Vadim [Vilnius Gediminas Technical University, Faculty of Mechanics, Department of Machine Engineering, J. Basanavičiaus str.28, 03224, Vilnius (Lithuania)

    2013-12-16

    This paper investigates efficiency of specially designed atomizer used to spray water and cavitate microbubbles in water flow. Surface cleaning system was used to clean machined (grinded) aluminum surface from abrasive particles. It is established that cleaning efficiency depends on diameter of the diffuser, water pressure and distance between nozzle and metal surface. It is obtained that the best cleaning efficiency (100%) is achieved at pressure 36 bar, when diameter of diffuser is 0.4 mm and distance between nozzle and surface is 1 mm. It is also established that satisfactory cleaning efficiency (80%) is achieved not only when atomizer is placed closer to metal surface, but also at larger (120 mm) distances.

  3. Energetic laser cleaning of metallic particles and surface damage on silica optics: investigation of the underlying mechanisms

    Science.gov (United States)

    Shen, Nan; Demos, Stavros G.; Negres, Raluca A.; Rubenchik, Alexander M.; Harris, Candace D.; Matthews, Manyalibo J.

    2015-11-01

    Surface particulate contamination on optics can lead to laser-induced damage hence limit the performance of high power laser system. In this work we focus on understanding the fundamental mechanisms that lead to damage initiation by metal contaminants. Using time resolved microscopy and plasma spectroscopy, we studied the dynamic process of ejecting ~30 μm stainless steel particles from the exit surface of fused silica substrate irradiated with 1064 nm, 10 ns and 355 nm, 8 ns laser pulses. Time-resolved plasma emission spectroscopy was used to characterize the energy coupling and temperature rise associated with single, 10-ns pulsed laser ablation of metallic particles bound to transparent substrates. Plasma associated with Fe(I) emission lines originating from steel microspheres was observe to cool from laser energy.

  4. Laser-assisted cleaning: Dominant role of surface

    Indian Academy of Sciences (India)

    J Padma Nilaya; D J Biswas

    2010-12-01

    Pulsed laser-assisted removal of particulates from substrates has decided advantages over the conventional methods of cleaning. Experiments conducted with loose contamination on metal and transparent dielectric surfaces proved conclusively the dominant role played by the absorption of the incident radiation by the surface towards the generation of the cleaning force as against the absorption in the particulates alone. Further, the presence of transparent/semi-transparent particulates on a metal surface was found to result in an increased absorption of the incident radiation by the substrate. This effect, identified as field-enhanced surface absorption was found to increase with reduction in the average particulate size.

  5. Electro-impulse Method of Surface Cleaning

    OpenAIRE

    Bekbolat R. Nussupbekov; Kappas Kussaynov; Аyanbergen К. Khassenov

    2013-01-01

    This article is focused on the qualitative assessment of the electro-impulse method of surface cleaning efficiency. Heat exchanger tubes are cleaned under the action of blast waves created by the high voltage discharge in the liquid. The article presents dependences of degree of surface purification on the impulse voltage at switching device and on spark rate

  6. Electro-impulse Method of Surface Cleaning

    Directory of Open Access Journals (Sweden)

    Bekbolat R. Nussupbekov

    2013-01-01

    Full Text Available This article is focused on the qualitative assessment of the electro-impulse method of surface cleaning efficiency. Heat exchanger tubes are cleaned under the action of blast waves created by the high voltage discharge in the liquid. The article presents dependences of degree of surface purification on the impulse voltage at switching device and on spark rate

  7. Cleaning Challenges of High-κ/Metal Gate Structures

    KAUST Repository

    Hussain, Muhammad Mustafa

    2010-12-20

    High-κ/metal gates are used as transistors for advanced logic applications to improve speed and eliminate electrical issues associated with polySi and SiO2 gates. Various integration schemes are possible and will be discussed, such as dual gate, gate-first, and gate-last, both of which require specialized cleaning and etching steps. Specific areas of discussion will include cleaning and conditioning of the silicon surface, forming a high-quality chemical oxide, removal of the high-κ dielectric with selectivity to the SiO2 layer, cleaning and residue removal after etching, and prevention of galvanic corrosion during cleaning. © 2011 Scrivener Publishing LLC. All rights reserved.

  8. UV/Ozone Cleaning of Surfaces

    Science.gov (United States)

    1986-05-01

    clean surfaces under UV radiation maintained the surface cleanliness indefinitely. Duting the period 1974-1976, Vig et al.( 3 - 5 ) described a series of...probably no other device of which the performance is so critically dependent upon surface cleanliness . For example, the aging requirement for one 5 MHz...such a device changes the frequency by about one part in 106. The surface cleanliness must therefore be such that the rate of contamination transfer

  9. Laser cleaning of polymer surfaces

    OpenAIRE

    Fourrier, T.; Schrems, Gernot; Mühlberger, T.; Heitz, Johannes; Arnold, Nikita; Bäuerle, Dieter; Mosbacher, Mario; Boneberg, Johannes; Leiderer, Paul

    2001-01-01

    We have investigated the removal of small spherical particles from polymer surfaces by means of 193-nm ArF and 248-nm KrF laser light. Polystyrene (PS) particles with diameters in the range of 110 nm to 1700 nm and silica particles (SiO2) with sizes of 400 nm and 800 nm are successfully removed from two different substrates, polyimide (PI) and polymethylmethacrylate (PMMA). Experiments were performed in air (23°C, relative humidity 24% 28%) and in an environment with a relative humidity (RH) ...

  10. Self-cleaning surfaces - virtual realities

    Science.gov (United States)

    Blossey, Ralf

    2003-05-01

    In the 19th century, Oscar Wilde stated ``We live, I regret to say, in an age of surfaces''. Today, we do so even more, and we do not regret it: key advances in the understanding and fabrication of surfaces with controlled wetting properties are about to make the dream of a contamination-free (or 'no-clean') surface come true. Two routes to self-cleaning are emerging, which work by the removal of dirt by either film or droplet flow. Although a detailed understanding of the mechanisms underlying the behaviour of liquids on such surfaces is still a basic research topic, the first commercial products in the household-commodity sector and for applications in biotechnology are coming within reach of the marketplace. This progress report describes the current status of understanding of the underlying mechanisms, the concepts for making such surfaces, and some of their first applications.

  11. Self-cleaning surfaces--virtual realities.

    Science.gov (United States)

    Blossey, Ralf

    2003-05-01

    In the 19th century, Oscar Wilde stated "We live, I regret to say, in an age of surfaces". Today, we do so even more, and we do not regret it: key advances in the understanding and fabrication of surfaces with controlled wetting properties are about to make the dream of a contamination-free (or 'no-clean') surface come true. Two routes to self-cleaning are emerging, which work by the removal of dirt by either film or droplet flow. Although a detailed understanding of the mechanisms underlying the behaviour of liquids on such surfaces is still a basic research topic, the first commercial products in the household-commodity sector and for applications in biotechnology are coming within reach of the marketplace. This progress report describes the current status of understanding of the underlying mechanisms, the concepts for making such surfaces, and some of their first applications.

  12. Photocatalytic Solutions Create Self-Cleaning Surfaces

    Science.gov (United States)

    2013-01-01

    A Stennis Space Center researcher investigating the effectiveness of photocatalytic materials for keeping the Center's buildings free of grime turned to a solution created by PURETi Inc. of New York City. Testing proved successful, and NASA and the company now share a Dual Use Technology partnership. PURETi's coatings keep surfaces clean and purify surrounding air, eliminating pollution, odors, and microbes.

  13. Bio-Inspired Polymer Membrane Surface Cleaning

    Directory of Open Access Journals (Sweden)

    Agnes Schulze

    2017-03-01

    Full Text Available To generate polyethersulfone membranes with a biocatalytically active surface, pancreatin was covalently immobilized. Pancreatin is a mixture of digestive enzymes such as protease, lipase, and amylase. The resulting membranes exhibit self-cleaning properties after “switching on” the respective enzyme by adjusting pH and temperature. Thus, the membrane surface can actively degrade a fouling layer on its surface and regain initial permeability. Fouling tests with solutions of protein, oil, and mixtures of both, were performed, and the membrane’s ability to self-clean the fouled surface was characterized. Membrane characterization was conducted by investigation of the immobilized enzyme concentration, enzyme activity, water permeation flux, fouling tests, porosimetry, X-ray photoelectron spectroscopy, and scanning electron microscopy.

  14. Organogel-based thin films for self-cleaning on various surfaces.

    Science.gov (United States)

    Liu, Hongliang; Zhang, Pengchao; Liu, Mingjie; Wang, Shutao; Jiang, Lei

    2013-08-27

    Self-cleaning on various surfaces is obtained using the facile approach of modifying the surface with a thin organogel film. The film not only absorbs oil but also holds it in a crosslinked network, which endows the material with excellent self-cleaning properties. This facile method can be applied to various common engineering metals.

  15. 40 CFR 761.369 - Pre-cleaning the surface.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Pre-cleaning the surface. 761.369... PROHIBITIONS Double Wash/Rinse Method for Decontaminating Non-Porous Surfaces § 761.369 Pre-cleaning the surface. If visible PCB-containing liquid is present on the surface to be cleaned, thoroughly wipe or...

  16. Economic Floating Waste Detectionfor Surface Cleaning Robots

    Directory of Open Access Journals (Sweden)

    Sumroengrit Jakkrit

    2017-01-01

    Full Text Available Removing waste out of water surface is a routine task and can be operated by using autonomous surface cleaning robots. This paper presents amethodoflaser-based floating waste detection for surface robot guidance when waste positions are unknown beforehand. Basing on concept of refraction and reflection of laser ray, the proposed laser-based technique is proven to be applicable on floating waste detection. The economic waste detector is constructed and mounted on the robot. Five DOF equations of motion are formulated for calculation of waste position incorporating distance measured by the laser and also the robot motion caused by external wind force as well as water surface tension. Experiments were conducted on a pond with calm water and results show that the presented economic waste detection successfully identify and locate position of plastic bottles floating on water surface within the range of 5 meters.

  17. Adhesion, friction, and wear behavior of clean metal-ceramic couples

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1995-01-01

    When a clean metal is brought into contact with a clean, harder ceramic in ultrahigh vacuum, strong bonds form between the two materials. The interfacial bond strength between the metal and ceramic surfaces in sliding contact is generally greater than the cohesive bond strength in the metal. Thus, fracture of the cohesive bonds in the metal results when shearing occurs. These strong interfacial bonds and the shearing fracture in the metal are the main causes of the observed wear behavior and the transfer of the metal to the ceramic. In the literature, the surface energy (bond energy) per unit area of the metal is shown to be related to the degree of interfacial bond strength per unit area. Because the two materials of a metal-ceramic couple have markedly different ductilities, contact can cause considerable plastic deformation of the softer metal. It is the ductility of the metal, then, that determines the real area of contact. In general, the less ductile the metal, the smaller the real area of contact. The coefficient of friction for clean surfaces of metal-ceramic couples correlates with the metals total surface energy in the real area of contact gamma A (which is the product of the surface energy per unit area of the metal gamma and the real area of contact (A)). The coefficient of friction increases as gamma A increases. Furthermore, gamma A is associated with the wear and transfer of the metal at the metal-ceramic interface: the higher the value of gamma A, the greater the wear and transfer of the metal.

  18. Surface magnetic enhancement for coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1992-01-01

    The program consisted of a fundamental study to define the chemistry for the interactions between magnetic reagent and mineral and coal particles, a laboratory study to determine the applicability of this technology on coal cleaning, and a parameter study to evaluate the technical and economical feasibility of this technology for desulfurization and de-ashing under various processing schemes. Surface magnetic enhancement using magnetic reagent is a new technology developed at the Institute. This technology can be applied to separate pyrite and other minerals particles from coal with a magnetic separation after adsorbing magnetic reagent on the surface of pyrite and other minerals particles. Particles which have absorbed magnetic reagent are rendered magnetic. The adsorption can be controlled to yield selectivity. Thus, the separation of traditionally nonmagnetic materials with a magnetic separator can be achieved. Experiments have been performed to demonstrate the theoretical fundamentals and the applications of the technology. Adsorbability, adsorption mechanisms, and adsorption selectivity are included in the fundamental study. The effects of particle size, magnetic reagent dosage, solid contents, magnetic matrix, applied magnetic field strengths, retention times, and feed loading capacities are included in the application studies. Three coals, including Illinois No. 6, Lower Kittanning and Pocahontas seams, have been investigated. More than 90% pyritic sulfur and ash reductions have been achieved. Technical and economic feasibilities of this technology have been demonstrated in this study. Both are competitive to that of the froth flotation approach for coal cleaning.

  19. Directional self-cleaning superoleophobic surface.

    Science.gov (United States)

    Zhao, Hong; Law, Kock-Yee

    2012-08-14

    In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self-cleaning

  20. Gas-Phase Chemical Cleaning of Silicon Surfaces.

    Science.gov (United States)

    Bedge, Satish

    Wafer fabrication is a critical and frequently encountered step in the microfabrication of integrated circuits. Efforts to replace conventional wet chemical processes (e.g., the RCA clean) with alternatives employing gaseous reagents are motivated by the stringent chemical purity requirements of ultra-large-scale integration (ULSI), the industry-wide trend towards dry processing, and strict environmental discharge regulations. These new cleaning processes seek to utilize reactive neutral species, such as ozone, atomic oxygen and atomic hydrogen, to effect the removal of organic, native-oxide, and metallic microcontamination. Ultraviolet (UV) photo-oxidation processes (e.g., UV/air and UV/ozone), which employ ozone, atomic oxygen and hydroxyl radical to remove organic contaminants and grow a thin oxide layer, and hydrogen plasma cleaning, which employs atomic hydrogen to remove organics and native oxide and yield a hydrogen -terminated surface, were investigated. The primary experimental techniques were infrared multiple internal reflection spectroscopy (MIRS), Auger electron spectroscopy (AES), and low-energy electron diffraction (LEED). MIRS evidenced that UV/air photo-oxidation of Pentadecanoic acid films is first-order in CH_{rm x} (x = 2 and 3) concentration. The activation energies for cyclohexane photo-oxidation and Si surface oxidation, at 100 mTorr are both very small ~2 -3 kcal mol^{-1}. Characterization by MIRS of hydrogen plasma treated Si surfaces evidences the formation of hydrogen-decorated sub-surface defects; infrared bands are observed corresponding to monohydride, dihydride and trihydride configurations. The substrate temperature during hydrogen plasma treatment and the substrate phosphorous-doping level have strong effects on defect formation. In addition, the in situ photochemical production of ozone was modeled using the kinetics of elementary steps as reported in the atmospheric chemistry literature. In a prelude to on-going research on

  1. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  2. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    van der Molen, R.; Joosten, I.; Beentjes, T.; Megens, L.; Mardikian, P.; Chemello, C.; Watters, C.; Hull, P.

    2011-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  3. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    van der Molen, R.; Joosten, I.; Beentjes, T.; Megens, L.; Mardikian, P.; Chemello, C.; Watters, C.; Hull, P.

    2011-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  4. Dry ice blasting for the conservation cleaning of metals

    NARCIS (Netherlands)

    R. van der Molen; I. Joosten; T. Beentjes; L. Megens

    2010-01-01

    This research was carried out to assess the feasibility of dry ice blasting as a replacement for solvent cleaning for the removal of organic layers from metal cultural heritage objects. The effects of dry ice blasting on test samples of aluminium, bronze and weathering steel were studied along with

  5. GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    Energy Technology Data Exchange (ETDEWEB)

    Li Zaijin; Hu Liming; Wang Ye; Yang Ye; Peng Hangyu; Zhang Jinlong; Qin Li; Liu Yun; Wang Lijun, E-mail: lizaijin@126.co [Key Laboratory of Excited State Processes, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2010-03-15

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH{sub 4}OH:H{sub 2}O{sub 2}:H{sub 2}O = 1:1:10 solution and HCl: H{sub 2}O{sub 2}:H{sub 2}O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH{sub 4}OH:H{sub 2}O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology. (semiconductor technology)

  6. Humus-assisted cleaning of heavy metal contaminated soils

    Science.gov (United States)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  7. Control System Design for a Surface Cleaning Robot

    Directory of Open Access Journals (Sweden)

    Zhai Yuyi

    2013-05-01

    Full Text Available This paper aims to study a control system for a surface cleaning robot and the focus of the study is the surface cleaning robot controller design. The structural framework of the propulsion control system of the surface robot is designed based on the principle of PWM speed control. The function of each module in the control system is divided and described in detail. A kind of thinking based on an AVR microprocessor and its software and hardware design proposals are presented. Through RS485 and PC communication according to the agreed protocol, the control system achieves robot forward, backward, turn and work operations by the use of a DC motor or stepper motor, and it can therefore more successfully realize the work of a surface cleaning robot.

  8. Hierarchical surfaces for enhanced self-cleaning applications

    Science.gov (United States)

    Fernández, Ariadna; Francone, Achille; Thamdrup, Lasse H.; Johansson, Alicia; Bilenberg, Brian; Nielsen, Theodor; Guttmann, Markus; Sotomayor Torres, Clivia M.; Kehagias, Nikolaos

    2017-04-01

    In this study we present a flexible and adaptable fabrication method to create complex hierarchical structures over inherently hydrophobic resist materials. We have tested these surfaces for their superhydrophobic behaviour and successfully verified their self-cleaning properties. The followed approach allow us to design and produce superhydrophobic surfaces in a reproducible manner. We have analysed different combination of hierarchical micro-nanostructures for their application to self-cleaning surfaces. A static contact angle value of 170° with a hysteresis of 4° was achieved without the need of any additional chemical treatment on the fabricated hierarchical structures. Dynamic effects were analysed on these surfaces, obtaining a remarkable self-cleaning effect as well as a good robustness over impacting droplets.

  9. Laser shock cleaning of radioactive particulates from glass surface

    Science.gov (United States)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Afzal, Mohd.; Kumar, Arun; Nilaya, J. P.; Biswas, D. J.

    2014-06-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from glass surface was achieved by Nd-YAG laser induced airborne plasma shock waves. The velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures and the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The efficacy of the process was estimated monitoring the alpha activity of the samples before and after laser shock cleaning using a ZnS (Ag) scintillation detector. Significant cleaning efficiency could be achieved when the substrate was exposed to multiple laser shocks that could be further improved by geometrically confining the plasma. No visual damage or loss in optical quality was observed when the shock cleaned surfaces were analysed by optical microscopy and spectrophotometry. The area cleaned by laser shock cleaning was found to be significantly larger than that possible by conventional laser cleaning. Theoretical estimate of the shock force generated has been found to exceed the van der Waal`s binding force for spherical contaminant particulate.

  10. Study on surface properties of gilt-bronze artifacts, after Nd:YAG laser cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeyoun [Division of Restoration Technology, National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of); Cho, Namchul, E-mail: nam1611@hanmail.net [Department of Cultural Heritage Conservation Science, Kongju National University, Gongju, 314-701 (Korea, Republic of); Lee, Jongmyoung [Laser Engineering Group, IMT Co. Ltd, Gyeonggi (Korea, Republic of)

    2013-11-01

    As numerous pores are formed at plating gilt-bronze artifacts, the metal underlying the gold is corroded and corrosion products are formed on layer of gold. Through this study, the surfaces of gilt-bronze are being investigated before and after the laser irradiation to remove corrosion products of copper by using Nd:YAG laser. For gilt-bronze specimens, laser and chemical cleaning were performed, and thereafter, surface analysis with SEM-EDS, AFM, and XPS were used to determine the surface characteristics. Experimental results show that chemical cleaning removes corrosion products of copper through dissolution but it was not removed uniformly and separated the metal substrate and the gold layer. Nevertheless, through laser cleaning, some of the corrosions were removed with some damaged areas due to certain conditions and brown residues remained. Brown residues were copper corrosion products mixed with soil left within the gilt layer. It was due to surface morphology of uneven and rough gilt layer. Hence, they did not react effectively to laser beams, and thus, remained as residues. The surface properties of gilt-bronze should be thoroughly investigated with various surface analyses to succeed in laser cleaning without damages or residues.

  11. Monitoring and improving the effectiveness of surface cleaning and disinfection.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2016-05-02

    Disinfection of noncritical environmental surfaces and equipment is an essential component of an infection prevention program. Noncritical environmental surfaces and noncritical medical equipment surfaces may become contaminated with infectious agents and may contribute to cross-transmission by acquisition of transient hand carriage by health care personnel. Disinfection should render surfaces and equipment free of pathogens in sufficient numbers to prevent human disease (ie, hygienically clean).

  12. Gas storage in porous metal-organic frameworks for clean energy applications.

    Science.gov (United States)

    Ma, Shengqian; Zhou, Hong-Cai

    2010-01-07

    Depletion of fossil oil deposits and the escalating threat of global warming have put clean energy research, which includes the search for clean energy carriers such as hydrogen and methane as well as the reduction of carbon dioxide emissions, on the urgent agenda. A significant technical challenge has been recognized as the development of a viable method to efficiently trap hydrogen, methane and carbon dioxide gas molecules in a confined space for various applications. This issue can be addressed by employing highly porous materials as storage media, and porous metal-organic frameworks (MOFs) which have exceptionally high surface areas as well as chemically-tunable structures are playing an unusual role in this respect. In this feature article we provide an overview of the current status of clean energy applications of porous MOFs, including hydrogen storage, methane storage and carbon dioxide capture.

  13. Injection molded self-cleaning surfaces

    DEFF Research Database (Denmark)

    Søgaard, Emil

    This PhD thesis concerns the development of superhydrophobic surfaces fabricated by injection molding. Today, injection molding is the prevalent production method for consumer plastic products. However, concerns regarding the environmental impact of a plastic production are increasing, especially...... that are superhydrophobic based on topography rather than chemical compounds. Therefore, a novel method for fabricating superhydrophobic polymer surfaces with excellent water-repellant properties is developed. The method is based on microstructure fabrication and superposed nanostructures on silicon wafers. The nano......° for structured surfaces with a drop roll-off angle of less than 2°. Thereby, it is shown that an extremely water repellant surface can be injection molded directly with clear perspectives for more environmental and healthier plastic consumer products....

  14. [Physicochemical fundamentals on the cleaning of hard surfaces (author's transl)].

    Science.gov (United States)

    Schwuger, M J; Kurzendörfer, C P

    1979-03-01

    The primary process in the cleaning of hard surfaces is the adsorption of the active substance of the detergent at the interfaces: liquid/gas, liquid/liquid, liquid/solid. This primary step in the cleaning process induces secondary processes which in turn are responsible for the soil removal from the surface of the substrate. The first requirement for a cleaning effect is that the dirt and the substrate be well wetted by the cleaning solution as a result of a reduction in surface tension and of the adsorption at the solid/liquid interface. The further secondary processes which effect the removal of dirt vary considerably, depending on the type of dirt (e.g. oils, pigments). In the case of oily and greasy dirt, rolling-up penetration, formation of mixed phases, emulsification and solubilization are of importance. For pigments, the surface pressure of the adsorption layer and the electrostatic repulsion are the determining factors. The processes of pigment dispersion, emulsification and solubilization are, in addition, extremely important for the stabilization of the dirty wash bath and the prevention of deposits on the substrate. The essential active substances of the detergents are surfactant and complexing agents, the first being unspecifically adsorbed by hydrophobic interactions, and the latter specifically by polar interactions. They influence one another mutually and are responsible for an optimal cleaning effect when they occur in suitable mixing ratios; the special constitutional characteristics of the individual surfactant and complexing agents, must also be considered.

  15. Biomimetic self-cleaning surfaces: synthesis, mechanism and applications.

    Science.gov (United States)

    Xu, Quan; Zhang, Wenwen; Dong, Chenbo; Sreeprasad, Theruvakkattil Sreenivasan; Xia, Zhenhai

    2016-09-01

    With millions of years of natural evolution, organisms have achieved sophisticated structures, patterns or textures with complex, spontaneous multifunctionality. Among all the fascinating characteristics observed in biosystems, self-cleaning ability is regarded as one of the most interesting topics in biomimicry because of its potential applications in various fields such as aerospace, energy conversion and biomedical and environmental protection. Recently, in-depth studies have been carried out on various compelling biostructures including lotus leaves, shark skins, butterfly wings and gecko feet. To understand and mimic their self-cleaning mechanisms in artificial structures, in this article, recent progress in self-cleaning techniques is discussed and summarized. Based on the underlying self-cleaning mechanisms, the methods are classified into two categories: self-cleaning with water and without water. The review gives a succinct account of the detailed mechanisms and biomimetic processes applied to create artificial self-cleaning materials and surfaces, and provides some examples of cutting-edge applications such as anti-reflection, water repellence, self-healing, anti-fogging and micro-manipulators. The prospectives and directions of future development are also briefly proposed.

  16. Lipophilic super-absorbent polymer gels as surface cleaners for oil and grease from metal and non-metal surfaces

    Science.gov (United States)

    The objective of this research is to develop a new cleaning technology based on lipophilic super-absorbent swelling gels for the removal of oil, grease and particulate matters from metal and non-metal surfaces. It is desired that the cleaner is in solid form and is VOC-exempt, HAP-free, non-toxic, n...

  17. SEMICONDUCTOR TECHNOLOGY: GaAs surface wet cleaning by a novel treatment in revolving ultrasonic atomization solution

    Science.gov (United States)

    Zaijin, Li; Liming, Hu; Ye, Wang; Ye, Yang; Hangyu, Peng; Jinlong, Zhang; Li, Qin; Yun, Liu; Lijun, Wang

    2010-03-01

    A novel process for the wet cleaning of GaAs surface is presented. It is designed for technological simplicity and minimum damage generated within the GaAs surface. It combines GaAs cleaning with three conditions consisting of (1) removal of thermodynamically unstable species and (2) surface oxide layers must be completely removed after thermal cleaning, and (3) a smooth surface must be provided. Revolving ultrasonic atomization technology is adopted in the cleaning process. At first impurity removal is achieved by organic solvents; second NH4OH:H2O2:H2O = 1:1:10 solution and HCl: H2O2:H2O = 1:1:20 solution in succession to etch a very thin GaAs layer, the goal of the step is removing metallic contaminants and forming a very thin oxidation layer on the GaAs wafer surface; NH4OH:H2O = 1:5 solution is used as the removed oxide layers in the end. The effectiveness of the process is demonstrated by the operation of the GaAs wafer. Characterization of the oxide composition was carried out by X-ray photoelectron spectroscopy. Metal-contamination and surface morphology was observed by a total reflection X-ray fluorescence spectroscopy and atomic force microscope. The research results show that the cleaned surface is without contamination or metal contamination. Also, the GaAs substrates surface is very smooth for epitaxial growth using the rotary ultrasonic atomization technology.

  18. Electrochemical 'bubble swarm' enhancement of ultrasonic surface cleaning.

    Science.gov (United States)

    Birkin, P R; Offin, D G; Vian, C J B; Leighton, T G

    2015-09-07

    An investigation of surface cleaning using a swarm of gas bubbles within an acoustically activated stream is presented. Electrolysis of water at Pt microwires (100 μm diameter) to produce both hydrogen and oxygen bubbles is shown to enhance the extent of ultrasonic surface cleaning in a free flowing water stream containing an electrolyte (0.1 M Na2SO4) and low surfactant concentration (2 mM SDS). The surfactant was employed to allow control of the average size of the bubble population within the swarm. The electrochemical bubble swarm (EBS) is shown to perturb acoustic transmission through the stream. To optimise the cleaning process both the ultrasonic field and the electrochemical current are pulsed and synchronized but with different duty cycles. Cleaning action is demonstrated on structured surfaces (porcine skin and finger mimics) loaded with fluorescent particles. This action is shown to be significantly enhanced compared to that found with an inherent bubble population produced by the flow and acoustic regime alone under the same conditions.

  19. [The investigation of ultrasound efficacy in cleaning the surface of new endodontic instruments].

    Science.gov (United States)

    Popović, Jelena; Gasić, Jovanka; Radicević, Goran

    2009-01-01

    Active parts and tips of various new stainless steel and nickel-titanium endodontic instruments can be coated with fragments or metal residues, which can become detached during endodontic treatment. These fragments may obstruct the root canals or even reach the periapical tissue during biomechanical preparation and should be removed before clinical use. The aim of this study was to evaluate the presence of metal residues on both new stainless steel and nickel-titanium endodontic instruments, and to determine the cleaning efficacy of ultrasound using distilled water or disinfectant solution for removing these residues. Forty-eight stainless steel and nickel-titanium instruments were carefully removed from their original packages with dental tweezers, in order to avoid any contact with the cutting flutes and tips. The instruments were evaluated in term of metal debris presence, using scanning electron microscopy (SEM) and x-ray energy-dispersive spectroscopy (EDS). The instruments were then removed from the electron microscopy analysis stubs and placed in an ultrasonic bath for 15 minutes at a frequency of 28 kHz, using distilled water or disinfectant solution. The surfaces of the instruments were re-evaluated after cleaning. Before ultrasound cleaning, a larger amount of metal debris was observed on the nickel-titanium endodontic instruments when compared to those made of stainless steel. The presence of metal particles on the instruments was evaluated by using EDS analysis. The use of ultrasound was effective in removing the metal residues from both types of endodontic instrument surfaces. The use of ultrasound proved to be an efficient method for the removal of metal particles from the surface of new stainless steel and nickel-titanium endodontic instruments.

  20. Bioinspired superhydrophobic, self-cleaning and low drag surfaces

    Science.gov (United States)

    Bhushan, Bharat

    2013-09-01

    Nature has evolved objects with desired functionality using commonly found materials. Nature capitalizes on hierarchical structures to achieve functionality. The understanding of the functions provided by objects and processes found in nature can guide us to produce nanomaterials, nanodevices, and processes with desirable functionality. This article provides an overview of four topics: (1) Lotus Effect used to develop superhydrophobic and self-cleaning/antifouling surfaces with low adhesion, (2) Shark Skin Effect to develop surfaces with low fluid drag and anti-fouling characteristics, and (3-4) Rice Leaf and Butterfly Wing Effect to develop superhydrophobic and self-cleaning surfaces with low drag. Rice Leaf and Butterfly Wings combine the Shark Skin and Lotus Effects.

  1. Comparative Investigation of Mo(CO)6 Adsorption on Clean and Oxidized Si(111) Surfaces

    Institute of Scientific and Technical Information of China (English)

    Zhi-quan Jiang; Wei-xin Huang

    2011-01-01

    Mo(CO)6 adsorption on the clean,oxygen-precovered and deeply oxidized Si(lll) surfaces was comparatively investigated by high-resolution electron energy loss spectroscopy.The downward vibrational frequency shift of the C-O stretching mode in adsorbed Mo(CO)6 illustrates that different interactions of adsorbed Mo(CO)6 occur on clean Si(lll) and SiO2/Si(lll) surfaces,weak on the former and strong on the latter.The strong interaction on SiO2/Si(111) might lead to the partial dissociation of Mo(CO)6,consequently the formation of molybdenum subcarbonyls.Therefore,employing Mo(CO)6 as the precursor,metallic molybdenum could be successfully deposited on the SiO2/Si(111) surface but not on the clean Si(111) surface.A portion of the deposited metallic molybdenum is transformed into the MoO3 on the SiO2/Si(111) surface upon heating,and the evolved MoO3 finally desorbs from the substrate upon annealing at elevated temperatures.

  2. Are Vicinal Metal Surfaces Stable?

    DEFF Research Database (Denmark)

    Frenken, J. W. M.; Stoltze, Per

    1999-01-01

    We use effective medium theory to demonstrate that the energies of many metal surfaces are lowered when these surfaces are replaced by facets with lower-index orientations. This implies that the low-temperature equilibrium shapes of many metal crystals should be heavily faceted. The predicted ins...

  3. Corrosion-resistant metal surfaces

    Science.gov (United States)

    Sugama, Toshifumi [Wading River, NY

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  4. Realization of a Service Robot for Cleaning Spherical Surfaces

    Directory of Open Access Journals (Sweden)

    Guanghua Zong

    2008-11-01

    Full Text Available There are more and more buildings with complicated shape emerging all over the world. Their walls require constant cleaning which is difficult to realize. In this paper, based on analyzing the characteristics of the working target,a new kind of auto-climbing robot is proposed, which is used for cleaning the spherical surface of the National GrandTheatre in China. The robots' mechanism and unique aspects are presented in detail. A distributed controller based onCAN bus is designed to meet the requirements of controlling the robot. The control system is divided into 6 parts, fiveCAN bus control nodes and a remote controller, which are designed and established based mainly on the P80C592.Finally, the motion function is described in detail. The experimental results confirm the principle described above andthe robot's ability to work on the spherical surface.

  5. Realization of a Service Robot for Cleaning Spherical Surfaces

    Directory of Open Access Journals (Sweden)

    Houxiang Zhang

    2005-03-01

    Full Text Available There are more and more buildings with complicated shape emerging all over the world. Their walls require constant cleaning which is difficult to realize. In this paper, based on analyzing the characteristics of the working target, a new kind of auto-climbing robot is proposed, which is used for cleaning the spherical surface of the National GrandTheatre in China. The robots' mechanism and unique aspects are presented in detail. A distributed controller based onCAN bus is designed to meet the requirements of controlling the robot. The control system is divided into 6 parts, fiveCAN bus control nodes and a remote controller, which are designed and established based mainly on the P80C592. Finally, the motion function is described in detail. The experimental results confirm the principle described above andthe robot's ability to work on the spherical surface.

  6. Metallic surfaces decontamination by using laser light

    Energy Technology Data Exchange (ETDEWEB)

    Moggia, Fabrice [AREVA, Back End Business Group, Clean-Up Business Unit, Gif-sur-Yvette (France); Lecardonnel, Xavier [AREVA, Back End Business Group, Clean-Up Business Unit,La Hague (France)

    2013-07-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  7. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning and household bleach

    NARCIS (Netherlands)

    Kusumaningrum, H.D.; Paltinaite, R.; Koomen, A.J.; Hazeleger, W.C.; Rombouts, F.M.; Beumer, R.R.

    2003-01-01

    Effective cleaning and sanitizing of food preparation sites is important because pathogens are readily spread to food contact surfaces after preparation of contaminated raw products. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning by wiping with regular, microfiber,

  8. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning and household bleach

    NARCIS (Netherlands)

    Kusumaningrum, H.D.; Paltinaite, R.; Koomen, A.J.; Hazeleger, W.C.; Rombouts, F.M.; Beumer, R.R.

    2003-01-01

    Effective cleaning and sanitizing of food preparation sites is important because pathogens are readily spread to food contact surfaces after preparation of contaminated raw products. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning by wiping with regular, microfiber,

  9. Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Tritsaris, G. A.; Rossmeisl, J.

    2012-01-01

    Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....

  10. Evaluation of surface sampling method performance for Bacillus Spores on clean and dirty outdoor surfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Einfeld, Wayne; Boucher, Raymond M.; Brown, Gary Stephen; Tezak, Matthew Stephen

    2011-06-01

    Recovery of Bacillus atrophaeous spores from grime-treated and clean surfaces was measured in a controlled chamber study to assess sampling method performance. Outdoor surfaces investigated by wipe and vacuum sampling methods included stainless steel, glass, marble and concrete. Bacillus atrophaeous spores were used as a surrogate for Bacillus anthracis spores in this study designed to assess whether grime-coated surfaces significantly affected surface sampling method performance when compared to clean surfaces. A series of chamber tests were carried out in which known amounts of spores were allowed to gravitationally settle onto both clean and dirty surfaces. Reference coupons were co-located with test coupons in all chamber experiments to provide a quantitative measure of initial surface concentrations of spores on all surfaces, thereby allowing sampling recovery calculations. Results from these tests, carried out under both low and high humidity conditions, show that spore recovery from grime-coated surfaces is the same as or better than spore recovery from clean surfaces. Statistically significant differences between method performance for grime-coated and clean surfaces were observed in only about half of the chamber tests conducted.

  11. How to care for and clean optical surfaces

    Directory of Open Access Journals (Sweden)

    Ismael Cordero

    2010-12-01

    Full Text Available Many ophthalmic devices have optical components such as windows, lenses, mirrors, filters, and prisms; even very small irregularities (such as scratches can cause unwanted scattering of light which reduces quality. The surfaces of lenses, prisms, and windows are often coated with an antireflective layer to prevent loss of light due to reflection. Mirrors have a highly reflecting coating to get maximum reflection of light. Filters have coatings to cut out undesired wavelengths. The coatings are very thin and delicate and can be damaged by improper handling and cleaning.By following these suggestions, you will help ensure that all of the optical surfaces in your eye care equipment perform optimally.

  12. Producing lasting amphiphobic building surfaces with self-cleaning properties

    Science.gov (United States)

    Facio, Dario S.; Carrascosa, Luis A. M.; Mosquera, María J.

    2017-06-01

    Nowadays, producing building surfaces that prevent water and oil uptake and which present self-cleaning activity is still a challenge. In this study, amphiphobic (superhydrophobic and oleophobic) building surfaces were successfully produced. A simple and low-cost process was developed, which is applicable to large-scale building surfaces, according the following procedure: (1) by spraying a SiO2 nanocomposite which produces a closely-packed nanoparticle uniform topography; (2) by functionalizing the previous coating with a fluorinated alkoxysilane, producing high hydrophobicity and oleophobicity. The formation of a Cassie-Baxter regime, in which air pockets could be trapped between the aggregates of particles, was confirmed by topographic study. The building surface demonstrated an excellent self-cleaning performance. Finally, the surface presented lasting superhydrophobicity with high stability against successive attachment/detachment force cycles. This high durability can be explained by the effective grafting of the silica nanocomposite coating skeleton with the substrate, and with the additional fluorinated coating produced by condensation reactions.

  13. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  14. SURFACE MODIFICATION AND DISPERSION OF NANODIAMOND IN CLEAN OIL

    Institute of Scientific and Technical Information of China (English)

    Yongwei Zhu; Xiangyang Xu; Baichun Wang; Zhijing Feng

    2004-01-01

    The effect of different kinds of surfactants on the size distribution of nanodiamond particles in clean oil was studied. Results show that the dispersing stability of nanodiamond modified with surfactants YS-1 and SB-18 simultaneously is much better than those modified with either of them because of synergism of the surfactants. And the particle size distribution in the system can be improved remarkably after the adoption of hyperdispersants such as SA-E and SA-F. Anchoring groups of those hyperdispersants can be bonded with the particle surface by chemical and/or hydrogen bonding and their soluble chains are well compatible with the dispersion media. As a result, the particles are uniformly distributed in the system owing to the steric stabilization. A very stable clean-oil based nanodiamond suspension with an average particle size of around 53.2 nm was prepared.

  15. Composition and method for cleaning hydrocarbon oil from hard surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Blezard, M.; Mcallister, W.H.

    1983-09-28

    Hydrocarbon oils are cleaned from hard, inorganic surfaces by the application of an aqueous solution, such as seawater, containing a mixture of alkoxylated alcohol, carboxylic acid, alkyl phenol, or nonionic phosphate ester, with an alkyl mono- or di-ethanolamide or an ethoxylated or polyethoxylated alkyl mono- or di-ethanolamide. The method is of particular value for cleaning drilling oil from rock cuttings in offshore drilling operations, such as cold North Sea installations. Specific examples are a C10 primary alcohol, which is ethoxylated with 5 moles of ethylene oxide, mixed with a coconut diethanolamide. Typically, the mixture is supplied as a concentrate which is dissolved in, or diluted with, water to provide the cleansing solution at the site of the rig. 21 claims.

  16. Modeling of surface cleaning by cavitation bubble dynamics and collapse.

    Science.gov (United States)

    Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung

    2016-03-01

    Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.

  17. Paint removal and surface cleaning using ice particles

    Science.gov (United States)

    Foster, Terry; Visaisouk, S.

    1995-04-01

    Research into the possibility of using ice particles as a blast medium was first initiated at Defence Research Establishment Pacific (DREP) in an effort to develop a more environmentally acceptable paint removal method. A paint removal process was also required that could be used in areas where normal grit blasting could not be used due to the possibility of the residual blasting grit contaminating machinery and other equipment. As a result of this research a commercial ice blasting system was developed by RETECH. This system is now being used to remove paint from substrates that cannot be easily blasted by conventional techniques and also to clean soiled or contaminated surfaces. The problems involved in the development of an ice blast system and its components and their functions are described. Due to the complexity of paint removal using ice blasting, parameters such as air pressure, ice particle size and ice particle flow rate were studied and adjusted to suit the nature of the particular coating and substrate of interest. The mechanism of paint removal by ice particles has also been investigated. A theoretical model has been developed to explain the different paint removal mechanisms such as erosion by abrasion and erosion by fracture as they relate to ice blasting. Finally, the use of ice blasting to removal paint from a variety of substrates is presented as well as examples of surface cleaning and surface decontamination.

  18. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  19. Fuzzy prediction and experimental verification of road surface cleaning rate by pure waterjets

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The cleaning parameters affecting cleaning rate using pure waterjets to clean road surface was researched. A mathematical model for predicting cleaning rate was established using fuzzy mathematical method. A fuzzy rule base characterizing the relationship between input and output parameters was built through experiments. The prediction of cleaning rate was achieved under the condition of given input parameters by rule-based fuzzy reasoning. The prediction results were analyzed through experimental verification.

  20. Super-Absorbent polymer gels for oil and grease removal from metal and non-metal surfaces

    Science.gov (United States)

    The objective of this research is to develop a new surface cleaning technology for removal of oil, grease and particulate matters from metal and non-metal surfaces. It is desired that the cleaner is in solid form and is VOC-exempt, HAP-free, non-toxic, non-corrosive, non-ozone depleting, recyclable...

  1. Achieving clean epitaxial graphene surfaces suitable for device applications by improved lithographic process

    Energy Technology Data Exchange (ETDEWEB)

    Nath, A., E-mail: anath@gmu.edu; Rao, M. V. [George Mason University, 4400 University Dr., Fairfax, Virginia 22030 (United States); Koehler, A. D.; Jernigan, G. G.; Wheeler, V. D.; Hite, J. K.; Hernández, S. C.; Robinson, Z. R.; Myers-Ward, R. L.; Eddy, C. R.; Gaskill, D. K. [U.S. Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, D.C. 20375 (United States); Garces, N. Y. [Sotera Defense Solutions, 2200 Defense Hwy. Suite 405, Crofton, Maryland 21114 (United States)

    2014-06-02

    It is well-known that the performance of graphene electronic devices is often limited by extrinsic scattering related to resist residue from transfer, lithography, and other processes. Here, we report a polymer-assisted fabrication procedure that produces a clean graphene surface following device fabrication by a standard lithography process. The effectiveness of this improved lithography process is demonstrated by examining the temperature dependence of epitaxial graphene-metal contact resistance using the transfer length method for Ti/Au (10 nm/50 nm) metallization. The Landauer-Buttiker model was used to explain carrier transport at the graphene-metal interface as a function of temperature. At room temperature, a contact resistance of 140 Ω-μm was obtained after a thermal anneal at 523 K for 2 hr under vacuum, which is comparable to state-of-the-art values.

  2. Surface magnetic enhancement for coal cleaning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, J.Y.

    1992-10-01

    The program consisted of a fundamental study to define the chemistry for the interactions between magnetic reagent and mineral and coal particles, a laboratory study to determine the applicability of this technology on coal cleaning, and a parameter study to evaluate the technical and economical feasibility of this technology for desulfurization and de-ashing under various processing schemes. Surface magnetic enhancement using magnetic reagent is a new technology developed at the Institute. This technology can be applied to separate pyrite and other minerals particles from coal with a magnetic separation after adsorbing magnetic reagent on the surface of pyrite and other minerals particles. Particles which have absorbed magnetic reagent are rendered magnetic. The adsorption can be controlled to yield selectivity. Thus, the separation of traditionally nonmagnetic materials with a magnetic separator can be achieved. Experiments have been performed to demonstrate the theoretical fundamentals and the applications of the technology. Adsorbability, adsorption mechanisms, and adsorption selectivity are included in the fundamental study. The effects of particle size, magnetic reagent dosage, solid contents, magnetic matrix, applied magnetic field strengths, retention times, and feed loading capacities are included in the application studies. Three coals, including Illinois No. 6, Lower Kittanning and Pocahontas seams, have been investigated. More than 90% pyritic sulfur and ash reductions have been achieved. Technical and economic feasibilities of this technology have been demonstrated in this study. Both are competitive to that of the froth flotation approach for coal cleaning.

  3. Residual viral and bacterial contamination of surfaces after cleaning and disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Hazeleger, W.C.; Koopmans, M.; Zwietering, M.H.; Beumer, R.R.; Duizer, E.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, r

  4. Residual viral and bacterial contamination of surfaces after cleaning and disinfection

    NARCIS (Netherlands)

    Tuladhar, E.; Hazeleger, W.C.; Koopmans, M.; Zwietering, M.H.; Beumer, R.R.; Duizer, E.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses,

  5. Cleaning Efficiencies of Three Cleaning Agents on Four Different Surfaces after Contamination by Gemcitabine and 5-fluorouracile.

    Science.gov (United States)

    Böhlandt, Antje; Groeneveld, Svenja; Fischer, Elke; Schierl, Rudolf

    2015-01-01

    Occupational exposure to antineoplastic drugs has been documented for decades showing widespread contamination in preparation and administration areas. Apart from preventive measures, efficient cleaning of surfaces is indispensable to minimize the exposure risk. The aim of this study was to evaluate the efficiency of three cleaning agents after intentional contamination by gemcitabine (GEM) and 5-fluorouracile (5-FU) on four different surface types usually installed in healthcare settings. Glass, stainless steel, polyvinylchloride (PVC), and laminated wood plates were contaminated with 20 ng/μl GEM and 2 ng/μl 5-FU solutions. Wipe samples were analyzed for drug residues after cleaning with a) distilled water, b) aqueous solution containing sodium dodecyl sulfate (10 mM) and 2-propanol (SDS-2P), and c) Incides N (pre-soaked) alcoholic wipes. Quantification was performed by high-performance liquid chromatography (HPLC) for GEM and gas chromato-graphy-tandem mass spectrometry (GCMS/MS) for 5-FU. Recovery was determined and cleaning efficiency was calculated for each scenario. Mean recoveries were 77-89% for GEM and 24-77% for 5-FU and calculated cleaning efficiencies ranged between 95 and 100% and 89 and 100%, respectively. Residual drug amounts were detected in the range nd (not detected) - 84 ng GEM/sample and nd - 6.6 ng 5-FU/sample depending on surface type and cleaning agent. Distilled water and SDS-2P had better decontamination outcomes than Incides N wipes on nearly all surface types, especially for GEM. Regarding 5-FU, the overall cleaning efficiency was lower with highest residues on laminated wood surfaces. The tested cleaning procedures are shown to clean glass, stainless steel, PVC, and laminated wood with an efficiency of 89-100% after contamination with GEM and 5-FU. Nevertheless, drug residues could be verified by wipe samples. Pure distilled water and SDS in an alcoholic-aqueous solution expressed an efficient cleaning performance, especially with

  6. Oxalic acid adsorption states on the clean Cu(110) surface

    Science.gov (United States)

    Fortuna, Sara

    2016-11-01

    Carboxylic acids are known to assume a variety of configurations on metallic surfaces. In particular oxalic acid on the Cu(110) surface has been proposed to assume a number of upright configurations. Here we explore with DFT calculations the possible structures that oxalic acid can form on copper 110 at different protonation states, with particular attention at the possibility of forming structures composed of vertically standing molecules. In its fully protonated form it is capable of anchoring itself on the surface thanks to one of its hydrogen-free oxygens. We show the monodeprotonated upright molecule with two oxygens anchoring it on the surface to be the lowest energy conformation of a single oxalic molecules on the Cu(110) surface. We further show that it is possible for this configuration to form dense hexagonally arranged patterns in the unlikely scenario in which adatoms are not involved.

  7. Method for in-situ cleaning of carbon contaminated surfaces

    Science.gov (United States)

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2006-12-12

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.

  8. The surface energy of metals

    DEFF Research Database (Denmark)

    Vitos, Levente; Ruban, Andrei; Skriver, Hans Lomholt

    1998-01-01

    We have used density functional theory to establish a database of surface energies for low index surfaces of 60 metals in the periodic table. The data may be used as a consistent starting point for models of surface science phenomena. The accuracy of the database is established in a comparison...... with other density functional theory results and the calculated surface energy anisotropies are applied in a determination of the equilibrium shape of nano-crystals of Fe, Cu, Mo, Ta, Pt and Ph. (C) 1998 Elsevier Science B.V. All rights reserved....

  9. SAGE SOLVENT ALTERNATIVES GUIDE: SYSTEM IMPROVEMENTS FOR SELECTING INDUSTRIAL SURFACE CLEANING ALTERNATIVES

    Science.gov (United States)

    The paper describes computer software, called SAGE, that can provide not only cleaning recommendations but also general information on various surface cleaning options. In short, it is an advisory system which can provide users with vital information on the cleaning process optio...

  10. LEEM investigations of clean surfaces driven by energetic ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Abbamonte, Peter M. [University of Illinois

    2013-04-24

    The original purpose of this award was to use low‐energy electron microscopy (LEEM) to explore the dynamics of surfaces of clean single crystal surfaces when driven by a beam of energetic ions. The goal was to understand the nanoscience of hyperthermal growth, surface erosion by sublimation and irradiation, operation of surface sinks in irradiated materials, diffusion on driven surfaces, and the creation of structural patterns. This project was based on a novel LEEM system constructed by C. P. Flynn, which provided real‐time imaging of surface dynamics by scattering low energy electrons. With the passing of Prof. Flynn in late 2011, this project was completed under a slightly different scope by constructing a low‐energy, inelastic electron scattering (EELS) instrument. Consistent with Flynn's original objectives for his LEEM system, this device probes the dynamics of crystal surfaces. However the measurements are not carried out in real time, but instead are done in the frequency domain, through the energy lost from the probe electrons. The purpose of this device is to study the collective bosonic excitations in a variety of materials, including high temperature superconductors, topological insulators, carbon allotropes including (but not limited to) graphene, etc. The ultimate goal here is to identify the bosons that mediate interactions in these and other materials, with hopes of shedding light on the origin of many exotic phenomena including high temperature superconductivity. We completed the construction of a low‐energy EELS system that operates with an electron kinetic energy of 7 - 10 eV. With this instrument now running, we hope to identify, among other things, the bosons that mediate pairing in high temperature superconductors. Using this instrument, we have already made our first discovery. Studying freshly cleaved single crystals of Bi{sub 2}Se{sub 3}, which is a topological insulator, we have observed a surface excitation at an energy loss

  11. Surface cleaning of CCD imagers using an electrostatic dissipative formulation of First Contact polymer

    Science.gov (United States)

    Derylo, G.; Estrada, J.; Flaugher, B.; Hamilton, J.; Kubik, D.; Kuk, K.; Scarpine, V.

    2008-07-01

    We describe the results obtained cleaning the surface of DECam CCD detectors with a new electrostatic dissipative formulation of First ContactTM polymer from Photonic Cleaning Technologies. We demonstrate that cleaning with this new product is possible without ESD damage to the sensors and without degradation of the antireflective coating used to optimize the optical performance of the detector. We show that First ContactTM is more effective for cleaning a CCD than the commonly used acetone swab.

  12. Advanced Machinery Liquid Metal Wetting, Cleaning and Materials Compatibility Study

    Science.gov (United States)

    1982-03-01

    barium doped NaK 7 8 at temperatures to lOO 0 C for 250 and 500 hours. Doping of the liquid metal created no compatibility... metal - solid metal interface specific contact resistance (ck). Two liquid metal compositions were used, NaK 7 8 and barium doped NaK 7 8 . The...three with NaK - barium as the liquid metal and eight with NaK . They were ranked in ascending value of mean interface specific contact

  13. Surface science studies of metal hexaborides

    Science.gov (United States)

    Trenary, Michael

    2012-04-01

    Over 30 years of surface science research on metal hexaborides are reviewed. Of this class of compounds, lanthanum hexaboride has been the subject of the majority of the studies because of its outstanding properties as a thermionic emitter. The use of LaB6 cathodes as an electron source stems from the unusually low work function of ~2.5 eV for the (100) surface combined with a low evaporation rate at high temperatures. Of particular interest has been the determination of the surface geometric and electronic structure responsible for the low work function and how the work function is affected by various adsorbates. The low-index faces of single crystals of LaB6 and other hexaborides have been studied with a variety of ultrahigh vacuum surface science methods to gain a better understanding of the structure and properties of the clean surfaces as well as their interactions with gases such as O2, H2O and CO.

  14. Surface science studies of metal hexaborides

    Directory of Open Access Journals (Sweden)

    Michael Trenary

    2012-01-01

    Full Text Available Over 30 years of surface science research on metal hexaborides are reviewed. Of this class of compounds, lanthanum hexaboride has been the subject of the majority of the studies because of its outstanding properties as a thermionic emitter. The use of LaB6 cathodes as an electron source stems from the unusually low work function of ~2.5 eV for the (100 surface combined with a low evaporation rate at high temperatures. Of particular interest has been the determination of the surface geometric and electronic structure responsible for the low work function and how the work function is affected by various adsorbates. The low-index faces of single crystals of LaB6 and other hexaborides have been studied with a variety of ultrahigh vacuum surface science methods to gain a better understanding of the structure and properties of the clean surfaces as well as their interactions with gases such as O2, H2O and CO.

  15. Surface modification of plasticized PVC by dry cleaning methods: Consequences for artworks

    Science.gov (United States)

    Morales Muñoz, C.

    2010-03-01

    A study of dry cleaning methods for plasticized PVC has been undertaken using three commercial cloths recommended for plastics artworks, in addition to cotton swabs traditionally used in art conservation. The evaluation of the cleaning has focussed on the efficiency of the cleaners, and the physical and chemical damages caused by the cleaning. The physical and chemical modifications of the PVC surface have been studied by optical microscopy, non-contact profilometry and ATR-FTIR spectroscopy, while spectrocolorimetry and non-contact profilometry have been used for evaluating the cleaning efficiency. The results have shown that the cleaner's composition and the cleaning time play an important role in damaging the plasticized PVC surface. On the contrary, it has not been completely determined if the texture of the cleaning agents' surface had an influence on the cleaning efficiency.

  16. The use of ultrasound for cleaning the surface of stainless steel and nickel-titanium endodontic instruments.

    Science.gov (United States)

    Filho, M T; Leonardo, M R; Bonifácio, K C; Dametto, F R; Silva, A B

    2001-12-01

    The aim of this study was to evaluate the efficacy of ultrasound in cleaning the surface of stainless steel and Ni-Ti endodontic instruments. Twenty nickel-titanium instruments (10 Quantec files and 10 Nitiflex) and 20 stainless steel K-files (10 Maillefer-Dentsply and 10 Moyco Union Broach) were removed from their original packages and evaluated using a scanning electron microscope. Scores were given for the presence of residues on the surface of the instruments. The instruments were then cleaned in an ultrasonic bath containing only distilled water or detergent solution for 15 min, and re-evaluated, using scanning electron microscopy. Before cleaning, a greater amount of metallic debris was observed on the nickel-titanium Quantec instruments (P endodontic instruments.

  17. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  18. Influence of surface cleaning effects on properties of Schottky diodes on 4H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Kwietniewski, N. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland)], E-mail: nkwietni@ite.waw.pl; Sochacki, M.; Szmidt, J. [Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland); Guziewicz, M.; Kaminska, E.; Piotrowska, A. [Institute of Electron Technology, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2008-10-15

    Ir/4H-SiC and IrO{sub 2}/4H-SiC Schottky diodes are reported in terms of different methods of surface pretreatment before contact deposition. In order to find the effect of surface preparation processes on Schottky characteristics the SiC wafers were respectively cleaned using the following processes: (1) RCA method followed by buffered HF dip. Next, the surface was oxidized (5.5 nm oxide) using a rapid thermal processing reactor chamber and circular geometry windows were opened in the oxide layer before metallization deposition; (2) the same as sequence (1) but with an additional in situ sputter etching step before metallization deposition; (3) cleaning in organic solvents followed by buffered HF dip. The I-V characteristics of Schottky diodes were analyzed to find a correlation between extracted parameters and surface treatment. The best results were obtained for the sequence (1) taking into account theoretical value of Schottky barrier height. The contacts showed excellent Schottky behavior with ideality factors below 1.08 and barrier heights of 1.46 eV and 1.64 eV for Ir and IrO{sub 2}, respectively. Very promising results were obtained for samples prepared using the sequence (2) taking into account the total static power losses because the modified surface preparation results in a decrease in the forward voltage drop and reverse leakage current simultaneously. The contacts with ideality factor below 1.09 and barrier height of 1.02 eV were fabricated for Ir/4H-SiC diodes in sequence (2)

  19. Visualization of latent fingerprint corrosion of metallic surfaces.

    Science.gov (United States)

    Bond, John W

    2008-07-01

    Chemical reactions between latent fingerprints and a variety of metal surfaces are investigated by heating the metal up to temperatures of approximately 600 degrees C after deposition of the fingerprint. Ionic salts present in the fingerprint residue corrode the metal surface to produce an image of the fingerprint that is both durable and resistant to cleaning of the metal. The degree of fingerprint enhancement appears independent of the elapsed time between deposition and heating but is very dependent on both the composition of the metal and the level of salt secretion by the fingerprint donor. Results are presented that show practical applications for the enhancement to fingerprints deposited in arson crime scenes, contaminated by spray painting, or deposited on brass cartridge cases prior to discharge. The corrosion of the metal surface is further exploited by the demonstration of a novel technique for fingerprint enhancement based on the electrostatic charging of the metal and then the preferential adherence of a metallic powder to the corroded part of the metal surface.

  20. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals

    Directory of Open Access Journals (Sweden)

    John M. Boyce

    2016-04-01

    Full Text Available Abstract Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer’s recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid and cold atmospheric pressure plasma show potential for use in hospitals. Creating “self-disinfecting” surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer “no-touch” (automated decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm light. These “no-touch” technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections

  1. Modern technologies for improving cleaning and disinfection of environmental surfaces in hospitals.

    Science.gov (United States)

    Boyce, John M

    2016-01-01

    Experts agree that careful cleaning and disinfection of environmental surfaces are essential elements of effective infection prevention programs. However, traditional manual cleaning and disinfection practices in hospitals are often suboptimal. This is often due in part to a variety of personnel issues that many Environmental Services departments encounter. Failure to follow manufacturer's recommendations for disinfectant use and lack of antimicrobial activity of some disinfectants against healthcare-associated pathogens may also affect the efficacy of disinfection practices. Improved hydrogen peroxide-based liquid surface disinfectants and a combination product containing peracetic acid and hydrogen peroxide are effective alternatives to disinfectants currently in widespread use, and electrolyzed water (hypochlorous acid) and cold atmospheric pressure plasma show potential for use in hospitals. Creating "self-disinfecting" surfaces by coating medical equipment with metals such as copper or silver, or applying liquid compounds that have persistent antimicrobial activity surfaces are additional strategies that require further investigation. Newer "no-touch" (automated) decontamination technologies include aerosol and vaporized hydrogen peroxide, mobile devices that emit continuous ultraviolet (UV-C) light, a pulsed-xenon UV light system, and use of high-intensity narrow-spectrum (405 nm) light. These "no-touch" technologies have been shown to reduce bacterial contamination of surfaces. A micro-condensation hydrogen peroxide system has been associated in multiple studies with reductions in healthcare-associated colonization or infection, while there is more limited evidence of infection reduction by the pulsed-xenon system. A recently completed prospective, randomized controlled trial of continuous UV-C light should help determine the extent to which this technology can reduce healthcare-associated colonization and infections. In conclusion, continued efforts to

  2. Multi-objective genetic algorithm for the optimization of road surface cleaning process

    Institute of Scientific and Technical Information of China (English)

    CHEN Jie; GAO Dao-ming

    2006-01-01

    The parameters affecting road surface cleaning using waterjets were researched and a fuzzy neural network method of calculating cleaning rate was provided. A genetic algorithm was used to configure the cleaning parameters of pressure, standoff distance, traverse rate and angle of nozzles for the optimization of the cleaning effectiveness, efficiency, energy and water consumption, and a multi-objective optimization model was established. After calculation, the optimized results and the trend of variation of cleaning effectiveness, efficiency, energy and water consumption in different weighting factors were analyzed.

  3. Magnetic order of Au nanoparticle with clean surface

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Ryuju; Ishikawa, Soichiro; Sato, Hiroyuki; Sato, Tetsuya, E-mail: satoh@appi.keio.ac.jp

    2015-11-01

    Au nanoparticles, which are kept in vacuum after the preparation by gas evaporation method, show ferromagnetism even in 1.7 nm in diameter. The intrinsic magnetism is examined by detecting the disappearance of spontaneous magnetization in Au bulk prepared by heating the nanoparticles without exposure to the air. The temperature dependence of spontaneous magnetization is not monotonic and the increase in magnetization is observed after Au nanoparticles are exposed to the air. The magnetic behavior can be interpreted by the ferrimagnetic-like core–shell structure with shell thickness of 0.16±0.01 nm and magnetic moment of (1.5±0.1)×10{sup −2} μ{sub B}/Au atom, respectively. - Highlights: • Au nanoparticles with clean surface were prepared by the gas evaporation method. • The spontaneous magnetization was observed in Au nanoparticles. • Temperature dependent spontaneous magnetization of smaller Au particles was not monotonic. • The magnetic behavior was interpreted by the ferrimagnetic-like core–shell model. • The shell thickness and the magnetic moment per Au atom were estimated.

  4. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    Science.gov (United States)

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  5. CO adsorption on metal-oxide surfaces doped with transition-metal adatoms

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, Janne; Lehman, Lauri; Salo, Petri [Department of Applied Physics, Aalto University, FI-00076 Aalto (Finland)

    2012-05-15

    Using first principles density functional theory calculations, we have studied the adsorption of carbon monoxide (CO) on clean, Ag and Pd doped MgO(001), TiO{sub 2}(110), and {alpha}-Al{sub 2}O{sub 3}(0001) surfaces. Our results show that adsorption of CO on the clean surfaces is generally weak. Ag doping improves the adsorption only weakly, except on the TiO{sub 2} surface. The presence of Pd, however, significantly improves adsorption on all the surfaces studied. On the doped surfaces, the best adsorption sites are always the sites on top of the transition metal adatom, and the interaction range is 3-4 Aa around an isolated adatom. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Microstructure evolution and surface cleaning of Cu nanoparticles during micro-forming fields activated sintering technology

    Directory of Open Access Journals (Sweden)

    Wu Mingxia

    2015-01-01

    Full Text Available For the purpose of extensive utilization of powder metallurgy to micro/nano- fabrication of materials, the micro gear was prepared by a novel method, named as micro- forming fields activated sintering technology (Micro-FAST. Surface-cleaning of particles, especially during the initial stage of sintering, is a crucial issue for the densification mechanism. However, up to date, the mechanism of surface-cleaning is too complicated to be known. In this paper, the process of surface-cleaning of Micro-FAST was studied, employing the high resolution transmission electron microscopy (HRTEM for observation of microstructure of micro-particles. According to the evolution of the microstructure, surface-cleaning is mainly ascribed to the effect of electro-thermal focusing. The process of surface-cleaning is achieved through rearrangement of grains, formation of vacancy, migration of vacancy and enhancement of electro-thermal focusing.

  7. Robust self-cleaning surfaces that function when exposed to either air or oil

    OpenAIRE

    Lu, Y.

    2015-01-01

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to va...

  8. Surface Finish after Laser Metal Deposition

    Science.gov (United States)

    Rombouts, M.; Maes, G.; Hendrix, W.; Delarbre, E.; Motmans, F.

    Laser metal deposition (LMD) is an additive manufacturing technology for the fabrication of metal parts through layerwise deposition and laser induced melting of metal powder. The poor surface finish presents a major limitation in LMD. This study focuses on the effects of surface inclination angle and strategies to improve the surface finish of LMD components. A substantial improvement in surface quality of both the side and top surfaces has been obtained by laser remelting after powder deposition.

  9. Adsorption and film growth of BTA on clean and oxygen adsorbed Cu(110) surfaces

    Science.gov (United States)

    Cho, Kyehyun; Kishimoto, J.; Hashizume, T.; Pickering, H. W.; Sakurai, T.

    1995-03-01

    Benzotriazole (BTA) adsorption on clean Cu(110) and oxygen reconstructed Cu(110)-2 × 1 and c(6 × 2) surfaces has been investigated by scanning tunneling microscopy (STM). The STM images show that BTA forms the c(4 × 2) commensurate phase on the clean Cu(110)-1 × 1 surface. On the other hand, STM images of BTA adsorbed on the oxygen-induced Cu(110)-2 × 1 surface show a fully disordered structure. From a kinetic point of view, BTA molecules should adsorb preferentially on the oxygen-induced Cu(110)-2 × 1 added row compared to the clean Cu(110) surface.

  10. Cleaning of waste smelter slags and recovery of valuable metals by pressure oxidative leaching.

    Science.gov (United States)

    Li, Yunjiao; Perederiy, Ilya; Papangelakis, Vladimiros G

    2008-04-01

    Huge quantities of slag, a waste solid product of pyrometallurgical operations by the metals industry are dumped continuously around the world, posing a potential environmental threat due to entrained values of base metals and sulfur. High temperature pressure oxidative acid leaching of nickel smelter slags was investigated as a process to facilitate slag cleaning and selective dissolution of base metals for economic recovery. Five key parameters, namely temperature, acid addition, oxygen overpressure, solids loading and particle size, were examined on the process performance. Base metal recoveries, acid and oxygen consumptions were accurately measured, and ferrous/ferric iron concentrations were also determined. A highly selective leaching of valuable metals with extractions of >99% for nickel and cobalt, >97% for copper, >91% for zinc and metals, hematite and virtually zero sulfidic sulfur seems to be suitable for safe disposal. The process seems to be able to claim economic recovery of base metals from slags and is reliable and feasible.

  11. Effectiveness of disinfection with alcohol 70% (w/v of contaminated surfaces not previously cleaned

    Directory of Open Access Journals (Sweden)

    Maurício Uchikawa Graziano

    2013-04-01

    Full Text Available OBJECTIVE: To evaluate the disinfectant effectiveness of alcohol 70% (w/v using friction, without previous cleaning, on work surfaces, as a concurrent disinfecting procedure in Health Services. METHOD: An experimental, randomized and single-blinded laboratory study was undertaken. The samples were enamelled surfaces, intentionally contaminated with Serratia marcescens microorganisms ATCC 14756 106 CFU/mL with 10% of human saliva added, and were submitted to the procedure of disinfection WITHOUT previous cleaning. The results were compared to disinfection preceded by cleaning. RESULTS: There was a reduction of six logarithms of the initial microbial population, equal in the groups WITH and WITHOUT previous cleaning (p=0.440 and a residual microbial load ≤ 102 CFU. CONCLUSION: The research demonstrated the acceptability of the practice evaluated, bringing an important response to the area of health, in particular to Nursing, which most undertakes procedures of concurrent cleaning /disinfecting of these work surfaces.

  12. Classification of Clean and Dirty Pighouse Surfaces Based on Spectral Reflectance

    DEFF Research Database (Denmark)

    Blanke, Mogens; Braithwaite, Ian David; Zhang, Guo-Qiang

    2004-01-01

    Current pig house cleaning procedures are hazardous to the health of farm workers, and yet necessary if the spread of disease between batches of animals is to be satisfactorily controlled. Autonomous cleaning using robot technology offers salient benefits. This report addresses the feasibility...... of designing a vision based system to locate dirty areas and subsequently direct a cleaning robot to remove dirt. Novel results include the characterisation of the spectral reflectance of real surfaces and dirt in a pig house and the design of illumination to obtain discrimination of clean from dirty areas...

  13. Design of Control System Based on PLC for Brush Cleaning Machine Cleaning Metal Workpieces%基于 PLC 的金属工件毛刷清洗机控制系统设计

    Institute of Scientific and Technical Information of China (English)

    喻永康; 奚敏赟

    2014-01-01

    为了更高效地清洗圆柱形金属工件内表面,设计了此套毛刷清洗设备。毛刷清洗机主要执行元件有加热电阻、电磁阀、气缸和三相交流电动机。该电气控制系统以三菱FX2N系列PLC为核心控制器,通过对线圈和电磁阀的控制,能够方便地实现毛刷电机的转动、清洗篮的上下摆动、储液箱的循环加热以及清洗液的排放,从而完成对金属工件内表面的清洗。该设备投入使用后,表现出工作性能稳定、操作方便、经济适用等优点,能够很好地完成对金属工件的清洗工作。%In order to clean cylindrical metal workpiece surface more efficiently ,a brush cleaning machine is designed ,which is composed of the heating resistance ,electromagnetic valve ,cylinder and the three-phase AC motor .By controling the coil and the electromagnetic valve ,this electric control system with Mitsubishi FX2N series PLC as the core controller can realize the rotation of the brush motor ,the bobbing up and down of cleaning basket ,the circulation heating of the liquid tank and cleaning fluid emissions , to complete the cleaning of the metal workpiece surface .The equipment has been put into use ,which shows stable performance , convenient operation ,can meet the cleaning requirement of metal wordpieces .

  14. 75 FR 18500 - Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean...

    Science.gov (United States)

    2010-04-12

    ... AGENCY Guidance on Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean..., titled Improving EPA Review of Appalachian Surface Coal Mining Operations under the Clean Water Act... environmental review of Appalachian surface coal mining operations under the Clean Water Act,...

  15. Electrochemical nitridation of metal surfaces

    Science.gov (United States)

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  16. Application of response surface methodology to the chemical cleaning process of ultrafiltration membrane☆

    Institute of Scientific and Technical Information of China (English)

    Caihong Wang; Aishu Wei; Hao Wu; Fangshu Qu; Weixiong Chen; Heng Liang; Guibai Li

    2016-01-01

    A numerical model was established to predict and optimise the chemical cleaning process of Polyvinylidene Fluo-ride (PVDF) Ultrafiltration (UF) membranes with the results from the experiment that applied the Response Sur-face Method (RSM) and Central Composite Design (CCD). The factors considered in the experimental design were sodium hydroxide (NaOH) concentration, sodium hypochlorite concentration (NaClO), citric acid concentration and cleaning duration. The interactions between the factors were investigated with the numerical model. Humic acid (20 mg·L−1) was used as the model foulant, and chemical enhanced backflush (CEB) was employed to sim-ulate the chemical cleaning process. The concentrations of sodium hydroxide, sodium hypochlorite, citric acid and cleaning duration tested during the experiments were in the range of 0.1%–0.3%, 100–300 mg·L−1, 1%–3%and 0.5–1.5 h, respectively. Among the variables, the sodium hypochlorite concentration and the cleaning dura-tion showed a positive relationship involving the increased efficiency of the chemical cleaning. The chemical cleaning efficiency was hardly improved with increasing concentrations of sodium hydroxide. However, the data was sharply decreased when at a low level of sodium hydroxide concentration. In total, 54 sets of cleaning schemes with 80%to 100%cleaning efficiency were observed with the RSM model after calibration.

  17. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Science.gov (United States)

    Ortiz, P.; Antúnez, V.; Ortiz, R.; Martín, J. M.; Gómez, M. A.; Hortal, A. R.; Martínez-Haya, B.

    2013-10-01

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  18. Comparative study of pulsed laser cleaning applied to weathered marble surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, P., E-mail: mportcal@upo.es [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Antúnez, V.; Ortiz, R.; Martín, J.M. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain); Gómez, M.A. [Instituto Andaluz de Patrimonio Histórico, Camino de los Descubrimientos s/n, 41092 Seville (Spain); Hortal, A.R.; Martínez-Haya, B. [Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville (Spain)

    2013-10-15

    The removal of unwanted matter from surface stones is a demanding task in the conservation of cultural heritage. This paper investigates the effectiveness of near-infrared (IR) and ultraviolet (UV) laser pulses for the cleaning of surface deposits, iron oxide stains and different types of graffiti (black, red and green sprays and markers, and black cutting-edge ink) on dolomitic white marble. The performance of the laser techniques is compared to common cleaning methods on the same samples, namely pressurized water and chemical treatments. The degree of cleaning achieved with each technique is assessed by means of colorimetric measurements and X-ray microfluorescence. Eventual morphological changes induced on the marble substrate are monitored with optical and electronic microscopy. It is found that UV pulsed laser ablation at 266 nm manages to clean all the stains except the cutting-edge ink, although some degree of surface erosion is produced. The IR laser pulses at 1064 nm can remove surface deposits and black spray acceptably, but a yellowing is observed on the stone surface after treatment. An economic evaluation shows that pulsed laser cleaning techniques are advantageous for the rapid cleaning of small or inaccessible surface areas, although their extensive application becomes expensive due to the long operating times required.

  19. [Surface Cleaning and Disinfection in the Hospital. Improvement by Objective Monitoring and Intervention].

    Science.gov (United States)

    Woltering, R; Hoffmann, G; Isermann, J; Heudorf, U

    2016-11-01

    Background and Objective: An assessment of cleaning and disinfection in hospitals by the use of objective surveillance and review of mandatory corrective measures was undertaken. Methods: A prospective examination of the cleaning and disinfection of surfaces scheduled for daily cleaning in 5 general care hospitals by use of an ultraviolet fluorescence targeting method (UVM) was performed, followed by structured educational and procedural interventions. The survey was conducted in hospital wards, operating theatres and intensive care units. Cleaning performance was measured by complete removal of UVM. Training courses and reinforced self-monitoring were implemented after the first evaluation. 6 months later, we repeated the assessment for confirmation of success. Results: The average cleaning performance was 34% (31/90) at base-line with significant differences between the 5 hospitals (11-67%). The best results were achieved in intensive care units (61%) and operating theatres (58%), the worst results in hospital wards (22%). The intervention significantly improved cleaning performance up to an average of 69% (65/94; +34.7%; 95% confidence interval (CI): 21.2-48.3; pdisinfection of surfaces by fluorescence targeting is appropriate for evaluating hygiene regulations. An intervention can lead to a significant improvement of cleaning performance. As part of a strategy to improve infection control in hospitals, fluorescence targeting enables a simple inexpensive and effective surveillance of the cleaning performance and corrective measures. © Georg Thieme Verlag KG Stuttgart · New York.

  20. Efficiency and countereffects of cleaning treatment on limestone surfaces - investigation on the Corfu Venetian Fortress

    Energy Technology Data Exchange (ETDEWEB)

    Moropoulou, A.; Kefalonitou, S. [National Technical University of Athens (Greece). Dept. of Chemical Engineering

    2002-11-01

    Surface alterations of the original limestone and the efficiency of several cleaning methods were investigated on the Corfu Venetian Fortress facade. Black crusts of gypsum dendrites and loose depositions or black-grey calcareous encrustations in combination with biological decay were identified as main decay processes. The cleaning treatments, chosen according to their acting on the stone surface, were: sepiolite for solvent action, ammonium bicarbonate for exchange action, EDTA for the chemical chelating action, hydrogen peroxide for chemical action on biological species and nylon brushes for physical action. Each cleaning method's efficiency and counteractions were evaluated by laboratory examinations concerning the morphology and the composition of the surface with SEM observations and X-ray microanalysts, before and after treatment and during ageing tests in sulphur dioxide and humidity atmosphere. The used methodology creates a sound basis for the evaluation and proper selection of a cleaning method, which should be highly efficient and with limited counteractions to the stone. (author)

  1. A modified ATP benchmark for evaluating the cleaning of some hospital environmental surfaces.

    Science.gov (United States)

    Lewis, T; Griffith, C; Gallo, M; Weinbren, M

    2008-06-01

    Hospital cleaning continues to attract patient, media and political attention. In the UK it is still primarily assessed via visual inspection, which can be misleading. Calls have therefore been made for a more objective approach to assessing surface cleanliness. To improve the management of hospital cleaning the use of adenosine triphosphate (ATP) in combination with microbiological analysis has been proposed, with a general ATP benchmark value of 500 relative light units (RLU) for one combination of test and equipment. In this study, the same test combination was used to assess cleaning effectiveness in a 1300-bed teaching hospital after routine and modified cleaning protocols. Based upon the ATP results a revised stricter pass/fail benchmark of 250 RLU is proposed for the range of surfaces used in this study. This was routinely achieved using modified best practice cleaning procedures which also gave reduced surface counts with, for example, aerobic colony counts reduced from >100 to <2.5 cfu/cm(2), and counts of Staphylococcus aureus reduced from up to 2.5 to <1 cfu/cm(2) (95% of the time). Benchmarking is linked to incremental quality improvements and both the original suggestion of 500 RLU and the revised figure of 250 RLU can be used by hospitals as part of this process. They can also be used in the assessment of novel cleaning methods, such as steam cleaning and microfibre cloths, which have potential use in the National Health Service.

  2. An introduction to surface alloying of metals

    CERN Document Server

    Hosmani, Santosh S; Goyal, Rajendra Kumar

    2014-01-01

    An Introduction to Surface Alloying of Metals aims to serve as a primer to the basic aspects of surface alloying of metals. The book serves to elucidate fundamentals of surface modification and their engineering applications. The book starts with basics of surface alloying and goes on to cover key surface alloying methods, such as carburizing, nitriding, chromizing, duplex treatment, and the characterization of surface layers. The book will prove useful to students at both the undergraduate and graduate levels, as also to researchers and practitioners looking for a quick introduction to surface alloying.

  3. Theoretical Investigation on the Adsorption of Ag+ and Hydrated Ag+ Cations on Clean Si(111)Surface

    Institute of Scientific and Technical Information of China (English)

    SHENG Yong-Li; LI Meng-Hua; WANG Zhi-Guo; LIU Yong-Jun

    2008-01-01

    In this paper,the adsorption of Ag+ and hydrated Ag+ cations on clean Si(111)surface were investigated by using cluster(Gaussian 03)and periodic(DMol3)ab initio calculations.Si(111)surface was described with cluster models(Si14H17 and Si22H21)and a four-silicon layer slab with periodic boundary conditions.The effect of basis set superposition error(BSSE)was taken into account by applying the counterpoise correction.The calculated results indicated that the binding energies between hydrated Ag+ cations and clean Si(111)surface are large,suggesting a strong interaction between hydrated Ag+ cations and the semiconductor surface.With the increase of number,water molecules form hydrogen bond network with one another and only one water molecule binds directly to the Ag+ cation.The Ag+ cation in aqueous solution will safely attach to the clean Si(111)surface.

  4. Robust self-cleaning surfaces that function when exposed to either air or oil

    Science.gov (United States)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R.; Carmalt, Claire J.; Parkin, Ivan P.

    2015-03-01

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

  5. Repellent materials. Robust self-cleaning surfaces that function when exposed to either air or oil.

    Science.gov (United States)

    Lu, Yao; Sathasivam, Sanjayan; Song, Jinlong; Crick, Colin R; Carmalt, Claire J; Parkin, Ivan P

    2015-03-06

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to various substrates and promote robustness. These surfaces maintained their water repellency after finger-wipe, knife-scratch, and even 40 abrasion cycles with sandpaper. The formulations developed can be used on clothes, paper, glass, and steel for a myriad of self-cleaning applications.

  6. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  7. Characterization, optimization and surface physics aspects of in situ plasma mirror cleaning.

    Science.gov (United States)

    Pellegrin, Eric; Sics, Igors; Reyes-Herrera, Juan; Perez Sempere, Carlos; Lopez Alcolea, Juan Josep; Langlois, Michel; Fernandez Rodriguez, Jose; Carlino, Vincent

    2014-03-01

    Although the graphitic carbon contamination of synchrotron beamline optics has been an obvious problem for several decades, the basic mechanisms underlying the contamination process as well as the cleaning/remediation strategies are not understood and the corresponding cleaning procedures are still under development. In this study an analysis of remediation strategies all based on in situ low-pressure RF plasma cleaning approaches is reported, including a quantitative determination of the optimum process parameters and their influence on the chemistry as well as the morphology of optical test surfaces. It appears that optimum results are obtained for a specific pressure range as well as for specific combinations of the plasma feedstock gases, the latter depending on the chemical aspects of the optical surfaces to be cleaned.

  8. Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    King, Sean W., E-mail: sean.king@intel.com; Tanaka, Satoru; Davis, Robert F. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nemanich, Robert J. [Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-09-15

    Due to the extreme chemical inertness of silicon carbide (SiC), in-situ thermal desorption is commonly utilized as a means to remove surface contamination prior to initiating critical semiconductor processing steps such as epitaxy, gate dielectric formation, and contact metallization. In-situ thermal desorption and silicon sublimation has also recently become a popular method for epitaxial growth of mono and few layer graphene. Accordingly, numerous thermal desorption experiments of various processed silicon carbide surfaces have been performed, but have ignored the presence of hydrogen, which is ubiquitous throughout semiconductor processing. In this regard, the authors have performed a combined temperature programmed desorption (TPD) and x-ray photoelectron spectroscopy (XPS) investigation of the desorption of molecular hydrogen (H{sub 2}) and various other oxygen, carbon, and fluorine related species from ex-situ aqueous hydrogen fluoride (HF) and in-situ remote hydrogen plasma cleaned 6H-SiC (0001) surfaces. Using XPS, the authors observed that temperatures on the order of 700–1000 °C are needed to fully desorb C-H, C-O and Si-O species from these surfaces. However, using TPD, the authors observed H{sub 2} desorption at both lower temperatures (200–550 °C) as well as higher temperatures (>700 °C). The low temperature H{sub 2} desorption was deconvoluted into multiple desorption states that, based on similarities to H{sub 2} desorption from Si (111), were attributed to silicon mono, di, and trihydride surface species as well as hydrogen trapped by subsurface defects, steps, or dopants. The higher temperature H{sub 2} desorption was similarly attributed to H{sub 2} evolved from surface O-H groups at ∼750 °C as well as the liberation of H{sub 2} during Si-O desorption at temperatures >800 °C. These results indicate that while ex-situ aqueous HF processed 6H-SiC (0001) surfaces annealed at <700 °C remain terminated by some surface C–O and

  9. Surface protected lithium-metal-oxide electrodes

    Science.gov (United States)

    Thackeray, Michael M.; Kang, Sun-Ho

    2016-04-05

    A lithium-metal-oxide positive electrode having a layered or spinel structure for a non-aqueous lithium electrochemical cell and battery is disclosed comprising electrode particles that are protected at the surface from undesirable effects, such as electrolyte oxidation, oxygen loss or dissolution by one or more lithium-metal-polyanionic compounds, such as a lithium-metal-phosphate or a lithium-metal-silicate material that can act as a solid electrolyte at or above the operating potential of the lithium-metal-oxide electrode. The surface protection significantly enhances the surface stability, rate capability and cycling stability of the lithium-metal-oxide electrodes, particularly when charged to high potentials.

  10. Impact of the Clean Water Act on the levels of toxic metals in urban estuaries: The Hudson River estuary revisited

    Energy Technology Data Exchange (ETDEWEB)

    Sanudo-Wilhelmy, S.A.; Gill, G.A.

    1999-10-15

    To establish the impact of the Clean Water Act on the water quality of urban estuaries, dissolved trace metals and phosphate concentrations were determined in surface waters collected along the Hudson River estuary between 1995 and 1997 and compared with samples collected in the mid-1970s by Klinkhammer and Bender. The median concentrations along the estuary have apparently declined 36--56% for Cu, 55--89% for Cd, 53--85% for Ni, and 53--90% for Zn over a period of 23 years. These reductions appear to reflect improvements in controlling discharges from municipal and industrial wastewater treatment plants since the Clean Water Act was enacted in 1972. In contrast, levels of dissolved nutrients (PO{sub 4}) have remained relatively constant during the same period of time, suggesting that wastewater treatment plant improvements in the New York/New Jersey Metropolitan area have not been as effective at reducing nutrient levels within the estuary. While more advanced wastewater treatment could potentially reduce the levels of Ag and PO{sub 4} along the estuary, these improvements would have a more limited effect on the levels of other trace metals.

  11. A method for cleaning optical precision surface of laser gyro cavity

    Science.gov (United States)

    Cui, Ying; Jiao, Ling Yan; Lin, Na Na; Zhang, Dong

    2016-10-01

    Laser gyro is the only one non-electromechanical high-precision inertial sensitive instruments in aircraft inertial guidance systems. Ultra high vacuum acquisition is a key segment during the manufacturing process of laser gyro. The surface cleanliness and integrity have decisive influence on the sealing performance of ultra-high vacuum. A cleaning technology for the optical surface of laser gyro cavity was found by experiment. Meanwhile, the analysis of the adsorption mechanism of contaminant on the laser gyro cavity surface and overview of common optical element cleaning technology were given. The result showed that the new cleaning technology improved the cleanliness of the cavity optical surface without any damage and provided a reliable solution for chronic leak of high precision laser gyro cavity.

  12. A study of surface optical properties for characterizing the cleaning process of paintings

    Science.gov (United States)

    Fontana, R.; Barucci, M.; Pampaloni, E.; Pezzati, L.; Daffara, C.

    2013-05-01

    "Cleaning" is a process of carefully identifying the cause of any deterioration or discolouration and then removing or treating these layers. The skill of the restorer is not only to understand the techniques and media used by the artist, but also to recognize what beauty lies beneath the veils of many years of neglect or adverse conditions. Surface cleaning is then one of the most important and sometimes controversial stages of the conservation process: it is an irreversible process that generally results in substantial physical changes of the object surface, raising thus a series of questions regarding aesthetics, the potential loss of historical information, and the ability to control the cleaning process adequately. Decisions have to be made regarding partial or complete removal of varnish: technical considerations include selection of a method that allows a great deal of control in the cleaning process, so that undesired layers can be removed without damaging the underlying ones by means of traditional cleaning methods, including mechanical or chemical removal. In this work we present a study of the optical properties of painting surfaces for the characterization of the cleaning process. Analyses were carried out by means of laser micro-profilometry and confocal microscopy. Measurements were carried out on a few paintings which are under repair at the Opificio delle Pietre Dure in Florence. Selected areas were surveyed with the two above mentioned techniques and results were correlated.

  13. Vacancy Transport and Interactions on Metal Surfaces

    Science.gov (United States)

    2014-03-06

    AFRL-OSR-VA-TR-2013-0317 VACANCY TRANSPORT AND INTERACTIONS ON METAL SURFACES Gert Ehrlich UNIVERSITY OF ILLINOIS CHAMPAIGN Final Report 03/06/2014...30, 2012 Gert Ehrlich , PI Abstract This proposal is a study of vacancy transport and vacancy interaction on metal surfaces. Adatom self...Trembułowicz, Gert Ehrlich , Grażyna Antczak,Surface diffusion of gold on quasihexagonal-reconstructed Au(100) ,Physical Review B 84 (2011) 245445-1

  14. Laser cleaning of silicon surface with deposition of different liquid films

    Science.gov (United States)

    Lu, Y. F.; Zhang, Y.; Wan, Y. H.; Song, W. D.

    1999-01-01

    Laser cleaning can efficiently remove tiny particles from a silicon surface on which a liquid film has been previously deposited when the laser fluence is large enough. The cleaning force is due to the high pressure of stress wave generated through the rapid growth of vapor bubbles inside the superheated liquid. The behaviors of this type of laser cleaning are theoretically described with deposition of two kinds of liquid film: acetone and ethanol. The cleaning threshold of laser fluence is different for these two kinds of liquids for some differences in their thermodynamic properties. For removal of alumina particles with a size of 1 μm, the lower cleaning threshold of laser fluence is obtained with deposition of acetone because of its lower boiling point and volume heat capacity. The theoretical result also indicates that the cleaning force with deposition of ethanol increases more quickly along with laser fluence than with acetone. This phenomenon is much useful for removal of smaller particles and can lead to high cleaning efficiency.

  15. Metallic superhydrophobic surfaces via thermal sensitization

    Science.gov (United States)

    Vahabi, Hamed; Wang, Wei; Popat, Ketul C.; Kwon, Gibum; Holland, Troy B.; Kota, Arun K.

    2017-06-01

    Superhydrophobic surfaces (i.e., surfaces extremely repellent to water) allow water droplets to bead up and easily roll off from the surface. While a few methods have been developed to fabricate metallic superhydrophobic surfaces, these methods typically involve expensive equipment, environmental hazards, or multi-step processes. In this work, we developed a universal, scalable, solvent-free, one-step methodology based on thermal sensitization to create appropriate surface texture and fabricate metallic superhydrophobic surfaces. To demonstrate the feasibility of our methodology and elucidate the underlying mechanism, we fabricated superhydrophobic surfaces using ferritic (430) and austenitic (316) stainless steels (representative alloys) with roll off angles as low as 4° and 7°, respectively. We envision that our approach will enable the fabrication of superhydrophobic metal alloys for a wide range of civilian and military applications.

  16. Surface modification of titanium membrane by chemical vapor deposition and its electrochemical self-cleaning

    Science.gov (United States)

    Li, X. W.; Li, J. X.; Gao, C. Y.; Chang, M.

    2011-10-01

    Membrane separation is applied widely in many fields, while concentration polarization and membrane fouling, limiting its promotion and application greatly, are the bottlenecks in membrane application. Among which, membrane fouling is irreversible, membrane must be periodically cleaned or even replaced to restore permeability. Membrane cleaning has become one of the key issues in membrane separation areas. Considering incomparable electrochemical advantages of boron-doped diamond (BDD) film electrode over conventional electrode, a new composite membrane Ti/BDD, made by depositing CVD (chemical vapor deposition) boron-doped diamond film on titanium(Ti) membrane to modify porous titanium surface, that can be cleaned electrochemically is proposed. Feasibility of its preparation and application is discussed in this paper. Results shows that based on the unique electrochemical properties of diamond, cleaning level of this composite Ti/BDD membrane is significantly increased, making membrane life and efficiency improved prominently.

  17. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng; Cao, Ling; Zhao, Wei; Xia, Yue; Huang, Wei; Li, Zelin, E-mail: lizelin@hunnu.edu.cn

    2015-01-01

    Graphical abstract: - Highlights: • Several superhydrophobic metallic surfaces were fabricated by fast electrodeposition. • Both micro/nanostructures and adsorption of airborne hydrocarbons make contributions. • XPS analyses confirm presence of airborne hydrocarbons on these metallic surfaces. • The adsorption of airborne hydrocarbons on the clean metal Au surface was very quick. • UV-O{sub 3} treatment oxidized the hydrocarbons to hydrophilic oxygen-containing organics. - Abstract: Electrochemical fabrication of micro/nanostructured metallic surfaces with superhydrophobicity has recently aroused great attention. However, the origin still remains unclear why smooth hydrophilic metal surfaces become superhydrophobic by making micro/nanostructures without additional surface modifications. In this work, several superhydrophobic micro/nanostructured metal surfaces were prepared by a facile one-step electrodeposition process, including non-noble and noble metals such as copper, nickel, cadmium, zinc, gold, and palladium with (e.g. Cu) or without (e.g. Au) surface oxide films. We demonstrated by SEM and XPS that both hierarchical micro/nanostructures and spontaneous adsorption of airborne hydrocarbons endowed these surfaces with excellent superhydrophobicity. We revealed by XPS that the adsorption of airborne hydrocarbons at the Ar{sup +}-etched clean Au surface was rather quick, such that organic contamination can hardly be prevented in practical operation of surface wetting investigation. We also confirmed by XPS that ultraviolet-O{sub 3} treatment of the superhydrophobic metal surfaces did not remove the adsorbed hydrocarbons completely, but mainly oxidized them into hydrophilic oxygen-containing organic substances. We hope our findings here shed new light on deeper understanding of superhydrophobicity for micro/nanostructured metal surfaces with and without surface oxide films.

  18. SnTe microcrystals: Surface cleaning of a topological crystalline insulator

    Energy Technology Data Exchange (ETDEWEB)

    Saghir, M., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk; Walker, M.; McConville, C. F.; Balakrishnan, G., E-mail: M.Saghir@warwick.ac.uk, E-mail: G.Balakrishnan@warwick.ac.uk [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2016-02-08

    Investigating nanometer and micron sized materials thought to exhibit topological surface properties that can present a challenge, as clean surfaces are a pre-requisite for band structure measurements when using nano-ARPES or laser-ARPES in ultra-high vacuum. This issue is exacerbated when dealing with nanometer or micron sized materials, which have been prepared ex-situ and so have been exposed to atmosphere. We present the findings of an XPS study where various cleaning methods have been employed to reduce the surface contamination and preserve the surface quality for surface sensitive measurements. Microcrystals of the topological crystalline insulator SnTe were grown ex-situ and transferred into ultra high vacuum (UHV) before being treated with either atomic hydrogen, argon sputtering, annealing, or a combination of treatments. The samples were also characterised using the scanning electron microscopy, both before and after treatment. It was found that atomic hydrogen cleaning with an anneal cycle (200 °C) gave the best clean surface results.

  19. In situ ion gun cleaning of surface adsorbates and its effect on electrostatic forces

    Science.gov (United States)

    Schafer, Robert; Xu, Jun; Mohideen, Umar

    2016-01-01

    To obtain precise measurements of the Casimir force, it is crucial to take into account the electrostatic interactions that exist between the two boundaries. Two otherwise grounded conductors will continue to have residual electrostatic effects from patch potentials existing on the surfaces. In this paper, we look at the effect of in situ cleaning of adsorbate patches, and the resultant effect on the net electrostatic potential difference between two surfaces. We find a significant reduction in the residual potential due to in situ Ar+ cleaning for the samples used.

  20. Ellipsometry of clean surfaces, submonolayer and monolayer films

    NARCIS (Netherlands)

    Habraken, F.H.P.M.; Gijzeman, O.L.J.; Bootsma, G.A.

    1980-01-01

    The geometric and electronic structure of the surface region of a crystal is often different from the bulk structure and therefore the optical properties differ in principle also. Theories for the optical properties of (sub)monolayer films are compared, with special attention to anisotropic layers.

  1. Surface plasmon lifetime in metal nanoshells

    Science.gov (United States)

    Kirakosyan, Arman S.; Stockman, Mark I.; Shahbazyan, Tigran V.

    2016-10-01

    The lifetime of localized surface plasmon plays an important role in many aspects of plasmonics and its applications. In small metal nanostructures, the dominant mechanism of plasmon decay is size-dependent Landau damping. We performed quantum-mechanical calculations of Landau damping for the bright surface plasmon mode in a metal nanoshell with dielectric core. In contrast to the conventional model based on the electron surface scattering, we found that the damping rate decreases as the nanoshell thickness is reduced. The origin of this behavior is traced to the spatial distribution of plasmon local field in the metal shell. We also found that, due to the interference of electron scattering amplitudes from the two nanoshell metal surfaces, the damping rate exhibits pronounced quantum beats with changing shell thickness.

  2. Treatment of metal-laden hazardous wastes with advanced Clean Coal Technology by-products

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini; Wiles Elder

    1999-04-05

    This eleventh quarterly report describes work done during the eleventh three-month period of the University of Pittsburgh's project on the ``Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to two outside contacts.

  3. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-01-01

    This seventeenth quarterly report describes work done during the seventeenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, submitting a manuscript and making and responding to one outside contact.

  4. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-11

    This fifteenth quarterly report describes work done during the fifteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing and giving presentations, and making and responding to several outside contacts.

  5. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-06-01

    This sixteenth quarterly report describes work done during the sixteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, giving a presentation, and making and responding to several outside contacts.

  6. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.; Ronald D. Neufeld; Jana Agostini

    1999-05-10

    This fourteenth quarterly report describes work done during the fourteenth three-month period of the University of Pittsburgh's project on the ''Treatment of Metal-Laden Hazardous Wastes with Advanced Clean Coal Technology By-Products.'' This report describes the activities of the project team during the reporting period. The principal work has focused upon new laboratory evaluation of samples from Phase 1, discussions with MAX Environmental Technologies, Inc., on the field work of Phase 2, preparing presentations, and making and responding to two outside contacts.

  7. Clean technologies: methods for minimizing the releases and choice of the effluents valorization processes. Application to metal workshops; Technologies propres: methodes de minimisation des rejets et de choix des procedes de valorisation des effluents. Application aux ateliers de traitement de surface

    Energy Technology Data Exchange (ETDEWEB)

    Laforest, V.

    1999-12-10

    Currently, the essential part of the money invested by the industrialist is for the water treatment. In France, most of the 20 billions francs per year devoted to the water treatment is used for the industrial activity. The global management of effluents favour the integration of clean technologies (optimization, change and modification of the production process) in order to reduce the pollution problem at its source. Our study aims at the introduction of clean technologies in the metal workshops (consumer and generator of water and chemicals) by the development of two data management methods, which lead to two decision support systems. The aim of the first one is to minimize both the water consumption and the wastewater disposal by optimizing the production process (optimum yield and efficiency of the rinsing baths). The second one concerns the choice of valorization techniques considering the valorization objectives, the effluents characteristics and the parameters limiting the use of the techniques. Our approach fits into a global management method for the metal finishing industry wastewater. Its aim is to limit the quantity of wastewater generated, to valorize effluents and by this way to develop the clean technologies.

  8. Metal surfaces: Surface, step and kink formation energies

    DEFF Research Database (Denmark)

    Kollár, J.; Vitos, Levente; Johansson, B.;

    2000-01-01

    We review the surface, step, and kink energies in monoatomic metallic systems. A systematic comparison is given between the theoretical results based on density functional theory and available experimental data. Our calculated values are used to predict the equilibrium shapes of small metal...

  9. Photoreactive surfactants: a facile and clean route to oxide and metal nanoparticles in reverse micelles.

    Science.gov (United States)

    de Oliveira, Rodrigo J; Brown, Paul; Correia, Gemima B; Rogers, Sarah E; Heenan, Richard; Grillo, Isabelle; Galembeck, André; Eastoe, Julian

    2011-08-01

    A new class of photoreactive surfactants (PRSs) is presented here, consisting of amphiphiles that can also act as reagents in photochemical reactions. An example PRS is cobalt 2-ethylhexanoate (Co(EH)(2)), which forms reverse micelles (RMs) in a hydrocarbon solvent, as well as mixed reversed micelles with the standard surfactant Aerosol-OT (AOT). Small-angle neutron scattering (SANS) data show that mixed AOT/PRS RMs have a spherical structure and size similar to that of pure AOT micelles. Excitation of the ligand-to-metal charge transfer (LMCT) band in the PRSs promotes electron transfer from PRS to associated metal counterions, leading to the generation of metal and metal-oxide nanoparticles inside the RMs. This work presents proof of concept for employing PRSs as precursors to obtain nearly monodisperse inorganic nanoparticles: here both Co(3)O(4) and Bi nanoparticles have been synthesized at high metal concentration (10(-2) M) by simply irradiating the RMs. These results point toward a new approach of photoreactive self-assembly, which represents a clean and straightforward route to the generation of nanomaterials.

  10. Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning

    Directory of Open Access Journals (Sweden)

    Robert S. Frazier

    2015-01-01

    Full Text Available Biomass gasification has the potential to produce renewable fuels, chemicals and power at large utility scale facilities. In these plants catalysts would likely be used to reform and clean the generated biomass syngas. Traditional catalysts are made from transition metals, while catalysts made from biochar are being studied. A life cycle assessment (LCA study was performed to analyze the sustainability, via impact assessments, of producing a metal catalyst versus a dedicated biochar catalyst. The LCA results indicate that biochar has a 93% reduction in greenhouse gas (GHG emissions and requires 95.7% less energy than the metal catalyst to produce. The study also estimated that biochar production would also have fewer impacts on human health (e.g., carcinogens and respiratory impacts than the production of a metal catalyst. The possible disadvantage of biochar production in the ecosystem quality is due mostly to its impacts on agricultural land occupation. Sensitivity analysis was carried out to assess environmental impacts of variability in the two production systems. In the metal catalyst manufacture, the extraction and production of nickel (Ni had significant negative effects on the environmental impacts. For biochar production, low moisture content (MC, 9% and high yield type (8 tons/acre switchgrass appeared more sustainable.

  11. Self-Cleaning Synthetic Adhesive Surfaces Mimicking Tokay Geckos.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema; Burckel, David Bruce; Fan, Hongyou; Houston, Jack E.; Brinker, C. Jeffrey; Johnson, Patrick

    2006-11-01

    A gecko's extraordinary ability to suspend itself from walls and ceilings of varied surface roughness has interested humans for hundreds of years. Many theories and possible explanations describing this phenomenon have been proposed including sticky secretions, microsuckers, and electrostatic forces; however, today it is widely accepted that van der Waals forces play the most important role in this type of dry adhesion. Inarguably, the vital feature that allows a gecko's suspension is the presence of billions 3 of tiny hairs on the pad of its foot called spatula. These features are small enough to reach within van der Waals distances of any surface (spatula radius %7E100 nm); thus, the combined effect of billions of van der Waals interactions is more than sufficient to hold a gecko's weight to surfaces such as smooth ceilings or wet glass. Two lithographic approaches were used to make hierarchal structures with dimensions similar to the gecko foot dimensions noted above. One approach combined photo-lithography with soft lithography (micro-molding). In this fabrication scheme the fiber feature size, defined by the alumina micromold was 0.2 um in diameter and 60 um in height. The second approach followed more conventional photolithography-based patterning. Patterned features with dimensions %7E0.3 mm in diameter by 0.5 mm tall were produced. We used interfacial force microscopy employing a parabolic diamond tip with a diameter of 200 nm to measure the surface adhesion of these structures. The measured adhesive forces ranged from 0.3 uN - 0.6 uN, yielding an average bonding stress between 50 N/cm2 to 100 N/cm2. By comparison the reported literature value for the average stress of a Tokay gecko foot is 10 N/cm2. Acknowledgements This work was funded by Sandia National Laboratory's Laboratory Directed Research & Development program (LDRD). All coating processes were conducted in the cleanroom facility located at the University of New Mexico

  12. Examining factors that influence the effectiveness of cleaning antineoplastic drugs from drug preparation surfaces: a pilot study.

    Science.gov (United States)

    Hon, Chun-Yip; Chua, Prescillia Ps; Danyluk, Quinn; Astrakianakis, George

    2014-06-01

    Occupational exposure to antineoplastic drugs has been documented to result in various adverse health effects. Despite the implementation of control measures to minimize exposure, detectable levels of drug residual are still found on hospital work surfaces. Cleaning these surfaces is considered as one means to minimize the exposure potential. However, there are no consistent guiding principles related to cleaning of contaminated surfaces resulting in hospitals to adopt varying practices. As such, this pilot study sought to evaluate current cleaning protocols and identify those factors that were most effective in reducing contamination on drug preparation surfaces. Three cleaning variables were examined: (1) type of cleaning agent (CaviCide®, Phenokil II™, bleach and chlorhexidine), (2) application method of cleaning agent (directly onto surface or indirectly onto a wipe) and (3) use of isopropyl alcohol after cleaning agent application. Known concentrations of antineoplastic drugs (either methotrexate or cyclophosphamide) were placed on a stainless steel swatch and then, systematically, each of the three cleaning variables was tested. Surface wipes were collected and quantified using high-performance liquid chromatography-tandem mass spectrometry to determine the percent residual of drug remaining (with 100% being complete elimination of the drug). No one single cleaning agent proved to be effective in completely eliminating all drug contamination. The method of application had minimal effect on the amount of drug residual. In general, application of isopropyl alcohol after the use of cleaning agent further reduced the level of drug contamination although measureable levels of drug were still found in some cases.

  13. Reduction of trapped ion anomalous heating by in situ surface plasma cleaning

    CERN Document Server

    McConnell, Robert; Chiaverini, John; Sage, Jeremy

    2015-01-01

    Anomalous motional heating is a major obstacle to scalable quantum information processing with trapped ions. While the source of this heating is not yet understood, several previous studies suggest that surface contaminants may be largely responsible. We demonstrate an improvement by a factor of four in the room-temperature heating rate of a niobium surface electrode trap by in situ plasma cleaning of the trap surface. This surface treatment was performed with a simple homebuilt coil assembly and commercially-available matching network and is considerably gentler than other treatments, such as ion milling or laser cleaning, that have previously been shown to improve ion heating rates. We do not see an improvement in the heating rate when the trap is operated at cryogenic temperatures, pointing to a role of thermally-activated surface contaminants in motional heating whose activity may freeze out at low temperatures.

  14. Electrolysis of water on (oxidized) metal surfaces

    DEFF Research Database (Denmark)

    Rossmeisl, Jan; Logadottir, Ashildur; Nørskov, Jens Kehlet

    2005-01-01

    directly from the electronic structure calculations. We consider electrodes of Pt(111) and Au(111) in detail and then discuss trends for a series of different metals. We show that the difficult step in the water splitting process is the formation of superoxy-type (OOH) species on the surface...... by the splitting of a water molecule on top an adsorbed oxygen atom. One conclusion is that this is only possible on metal surfaces that are (partly) oxidized. We show that the binding energies of the different intermediates are linearly correlated for a number of metals. In a simple analysis, where the linear...... relations are assumed to be obeyed exactly, this leads to a universal relationship between the catalytic rate and the oxygen binding energy. Finally, we conclude that for systems obeying these relations, there is a limit to how good a water splitting catalyst an oxidized metal surface can become. (c) 2005...

  15. Excimer laser irradiation of metal surfaces

    Science.gov (United States)

    Kinsman, Grant

    In this work a new method of enhancing CO2 laser processing by modifying the radiative properties of a metal surface is studied. In this procedure, an excimer laser (XeCl) or KrF) exposes the metal surface to overlapping pulses of high intensity, 10(exp 8) - 10(exp 9) W cm(exp -2), and short pulse duration, 30 nsec FWHM (Full Width Half Maximum), to promote structural and chemical change. The major processing effect at these intensities is the production of a surface plasma which can lead to the formation of a laser supported detonation wave (LSD wave). This shock wave can interact with the thin molten layer on the metal surface influencing to a varying degree surface oxidation and roughness features. The possibility of the expulsion, oxidation and redeposition of molten droplets, leading to the formation of micron thick oxide layers, is related to bulk metal properties and the incident laser intensity. A correlation is found between the expulsion of molten droplets and a Reynolds number, showing the interaction is turbulent. The permanent effects of these interactions on metal surfaces are observed through scanning electron microscopy (SEM), transient calorimetric measurements and Fourier transform infrared (FTIR) spectroscopy. Observed surface textures are related to the scanning procedures used to irradiate the metal surface. Fundamental radiative properties of a metal surface, the total hemispherical emissivity, the near-normal spectral absorptivity, and others are examined in this study as they are affected by excimer laser radiation. It is determined that for heavily exposed Al surface, alpha' (10.6 microns) can be increased to values close to unity. Data relating to material removal rates and chemical surface modification for excimer laser radiation is also discussed. The resultant reduction in the near-normal reflectivity solves the fundamental problem of coupling laser radiation into highly reflective and conductive metals such as copper and aluminum. The

  16. The application of power ultrasound to the surface cleaning of silica and heavy mineral sands.

    Science.gov (United States)

    Farmer, A D; Collings, A F; Jameson, G J

    2000-10-01

    Power ultrasound may be used in the processing of minerals to clean their surfaces of oxidation products and fine coatings, mainly through the large, but very localised, forces produced by cavitation. Results of the application of power ultrasound to remove iron-rich coatings from the surfaces of silica sand used in glass making and to improve the electrostatic separation of mineral sand concentrates through lowering the resistivity of the conducting minerals (ilmenite and rutile) are presented. Parameters affecting ultrasonic cleaning, such as input power and levels of reagent addition, are discussed. In particular, we present data showing the relationship between power input and the particle size of surface coatings removed. This can be explained by the Derjaguin approximation for the energy of interaction between a sphere and a flat surface.

  17. The assessment of metal surface cleanliness by XPS

    CERN Document Server

    Scheuerlein, C

    2006-01-01

    The most commonly used quantity to characterize surface cleanliness through X-ray photoemission spectroscopy (XPS) measurements is the so-called relative atomic surface concentration of carbon (at.% C). We have investigated the relationship between at.% C values and the C 1s peak area on Cu and we find a nearly linear behaviour in the range 15–80 at.% C. Correction factors for the measured at.% C values that enable a comparison of the cleanliness level of different materials, notably Cu, Al and stainless steel, have been determined experimentally. The influence of the storage time and method on the degree of re-contamination of initially clean Cu has been examined. The carbon contamination on clean metallic Cu increases abruptly to some 20 at.% C upon air exposure and continues to increase with storage time in air. Storage in polymer bags can lead to up to 70 at.% C after 1 month, whereas storage in aluminium foil can preserve an acceptable surface cleanliness for a similar storage time.

  18. An AES Study of the Room Temperature Surface Conditioning of Technological Metal Surfaces by Electron Irradiation

    CERN Document Server

    Scheuerlein, C; Taborelli, M; Brown, A; Baker, M A

    2002-01-01

    The modifications to technological copper and niobium surfaces induced by 2.5 keV electron irradiation have been investigated in the context of the conditioning process occurring in particle accelerator ultra high vacuum systems. Changes in the elemental surface composition have been found using Scanning Auger Microscopy (SAM) by monitoring the carbon, oxygen and metal Auger peak intensities as a function of electron irradiation in the dose range 10-6 to 10-2 C mm-2. The surface analysis results are compared with electron dose dependent secondary electron and electron stimulated desorption yield measurements. Initially the electron irradiation causes a surface cleaning through electron stimulated desorption, in particular of hydrogen. During this period both the electron stimulated desorption and secondary electron yield decrease as a function of electron dose. When the electron dose exceeds 10-4 C mm-2 electron stimulated desorption yields are reduced by several orders of magnitude and the electron beam indu...

  19. TREATMENT OF METAL-LADEN HAZARDOUS WASTES WITH ADVANCED CLEAN COAL TECHNOLOGY BY-PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    James T. Cobb, Jr.

    2003-09-12

    Metal-laden wastes can be stabilized and solidified using advanced clean coal technology by-products (CCTBs)--fluid bed combustor ash and spray drier solids. These utility-generated treatment chemicals are available for purchase through brokers, and commercial applications of this process are being practiced by treaters of metal-laden hazardous waste. A complex of regulations governs this industry, and sensitivities to this complex has discouraged public documentation of treatment of metal-laden hazardous wastes with CCTBs. This report provides a comprehensive public documentation of laboratory studies that show the efficacy of the stabilization and solidification of metal-laden hazardous wastes--such as lead-contaminated soils and sandblast residues--through treatment with CCTBs. It then describes the extensive efforts that were made to obtain the permits allowing a commercial hazardous waste treater to utilize CCTBs as treatment chemicals and to install the equipment required to do so. It concludes with the effect of this lengthy process on the ability of the treatment company to realize the practical, physical outcome of this effort, leading to premature termination of the project.

  20. Concepts in surface alloying of metals

    Directory of Open Access Journals (Sweden)

    Santosh S. Hosmani

    2013-03-01

    Full Text Available Surface alloying is widely used method in industries to improve the surface properties of metals/alloys. Significance of the various surface engineering techniques to improve the properties of engineering components in various applications, for example, automobile industries, has grown substantially over the many years. The current paper is focused on the fundamental scientific aspects of the surface alloying of metals. Widely used surface alloying elements involved are interstitial elements such as nitrogen, carbon, and substitutional element, chromium. This topic is interdisciplinary in nature and various science and engineering streams can work together for the further development in this topic. This paper has attempted to cover the essential concepts of surface alloying along with some of the interesting results in this research area.

  1. Surface Cleaning by Glow Discharge in High-Volume Gas Flow

    Science.gov (United States)

    1976-04-07

    was used with a #25 size hypodermic needle the results are shown in Table 2. A slightly smaller drop was obtained when using the same size needle coated...small to measure, indicates a surface free of both water and of substances which are hydrophobic. The theory of the significance of the small contact...and its diameter when spread out over the surface of the clean specimen. The experiment data to test the following theory , was accumulated by measuring

  2. Development of a laser cleaning method for the first mirror surface of the charge exchange recombination spectroscopy diagnostics on ITER

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Buzinskij, O. I. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation); Gubsky, K. L.; Nikitina, E. A.; Savchenkov, A. V.; Tarasov, B. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation); Tugarinov, S. N. [State Research Center Troitsk Institute for Innovation and Fusion Research (TRINITI) (Russian Federation)

    2015-12-15

    A set of optical diagnostics is expected for measuring the plasma characteristics in ITER. Optical elements located inside discharge chambers are exposed to an intense radiation load, sputtering due to collisions with energetic atoms formed in the charge transfer processes, and contamination due to recondensation of materials sputtered from different parts of the construction of the chamber. Removing the films of the sputtered materials from the mirrors with the aid of pulsed laser radiation is an efficient cleaning method enabling recovery of the optical properties of the mirrors. In this work, we studied the efficiency of removal of metal oxide films by pulsed radiation of a fiber laser. Optimization of the laser cleaning conditions was carried out on samples representing metal substrates polished with optical quality with deposition of films on them imitating the chemical composition and conditions expected in ITER. It is shown that, by a proper selection of modes of radiation exposure to the surface with a deposited film, it is feasible to restore the original high reflection characteristics of optical elements.

  3. Cleaning of carbon materials from flat surfaces and castellation gaps by an atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Stancu, C. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania); Alegre, D. [Laboratorio Nacional de Fusión, As. Euratom/Ciemat, Avda. Complutense 22, 28040, Madrid (Spain); Ionita, E.R.; Mitu, B. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania); Grisolia, C. [CEA, IRFM, F-13108, Saint-Paul-lez-Durance (France); Tabares, F.L. [Laboratorio Nacional de Fusión, As. Euratom/Ciemat, Avda. Complutense 22, 28040, Madrid (Spain); Dinescu, G., E-mail: dinescug@infim.ro [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania)

    2016-02-15

    Highlights: • Atmospheric plasma jets operated with nitrogen, oxygen and their mixtures are used for cleaning surfaces of carbon residues • Efficient plasma jet cleaning of carbon deposits from flat surfaces and inside gaps of castellated surfaces is demonstrated • Plasma jet cleaning is more effective at the gaps entrance and on their bottom - Abstract: A study of the removal of carbon layers from flat and castellated surfaces by a plasma jet source operated in open atmosphere is presented. Amorphous hydrogenated carbon films deposited on silicon substrates, on aluminium made castellated surfaces, and graphitic carbon plates were used. The erosion effects of plasmas generated either in pure argon, nitrogen or in their mixtures with hydrogen, ammonia, oxygen are compared. Highest erosion was obtained with nitrogen and nitrogen/oxygen plasmas. Plasmas in argon and containing hydrogen, and ammonia have shown a low erosion rate. A large removal rate by pure nitrogen plasma jet of 3.2 mg/min was found by scanning graphitic carbon flat surfaces for optimum process parameters. Adding small quantities of oxygen led to a removal rate enhancement by a factor of 3. Finally, the integral removal rate of amorphous hydrogenated carbon deposited in gaps 23 mm deep and 0.5 mm wide was of the order of 0.35 mg/min. The layer elimination was more efficient at the top and at the bottom of the gaps, precisely where the thickest codeposits develop in a nuclear fusion device.

  4. Nitrogen interactions at metal surfaces

    NARCIS (Netherlands)

    Gleeson, M. A.; Kleyn, A. W.

    2013-01-01

    Molecular beam experiments with specially prepared beams allow the study of the interaction of very reactive species with surfaces. In the present case the interaction of N-atoms with Ag(1 1 1) is studied. The energy of the atoms is around 5 eV, precisely between the classical energy regimes of seed

  5. Nitrogen interactions at metal surfaces

    NARCIS (Netherlands)

    Gleeson, M. A.; Kleyn, A. W.

    2013-01-01

    Molecular beam experiments with specially prepared beams allow the study of the interaction of very reactive species with surfaces. In the present case the interaction of N-atoms with Ag(1 1 1) is studied. The energy of the atoms is around 5 eV, precisely between the classical energy regimes of seed

  6. Nitrogen interactions at metal surfaces

    NARCIS (Netherlands)

    Gleeson, M.A.; Kleijn, A.W.

    2013-01-01

    Molecular beam experiments with specially prepared beams allow the study of the interaction of very reactive species with surfaces. In the present case the interaction of N-atoms with Ag(1 1 1) is studied. The energy of the atoms is around 5 eV, precisely between the classical energy regimes of

  7. The surface chemistry of metal-oxygen interactions

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Baroni, Stefano

    1997-01-01

    We report on a computational study of the clean and oxygen-covered Rh(110) surface, based on density-functional theory within the local-density approximation. We have used plane-wave basis sets and Vanderbilt ultra-soft pseudopotentials. For the clean surface, we present results for the equilibrium...

  8. Surface-Induced Melting of Metal Nanoclusters

    Institute of Scientific and Technical Information of China (English)

    YANG Quan-Wen; ZHU Ru-Zeng; WEI Jiu-An; WEN Yu-Hua

    2004-01-01

    @@ We investigate the size effect on melting of metal nanoclusters by molecular dynamics simulation and thermodynamic theory based on Kofman's melt model. By the minimization of the free energy of metal nanoclusters with respect to the thickness of the surface liquid layer, it has been found that the nanoclusters of the same metal have the same premelting temperature Tpre = T0 - T0(γsv -γlv -γst)/(ρLξ) (T0 is the melting point of bulk metal, γsv the solid-vapour interfacial free energy, γlv the liquid-vapour interfacial free energy, γsl the solid-liquid interfacial free energy, ρ the density of metal, L the latent heat of bulk metal, and ξ the characteristic length of surface-interface interaction) to be independent of the size of nanoclusters, so that the characteristic length ξ ofa metal can be obtained easily by Tpre, which can be obtained by experiments or molecular dynamics (MD) simulations. The premelting temperature Tpre of Cu is obtained by MD simulations, then ξ is obtained.The melting point Tcm is further predicted by free energy analysis and is in good agreement with the result of our MD simulations. We also predict the maximum premelting-liquid width of Cu nanoclusters with various sizes and the critical size, below which there is no premelting.

  9. Interaction of water vapor with clean and oxygen-covered uranium surfaces

    Science.gov (United States)

    Winer, K.; Colmenares, C. A.; Smith, R. L.; Wooten, F.

    1987-04-01

    The interaction of water vapor with clean and oxygen-covered high-purity polycrystalline uranium surfaces was studied between 85 and 298 K with thermal desorption spectroscopy (TDS), X-ray photoelectron spectroscopy (XPS), and secondary ion mass spectroscopy (SIMS). Saturation of the uranium surface with oxygen or water vapor produced an asymmetric O1s photoelectron peak that consisted of a main oxide contribution and a small component assigned to strongly chemisorbed oxygen or hydroxyl ions, respectively. Saturation of the clean or oxygen-covered surface with water vapor at 85 K produced multilayer ice that was converted to oxide and adsorbed hydroxyl ions after warming to room temperature. A significant difference in binding energies was observed in the O1s spectra between water vapor adsorption on clean and oxygen-covered surfaces that lends support to the oxygen inhibition of the water vapor-uranium reaction by a surface mechanism. The initial oxidation mechanisms of uranium with oxygen and water vapor are discussed.

  10. Chemistry of glass-ceramic to metal bonding for header applications. I. Effect of treatments on Inconel 718 and Hastelloy C-276 metallic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D P; Craven, S M; Schneider, R E; Moddeman, W E; Brohard, D W

    1984-02-02

    Auger electron spectroscopy and depth Auger profiling were used to study the surfaces of Inconel 718 and Hastelloy C-276. The metal surfaces were processed in the same manner as is presently being used in the manufacturing of glass-ceramic headers. At each step in the process, samples were studied with Auger spectroscopy to determine their resultant elemental surface composition and film thickness. In addition, the effect of a final plasma cleaning operation on the metal surface was examined. The results show that the type and concentration of surface species and the thickness of the surface oxides are dependent on the processing technique.

  11. Atomic Manipulation on Metal Surfaces

    Science.gov (United States)

    Ternes, Markus; Lutz, Christopher P.; Heinrich, Andreas J.

    Half a century ago, Nobel Laureate Richard Feynman asked in a now-famous lecture what would happen if we could precisely position individual atoms at will [R.P. Feynman, Eng. Sci. 23, 22 (1960)]. This dream became a reality some 30 years later when Eigler and Schweizer were the first to position individual Xe atoms at will with the probe tip of a low-temperature scanning tunneling microscope (STM) on a Ni surface [D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)].

  12. Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Ran, Tong; Zhang, Deyuan

    2015-11-01

    Nepenthes pitcher inspired slippery lubricant-infused porous surfaces greatly impact the understanding of liquid-repellent surfaces construction and have attracted extensive attention in recent years due to their potential applications in self-cleaning, anti-fouling, anti-icing, etc. In this work, we have successfully fabricated transparent slippery lubricant-infused surfaces based on breath figure patterns (BFPs). Large-area BFPs with interconnected pores were initially formed on the glass substrate and then a suitable lubricant was added onto the surfaces. The interconnected pores in BFPs were able to hold the lubricant liquid in place and form a stable liquid/solid composite surface capable of repelling a variety of liquids. The liquid-repellent surfaces show extremely low critical sliding angles for various liquids, thus providing the surfaces with efficient self-cleaning property. It was also found that the liquid droplets' sliding behaviors on the surfaces were significantly influenced by the tilting angle of the substrate, liquid volume, liquid chemical properties, and pore sizes of the surfaces.

  13. Final Clean Closure Report Site 300 Surface Impoundments Closure Lawrence Livermore National Laboratory Livermore, California

    Energy Technology Data Exchange (ETDEWEB)

    Haskell, K

    2006-02-14

    Lawrence Livermore National Laboratory operated two Class II surface impoundments that stored wastewater that was discharged from a number of buildings located on the Site 300 Facility (Site 300). The wastewater was the by-product of explosives processing. Reduction in the volume of water discharged from these buildings over the past several years significantly reduced the wastewater storage needs. In addition, the impoundments were constructed in 1984, and the high-density polyethylene (HDPE) geomembrane liners were nearing the end of their service life. The purpose of this project was to clean close the surface impoundments and provide new wastewater storage using above ground storage tanks at six locations. The tanks were installed and put into service prior to closure of the impoundments. This Clean Closure Report (Closure Report) complies with State Water Resources Control Board (SWRCB) Section 21400 of the California Code of Regulations Title 27 (27 CCR section 21400). As required by these regulations and guidance, this Closure Report provides the following information: (1) a brief site description; (2) the regulatory requirements relevant to clean closure of the impoundments; (3) the closure procedures; and (4) the findings and documentation of clean closure.

  14. Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect.

    Science.gov (United States)

    Wu, Wanling; Zhu, Qingzeng; Qing, Fengling; Han, Charles C

    2009-01-06

    Surface geometrical microstructure and low surface free energy are the two most important factors for a self-cleaning surface. In this study, multiform geometrical microstructured surfaces were fabricated by casting and electrospinning polyurethanes with and without low surface energy segments. The effect of low surface energy on water repellency was evaluated. Low surface energy seems to make a more significant contribution to the static wetting behavior than do dynamic properties such as the improvement of sliding behavior. Sucking disk behavior was brought forward to explain the pinning state of a water droplet on hydrophobic surfaces with high water contact angles (>150 degrees ). A better understanding of the relationship between the static contact angle and the dynamic sliding property was provided.

  15. Development of an emergency air-cleaning system for liquid-metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R.K.

    1980-11-01

    A novel air cleaning concept has been developed for potential use in venting future commercial liquid metal fast breeder reactor containment buildings in the unlikely event of postulated core disruptive accidents. The passive concept consists of a submerged gravel bed to collect the bulk of particulate contaminates carried by the vented gas. A fibrous scrubber could be combined with the submerged gravel scrubber to enhance collection efficiencies for the smaller sized particles. The submerged gravel scrubber is unique in that water flow through the packed bed is induced by the gas flow, eliminating the need for an active liquid pump. In addition, design gas velocities through the packed bed are 10 to 20 times higher than for a conventional sand bed filter.

  16. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... that the ordered atomic structure of the surfaces is protected from oxidation, even after the bonded samples have been in air for weeks. Further, we show that silicon surfaces that have been cleaned and hydrogen-passivated in UHV can be contacted in UHV in a similarly hermetic fashion, protecting the surface...

  17. Nanostructured Gd3+-TiO2 surfaces for self-cleaning application

    Science.gov (United States)

    Saif, M.; El-Molla, S. A.; Aboul-Fotouh, S. M. K.; Ibrahim, M. M.; Ismail, L. F. M.; Dahn, Douglas C.

    2014-06-01

    Preparation of self-cleaning surfaces based on lanthanide modified titanium dioxide nanoparticles has rarely been reported. In the present work, gadolinium doped titanium dioxide thin films (x mol Gd3+-TiO2 where x = 0.000, 0.005, 0.008, 0.010, 0.020 and 0.030 mol) were synthesized by sol-gel method and deposited using doctor-blade method. These films were characterized by studying their structural, optical and electrical properties. Doping with gadolinium decreases the band gap energy and increase conductivity of thin films. The photo self-cleaning activity in term of quantitative determination of the active oxidative species (rad OH) produced on the thin film surfaces was evaluated using fluorescent probe method. The results show that, the highly active thin film is the 0.020 Gd3+-TiO2. The structural, morphology, optical, electrical and photoactivity properties of Gd3+-TiO2 thin films make it promising surfaces for self-cleaning application. Mineralization of commercial textile dye (Remazol Red RB-133, RR) and durability using 0.020Gd3+-TiO2 film surface was studied.

  18. Surface effects in metallic iron nanoparticles

    DEFF Research Database (Denmark)

    Bødker, Franz; Mørup, Steen; Linderoth, Søren

    1994-01-01

    Nanoparticles of metallic iron on carbon supports have been studied in situ by use of Mossbauer spectroscopy. The magnetic anisotropy energy constant increases with decreasing particle size, presumably because of the influence of surface anisotropy. Chemisorption of oxygen results in formation...... of a surface layer with magnetic hyperfine fields similar to those of thicker passivation layers, and with a ferromagnetic coupling to the spins in the core of the particles. In contrast, thicker passivation layers have a noncollinear spin structure....

  19. Enamel Surface Roughness after Debonding of Orthodontic Brackets and Various Clean-Up Techniques

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahrari

    2013-01-01

    Full Text Available Objective: This study aimed to evaluate enamel roughness after adhesive removal using different burs and an Er:YAG laser.Materials and Methods: The buccal surfaces of forty human premolars were sealed by two layers of nail varnish, except for a circular area of 3 mm in diameter on the middle third. The enamel surfaces were initially subjected to profilometry analysis and four parameters of surface irregularity (Ra, Rq, Rt and Rz were recorded. Following bracket bonding and debonding, adhesive remnants were removed by tungsten carbide burs in low- or high- speed handpieces (group 1 and 2, respectively, an ultrafine diamond bur (group 3 or an Er:YAG laser (250 mJ, long pulse, 4 Hz (group 4, and surface roughness parameters were measured again. Then, the buccal surfaces were polished and the third profilometry measurements were performed.Results: The specimens that were cleaned with a low speed tungsten carbide bur showed no significant difference in surface irregularity between the different treatment stages (p>0.05. Surface roughness increased significantly after clean-up with the diamond bur and the Er:YAG laser (p<0.01. In comparison between groups, adhesive removal with tungsten carbide burs at slow- or high-speed handpieces produced the lowest, while enamel clean-up with the Er:YAG laser caused the highest values of roughness measurements (P<0.05.Conclusion: Under the study conditions, application of the ultrafine diamond bur or the Er:YAG laser caused irreversible enamel damage on tooth surface, and thus these methods could not be recommended for removing adhesive remnants after debonding of orthodontic brackets.

  20. CO Chemisorption at Metal Surfaces and Overlayers

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Morikawa, Y.; Nørskov, Jens Kehlet

    1996-01-01

    A database of ab initio calculations of the chemisorption energy of CO over Ni(111), Cu(111), Ru(0001), Pd(111), Ag(111), Pt(111), Au(111), Cu3Pt(111), and some metallic overlayer structures is presented. The trends can be reproduced with a simple model describing the interaction between the meta...... d states and the CO 2 pi* and 5 sigma states, renormalized by the metal sp continuum. Our model rationalizes the results by Rodriguez and Goodman [Science 257, 897 (1992)] showing a strong correlation between the CO chemisorption energy and the surface core level shift.......A database of ab initio calculations of the chemisorption energy of CO over Ni(111), Cu(111), Ru(0001), Pd(111), Ag(111), Pt(111), Au(111), Cu3Pt(111), and some metallic overlayer structures is presented. The trends can be reproduced with a simple model describing the interaction between the metal...

  1. Surface energy of metal alloy nanoparticles

    Science.gov (United States)

    Takrori, Fahed M.; Ayyad, Ahmed

    2017-04-01

    The measurement of surface energy of alloy nanoparticles experimentally is still a challenge therefore theoretical work is necessary to estimate its value. In continuation of our previous work on the calculation of the surface energy of pure metallic nanoparticles we have extended our work to calculate the surface energy of different alloy systems, namely, Co-Ni, Au-Cu, Cu-Al, Cu-Mg and Mo-Cs binary alloys. It is shown that the surface energy of metallic binary alloy decreases with decreasing particle size approaching relatively small values at small sizes. When both metals in the alloy obey the Hume-Rothery rules, the difference in the surface energy is small at the macroscopic as well as in the nano-scale. However when the alloy deviated from these rules the difference in surface energy is large in the macroscopic and in the nano scales. Interestingly when solid solution formation is not possible at the macroscopic scale according to the Hume-Rothery rules, it is shown it may form at the nano-scale. To our knowledge these findings here are presented for the first time and is challenging from fundamental as well as technological point of views.

  2. Chemical Dynamics at Surfaces of Metal Nanomaterials

    Science.gov (United States)

    2014-07-23

    H. J.; Molecules: Wen, X. W lecular heat X. W.; Zhe spectroscop o, X. M.; -Cysteine D . B. 2013, K. J.; Wen, and Dyna Mode Mu try C 2012, heng...Two Distinctive Energy Dissipation Pathways of Monolayer Molecules on Metal Nanoparticle Surfaces. To be submitted 2014. (13) Li, J. B.; Wang , J. K

  3. Cleaning surface treatments for the fabrication of ITER First Wall panels by HIP

    Energy Technology Data Exchange (ETDEWEB)

    Frayssines, P.-E. [DRT/LITEN/DTH/LTH, CEA - Grenoble, 17 Rue des Martyrs, F-38054 Grenoble cedex 9 (France)], E-mail: pierre-eric.frayssines@cea.fr; Bucci, P.; De Vito, E.; Rigal, E. [DRT/LITEN/DTH/LTH, CEA - Grenoble, 17 Rue des Martyrs, F-38054 Grenoble cedex 9 (France); Lorenzetto, P. [EFDA, Close Support Unit, 85748 Garching (Germany)

    2009-04-30

    This paper presents our investigations to find an industrial route to clean copper alloy and stainless steel in order to manufacture high-strength joints for ITER Primary First Wall panels. Products investigated are chemical liquids, and a more advanced technique that uses a plasma process is also investigated. HIP joints have been tested by performing impact toughness and tensile tests. Surface cleanliness has been assessed thanks to XPS measurements.

  4. Surface studies of gas sensing metal oxides.

    Science.gov (United States)

    Batzill, Matthias; Diebold, Ulrike

    2007-05-21

    The relation of surface science studies of single crystal metal oxides to gas sensing applications is reviewed. Most metal oxide gas sensors are used to detect oxidizing or reducing gases and therefore this article focuses on surface reduction processes and the interaction of oxygen with these surfaces. The systems that are discussed are: (i) the oxygen vacancy formation on the surface of the ion conductor CeO(2)(111); (ii) interaction of oxygen with TiO(2) (both adsorption processes and the incorporation of oxygen into the TiO(2)(110) lattice are discussed); (iii) the varying surface composition of SnO(2)(101) and its consequence for the adsorption of water; and (iv) Cu modified ZnO(0001)-Zn surfaces and its interaction with oxygen. These examples are chosen to give a comprehensive overview of surface science studies of different kinds of gas sensing materials and to illustrate the potential that surface science studies have to give fundamental insight into gas sensing phenomena.

  5. Fabrication of a Self-Cleaning Surface via the Thermosensitive Copolymer Brush of P(NIPAAm-PEGMA).

    Science.gov (United States)

    Ye, Yuansong; Huang, Jian; Wang, Xiaolin

    2015-10-14

    Surface hydrophilicity and the inherent washing force are two crucial factors for constructing an underwater self-cleaning surface. Following this self-cleaning mechanism, we fabricated thermosensitive copolymer brushes of N-isopropylacrylamide (NIPAAm) and poly(ethylene glycol) methacrylate (PEGMA) on the polypropylene (PP) surface. Benefiting from the hydrophilic poly(ethylene glycol) (PEG) side chains, the copolymer brushes with the PEGMA content exceeding 5 mol % exhibited good surface hydrophilicity, whenever at temperatures below or above the lower critical solution temperatures (LCST). Hence their underwater oleophobicity was greatly improved with oil contact angles higher than 141° and oil adhesive forces lower than 20 μN. In addition, the sharp volume-phase transition feature was reserved in their copolymer backbones, as proved by the AFM result. Self-cleaning evaluation of the modified surfaces was performed by a simple temperature-change water cleaning method, after which only 0.2 wt % of oil residues remained on the brush surface of P(NIPAAm-5PEGMA) (with 5 mol % of PEGMA contents). The excellent self-cleaning capability is believed to be ascribed to its balanced surface features in hydrophilicity and the sharper volume-phase transition, when a hydrophilic surface can facilitate oil desorption and an intense conformation change of chain stretching and shrinking can offer the strong washing force to assist oil detachment. This study contributes to development of the underwater self-cleaning surface based on a hydrophilic surface with the chain motion.

  6. Continuous metal plasmonic frequency selective surfaces.

    Science.gov (United States)

    Zhang, Jianfa; Ou, Jun-Yu; Papasimakis, Nikitas; Chen, Yifang; Macdonald, Kevin F; Zheludev, Nikolay I

    2011-11-07

    In the microwave part of the spectrum, where losses are minimal, metal films regularly patterned (perforated) on the sub-wavelength scale achieve spectral selectivity by balancing the transmission and reflection characteristics of the surface. Here we show for optical frequencies, where joule losses are important, that periodic structuring of a metal film without violation of continuity (i.e. without perforation) is sufficient to achieve substantial modification of reflectivity. By engineering the geometry of the structure imposed on a surface one can dramatically change the perceived color of the metal without employing any form of chemical modification, thin-film coating or diffraction effects. This novel frequency selective effect is underpinned by plasmonic Joule losses in the constituent elements of the patterns (dubbed 'intaglio' and 'bas relief' metamaterials to distinguish indented and raised structures respectively) and is specific to the optical part of the spectrum. It has the advantage of maintaining the integrity of metal surfaces and is well suited to high-throughput fabrication via techniques such as nano-imprint.

  7. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces

    Directory of Open Access Journals (Sweden)

    Marina A. González Lazo

    2016-08-01

    Full Text Available A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA within a low-shrinkage acrylated hyperbranched polymer (HBP and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125° and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10° and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5° and also featured self-cleaning properties.

  8. Surface-attached cells, biofilms and biocide susceptibility: implications for hospital cleaning and disinfection.

    Science.gov (United States)

    Otter, J A; Vickery, K; Walker, J T; deLancey Pulcini, E; Stoodley, P; Goldenberg, S D; Salkeld, J A G; Chewins, J; Yezli, S; Edgeworth, J D

    2015-01-01

    Microbes tend to attach to available surfaces and readily form biofilms, which is problematic in healthcare settings. Biofilms are traditionally associated with wet or damp surfaces such as indwelling medical devices and tubing on medical equipment. However, microbes can survive for extended periods in a desiccated state on dry hospital surfaces, and biofilms have recently been discovered on dry hospital surfaces. Microbes attached to surfaces and in biofilms are less susceptible to biocides, antibiotics and physical stress. Thus, surface attachment and/or biofilm formation may explain how vegetative bacteria can survive on surfaces for weeks to months (or more), interfere with attempts to recover microbes through environmental sampling, and provide a mixed bacterial population for the horizontal transfer of resistance genes. The capacity of existing detergent formulations and disinfectants to disrupt biofilms may have an important and previously unrecognized role in determining their effectiveness in the field, which should be reflected in testing standards. There is a need for further research to elucidate the nature and physiology of microbes on dry hospital surfaces, specifically the prevalence and composition of biofilms. This will inform new approaches to hospital cleaning and disinfection, including novel surfaces that reduce microbial attachment and improve microbial detachment, and methods to augment the activity of biocides against surface-attached microbes such as bacteriophages and antimicrobial peptides. Future strategies to address environmental contamination on hospital surfaces should consider the presence of microbes attached to surfaces, including biofilms.

  9. Protection of lithium metal surfaces using chlorosilanes.

    Science.gov (United States)

    Marchioni, Filippo; Star, Kurt; Menke, Erik; Buffeteau, Thierry; Servant, Laurent; Dunn, Bruce; Wudl, Fred

    2007-11-01

    In this paper, we present a new approach for protecting metallic lithium surfaces based on a reaction between the thin native layer of lithium hydroxide present on the surface and various chlorosilane derivatives. The chemical composition of the resulting layer and the chemistry involved in layer formation were analyzed by polarization modulated infrared reflection absorption spectroscopy (PM-IRRAS), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDX). Spectroscopy shows the disappearance of surface hydroxide groups and the appearance of silicon and chloride on the lithium surface. Differential scanning calorimetry (DSC) and electrochemical impedance spectroscopy (EIS) show that this surface treatment protects the lithium from certain gas-phase reactions and is ionically conductive.

  10. Surface segregation of the metal impurity to the (100) surface of fcc metals

    Indian Academy of Sciences (India)

    Jian-Min Zhang; Bo Wang; Ke-Wei Xu

    2007-10-01

    The surface segregation energies for a single metal impurity to the (100) surface of nine fcc metals (Cu, Ag, Au, Ni, Pd, Pt, Rh, Al and Ir) have been calculated using the MAEAM and molecular dynamics (MD) simulation. The results show that the effect of the surface is down to the fourth-layer and an oscillatory or monotonic damping (|1| > |2| > |3| > |4|) phenomenon in segregation energy has been obtained. The absolute value of the segregation energy 1 for a single impurity in the first atomic layer is much higher than that in the nether layers. Thus, whether the surface segregation will work or not is mainly determined by 1 which is in good relation to the differences in surface energy between the impurity and host crystals = imp - hos. So we conclude that an impurity with lower surface energy will segregate to the surface of the host with higher surface energy.

  11. Electronic states on the clean and oxygen-covered molybdenum (110) surface measured using time-of-flight momentum microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, Sergii

    2016-04-20

    Recent experiments discovered a new class of materials called topological insulators and started an extensive investigation in order to find more materials of such type and to understand and explore the opening perspectives in fundamental science and application. These materials exhibit a Dirac-type (massless) electronic state, bridging the fundamental band gap. Surprisingly, a strongly spin-polarized surface state with linear dispersion resembling that of Dirac type was found on the already well-investigated W(110) surface. This rose the question of the existence of the same non-trivial electron state on other metal surfaces. The present work describes the investigation of surface electronic states on the Mo(110) surface, their dispersion and transformation upon surface oxidation. This system is isoelectronic to the case of W(110) but due to the lower atomic number the spin-orbit interaction responsible for local band gap formation is substantially decreased by a factor of 5. The Mo(110) surface was shown to exhibit a linearly dispersing state quite similar to the one on W(110), but within a smaller energy range of 120 meV, with the Dirac point lying in the center of a local band gap in k-space. The experimental investigations were performed with the help of momentum microscopy, using a Ti:sapphire laser in the lab and synchrotron radiation at BESSY II, Berlin. The results show good agreement with theoretical calculations of the band structure and photoemission patterns for clean Mo(110). The fully parallel 3D acquisition scheme allowed to visualize the full surface Brillouin zone of the sample up to few eV binding energy within a single exposure of typically less than 30 min. This opens the door to future time-resolved experiments with maximum detection efficiency.

  12. Effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface

    Science.gov (United States)

    Xinguo, Ma; Jie, Yan; Na, Liu; Lin, Zhu; Bei, Wang; Chuyun, Huang; Hui, Lü

    2016-03-01

    The effect of relaxation on the energetics and electronic structure of clean Ag3PO4(111) surface has been studied, carried out using first-principles density functional theory (DFT) incorporating the GGA+U formalism. After atomic relaxation of the Ag3PO4(111) surface, it is found that O atoms are exposed to the outermost surface, due to an inward displacement of more than 0.06 nm for the two threefold-coordinated Ag atoms and an outward displacement of about 0.004 nm for three O atoms in the sublayer. The atomic relaxations result in a large transfer of surface charges from the outermost layer to the inner layer, and the surface bonds have a rehybridization, which makes the covalence increase and thus causes the surface bonds to shorten. The calculated energy band structures and density of states of the Ag3PO4(111) surface present that the atomic relaxation narrows the valence band width 0.15 eV and increases the band gap width 0.26 eV. Meantime, the two surface peaks for the unrelaxed structure disappear at the top of the valence band and the bottom of the conduction band after the relaxed structure, which induces the transformation from a metallic to a semi-conducting characteristic. Project supported by the National Natural Science Foundation of China (Nos. 51472081, 51102150, 61106046), the Development Funds of Hubei Collaborative Innovation Center (Nos. HBSKFMS2014003, HBSKFMS2014011), and the Foundation for High-Level Talents (No. GCRC13014).

  13. Electronic Structure and Catalysis on Metal Surfaces

    Science.gov (United States)

    Greeley, Jeff; Norskov, Jens K.; Mavrikakis, Manos

    2002-10-01

    The powerful computational resources available to scientists today, together with recent improvements in electronic structure calculation algorithms, are providing important new tools for researchers in the fields of surface science and catalysis. In this review, we discuss first principles calculations that are now capable of providing qualitative and, in many cases, quantitative insights into surface chemistry. The calculations can aid in the establishment of chemisorption trends across the transition metals, in the characterization of reaction pathways on individual metals, and in the design of novel catalysts. First principles studies provide an excellent fundamental complement to experimental investigations of the above phenomena and can often allow the elucidation of important mechanistic details that would be difficult, if not impossible, to determine from experiments alone.

  14. A theoretical model of metal surface reactions

    Energy Technology Data Exchange (ETDEWEB)

    Shustorovich, E. (Eastman Kodak Co., Rochester, NY); Baetzold, R.C.; Muetterties, E.L.

    1983-03-31

    Metal surface reactions are modeled with a novel theoretical construct in which periodic trends can be scrutinized. The theoretical model is succinctly presented and a conspectus of periodic trends, based on the model, is explored. Periodic trends are discussed in the contexts of chemisorption bond energies, electron transfer between metal surface and adsorbate, stereochemical features of chemisorption states for closed-shell diatomic and linear X-CN or X-NC molecules, and hydrocarbon reactions. Hydrocarbon C-H bond-breaking processes are analyzed in terms of d-level occupancy, electron transfer, and stereochemistry of intermediates. Conceptually and computationally, the metal surface is characterized as a good electron donor: antibonding molecular orbitals of the adsorbate species appear to be significant contributors to the chemisorption bond and also play a decisive role in bond-breaking processes. No aspect of the model projections is inconsistent with the experimental data although the electronic characterization of some chemisorption states are counter to commonly held perceptions.

  15. Surface plasmon polaritons in artificial metallic nanostructures

    Science.gov (United States)

    Briscoe, Jayson Lawrence

    Surface plasmon polaritons have been the focus of intense research due to their many unique properties such as high electromagnetic field localization, extreme sensitivity to surface conditions, and subwavelength confinement of electromagnetic waves. The area of potential impact is vast and includes promising advancements in photonic circuits, high speed photodetection, hyperspectral imaging, spectroscopy, enhanced solar cells, ultra-small scale lithography, and microscopy. My research has focused on utilizing these properties to design and demonstrate new phenomena and implement real-world applications using artificial metallic nanostructures. Artificial metallic nanostructures employed during my research begin as thin planar gold films which are then lithographically patterned according to previously determined dimensions. The result is a nanopatterned device which can excite surface plasmon polaritons on its surface under specific conditions. Through my research I characterized the optical properties of these devices for further insight into the interesting properties of surface plasmon polaritons. Exploration of these properties led to advancements in biosensing, development of artificial media to enhance and control light-matter interactions at the nanoscale, and hybrid plasmonic cavities. Demonstrations from these advancements include: label-free immunosensing of Plasmodium in a whole blood lysate, low part-per-trillion detection of microcystin-LR, enhanced refractive index sensitivity of novel resonant plasmonic devices, a defect-based plasmonic crystal, spontaneous emission modification of colloidal quantum dots, and coupling of plasmonic and optical Fabry-Perot resonant modes in a hybrid cavity.

  16. A study of angle-resolved photoemission extended fine structure as applied to the Ni 3p, Cu 3s, and Cu 3p core levels of the respective clean (111) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Huff, W.R.A.; Moler, E.J.; Kellar, S.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The first non-s initial state angle-resolved photoemission extended fine structure (ARPEFS) study of clean surfaces for the purpose of further understanding the technique is reported. The surface structure sensitivity of ARPEFS applied to clean surfaces and to arbitrary initial states is studied using normal photoemission data taken from the Ni 3p core levels of a Ni(111) single crystal and the Cu 3s and the Cu 3p core-levels of a Cu(111) single crystal. The Fourier transforms of these clean surface data are dominated by backscattering. Unlike the s initial state data, the p initial state data show a peak in the Fourier transform corresponding to in-plane scattering from the six nearest-neighbors to the emitter. Evidence was seen for single-scattering events from in the same plane as the emitters and double-scattering events. Using a newly developed, multiple-scattering calculation program, ARPEFS data from clean surfaces and from p initial states can be modeled to high precision. Although there are many layers of emitters when measuring photoemission from a clean surface, test calculations show that the ARPEFS signal is dominated by photoemission from atoms in the first two crystal layers. Thus, ARPEFS applied to clean surfaces is sensitive to surface reconstruction. The known contraction of the first two Cu(111) layers is confirmed. The best-fit calculation for clean Ni(111) indicates an expansion of the first two layers. To better understand the ARPEFS technique, the authors studied s and non-s initial state photoemission from clean metal surfaces.

  17. A Model Approach for Finding Cleaning Solutions for Plasticized Poly(Vinyl Chloride) Surfaces of Collections Objects

    DEFF Research Database (Denmark)

    Sanz Landaluze, Jon; Egsgaard, Helge; Morales Munoz, Clara

    2014-01-01

    solutions for the plasticized poly(vinyl chloride) used in the study was found. In addition, a specific method to tailor cleaning mixtures for plasticized poly(vinyl chloride) objects was developed by means of Hildebrand solubility parameters and the formulation of a Plasticizer Index calculated......This study focused on developing a surface cleaning treatment for one type of commercially available plasticized poly(vinyl chloride). The effects of cleaning solutions on samples of plasticized poly(vinyl chloride) were examined by several methods. The sample surface, prior to and after artificial...

  18. Transparent, self-cleaning and waterproof surfaces with tunable micro/nano dual-scale structures

    Science.gov (United States)

    Lee, Yujin; You, Eun-Ah; Ha, Young-Geun

    2016-09-01

    The rational design and facile fabrication of optically transparent, superhydrophobic surfaces can advance their versatile applications, including optoelectronic devices. For the easily accessible and scalable preparation of transparent, superhydrophobic surfaces, various coating methods using a solution-process have been developed. However, obtaining highly transparent, non-wetting surfaces with excellent properties is challenging due to the difficulty in controlling surface roughness. Here, we report on a novel approach to control the surface roughness by fabricating tailorable micro/nano dual-scale surface structures via solution-processed nanoparticle coating. The surface roughness was able to be controlled by micro/nano dual-scale structures that can be manipulated by varying the mixture ratio of two different sizes of Al2O3 nanoparticles. The controllable micro/nano dual-scale structures were optimized to achieve the superior surface properties in both hydrophobicity and transparency, exhibiting a high water contact angle (>160°), low sliding angle (90%). These characteristics allowed an excellent transparency and self-cleaning capability as well as a superior waterproof ability even under applied voltage. Furthermore, we demonstrated the versatile applicability of the developed surface-coating method to a wide range of substrates including glass, paper, fabrics, and even flexible plastics.

  19. Numerical Study of High-Speed Droplet Impact on Surfaces and its Physical Cleaning Effects

    Science.gov (United States)

    Kondo, Tomoki; Ando, Keita

    2015-11-01

    Spurred by the demand for cleaning techniques of low environmental impact, one favors physical cleaning that does not rely on any chemicals. One of the promising candidates is based on water jets that often involve fission into droplet fragments and collide with target surfaces to which contaminant particles (often micron-sized or even smaller) stick. Hydrodynamic force (e.g., shearing and lifting) arising from the droplet impact will play a role to remove the particles, but its detailed mechanism is still unknown. To explore the role of high-speed droplet impact in physical cleaning, we solve compressible Navier-Stokes equations with a finite volume method that is designed to capture both shocks and material interfaces in accurate and robust manners. Water hammer and shear flow accompanied by high-speed droplet impact at a rigid wall is simulated to evaluate lifting force and rotating torque, which are relevant to the application of particle removal. For the simulation, we use the numerical code recently developed by Computational Flow Group lead by Tim Colonius at Caltech. The first author thanks Jomela Meng for her help in handling the code during his stay at Caltech.

  20. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals.

    Science.gov (United States)

    Wang, Jundong; Peng, Jinping; Tan, Zhi; Gao, Yifan; Zhan, Zhiwei; Chen, Qiuqiang; Cai, Liqi

    2017-03-01

    While large quantities of studies on microplastics in the marine environment have been widely carried out, few were available in the freshwater environment. The occurrence and characteristics, including composition, abundance, surface texture and interaction with heavy metals, of microplastics in the surface sediments from Beijiang River littoral zone were investigated. The concentrations of microplastics ranged from 178 ± 69 to 544 ± 107 items/kg sediment. SEM images illustrated that pits, fractures, flakes and adhering particles were the common patterns of degradation. Chemical weathering of microplastics was also observed and confirmed by μ-FTIR. EDS spectra displayed difference in the elemental types of metals on the different surface sites of individual microplastic, indicating that some metals carried by microplastics were not inherent but were derived from the environment. The content of metals (Ni, Cd, Pb, Cu, Zn and Ti) in microplastics after ultrasonic cleaning has been analyzed by ICP-MS. Based on data from the long-term sorption of metals by microplastics and a comparison of metal burden between microplastics, macroplastics and fresh plastic products, we suggested that the majority of heavy metals carried by microplastics were derived from inherent load.

  1. Self-cleaning superhydrophobic surface based on titanium dioxide nanowires combined with polydimethylsiloxane

    Science.gov (United States)

    Zhang, Xia; Guo, Yonggang; Zhang, Zhijun; Zhang, Pingyu

    2013-11-01

    The present work describes a simple dipping process for the preparation of superhydrophobic coatings based on titanium dioxide nanowires combined with polydimethylsiloxane. The coating surface morphology, composition and wettability were investigated by scanning electron microscope, X-ray photoelectron spectroscope and contact angle measurements, respectively. Interestingly, the superhydrophobic coatings turn into a hydrophilic one after UV irradiation. It is found that the superhydrophobic surface shows almost complete wet self-cleaning of dirt particles with water droplets. Furthermore, the coating surface shows the anti-fouling performance for organic solvents, which can self-remove the organic solvents layer and recovers its superhydrophobic behavior. The advantage of the present approach is that the damaged coating can be easily repaired.

  2. Modeling surface roughness scattering in metallic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Moors, Kristof, E-mail: kristof@itf.fys.kuleuven.be [KU Leuven, Institute for Theoretical Physics, Celestijnenlaan 200D, B-3001 Leuven (Belgium); IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Sorée, Bart [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); KU Leuven, Electrical Engineering (ESAT) Department, Kasteelpark Arenberg 10, B-3001 Leuven (Belgium); Magnus, Wim [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Physics Department, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2015-09-28

    Ando's model provides a rigorous quantum-mechanical framework for electron-surface roughness scattering, based on the detailed roughness structure. We apply this method to metallic nanowires and improve the model introducing surface roughness distribution functions on a finite domain with analytical expressions for the average surface roughness matrix elements. This approach is valid for any roughness size and extends beyond the commonly used Prange-Nee approximation. The resistivity scaling is obtained from the self-consistent relaxation time solution of the Boltzmann transport equation and is compared to Prange-Nee's approach and other known methods. The results show that a substantial drop in resistivity can be obtained for certain diameters by achieving a large momentum gap between Fermi level states with positive and negative momentum in the transport direction.

  3. Enantioselective recognition at mesoporous chiral metal surfaces

    Science.gov (United States)

    Wattanakit, Chularat; Côme, Yémima Bon Saint; Lapeyre, Veronique; Bopp, Philippe A.; Heim, Matthias; Yadnum, Sudarat; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2014-02-01

    Chirality is widespread in natural systems, and artificial reproduction of chiral recognition is a major scientific challenge, especially owing to various potential applications ranging from catalysis to sensing and separation science. In this context, molecular imprinting is a well-known approach for generating materials with enantioselective properties, and it has been successfully employed using polymers. However, it is particularly difficult to synthesize chiral metal matrices by this method. Here we report the fabrication of a chirally imprinted mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and chiral template molecules. The porous platinum retains a chiral character after removal of the template molecules. A matrix obtained in this way exhibits a large active surface area due to its mesoporosity, and also shows a significant discrimination between two enantiomers, when they are probed using such materials as electrodes.

  4. Cleaning of SiC surfaces by low temperature ECR microwave hydrogen plasma

    Energy Technology Data Exchange (ETDEWEB)

    Huang Lingqin; Zhu Qiaozhi; Gao Mingchao [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 (China); Qin Fuwen [State Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), Dalian University of Technology, 116024 (China); Wang Dejun, E-mail: dwang121@dlut.edu.cn [School of Electronic Science and Technology, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, 116024 (China)

    2011-09-15

    N-type 4H-SiC (0 0 0 1) surfaces were cleaned by low temperature hydrogen plasma in electronic cyclotron resonance (ECR) microware plasma system. The effects of the hydrogen plasma treatment (HPT) on the structure, chemical and electronic properties of surfaces were characterized by in situ reflection high energy electron diffraction (RHEED) and X-ray photoelectron spectroscopy (XPS). The RHEED results indicate that the structures of the films are strongly dependent on the treatment temperature and time. Significant improvements in quality of 4H-SiC films can be obtained with the temperature ranging from 200 deg. C to 700 deg. C for an appropriate treatment period. The XPS results show that the surface oxygen is greatly reduced and the carbon contamination is completely removed from the 4H-SiC surfaces. The hydrogenated SiC surfaces exhibit an unprecedented stability against oxidation in the air. The surface Fermi level moves toward the conduction band in 4H-SiC after the treatment indicating an unpinning Fermi level with the density of surfaces states as low as 8.09 x 10{sup 10} cm{sup -2} eV{sup -1}.

  5. High resolution electron energy loss spectroscopy of clean and hydrogen covered Si(001) surfaces: first principles calculations.

    Science.gov (United States)

    Patterson, C H

    2012-09-07

    Surface phonons, conductivities, and loss functions are calculated for reconstructed (2×1), p(2×2) and c(4×2) clean Si(001) surfaces, and (2×1) H and D covered Si(001) surfaces. Surface conductivities perpendicular to the surface are significantly smaller than conductivities parallel to the surface. The surface loss function is compared to high resolution electron energy loss measurements. There is good agreement between calculated loss functions and experiment for H and D covered surfaces. However, agreement between experimental data from different groups and between theory and experiment is poor for clean Si(001) surfaces. Formalisms for calculating electron energy loss spectra are reviewed and the mechanism of electron energy losses to surface vibrations is discussed.

  6. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  7. Observations of Photo-Dissociation Reaction of TEOS Molecules on Silicon Clean Surfaces

    Science.gov (United States)

    Yanagita, Hideaki; Uemura, Kazuhide; Yokotani, Atsushi; Kurosawa, Kou

    Tetraethoxysilane (TEOS : SiO4(C2H5)4) is widely used to fabricate silicon-dioxide insulator thin films in LSI device technologies. We have already reported that TEOS is photo-dissociated to result in oxide layer deposition at room temperature by a vacuum ultraviolet excimer lamp (λ=172 nm). In this paper, we have observed the initial stages of oxide layer deposition on silicon clean surfaces with the scanning tunneling microscope (STM) and time-of-flight (TOF) mass spectrometer. An argon excimer lamp (λ=126 nm) is used for the photo-chemical vapor deposition (CVD). TEOS molecules have been dissociated to be SiO4(C2H5)n(n=1, 2, 3) groups on the clean surfaces. The 126 nm photons dissociate the molecules or radicals to Si-Om(m=1, 3, 4) after 2 min. Finally, the Si-Om adsorbed molecules and Si atoms in the substrate are re-arranged to be a disorder structure by the photons.

  8. Electron emission from MOS electron emitters with clean and cesium covered gold surface

    DEFF Research Database (Denmark)

    Nielsen, Gunver; Thomsen, Lasse Bjørchmar; Johansson, Martin;

    2009-01-01

    MOS (metal-oxide-semiconductor) electron emitters consisting of a Si substrate, a SiO2 tunnel barrier and a Ti (1 nm)/Au(7 nm) top-electrode, with an active area of 1 cm(2) have been produced and studied with surface science techniques under UHV (ultra high vacuum) conditions and their emission c...

  9. Surface properties and self-cleaning ability of the fluorinated acrylate coatings modified with dodecafluoroheptyl methacrylate through two adding ways

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xin [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Zhu, Liqun, E-mail: zhulq@buaa.edu.cn [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Zhang, Yang [Key Laboratory of Aerospace Advanced Materials and Performance (Ministry of Education), School of Material Science and Engineering, Beihang University, Beijing 100191 (China); Chen, Yichi [Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Bao, Baiqing; Xu, Jinlong; Zhou, Weiwei [Jiangsu Baihe Coatings Co., Ltd, Changzhou 213136 (China)

    2014-03-01

    Highlights: • A self-cleaning test is used to evaluate the self-cleaning ability of coatings. • Adding way of fluorine monomer has an influence on the self-cleaning ability. • The fluorine content of coating surface increases by changing modification method. • High contact angles and low sliding angles are advantageous for self-cleaning. • The self-cleaning ability of coatings is analyzed after scrubbing. - Abstract: The fluorine-modified acrylate resin was synthesized by solution radical polymerization using dodecafluoroheptyl methacrylate (DFMA) and other acrylate monomers. The same weight of DFMA was added into the reaction through two different ways: (1) adding DFMA as bottom monomer (AFBM); (2) adding DFMA drop by drop (AFDD). The different coatings were prepared by blending the fluorine-modified acrylate resin with the curing agent. Compared with AFDD coating, the AFBM coating exhibited better self-cleaning ability which was confirmed by the self-cleaning test through measuring the specular gloss of coatings before contamination and after water droplets flushing. The fluorine content at the surface of AFBM coating increased from 15.1 at.% to 23.1 at.%, while the water contact angles increased by 8° and the sliding angles decreased obviously. Furthermore, the contact angles and self-cleaning ability of the coatings prepared with DFMA through two adding ways both decreased after scrubbing by wet cotton because of the decrease of the surface fluorine atom content. It could be concluded that high contact angles and low sliding angles were advantageous for coatings to obtain excellent self-cleaning ability.

  10. Ultra-fast boriding of metal surfaces for improved properties

    Science.gov (United States)

    Timur, Servet; Kartal, Guldem; Eryilmaz, Osman L.; Erdemir, Ali

    2015-02-10

    A method of ultra-fast boriding of a metal surface. The method includes the step of providing a metal component, providing a molten electrolyte having boron components therein, providing an electrochemical boriding system including an induction furnace, operating the induction furnace to establish a high temperature for the molten electrolyte, and boriding the metal surface to achieve a boride layer on the metal surface.

  11. Oxidation of clean silicon surfaces studied by four-point probe surface conductance measurements

    DEFF Research Database (Denmark)

    Petersen, Christian Leth; Grey, Francois; Aono, M.

    1997-01-01

    We have investigated how the conductance of Si(100)-(2 x 1) and Si(111)-(7 x 7) surfaces change during exposure to molecular oxygen. A monotonic decrease in conductance is seen as the (100) surfaces oxidizes. In contract to a prior study, we propose that this change is caused by a decrease in sur...

  12. [Cleaning and disinfection of surfaces in hospitals: Data on structure, process and result in the Frankfurt/Main Metropolitan Area].

    Science.gov (United States)

    Hausemann, A; Hofmann, H; Otto, U; Heudorf, Ursel

    2015-06-01

    In addition to hand hygiene and reprocessing of medical products, cleaning and disinfection of surfaces is also an important issue in the prevention of germ transmission and by implication infections. Therefore, in 2014, the quality of the structure, process and result of surface preparation of all hospitals in Frankfurt am Main, Germany, was monitored. All 17 hospitals transferred information on the quality of structure. Process quality was obtained through direct observation during cleaning and disinfection of rooms and their plumbing units. Result quality was gained using the fluorescent method, i.e. marking surfaces with a fluorescent liquid and testing if this mark has been sufficiently removed by cleaning. Structure quality: in all hospitals the employees were trained regularly. In 12 of them, the foremen had the required qualifications, in 6 hospitals unclarity as to the intersection of the cleaning and care services remained. In 14 hospitals only visible contamination was cleaned on the weekends, whereas complete cleaning was reported to take place in 12 hospitals on Saturdays and in 2 hospitals on Sundays. The contractually stipulated cleaning (observations specified in brackets) averaged 178 m(2)/h (148 m(2)/h) per patient room and 69 m(2)/h (33 m(2)/h) for bathrooms. Process quality: during process monitoring, various hand contact surfaces were prepared insufficiently. Result quality: 63 % of fluorescent markings were appropriately removed. The need for improvement is given especially in the area of the qualification of the foremen and a in a clear definition of the intersection between cleaning and care services, as well as in the regulations for weekends and public holidays.

  13. Layer-by-layer TiO(2)/WO(3) thin films as efficient photocatalytic self-cleaning surfaces.

    Science.gov (United States)

    Patrocinio, Antonio Otavio T; Paula, Leonardo F; Paniago, Roberto M; Freitag, Janna; Bahnemann, Detlef W

    2014-10-08

    New TiO2/WO3 films were produced by the layer-by-layer (LbL) technique and successfully applied as self-cleaning photocatalytic surfaces. The films were deposited on fluorine doped tin oxide (FTO) glass substrates from the respective metal oxide nanoparticles obtained by the sol-gel method. Thirty alternative immersions in pH = 2 TiO2 and pH = 10 WO3 sols resulted in ca. 400 nm thick films that exhibited a W(VI)/Ti(IV) molar ratio of 0.5, as determined by X-ray photoelectron spectroscopy. Scanning electron microscopy, along with atomic force images, showed that the resulting layers are constituted by aggregates of very small nanoparticles (films were investigated by UV-vis spectrophotometry and ultraviolet photoelectron spectroscopy. The films behave as nanoscale heterojunctions, and the presence of WO3 nanoparticles caused a decrease in the optical band gap of the bilayers compared to that of pure LbL TiO2 films. The TiO2/WO3 thin films exhibited high hydrophilicity, which is enhanced after exposition to UV light, and they can efficiently oxidize gaseous acetaldehyde under UV(A) irradiation. Photonic efficiencies of ξ = 1.5% were determined for films constituted by 30 TiO2/WO3 bilayers in the presence of 1 ppm of acetaldehyde, which are ∼2 times higher than those observed for pure LbL TiO2 films. Therefore, these films can act as efficient and cost-effective layers for self-cleaning, antifogging applications.

  14. The interaction of bacteria and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Mansfeld, Florian [Corrosion and Environmental Effects Laboratory (CEEL), The Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089-0241 (United States)

    2007-10-10

    This review discusses different examples for the interaction of bacteria and metal surfaces based on work reported previously by various authors and work performed by the author with colleagues at other institutions and with his graduate students at CEEL. Traditionally it has been assumed that the interaction of bacteria with metal surfaces always causes increased corrosion rates ('microbiologically influenced corrosion' (MIC)). However, more recently it has been observed that many bacteria can reduce corrosion rates of different metals and alloys in many corrosive environments. For example, it has been found that certain strains of Shewanella can prevent pitting of Al 2024 in artificial seawater, tarnishing of brass and rusting of mild steel. It has been observed that corrosion started again when the biofilm was killed by adding antibiotics. The mechanism of corrosion protection seems to be different for different bacteria since it has been found that the corrosion potential E{sub corr} became more negative in the presence of Shewanella ana and algae, but more positive in the presence of Bacillus subtilis. These findings have been used in an initial study of the bacterial battery in which Shewanella oneidensis MR-1 was added to a cell containing Al 2024 and Cu in a growth medium. It was found that the power output of this cell continuously increased with time. In the microbial fuel cell (MFC) bacteria oxidize the fuel and transfer electrons directly to the anode. In initial studies EIS has been used to characterize the anode, cathode and membrane properties for different operating conditions of a MFC that contained Shewanella oneidensis MR-1. Cell voltage (V) - current density (i) curves were obtained using potentiodynamic sweeps. The current output of a MFC has been monitored for different experimental conditions. (author)

  15. Effect of cleaning and storage on quartz substrate adhesion and surface energy

    Science.gov (United States)

    Balachandran, Dave; John, Arun

    2014-04-01

    The force of adhesion of 50 nm diameter diamond-like carbon sphere probes to three quartz substrates was measured using an atomic force microscope. The force of adhesion was measured prior to cleaning, within 10 minutes after cleaning, after storage in an N2-purged cabinet, and after storage in an N2-purged vacuum oven. The evaluated cleaning recipes were SC1-like, SPM-like, and HF-based, each followed by ultra-pure deionized water (UPW) rinse and spin drying. The measurements were conducted in a Class 100 clean room at approximately 50% relative humidity. In addition, contact angle measurements were made on three additional quartz substrates using UPW before cleaning, after cleaning, and throughout N2 storage. The adhesion force increased after cleaning as compared to the pre-cleaned state, continued to increase until reaching a maximum after 5 days of N2 storage, and then decreased after 26 days for all three substrates. One substrate was then stored in a vacuum oven for 3 days, and the adhesion force decreased to 46% of the pre-cleaned state. The contact angle was reduced from over 30° before cleaning to 0° immediately after cleaning. During subsequent N2 storage, the contact angle increased to 5° or greater after 18 hours for the substrate cleaned with the HF-based recipe and after 15 days for the substrates cleaned by the SC1-like and SPM-like recipes.

  16. Standard Test Method for Effects of Cleaning and Chemical Maintenance Materials on Painted Aircraft Surfaces

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This test method covers determination of the effects of cleaning solutions and liquid cleaner concentrates on painted aircraft surfaces (Note 1). Streaking, discoloration, and blistering may be determined visually. Softening is determined with a series of specially prepared pencils wherein determination of the softest pencil to rupture the paint film is made. Note 1—This test method is applicable to any paint film that is exposed to cleaning materials. MIL-PRF-85285 has been selected as a basic example. When other paint finishes are used, refer to the applicable material specification for panel preparation and system curing prior to testing. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user ...

  17. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces.

    Science.gov (United States)

    Fagerlund, Annette; Møretrø, Trond; Heir, Even; Briandet, Romain; Langsrud, Solveig

    2017-06-30

    Surfaces of food processing premises are exposed to regular cleaning and disinfection (C&D) regimes, using biocides that are highly effective against bacteria growing as planktonic cells. However, bacteria growing in surface associated communities (biofilms) are typically more tolerant towards C&D than their individual free cells counterparts, and survival of pathogens such as Listeria monocytogenes may be affected by interspecies interactions within biofilms. In this study, Pseudomonas and Acinetobacter were the most frequently isolated genera surviving on conveyor belts subjected to C&D in meat processing plants. In the laboratory, Pseudomonas, Acinetobacter and L. monocytogenes dominated the community both in suspensions and in biofilms formed on conveyor belts, when cultures were inoculated with eleven-genera cocktails of representative bacterial strains from the identified background flora. When biofilms were exposed to daily C&D cycles, mimicking treatments used in food industry, the levels of Acinetobacter and Pseudomonas mandelii diminished, and biofilms were instead dominated by Pseudomonas putida (65-76%), Pseudomonas fluorescens (11-15%) and L. monocytogenes (3-11%). The dominance of certain species after daily C&D correlated with high planktonic growth rates at 12°C and tolerance to C&D. In single-species biofilms, L. monocytogenes developed higher tolerance to C&D over time, both for the peracetic acid and quaternary ammonium disinfectant, indicating that a broad-spectrum mechanism was involved. Survival after C&D appeared to be a common property of L. monocytogenes strains, as both persistent and sporadic subtypes showed equal survival in complex biofilms. Biofilms established preferentially in surface irregularities of conveyor belts, potentially constituting harborage sites for persistent contamination.IMPORTANCE In food industry, efficient production hygiene is a key measure to avoid accumulation of spoilage bacteria and eliminate pathogens

  18. Preparation of self-cleaning surfaces with a dual functionality of superhydrophobicity and photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Ji; Yoon, Hye Soo; Kim, Dae Han [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Kim, Yong Ho, E-mail: yhkim94@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Young Dok, E-mail: ydkim91@skku.edu [Department of Chemistry, Sungkyunkwan University, Suwon, 440-746 (Korea, Republic of); Biorefinery Research Group, Korean Research Institute of Chemical Technology, Daejeon, 306-600 (Korea, Republic of)

    2014-11-15

    Graphical abstract: - Highlights: • Hydrophobic thin film of polydimethylsiloxane was deposited on SiO{sub 2}. • PDMS-coated SiO{sub 2} and TiO{sub 2} photocatalysts were mixed with various ratios. • Both stable superhydrophobicity and photocatalytic activity appeared on a surface. - Abstract: Thin film of polydimethylsiloxane (PDMS) was deposited on SiO{sub 2} nanoparticles by chemical vapor deposition, and SiO{sub 2} became completely hydrophobic after PDMS coating. Mixtures of TiO{sub 2} and PDMS-coated SiO{sub 2} nanoparticles with various relative ratios were prepared, and distributed on glass surfaces, and water contact angles and photocatalytic activities of these surfaces were studied. Samples consisting of TiO{sub 2} and PDMS-coated SiO{sub 2} with a ratio of 7:3 showed a highly stable superhydrophobicity under UV irradiation with a water contact angle of 165° and UV-driven photocatalytic activity for decomposition of methylene blue and phenol in aqueous solution. Our process can be exploited for fabricating self-cleaning surfaces with dual functionality of superhydrophobicity and photocatalytic activity at the same time.

  19. Electronic structures of active sites on metal oxide surfaces: Definition of the Cu/ZnO methanol synthesis catalyst by photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E.I.; Jones, P.M.; May, J.A. (Stanford Univ., CA (United States). Dept. of Chemistry)

    1993-12-01

    The focus of this review is on the use of photoelectron spectroscopy (PES) to study the interaction of small molecules (particularly carbon monoxide) with metal ion sites on metal oxide surfaces. There have been numerous photoemission studies of chemisorption on metal surfaces. However, it is important to note that while metal oxides are involved in many heterogeneous catalytic processes, only a limited number of electron spectroscopic studies of chemically relevant molecules on metal oxide surfaces have appeared. The paper contains the following sections: The electronic structure of clean ZnO surfaces -- variable-energy photoelectron spectroscopy; CO chemisorption on ZnO surfaces; geometric structures for CO binding to the four chemically different surfaces of ZnO; electronic structure of the CO/ZnO surface complex; nature of copper sites on ZnO surfaces; electronic structures of CO bonding to d[sup 10] metal ion sites; relevance to catalysis; and summary and future directions. 185 refs.

  20. Fabrication of Super Hydrophobic Surfaces by fs Laser Pulses : How to Produce Self-Cleaning Surfaces

    NARCIS (Netherlands)

    Groenendijk, Max

    2008-01-01

    The chair of Applied Laser Technology of the University of Twente, The Netherlands, is performing research into applications of ultrashort pulsed lasers for micromachining. In a recent project, PhD student Max Groenendijk developed a method for the production of super water repellant surfaces by inj

  1. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    Directory of Open Access Journals (Sweden)

    MILAN S. TRTICA

    2000-06-01

    Full Text Available There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lasers because of much higher energy efficiencies. A brief theoretical analysis was made before the experiments. The laser beam was focused using a KBr-lens onto a surface contaminated with 137Cs (b-, t1/2 = 30.17 y. Three different metals were used: stainless steel, copper and aluminium. The ablated material was pumped out in an air atmosphere and transferred to a filter. The presence of activity on the filter was shown by a germanium detector-multichannel analyzer. The activity levels were measured by a GM counter. The calculated decontamination factors and collection factors showed that ablation occurs with a relatively high efficiency of decontamination. This investigation suggests that decontamination using a CO2 laser should be seriously considered.

  2. Multibeam echosounder data cleaning through a hierarchic adaptive and robust local surfacing

    Science.gov (United States)

    Debese, Nathalie; Moitié, Rodéric; Seube, Nicolas

    2012-09-01

    Multibeam echo sounders (MBES) datasets generally contain sporadic outlier points. The huge volumes of MBES datasets in a hydrographic framework require the use of semi-automatic techniques. In very shallow waters depth, data cleaning becomes a challenging task when potential dangers to navigation have to be carefully checked. The aim of our paper is to attempt this goal by combining two well-known techniques. The seafloor is constructed as an assemblage of surface elements with the help of a robust statistical approach. The local parameters model is a priori chosen, its scale is driven through a quadtree descending approach using subdivision rules based on both statistical and spatio-temporal inferences. Our multi resolution approach provides, with the algorithm outputs, a classification map that notes areas of concern.

  3. Residual Viral and Bacterial Contamination of Surfaces after Cleaning and Disinfection

    Science.gov (United States)

    Tuladhar, Era; Hazeleger, Wilma C.; Koopmans, Marion; Zwietering, Marcel H.; Beumer, Rijkelt R.

    2012-01-01

    Environmental surfaces contaminated with pathogens can be sources of indirect transmission, and cleaning and disinfection are common interventions focused on reducing contamination levels. We determined the efficacy of cleaning and disinfection procedures for reducing contamination by noroviruses, rotavirus, poliovirus, parechovirus, adenovirus, influenza virus, Staphylococcus aureus, and Salmonella enterica from artificially contaminated stainless steel surfaces. After a single wipe with water, liquid soap, or 250-ppm free chlorine solution, the numbers of infective viruses and bacteria were reduced by 1 log10 for poliovirus and close to 4 log10 for influenza virus. There was no significant difference in residual contamination levels after wiping with water, liquid soap, or 250-ppm chlorine solution. When a single wipe with liquid soap was followed by a second wipe using 250- or 1,000-ppm chlorine, an extra 1- to 3-log10 reduction was achieved, and except for rotavirus and norovirus genogroup I, no significant additional effect of 1,000 ppm compared to 250 ppm was found. A reduced correlation between reduction in PCR units (PCRU) and reduction in infectious particles suggests that at least part of the reduction achieved in the second step is due to inactivation instead of removal alone. We used data on infectious doses and transfer efficiencies to estimate a target level to which the residual contamination should be reduced and found that a single wipe with liquid soap followed by a wipe with 250-ppm free chlorine solution was sufficient to reduce the residual contamination to below the target level for most of the pathogens tested. PMID:22941071

  4. Handbook for cleaning for semiconductor manufacturing fundamentals and applications

    CERN Document Server

    Reinhardt, Karen A

    2011-01-01

    This comprehensive volume provides an in-depth discussion of the fundamentals of cleaning and surface conditioning of semiconductor applications such as high-k/metal gate cleaning, copper/low-k cleaning, high dose implant stripping, and silicon and SiGe passivation. The theory and fundamental physics associated with wet etching and wet cleaning is reviewed, plus the surface and colloidal aspects of wet processing. Formulation development practices and methodology are presented along with the applications for preventing copper corrosion, cleaning aluminum lines, and other sensitive layers. This

  5. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    Science.gov (United States)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  6. Reticular Chemistry and Metal-Organic Frameworks: Design and Synthesis of Functional Materials for Clean Energy Applications

    KAUST Repository

    Alezi, Dalal A.

    2017-06-01

    Gaining control over the assembly of crystalline solid-state materials has been significantly advanced through the field of reticular chemistry and metal organic frameworks (MOFs). MOFs have emerged as a unique modular class of porous materials amenable to a rational design with targeted properties for given applications. Several design approaches have been deployed to construct targeted functional MOFs, where desired structural and geometrical attributes are incorporated in preselected building units prior to the assembly process. This dissertation illustrates the merit of the molecular building block approach (MBB) for the rational construction and discovery of stable and highly porous MOFs, and their exploration as potential gas storage medium for sustainable and clean energy applications. Specifically, emphasis was placed on gaining insights into the structure-property relationships that impact the methane (CH4) storage in MOFs and its subsequent delivery. The foreseen gained understanding is essential for the design of new adsorbent materials or adjusting existing MOF platforms to encompass the desired features that subsequently afford meeting the challenging targets for methane storage in mobile and stationary applications.In this context, we report the successful use of the MBB approach for the design and deliberate construction of a series of novel isoreticular, highly porous and stable, aluminum based MOFs with the square-octahedral (soc) underlying net topology. From this platform, Al-soc-MOF-1, with more than 6000 m2/g apparent Langmuir specific surface area, exhibits outstanding gravimetric CH4 uptake (total and working capacities). It is shown experimentally, for the first time, that the Al-soc-MOF platform can address the U.S. Department of Energy (DOE) challenging gravimetric and volumetric targets for the CH4 working capacity for on-board CH4 storage. Furthermore, Al-soc-MOF-1 exhibits the highest total gravimetric and volumetric uptake for carbon

  7. Work of Adhesion of a Sessile Drop to a Clean Surface.

    Science.gov (United States)

    Schroder

    1999-05-15

    According to the Young-Dupré equation, as interpreted by Bangham and Razouk, the work of adhesion of a sessile drop to a smooth solid surface is given by WS(V)L = gammaL (1 + cos θ), where θ is the equilibrium contact angle measured at equilibrium of the system with the saturated vapor of the liquid, and WS(V)L is the work of adhesion of that drop to the solid surface which is in equilibrium with that vapor and may contain an adlayer of the vapor. For calculation of WSL, the work of adhesion of a sessile drop to a clean solid surface, the equation WSL = gammaL (1 + cos θ) + Pie is generally used (although Bangham and Razouk never proposed it). Pie is the negative of the free energy of formation of the adlayer, sometimes called the spreading pressure. In the present work it is shown that the latter equation cannot be accurate. Copyright 1999 Academic Press.

  8. Characterization of an Effective Cleaning Procedure for Aluminum Alloys: Surface Enhanced Raman Spectroscopy and Zeta Potential Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cherepy, N J; Shen, T H; Esposito, A P; Tillotson, T M

    2004-06-02

    We have developed a cleaning procedure for aluminum alloys for effective minimization of surface-adsorbed sub-micron particles and non-volatile residue. The procedure consists of a phosphoric acid etch followed by an alkaline detergent wash. To better understand the mechanism whereby this procedure reduces surface contaminants, we characterized the aluminum surface as a function of cleaning step using Surface Enhanced Raman Spectroscopy (SERS). SERS indicates that phosphoric acid etching re-establishes a surface oxide of different characteristics, including deposition of phosphate and increased hydration, while the subsequent alkaline detergent wash appears to remove the phosphate and modify the new surface oxide, possibly leading to a more compact surface oxide. We also studied the zeta potential of <5 micron pure aluminum and aluminum alloy 6061-T6 particles to determine how surface electrostatics may be affected during the cleaning process. The particles show a decrease in the magnitude of their zeta potential in the presence of detergent, and this effect is most pronounced for particles that have been etched with phosphoric acid. This reduction in magnitude of the surface attractive potential is in agreement with our observation that the phosphoric acid etch followed by detergent wash results in a decrease in surface-adsorbed sub-micron particulates.

  9. Vibrations of alkali metal overlayers on metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rusina, G G; Eremeev, S V; Borisova, S D [Institute of Strength Physics and Materials Science SB RAS, 634021, Tomsk (Russian Federation); Echenique, P M; Chulkov, E V [Donostia International Physics Center (DIPC), 20018 San Sebastian/Donostia, Basque Country (Spain); Benedek, G [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via Cozzi 53, 20125 Milano (Italy)], E-mail: rusina@ispms.tsc.ru

    2008-06-04

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation.

  10. Vibrations of alkali metal overlayers on metal surfaces

    Science.gov (United States)

    Rusina, G. G.; Eremeev, S. V.; Echenique, P. M.; Benedek, G.; Borisova, S. D.; Chulkov, E. V.

    2008-06-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation.

  11. Corrosion protective coating for metallic materials

    Science.gov (United States)

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  12. Oregano essential oil as an antimicrobial additive to detergent for hand washing and food contact surface cleaning.

    Science.gov (United States)

    Rhoades, J; Gialagkolidou, K; Gogou, M; Mavridou, O; Blatsiotis, N; Ritzoulis, C; Likotrafiti, E

    2013-10-01

    To investigate the potential use of oregano essential oil as an antimicrobial agent in liquid soap for hand washing and for food contact surface cleaning. Oregano essential oil (O.E.O.) was emulsified in liquid detergent solution. This was challenge tested against a commercial antimicrobial soap in hand washing trials using natural flora. Soap with O.E.O. was as effective as the commercial antimicrobial soap at reducing aerobic plate count on the hands and more effective than plain soap with no additives. Cloths wetted with soap with O.E.O. were used to clean three different surfaces contaminated with four bacterial pathogens. For three of the four pathogens, the addition of 0·5% v/v O.E.O. to the soap solution enhanced cleaning performance and also reduced bacterial survival on the cloth after cleaning. Oregano essential oil (0·5%) is effective as an antimicrobial additive to detergent solutions for hand washing and surface cleaning. This preliminary study has shown that oregano essential oil is a potential alternative to antimicrobials used in various detergents, such as chloroxylenol and triclosan, which can have adverse environmental and health effects. Further development could lead to a commercial product. © 2013 The Society for Applied Microbiology.

  13. Sink property of metallic glass free surfaces.

    Science.gov (United States)

    Shao, Lin; Fu, Engang; Price, Lloyd; Chen, Di; Chen, Tianyi; Wang, Yongqiang; Xie, Guoqiang; Lucca, Don A

    2015-03-16

    When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences. For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.

  14. Multicharged ion-induced emission from metal- and insulator surfaces related to magnetic fusion research

    Energy Technology Data Exchange (ETDEWEB)

    Winter, H.P. [Technische Univ., Vienna (Austria). Inst. fuer Allgemeine Physik

    1997-01-01

    The edge region of magnetically confined plasmas in thermonuclear fusion experiments couples the hot plasma core with the cold first wall. We consider the dependence of plasma-wall interaction processes on edge plasma properties, with particular emphasis on the role of slow multicharged ions (MCI). After a short survey on the physics of slow MCI-surface interaction we discuss recent extensive studies on MCI-induced electron emission from clean metal surfaces conducted at impact velocities << 1 a.u., from which generally reliable total electron yields can be obtained. We then demonstrate the essentially different role of the MCI charge for electron emission from metallic and insulator surfaces, respectively. Furthermore, we present recent results on slow MCI-induced `potential sputtering` of insulators which, in contrast to the well established kinetic sputtering, already occurs at very low ion impact energy and strongly increases with the MCI charge state. (J.P.N.). 55 refs.

  15. Anti-Microbial and Self-Cleaning Properties of Photocatalytic Surface Treatments and their Potential Use for Space-Based Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In practice, cleaning and disinfection of surfaces involves a considerable amount of effort, high consumption of energy and chemical detergents, and consequently...

  16. ASRM process development in aqueous cleaning

    Science.gov (United States)

    Swisher, Bill

    1992-12-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  17. Decomposition of SnH4 molecules on metal and metal-oxide surfaces

    NARCIS (Netherlands)

    Ugur, D.; Storm, A.J.; Verberk, R.; Brouwer, J.C.; Sloof, W.G.

    2014-01-01

    Atomic hydrogen cleaning is a promising method for EUV lithography systems, to recover from surface oxidation and to remove carbon and tin contaminants. Earlier studies showed, however, that tin may redeposit on nearby surfaces due to SnH4 decomposition. This phenomenon of SnH4 decomposition during

  18. SURFACE METALLIZATION OF CENOSPHERES AND PRECIPITATORS BY ELECTROLESS PLATING

    Institute of Scientific and Technical Information of China (English)

    Chujiang Cai; Zhigang Shen; Mingzhu Wang; Shulin Ma; Yushan Xing

    2003-01-01

    This paper reports the use of a colloidal Pd0 catalysis system to metallize the surface of precipitators separated from coal fly-ash, and metals such as Cu, Ni etc. are deposited on the precipitators surface. Alternatively,according to the characteristic surface of cenospheres, an Ag coating catalysis system is adopted to first deposit Ag on the cenospheres surface, followed, if necessary, by the deposition of other metals such as Cu, Ni, etc. on the Ag coating to produce monolayer and multilayer metal-coated cenospheres. The surface characteristics and the morphologies of the metal coatings are examined in detail with scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. It can be shown that the quality of metal coatings derived from the Ag coating catalysis system, is better than that of the colloidal Pd0 catalysis system.

  19. Cleaning plaster surfaces with agar-agar gels: evaluation of the technique

    Directory of Open Access Journals (Sweden)

    Sonia Tortajada Hernando

    2013-07-01

    Full Text Available Abstract: Cleaning plaster surfaces represent a challenge for conservators It should only be performed following fully tested methods that guarantee the conservation of such fragile material. The goal of this work is to establishing a suitable cleaning method for this type of artworks from the tested concentrations and time of applications, using agar gels on plaster supports. Morphological, porosity and weight variations have been studied. Confocal and stereomicroscopy have been used as analytical techniques, as well as the measurement of water vapor permeability and weight have been taken on the samples. La limpieza de superficies de yeso-escayola con geles de agar-agar: evaluación de la técnica Resumen: La limpieza segura y eficiente de las superficies de yeso constituye un reto y una responsabilidad para el conservador-restaurador, y debe llevarse a cabo siguiendo métodos testados que garanticen su correcta conservación. La intención de este trabajo es determinar, a partir de las concentraciones y tiempos de aplicación ensayados, cuáles serían los parámetros óptimos para la ejecución de una limpieza eficaz e inocua empleando geles de agar-agar sobre soportes de yeso. Se han comprobado las posibles variaciones morfológicas de la superficie, las variaciones de la porosidad y del peso, así como la presencia de residuos, para lo cual se ha empleado la microscopía confocal, microscopía binocular, la medida de la permeabilidad al vapor de agua y la medida del peso de las muestras.

  20. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Zucchiatti, A., E-mail: alessandro.zucchiatti@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Gutierrez Neira, P.C., E-mail: carolina.gutierrez@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Climent-Font, A., E-mail: acf@uam.es [CMAM, Universidad Autonoma de Madrid, c/Farady 3, E-28049 Madrid (Spain); Escudero, C., E-mail: escremcr@jcyl.es [Centro de Conservacion y Restauracion de Bienes Culturales (CCRBC) de la Junta de Castilla y Leon, C/Carretera No. 2, 47130 Valladolid (Spain); Barrera, M., E-mail: barbarmr@jcyl.es [Centro de Conservacion y Restauracion de Bienes Culturales (CCRBC) de la Junta de Castilla y Leon, C/Carretera No. 2, 47130 Valladolid (Spain)

    2011-12-15

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the 'legibility' of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Analisis de Materiales (CMAM) of the Universidad Autonoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  1. IBA analysis of a laser cleaned archaeological metal object: The San Esteban de Gormaz cross (Soria-Spain)

    Science.gov (United States)

    Zucchiatti, A.; Gutiérrez Neira, P. C.; Climent-Font, A.; Escudero, C.; Barrera, M.

    2011-12-01

    The object under study, a 12th century gilded copper cross with a wooden core, now almost disappeared, shows the typical features produced by a long burial time: the entire surface of the copper alloys is covered by several layers of degradation products, which hinder the "legibility" of the cross in terms of the original materials and manufacturing techniques employed. In its cleaning several techniques have been applied and compared (dry and wet laser ablation, mechanical ablation, ultrasound brush). In the intermediate cleaning phase the cross has been extensively analysed with the external proton micro-beam of the Centro de Micro-Análisis de Materiales (CMAM) of the Universidad Autónoma de Madrid. PIXE and RBS techniques have been used in parallel, to asses both the chemical composition and the layered structure of cleaned and original parts with the aim of verifying that none of the object structural features are being modified by the cleaning process leaving intact the possibility of artistic interpretation of the object (e.g. small series production of the cross elements). The recovery of this exceptional ornamental object is made possible by the coordinated work of several professionals coming from various disciplines and aimed at establishing the importance of this cross in terms of its physical appearance and in terms of the manufacturing techniques.

  2. Biofilm development on metal surfaces in tropical marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, F.P.; Bhosle, N.B.

    environments. However, little is known about biofilm bacteria developed on metal surfaces, especially immersed in tropical marine waters. Similarly, not much is known about the nature of organic matter deposited on the surfaces over the period of immersion...

  3. Effect of Strain on the Reactivity of Metal Surfaces

    DEFF Research Database (Denmark)

    Mavrikakis, Manos; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Self-consistent density functional calculations for the adsorption of O and CO, and the dissociation of CO on strained and unstrained Ru(0001) surfaces are used to show how strained metal surfaces have chemical properties that are significantly different from those of unstrained surfaces. Surface...... reactivity increases with lattice expansion, following a concurrent up-shift of the metal d states. Consequences for the catalytic activity of thin metal overlayers are discussed.......Self-consistent density functional calculations for the adsorption of O and CO, and the dissociation of CO on strained and unstrained Ru(0001) surfaces are used to show how strained metal surfaces have chemical properties that are significantly different from those of unstrained surfaces. Surface...

  4. Photoelectric scanner makes detailed work function maps of metal surface

    Science.gov (United States)

    Rasor, N. S.

    1966-01-01

    Photoelectric scanning device maps the work function of a metal surface by scanning it with a light spot and measuring the resulting photocurrent. The device is capable of use over a range of surface temperatures.

  5. Comparative Study of Surface Chemical Composition and Oxide Layer Modification upon Oxygen Plasma Cleaning and Piranha Etching on a Novel Low Elastic Modulus Ti25Nb21Hf Alloy

    Science.gov (United States)

    Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María

    2017-08-01

    Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.

  6. Photoionization microscopy of hydrogen atom near a metal surface

    Institute of Scientific and Technical Information of China (English)

    Yang Hai-Feng; Wang Lei; Liu Xiao-Jun; Liu Hong-Ping

    2011-01-01

    We have studied the ionization of Rydberg hydrogen atom near a metal surface with a semiclassical analysis of photoionization microscopy. Interference patterus of the electron radial distribution are calculated at different scaled energies above the classical saddle point and at various atom-surface distances. We find that different types of trajectories contribute predominantly to different manifolds in a certain interference pattern. As the scaled energy increases, the structure of the interference pattern evolves smoothly and more types of trajectories emerge. As the atom approaches the metal surface closer, there are more types of trajectories contributing to the interference pattern as well. When the Rydberg atom comes very close to the metal surface or the scaled energy approaches the zero field ionization energy,the potential induced by the metal surface will make atomic system chaotic. The results also show that atoms near a metal surface exhibit similar properties like the atoms in the parallel electric and magnetic fields.

  7. Landau damping of surface plasmons in metal nanostructures

    CERN Document Server

    Shahbazyan, Tigran V

    2016-01-01

    We develop a quantum-mechanical theory for Landau damping of surface plasmons in metal nanostructures larger that the characteristic length for nonlocal effects. We show that the electron surface scattering, which facilitates plasmon decay in small nanostructures, can be incorporated into the metal dielectric function on par with phonon and impurity scattering. The derived surface scattering rate is determined by the plasmon local field polarization relative to the metal surface, and is highly sensitive to the system geometry. We illustrate our model by providing analytical results for surface scattering rate in some common shape nanostructures.

  8. USING CERAMIC MEMBRANES TO RECYCLE TWO NONIONIC ALKALINE METAL-CLEANING SOLUTIONS

    Science.gov (United States)

    One ZrO2 ultrafilter (0.05 um pore size) and two a-Al2O3 microfilters (0.2 and 0.8 um) were used to remove one synthetic ester oil and two polyalphaolefin-based and two petroleum hydrocarbon-based oils and greases from two nonionic alkaline cleaning solutions (e.g., Turco 4215-NC...

  9. Computational study of a self-cleaning process on superhydrophobic surface

    Science.gov (United States)

    Farokhirad, Samaneh

    All substances around us are bounded by interfaces. In general, interface between different phases of materials are categorized as fluid-fluid, solid-fluid, and solid-solid. Fluid-fluid interfaces exhibit a distinct behavior by adapting their shape in response to external stimulus. For example, a liquid droplet on a substrate can undergo different wetting morphologies depending on topography and chemical composition of the surface. Fundamentally, interfacial phenomena arise at the limit between two immiscible phases, namely interface. The interface dynamic governs, to a great extent, physical processes such as impact and spreading of two immiscible media, and stabilization of foams and emulsions from break-up and coalescence. One of the recent challenging problems in the interface-driven fluid dynamics is the self-propulsion mechanism of droplets by means of different types of external forces such as electrical potential, or thermal Marangoni effect. Rapid removal of self-propelled droplet from the surface is an essential factor in terms of expense and efficiency for many applications including self-cleaning and enhanced heat and mass transfer to save energy and natural resources. A recent study on superhydrophobic nature of micro- and nanostructures of cicada wings offers a unique way for the self-propulsion process with no external force, namely coalescence-induced self-propelled jumping of droplet which can act effectively at any orientation. The biological importance of this new mechanism is associated with protecting such surfaces from long term exposure to colloidal particles such as microbial colloids and virus particles. Different interfacial phenomena can occur after out-of-plane jumping of droplet. If the departed droplet is landed back by gravity, it may impact and spread on the surface or coalesce with another droplet and again self-peopled itself to jump away from the surface. The complete removal of the propelled droplet to a sufficient distance

  10. Evolution of the Surface Science of Catalysis from Single Crystals to Metal Nanoparticles under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-03-06

    Vacuum studies of metal single crystal surfaces using electron and molecular beam scattering revealed that the surface atoms relocate when the surface is clean (reconstruction) and when it is covered by adsorbates (adsorbate induced restructuring). It was also discovered that atomic steps and other low coordination surface sites are active for breaking chemical bonds (H-H, O=O, C-H, C=O and C-C) with high reaction probability. Investigations at high reactant pressures using sum frequency generation (SFG)--vibrational spectroscopy and high pressure scanning tunneling microscopy (HPSTM) revealed bond breaking at low reaction probability sites on the adsorbate-covered metal surface, and the need for adsorbate mobility for continued turnover. Since most catalysts (heterogeneous, enzyme and homogeneous) are nanoparticles, colloid synthesis methods were developed to produce monodispersed metal nanoparticles in the 1-10 nm range and controlled shapes to use them as new model catalyst systems in two-dimensional thin film form or deposited in mesoporous three-dimensional oxides. Studies of reaction selectivity in multipath reactions (hydrogenation of benzene, cyclohexene and crotonaldehyde) showed that reaction selectivity depends on both nanoparticle size and shape. The oxide-metal nanoparticle interface was found to be an important catalytic site because of the hot electron flow induced by exothermic reactions like carbon monoxide oxidation.

  11. Metals at the surface of last scatter

    CERN Document Server

    Ali-Haïmoud, Yacine; Kamionkowski, Marc

    2011-01-01

    Standard big-bang nucleosynthesis (BBN) predicts only a trace abundance of lithium and no heavier elements, but some alternatives predict a nonzero primordial metallicity. Here we explore whether CMB measurements may set useful constraints to the primordial metallicity and/or whether the standard CMB calculations are robust, within the tolerance of forthcoming CMB maps, to the possibility of primordial metals. Metals would affect the recombination history (and thus CMB power spectra) in three ways: (1) Lyman-alpha photons can be removed (and recombination thus accelerated) by photoionizing metals. (2) The Bowen resonance-fluorescence mechanism may degrade Lyman-beta photons and thus enhance the Lyman-beta escape probability and speed up recombination. (3) Metals could affect the low-redshift tail of the CMB visibility function by providing additional free electrons. The last two of these provide the strongest CMB signal. However, the effects are detectable in the Planck satellite only if the primordial metal ...

  12. Emerging 0D Transition-Metal Dichalcogenides for Sensors, Biomedicine, and Clean Energy.

    Science.gov (United States)

    Li, Bang Lin; Setyawati, Magdiel Inggrid; Zou, Hao Lin; Dong, Jiang Xue; Luo, Hong Qun; Li, Nian Bing; Leong, David Tai

    2017-08-01

    Following research on two-dimensional (2D) transition metal dichalcogenides (TMDs), zero-dimensional (0D) TMDs nanostructures have also garnered some attention due to their unique properties; exploitable for new applications. The 0D TMDs nanostructures stand distinct from their larger 2D TMDs cousins in terms of their general structure and properties. 0D TMDs possess higher bandgaps, ultra-small sizes, high surface-to-volume ratios with more active edge sites per unit mass. So far, reported 0D TMDs can be mainly classified as quantum dots, nanodots, nanoparticles, and small nanoflakes. All exhibited diverse applications in various fields due to their unique and excellent properties. Of significance, through exploiting inherent characteristics of 0D TMDs materials, enhanced catalytic, biomedical, and photoluminescence applications can be realized through this exciting sub-class of TMDs. Herein, we comprehensively review the properties and synthesis methods of 0D TMDs nanostructures and focus on their potential applications in sensor, biomedicine, and energy fields. This article aims to educate potential adopters of these excitingly new nanomaterials as well as to inspire and promote the development of more impactful applications. Especially in this rapidly evolving field, this review may be a good resource of critical insights and in-depth comparisons between the 0D and 2D TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Non-destructive photoacoustic imaging of metal surface defects

    Science.gov (United States)

    Jeon, Seungwan; Kim, Jeesu; Yun, Jong Pil; Kim, Chulhong

    2016-11-01

    The detection of metal surface defects is important in achieving the goals of product quality enhancement and manufacturing cost reduction. Identifying the defects with visual inspection is difficult, inaccurate, and time-consuming. Thus, several inspection methods using line cameras, magnetic field, and ultrasound have been proposed. However, identifying small defects on metal surfaces remains a challenge. To deal with this problem, we propose the use of photoacoustic imaging (PAI) as a new non-destructive imaging tool to detect metal surface defects. We successfully visualized two types of cracks (i.e., unclassified and seam cracks) in metal plate samples using PAI. In addition, we successfully extracted cracked edges from height-encoded photoacoustic maximum amplitude projection images using the Laplacian of Gaussian filtering method, and then, quantified the detected edges for a statistical analysis. We concluded that PAI can be useful in detecting metal surface defects reducing the defect rate and manufacturing cost during metal production.

  14. Engineering Polarons at a Metal Oxide Surface

    Science.gov (United States)

    Yim, C. M.; Watkins, M. B.; Wolf, M. J.; Pang, C. L.; Hermansson, K.; Thornton, G.

    2016-09-01

    Polarons in metal oxides are important in processes such as catalysis, high temperature superconductivity, and dielectric breakdown in nanoscale electronics. Here, we study the behavior of electron small polarons associated with oxygen vacancies at rutile TiO2(110 ) , using a combination of low temperature scanning tunneling microscopy (STM), density functional theory, and classical molecular dynamics calculations. We find that the electrons are symmetrically distributed around isolated vacancies at 78 K, but as the temperature is reduced, their distributions become increasingly asymmetric, confirming their polaronic nature. By manipulating isolated vacancies with the STM tip, we show that particular configurations of polarons are preferred for given locations of the vacancies, which we ascribe to small residual electric fields in the surface. We also form a series of vacancy complexes and manipulate the Ti ions surrounding them, both of which change the associated electronic distributions. Thus, we demonstrate that the configurations of polarons can be engineered, paving the way for the construction of conductive pathways relevant to resistive switching devices.

  15. Cell Surface-based Sensing with Metallic Nanoparticles

    OpenAIRE

    Jiang, Ziwen; Le, Ngoc D. B.; Gupta, Akash; Rotello, Vincent M.

    2015-01-01

    Metallic nanoparticles provide versatile scaffolds for biosensing applications. In this review, we focus on the use of metallic nanoparticles for cell surface sensings. Examples of the use of both specific recognition and array-based “chemical nose” approaches to cell surface sensing will be discussed.

  16. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...

  17. Microscopical and chemical surface characterization of CAD/CAM zircona abutments after different cleaning procedures. A qualitative analysis.

    Science.gov (United States)

    Gehrke, Peter; Tabellion, Astrid; Fischer, Carsten

    2015-04-01

    To describe and characterize the surface topography and cleanliness of CAD/CAM manufactured zirconia abutments after steaming and ultrasonic cleaning. A total of 12 ceramic CAD/CAM implant abutments of various manufacturers were produced and randomly divided into two groups of six samples each (control and test group). Four two-piece hybrid abutments and two one-piece abutments made of zirconium-dioxide were assessed per each group. In the control group, cleaning by steam was performed. The test group underwent an ultrasonic cleaning procedure with acetone, ethyl alcohol and antibacterial solution. Groups were subjected to scanning electron microscope (SEM) analysis and Energy-dispersive X-ray spectroscopy (EDX) to verify and characterize contaminant chemical characterization non-quantitatively. All zirconia CAD/CAM abutments in the present study displayed production-induced wear particles, debris as well as organic and inorganic contaminants. The abutments of the test group showed reduction of surface contamination after undergoing an ultrasonic cleaning procedure. However, an absolute removal of pollutants could not be achieved. The presence of debris on the transmucosal surface of CAD/CAM zirconia abutments of various manufacturers was confirmed. Within the limits of the study design, the results suggest that a defined ultrasonic cleaning process can be advantageously employed to reduce such debris, thus, supposedly enhancing soft tissue healing. Although the adverse long-term influence of abutment contamination on the biological stability of peri-implant tissues has been evidenced, a standardized and validated polishing and cleaning protocol still has to be implemented.

  18. Numerical Studies of Friction Between Metallic Surfaces and of its Dependence on Electric Currents

    Science.gov (United States)

    Meintanis, Evangelos; Marder, Michael

    2009-03-01

    We will present molecular dynamics simulations that explore the frictional mechanisms between clean metallic surfaces. We employ the HOLA molecular dynamics code to run slider-on-block experiments. Both objects are allowed to evolve freely. We recover realistic coefficients of friction and verify the importance of cold-welding and plastic deformations in dry sliding friction. We also find that plastic deformations can significantly affect both objects, despite a difference in hardness. Metallic contacts have significant technological applications in the transmission of electric currents. To explore the effects of the latter to sliding, we had to integrate an electrodynamics solver into the molecular dynamics code. The disparate time scales involved posed a challenge, but we have developed an efficient scheme for such an integration. A limited electrodynamic solver has been implemented and we are currently exploring the effects of currents in the friction and wear of metallic contacts.

  19. Effect of metal support interaction on surface segregation in Pd Pt nanoparticles

    Science.gov (United States)

    De Sarkar, A.; Menon, Mahesh; Khanra, Badal C.

    2001-10-01

    In this work, we present the results of our Monte Carlo (MC) simulation studies for the segregation behavior of supported, clean and gas-covered Pd-Pt nanoparticles as a function of the metal-support interaction. For preferential Pd-support interaction, the base of the nanoparticle is found to get enriched with Pd atoms; while for preferential interaction of Pt atoms with the support the base gets enriched in Pt. The composition of the rest of the particle changes slightly with the metal-support interaction. The presence of oxygen and hydrogen atoms does not influence the role of the metal-support interaction on the surface composition of Pd-Pt nanoparticles. The simulation results are found to be in total agreement with the known experimental results.

  20. Metal-dielectric hybrid surfaces as integrated optoelectronic interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Narasimhan, Vijay K.; Hymel, Thomas M.; Lai, Ruby A.; Cui, Yi

    2017-01-03

    An optoelectronic device has a hybrid metal-dielectric optoelectronic interface including an array of nanoscale dielectric resonant elements (e.g., nanopillars), and a metal film disposed between the dielectric resonant elements and below a top surface of the resonant elements such that the dielectric resonant elements protrude through the metal film. The device may also include an anti-reflection coating. The device may further include a metal film layer on each of the dielectric resonant elements.

  1. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  2. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  3. Recent applications of liquid metals featuring nanoscale surface oxides

    Science.gov (United States)

    Neumann, Taylor V.; Dickey, Michael D.

    2016-05-01

    This proceeding describes recent efforts from our group to control the shape and actuation of liquid metal. The liquid metal is an alloy of gallium and indium which is non-toxic, has negligible vapor pressure, and develops a thin, passivating surface oxide layer. The surface oxide allows the liquid metal to be patterned and shaped into structures that do not minimize interfacial energy. The surface oxide can be selectively removed by changes in pH or by applying a voltage. The surface oxide allows the liquid metal to be 3D printed to form free-standing structures. It also allows for the liquid metal to be injected into microfluidic channels and to maintain its shape within the channels. The selective removal of the oxide results in drastic changes in surface tension that can be used to control the flow behavior of the liquid metal. The metal can also wet thin, solid films of metal that accelerates droplets of the liquid along the metal traces .Here we discuss the properties and applications of liquid metal to make soft, reconfigurable electronics.

  4. Bioaccumulation and depuration of metals in blue crabs (Callinectes sapidus Rathbun) from a contaminated and clean estuary

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Jessica M., E-mail: jreichmuth02@gmail.co [Department of Biological Sciences, Rutgers, State University of New Jersey, 195 University Avenue, Newark, NJ 07102 (United States); Weis, Peddrick, E-mail: weis@umdnj.ed [Department of Radiology, UMDNJ-Medical School of New Jersey, Newark, NJ 07101 (United States); Weis, Judith S., E-mail: jweis@andromeda.rutgers.ed [Department of Biological Sciences, Rutgers, State University of New Jersey, 195 University Avenue, Newark, NJ 07102 (United States)

    2010-02-15

    Blue crabs from a contaminated estuary (Hackensack Meadowlands-HM) and a cleaner reference site (Tuckerton-TK) were analyzed for Cr, Cu, Hg, Pb, and Zn in muscle and hepatopancreas. Crabs from each site were taken into the laboratory and fed food from the other site, or in another experiment, transplanted to the other site for eight weeks. All crabs were analyzed for metals. Overall, tissue concentrations reflected environmental conditions. Tissue differences were found for Cu, Pb and Zn (all higher in hepatopancreas), and Hg (higher in muscle). HM muscle had more Hg than TK muscle, but did not decrease after transplanting or consuming clean food. HM crabs lost Cu, Pb and Zn in hepatopancreas after being fed clean food or transplanted. TK crabs increased Hg in muscle and Cr and Zn in hepatopancreas after transplantation or being fed contaminated (HM) food. Concentrations were variable, suggesting that blue crabs may not be fully reliable bioindicators of polluted systems. - The accumulation of metals within the muscle and hepatopancreas of blue crabs was highly variable, but often followed environmental concentrations.

  5. Surface plasmon resonance in super-periodic metal nanostructures

    Science.gov (United States)

    Leong, Haisheng

    Surface plasmon resonances in periodic metal nanostructures have been investigated over the past decade. The periodic metal nanostructures have served as new technology platforms in fields such as biological and chemical sensing. An existing method to determine the surface plasmon resonance properties of these metal nanostructures is the measurement of the light transmission or reflection from these nanostructures. The measurement of surface plasmon resonances in either the transmission or reflection allows one to resolve the surface plasmon resonance in metal nanostructures. In this dissertation, surface plasmon resonances in a new type of metal nanostructures were investigated. The new nanostructures were created by patterning traditional periodic nanohole and nanoslit arrays into diffraction gratings. The patterned nanohole and 11anoslit arrays have two periods in the structures. The new nanostructures are called "super-periodic" nanostructures. With rigorous finite difference time domain (FDTD) numerical simulations, surface plasmon resonances in super-periodic nanoslit and nanohole arrays were investigated. It was found that by creating a super-period in periodic metal nanostructures, surface plasmon radiations can be observed in the non-zero order diffractions. This discovery presents a new method of characterizing the surface plasmon resonances in metal nanostructures. Super-periodic gold nanoslit and nanohole arrays were fabricated with the electron beam lithography technique. The surface plasmon resonances were measured in the first order diffraction by using a CCD. The experimental results confirm well with the FDTD numerical simulations.

  6. Surface electronic structure and isomerization reactions of alkanes on some transition metal oxides

    Science.gov (United States)

    Katrib, A.; Logie, V.; Saurel, N.; Wehrer, P.; Hilaire, L.; Maire, G.

    1997-04-01

    XP spectra of some reduced transition metal oxides are presented. Different number of free nd,( n + 1)s valence electrons in each case could be observed by the presence of a certain density of states (DOS) at the Fermi-level in the valence band (VB) energy region of the XP spectrum. Catalytic isomerization reactions of 2-methylpentane yielding 3-methylpentane and n-hexane at 350°C have been observed on these reduced valence surface states. The bifunctionel mechanism in terms of metallic and acidic sites required for such reactions is proposed by considering the metallic properties of the rutile deformed structure through the C-axis in the case of MoO 2 and WO 2, while the oxygen atom(s) in the lattice structure exhibit Brönsted acidic properties. On the other hand, highly reduced or clean surfaces of these transition metals yield hydrogenolysis catalytic reactions for the same reactant with methane as the major product. In all cases, the exposure of the lower valence oxidation states of bulk transition metal oxides to air results in the surface partial oxidation to the stable oxides such as MoO 3, WO 3, V 2O 5 and Nb 2O 5.

  7. Investigation of the electron emission properties of silver: From exposed to ambient atmosphere Ag surface to ion-cleaned Ag surface

    Energy Technology Data Exchange (ETDEWEB)

    Gineste, T., E-mail: Thomas.Gineste@onera.fr [ONERA The French Aerospace Lab, 31055 Toulouse (France); Belhaj, M. [ONERA The French Aerospace Lab, 31055 Toulouse (France); Teyssedre, G. [LAPLACE - Laboratoire Plasma et Conversion d’Energie -UMR 5213, Université Paul Sabatier - 118, route de Narbonne, 31062 Toulouse Cedex (France); Puech, J. [CNES, 18 Avenue Edouard Belin 31055 Toulouse Cédex 9 (France)

    2015-12-30

    Highlights: • We investigated the electron emission yield of an air exposed Ag to a cleaned Ag. • Air exposed Ag sample was cleaned by ion Ar etching. • Surface composition was determined by AES. • Electron emission yield was related to surface composition evolution. • Natural contamination hugely influence electron properties of Ag sample. - Abstract: Electron emission properties of materials are highly dependent to the surface and the first nanometres subsurface. Technical materials, i.e. used within applications are ordinarily exposed to atmosphere, which interacts with the surface. The contamination layer building up at the surface of materials and/or oxidation layer affects dramatically the electron emission proprieties. In this paper, starting from 99.99% pure silver sample, exposed 4 years to ambient atmosphere, we monitored the variations of the electron emission properties and the surface composition during step by step ion etching procedure.

  8. Study on effective laser cleaning method to remove carbon layer from a gold surface

    Science.gov (United States)

    Singh, Amol; Choubey, A. K.; Modi, Mohammed H.; Upadhyaya, B. N.; Lodha, G. S.

    2013-03-01

    Hydrocarbon cracking and carbon contamination is a common problem in soft x-ray Synchrotron Radiation (SR) beamlines. Carbon contamination on optics is known to absorb and scatter radiation close to the C K-edge (284 eV) spectral region. The purpose of this work is to study and develop a laser cleaning method that can effectively remove the carbon contaminations without damaging the underneath gold-coated optics. The laser cleaning process is a non-contact, accurate, efficient and safe. Nd:YAG laser of 100 ns pulse duration is used for carbon cleaning. The effect of laser pulse duration, laser fluence, number of laser passes, angle of incidence and spot overlapping on the cleaning performance is studied. Cleaning effect and subsequent film quality after laser irradiation is analyzed using x-ray photoelectron spectroscopy (XPS) and soft x-ray reflectivity (SXR) techniques.

  9. Catalytic behavior of metallic particles in anisotropic etching of Ge(100) surfaces in water mediated by dissolved oxygen

    Science.gov (United States)

    Kawase, Tatsuya; Mura, Atsushi; Nishitani, Keisuke; Kawai, Yoshie; Kawai, Kentaro; Uchikoshi, Junichi; Morita, Mizuho; Arima, Kenta

    2012-06-01

    The authors demonstrate that Ge(100) surfaces containing metallic particles are etched anisotropically in water. This originates from the catalytic reduction of dissolved oxygen (O2) in water to water molecules (H2O) on the metallic particles, which is followed by the enhanced oxidation of Ge around the particles. The soluble nature of Ge oxide (GeO2) in water promotes the formation of inverted pyramidal etch pits composed of (111) microfacets. On the basis of the results, the authors propose strategies for avoiding unwanted surface roughening during the wet cleaning of Ge.

  10. Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas

    CERN Document Server

    Dolgov, A; Rachimova, T; Kovalev, A; Vasilyeva, A; Lee, C J; Krivtsun, V M; Yakushev, O; Bijkerk, F

    2013-01-01

    Cleaning of contamination of optical surfaces by amorphous carbon (a-C) is highly relevant for extreme ultraviolet (EUV) lithography. We have studied the mechanisms for a-C removal from a Si surface. By comparing a-C removal in a surface wave discharge (SWD) plasma and an EUV-induced plasma, the cleaning mechanisms for hydrogen and helium gas environments were determined. The C-atom removal per incident ion was estimated for different sample bias voltages and ion fluxes. It was found that H2 plasmas generally had higher cleaning rates than He plasmas: up to seven times higher for more negatively biased samples in EUV induced plasma. Moreover, for H2, EUV induced plasma was found to be 2-3 times more efficient at removing carbon than the SWD plasma. It was observed carbon removal during exposure to He is due to physical sputtering by He+ ions. In H2, on the other hand, the increase in carbon removal rates is due to chemical sputtering. This is a new C cleaning mechanism for EUV-induced plasma, which we call "E...

  11. Control of pyrite surface chemistry in physical coal cleaning. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Luttrell, G.H.; Yoon, R.H.; Richardson, P.E.

    1993-05-19

    In Part I, Surface Chemistry of Coal Pyrite the mechanisms responsible for the inefficient rejection of coal pyrite were investigated using a number of experimental techniques. The test results demonstrate that the hydrophobicity of coal pyrite is related to the surface products formed during oxidation in aqueous solutions. During oxidation, a sulfur-rich surface layer is produced in near neutral pH solutions. This surface layer is composed mainly of sulfur species in the form of an iron-polysulfide along with a smaller amount of iron oxide/hydroxides. The floatability coal pyrite increases dramatically in the presence of frothers and hydrocarbon collectors. These reagents are believed to absorb on the weakly hydrophobic pyrite surfaces as a result of hydrophobic interaction forces. In Part III, Developing the Best Possible Rejection Schemes, a number of pyrite depressants were evaluated in column and conventional flotation tests. These included manganese (Mn) metal, chelating agents quinone and diethylenetriamine (DETA), and several commercially-available organic depressants. Of these, the additives which serve as reducing agents were found to be most effective. Reducing agents were used to prevent pyrite oxidation and/or remove oxidation products present on previously oxidized surfaces. These data show that Mn is a significantly stronger depressant for pyrite than quinone or DETA. Important factors in determining the pyrite depression effect of Mn include the slurry solid content during conditioning, the addition of acid (HCl), and the amount of Mn. The acid helps remove the oxide layer from the surface of Mn and promotes the depression of pyrite by Mn.

  12. CdSe Nanoparticles with Clean Surfaces: Gas Phase Synthesis and Optical Properties

    Directory of Open Access Journals (Sweden)

    Zhang Hongwei

    2015-01-01

    Full Text Available CdSe nanoparticles (NPs were generated in gas phase with a magnetron plasma gas aggregation cluster beam source. Coagulation-free CdSe nanocrystals with very clean particle surface and interface, as well as a fairly uniform spatial distribution were obtained. The deposited NPs have a good dispersity with a mean diameter of about 4.8nm. A strong photoluminescence band corresponding to the near- band-edge transition of the CdSe NPs was observed. The CdSe NP films show a significant photoconductance induced by laser irradiation. With an applied bias voltage of 10V, the photo- induced current can be as high as 0.4mA under 0.01mW/mm2 405nm laser illumination. Our approach offers an alternative method for CdSe NP synthesis, which has the advantages such as high purity, good process and product control, as well as mass production, as compared to the existing methods.

  13. He atom surface spectroscopy: Surface lattice dynamics of insulators, metals and metal overlayers

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    During the first three years of this grant (1985--1988) the effort was devoted to the construction of a state-of-the-art He atom scattering (HAS) instrument which would be capable of determining the structure and dynamics of metallic, semiconductor or insulator crystal surfaces. The second three year grant period (1988--1991) has been dedicated to measurements. The construction of the instrument went better than proposed; it was within budget, finished in the proposed time and of better sensitivity and resolution than originally planned. The same success has been carried over to the measurement phase where the concentration has been on studies of insulator surfaces, as discussed in this paper. The experiments of the past three years have focused primarily on the alkali halides with a more recent shift to metal oxide crystal surfaces. Both elastic and inelastic scattering experiments were carried out on LiF, NaI, NaCl, RbCl, KBr, RbBr, RbI, CsF, CsI and with some preliminary work on NiO and MgO.

  14. ATP Bioluminometers Analysis on the Surfaces of Removable Orthodontic Aligners after the Use of Different Cleaning Methods

    Science.gov (United States)

    Levrini, Luca; Mangano, Alessandro; Margherini, Silvia; Tenconi, Camilla; Vigetti, Davide; Muollo, Raffaele; Marco Abbate, Gian

    2016-01-01

    Purpose. The aim was to quantify the bacteria concentration on the surface of orthodontic clear aligners using three different cleaning methods. Furthermore the objective was to validate the efficacy of the bioluminometer in assessing the bacteria concentration. Materials and Methods. Twenty subjects (six males and fourteen females) undergoing orthodontic therapy with clear aligners (Invisalign® Align Technology, Santa Clara, California) were enrolled in this study. The observation time was of six weeks. The patients were instructed to use different cleaning methods (water, brushing with toothpaste, and brushing with toothpaste and use of sodium carbonate and sulphate tablet). At the end of each phase a microbiological analysis was performed using the bioluminometer. Results. The highest bacteria concentration was found on aligners cleaned using only water (583 relative light units); a value of 189 relative light units was found on aligners cleaned with brushing and toothpaste. The lowest bacteria concentration was recorded on aligners cleaned with brushing and toothpaste and the use of sodium carbonate and sulfate tablet. Conclusions. The mechanical removal of the bacterial biofilm proved to be effective with brushing and toothpaste. The best results in terms of bacteria concentration were achieved adding the use of sodium carbonate and sulfate tablet. PMID:27242901

  15. ATP Bioluminometers Analysis on the Surfaces of Removable Orthodontic Aligners after the Use of Different Cleaning Methods

    Directory of Open Access Journals (Sweden)

    Luca Levrini

    2016-01-01

    Full Text Available Purpose. The aim was to quantify the bacteria concentration on the surface of orthodontic clear aligners using three different cleaning methods. Furthermore the objective was to validate the efficacy of the bioluminometer in assessing the bacteria concentration. Materials and Methods. Twenty subjects (six males and fourteen females undergoing orthodontic therapy with clear aligners (Invisalign® Align Technology, Santa Clara, California were enrolled in this study. The observation time was of six weeks. The patients were instructed to use different cleaning methods (water, brushing with toothpaste, and brushing with toothpaste and use of sodium carbonate and sulphate tablet. At the end of each phase a microbiological analysis was performed using the bioluminometer. Results. The highest bacteria concentration was found on aligners cleaned using only water (583 relative light units; a value of 189 relative light units was found on aligners cleaned with brushing and toothpaste. The lowest bacteria concentration was recorded on aligners cleaned with brushing and toothpaste and the use of sodium carbonate and sulfate tablet. Conclusions. The mechanical removal of the bacterial biofilm proved to be effective with brushing and toothpaste. The best results in terms of bacteria concentration were achieved adding the use of sodium carbonate and sulfate tablet.

  16. Surface chemistry, friction, and wear of Ni-Zn and Mn-Zn ferrites in contact with metals

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1983-01-01

    X-ray photoelectron and Auger electron spectroscopy analysis were used in sliding friction experiments. These experiments were conducted with hot-pressed polycrystalline Ni-Zn and Mn-Zn ferrites, and single-crystal Mn-Zn ferrite in contact with various transition metals at room temperature in both vacuum and argon. The results indicate that Ni2O3 and Fe3O4 were present on the Ni-Zn ferrite surface in addition to the nominal bulk constituents, while MnO2 and Fe3O4 were present on the Mn-Zn ferrite surface in addition to the nominal bulk constituents. The coefficients of friction for the ferrites in contact with metals were related to the relative chemical activity of these metals. The more active the metal, the higher is the coefficient of friction. The coefficients of friction for the ferrites were correlated with the free energy of formation of the lowest metal oxide. The interfacial bond can be regarded as a chemical bond between the metal atoms and the oxygen anions in the ferrite surfaces. The adsorption of oxygen on clean metal and ferrite does strengthen the metal-ferrite contact and increase the friction. The ferrites exhibit local cracking and fracture with sliding under adhesive conditions. All the metals transferred to the surfaces of the ferrites in sliding. Previously announced in STAR as N83-19901

  17. Studies of liquid metal surfaces using Auger spectroscopy

    Science.gov (United States)

    Hardy, S.; Fine, J.

    1982-01-01

    The surface composition of liquid gallium-tin alloys is studied in an Auger electron spectrometer as a function of bulk composition and temperature. The sessile drop samples are cleaned by argon ion bombardment sputtering of the liquid. This technique produces surfaces that are entirely free of impurities within the sensitivity of the spectrometer and remain so for many days. Tin is found to be strongly adsorbed at the liquid-vacuum interface. Surface concentrations based on Auger measurements are found to be in reasonably good agreement with values calculated from surface tension measurements interpreted in terms of a monolayer depth distribution model for the adsorbed tin.

  18. ELECTROCATALYSIS ON SURFACES MODIFIED BY METAL MONOLAYERS DEPOSITED AT UNDERPOTENTIALS.

    Energy Technology Data Exchange (ETDEWEB)

    ADZIC,R.

    2000-12-01

    The remarkable catalytic properties of electrode surfaces modified by monolayer amounts of metal adatoms obtained by underpotential deposition (UPD) have been the subject of a large number of studies during the last couple of decades. This interest stems from the possibility of implementing strictly surface modifications of electrocatalysts in an elegant, well-controlled way, and these bi-metallic surfaces can serve as models for the design of new catalysts. In addition, some of these systems may have potential for practical applications. The UPD of metals, which in general involves the deposition of up to a monolayer of metal on a foreign substrate at potentials positive to the reversible thermodynamic potential, facilitates this type of surface modification, which can be performed repeatedly by potential control. Recent studies of these surfaces and their catalytic properties by new in situ surface structure sensitive techniques have greatly improved the understanding of these systems.

  19. Cell surface engineering of microorganisms towards adsorption of heavy metals.

    Science.gov (United States)

    Li, Peng-Song; Tao, Hu-Chun

    2015-06-01

    Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.

  20. Fabrication of hierarchical structures for stable superhydrophobicity on metallic planar and cylindrical inner surfaces

    Science.gov (United States)

    Hao, Xiuqing; Wang, Li; Lv, Danhui; Wang, Quandai; Li, Liang; He, Ning; Lu, Bingheng

    2015-01-01

    Recently, the construction of stable superhydrophobicity on metallic wetting surfaces has gained increasing attention due to its potential wide applications. In this paper, we propose an economic fabricating method, which not only is suitable for metallic planar surfaces, but also could be applied onto cylindrical inner surfaces. It mainly involves two steps: etching micro-concaves by a movable mask electrochemical micromachining (EMM) technique and fabricating nanopillars of ZnO by a hydrothermal method. Then the influences of surface morphology on the static and dynamic behaviors of water droplets are investigated. The energy loss during impact on the surfaces is quantified in terms of the restitution coefficient for droplets bouncing off the surfaces. For hierarchical structures with excellent superhydrophobicity (contact angle ≈180° and sliding angle ≤1°), the droplet bounces off the surface several times, superior to the droplet's response on single nanopillars (contact angle ≈165.8° and sliding angle ≈6.29°) where droplet bounces off only for limited a number of times, and even far better than the dynamics of a liquid droplet impinging on microstructures (contact angle ≈132.1° and sliding angle >90°) where droplet does not rebound and remains pinned. The highest elasticity is obtained on the hierarchical surface, where the restitution coefficient can be as large as 0.94. The fabricating method is then applied onto the cylindrical inner surface and the wetting behavior is confirmed to be consistent with the planar surface. This method, which can be generalized to any kind of solid electroconductive metal or other surfaces with different shapes, could find wide practical applications in self-cleaning surfaces, chemical industry, microfluidic devices, mechanical engineering and aviation.

  1. Preliminary Results on the Surface of a New Fe-Based Metallic Material after “In Vivo” Maintaining

    Science.gov (United States)

    Săndulache, F.; Stanciu, S.; Cimpoeşu, N.; Stanciu, T.; Cimpoeșu, R.; Enache, A.; Baciu, R.

    2017-06-01

    Abstract A new Fe-based alloy was obtained using UltraCast melting equipment. The alloy, after mechanical processing, was implanted in five rabbit specimens (with respect for the “in-bone” procedure). After 30 days of implantation the samples were recovered and analyzed by weight and surface state meanings. Scanning electron microscopy technique was used to determine the new compounds morphology from the metallic surface and X-ray dispersive energy spectroscopy for chemical analyze results. A bond between the metallic material and biological material of the bone was observed through increasing of sample weight and by SEM images. After the first set of tests, as the samples were extracted and biologically cleaned, the samples were ultrasonically cleaned and re-analyzed in order to establish the stability of the chemical compounds.

  2. Metal-organic framework materials with ultrahigh surface areas

    Energy Technology Data Exchange (ETDEWEB)

    Farha, Omar K.; Hupp, Joseph T.; Wilmer, Christopher E.; Eryazici, Ibrahim; Snurr, Randall Q.; Gomez-Gualdron, Diego A.; Borah, Bhaskarjyoti

    2015-12-22

    A metal organic framework (MOF) material including a Brunauer-Emmett-Teller (BET) surface area greater than 7,010 m.sup.2/g. Also a metal organic framework (MOF) material including hexa-carboxylated linkers including alkyne bond. Also a metal organic framework (MOF) material including three types of cuboctahedron cages fused to provide continuous channels. Also a method of making a metal organic framework (MOF) material including saponifying hexaester precursors having alkyne bonds to form a plurality of hexa-carboxylated linkers including alkyne bonds and performing a solvothermal reaction with the plurality of hexa-carboxylated linkers and one or more metal containing compounds to form the MOF material.

  3. Surface energy and work function of elemental metals

    DEFF Research Database (Denmark)

    Skriver, Hans Lomholt; Rosengaard, N. M.

    1992-01-01

    are in excellent agreement with a recent full-potential, all-electron, slab-supercell calculation of surface energies and work functions for the 4d metals. The present calculations explain the trend exhibited by the surface energies of the alkali, alkaline earth, divalent rare-earth, 3d, 4d, and 5d transition......We have performed an ab initio study of the surface energy and the work function for six close-packed surfaces of 40 elemental metals by means of a Green’s-function technique, based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The results...... and noble metals, as derived from the surface tension of liquid metals. In addition, they give work functions which agree with the limited experimental data obtained from single crystals to within 15%, and explain the smooth behavior of the experimental work functions of polycrystalline samples...

  4. Clean and Efficient Synthesis Using Mechanochemistry: Coordination Polymers, Metal-Organic Frameworks and Metallodrugs

    OpenAIRE

    Friščić, Tomislav; Halasz, Ivan; Štrukil, Vjekoslav; Maksić, Mirjana; Dinnebier, Robert E

    2012-01-01

    This review briefly discusses recent advances and future prospects in the mechanochemical synthesis of coordination compounds by ball milling and grinding, and highlights our contributions to the mechanosynthesis of porous metal-organic frameworks (MOFs) and zeolitic imidazolate frameworks (ZIFs), metal-organic pharmaceutical derivatives and metallodrugs using the recently developed mechanochemical methods of liquid-assisted grinding (LAG) and ion- and liquid-assisted grinding (ILAG). The...

  5. Femtosecond laser color marking of metal and semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Seleznev, Leonid V.; Sinitsyn, Dmitry V. [Russian Academy of Sciences, P.N. Lebedev Physical Institute, Moscow (Russian Federation); Golosov, Evgeniy V.; Golosova, Ol' ga A.; Kolobov, Yuriy R. [Belgorod State University, Belgorod (Russian Federation); Ligachev, Alexander E. [Russian Academy of Sciences, A.M. Prokhorov General Physics Institute, Moscow (Russian Federation)

    2012-05-15

    Color marking of rough or smooth metal (Al, Cu, Ti) and semiconductor (Si) surfaces was realized via femtosecond laser fabrication of periodic surface nanorelief, representing one-dimensional diffraction gratings. Bright colors of the surface nanorelief, especially for longer electromagnetic wavelengths, were provided during marking through pre-determined variation of the laser incidence angle and the resulting change of the diffraction grating period. This coloration technique was demonstrated for the case of silicon and various metals to mark surfaces in any individual color with a controllable brightness level and almost without their accompanying chemical surface modification. (orig.)

  6. Ultrastructural localization of metals in specimens of Littorina littorea collected from clean and polluted sites

    Energy Technology Data Exchange (ETDEWEB)

    MAson, A.Z.; Simkiss, K.; Ryan, K.P.

    1984-08-01

    Specimens of the periwinkle, Littorina littorea, were collected from a relatively unpolluted site on the Menai Straight, N. Wales, or from the heavily polluted site at Restronguet Creek on the Fal Estuary, Cornwall. The ultrastructural organization of various metal-containing cells of the specimens were analyzed to provide information on the specificity and identity of the biochemical pathways involved in manipulating the metals. The majority of the metals were bound to intracellular ligands. The diversity of ligands includes differences in both composition of the ligands and their availability to pollutant metals. The ligands are usually compartmentalized within membrane-delineated structures. The basophil cells and connective tissue calcium cells appear to contain oxygen donor ligands which mainly bind class A metals (e.g. Ca, Mg, K, Mn). The pore cells and ctenidium contain sulphur donor ligands which mainly bind copper. Ligands of unknown composition occur in the nephrocytes and stomach epithelial cells. The effects of ligand specificity, induction and turnover rates will lead to variation in the results obtained in the use of an organism such as L. littorea as a monitoring system for metal pollution. 34 references, 6 figures, 2 tables.

  7. Single step method to fabricate durable superliquiphobic coating on aluminum surface with self-cleaning and anti-fogging properties.

    Science.gov (United States)

    Nanda, D; Varshney, P; Satapathy, M; Mohapatra, S S; Bhushan, B; Kumar, A

    2017-12-01

    The development of self-cleaning and anti-fogging durable superliquiphobic coatings for aluminum surfaces has raised tremendous interest in materials science. In this study, a superliquiphobic coating is fabricated on an aluminum surface by a single-step dip-coating method using 1H,1H,2H,2H-Perfluorooctyltrichlorosilane-modified SiO2 nanoparticles. The successful implementation of the aforesaid coating in different applications requires extensive investigations of its characteristics and stability. To understand the properties of the coating, surface morphology, contact angle, self-cleaning, anti-fogging, and water repellency were investigated under perturbation conditions. Additionally, the dynamics of water and oil on the coated sample also were studied. Furthermore, the durability of the coating also was examined by performing thermal, chemical, and mechanical stability tests. It was found that the coating is superliquiphobic for water, ethylene glycol, glycerol and hexadecane, and shows thermal, chemical, and mechanical stability. Further, it exhibits self-cleaning and anti-fogging properties. This approach can be applied to any size and shape aluminum surface; thus, it has great industrial applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Yafarov, R. K., E-mail: pirpc@yandex.ru; Shanygin, V. Ya. [Russian Academy of Sciences, Saratov Branch of the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-01-15

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered.

  9. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    Science.gov (United States)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200–400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  10. Asymmetric light reflectance from metal nanoparticle arrays on dielectric surfaces

    Science.gov (United States)

    Huang, K.; Pan, W.; Zhu, J. F.; Li, J. C.; Gao, N.; Liu, C.; Ji, L.; Yu, E. T.; Kang, J.Y.

    2015-01-01

    Asymmetric light reflectance associated with localized surface plasmons excited in metal nanoparticles on a quartz substrate is observed and analyzed. This phenomenon is explained by the superposition of two waves, the wave reflected by the air/quartz interface and that reflected by the metal nanoparticles, and the resulting interference effects. Far field behavior investigation suggests that zero reflection can be achieved by optimizing the density of metal nanoparticles. Near field behavior investigation suggests that the coupling efficiency of localized surface plasmon can be additionally enhanced by separating the metal NPs from substrates using a thin film with refractive index smaller than the substrate. The latter behavior is confirmed via surface-enhanced Raman spectroscopy studies using metal nanoparticles on Si/SiO2 substrates. PMID:26679353

  11. Molecular and morphological surface analysis: effect of filling pastes and cleaning agents on root dentin

    Science.gov (United States)

    DAINEZI, Vanessa Benetello; IWAMOTO, Alexsandra Shizue; MARTIN, Airton Abrahão; SOARES, Luís Eduardo Silva; HOSOYA, Yumiko; PASCON, Fernanda Miori; PUPPIN-RONTANI, Regina Maria

    2017-01-01

    Abstract The quality of the dentin root is the most important factor for restoration resin sealing and drives the outcome of endodontic treatment. Objective This study evaluated the effect of different filling pastes and cleaning agents on the root dentin of primary teeth using Fourier-transformed Raman spectroscopy (FT-Raman), micro energy-dispersive X-ray fluorescence (µ-EDXRF) and scanning electron microscopic (SEM) analysis. Material and Methods Eighty roots of primary teeth were endodontically prepared and distributed into 4 groups and filled according to the following filling pastes: Control-no filling (CP), Calen®+zinc oxide (CZ), Calcipex II® (CII), Vitapex® (V). After seven days, filling paste groups were distributed to 4 subgroups according to cleaning agents (n=5): Control-no cleaning (C), Ethanol (E), Tergenform® (T), 35% Phosphoric acid (PA). Then, the roots were sectioned and the dentin root sections were internally evaluated by FT-Raman, µ-EDXRF and SEM. Data was submitted to two-way ANOVA and Tukey tests (α=0.05). Results Regarding filling pastes, there was no significant difference in organic content. CP provided the lowest calcium values and, calcium/phosphoric ratio (Ca/P), and the highest phosphoric values. For cleaning agents there was no difference in organic content when compared to the C; however, T showed significantly higher calcium and Ca/P than PA. All groups showed similar results for phosphorus. The dentin smear layer was present after use of the cleaning agents, except PA. Conclusion The filling pastes changed the inorganic content, however they did not change the organic content. Cleaning agents did not alter the inorganic and organic content. PA cleaned and opened dentin tubules. PMID:28198982

  12. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.

    Science.gov (United States)

    Ma, Tian-Yi; Yuan, Zhong-Yong

    2011-10-17

    The synthesis of porous hybrid materials has been extended to mesoporous non-silica-based organic-inorganic hybrid materials, in which mesoporous metal phosphonates represent an important family. By using organically bridged polyphosphonic acids as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the metal phosphonate hybrid framework has been realized. Small amounts of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid mesoporous metal phosphonate solids. Cationic and nonionic surfactants can be used as templates for the synthesis of ordered mesoporous metal phosphonates. The materials are used as efficient adsorbents for heavy metal ions, CO₂, and aldehydes, as well as in the separation of polycyclic aromatic hydrocarbons. They are also useful photocatalysts under UV and simulated solar light irradiation for organic dye degradation. Further functionalization of the synthesized mesoporous hybrids makes them oxidation and acid catalysts, both with impressive performances in the fields of sustainable energy and environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Local Chemical Reactivity of a Metal Alloy Surface

    DEFF Research Database (Denmark)

    Hammer, Bjørk; Scheffler, Matthias

    1995-01-01

    The chemical reactivity of a metal alloy surface is studied by density functional theory investigating the interaction of H2 with NiAl(110). The energy barrier for H2 dissociation is largely different over the Al and Ni sites without, however, reflecting the barriers over the single component metal...

  14. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...

  15. Fermi Surface and Antiferromagnetism in Europium Metal

    DEFF Research Database (Denmark)

    Andersen, O. Krogh; Loucks, T. L.

    1968-01-01

    We have calculated the Fermi surface of europium in order to find those features which determine the wave vector of the helical moment arrangement below the Néel point. We find that there are two pieces of Fermi surface: an electron surface at the symmetry point H, which has the shape of rounded-...

  16. Functional oxide structures on a surface of metals and alloys

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The investigations of the plasma electrolytic processes in our laboratory are aimed to the development of conditions of formation of oxide layers with determined composition, structure and functional properties on the surface of valve metals (Al, Ti) and their alloys.

  17. An alternative treatment of occlusal wear: Cast metal occlusal surface

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2012-01-01

    Full Text Available Acrylic resin denture teeth often exhibit rapid occlusal wear, which may lead to decrease in the chewing efficiency, loss of vertical dimension of occlusion, denture instability, temporomandibular joint disturbances, etc. There are various treatment options available like, use of highly cross linked acrylic teeth, amalgam or metal inserts on occlusal surface, use of composite, gold or metal occlusal surface, etc. Several articles have described methods to construct gold and metal occlusal surfaces, however, these methods are time-consuming, expensive and requires many cumbersome steps. These methods also requires the patient to be without the prosthesis for the time during which the laboratory procedures are performed. This article presents a quick, simple and relatively inexpensive procedure for construction of metal occlusal surfaces on complete dentures.

  18. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  19. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    of surface waves and, therefore, can serve as a platform allowing many applications for surface photonics. Most of these surface waves are directional and their propagation direction is sensitive to permittivities of the media forming the interface. Hence, their propagation can be effectively controlled...... by changing a wavelength or material parameters. We discover that two new types of surface waves with complex dispersion exist for a uniaxial medium with both negative ordinary and extraordinary permittivities. Such new surface wave solutions originate from the anisotropic permittivities of the uniaxial media......, resulting in unique hyperbolic–like wavevector dependencies....

  20. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...

  1. Calculated surface-energy anomaly in the 3d metals

    DEFF Research Database (Denmark)

    Aldén, M.; Skriver, Hans Lomholt; Mirbt, S.

    1992-01-01

    Local-spin-density theory and a Green’s-function technique based on the linear muffin-tin orbitals method have been used to calculate the surface energy of the 3d metals. The theory explains the variation of the values derived from measurements of the surface tension of liquid metals including...... the pronounced anomaly occurring between vanadium and nickel in terms of a decrease in the d contribution caused by spin polarization....

  2. Surface analysis of transition metal oxalates: Damage aspects

    Energy Technology Data Exchange (ETDEWEB)

    Chenakin, S.P., E-mail: chenakin@imp.kiev.ua [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Institute of Metal Physics, Nat. Acad. Sci. of Ukraine, Akad. Vernadsky Blvd. 36, 03680 Kiev (Ukraine); Szukiewicz, R. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Barbosa, R.; Kruse, N. [Université Libre de Bruxelles (ULB), Chimie-Physique des Matériaux, B-1050 Bruxelles (Belgium); Voiland School of Chemical Engineering and Bioengineering, Washington State University, 155 Wegner Hall, Pullman, WA 99164-6515 (United States)

    2016-05-15

    Highlights: • Gas evolution from the Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation is studied. • A comparative study of the damage caused by X-rays in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} is carried out. • Effect of Ar{sup +} bombardment on the structure and composition of CoC{sub 2}O{sub 4} is studied. - Abstract: The behavior of transition metal oxalates in vacuum, under X-ray irradiation and low-energy Ar{sup +} ion bombardment was studied. A comparative mass-spectrometric analysis was carried out of gas evolution from the surface of Mn, Co, Ni and Cu oxalate hydrates in vacuum, during exposure to X-rays and after termination of X-ray irradiation. The rates of H{sub 2}O and CO{sub 2} liberation from the oxalates were found to be in an inverse correlation with the temperatures of dehydration and decomposition, respectively. X-ray photoelectron spectroscopy (XPS) was employed to study the X-ray induced damage in NiC{sub 2}O{sub 4} and CuC{sub 2}O{sub 4} by measuring the various XP spectral characteristics and surface composition of the oxalates as a function of time of exposure to X-rays. It was shown that Cu oxalate underwent a significantly faster degradation than Ni oxalate and demonstrated a high degree of X-ray induced reduction from the Cu{sup 2+} to the Cu{sup 1+} chemical state. 500 eV Ar{sup +} sputter cleaning of CoC{sub 2}O{sub 4} for 10 min was found to cause a strong transformation of the oxalate structure which manifested itself in an appreciable alteration of the XP core-level and valence band spectra. The analysis of changes in stoichiometry and comparison of XP spectra of bombarded oxalate with respective spectra of a reference carbonate CoCO{sub 3} implied that the bombardment-induced decomposition of CoC{sub 2}O{sub 4} gave rise to the formation of CoO-like and disordered CoCO{sub 3}-like phases.

  3. Surface Embedded Metal Oxide Sensors (SEMOS)

    DEFF Research Database (Denmark)

    Jespersen, Jesper Lebæk; Talat Ali, Syed; Pleth Nielsen, Lars

    complex and sensors are not easily implemented in the construction. Hence sensor interface and sensor position must therefore be chosen carefully in order to make the sensors as non-intrusive as possible. Metal Oxide Sensors (MOX) for measuring H2, O2 and CO concentration in a fuel cell environment...

  4. Nucleate boiling incipience over metallic/non-metallic surfaces

    Science.gov (United States)

    Petralanda, Naiara

    Incipience wall superheats over super-smooth Si, Al and Ti surfaces were collected at 1atm saturation conditions with FC-72 as the working fluid. Before experimentation, the fluid was put through a 2 hour degassing process to remove vapor. In addition a novel micro-heater was designed and fabricated that provided a constant temperature surface condition with slow heating rates. The average incipience wall superheats were 23.5K for Si, 26.4K for Al and 27.7K for Ti with a variance of less than 0.8K for all three cases. Contact angles were also measured; however, due to the highly wettability of the fluid, the resulting measurements showed large variability. For all cases, incipience occurred at approximately 30% of the homogeneous superheat limit predicted from classical theory. The observed differences in the wall superheat for the three surfaces was small. The primary surface heating element has a surface area of 250 mu m x 250mum which resulted in a very small Grashof number for the system. Consequently, the temperature profile over the heating element was evaluated from the steady Laplace equation using the Fourier integral method. Based on the critical radius at the time of incipience, it was determined that the temperature gradient over the vapor embryo is very small, and thus it can be assumed that the embryo is approximately equal to the wall temperature. Finally, since the measured surface roughness is an order of magnitude less than the critical radius for incipience it is concluded that nucleation could not have been initiated due to any vapor trapped within asperities on the surface. A theoretical framework based on homogeneous-like nucleation and the macroscopic contact angle is proposed. By analyzing the free energy barrier in terms of the vapor cluster, the liquid/vapor interface and the solid/vapor interface, the chemical potential at incipience for FC-72 and water can be determined from experimental measurements of wall superheat and liquid

  5. Studying the role of common membrane surface functionalities on adsorption and cleaning of organic foulants using QCM-D.

    Science.gov (United States)

    Contreras, Alison E; Steiner, Zvi; Miao, Jing; Kasher, Roni; Li, Qilin

    2011-08-01

    Adsorption of organic foulants on nanofiltration (NF) and reverse osmosis (RO) membrane surfaces strongly affects subsequent fouling behavior by modifying the membrane surface. In this study, impact on organic foulant adsorption of specific chemistries including those in commercial thin-film composite membranes was investigated using self-assembled monolayers with seven different ending chemical functionalities (-CH(3), -O-phenyl, -NH(2), ethylene-glycol, -COOH, -CONH(2), and -OH). Adsorption and cleaning of protein (bovine serum albumin) and polysaccharide (sodium alginate) model foulants in two solution conditions were measured using quartz crystal microbalance with dissipation monitoring, and were found to strongly depend on surface functionality. Alginate adsorption correlated with surface hydrophobicity as measured by water contact angle in air; however, adsorption of BSA on hydrophilic -COOH, -NH(2), and -CONH(2) surfaces was high and dominated by hydrogen bond formation and electrostatic attraction. Adsorption of both BSA and alginate was the fastest on -COOH, and adsorption on -NH(2) and -CONH(2) was difficult to remove by surfactant cleaning. BSA adsorption kinetics was shown to be markedly faster than that of alginate, suggesting its importance in the formation of the conditioning layer. Surface modification to render -OH or ethylene-glycol functionalities are expected to reduce membrane fouling.

  6. Surface-Controlled Metal Oxide Resistive Memory

    KAUST Repository

    Ke, Jr-Jian

    2015-10-28

    To explore the surface effect on resistive random-access memory (ReRAM), the impact of surface roughness on the characteristics of ZnO ReRAM were studied. The thickness-independent resistance and the higher switching probability of ZnO ReRAM with rough surfaces indicate the importance of surface oxygen chemisorption on the switching process. Furthermore, the improvements in switching probability, switching voltage and resistance distribution observed for ReRAM with rough surfaces can be attributed to the stable oxygen adatoms under various ambience conditions. The findings validate the surface-controlled stability and uniformity of ReRAM and can serve as the guideline for developing practical device applications.

  7. Characterisation of the surface of freshly prepared precious metal catalysts.

    Science.gov (United States)

    Parker, Stewart F; Adroja, Devashibhai; Jiménez-Ruiz, Mónica; Tischer, Markus; Möbus, Konrad; Wieland, Stefan D; Albers, Peter

    2016-07-14

    A combination of electron microscopy, X-ray and neutron spectroscopies and computational methods has provided new insights into the species present on the surface of freshly prepared precious metal catalysts. The results show that in all cases, at least half of the surface is metallic or nearly so, with the remainder covered by oxygen, largely as hydroxide. Water is also present and is strongly held; weeks of pumping under high vacuum is insufficient to remove it. The hydroxyls are reactive as shown by their reaction with or displacement by CO and can be removed by hydrogenation. This clearly has implications for how precious metal catalysts are activated after preparation.

  8. Recoil-ion fractions in collisions of keV Ar sup + and Kr sup + ions with clean and adsorbate covered GaAs(1 1 0) surfaces

    CERN Document Server

    Gayone, J E; Grizzi, O; Vergara, L I; Passeggi, M C G; Vidal, R; Ferron, J

    2002-01-01

    Ion scattering and recoiling spectroscopy with time of flight analysis is used to study the ion fractions of Ga and As atoms recoiled in collisions of 5 keV Ar sup + and Kr sup + with clean GaAs(1 1 0) and with GaAs(1 1 0) covered with H, alkali metals (K and Cs) and fluorides (AlF sub 3). For the case of the clean surface, the Ga ion fraction is positive, large (approx 50%) and independent of the projectile type. The As ion fraction is also positive, low for Ar sup + (<10%) and relatively large (25%) for Kr sup + projectiles. The adsorption of H produces slight changes in both the As and Ga ion fractions, which is in agreement with the adsorption model where H reacts with both As and Ga atoms. The adsorption of alkalis produces strong changes in the ion fractions. At the beginning of the alkali adsorption the neutralization of Ga recoils increases fast with the coverage and follows approximately the variation of the work function. At coverages above half of the saturation value, where the work function ha...

  9. Clean by Nature. Lively Surfaces and the Holistic-Systemic Heritage of Contemporary Bionik.

    Directory of Open Access Journals (Sweden)

    Jan Mueggenburg

    2014-09-01

    Full Text Available This paper addresses questions regarding the prospering field of Bionik in Germany. Its starting point is the wide spread assumption that universal functional principles exist in nature and that these ‘solutions’ can be transferred into technological objects. Accordingly, advocates of Bionik herald the advent of a better world with more sustainable and efficient products of engineering. The so-called ‘functional surfaces’ occupy a special place within this contemporary version of biomimesis. Shark-skin-inspired swim suits, self-cleaning façade paints with lotus effect or drag reducing Dolphin-Skins for aircraft-wings are expected to improve the quality of life for everyone. It seems that skin and shell of living systems return as revenants to our technological world and live their afterlives as lively surfaces of everyday objects. This paper argues however, that understanding this attention to ‘natural engineering solutions’ in contemporary Bionik, one needs to focus on a different kind of afterlife. For baring the historic-epistemological roots allows fathoming direct connections to two widely influential historical concepts within the history of science in the 20th century: Biotechnik, a very popular bio-philosophical concept from the Weimar Republic of the 1920s and Bionics, an in many ways similar endeavor that emerged during the second wave of Cybernetics in the USA from around 1960. Both historical concepts share a certain proximity to a distinct holistic-systemic style of thinking that emerged during the 20th century and still resonates with the movement of Bionik in contemporary Germany. Based on the example of the lotus effect, I want to address three aspects of the afterlife of this holistic-systemic heritage in contemporary Bionik. First, the assumption that the best engineering solutions can be found in nature conceals the specific discursive and non-discursive complexity that forms the basis of all technological objects

  10. Surface Plasmon Waves on noble metals at Optical Wavelengths

    Directory of Open Access Journals (Sweden)

    Niladri Pratap Maity

    2011-05-01

    Full Text Available In this paper the variation of the propagation constant, the attenuation coefficient, penetration depth inside the metal and the dielectric has been evaluated. The propagation characteristics of Surface Plasmon Waves (SPWs which exists on noble metals like gold (Au, silver (Ag and aluminium (Al due to the formation of Surface Plasmon Polaritons (SPPs, have been evaluated theoretically and simulated. It has been found that highly conducting metals Au and Ag provide a strong confinement to the SPWs than Al at optical frequencies. The comparative study reveals that metal having higher conductivity can support a more confined SPW, having a lower penetration depth than metals of lower conductivity at terahertz frequencies when its dielectric constant assumes a negative value.

  11. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was em...

  12. Preparation of clean surfaces and Se vacancy formation in Bi2Se3 by ion bombardment and annealing

    Science.gov (United States)

    Zhou, Weimin; Zhu, Haoshan; Valles, Connie M.; Yarmoff, Jory A.

    2017-08-01

    Bismuth Selenide (Bi2Se3) is a topological insulator (TI) with a structure consisting of stacked quintuple layers. Single crystal surfaces are commonly prepared by mechanical cleaving. This work explores the use of low energy Ar+ ion bombardment and annealing (IBA) as an alternative method to produce reproducible and stable Bi2Se3 surfaces under ultra-high vacuum (UHV). It is found that a clean and well-ordered surface can be prepared by a single cycle of 1 keV Ar+ ion bombardment and 30 min of annealing. Low energy electron diffraction (LEED) and detailed low energy ion scattering (LEIS) measurements show no differences between IBA-prepared surfaces and those prepared by in situ cleaving in UHV. Analysis of the LEED patterns shows that the optimal annealing temperature is 450 °C. Angular LEIS scans reveal the formation of surface Se vacancies when the annealing temperature exceeds 520 °C.

  13. Fabrication of superhydrophobic copper surface on various substrates for roll-off, self-cleaning, and water/oil separation.

    Science.gov (United States)

    Sasmal, Anup Kumar; Mondal, Chanchal; Sinha, Arun Kumar; Gauri, Samiran Sona; Pal, Jaya; Aditya, Teresa; Ganguly, Mainak; Dey, Satyahari; Pal, Tarasankar

    2014-12-24

    Superhydrophobic surfaces prevent percolation of water droplets and thus render roll-off, self-cleaning, corrosion protection, etc., which find day-to-day and industrial applications. In this work, we developed a facile, cost-effective, and free-standing method for direct fabrication of copper nanoparticles to engender superhydrophobicity for various flat and irregular surfaces such as glass, transparency sheet (plastic), cotton wool, textile, and silicon substrates. The fabrication of as-prepared superhydrophobic surfaces was accomplished using a simple chemical reduction of copper acetate by hydrazine hydrate at room temperature. The surface morphological studies demonstrate that the as-prepared surfaces are rough and display superhydrophobic character on wetting due to generation of air pockets (The Cassie-Baxter state). Because of the low adhesion of water droplets on the as-prepared surfaces, the surfaces exhibited not only high water contact angle (164 ± 2°, 5 μL droplets) but also superb roll-off and self-cleaning properties. Superhydrophobic copper nanoparticle coated glass surface uniquely withstands water (10 min), mild alkali (5 min in saturated aqueous NaHCO3 of pH ≈ 9), acids (10 s in dilute HNO3, H2SO4 of pH ≈ 5) and thiol (10 s in neat 1-octanethiol) at room temperature (25-35 °C). Again as-prepared surface (cotton wool) was also found to be very effective for water-kerosene separation due to its superhydrophobic and oleophilic character. Additionally, the superhydrophobic copper nanoparticle (deposited on glass surface) was found to exhibit antibacterial activity against both Gram-negative and Gram-positive bacteria.

  14. Nuclear Technology. Course 30: Mechanical Inspection. Module 30-5, Surface Cleaning Inspection.

    Science.gov (United States)

    Wasel, Ed; Espy, John

    This fifth in a series of eight modules for a course titled Mechanical Inspection describes cleaning activities which typically apply to construction, maintenance, and modification activities at the nuclear power plant site. The module follows a typical format that includes the following sections: (1) introduction, (2) module prerequisites, (3)…

  15. Modulation of photoacoustic signal generation from metallic surfaces

    Science.gov (United States)

    Mitcham, Trevor; Homan, Kimberly; Frey, Wolfgang; Chen, Yun-Sheng; Emelianov, Stanislav; Hazle, John; Bouchard, Richard

    2013-05-01

    The ability to image metallic implants is important for medical applications ranging from diagnosis to therapy. Photoacoustic (PA) imaging has been recently pursued as a means to localize metallic implants in soft tissue. The work presented herein investigates different mechanisms to modulate the PA signal generated by macroscopic metallic surfaces. Wires of five different metals are tested to simulate medical implants/tools, while surface roughness is altered or physical vapor deposition (PVD) coatings are added to change the wires' overall optical absorption. PA imaging data of the wires are acquired at 970 nm. Results indicate that PA signal generation predominately occurs in a wire's metallic surface and not its aqueous surroundings. PA signal generation is similar for all metals tested, while addition of PVD coatings offers significant modulations (i.e., 4-dB enhancement and 26-dB reduction achieved) in PA signal generation. Results also suggest that PA signal increases with increasing surface roughness. Different coating and roughness schemes are then successfully utilized to generate spatial PA signal patterns. This work demonstrates the potential of surface modifications to enhance or reduce PA signal generation to permit improved PA imaging of implants/tools (i.e., providing location/orientation information) or to allow PA imaging of surrounding tissue.

  16. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  17. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Zhihui [Nano-Bionics Division and i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Feng; Wang, Dong; Liu, Xia [Nano-Bionics Division and i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China); Jin, Jian, E-mail: jjin2009@sinano.ac.cn [Nano-Bionics Division and i-LAB, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123 (China)

    2015-04-15

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI–PD/GO composite nanosheets. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, Hg{sup 2+} are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI–PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m{sup 2}/g. Although the adsorption capacity of PEI–PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI–PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu{sup 2+}, Cd{sup 2+}, Pb{sup 2+}, and Hg{sup 2+}, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater. - Graphical abstract: Polyethylenimine (PEI) brushes were grafted onto the surface of graphene oxide (GO) uniformly via a Michael-Addition reaction between the PEI and polydopamine interlayer coated on GO surface. The PEI–PD/GO composite exhibited an improved performance for adsorption of heavy metal ions compared to PEI-coated GO and pure GO. - Highlights: • We prepared polyethylenimine grafted polydopamine-mediated graphene oxide composites. • Introduction of PD layer increases metal ions adsorption capacity. • PEI–PD/RGO aerogel exhibited a superior adsorption performance. • PEI–PD/RGO aerogel can be recycled several times in a simple way.

  18. Study of the durability of the Ru-capped MoSi multilayer surface under megasonic cleaning

    Science.gov (United States)

    Kurtuldu, Hüseyin; Rastegar, Abbas; House, Matthew

    2012-11-01

    Because EUV masks lack of a pellicle, they are prone to particle contamination and must be cleaned frequently. Despite the relatively good resistance of the TaN absorber lines to pattern damage by megasonic cleaning, the Ru cap can be easily damaged by it. We demonstrate that the type and concentration of the dissolved gas are critical factors in determining the cavitation that eventually introduces pits on the surface of Ru-capped multilayer films. In particular, oxygen creates many more pits than CO2 under similar conditions. In this paper, we present the results of SEMATECH's extensive experimental studies of pit creation on Ru-capped multilayer EUV blanks by megasonics as a function of acoustic field power, gas type and concentration in ultra-pure water, and chemicals during sonication.

  19. Packaging Glass with a Hierarchically Nanostructured Surface: A Universal Method to Achieve Self-Cleaning Omnidirectional Solar Cells

    KAUST Repository

    Lin, Chin An

    2015-12-01

    Fused-silica packaging glass fabricated with a hierarchical structure by integrating small (ultrathin nanorods) and large (honeycomb nanowalls) structures was demonstrated with exceptional light-harvesting solar performance, which is attributed to the subwavelength feature of the nanorods and an efficient scattering ability of the honeycomb nanowalls. Si solar cells covered with the hierarchically structured packaging glass exhibit enhanced conversion efficiency by 5.2% at normal incidence, and the enhancement went up to 46% at the incident angle of 60°. The hierarchical structured packaging glass shows excellent self-cleaning characteristics: 98.8% of the efficiency is maintained after 6 weeks of outdoor exposure, indicating that the nanostructured surface effectively repels polluting dust/particles. The presented self-cleaning omnidirectional light-harvesting design using the hierarchical structured packaging glass is a potential universal scheme for practical solar applications.

  20. Metal surface temperature induced by moving laser beams

    NARCIS (Netherlands)

    Römer, G.R.B.E.; Meijer, J.

    1995-01-01

    Whenever a metal is irradiated with a laser beam, electromagnetic energy is transformed into heat in a thin surface layer. The maximum surface temperature is the most important quantity which determines the processing result. Expressions for this maximum temperature are provided by the literature fo

  1. Resonance Fluorescence of Many Interacting Adatoms at a Metal Surface.

    Science.gov (United States)

    1983-06-01

    a series of experiments in which the fluores - cence of an excited atom or molecule at a fixed distance from a metal surface (gold, silver and cooper...Theodore E. Madey Surface Chemistry Section Dr. Chia -wel Woo Department of Commerce Department of Physics National Bureau of Standards Northwestern

  2. A general strategy for the ultrafast surface modification of metals

    OpenAIRE

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-01-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing au...

  3. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    Surface plasmon resonance imaging has in the past been applied to the characterization of thin films. In this study we apply the surface plasmon technique not to determine macroscopic spatial variations but rather to determine average microscopic information. Specifically, we deduce the dielectric properties of the surrounding gel matrix and information concerning the dynamics of the gelation process from the visible absorption characteristics of colloidal metal nanoparticles contained in aerogel pores. We have fabricated aerogels containing gold and silver nanoparticles. Because the dielectric constant of the metal particles is linked to that of the host matrix at the surface plasmon resonance, any change 'in the dielectric constant of the material surrounding the metal nanoparticles results in a shift in the surface plasmon wavelength. During gelation the surface plasmon resonance shifts to the red as the average or effective dielectric constant of the matrix increases. Conversely, formation of an aerogel or xerogel through supercritical extraction or evaporation of the solvent produces a blue shift in the resonance indicating a decrease in the dielectric constant of the matrix. From the magnitude of this shift we deduce the average fraction of air and of silica in contact with the metal particles. The surface area of metal available for catalytic gas reaction may thus be determined.

  4. Self-excitation of Rydberg atoms at a metal surface

    Science.gov (United States)

    Bordo, V. G.

    2017-08-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg atoms in which this effect should be most pronounced is proposed and the necessary estimates are given.

  5. Self-excitation of Rydberg atoms at a metal surface

    DEFF Research Database (Denmark)

    Bordo, Vladimir

    2017-01-01

    The novel effect of self-excitation of an atomic beam propagating above a metal surface is predicted and a theory is developed. Its underlying mechanism is positive feedback provided by the reflective surface for the atomic polarization. Under certain conditions the atomic beam flying in the near...... field of the metal surface acts as an active device that supports sustained atomic dipole oscillations, which generate, in their turn, an electromagnetic field. This phenomenon does not exploit stimulated emission and therefore does not require population inversion in atoms. An experiment with Rydberg...... atoms in which this effect should be most pronounced is proposed and the necessary estimates are given....

  6. An AFM determination of the effects on surface roughness caused by cleaning of fused silica and glass substrates in the process of optical biosensor preparation.

    Science.gov (United States)

    Henke, Lisa; Nagy, Noemi; Krull, Ulrich J

    2002-06-01

    The covalent attachment of organic films and of biological molecules to fused silica and glass substrates is important for many applications. For applications such as biosensor development, it is desired that the immobilised molecules be assembled in a uniform layer on the surface so as to provide for reproducibility and speed of surface interactions. For optimal derivatisation the surface must be appropriately cleaned to remove contamination, to create surface attachment sites such as hydroxyl groups, and to control surface roughness. The irregularity of the surface can be significant in defining the integrity and density of immobilised films. Numerous cleaning methods exist for fused silica and glass substrates and these include gas plasmas, and combinations of acids, bases and organic solvents that are allowed to react at varying temperatures. For many years, we have used a well established method based on a combination of washing with basic peroxide followed by acidic peroxide to clean and hydroxylate the surface of fused silica and glass substrates before oligonucleotide immobilisation. Atomic force microscopy (AFM) has been used to evaluate the effect of cleaning on surface roughness for various fused silica and glass samples. The results indicate that surface roughness remains substantial after use of this common cleaning routine, and can provide a surface area that is more than 10% but less than 30% larger than anticipated from geometric considerations of a planar surface.

  7. Dioxygen molecule adsorption and oxygen atom diffusion on clean and defective aluminum(111) surface using first principles calculations

    Science.gov (United States)

    Guiltat, Mathilde; Brut, Marie; Vizzini, Sébastien; Hémeryck, Anne

    2017-03-01

    First principles calculations are conducted to investigate kinetic behavior of oxygen species at the surface of clean and defective Al(111) substrate. Oxygen island, aluminum vacancy, aluminum sub-vacancy, aluminum ad-atom and aluminum terraces defects are addressed. Adsorption of oxygen molecule is first performed on all these systems resulting in dissociated oxygen atoms in main cases. The obtained adsorbed configurations are then picked to study the behavior of atomic oxygen specie and get a detailed understanding on the effect of the local environment on the ability of the oxygen atom to diffuse on the surface. We pointed out that local environment impacts energetics of oxygen atom diffusion. Close packed oxygen island, sub-vacancy and ad-atoms favor oxygen atom stability and decrease mobility of oxygen atom on the surface, to be seen as surface area for further nucleation of oxygen island.

  8. Coal surface control for advanced physical fine coal cleaning technologies: Quarterly report, September 19, 1988--January 31, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B. I.; Chiang, S. -H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Streeter, R.; Gray, R.; Venkatadri, R.; Cheng, Y. S.; Chiarelli, P.

    1989-01-01

    The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration to achieve 90% pyrite sulfur rejection while operating at a Btu recovery greater than 90% based on run-of-mine coal. The surface control is meant to encompass storage, grinding environments and media, surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: project planning, method for analysis of samples, development of standard beneficiation test, grinding studies, modification of particle surface, and exploratory R D and support. Progress in each task of the project is presented in this report. 14 refs., 12 figs., 14 tabs.

  9. R&D Status for In-Situ Plasma Surface Cleaning of SRF Cavities at Spallation Neutron Source

    Energy Technology Data Exchange (ETDEWEB)

    S.-H. Kim, M.T. Crofford, M. Doleans, J.D. Mammosser, J. Saunders

    2011-03-01

    The SNS SCL is reliably operating at 0.93 GeV output energy with an energy reserve of 10MeV with high availability. Most of the cavities exhibit field emission, which directly or indirectly (through heating of end groups) limits the gradients achievable in the high beta cavities in normal operation with the beam. One of the field emission sources would be surface contaminations during surface processing for which mild surface cleaning, if any, will help in reducing field emission. An R&D effort is in progress to develop in-situ surface processing for the cryomodules in the tunnel without disassembly. As the first attempt, in-situ plasma processing has been applied to the CM12 in the SNS SRF facility after the repair work with a promising result. This paper will report the R&D status of plasma processing in the SNS.

  10. Laser cleaning in conservation of stone, metal, and painted artifacts: state of the art and new insights on the use of the Nd:YAG lasers

    Science.gov (United States)

    Siano, S.; Agresti, J.; Cacciari, I.; Ciofini, D.; Mascalchi, M.; Osticioli, I.; Mencaglia, A. A.

    2012-02-01

    In the present work the application of laser cleaning in the conservation of cultural assets is reviewed and some further developments on the interpretation of the associated laser-material interaction regimes are reported. Both the state of the art and new insights mainly focus on systematic approaches addressed to the solution of representative cleaning problems, including stone and metal artifacts along with wall and easel paintings. The innovative part is entirely dedicated to the extension of the application perspective of the Nd:YAG lasers by exploiting the significant versatility provided by their different pulse durations. Besides extensively discussing the specific conservation and physical problems involved in stone and metal cleaning, a significant effort was also made to explore the application potential for wall and easel paintings. The study of the latter was confined to preliminary irradiation tests carried out on prepared samples. We characterized the ablation phenomenology, optical properties, and photomechanical generation associated with the irradiation of optically absorbing varnishes using pulse durations of 10 and 120 ns. Further results concern the nature of the well-known problem of the yellowish appearance in stone cleaning, removal of biological growths and graffiti from stones, cleaning of bronze and iron artifacts and related aspects of laser conversion of unstable minerals, removal of calcareous stratification from wall paintings, and other features.

  11. Surface Complexation Modelling in Metal-Mineral-Bacteria Systems

    Science.gov (United States)

    Johnson, K. J.; Fein, J. B.

    2002-12-01

    The reactive surfaces of bacteria and minerals can determine the fate, transport, and bioavailability of aqueous heavy metal cations. Geochemical models are instrumental in accurately accounting for the partitioning of the metals between mineral surfaces and bacteria cell walls. Previous research has shown that surface complexation modelling (SCM) is accurate in two-component systems (metal:mineral and metal:bacteria); however, the ability of SCMs to account for metal distribution in mixed metal-mineral-bacteria systems has not been tested. In this study, we measure aqueous Cd distributions in water-bacteria-mineral systems, and compare these observations with predicted distributions based on a surface complexation modelling approach. We measured Cd adsorption in 2- and 3-component batch adsorption experiments. In the 2-component experiments, we measured the extent of adsorption of 10 ppm aqueous Cd onto either a bacterial or hydrous ferric oxide sorbent. The metal:bacteria experiments contained 1 g/L (wet wt.) of B. subtilis, and were conducted as a function of pH; the metal:mineral experiments were conducted as a function of both pH and HFO content. Two types of 3-component Cd adsorption experiments were also conducted in which both mineral powder and bacteria were present as sorbents: 1) one in which the HFO was physically but not chemically isolated from the system using sealed dialysis tubing, and 2) others where the HFO, Cd and B. subtilis were all in physical contact. The dialysis tubing approach enabled the direct determination of the concentration of Cd on each sorbing surface, after separation and acidification of each sorbent. The experiments indicate that both bacteria and mineral surfaces can dominate adsorption in the system, depending on pH and bacteria:mineral ratio. The stability constants, determined using the data from the 2-component systems, along with those for other surface and aqueous species in the systems, were used with FITEQL to

  12. Chemical-free cleaning using excimer lasers

    Science.gov (United States)

    Lizotte, Todd E.; O'Keeffe, Terence R.

    1996-04-01

    A critical requirement in many industrial processes is the cleaning of oils and grease, oxides, solvent residues, particles, thin films and other contaminants from surfaces. There is a particularly acute need in the electronics industry for cleaning semiconductor wafers and computer chips and in the metals industry for removing oxides and other contaminants. Cleaning traditionally is done by various wet chemical processes, almost all consuming large amounts of water and producing large amounts of hazardous wastes. To further complicate this, some of these cleaning agents and vast water consumption are undergoing stringent restrictions. The Radiance ProcessSM is a novel, patented Excimer Laser approach to dry surface cleaning. The process has removed particles from 80 microns to submicron sizes, paints, inks, oxides, fingerprints, hazes, parts of molecules and metallic ions in fingerprints. The process does not ablate, melt or damage the underlying surface. Micro-roughening on some Silicon and Gallium Arsenide is on the order of 1A or less. This paper will discuss the various applications with this process and the latest results from a beta wafer cleaning prototype test bed system that is being built under an EPA grant and joint partnership between Radiance Services Company, Neuman Micro Technologies, Inc. and the Microelectronics Research Laboratory.

  13. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation

    Science.gov (United States)

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-11-01

    Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation.Two important properties--the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles--are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and

  14. Advanced surface cleaning methods: three years of experience with high pressure ultrapure water rinsing of superconducting cavaties

    Energy Technology Data Exchange (ETDEWEB)

    Kneisel, P.; Lewis, B.

    1995-01-01

    In the last three years we have carried out a large number of tests ofn single cell and multi-cell niobium and Nb{sub 3}Sn cavities at L- band frequencies, which as a final surface cleaning step had been rinsed with high pressure jets of ultrapure water. This treatment resulted in an unprecedented quality and reproducibility of cavity performance. Field emission free surfaces up to peak surface electric fields of E{sup peak} {ge} 45 MV/m were achieved nearly routinely after buffered chemical polishing of niobium surfaces. In addition, residual surface resistances below R{sub res} {le} 10 n{Omega} and as low as R{sub res} = 2 n{Omega} were not uncommon. In 5-cell production cavities of the Cornell/CEBAF shape gradients as high as E{sub acc} =21.5 MV/m corresponding to peak surface fields of E{sub peak} {approx} 55 MV/m have been measured after post purification with Ti without the need for rf-processing. Several Nb{sub 3}Sn - cavities exhibited no field emission loading after high pressure ultrapure water rinsing up to the maximum achievable surface fields of E{sup peak} {approx} 33 MV/m; the field limits were given by the available rf-power. The unprecedented reproducibility of the cavities permitted serial testing of various parameters affecting cavity performance such as the influence of residual gas inside the cavities prior to cooldown, the removal of the surface damage layer or the impact of peripheral parts such as rf-windows. The major portion of this paper summarizes several of the results obtained from investigations carried out during the last three years. The second part discusses possibilities for further improvements in cavity cleaning.

  15. Effect of several surface treatments on the strength of a glass ceramic-to-metal seal

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, D P; Salerno, R F; Egleston, E E

    1982-02-10

    Test shells of Inconel 625, Inconel 718, 21-6-9 stainless steel, and Hastelloy, C-276 were plasma and/or chemically cleaned before sealing with a multi-component glass-ceramic-to-metal seal was evaluated using a hydrostatic burst test. The results show that plasma cleaning can be used to increase the hydrostatic burst strength and hermeticity of a glass ceramic-to-metal seal.

  16. Isolation and characterization of bacteria resistant to metallic copper surfaces.

    Science.gov (United States)

    Santo, Christophe Espírito; Morais, Paula Vasconcelos; Grass, Gregor

    2010-03-01

    Metallic copper alloys have recently attracted attention as a new antimicrobial weapon for areas where surface hygiene is paramount. Currently it is not understood on a molecular level how metallic copper kills microbes, but previous studies have demonstrated that a wide variety of bacteria, including Escherichia coli, Staphylococcus aureus, and Clostridium difficile, are inactivated within minutes or a few hours of exposure. In this study, we show that bacteria isolated from copper alloy coins comprise strains that are especially resistant against the toxic properties exerted by dry metallic copper surfaces. The most resistant of 294 isolates were Gram-positive staphylococci and micrococci, Kocuria palustris, and Brachybacterium conglomeratum but also included the proteobacterial species Sphingomonas panni and Pseudomonas oleovorans. Cells of some of these bacterial strains survived on copper surfaces for 48 h or more. Remarkably, when these dry-surface-resistant strains were exposed to moist copper surfaces, resistance levels were close to those of control strains and MICs for copper ions were at or below control strain levels. This suggests that mechanisms conferring resistance against dry metallic copper surfaces in these newly isolated bacterial strains are different from well-characterized copper ion detoxification systems. Furthermore, staphylococci on coins did not exhibit increased levels of resistance to antibiotics, arguing against coselection with copper surface resistance traits.

  17. Hydrophobic ZnO-TiO2 Nanocomposite with Photocatalytic Promoting Self-Cleaning Surface

    Directory of Open Access Journals (Sweden)

    Qiang Wei

    2015-01-01

    Full Text Available The hydrophobicity and self-cleaning are the important influence factors on the precision and environment resistance of quartz crystal microbalance (QCM in detecting organic gas molecules. In this paper, ZnO nanorod array is prepared via the in situ method on the QCM coated with Au film via hydrothermal process. ZnO nanorod array film on QCM is modified by β-CD in hydrothermal process and then decorated by TiO2 after being impregnated in P25 suspension. The results show that as-prepared ZnO-TiO2 nanocomposite exhibits excellent hydrophobicity for water molecules and superior self-cleaning property for organic molecules under UV irradiation.

  18. Cleaning of Residues from Equipment Surfaces After Demilitarization of Arsenical-Based Munitions and Fill Materiels

    Science.gov (United States)

    2007-10-01

    distilled) and hydrogen peroxide (topical solution, 3%) used to prepare the peracetic acid solution was purchased from Food Lion (Salisbury, NC, USA...solutions. The cleaning solution recommended by Carus is an aqueous peracetic acid solution prepared by mixing dilute acetic acid with dilute hydrogen...The only two candidates to visibly dissolve any of the manganese dioxide were the peracetic acid solution, and the six concentrations of the HPO2TM

  19. Surface waves on metal-dielectric metamaterials

    DEFF Research Database (Denmark)

    Takayama, Osamu; Shkondin, Evgeniy; Panah, Mohammad Esmail Aryaee;

    2016-01-01

    In this paper we analyze surface electromagnetic waves supported at an interface between an isotropic medium and an effective anisotropic material that can be realized by alternating conductive and dielectric layers with deep subwavelength thicknesses. This configuration can host various types of...

  20. Surface tension of liquid metals and alloys--recent developments.

    Science.gov (United States)

    Egry, I; Ricci, E; Novakovic, R; Ozawa, S

    2010-09-15

    Surface tension measurements are a central task in the study of surfaces and interfaces. For liquid metals, they are complicated by the high temperatures and the consequently high reactivity characterising these melts. In particular, oxidation of the liquid surface in combination with evaporation phenomena requires a stringent control of the experimental conditions, and an appropriate theoretical treatment. Recently, much progress has been made on both sides. In addition to improving the conventional sessile drop technique, new containerless methods have been developed for surface tension measurements. This paper reviews the experimental progress made in the last few years, and the theoretical framework required for modelling and understanding the relevant physico-chemical surface phenomena.

  1. Designing porous metallic glass compact enclosed with surface iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jae Young; Park, Hae Jin; Hong, Sung Hwan; Kim, Jeong Tae; Kim, Young Seok; Park, Jun-Young; Lee, Naesung [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Seo, Yongho [Graphene Research Institute (GRI) & HMC, Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of); Park, Jin Man, E-mail: jinman_park@hotmail.com [Global Technology Center, Samsung Electronics Co., Ltd, 129 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-742 (Korea, Republic of); Kim, Ki Buem, E-mail: kbkim@sejong.ac.kr [Hybrid Materials Center (HMC), Faculty of Nanotechnology and Advanced Materials Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 143-747 (Korea, Republic of)

    2015-06-25

    Highlights: • Porous metallic glass compact was developed using electro-discharge sintering process. • Uniform PMGC can only be achieved when low electrical input energy was applied. • Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. - Abstract: Porous metallic glass compact (PMGC) using electro-discharge sintering (EDS) process of gas atomized Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} metallic glass powder was developed. The formation of uniform PMGC can only be achieved when low electrical input energy was applied. Functional iron-oxides were formed on the surface of PMGCs by hydrothermal technique. This finding suggests that PMGC can be applied in the new area such as catalyst via hydrothermal technique and offer a promising guideline for using the metallic glasses as a potential functional application.

  2. Resonant Excitation of Terahertz Surface Plasmons in Subwavelength Metal Holes

    Directory of Open Access Journals (Sweden)

    Weili Zhang

    2007-01-01

    Full Text Available We present a review of experimental studies of resonant excitation of terahertz surface plasmons in two-dimensional arrays of subwavelength metal holes. Resonant transmission efficiency higher than unity was recently achieved when normalized to the area occupied by the holes. The effects of hole shape, hole dimensions, dielectric function of metals, polarization dependence, and array film thickness on resonant terahertz transmission in metal arrays were investigated by the state-of-the-art terahertz time-domain spectroscopy. In particular, extraordinary terahertz transmission was demonstrated in arrays of subwavelength holes made even from Pb, a generally poor metal, and having thickness of only one-third of skin depth. Terahertz surface plasmons have potential applications in terahertz imaging, biosensing, interconnects, and development of integrated plasmonic components for terahertz generation and detection.

  3. Method for producing functionally graded nanocrystalline layer on metal surface

    Science.gov (United States)

    Ajayi, Oyelayo O.; Hershberger, Jeffrey G.

    2010-03-23

    An improved process for the creation or formation of nanocrystalline layers on substrates' surfaces is provided. The process involves "prescuffing" the surface of a substrate such as a metal by allowing friction to occur on the surface by a load-bearing entity making rubbing contact and moving along and on the substrate's surface. The "prescuffing" action is terminated when the coefficient of friction between the surface and the noise is rising significantly. Often, the significant rise in the coefficient of friction is signaled by a change in pitch of the scuffing action sound emanating from the buffeted surface. The "prescuffing" gives rise to a harder and smoother surface which withstands better any inadequate lubrication that may take place when the "prescuffed" surface is contacted by other surfaces.

  4. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  5. Evaluation of Surface Cleaning Procedures in Terms of Gas Sensing Properties of Spray-Deposited CNT Film: Thermal- and O2 Plasma Treatments

    Directory of Open Access Journals (Sweden)

    Joon Hyub Kim

    2016-12-01

    Full Text Available The effect of cleaning the surface of single-walled carbon nanotube (SWNT networks by thermal and the O2 plasma treatments is presented in terms of NH3 gas sensing characteristics. The goal of this work is to determine the relationship between the physicochemical properties of the cleaned surface (including the chemical composition, crystal structure, hydrophilicity, and impurity content and the sensitivity of the SWNT network films to NH3 gas. The SWNT networks are spray-deposited on pre-patterned Pt electrodes, and are further functionalized by heating on a programmable hot plate or by O2 plasma treatment in a laboratory-prepared plasma chamber. Cyclic voltammetry was employed to semi-quantitatively evaluate each surface state of various plasma-treated SWNT-based electrodes. The results show that O2 plasma treatment can more effectively modify the SWNT network surface than thermal cleaning, and can provide a better conductive network surface due to the larger number of carbonyl/carboxyl groups, enabling a faster electron transfer rate, even though both the thermal cleaning and the O2 plasma cleaning methods can eliminate the organic solvent residues from the network surface. The NH3 sensors based on the O2 plasma-treated SWNT network exhibit higher sensitivity, shorter response time, and better recovery of the initial resistance than those prepared employing the thermally-cleaned SWNT networks.

  6. 77 FR 5813 - Cardiovascular Metallic Implants: Corrosion, Surface Characterization, and Nickel Leaching...

    Science.gov (United States)

    2012-02-06

    ... HUMAN SERVICES Food and Drug Administration Cardiovascular Metallic Implants: Corrosion, Surface... public workshop entitled ``Cardiovascular Metallic Implants: Corrosion, Surface Characterization, and... implants are made of metals and may be susceptible to corrosion, it is unclear whether the...

  7. Surface phonons on Al(111) surface covered by alkali metals

    Science.gov (United States)

    Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Sklyadneva, I. Yu.; Chulkov, E. V.

    2005-06-01

    We investigated the vibrational and structural properties of the Al(111)-(3×3)R30°-AM (AM=Na,K,Li) adsorbed systems using interaction potentials from the embedded-atom method. The surface relaxation, surface phonon dispersion, and polarization of vibrational modes for the alkali adatoms and the substrate atoms as well as the local density of states are discussed. Our calculated structural parameters are in close agreement with experimental and ab initio results. The obtained vibrational frequencies compare fairly well with the available experimental data.

  8. Trends in Metal Oxide Stability for Nanorods, Nanotubes, and Surfaces

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; Vallejo, Federico Calle;

    2011-01-01

    The formation energies of nanostructures play an important role in determining their properties, including their catalytic activity. For the case of 15 different rutile and 8 different perovskite metal oxides, we used density functional theory (DFT) to calculate the formation energies of (2......,2) nanorods, (3,3) nanotubes, and the (110) and (100) surfaces. These formation energies can be described semiquantitatively (mean absolute error ≈ 0.12 eV) by the fraction of metal−oxygen bonds broken and the metal d-band and p-band centers in the bulk metal oxide....

  9. Enrichment of metals in the surface sediments of Sapanca Lake

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, G.; Balkas, T.I.

    1999-01-01

    A comprehensive lake sediment study was performed on the Sapanca Lake of Turkey in which certain metal analyses were conducted using inductively coupled plasma atomic emission spectroscopy. The purpose of the study was to find the enrichment of metals in the surface sediments of Sapanca Lake. A method, namely, the index of geoaccumulation, was used to define the degree of anthropogenic pollution in the Sapanca Lake basin. Results of the geoaccumulation index indicate that only enrichments of trace metals, cadmium, and lead are found.

  10. COORDINATION POLYMERIZATION OF BENZOTRIAZOLE ON THE SURFACE OF METALLIC COPPER

    Institute of Scientific and Technical Information of China (English)

    XUE Gi; DAI Qinpin; DING Jianfu; WU Peiyi

    1989-01-01

    The coordination polymerization of benzotriazole with metallic copper has been investigated by infrared and X-ray photoelectron spectroscopies. We found that benzotriazole could react with copper (0) under mild conditions to form bis ( benzotriazolato ) copper (Ⅱ) and benzotriazolato copper(Ⅰ)which covered the surface of copper metal in the shape of polymeric materials. Since benzotriazole is of great interest as a ligand in that its presence in many biological system with metal ions ,and is considered as a corrosion inhibitor, this work will be in favour of the study of protective corrosion.

  11. Oxygen accumulation on metal surfaces investigated by XPS, AES and LEIS, an issue for sputter depth profiling under UHV conditions

    Science.gov (United States)

    Steinberger, R.; Celedón, C. E.; Bruckner, B.; Roth, D.; Duchoslav, J.; Arndt, M.; Kürnsteiner, P.; Steck, T.; Faderl, J.; Riener, C. K.; Angeli, G.; Bauer, P.; Stifter, D.

    2017-07-01

    Depth profiling using surface sensitive analysis methods in combination with sputter ion etching is a common procedure for thorough material investigations, where clean surfaces free of any contamination are essential. Hence, surface analytic studies are mostly performed under ultra-high vacuum (UHV) conditions, but the cleanness of such UHV environments is usually overrated. Consequently, the current study highlights the in principle known impact of the residual gas on metal surfaces (Fe, Mg, Al, Cr and Zn) for various surface analytics methods, like X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and low-energy ion scattering (LEIS). The investigations with modern, state-of-the-art equipment showed different behaviors for the metal surfaces in UHV during acquisition: (i) no impact for Zn, even after long time, (ii) solely adsorption of oxygen for Fe, slight and slow changes for Cr and (iii) adsorption accompanied by oxide formation for Al and Mg. The efficiency of different counter measures was tested and the acquired knowledge was finally used for ZnMgAl coated steel to obtain accurate depth profiles, which exhibited before serious artifacts when data acquisition was performed in an inconsiderate way.

  12. Superconductivity of metal-induced surface reconstructions on silicon

    Science.gov (United States)

    Uchihashi, Takashi

    2016-11-01

    Recent progress in superconducting metal-induced surface reconstructions on silicon is reviewed, mainly focusing on the results of the author’s group. After a brief introduction of an ultrahigh-vacuum (UHV)-low-temperature (LT)-compatible electron transport measurement system, direct observation of the zero resistance state for the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface is described, which demonstrates the existence of a superconducting transition in this class of two-dimensional (2D) materials. The measurement and analysis of the temperature dependence of the critical current density indicate that a surface atomic step works as a Josephson junction. This identification is further confirmed by LT-scanning tunneling microscopy (STM) observation of Josephson vortices trapped at atomic steps on the Si(111)-(\\sqrt{7} × \\sqrt{3} )-In surface. These experiments reveal unique features of metal-induced surface reconstructions on silicon that may be utilized to explore novel superconductivity.

  13. Diffusion and surface alloying of gradient nanostructured metals

    Directory of Open Access Journals (Sweden)

    Zhenbo Wang

    2017-03-01

    Full Text Available Gradient nanostructures (GNSs have been optimized in recent years for desired performance. The diffusion behavior in GNS metals is crucial for understanding the diffusion mechanism and relative characteristics of different interfaces that provide fundamental understanding for advancing the traditional surface alloying processes. In this paper, atomic diffusion, reactive diffusion, and surface alloying processes are reviewed for various metals with a preformed GNS surface layer. We emphasize the promoted atomic diffusion and reactive diffusion in the GNS surface layer that are related to a higher interfacial energy state with respect to those in relaxed coarse-grained samples. Accordingly, different surface alloying processes, such as nitriding and chromizing, have been modified significantly, and some diffusion-related properties have been enhanced. Finally, the perspectives on current research in this field are discussed.

  14. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An, E-mail: lian2010@lut.cn

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  15. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    Science.gov (United States)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  16. Knocking on surfaces : interactions of hyperthermal particles with metal surfaces

    NARCIS (Netherlands)

    Ueta, Hirokazu

    2010-01-01

    The study of gas-surface interaction dynamics is important both for the fundamental knowledge it provides and also to aid the development of applications involving processes such as sputtering, plasma etching and heterogeneous catalysis. Elementary steps in the interactions, such as chemical reactio

  17. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass.

    Science.gov (United States)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-04-21

    Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2˙(-)) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.

  18. Comparative assessment of the effectiveness of different cleaning methods on the growth of Candida albicans over acrylic surface

    Science.gov (United States)

    Gantait, Subhajit; Bhattacharyya, Jayanta; Das, Samiran; Biswas, Shibendu; Ghati, Amit; Ghosh, Soumitra; Goel, Preeti

    2016-01-01

    Context: This study evaluated the efficacy of denture adhesive, cleanser, chlorhexidine, and brushing against Candida albicans biofilm developed on an acrylic surface and predicted the most effective, simple, and inexpensive way to maintain denture health, thereby preventing denture stomatitis. Aims: To find the best possible method for maintaining denture hygiene. Settings and Design: This retrospective analysis was conducted in the Guru Nanak Institute of Dental Sciences and Research, Kolkata, and this in vitro study was designed to minimize denture stomatitis among denture wearing population. Subjects and Methods: Sixty acrylic discs of equal dimensions after exposure to C. albicans were treated for a duration of 24 h with denture adhesive, cleanser, 0.2% chlorhexidine individually, or in combinations simulating clinical conditions dividing in six groups, ten samples each (n = 10). Statistical Analysis Used: After treatment, colony count was evaluated and statistically analyzed by post hoc Tukey's test and Dunnett's test to determine the most effective way of prevention. Results: The statistical post hoc analysis (Tukey's test and Dunnett's test) showed high significance (P Denture adhesive increases the adherence of C. albicans to denture surface. Other cleaning chemicals such as cleanser and chlorhexidine decrease the adherence. Moreover, among the all denture cleaning protocol, chlorhexidine drastically inhibit the adherence, as well as growth of C. albicans over denture surface. PMID:27630498

  19. Metallic nanostructure formation limited by the surface hydrogen on silicon.

    Science.gov (United States)

    Perrine, Kathryn A; Teplyakov, Andrew V

    2010-08-03

    Constant miniaturization of electronic devices and interfaces needed to make them functional requires an understanding of the initial stages of metal growth at the molecular level. The use of metal-organic precursors for metal deposition allows for some control of the deposition process, but the ligands of these precursor molecules often pose substantial contamination problems. One of the ways to alleviate the contamination problem with common copper deposition precursors, such as copper(I) (hexafluoroacetylacetonato) vinyltrimethylsilane, Cu(hfac)VTMS, is a gas-phase reduction with molecular hydrogen. Here we present an alternative method to copper film and nanostructure growth using the well-defined silicon surface. Nearly ideal hydrogen termination of silicon single-crystalline substrates achievable by modern surface modification methods provides a limited supply of a reducing agent at the surface during the initial stages of metal deposition. Spectroscopic evidence shows that the Cu(hfac) fragment is present upon room-temperature adsorption and reacts with H-terminated Si(100) and Si(111) surfaces to deposit metallic copper. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) are used to follow the initial stages of copper nucleation and the formation of copper nanoparticles, and X-ray energy dispersive spectroscopy (XEDS) confirms the presence of hfac fragments on the surfaces of nanoparticles. As the surface hydrogen is consumed, copper nanoparticles are formed; however, this growth stops as the accessible hydrogen is reacted away at room temperature. This reaction sets a reference for using other solid substrates that can act as reducing agents in nanoparticle growth and metal deposition.

  20. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal

    Science.gov (United States)

    Dong, Zhihui; Zhang, Feng; Wang, Dong; Liu, Xia; Jin, Jian

    2015-04-01

    By utilizing polydopamine (PD) nano-thick interlayer as mediator, polyethylenimine (PEI) brushes with abundant amine groups were grafted onto the surface of PD coated graphene oxide (GO) uniformly via a Michael-Addition reaction and produced a PEI-PD/GO composite nanosheets. The PEI-PD/GO composite exhibited an improved performance for adsorption of heavy metal ions as compared to PEI-coated GO and pure GO. The adsorption capacities for Cu2+, Cd2+, Pb2+, Hg2+ are up to 87, 106, 197, and 110 mg/g, respectively. To further make the GO based composite operable, PEI-PD/RGO aerogel was prepared through hydrothermal and achieved a high surface area up to 373 m2/g. Although the adsorption capacity of PEI-PD/RGO aerogel for heavy metal ions decreases a little as compared to PEI-PD/GO composite dispersion (38, 32, 95, 113 mg/g corresponding to Cu2+, Cd2+, Pb2+, and Hg2+, respectively), it could be recycled several times in a simple way by releasing adsorbed metal ions, indicating its potential application for cleaning wastewater.

  1. Heavy metal contamination, sources, and pollution assessment of surface water in the Tianshan Mountains of China.

    Science.gov (United States)

    Zhaoyong, Zhang; Abuduwaili, Jilili; Fengqing, Jiang

    2015-02-01

    In order to gain insight into heavy metal contamination occurring in the surface water of the Tianshan Mountains in northwest China, we collected surface water samples from there, tested heavy metals Pb, Ni, Cd, Co, Hg, As, Cu, Mn, Zn, and Cr, and then we analyzed the data using typical analysis, multivariate statistical, and pollution index methods. Results showed that (1) the order of the average values of the ten kinds of heavy metals in all the water samples was as follows: Zn > Mn > Cu > Co > Ni > Pb > Cr > As > Hg > Cd. The maximum variation coefficients of Zn and Pb were 138.96 and 145.86 %, respectively, indicating that these heavy metal concentrations varied largely between different sampling locations. (2) Research showed the average concentrations of Pb, Cd, As, Cu, Zn, and Cr were all within the national surface water standard of class IV and those of As, Cu, Mn, and Cr were all within the range of the Drinking Water Guidelines from the WHO, indicating the surface water of the Tianshan Mountains is clean. (3) Multivariate statistical analysis showed that Cu, Cd, Mn, Hg, Zn, and Pb have close correlations, and they mainly came from artificial sources; while Ni, As, Co, Cu, and Cr mainly came from natural sources. The results of correlation analysis, principal component analysis, and cluster analysis are consistent. (4) Pollution evaluation showed the values of comprehensive pollution index (WQI) of ten kinds of heavy metals in three sections were all lower than 2, suggesting the low levels of pollution, while the over-limit ratios of Pb and Zn in water samples of the middle Urumqi-Akesu section, As in the western Zhaosu-Tekesi section, and Pb, Hg, and Zn in the eastern Balikun-Yiwu section were all above 10 %. This research shows that recent economic development of the Tianshan Mountains has negatively influenced the heavy metal concentrations in the surface water, although the concentrations of the ten kinds of tested

  2. Surface Analysis of Metal Materials After Water Jet Abrasive Machining

    Directory of Open Access Journals (Sweden)

    Pavel Polák

    2015-01-01

    Full Text Available In this article, we deal with a progressive production technology using the water jet cutting technology with the addition of abrasives for material removal. This technology is widely used in cutting various shapes, but also for the technology of machining such as turning, milling, drilling and cutting of threads. The aim of this article was to analyse the surface of selected types of metallic materials after abrasive machining, i.e. by assessing the impact of selected machining parameters on the surface roughness of metallic materials.

  3. Plasmonic properties of metal nanoislands: surface integral equations approach

    Science.gov (United States)

    Scherbak, S. A.; Lipovskii, A. A.

    2016-08-01

    The surface integral equations method is used to analyse the surface plasmon resonance position in a metal island film formed by non-interacting axisymmetrical prolate/oblate hemispheroids placed on a dielectric substrate. The approach is verified via the comparison of results obtained for a hemisphere on a substrate with the ones obtained using the multipole expansion method. The preference of the integral equations method is in obtaining a simple final analytical expression for a particle polarizability in which any dielectric function of a metal can be substituted. Such simple formulae for the hemispherical particle on the substrate and calculated dependences of the hemispheroid resonant wavelength on its aspect ratio are presented.

  4. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    Energy Technology Data Exchange (ETDEWEB)

    Davids, P. S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Intravia, F [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dalvit, Diego A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  5. DFT study of the formate formation on Ni(111) surface doped by transition metals [Ni(111)-M; M=Cu, Pd, Pt, Rh

    Science.gov (United States)

    Nugraha; Saputro, A. G.; Agusta, M. K.; Rusydi, F.; Maezono, R.; Dipojono, H. K.

    2016-08-01

    We report on a theoretical study of the formation of formate (HCOO) from the reaction of CO2 gas and a pre- adsorbed H atom (CO2 (g) + *H → *HCOO) on Ni(111) surface doped by transition-metals [Ni(111)-M; M= Cu, Pd, Pt, Rh] by means of density functional theory (DFT) calculations. This *HCOO formation reaction is one of the most important rate- limiting steps in the methanol synthesis process. We find that the presence of transition metal doping on the first-layer of Ni(111) surface could reduce the activation barrier of this reaction [up to ~38.4%, compared to clean Ni(111) surface].

  6. Tolerance to metals and assessment of energy reserves in the polychaete Nereis diversicolor in clean and contaminated estuaries.

    Science.gov (United States)

    Durou, C; Mouneyrac, C; Amiard-Triquet, C

    2005-02-01

    Estuaries are subject to anthropogenic activities. Because the intrasedimentary worm Nereis diversicolor has ecological characteristics and bioindicator abilities, its use was pertinent in investigating the concepts and cost of tolerance to heavy metals (Cd, Cu, Zn). In this context, two approaches were carried out, performing toxicity tests and estimating energy reserves (glycogen and lipids), in populations originating from a contaminated site (Seine estuary) compared with those from a clean site (Authie estuary). Mean lethal times (LT(50)s) of organisms exposed to zinc from the Seine estuary were higher than those from the Authie estuary, but not of organisms exposed to Cd or Cu. The influence of animal weight and salinity on the sensitivity of worms also was studied. The biggest worms were more tolerant to zinc than the smallest ones, and worms survived longer at a reduced salinity (15 per thousand). Concentrations of glycogen and lipids in each sampling season were higher in specimens from the Authie estuary than in worms from the Seine estuary. No influence of salinity on glycogen and lipid levels was observed. Glycogen concentrations were not influenced by the weight of specimens, whereas lipid concentrations were significantly and positively correlated with weight. In conclusion, worms from the Seine estuary exhibited tolerance to Zn, and the depletion of energy reserves observed in this population could be interpreted as a cost of tolerance. (c) 2005 Wiley Periodicals, Inc.

  7. Functional levels of floor surface roughness for the prevention of slips and falls: clean-and-dry and soapsuds-covered wet surfaces.

    Science.gov (United States)

    Kim, In-Ju; Hsiao, Hongwei; Simeonov, Peter

    2013-01-01

    Literature has shown a general trend that slip resistance performance improves with floor surface roughness. However, whether slip resistance properties are linearly correlated with surface topographies of the floors or what roughness levels are required for effective slip resistance performance still remain to be answered. This pilot study aimed to investigate slip resistance properties and identify functional levels of floor surface roughness for practical design applications in reducing the risk of slip and fall incidents. A theory model was proposed to characterize functional levels of surface roughness of floor surfaces by introducing a new concept of three distinctive zones. A series of dynamic friction tests were conducted using 3 shoes and 9 floor specimens under clean-and-dry as well as soapsuds-covered slippery wet environments. The results showed that all the tested floor-shoe combinations provided sufficient slip resistances performance under the clean-and-dry condition. A significant effect of floor type (surface roughness) on dynamic friction coefficient (DFC) was found in the soapsuds-covered wet condition. As compared to the surface roughness effects, the shoe-type effects were relatively small. Under the soapsuds-covered wet condition, floors with 50 μm in Ra roughness scale seemed to represent an upper bound in the functional range of floor surface roughness for slip resistance because further increase of surface roughness provided no additional benefit. A lower bound of the functional range for slip resistance under the soapsuds-covered wet condition was estimated from the requirement of DFC > 0.4 at Ra ≅ 17 μm. Findings from this study may have potential safety implications in the floor surface design for reducing slip and fall hazards.

  8. Bacterial adhesion to glass and metal-oxide surfaces.

    Science.gov (United States)

    Li, Baikun; Logan, Bruce E

    2004-07-15

    Metal oxides can increase the adhesion of negatively-charged bacteria to surfaces primarily due to their positive charge. However, the hydrophobicity of a metal-oxide surface can also increase adhesion of bacteria. In order to understand the relative contribution of charge and hydrophobicity to bacterial adhesion, we measured the adhesion of 8 strains of bacteria, under conditions of low and high-ionic strength (1 and 100 mM, respectively) to 11 different surfaces and examined adhesion as a function of charge, hydrophobicity (water contact angle) and surface energy. Inorganic surfaces included three uncoated glass surfaces and eight metal-oxide thin films prepared on the upper (non-tin-exposed) side of float glass by chemical vapor deposition. The Gram-negative bacteria differed in lengths of lipopolysaccharides on their outer surface (three Escherichia coli strains), the amounts of exopolysaccharides (two Pseudomonas aeruginosa strains), and their known relative adhesion to sand grains (two Burkholderia cepacia strains). One Gram positive bacterium was also used that had a lower adhesion to glass than these other bacteria (Bacillus subtilis). For all eight bacteria, there was a consistent increase in adhesion between with the type of inorganic surface in the order: float glass exposed to tin (coded here as Si-Sn), glass microscope slide (Si-m), uncoated air-side float glass surface (Si-a), followed by thin films of (Co(1-y-z)Fe(y)Cr(z))3O4, Ti/Fe/O, TiO2, SnO2, SnO2:F, SnO2:Sb, A1(2)O3, and Fe2O3 (the colon indicates metal doping, a slash indicates that the metal is a major component, while the dash is used to distinguish surfaces). Increasing the ionic strength from 1 to 100 mM increased adhesion by a factor of 2.0 +/- 0.6 (73% of the sample results were within the 95% CI) showing electrostatic charge was important in adhesion. However, adhesion was not significantly correlated with bacterial charge and contact angle. Adhesion (A) of the eight strains was

  9. Giant and switchable surface activity of liquid metal via surface oxidation

    OpenAIRE

    Khan, Mohammad Rashed; Eaker, Collin B.; Bowden, Edmond F.; Dickey, Michael D.

    2014-01-01

    We present a method to control the interfacial energy of a liquid metal via electrochemical deposition (or removal) of an oxide layer on its surface. Unlike conventional surfactants, this approach can tune the interfacial tension of a metal significantly (from ∼7× that of water to near zero), rapidly, and reversibly using only modest voltages. These properties can be harnessed to induce previously unidentified electrohydrodynamic phenomena for manipulating liquid metal alloys based on gallium...

  10. 几种表面活性剂清洗金属表面油污能力的比较%A Comparative Study on the Metal Cleaning Performance of Several Surfactants

    Institute of Scientific and Technical Information of China (English)

    霍月青; 牛金平

    2016-01-01

    选取不同表面活性剂清洗金属表面油污,从中选出了一种高效表面活性剂CY-2;将CY-2与不同阴、非离子表面活性剂进行复配,筛选出一种高效、廉价金属清洗用复配表面活性剂CR-4。通过比较界面张力和清洗效果发现,低界面张力表面活性剂不适于清洗与金属表面接触的油污,但可有效去除与金属表面未接触的油污。%Metal cleaning performance of several surfactants was studied at room temperature. The results show that CY-2 is an efficient cleaner for Gudong crude oil. CR-4, a blend of CY-2, anionic and non-ionic surfactants, could efficiently remove oil from the metal surface. The interfacial tension was measured. It was found that surfactants with low interfacial tension are not suitble for the desorption of oil adsorbed on the metal surface, but can remove the oil not in contact with the metal surface directly.

  11. Modulation of human osteoblasts by metal surface chemistry.

    Science.gov (United States)

    Hofstetter, Wilhelm; Sehr, Harald; de Wild, Michael; Portenier, Jeannette; Gobrecht, Jens; Hunziker, Ernst B

    2013-08-01

    The use of metal implants in dental and orthopedic surgery is continuously expanding and highly successful. While today longevity and load-bearing capacity of the implants fulfill the expectations of the patients, acceleration of osseointegration would be of particular benefit to shorten the period of convalescence. To further clarify the options to accelerate the kinetics of osseointegration, within this study, the osteogenic properties of structurally identical surfaces with different metal coatings were investigated. To assess the development and function of primary human osteoblasts on metal surfaces, cell viability, differentiation, and gene expression were determined. Titanium surfaces were used as positive, and surfaces coated with gold were used as negative controls. Little differences in the cellular parameters tested for were found when the cells were grown on titanium discs sputter coated with titanium, zirconium, niobium, tantalum, gold, and chromium. Cell number, activity of cell layer-associated alkaline phosphatase (ALP), and levels of transcripts encoding COL1A1 and BGLAP did not vary significantly in dependence of the surface chemistry. Treatment of the cell cultures with 1,25(OH)2 D3 /Dex, however, significantly increased ALP activity and BGLAP messenger RNA levels. The data demonstrate that the metal layer coated onto the titanium discs exerted little modulatory effects on cell behavior. It is suggested that the microenvironment regulated by the peri-implant tissues is more effective in regulating the tissue response than is the material of the implant itself.

  12. Formation, Removal, and Reformation of Surface Coatings on Various Metal Oxide Surfaces Inspired by Mussel Adhesives.

    Science.gov (United States)

    Kang, Taegon; Oh, Dongyeop X; Heo, Jinhwa; Lee, Han-Koo; Choy, Seunghwan; Hawker, Craig J; Hwang, Dong Soo

    2015-11-11

    Mussels survive by strongly attaching to a variety of different surfaces, primarily subsurface rocks composed of metal oxides, through the formation of coordinative interactions driven by protein-based catechol repeating units contained within their adhesive secretions. From a chemistry perspective, catechols are known to form strong and reversible complexes with metal ions or metal oxides, with the binding affinity being dependent on the nature of the metal ion. As a result, catechol binding with metal oxides is reversible and can be broken in the presence of a free metal ion with a higher stability constant. It is proposed to exploit this competitive exchange in the design of a new strategy for the formation, removal, and reformation of surface coatings and self-assembled monolayers (SAM) based on catechols as the adhesive unit. In this study, catechol-functionalized tri(ethylene oxide) (TEO) was synthesized as a removable and recoverable self-assembled monolayer (SAM) for use on oxides surfaces. Attachment and detachment of these catechol derivatives on a variety of surfaces was shown to be reversible and controllable by exploiting the high stability constant of catechol to soluble metal ions, such as Fe(III). This tunable assembly based on catechol binding to metal oxides represents a new concept for reformable coatings with applications in fields ranging from friction/wettability control to biomolecular sensing and antifouling.

  13. Cohesion and coordination effects on transition metal surface energies

    Science.gov (United States)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  14. 具有清洗防锈润滑功能的金属保养液的研制%Preparation of metal maintenance with anti-rust lubricant and cleaning function

    Institute of Scientific and Technical Information of China (English)

    袁艳鑫; 宋伟明

    2011-01-01

    Metal maintenance with anti-rust,lubricant and cleaning function was preparated by orthogonal experiments.The metal maintenance was composition of surface-active agents,dispersants,rust inhibitors,lubricants,emulsifiers and other raw material forming the microemulsion.The metal maintenance have the multiple functions with a stable,high decontamination,outstanding anti-wear anti-friction,corrosion,rust resistance,non-toxic,harmless and so on.Cleaning,rust,lubrication and other multiple effects are simultaneously complete.The maintenance will facilitate particularly to rapid response,suitable for field equipment maintenance.%通过正交实验研制了一种新型的具有清洗防锈润滑功能的金属保养液。该保养液是由表面活性剂、分散剂、防锈剂、润滑剂、乳化剂等原料组成的微乳液,具有稳定、去污率高、抗磨减摩突出、防腐防锈性强等特点,而且无毒、无害,一次性完成清洗、防锈、润滑等多重功效,特别是便于快速反应,适合于野外装备的保养。

  15. Fast Surface Dynamics of Metallic Glass Enable Superlatticelike Nanostructure Growth

    Science.gov (United States)

    Chen, L.; Cao, C. R.; Shi, J. A.; Lu, Z.; Sun, Y. T.; Luo, P.; Gu, L.; Bai, H. Y.; Pan, M. X.; Wang, W. H.

    2017-01-01

    Contrary to the formation of complicated polycrystals induced by general crystallization, a modulated superlatticelike nanostructure, which grows layer by layer from the surface to the interior of a Pd40Ni10Cu30P20 metallic glass, is observed via isothermal annealing below the glass transition temperature. The generation of the modulated nanostructure can be solely controlled by the annealing temperature, and it can be understood based on the fast dynamic and liquidlike behavior of the glass surface. The observations have implications for understanding the glassy surface dynamics and pave a way for the controllable fabrication of a unique and sophisticated nanostructure on a glass surface to realize the properties' modification.

  16. Laser surface treatment of amorphous metals

    Science.gov (United States)

    Katakam, Shravana K.

    Amorphous materials are used as soft magnetic materials and also as surface coatings to improve the surface properties. Furthermore, the nanocrystalline materials derived from their amorphous precursors show superior soft magnetic properties than amorphous counter parts for transformer core applications. In the present work, laser based processing of amorphous materials will be presented. Conventionally, the nanocrystalline materials are synthesized by furnace heat treatment of amorphous precursors. Fe-based amorphous/nanocrystalline materials due to their low cost and superior magnetic properties are the most widely used soft magnetic materials. However, achieving nanocrystalline microstructure in Fe-Si-B ternary system becomes very difficult owing its rapid growth rate at higher temperatures and sluggish diffusion at low temperature annealing. Hence, nanocrystallization in this system is achieved by using alloying additions (Cu and Nb) in the ternary Fe-Si-B system. Thus, increasing the cost and also resulting in reduction of saturation magnetization. laser processing technique is used to achieve extremely fine nanocrystalline microstructure in Fe-Si-B amorphous precursor. Microstructure-magnetic Property-laser processing co-relationship has been established for Fe-Si-B ternary system using analytical techniques. Laser processing improved the magnetic properties with significant increase in saturation magnetization and near zero coercivity values. Amorphous materials exhibit excellent corrosion resistance by virtue of their atomic structure. Fe-based amorphous materials are economical and due to their ease of processing are of potential interest to synthesize as coatings materials for wear and corrosion resistance applications. Fe-Cr-Mo-Y-C-B amorphous system was used to develop thick coatings on 4130 Steel substrate and the corrosion resistance of the amorphous coatings was improved. It is also shown that the mode of corrosion depends on the laser processing

  17. Efficacy of Chicken Litter and Wood Biochars and Their Activated Counterparts in Heavy Metal Clean up from Wastewater

    Directory of Open Access Journals (Sweden)

    Isabel M. Lima

    2015-09-01

    Full Text Available It is known that properties of activated biochars are tightly associated with those of the original feedstock as well as pyrolysis and activation conditions. This study examined two feedstock types, pine wood shavings and chicken litter, to produce biochars at two different pyrolysis temperatures and subsequently activated by steam, acid or base. In order to measure activation efficiency, all materials were characterized for their properties and ability to remediate two well-known heavy metals of concern: copper and arsenic. Base activated biochars were superior in arsenic adsorption, to acid or steam activated samples, but increase in adsorption was not significant to warrant use. For wood biochars, significant increases of surface functionality as related to oxygen bearing groups and surface charge were observed upon acid activation which led to increased copper ion adsorption. However, oxygen bearing functionalities were not sufficient to explain why chicken litter biochars and steam activated biochars appeared to be significantly superior to wood shavings in positively charged metal ion adsorption. For chicken litter, functionality of respective biochars could be related to phosphate containing groups inherited from feedstock composition, favorably positioning this feedstock in metal ion remediation applications.

  18. A gecko skin micro/nano structure - A low adhesion, superhydrophobic, anti-wetting, self-cleaning, biocompatible, antibacterial surface.

    Science.gov (United States)

    Watson, Gregory S; Green, David W; Schwarzkopf, Lin; Li, Xin; Cribb, Bronwen W; Myhra, Sverre; Watson, Jolanta A

    2015-07-01

    Geckos, and specifically their feet, have attracted significant attention in recent times with the focus centred around their remarkable adhesional properties. Little attention however has been dedicated to the other remaining regions of the lizard body. In this paper we present preliminary investigations into a number of notable interfacial properties of the gecko skin focusing on solid and aqueous interactions. We show that the skin of the box-patterned gecko (Lucasium sp.) consists of dome shaped scales arranged in a hexagonal patterning. The scales comprise of spinules (hairs), from several hundred nanometres to several microns in length, with a sub-micron spacing and a small radius of curvature typically from 10 to 20 nm. This micro and nano structure of the skin exhibited ultralow adhesion with contaminating particles. The topography also provides a superhydrophobic, anti-wetting barrier which can self clean by the action of low velocity rolling or impacting droplets of various size ranges from microns to several millimetres. Water droplets which are sufficiently small (10-100 μm) can easily access valleys between the scales for efficient self-cleaning and due to their dimensions can self-propel off the surface enhancing their mobility and cleaning effect. In addition, we demonstrate that the gecko skin has an antibacterial action where Gram-negative bacteria (Porphyromonas gingivalis) are killed when exposed to the surface however eukaryotic cell compatibility (with human stem cells) is demonstrated. The multifunctional features of the gecko skin provide a potential natural template for man-made applications where specific control of liquid, solid and biological contacts is required.

  19. A general strategy for the ultrafast surface modification of metals

    Science.gov (United States)

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-01

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  20. Investigation of surface acoustic waves in laser shock peened metals

    Institute of Scientific and Technical Information of China (English)

    Ling Yuan; Gang Yan; Zhonghua Shen; Hangwei Xu; Xiaowu Ni; Jian Lu

    2008-01-01

    Laser shock peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stress. The surface acoustic waves (SAWs) are dispersive when the near-surface properties of materials are changed. So the near-surface properties (such as the thickness of hardened layers, elastic properties, residual stresses, etc.) can be analyzed by the phase velocity dispersion. To study the propagation of SAWs in metal samples after peening, a more reasonable experimental method of broadband excitation and reception is introduced. The ultrasonic signals are excited by laser and received by polyvinylindene fluoride (PVDF) transducer. The SAW signals in aluminum alloy materials with different impact times by laser shock peening are detected. Signal spectrum and phase velocity dispersion curves of SAWs are analyzed. Moreover, reasons for dispersion are discussed.

  1. A general strategy for the ultrafast surface modification of metals.

    Science.gov (United States)

    Shen, Mingli; Zhu, Shenglong; Wang, Fuhui

    2016-12-07

    Surface modification is an essential step in engineering materials that can withstand the increasingly aggressive environments encountered in various modern energy-conversion systems and chemical processing industries. However, most traditional technologies exhibit disadvantages such as slow diffusion kinetics, processing difficulties or compatibility issues. Here, we present a general strategy for the ultrafast surface modification of metals inspired by electromigration, using aluminizing austenitic stainless steel as an example. Our strategy facilitates the rapid formation of a favourable ductile surface layer composed of FeCrAl or β-FeAl within only 10 min compared with several hours in conventional processes. This result indicates that electromigration can be used to achieve the ultrafast surface modification of metals and can overcome the limitations of traditional technologies. This strategy could be used to aluminize ultra-supercritical steam tubing to withstand aggressive oxidizing environments.

  2. A highly efficient surface plasmon polaritons excitation achieved with a metal-coupled metal-insulator-metal waveguide

    Directory of Open Access Journals (Sweden)

    Hongyan Yang

    2014-12-01

    Full Text Available We propose a novel metal-coupled metal-insulator-metal (MC-MIM waveguide which can achieve a highly efficient surface plasmon polaritons (SPPs excitation. The MC-MIM waveguide is formed by inserting a thin metal film in the insulator of an MIM. The introduction of the metal film, functioning as an SPPs coupler, provides a space for the interaction between SPPs and a confined electromagnetic field of the intermediate metal surface, which makes energy change and phase transfer in the metal-dielectric interface, due to the joint action of incomplete electrostatic shielding effect and SPPs coupling. Impacts of the metal film with different materials and various thickness on SPPs excitation are investigated. It is shown that the highest efficient SPPs excitation is obtained when the gold film thickness is 60 nm. The effect of refractive index of upper and lower symmetric dielectric layer on SPPs excitation is also discussed. The result shows that the decay value of refractive index is 0.3. Our results indicate that this proposed MC-MIM waveguide may offer great potential in designing a new SPPs source.

  3. The Impact of Road Maintenance Substances on Metals Surface Corrosion

    Directory of Open Access Journals (Sweden)

    Jolita Petkuvienė

    2011-04-01

    Full Text Available The purpose of research is to assess changes in the visual metal surface due to the exposure of road maintenance salts and molasses (‘Safecote’. Chlorides of deicing salts (NaCl, CaCl2 are the main agents affecting soil and water resources as well as causing the corrosion of roadside metallic elements. Molasses (‘Safecote’ is offered as an alternative to deice road pavement by minimizing the corrosion of metal elements near the road. A laboratory experiment was carried out to immerse and spray metals with NaCl, CaCl2, NaCl:CaCl2 and NaCl:Safecote solutions. The obtained results showed that NaCl:Safecote solution had the lowest coating with corrosion products (the average 17±4 % of the surface. The solutions of NaCl, CaCl2 and NaCl:CaCl2 had the highest percentage rate of the corrosion product on the metal surface reaching an average of 33±5 %. Article in English

  4. Surface Modification of α-Fe Metal Particles by Chemical Surface Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The structure of α-Fe metal magnetic recording particles coated with silane coupling agents have been studied by TEM, FT-IR, EXAFS, Mossbauer. The results show that a close, uniform, firm and ultra thin layer, which is beneficial to the magnetic and chemical stability, has been formed by the cross-linked chemical bond Si-O-Si. And the organic molecule has chemically bonded to the particle surface, which has greatly affected the surface Fe atom electronic structure. Furthermore, the covalent bond between metal particle surface and organic molecule has obvious effect on the near edge structure of the surface Fe atoms.

  5. Lowering the environmental impact of high-kappa/ metal gate stack surface preparation processes

    Science.gov (United States)

    Zamani, Davoud

    ABSTRACT Hafnium based oxides and silicates are promising high-κ dielectrics to replace SiO2 as gate material for state-of-the-art semiconductor devices. However, integrating these new high-κ materials into the existing complementary metal-oxide semiconductor (CMOS) process remains a challenge. One particular area of concern is the use of large amounts of HF during wet etching of hafnium based oxides and silicates. The patterning of thin films of these materials is accomplished by wet etching in HF solutions. The use of HF allows dissolution of hafnium as an anionic fluoride complex. Etch selectivity with respect to SiO2 is achieved by appropriately diluting the solutions and using slightly elevated temperatures. From an ESH point of view, it would be beneficial to develop methods which would lower the use of HF. The first objective of this study is to find new chemistries and developments of new wet etch methods to reduce fluoride consumption during wet etching of hafnium based high-κ materials. Another related issue with major environmental impact is the usage of large amounts of rinsing water for removal of HF in post-etch cleaning step. Both of these require a better understanding of the HF interaction with the high-κ surface during the etching, cleaning, and rinsing processes. During the rinse, the cleaning chemical is removed from the wafers. Ensuring optimal resource usage and cycle time during the rinse requires a sound understanding and quantitative description of the transport effects that dominate the removal rate of the cleaning chemicals from the surfaces. Multiple processes, such as desorption and re-adsorption, diffusion, migration and convection, all factor into the removal rate of the cleaning chemical during the rinse. Any of these processes can be the removal rate limiting process, the bottleneck of the rinse. In fact, the process limiting the removal rate generally changes as the rinse progresses, offering the opportunity to save resources

  6. Formation of superpower volume discharges and their application for modification of surface of metals

    Science.gov (United States)

    Tarasenko, Victor F.; Shulepov, M. A.

    2008-05-01

    The results of experimental investigations of a volume avalanche discharge initiated by an e-beam (VADIEB) and surface layer of Cu and AlBe foils modifications at the plasma action of VADIEB are given. The volume discharge in the air of atmosphere pressure formed in the gap with the cathode having small curvature radius and with high voltage pulses of nanosecond duration and positive and negative polarity. A supershort avalanche electron beam (SAEB) with formation conditions in gases under atmospheric pressure have been investigated. It is proved that the surface layer is cleared of carbon at foil treatment, and atoms of oxygen penetrate into a foil. It is show that the cleaning depth depends on polarity of voltage pulses. At positive polarity of a copper foil electrode the cleaning is observed at the depth over 50 nm, and atoms of oxygen penetrate at the depth up to 25 nm. Plasma of the superpower volume discharge of nanosecond duration with a specific excitation power of hundreds of MW/cm3, and SAEB, and the discharge plasma radiation of various spectral ranges (including UV, VUV and X-ray) has the influence on the anode. The supershort avalanche electronic beam is generated only at negative polarity of a voltage pulse on an electrode with a small radius of curvature. SAEB influence on modifications of the copper foil surface is registered. VADIEB is easily realized in various gases and at various pressures, and, at gas pressure decrease the density of the beam current in helium can achieve 2 kA/cm2. It allows predicting an opportunity of VADIEB application for metal surface modifications in various technological processes, and for surface dielectric modifications at the certain design of the anode.

  7. Adhesion of streptococcus rattus and streptococcus mutans to metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Branting, C.; Linder, L.E.; Sund, M.-L.; Oden, A.; Wiatr-Adamczak, E.

    1988-01-01

    The adhesion of Streptococcus rattus BHT and Streptococcus mutans IB to metal specimens of amalgam, silver, tin and copper was studied using (6-/sup 3/H) thymidine labeled cells. In the standard assay the metal specimens were suspended by a nylon thread in an adhesion solution containing a chemically defined bacterial growth medium (FMC), sucrose, and radiolabeled bacteria. Maximum amounts of adhering bacteria were obtained after about 100 min of incubation. Saturation of the metal specimens with bacteria was not observed. Both strains also adhered in the absence of sucrose, indicating that glucan formation was not necessary for adhesion. However, in the presence of glucose, adhesion was only 26-45% of that observed in the presence of equimolar sucrose. Sucrose-dependent stimulation of adhesion seemed to be due to increased cell-to-cell adhesion capacity. Isolated radiolabeled water-insoluble and water-soluble polysaccharides produced from sucrose by S. rattus BHT were not adsorbed to the metal surfaces.

  8. Surface core-level shifts for simple metals

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Johansson, Börje

    1994-01-01

    . We discuss the surface shifts of the electrostatic potentials and the band centers in order to trace the microscopic origin of the SCLS in the simple metals and find that the anomalous subsurface core-level shifts in beryllium are caused by charge dipoles, which persist several layers into the bulk......We have performed an ab initio study of the surface core-level binding energy shift (SCLS) for 11 of the simple metals by means of a Green’s-function technique within the tight-binding linear-muffin-tin-orbitals method. Initial- and final-state effects are included within the concept of complete....... We furthermore conclude that the unexpected negative sign of the SCLS in beryllium is predominantly an initial-state effect and is caused by the high electron density in this metal....

  9. Comparative study of heavy metals in "soil-wheat" systems between sewage-irrigated areas and clean-water-irrigated areas in suburban Beijing.

    Science.gov (United States)

    Zhao, Ye; Han, Sha-Sha; Chen, Zhi-Fan; Liu, Jing; Hu, Honq-Xia

    2015-01-01

    After years of irrigating farmland with wastewater, concern is increasing about health risks from heavy metals contaminating wheat grown in sewage-irrigated soils in suburban areas of Beijing, China. The study discussed in this article aimed to compare the characteristics of heavy metal distribution in a sewage-irrigated "soil-wheat" system with those from a clean-water-irrigated area by collecting and analyzing samples from both areas. The results indicated that the average concentrations of copper, chromium, lead, and zinc in sewage-irrigated soil were higher than the values in the clean-water-irrigated region. Irrigation with wastewater could lead to increased bioconcentration factors. Therefore, issues of food contamination caused by sewage irrigation deserve more attention.

  10. Polishing Metal Mirrors to 0,025 Micron Surface Finish

    DEFF Research Database (Denmark)

    Pedersen, P. E.

    1978-01-01

    A research program undertaken by the Danish Atomic Energy Commission required the fabrication of metal mirrors measuring 1 m long by 53 mm wide, which had to be finished to extremely tight tolerances on thickness, plane-parallelism and surface characteristics. Progressively finer diamond compounds...

  11. Functional oxide structures on a surface of metals and alloys

    Institute of Scientific and Technical Information of China (English)

    Rudnev; V.; S.; Yarovaya; T.; P.; Boguta; D.; L.; Lukiyanchuk; I.; V.; Tyrina; L.; M.; Morozova; V.; P.; Nedozorov; P.; M.; Vasilyeva; M.; S.; Kondrikov; N.; B.

    2005-01-01

    The investigations of the plasma electrolytic processes in our laboratory are aimed to the development of conditions of formation of oxide layers with determined composition, structure and functional properties on the surface of valve metals (Al, Ti) and their alloys.……

  12. Metal halide solid-state surface treatment for nanocrystal materials

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  13. Theoretical study of n-alkane adsorption on metal surfaces

    DEFF Research Database (Denmark)

    Morikawa, Yoshitada; Ishii, Hisao; Seki, Kazuhiko

    2004-01-01

    The interaction between n-alkane and metal surfaces has been studied by means of density-functional theoretical calculations within a generalized gradient approximation (GGA). We demonstrate that although the GGA cannot reproduce the physisorption energy well, our calculations can reproduce the e...

  14. Origin of metallic surface core-level shifts

    DEFF Research Database (Denmark)

    Aldén, Magnus; Skriver, Hans Lomholt; Abrikosov, I. A.

    1995-01-01

    The unique property of the open 4f energy shell in the lanthanide metals is used to show that the initial-state energy shift gives an insufficient description of surface core-level shifts. Instead a treatment, which fully includes the final-state screening, account for the experimentally observed...

  15. Metal surface defect formation arising by the laser heating

    Science.gov (United States)

    Min'ko, L. Y.; Chivel, Yuri A.

    1996-03-01

    Appearance on the surface of metals of microcraters, microparticles, and continuity breaks with characteristics sizes 1 - 10 micrometer was experimentally observed under the action of laser monopulses of duration 40 ns and 300 ns. The model of initial destruction of materials and generation of condensed particles based on exclusively thermal action of laser radiation and natural inhomogeneity of solids is developed.

  16. Elemental analyses of goundwater: demonstrated advantage of low-flow sampling and trace-metal clean techniques over standard techniques

    Science.gov (United States)

    Creasey, C. L.; Flegal, A. R.

    The combined use of both (1) low-flow purging and sampling and (2) trace-metal clean techniques provides more representative measurements of trace-element concentrations in groundwater than results derived with standard techniques. The use of low-flow purging and sampling provides relatively undisturbed groundwater samples that are more representative of in situ conditions, and the use of trace-element clean techniques limits the inadvertent introduction of contaminants during sampling, storage, and analysis. When these techniques are applied, resultant trace-element concentrations are likely to be markedly lower than results based on standard sampling techniques. In a comparison of data derived from contaminated and control groundwater wells at a site in California, USA, trace-element concentrations from this study were 2-1000 times lower than those determined by the conventional techniques used in sampling of the same wells prior to (5months) and subsequent to (1month) the collections for this study. Specifically, the cadmium and chromium concentrations derived using standard sampling techniques exceed the California Maximum Contaminant Levels (MCL), whereas in this investigation concentrations of both of those elements are substantially below their MCLs. Consequently, the combined use of low-flow and trace-metal clean techniques may preclude erroneous reports of trace-element contamination in groundwater. Résumé L'utilisation simultanée de la purge et de l'échantillonnage à faible débit et des techniques sans traces de métaux permet d'obtenir des mesures de concentrations en éléments en traces dans les eaux souterraines plus représentatives que les résultats fournis par les techniques classiques. L'utilisation de la purge et de l'échantillonnage à faible débit donne des échantillons d'eau souterraine relativement peu perturbés qui sont plus représentatifs des conditions in situ, et le recours aux techniques sans éléments en traces limite l

  17. Comparative assessment of the effectiveness of different cleaning methods on the growth of Candida albicans over acrylic surface

    Directory of Open Access Journals (Sweden)

    Subhajit Gantait

    2016-01-01

    Full Text Available Context: This study evaluated the efficacy of denture adhesive, cleanser, chlorhexidine, and brushing against Candida albicans biofilm developed on an acrylic surface and predicted the most effective, simple, and inexpensive way to maintain denture health, thereby preventing denture stomatitis. Aims: To find the best possible method for maintaining denture hygiene. Settings and Design: This retrospective analysis was conducted in the Guru Nanak Institute of Dental Sciences and Research, Kolkata, and this in vitro study was designed to minimize denture stomatitis among denture wearing population. Subjects and Methods: Sixty acrylic discs of equal dimensions after exposure to C. albicans were treated for a duration of 24 h with denture adhesive, cleanser, 0.2% chlorhexidine individually, or in combinations simulating clinical conditions dividing in six groups, ten samples each (n = 10. Statistical Analysis Used: After treatment, colony count was evaluated and statistically analyzed by post hoc Tukey′s test and Dunnett′s test to determine the most effective way of prevention. Results: The statistical post hoc analysis (Tukey′s test and Dunnett′s test showed high significance (P < 0.0001. The group treated with adhesive showed high fungal growth compared to the control group, whereas chlorhexidine showed high potency to prevent C. albicans, whereas adhesive increased the adhesion of C. albicans to acrylic surface. Conclusions: Denture adhesive increases the adherence of C. albicans to denture surface. Other cleaning chemicals such as cleanser and chlorhexidine decrease the adherence. Moreover, among the all denture cleaning protocol, chlorhexidine drastically inhibit the adherence, as well as growth of C. albicans over denture surface.

  18. CO2 hydrogenation on a metal hydride surface.

    Science.gov (United States)

    Kato, Shunsuke; Borgschulte, Andreas; Ferri, Davide; Bielmann, Michael; Crivello, Jean-Claude; Wiedenmann, Daniel; Parlinska-Wojtan, Magdalena; Rossbach, Peggy; Lu, Ye; Remhof, Arndt; Züttel, Andreas

    2012-04-28

    The catalytic hydrogenation of CO(2) at the surface of a metal hydride and the corresponding surface segregation were investigated. The surface processes on Mg(2)NiH(4) were analyzed by in situ X-ray photoelectron spectroscopy (XPS) combined with thermal desorption spectroscopy (TDS) and mass spectrometry (MS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). CO(2) hydrogenation on the hydride surface during hydrogen desorption was analyzed by catalytic activity measurement with a flow reactor, a gas chromatograph (GC) and MS. We conclude that for the CO(2) methanation reaction, the dissociation of H(2) molecules at the surface is not the rate controlling step but the dissociative adsorption of CO(2) molecules on the hydride surface.

  19. Cooperativity in Surface Bonding and Hydrogen Bonding of Water and Hydroxyl at Metal Surfaces

    DEFF Research Database (Denmark)

    Schiros, T.; Ogasawara, H.; Naslund, L. A.;

    2010-01-01

    of the mixed phase at metal surfaces. The surface bonding can be considered to be similar to accepting a hydrogen bond, and we can thereby apply general cooperativity rules developed for hydrogen-bonded systems. This provides a simple understanding of why water molecules become more strongly bonded...... to the surface upon hydrogen bonding to OH and why the OH surface bonding is instead weakened through hydrogen bonding to water. We extend the application of this simple model to other observed cooperativity effects for pure water adsorption systems and H3O+ on metal surfaces.......We examine the balance of surface bonding and hydrogen bonding in the mixed OH + H2O overlayer on Pt(111), Cu(111), and Cu(110) via density functional theory calculations. We find that there is a cooperativity effect between surface bonding and hydrogen bonding that underlies the stability...

  20. Influence of surface contaminations on the hydrogen storage behaviour of metal hydride alloys.

    Science.gov (United States)

    Schülke, Mark; Paulus, Hubert; Lammers, Martin; Kiss, Gábor; Réti, Ferenc; Müller, Karl-Heinz

    2008-03-01

    Hydrogen storage in metal hydrides is a promising alternative to common storage methods. The surface of a metal hydride plays an important part in the absorption of hydrogen, since important partial reaction steps take place here. The development of surface contaminations and their influence on hydrogen absorption is examined by means of absorption experiments and surface analysis, using X-ray photoelectron spectroscopy (XPS), thermal desorption mass spectrometry (TDMS) and secondary neutral mass spectrometry (SNMS), in this work. All investigations were carried out on a modern AB(2) metal hydride alloy, namely Ti(0.96)Zr(0.04)Mn(1.43)V(0.45)Fe(0.08). Surface analysis (SNMS, XPS) shows that long-term air storage (several months) leads to oxide layers about 15 nm thick, with complete oxidation of all main alloy components. By means of in situ oxygen exposure at room temperature and XPS analysis, it can be shown that an oxygen dose of about 100 Langmuirs produces an oxide layer comparable to that after air storage. Manganese enrichment (segregation) is also clearly observed and is theoretically described here. This oxide layer hinders hydrogen absorption, so an activation procedure is necessary in order to use the full capacity of the metal hydride. This procedure consists of heating (T = 120 degrees C) in vacuum and hydrogen flushing at pressures like p = 18 bar. During the activation process the alloy is pulverized to particles of approximately 20 microm through lattice stretches. It is shown that this pulverization of the metal hydride (creating clean surface) during hydrogen flushing is essential for complete activation of the material. Re-activation of powder contaminated by small doses of air (p approximately 0.1 bar) does not lead to full absorption capacity. In ultrahigh vacuum, hydrogen is only taken up by the alloy after sputtering of the surface (which is done in order to remove oxide layers from it), thus creating adsorption sites for the hydrogen. This

  1. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  2. Kondo Screening and Fermi Surface in the Antiferromagnetic Metal Phase

    Science.gov (United States)

    Yamamoto, Seiji; Si, Qimiao

    2006-03-01

    We address the Kondo effect deep inside the antiferromagnetic metal phase of a Kondo lattice Hamiltonian with SU(2) invariance. The local- moment component is described in terms of a non-linear sigma model. The Fermi surface of the conduction electron component is taken to be sufficiently small, so that it is not spanned by the antiferromagnetic wavevector. The effective low energy form of the Kondo coupling simplifies drastically, corresponding to the uniform component of the magnetization that forward-scatters the conduction electrons on their own Fermi surface. We use a combined bosonic and fermionic (Shankar) renormalization group procedure to analyze this effective theory and study the Kondo screening and Fermi surface in the antiferromagnetic phase. The implications for the global magnetic phase diagram, as well as quantum critical points, of heavy fermion metals are discussed.

  3. Laser Nanostructurization of the Metal and Alloy Surfaces

    Science.gov (United States)

    Kanavin, Andrei; Kozlovskaya, Natalia; Krokhin, Oleg; Zavestovskaya, Irina

    2010-10-01

    The results from experimental and theoretical investigation of material pulsed laser treatment aimed at obtaining nano- and microstructured surface are presented. An experiment has been performed on the modification of indium surface using a solid-state diode-pumped laser. It has been shown that nano- and micro-size structures are formed under laser melting and fast crystallization of the metal surface. The kinetics of the crystallization of metals under superfast cooling. The distribution function for crystalline nuclei dimensions is analytically found within the framework of the classical kinetic equation in case of superfast temperature changing. The average number of particles in the crystalline nuclei and relative volume of the crystalline phase are determined as functions of thermodynamic and laser treatment regime parameters. Good agreement is observed with experimental results for ultrashort laser pulses induced micro- and nanostructures production.

  4. Splitting the surface wave in metal/dielectric nanostructures

    Institute of Scientific and Technical Information of China (English)

    Zhu Song; Wu Jian

    2011-01-01

    We investigate a modified surface wave splitter with a double-layer structure, which consists of symmetrical metallic grating and an asymmetrical dielectric, using the finite-difference time-domain (FDTD) simulation method.The metal/dielectric interface structure at this two-side aperture can support bound waves of different wavelengths,thus guiding waves in opposite directions. The covered dielectric films play an important role in the enhancement and confinement of the diffraction wave by the waveguide modes. The simulation result shows that the optical intensities of the guided surface wave at wavelengths of 760-nm and 1000-nm are about 100 times and 4~5 times those of the weaker side, respectively, which means that the surface wave is split by the proposed device.

  5. Surface entropy of liquid transition and noble metals

    Science.gov (United States)

    Gosh, R. C.; Das, Ramprosad; Sen, Sumon C.; Bhuiyan, G. M.

    2015-07-01

    Surface entropy of liquid transition and noble metals has been investigated using an expression obtained from the hard-sphere (HS) theory of liquid. The expression is developed from the Mayer's extended surface tension formula [Journal of Non-Crystalline Solids 380 (2013) 42-47]. For interionic interaction in metals, Brettonet-Silbert (BS) pseudopotentials and embedded atom method (EAM) potentials have been used. The liquid structure is described by the variational modified hypernetted chain (VMHNC) theory. The essential ingredient of the expression is the temperature dependent effective HS diameter (or packing fraction), which is calculated from the aforementioned potentials together with the VMHNC theory. The obtained results for the surface entropy using the effective HS diameter are found to be good in agreement with the available experimental as well as other theoretical values.

  6. Understanding the biological responses of nanostructured metals and surfaces

    Science.gov (United States)

    Lowe, Terry C.; Reiss, Rebecca A.

    2014-08-01

    Metals produced by Severe Plastic Deformation (SPD) offer distinct advantages for medical applications such as orthopedic devices, in part because of their nanostructured surfaces. We examine the current theoretical foundations and state of knowledge for nanostructured biomaterials surface optimization within the contexts that apply to bulk nanostructured metals, differentiating how their microstructures impact osteogenesis, in particular, for Ultrafine Grained (UFG) titanium. Then we identify key gaps in the research to date, pointing out areas which merit additional focus within the scientific community. For example, we highlight the potential of next-generation DNA sequencing techniques (NGS) to reveal gene and non-coding RNA (ncRNA) expression changes induced by nanostructured metals. While our understanding of bio-nano interactions is in its infancy, nanostructured metals are already being marketed or developed for medical devices such as dental implants, spinal devices, and coronary stents. Our ability to characterize and optimize the biological response of cells to SPD metals will have synergistic effects on advances in materials, biological, and medical science.

  7. Surface cleaning and etching of 4H-SiC(0001) using high-density atmospheric pressure hydrogen plasma.

    Science.gov (United States)

    Watanabe, Heiji; Ohmi, Hiromasa; Kakiuchi, Hiroaki; Hosoi, Takuji; Shimura, Takayoshi; Yasutake, Kiyoshi

    2011-04-01

    We propose low-damage and high-efficiency treatment of 4H-SiC(0001) surfaces using atmospheric pressure (AP) hydrogen plasma. Hydrogen radicals generated by the AP plasma was found to effectively remove damaged layers on SiC wafers and improve surface morphology by isotropic etching. Localized high-density AP plasma generated with a cylindrical rotary electrode provides a high etching rate of 1.6 microm/min and yields smooth morphology by eliminating surface corrugation and scratches introduced by wafer slicing and lapping procedures. However, high-rate etching with localized plasma was found to cause an inhomogeneous etching profile depending on the plasma density and re-growth of the poly-Si layer at the downstream due to the decomposition of the vaporized SiH(x) products. On the other hand, for the purpose of achieving moderate etching and ideal cleaning of SiC surfaces, we demonstrated the application of a novel porous carbon electrode to form delocalized and uniform AP plasma over 4 inches in diameter. We obtained a reasonably moderate etching rate of 0.1 microm/min and succeeded in fabricating damage-free SiC surfaces.

  8. Rice- and butterfly-wing effect inspired self-cleaning and low drag micro/nanopatterned surfaces in water, oil, and air flow.

    Science.gov (United States)

    Bixler, Gregory D; Bhushan, Bharat

    2014-01-01

    In search of new solutions to complex challenges, researchers are turning to living nature for inspiration. For example, special surface characteristics of rice leaves and butterfly wings combine the shark skin (anisotropic flow leading to low drag) and lotus leaf (superhydrophobic and self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study four microstructured surfaces inspired by rice leaves and fabricated with photolithography techniques. We also present a method of creating such surfaces using a hot embossing procedure for scaled-up manufacturing. Fluid drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions. Conceptual modeling provides design guidance when developing novel low drag, self-cleaning, and potentially antifouling surfaces for medical, marine, and industrial applications.

  9. Enamel Surface Roughness after Debonding of Orthodontic Brackets and Various Clean-Up Techniques

    OpenAIRE

    2013-01-01

    Objective: This study aimed to evaluate enamel roughness after adhesive removal using different burs and an Er:YAG laser. Materials and Methods: The buccal surfaces of forty human premolars were sealed by two layers of nail varnish, except for a circular area of 3 mm in diameter on the middle third. The enamel surfaces were initially subjected to profilometry analysis and four parameters of surface irregularity (Ra, Rq, Rt and Rz) were recorded. Following bracket bonding and debonding, adhesi...

  10. Self-cleaning and antibiofouling enamel surface by slippery liquid-infused technique

    Science.gov (United States)

    Yin, Jiali; Mei, May Lei; Li, Quanli; Xia, Rong; Zhang, Zhihong; Chu, Chun Hung

    2016-05-01

    We aimed to create a slippery liquid-infused enamel surface with antibiofouling property to prevent dental biofilm/plaque formation. First, a micro/nanoporous enamel surface was obtained by 37% phosphoric acid etching. The surface was then functionalized by hydrophobic low-surface energy heptadecafluoro-1,1,2,2-tetra- hydrodecyltrichlorosilane. Subsequent infusion of fluorocarbon lubricants (Fluorinert FC-70) into the polyfluoroalkyl-silanized rough surface resulted in an enamel surface with slippery liquid-infused porous surface (SLIPS). The results of water contact angle measurement, diffuse-reflectance Fourier transform infrared spectroscopy, and atomic force microscope confirmed that the SLIPS was successfully constructed on the enamel surface. The antibiofouling property of the SLIPS was evaluated by the adsorption of salivary protein of mucin and Streptococcus mutans in vitro, as well as dental biofilm formation using a rabbit model in vivo. The results showed that the SLIPS on the enamel surface significantly inhibited mucin adhesion and S. mutans biofilm formation in vitro, and inhibited dental plaque formation in vivo.

  11. Tailoring optical complex fields with nano-metallic surfaces

    Directory of Open Access Journals (Sweden)

    Rui Guanghao

    2015-04-01

    Full Text Available Recently there is an increasing interest in complex optical fields with spatially inhomogeneous state of polarizations and optical singularities. Novel effects and phenomena have been predicted and observed for light beams with these unconventional states. Nanostructured metallic thin film offers unique opportunities to generate, manipulate and detect these novel fields. Strong interactions between nano-metallic surfaces and complex optical fields enable the development of highly compact and versatile functional devices and systems. In this review, we first briefly summarize the recent developments in complex optical fields. Various nano-metallic surface designs that can produce and manipulate complex optical fields with tailored characteristics in the optical far field will be presented. Nano-metallic surfaces are also proven to be very effective for receiving and detection of complex optical fields in the near field. Advances made in this nascent field may enable the design of novel photonic devices and systems for a variety of applications such as quantum optical information processing and integrated photonic circuits.

  12. Organics on oxidic metal surfaces: a first-principles DFT study of PMDA and ODA fragments on the pristine and mildly oxidized surfaces of Cu(111).

    Science.gov (United States)

    Park, Jong-Hun; Lee, Ji-Hwan; Soon, Aloysius

    2016-08-01

    Metal-organic hybrid materials are ubiquitous and a fundamental understanding of the hybrid-interface is key for the development of these hybrid material systems. In this work, using first-principles density-functional theory (including van der Waals (vdW) corrections), we study the fundamental physico-chemical properties of the molecular fragments of pyromellitic dianhydride oxydianiline (PMDA-ODA) on pristine Cu(111), as well as oxidic p4:O/Cu(111) in order to investigate the effect of mild oxidation of the metal substrate on PMDA-ODA adsorption. Firstly, we report the most favorable adsorption geometries amongst the various surface models and correlate the adsorption behavior with the electronic structure of the molecular fragments and the substrate layer. PMDA adsorbs weakly on both the clean and mildly oxidized copper surface via vdW forces while ODA adsorbs much stronger with a significant charge transfer between the substrates. Here, the oxidic layer is found to reduce the adsorption strength of both fragments and in particular, the ODA molecule interacts with the substrate via additional hydrogen bonding. Finally, our simulated scanning tunneling microscopy (STM) images suggest possible orientations of PMDA and ODA on clean and oxidic Cu surfaces to guide future experiments.

  13. Fundamental investigations of silane adhesion promoters on metal surfaces

    Science.gov (United States)

    Mishra, Sourabh

    1997-08-01

    Silane adhesion promoters are used extensively to enhance bonding of polymers to metals; however, the fundamental bonding mechanisms are not well characterized. In this study, the chemistry of silane bonding to metal surfaces was characterized, and the viability of silanes as adhesion promoters for immobilization of poly(ethylene glycol) on Ti surfaces was determined. The key issues that were addressed are (1) the role of hydroxides in silane bonding on metals, (2) the stability of silanes on metals, (3) the orientation of silanes on Ti, and (4) application of silane as an adhesion promoter between poly(ethylene glycol) (PEG) and Ti. In the first part of the study, bonding of two monofunctional silanes, trimethylmethoxy- and trimethylchloro-silane, was studied on copper surfaces. Polished and silinated surfaces were analyzed using x-ray photoelectron spectroscopy (XPS), glancing angle Fourier transform infrared spectroscopy (FTIR), and atomic force microscopy (AFM). The feasibility of various reactions paths leading to bonding was considered for the two silanes based on the spectroscopic results. Polished Cu surfaces silylated with trimethylmethoxysilane or trimethylchlorosilane were also washed in water to determine the stability of the silane layers. The surfaces were analyzed using XPS. Methoxysilane was found to remain stably bound during washing, whereas chlorosilane was completely washed away. This confirmed that methoxysilanes were probably bound to surface oxides as hydrogen bonded Si-O-R species or metal siloxanes, whereas chlorosilanes could only physisorb because they had removed surface oxides and hydroxyl groups. The silane layers were cured at high temperature in vacuum to promote the formation of metal siloxanes from hydrogen bonded Si-O-R groups. For both silanes, the cured layers were almost completely washed away. The Si-O-R groups in methoxysilane layers were probably converted to less stably bound siloxane dimers during curing. The polished Cu

  14. Laser cleaning on Roman coins

    Science.gov (United States)

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  15. Light waves guided by a single curved metallic surface.

    Science.gov (United States)

    Krammer, H

    1978-01-15

    Propagation of TE-waves along a single curved metallic surface with radius of curvature much larger than wavelength is investigated both theoretically and experimentally. Approximate analytic expressions for the field configuration yield that power concentrates in a small region near the metal. The attenuation constant per unit angle of bend (radian) is given by the real part of the inverse of the refractive index, independent of the radius of curvature and of the mode number. In agreement with theory experiments with 10-microm radiation showed that low loss guiding can be realized.

  16. High surface area graphene-supported metal chalcogenide assembly

    Science.gov (United States)

    Worsley, Marcus A.; Kuntz, Joshua; Orme, Christine A.

    2016-04-19

    A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS.sub.2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.

  17. Surface plasmons in metallic nanoparticles: fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M A, E-mail: magarcia@icv.csic.es [Department of Electroceramics, Institute for Ceramic and Glass, CSIC, C/Kelsen 5, 28049 Madrid (Spain) and IMDEA Nanociencia, Madrid 28049 (Spain)

    2011-07-20

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  18. Micro-filaments could enable glass surfaces to be clean for ever; Et si des micro-cils greffes rendaient les verres auto-nettoyants?

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-10-01

    The ultra-clean surface will not be devised from a perfect bright smoothness but from a specially designed roughness. The main idea is to graft on the surface micro-filaments that will maintain dust and dirt away from the surface, a splash of water will then be sufficient to wash it away. This technique could be developed and applied to maintenance-free building glazing, to car windscreens and to the protection of surfaces from radioactive contamination. (A.C.)

  19. A self-cleaning porous TiO2-Ag core-shell nanocomposite material for surface-enhanced Raman scattering.

    Science.gov (United States)

    Zou, Xiaoxin; Silva, Rafael; Huang, Xiaoxi; Al-Sharab, Jafar F; Asefa, Tewodros

    2013-01-14

    A porous TiO(2)-Ag core-shell nanocomposite material with a large surface area was synthesized by in situ hydrolyzation of Sn(2+)-grafted titanium glycolate microspheres in the presence of Ag(+) ions. The as-prepared nanocomposite material was shown to serve as an efficient self-cleaning surface-enhanced Raman scattering (SERS) substrate.

  20. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation.

    Science.gov (United States)

    Zhang, Wenfei; Lu, Xin; Xin, Zhong; Zhou, Changlu

    2015-12-14

    Two important properties-the low surface free energy of polybenzoxazine (PBZ) and the photocatalysis-induced self-cleaning property of titanium dioxide (TiO2) nanoparticles-are combined to develop a promising approach for oil/water separation. They are integrated into a multifunctional superhydrophobic and superoleophilic material, PBZ/TiO2 modified polyester non-woven fabrics (PBZT), through a simple dip coating and subsequent thermal curing method. The resulting PBZT reveals excellent mechanical durability and strong resistance to ultraviolet (UV) irradiation as well as acid and alkali. This durable superhydrophobic and superoleophilic fabric is efficient for separating oil/water mixtures by gravity with high separation efficiency, and it can also purify wastewater that contains soluble dyes, which makes it more effective and promising in treating water pollution. Importantly, PBZT demonstrates an integrated self-cleaning performance on the removal of both oil and particle contamination. It is expected that this simple process can be readily adopted for the design of multifunctional PBZ/TiO2 based materials for oil/water separation.

  1. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  2. Surface topography evolvement of galvanized steels in sheet metal forming

    Institute of Scientific and Technical Information of China (English)

    HOU Ying-ke; YU Zhong-qi; ZHANG Wei-gang; JIANG Hao-min; LIN Zhong-qin

    2009-01-01

    U-channel forming tests were performed to investigate the surface topography evolvement of hot-dip galvanized(GI) and galvannealed(GA) steels and the effects of die hardness on sheet metal forming(SMF). Experimental results indicate that the surface roughness values of the two galvanized steels increase with the number of forming, i.e., the surface topographies of galvanized steels are roughened in SMF. Moreover, GI steel has a better ability of damage-resistance than GA steel. The mechanisms of topography evolvement are different in the forming of GI and GA steels. Scratch is the main form of surface damage in the forming of GI steels. The severity of scratch can be decreased by increasing die hardness. GA steel results in exfoliating of the coating firstly and then severe scratching. The surface topography of galvannealed steels can be improved by increasing die hardness. However, the hardness should not be too high.

  3. Selection of Metal Abrasive for Shot Blast Cleaning%抛丸清理用金属磨料的选择

    Institute of Scientific and Technical Information of China (English)

    高慧; 黄振华; 王新涛; 蒋卓康

    2012-01-01

    The pre-blast cleaning before steel structure anticorrosion coating process has advance on remove the rus! on the steel surface, oxide skin, and the adhesion of the film was improved effectively. The influence of type and ratios of metal abrasive blasting on quality, and the metal abrasive physicochemical properties, such as hardness, density, microstructure and Erwin life and plate roughness after shot on the bonding strength and corrosion resistance were studied in detail. The results show that, in the guarantee of derusting grade and film corrosion resistance, we first introduced the S280+CW0.8 compound ratio pill material, the optimal comprehensive performance of the steel rust quality, surface roughness and the minimum material fatigue life were got after treated at the same shot experimental conditions.%铜结构件防腐涂装前的抛丸清理,有利于清除钢材表面锈蚀、氧化皮,并有效提高漆膜的附着力。本文研究了金属磨料的种类及配比对抛丸质量的影响,并对金属磨料的理化性能,如硬度、密度、微观组织、欧文寿命以及抛丸后铜板粗糙度对漆膜结合力与耐蚀性做了系统研究。结果表明,在保证一定除锈等级和漆膜耐蚀性的前提下,本文首次引进的S280+CW0.8复合配比的丸料,在相同的抛丸试验条件下处理后,获得的铜板除锈质量、表面粗糙度最小及丸料疲劳寿命综合性能最优。

  4. Rough scattering made by laser on metal and semiconductor surfaces

    Science.gov (United States)

    Shandybina, Galina D.

    1994-10-01

    Diffraction on metal and semiconductor surfaces during the process of laser irradiation is interesting for microelectronics, power optics and elements of measuring technology. We also present experimental data in changing dynamics of diffuse reflection of copper and bronze mirrors and silicon polished plates during laser irradiation. The impulse of laser radiation from neodymium glass lasts 4 ms. There could be seen the intense reversible increase of diffusion scattering and at the same time decrease of specular component of reflection during laser influence on metal and the appearance of precisely expressed unreturn scattering reflexes during irradiation of semiconductor plates long before the melting threshold. We conduct the quantitative measurements of target thermo-deformation, local deformation of heterogeneities and laser induced effects of the surface with the help of the impulse two-beam interferometry method by indirect measurements of temperature in laser radiation zone. We also established the connection between the dynamic change of scattering of metal and semiconductor with the nature of deformation, such as thermo-deformation of the whole irradiation zone, local deformation of heterogeneities of the surface and defects generated by laser. A physical model of laser induced surface roughness, confirmed by mathematical calculations in the thermoelastic approach, will be also discussed.

  5. Surface imaging of metallic material fractures using optical coherence tomography.

    Science.gov (United States)

    Hutiu, Gheorghe; Duma, Virgil-Florin; Demian, Dorin; Bradu, Adrian; Podoleanu, Adrian Gh

    2014-09-10

    We demonstrate the capability of optical coherence tomography (OCT) to perform topography of metallic surfaces after being subjected to ductile or brittle fracturing. Two steel samples, OL 37 and OL 52, and an antifriction Sn-Sb-Cu alloy were analyzed. Using an in-house-built swept source OCT system, height profiles were generated for the surfaces of the two samples. Based on such profiles, it can be concluded that the first two samples were subjected to ductile fracture, while the third one was subjected to brittle fracture. The OCT potential for assessing the surface state of materials after fracture was evaluated by comparing OCT images with images generated using an established method for such investigations, scanning electron microscopy (SEM). Analysis of cause of fracture is essential in response to damage of machinery parts during various accidents. Currently the analysis is performed using SEM, on samples removed from the metallic parts, while OCT would allow in situ imaging using mobile units. To the best of our knowledge, this is the first time that the OCT capability to replace SEM has been demonstrated. SEM is a more costly and time-consuming method to use in the investigation of surfaces of microstructures of metallic materials.

  6. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating

    Directory of Open Access Journals (Sweden)

    Veli Tayfun Kilic

    2016-03-01

    Full Text Available All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys. To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  7. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  8. Wireless Metal Detection and Surface Coverage Sensing for All-Surface Induction Heating.

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2016-03-11

    All-surface induction heating systems, typically comprising small-area coils, face a major challenge in detecting the presence of a metallic vessel and identifying its partial surface coverage over the coils to determine which of the coils to power up. The difficulty arises due to the fact that the user can heat vessels made of a wide variety of metals (and their alloys). To address this problem, we propose and demonstrate a new wireless detection methodology that allows for detecting the presence of metallic vessels together with uniquely sensing their surface coverages while also identifying their effective material type in all-surface induction heating systems. The proposed method is based on telemetrically measuring simultaneously inductance and resistance of the induction coil coupled with the vessel in the heating system. Here, variations in the inductance and resistance values for an all-surface heating coil loaded by vessels (made of stainless steel and aluminum) at different positions were systematically investigated at different frequencies. Results show that, independent of the metal material type, unique identification of the surface coverage is possible at all freqeuncies. Additionally, using the magnitude and phase information extracted from the coupled coil impedance, unique identification of the vessel effective material is also achievable, this time independent of its surface coverage.

  9. Helium atmospheric pressure plasma jets touching dielectric and metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Norberg, Seth A., E-mail: norbergs@umich.edu; Johnsen, Eric, E-mail: ejohnsen@umich.edu [Department of Mechanical Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, Michigan 48109-2125 (United States); Kushner, Mark J., E-mail: mjkush@umich.edu [Department of Electrical Engineering and Computer Science, University of Michigan, 1301 Beal Avenue, Ann Arbor, Michigan 48109-2122 (United States)

    2015-07-07

    Atmospheric pressure plasma jets (APPJs) are being investigated in the context plasma medicine and biotechnology applications, and surface functionalization. The composition of the surface being treated ranges from plastics, liquids, and biological tissue, to metals. The dielectric constant of these materials ranges from as low as 1.5 for plastics to near 80 for liquids, and essentially infinite for metals. The electrical properties of the surface are not independent variables as the permittivity of the material being treated has an effect on the dynamics of the incident APPJ. In this paper, results are discussed from a computational investigation of the interaction of an APPJ incident onto materials of varying permittivity, and their impact on the discharge dynamics of the plasma jet. The computer model used in this investigation solves Poisson's equation, transport equations for charged and neutral species, the electron energy equation, and the Navier-Stokes equations for the neutral gas flow. The APPJ is sustained in He/O{sub 2} = 99.8/0.2 flowing into humid air, and is directed onto dielectric surfaces in contact with ground with dielectric constants ranging from 2 to 80, and a grounded metal surface. Low values of relative permittivity encourage propagation of the electric field into the treated material and formation and propagation of a surface ionization wave. High values of relative permittivity promote the restrike of the ionization wave and the formation of a conduction channel between the plasma discharge and the treated surface. The distribution of space charge surrounding the APPJ is discussed.

  10. Scattering of mid-IR-range surface electromagnetic waves by optically smooth metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bonch-Bruevich, A.M.; Libenson, M.N.; Makin, V.S.; Pudkov, S.D.; Trubaev, V.V.

    1985-09-01

    The paper reports the experimental observation of the intense scattering of surface electromagnetic waves with a wavelength of 10.6 microns excited on an optically smooth metal surface with a residual roughness having a mean square height of less than 25 A. A method for determining the attenuation of surface electromagnetic waves is proposed, and a test of the method is reported which involves the measurement of the relative intensity of the local scattering of the waves along their path. 9 references.

  11. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base.

    Science.gov (United States)

    Shinawi, Lana Ahmed

    2017-05-01

    The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits.

  12. Quality Control system for a hot-rolled metal surface

    Directory of Open Access Journals (Sweden)

    I. Mazur

    2016-07-01

    Full Text Available The modern ideas about of quality of products are based on the principle of the absolute satisfaction of requirements of recommendations of the buyer. A presence of surface defects of steel-smelting and rolling origin is peculiar to the production of hot-rolling mill. The automatic surface inspection system (ASIS includes two digital line video cameras for the filming of the upper and lower surfaces of the flat bar, block of illumination of the upper and lower surfaces of the flat bar, computer equipment. A system that secures 100 % control of the surface of rolled metal (of the upper and lower side detects automatically and classifies the sheet defects in the real time mode was mounted in the domestic practice in the first time in 2003 on hot rolling mill 2000 JSC «Novolipetsk Iron & Steel Corporation» (NISC. The whole assortment of the mill 2000 was divided for the five groups by the outward appearance of the surface. The works on the identification of defects of hot-rolled metal and widening of data base of knowledge of ASIS were continued after the carrying out of guarantee tests. More than 10 thousand images of defects were added to the data base during the year.

  13. Multifunctional methacrylate-based coatings for glass and metal surfaces

    Science.gov (United States)

    Pospiech, Doris; Jehnichen, Dieter; Starke, Sandra; Müller, Felix; Bünker, Tobias; Wollenberg, Anne; Häußler, Liane; Simon, Frank; Grundke, Karina; Oertel, Ulrich; Opitz, Michael; Kruspe, Rainer

    2017-03-01

    In order to prevent freshwater biofouling glass and metal surfaces were coated with novel transparent methacrylate-based copolymers. The multifunctionality of the copolymers, such as adhesion to the substrate, surface polarity, mechanical long-term stability in water, and ability to form metal complexes was inserted by the choice of suitable comonomers. The monomer 2-acetoacetoxy ethyl methacrylate (AAMA) was used as complexing unit to produce copper(II) complexes in the coating's upper surface layer. The semifluorinated monomer 1H,1H,2H,2H-perfluorodecyl methacrylate was employed to adjust the surface polarity and wettability. Comprehensive surface characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and contact angle measurements showed that surface compositions and properties can be easily adjusted by varying the concentrations of the comonomers. The formation of copper(II) complexes along the copolymer chains and their stability against washing out with plenty of water was proven by XPS. Copolymers containing semifluorinated comonomers significantly inhibited the growth of Achnanthidium species. Copolymers with copper-loaded AAMA-sequences were able to reduce both the growth of Achnanthidium spec. and Staphylococcus aureus.

  14. 40 CFR 761.372 - Specific requirements for relatively clean surfaces.

    Science.gov (United States)

    2010-07-01

    ... grimy before a spill, such as glass, automobile surfaces, newly-poured concrete, and desk tops, use the... with a solvent-soaked, disposable absorbent pad such that each 900 cm2 (1 square foot) is wiped for...

  15. Method of making self-cleaning skin-like prosthetic polymer surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, John T.; Ivanov, Ilia N.; Shibata, Jason

    2017-06-06

    An external covering and method of making an external covering for hiding the internal endoskeleton of a mechanical (e.g., prosthetic) device that exhibits skin-like qualities is provided. The external covering generally comprises an internal bulk layer in contact with the endoskeleton of the prosthetic device and an external skin layer disposed about the internal bulk layer. The external skin layer is comprised of a polymer composite with carbon nanotubes embedded therein. The outer surface of the skin layer has multiple cone-shaped projections that provide the external skin layer with superhydrophobicity. The carbon nanotubes are preferably vertically aligned between the inner surface and outer surface of the external skin layer in order to provide the skin layer with the ability to transmit heat. Superhydrophobic powders may optionally be used as part of the polymer composite or applied as a coating to the surface of the skin layer to enhance superhydrophobicity.

  16. Free surface stability of liquid metal plasma facing components

    Science.gov (United States)

    Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.

    2016-10-01

    An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.

  17. Electronic friction near metal surfaces: a case where molecule-metal couplings depend on nuclear coordinates

    CERN Document Server

    Dou, Wenjie

    2016-01-01

    We derive an explicit form for the electronic friction as felt by a molecule near a metal surface for the general case that molecule-metal couplings depend on nuclear coordinates. Our work generalizes a previous study by von Oppen et al [Beilstein Journal of Nanotechnology, 3, 144, 2012], where we now go beyond the Condon approximation (i.e. molecule-metal couplings are not held constant). Using a non-equilibrium Green's function formalism in the adiabatic limit, we show that fluctuating metal-molecule couplings lead to new frictional damping terms and random forces, plus a correction to the potential of mean force. Numerical tests are performed and compared with a modified classical master equation; our results indicate that violating the Condon approximation can have a large effect on dynamics.

  18. Electronic friction near metal surfaces: A case where molecule-metal couplings depend on nuclear coordinates

    Science.gov (United States)

    Dou, Wenjie; Subotnik, Joseph E.

    2017-03-01

    We derive an explicit form for the electronic friction as felt by a molecule near a metal surface for the general case that molecule-metal couplings depend on nuclear coordinates. Our work generalizes a previous study by von Oppen et al. [Beilstein J. Nanotechnol. 3, 144 (2012)], where we now go beyond the Condon approximation (i.e., molecule-metal couplings are not held constant). Using a non-equilibrium Green's function formalism in the adiabatic limit, we show that fluctuating metal-molecule couplings lead to new frictional damping terms and random forces, plus a correction to the potential of mean force. Numerical tests are performed and compared with a modified classical master equation; our results indicate that violating the Condon approximation can have a large effect on dynamics.

  19. Analysis of Surface Integrity in Drilling Metal Matrix and Hybrid Metal Matrix Composites

    Institute of Scientific and Technical Information of China (English)

    T. Rajmohan; K. Palanikumar; J. Paulo Davim

    2012-01-01

    Hybrid metal matrix composites consist of at least three constituents-a metal or an alloy matrix and two reinforcements in various forms, bonded together at the atomic level in the composite. Despite their higher specific properties of strength and stiffness, the non homogeneous and anisotropic nature combined with the abrasive reinforcements render their machining difficult. In this paper, the surface integrity of machining in drilling hybrid composites has been discussed. Drilling tests are carried out at different spindle speed, feed rates, and different drill tool materials to investigate the effect of the various cutting parameters on the surface quality and the extent of the deformation of drilled surface due to drilling. Materials used for the present investigation are A1356/IOSIC (wt%) metal matrix and A1356/10SiC-3mica (wt%) hybrid composites. The composites are fabricated using stir casting route. The drilling tests are conducted on vertical computer numeric control (CNC) machining center using carbide, coated carbide and polycrystalline diamond (PCD) drills. The surface roughness decreases with increasing spindle speed and increases with increasing feed rate. The machined surface is analyzed by scanning electron microscopy (SEM). SEM images of the machined surfaces indicate the presence of grooves and pits. Microhardness depth profiles indicate that the subsurface damage is limited to the top of 100-250 μm.

  20. Effect of abrasive surface roughening on the secondary yield of various metals

    Science.gov (United States)

    Graves, Timothy

    2007-11-01

    The secondary electron yield of metallic conductors plays a critical role in the development of multipactor discharges. These discharges require a secondary yield greater than unity at the appropriate energy level for sustained breakdown. By reducing the secondary yield below unity in the necessary energy range, multipactor and multipactor-induced glow discharges can be eliminated. Surface roughening has been shown to successfully lower the secondary yield to below unity (ref. 1). In addition, abrasive bead blasting has been shown to effectively reduce the secondary yield of copper surfaces while preserving voltage breakdown characteristics (ref. 2). This study investigates the effect of abrasive surface roughening on the secondary yield of materials such as copper, aluminum, and stainless steel. In addition to measuring the change in the secondary yield as a function of abrasive particle size, the multipactor resistance and voltage breakdown characteristics are investigated. In addition, the effect of vacuum conditioning via multipactor and rf plasma cleaning on the roughened surfaces will be discussed. Ref. 1. H. Bruining. Physics and Applications of Secondary Electron Emission. McGraw-Hill, NY, 1954. Ref. 2. T. P. Graves, Ph.D. Thesis, MIT. 2007

  1. Surface chemistry and Fermi level movement during the self-cleaning of GaAs by trimethyl-aluminum

    Science.gov (United States)

    Tallarida, M.; Adelmann, C.; Delabie, A.; Van Elshocht, S.; Caymax, M.; Schmeisser, D.

    2011-07-01

    The removal of the native oxides from NH4OH-cleaned p-GaAs (100) by exposure to trimethyl-aluminum (TMA) was studied by in situ photoelectron spectroscopy using synchrotron radiation. The reduction of high-valence As- and Ga-oxides occurred through different routes: while As3+ was reduced to As(1±Δ)+ suboxides (with 0 ≤ Δ ≤ 1), Ga3+ was directly removed. The surface Fermi level was shifted by about 100 meV towards the valence band edge upon TMA exposure. This indicates that removing the native oxide of GaAs by TMA is insufficient to create interfaces between GaAs and Al2O3 with defects densities below the 1012 cm-2 range.

  2. Scanning tunneling microscopy I general principles and applications to clean and adsorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1992-01-01

    Scanning Tunneling Microscopy I provides a unique introduction to a novel and fascinating technique that produces beautiful images of nature on an atomic scale. It is the first of three volumes that together offer a comprehensive treatment of scanning tunneling microscopy, its diverse applications, and its theoretical treatment. In this volume the reader will find a detailed description of the technique itself and of its applications to metals, semiconductors, layered materials, adsorbed molecules and superconductors. In addition to the many representative results reviewed, extensive references to original work will help to make accessible the vast body of knowledge already accumulated in this field.

  3. Removal of {sup 222}Rn daughters from metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Zuzel, G.; Wojcik, M. [Jagiellonian University Institute of Physics, Lojasiewicza 11, 30-348 Kraków (Poland); Majorovits, B. [Max Planck Institute for Physics, Föhringer Ring 6, 80805 München (Germany); Lampert, M. O.; Wendling, P. [Canberra-France, 1 Chemin de la Roseraie, B.P. 311, 67834 Tanneries Cedex (France)

    2015-08-17

    Removal of the long-lived {sup 222}Rn daughters ({sup 210}Pb, {sup 210}Bi and {sup 210}Po) from copper, stainless steel and germanium surfaces was investigated. As cleaning techniques etching and electro-polishing was applied to samples in a form of discs exposed earlier to a strong radon source. Reduction of the {sup 210}Pb activity was tested using a HPGe spectrometer, for {sup 210}Bi a beta spectrometer and for {sup 210}Po an alpha spectrometer was used. According to the conducted measurements electro-polishing was always more efficient compared to etching and in case of copper the activity reduction factors for {sup 210}Pb, {sup 210}Bi and {sup 210}Po were between 200 and 400. Etching does not remove {sup 210}Po from copper but works very efficiently from germanium. Results obtained for {sup 210}Pb and {sup 210}Bi for etched stainless steel were worse but still slightly better than those achieved for copper.

  4. Studying the effectiveness of using pneumoimpulsive technology for cleaning the platen surfaces of the PK-38 boiler at the Nazarovo district power station

    Science.gov (United States)

    Agliulin, S. G.; Nikolaev, S. F.; Zvegintsev, V. I.; Yurkin, I. A.; Shabanov, I. I.; Palkin, V. F.; Sergienko, S. P.; Vlasov, S. M.

    2014-09-01

    A new pneumoimpulsive technology, central to which is an impact effect of air jet on ash deposits, was proposed for carrying out continuous preventive cleaning of the platens installed in the steam superheater primary and secondary paths of the PK-38 boiler at the Nazarovo district power station. The pneumoimpulsive cleaning system was mounted in the PK-38 boiler unit no. 6A, and the cleaning system tests were carried out during field operation of the boiler. Owing to the use of the proposed cleaning system, long-term (for no less than 3 months of observations) slag-free operation of the platen surfaces was achieved in the range of steam loads from 215 to 235 t/h with the average load equal to 225 t/h at furnace gas temperatures upstream of the platens equal to 1220-1250°C.

  5. Ultrasonic characterization of shot-peened metal surfaces

    Science.gov (United States)

    Lavrentyev, Anton I.; Veronesi, William A.

    2001-08-01

    Shot peening is a well-known method for extending the fatigue life of metal components by introducing near-surface compressive residual stresses. The capability to nondestructively evaluate near-surface residual stress would greatly aid the assurance of proper fatigue life in shot-peened components. This paper describes our work on near-surface residual stress measurement by an ultrasonic surface wave method. In this method, a variation of ultrasonic surface wave speed with shot peening intensity is measured. Since the effective wave penetration depth is inversely related to the excitation frequency, the method has the potential to provide the stress-depth profile. The paper presents results from an ultrasonic characterization study of shot peened Al-7075 and Waspaloy surfaces. Rayleigh wave velocity measurements by a V(z)-curve method were made on smooth and shot peened samples using line-focus ultrasonic transducers. Several factors were found to contribute to the surface wave velocity measurements: surface roughness, near-surface grain reorientation (texture), dislocation density increase, and residual stress. In this paper we estimate quantitatively the effects of each factor and discuss how these effects can be separated and accounted for during residual stress measurement.

  6. Clean ferrous casting technology research. Final technical report, September 29, 1993--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Piwonka, T.S. [ed.

    1996-01-01

    This report details results of a 30-month program to develop methods of making clean ferrous castings, i.e., castings free of inclusions and surface defects. The program was divided into 3 tasks: techniques for producing clean steel castings, electromagnetic removal of inclusions from ferrous melts, and study of causes of metal penetration in sand molds in cast iron.

  7. A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.

    2008-08-27

    We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field.

  8. Local Surface-Plasmons in Nonspherical Metal Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    CHEN Chun-Chong; LU Yong-Hua; WANG Pei; MING Hai

    2007-01-01

    When a small metallic nanoparticleis irradiated by incident light, the oscillating electric field can cause the conduction electrons to oscillate coherently, which excites the local surface plasmons (LSPs). As is well known,excited LSPs can gather the energy of incident light to the surface of metallic nanoparticle. Recently, some nonspherical particles, e.g. tetrahedron, are suggested to obtain stronger localized electric field. We employ the discrete dipole approximation method to calculate the optical response of the tetrahedron nanoparticle, including the extinction and distribution of the electric field around the particle. The influences of some parameters,including the nanoparticle size, incident direction and polarization, are investigated to analyse the response modes and to obtain stronger localized electric field.

  9. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    Science.gov (United States)

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  10. Environmentally Friendly Cleaners for Removing Tar from Metal Surfaces

    Science.gov (United States)

    2009-04-01

    800.544.0133 Phone: 269.382.0133 Fax: 269.382.0214 email: sales@beaverresearch.com 57A Degreaser Diethanolamine, Aliphatic (D-60) Solvent Naphtha , Medium...Fax: (718) 748-3425 General Information Email: info@kleenallplus.com #408 Tar & Asphalt Remover #141 Vehicle wash Petroleum naphtha , Ethylene...Xylene-ortho Solvent, Light aromatic, Naphtha (petroleum) Removes tar from metal surfaces. 19 Sentinel Products, Inc. 51 NE 77th Ave Minneapolis

  11. Chemical and Molecular Characterization of Biofilm on Metal Surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosle, N.B.

    used molecular approach to assess the development of biofilm (White and Benson, 1984; Khandekar and Johns, 1991; Bhosle and Wagh, 1997). We have used a multi-parameter approach based on biological, chemical, biochemical and molecular constituents... to assess development of conditioning film and biofilm on metal surfaces (Bhosle et al., 1989; Bhosle et al., 1990; Sonak and Bhosle, 1995; Bhosle and Wagh, 1997, D?Souza and Bhosle, 2003). This chapter is a compilation of relevant information...

  12. Single-molecule chemistry of metal phthalocyanine on noble metal surfaces.

    Science.gov (United States)

    Li, Zhenyu; Li, Bin; Yang, Jinlong; Hou, Jian Guo

    2010-07-20

    To develop new functional materials and nanoscale electronics, researchers would like to accurately describe and precisely control the quantum state of a single molecule on a surface. Scanning tunneling microscopy (STM), combined with first-principles simulations, provides a powerful technique for acquiring this level of understanding. Traditionally, metal phthalocyanine (MPc) molecules, composed of a metal atom surrounded by a ligand ring, have been used as dyes and pigments. Recently, MPc molecules have shown great promise as components of light-emitting diodes, field-effect transistors, photovoltaic cells, and single-molecule devices. In this Account, we describe recent research on the characterization and control of adsorption and electronic states of a single MPc molecule on noble metal surfaces. In general, the electronic and magnetic properties of a MPc molecule largely depend on the type of metal ion within the phthalocyanine ligand and the type of surface on which the molecule is adsorbed. However, with the STM technique, we can use on-site molecular "surgery" to manipulate the structure and the properties of the molecule. For example, STM can induce a dehydrogenation reaction of the MPc, which allows us to control the Kondo effect, which describes the spin polarization of the molecule and its interaction with the complex environment. A specially designed STM tip can allow researchers to detect certain molecule-surface hybrid states that are not accessible by other techniques. By matching the local orbital symmetry of the STM tip and the molecule, we can generate the negative differential resistance effect in the formed molecular junction. This orbital symmetry based mechanism is extremely robust and does not critically depend on the geometry of the STM tip. In summary, this simple model system, a MPc molecule absorbed on a noble metal surface, demonstrates the power of STM for quantum characterization and manipulation of single molecules, highlighting the

  13. Low-energy electron diffraction from ferroelectric surfaces: Dead layers and surface dipoles in clean Pb(Zr ,Ti )O 3(001 )

    Science.gov (United States)

    Teodorescu, Cristian M.; Pintilie, Lucian; Apostol, Nicoleta G.; Costescu, Ruxandra M.; Lungu, George A.; Hrib, LuminiÅ£a.; Trupinǎ, Lucian; Tǎnase, Liviu C.; Bucur, Ioana C.; Bocîrnea, Amelia E.

    2017-09-01

    The positions of the low energy electron diffraction (LEED) spots from ferroelectric single crystal films depend on its polarization state, due to electric fields generated outside of the sample. One may derive the surface potential energy, yielding the depth where the mobile charge carriers compensating the depolarization field are located (δ ). On ferroelectric Pb (Zr ,Ti ) O3 (001) samples, surface potential energies are between 6.7 and 10.6 eV, and δ values are unusually low, in the range of 1.8 ±0.4 Å . When δ is introduced in the values of the band bending inside the ferroelectric, a considerably lower value of the dielectric constant and/or of the polarization near the surface than their bulk values is obtained, evidencing either that the intrinsic `dielectric constant' of the material has this lower value or the existence of a `dead layer' at the free surface of clean ferroelectric films. The inwards polarization of these films is explained in the framework of the present considerations by the formation of an electron sheet on the surface. Possible explanations are suggested for discrepancies between the values found for surface potential energies from LEED experiments and those derived from the transition between mirror electron microscopy and low energy electron microscopy.

  14. Contact angle hysteresis of a drop spreading over metal surfaces

    Directory of Open Access Journals (Sweden)

    Kuznetsov Geniy

    2016-01-01

    Full Text Available The paper presents experimental data on the contact angle hysteresis of the distilled water drop spreading over the surfaces of non-ferrous metals. The measurements of the advancing and receding contact angles were carried out by method of sitting drop on the horizontal surface during increasing and decreasing drop volume with a syringe pump. It was found that the contact line speed has a great influence on the hysteresis of the polished non-elastic substrates. The mechanism of spreading was described using the balance of the forces from the physical point of view.

  15. FORMING FREEFORM SURFACE SHEET METAL USINGINTEGRATED REVERSE ENGINEERING TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    邢渊

    2001-01-01

    This paper presented a model of integrated reverse engineering system and set up its various data output flowchart, which is easy to be associated with other systems. The idea of integrated reverse engineer is introduced to the system of forming sheet metal with complex surface and using IDEF0 method sets up the function model of the system. The freeform surface reconstruction and CAD modeling of the system are described and decomposed. This paper discussed some problems, such as the feature expression, feature modeling and feature translation of the sheet parts and dies.

  16. Unveiling nickelocene bonding to a noble metal surface

    Science.gov (United States)

    Bachellier, N.; Ormaza, M.; Faraggi, M.; Verlhac, B.; Vérot, M.; Le Bahers, T.; Bocquet, M.-L.; Limot, L.

    2016-05-01

    The manipulation of a molecular spin state in low-dimensional materials is central to molecular spintronics. The designs of hybrid devices incorporating magnetic metallocenes are very promising in this regard, but are hampered by the lack of data regarding their interaction with a metal. Here, we combine low-temperature scanning tunneling microscopy and density functional theory calculations to investigate a magnetic metallocene at the single-molecule level—nickelocene. We demonstrate that the chemical and electronic structures of nickelocene are preserved upon adsorption on a copper surface. Several bonding configurations to the surface are identified, ranging from the isolated molecule to molecular layers governed by van der Waals interactions.

  17. Ion beam analysis of metal ion implanted surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Evans, P.J.; Chu, J.W.; Johnson, E.P.; Noorman, J.T. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Sood, D.K. [Royal Melbourne Inst. of Tech., VIC (Australia)

    1993-12-31

    Ion implantation is an established method for altering the surface properties of many materials. While a variety of analytical techniques are available for the characterisation of implanted surfaces, those based on particle accelerators such as Rutherford backscattering (RBS) and nuclear reaction analysis (NRA) provide some of the most useful and powerful for this purpose. Application of the latter techniques to metal ion implantation research at ANSTO will be described with particular reference to specific examples from recent studies. Where possible, the information obtained from ion beam analysis will be compared with that derived from other techniques such as Energy Dispersive X-ray (EDX) and Auger spectroscopies. 4 refs., 5 figs.

  18. Auger neutralization rates of multiply charged ions near metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nedeljkovic, N.N.; Janev, R.K.; Lazur, V.Y.

    1988-08-15

    Transition rates for the Auger neutralization processes of multiply charged ions on metal surfaces are calculated in closed analytical form. The core potential of a multiply charged ion is represented by a pseudopotential, which accounts for the electron screening effects and allows transition to the pure Coulomb case (fully stripped ions). The relative importance of various neutralization channels in slow-ion--surface collisions is discussed for the examples of He/sup 2+/+Mo(100) and C/sup 3+/+Mo(100) collisional systems.

  19. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...... a core-shell formation of COP material grafted to the outer layers of activated carbon. This general method brings features of both COPs and porous carbons together for target-specific environmental remediation applications, which was corroborated with successful adsorption tests for organic dyes...

  20. Polarization of electric field noise near metallic surfaces

    CERN Document Server

    Schindler, Philipp; Daniilidis, Nikos; Häffner, Hartmut

    2015-01-01

    Electric field noise in proximity to metallic surfaces is a poorly understood phenomenon that appears in different areas of physics. Trapped ion quantum information processors are particular susceptible to this noise, leading to motional decoherence which ultimately limits the fidelity of quantum operations. On the other hand they present an ideal tool to study this effect, opening new possibilities in surface science. In this work we analyze and measure the polarization of the noise field in a micro-fabricated ion trap for various noise sources. We find that technical noise sources and noise emanating directly from the surface give rise to different degrees of polarization which allows us to differentiate between the two noise sources. Based on this, we demonstrate a method to infer the magnitude of surface noise in the presence of technical noise.

  1. Mathematical model of the metal mould surface temperature optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mlynek, Jaroslav, E-mail: jaroslav.mlynek@tul.cz; Knobloch, Roman, E-mail: roman.knobloch@tul.cz [Department of Mathematics, FP Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic); Srb, Radek, E-mail: radek.srb@tul.cz [Institute of Mechatronics and Computer Engineering Technical University of Liberec, Studentska 2, 461 17 Liberec, The Czech Republic (Czech Republic)

    2015-11-30

    The article is focused on the problem of generating a uniform temperature field on the inner surface of shell metal moulds. Such moulds are used e.g. in the automotive industry for artificial leather production. To produce artificial leather with uniform surface structure and colour shade the temperature on the inner surface of the mould has to be as homogeneous as possible. The heating of the mould is realized by infrared heaters located above the outer mould surface. The conceived mathematical model allows us to optimize the locations of infrared heaters over the mould, so that approximately uniform heat radiation intensity is generated. A version of differential evolution algorithm programmed in Matlab development environment was created by the authors for the optimization process. For temperate calculations software system ANSYS was used. A practical example of optimization of heaters locations and calculation of the temperature of the mould is included at the end of the article.

  2. COATING OF POLYMERIC SUBSTRATE CATALYSTS ON METALLIC SURFACES

    Directory of Open Access Journals (Sweden)

    H. HOSSEINI

    2010-12-01

    Full Text Available This article presents results of a study on coating of a polymeric substrate ca-talyst on metallic surface. Stability of coating on metallic surfaces is a proper specification. Sol-gel technology was used to synthesize adhesion promoters of polysilane compounds that act as a mediator. The intermediate layer was coated by synthesized sulfonated polystyrene-divinylbenzene as a catalyst for production of MTBE in catalytic distillation process. Swelling of catalyst and its separation from the metal surface was improved by i increasing the quantity of divinylbenzene in the resin’s production process and ii applying adhesion pro¬moters based on the sol-gel process. The rate of ethyl silicate hydrolysis was intensified by increasing the concentration of utilized acid while the conden¬sation polymerization was enhanced in the presence of OH–. Sol was formed at pH 2, while the pH should be 8 for the formation of gel. By setting the ratio of the initial concentrations of water to ethyl silicate to 8, the gel formation time was minimized.

  3. Designing an artificial Lieb lattice on a metal surface

    Science.gov (United States)

    Qiu, Wen-Xuan; Li, Shuai; Gao, Jin-Hua; Zhou, Yi; Zhang, Fu-Chun

    2016-12-01

    Recently, several experiments [K. K. Gomes et al., Nature (London) 483, 306 (2012), 10.1038/nature10941; S. Wang et al., Phys. Rev. Lett. 113, 196803 (2014), 10.1103/PhysRevLett.113.196803] have illustrated that metal surface electrons can be manipulated to form a two-dimensional (2D) lattice by depositing a designer molecule lattice on a metal surface. This offers a promising new technique to construct artificial 2D electron lattices. Here we theoretically propose a molecule lattice pattern to realize an artificial Lieb lattice on a metal surface, which shows a flat electronic band due to the lattice geometry. We show that the localization of electrons in the flat band may be understood from the viewpoint of electron interference, which may be probed by measuring the local density of states with scanning tunneling microscopy. Our proposal may be readily implemented in experiment and may offer an ideal solid state platform to investigate the novel flat band physics of the Lieb lattice.

  4. Coulomb sink effect on coarsening of metal nanostructures on surfaces

    Institute of Scientific and Technical Information of China (English)

    Yong HAN; Feng LIU

    2008-01-01

    We discuss Coulomb effects on the coarsening of metal nanostructures on surfaces. We have proposed a new concept of a "Coulomb sink" [Phys. Rev. Lett., 2004, 93: 106102] to elucidate the effect of Coulomb charging on the coarsening of metal mesas grown on semiconductor surfaces. A charged mesa, due to its reduced chemical potential, acts as a Coulomb sink and grows at the expense of neighboring neu-tral mesas. The Coulomb sink provides a potentially useful method for the controlled fabrication of metal nanostructures. In this article, we will describe in detail the proposed physical models, which can explain qualitatively the most salient fea-tures of coarsening of charged Pb mesas on the Si(111) sur-face, as observed by scanning tunneling microscopy (STM). We will also describe a method of precisely fabricating large-scale nanocrystals with well-defined shape and size. By using the Coulomb sink effect, the artificial center-full-hol-lowed or half-hollowed nanowells can be created.

  5. Online measurement system for the surface inclination of metal workpieces

    Science.gov (United States)

    Yin, Peng; Sun, Changku; Wang, Peng; Yang, Qian

    2013-12-01

    The online measurement of the metal surfaces' parameters plays an important role in many industrial fields. Because the surfaces of the machined metal pieces have the characteristics of strong reflection and high possibilities of scattered disturbing irradiation points, this paper designs an online measurement system based on the measurement principles of linear structured light to detect whether the parameters of the machined metal surfaces' height difference and inclination fulfill the compliance requirements, in which the grayscale gravity algorithm is applied to extract the sub-pixel coordinates of the center of laser, the least squares method is employed to fit the data and the Pauta criterion is utilized to remove the spurious points. The repeat accuracy of this system has been tested. The experimental results prove that the precision of inclination is 0.046° RMS under the speed of 40mm/sec, and the precision of height difference is 0.072mm RMS, which meets the design expectations. Hence, this system can be applied to online industrial detection of high speed and high precision.

  6. Peptide immobilisation on porous silicon surface for metal ions detection.

    Science.gov (United States)

    Sam, Sabrina S; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F; Etcheberry, Arnaud A; Gabouze, Nour-Eddine N

    2011-01-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization.The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  7. Peptide immobilisation on porous silicon surface for metal ions detection

    Directory of Open Access Journals (Sweden)

    Chazalviel Jean-Noël

    2011-01-01

    Full Text Available Abstract In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl-N'-(3-dimethylaminopropyl-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II/Cu(I couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  8. Peptide immobilisation on porous silicon surface for metal ions detection

    Science.gov (United States)

    Sam, Sabrina S.; Chazalviel, Jean-Noël Jn; Gouget-Laemmel, Anne Chantal Ac; Ozanam, François F.; Etcheberry, Arnaud A.; Gabouze, Nour-Eddine N.

    2011-06-01

    In this work, a Glycyl-Histidyl-Glycyl-Histidine (GlyHisGlyHis) peptide is covalently anchored to the porous silicon PSi surface using a multi-step reaction scheme compatible with the mild conditions required for preserving the probe activity. In a first step, alkene precursors are grafted onto the hydrogenated PSi surface using the hydrosilylation route, allowing for the formation of a carboxyl-terminated monolayer which is activated by reaction with N-hydroxysuccinimide in the presence of a peptide-coupling carbodiimide N-ethyl- N'-(3-dimethylaminopropyl)-carbodiimide and subsequently reacted with the amino linker of the peptide to form a covalent amide bond. Infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy are used to investigate the different steps of functionalization. The property of peptides to form stable complexes with metal ions is exploited to achieve metal-ion recognition by the peptide-modified PSi-based biosensor. An electrochemical study of the GlyHisGlyHis-modified PSi electrode is achieved in the presence of copper ions. The recorded cyclic voltammograms show a quasi-irreversible process corresponding to the Cu(II)/Cu(I) couple. The kinetic factors (the heterogeneous rate constant and the transfer coefficient) and the stability constant of the complex formed on the porous silicon surface are determined. These results demonstrate the potential role of peptides grafted on porous silicon in developing strategies for simple and fast detection of metal ions in solution.

  9. Defect-initiated atomic emissions from semiconductor surfaces induced by laser irradiation: Electronic cleaning of defects on surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kanasaki, Jun' ichi; Okano, Akiko; Nakai, Yasuo; Itoh, Noriaki (Dept. of Physics, Nagoya Univ., Furo-cho, Chikusa, Nagoya (Japan))

    1994-05-15

    We compare the emission of Si atoms from Si (100) surfaces and of Ga atoms from GaAs (110) and GaP (110) surfaces induced by irradiation with low-fluence laser pulses, each of which emits atoms of about 10[sup -6] monolayers, and found a strong correlation between the laser fluence that can cause emission and the strength of the bond by which the emitted atoms are bound

  10. Surface Modification for Superhydrophilicity and Underwater Superoleophobicity: Applications in Antifog, Underwater Self-Cleaning, and Oil-Water Separation.

    Science.gov (United States)

    Huang, Kang-Ting; Yeh, Shiou-Bang; Huang, Chun-Jen

    2015-09-30

    A facile yet effective surface modification strategy for superhydrophilicity and underwater superoleophobicity was developed by silanization of zwitterionic sulfobetaine silane (SBSi) on oxidized surfaces. The coatings exhibit excellent wetting properties, as indicated by static contact angles of water separation. The SBSi glasses retained their optical transmittance because of the rapid formation of coalesced water thin films on surfaces in contact with water vapor and moisture. In addition, the underwater-oil contact-angle measurements verified the underwater superoleophobicity of the zwitterionic SBSi coatings. The oil spills on the SBSi coating could be readily removed in contact with water to realize the self-cleaning property. Besides, we modified stainless steel wire meshes with SBSi for oil-water separation. The optimal oil recovery rate for the oil-water mixtures reached >99.5% when using the SBSi-coated meshes with a pore size of 17 μm. More importantly, the water flux with modified meshes achieved 6.5 × 10(7) L/m(2)·h·bar, enabling gravity-driven and energy-saving separation. Consequently, we demonstrated the superhydrophilicity and underwater superoleophobicity of SBSi, offering promise in solving technological problems of interfacial fog, oil spills, and oil-water separation and thereby showing great potential in large-scale commercial applications.

  11. Prevention and treatment of peri-implant diseases : Cleaning of titanium dental implant surfaces

    NARCIS (Netherlands)

    Louropoulou, A.

    2017-01-01

    The research presented in this thesis assessed the effect of variable instruments on differed titanium dental implant surfaces. Furthermore, a clinical guideline was developed and recommendations are made regarding the diagnosis, prevention and treatment of peri-implant diseases. Air abrasive device

  12. Alkali-crown ether complexes at metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Thontasen, Nicha; Deng, Zhitao; Rauschenbach, Stephan [Max Planck Institute for Solid State Research, Stuttgart (Germany); Levita, Giacomo [University of Trieste, Trieste (Italy); Malinowski, Nikola [Max Planck Institute for Solid State Research, Stuttgart (Germany); Bulgarian Academy of Sciences, Sofia (Bulgaria); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); EPFL, Lausanne (Switzerland)

    2010-07-01

    Crown ethers are polycyclic ethers which, in solution, selectively bind cations depending on the size of the ring cavity. The study of a single host-guest complex is highly desirable in order to reveal the characteristics of these specific interactions at the atomic scale. Such detailed investigation is possible at the surface where high resolution imaging tools like scanning tunneling microscopy (STM) can be applied. Here, electrospray ion beam deposition (ES-IBD) is employed for the deposition of Dibenzo-24-crown-8 (DB24C8)-H{sup +}, -Na{sup +} and -Cs{sup +} complexes on a solid surface in ultrahigh vacuum (UHV). Where other deposition techniques have not been successful, this deposition technique combines the advantages of solution based preparation of the complex ions with a highly clean and controlled deposition in UHV. Single molecular structures and the cation-binding of DB24C8 at the surface are studied in situ by STM and MALDI-MS (matrix assisted laser desorption ionization mass spectrometry). The internal structure of the complex, i.e. ring and cavity, is observable only when alkali cations are incorporated. The BD24C8-H{sup +} complex in contrast appears as a compact feature. This result is in good agreement with theoretical models based on density functional theory calculations.

  13. Alternatives to Organic Solvents in Industrial Cleaning Processes

    DEFF Research Database (Denmark)

    Jacobsen, Thomas

    1998-01-01

    cleaning agents in offset printing companies instead of volatile, toxic organic solvents. The present study is based on a project with the aim of defining other industrial processes, where organic solvents used for cleaning or degreasing can be replaced by non-volatile, low-toxic products, which are based...... on esters from fatty acids of vegetable origin (vegetable esters - VE).The study indicates that industrial cleaning/degreasing with organic solvents may be substituted with VEs on metal surfaces and on some coated surfaces, in manufacture of paints and inks, use of paints, use of inks (printing), metal...... industry, and vehicle repair and maintenance. There are, however, other elements that influence the possibility to substitute. The requirements to the resulting surface, depending on the following treatment of the surface. The character of the soilings to be removed. The possible presence of other...

  14. Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging.

    Science.gov (United States)

    Brovko, Oleg O; Ruiz-Díaz, Pedro; Dasa, Tamene R; Stepanyuk, Valeri S

    2014-03-01

    We review the state of the art of surface magnetic property control with non-magnetic means, concentrating on metallic surfaces and techniques such as charge-doping or external electric field (EEF) application. Magneto-electric coupling via EEF-based charge manipulation is discussed as a way to tailor single adatom spins, exchange interaction between adsorbates or anisotropies of layered systems. The mechanisms of paramagnetic and spin-dependent electric field screening and the effect thereof on surface magnetism are discussed in the framework of theoretical and experimental studies. The possibility to enhance the effect of EEF by immersing the target system into an electrolyte or ionic liquid is discussed by the example of substitutional impurities and metallic alloy multilayers. A similar physics is pointed out for the case of charge traps, metallic systems decoupled from a bulk electron bath. In that case the charging provides the charge carrier density changes necessary to affect the magnetic moments and anisotropies in the system. Finally, the option of using quasi-free electrons rather than localized atomic spins for surface magnetism control is discussed with the example of Shockley-type metallic surface states confined to magnetic nanoislands.

  15. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    Science.gov (United States)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-08-01

    There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in the insulating matrix. These nanocomposites have been characterized by measuring the resistivity of the composite layer as a function of the implantation dose. The experimental results are compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement is found between the experimental results and the predictions of the theory. We conclude in that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

  16. Quantum mechanics of effective potential at a metal surface

    Science.gov (United States)

    Solomatin, Alexander

    In this thesis we study the nonuniform electron density system at a metal-vacuum interface via the corresponding local effective potential confining the electrons, the metal being represented by the jellium and structureless pseudopotential models. The study is performed within conventional Kohn-Sham (KS) density-functional theory and its recently derived quantum-mechanical interpretation. In the latter, properties are determined in terms of the separate electron correlations due to the Pauli exclusion principle, Coulomb repulsion and the correlation contribution to the kinetc energy. We have derived the exact analytical structure, valid for self-consistent orbitals, of the KS theory exchange potential in the classically forbidden region. This structure is image-potential-like of the form -alphasb{KS,x}(beta)chi where the parameter betasp2 is the ratio of the surface barrier height to the metal Fermi energy. For a Wigner-Seitz radius of rsb{s} = 4.1, which is approximately that for which jellium metal is stable, the decay coefficient is precisely 1/4. Over the metallic range of densities rsb{s} = 2-6, the coefficient ranges from 0.195 to 0.274. Thus, if the asymptotic structure of the KS exchange-correlation potential is the image potential, then this structure is due principally to KS exchange effects, the KS correlation contribution being an order of magnitude smaller. These results, then lead to the concept of an 'image' charge localized to the surface region for asymptotic positions of the electron. We have further derived the exact analytical structure in the vacuum of the Slater exchange potential, and of the Pauli-correlation and correlation-kinetic components of the KS exchange potential. These structures are all image-potential-like, decaying respectively as -alphasb{S}(beta)chi,\\ -alphasb{W}(beta)chi and alphasbsp{tsb{c}}{(1)}(beta)/chi. The Pauli-correlation component constitutes the major fraction of the KS exchange potential asymptotically, but there

  17. Electron Scattering at Surfaces and Interfaces of Transition Metals

    Science.gov (United States)

    Zheng, Pengyuan

    The effect of surfaces on the electron transport at reduced scales is attracting continuous interest due to its broad impact on both the understanding of materials properties and their application for nanoelectronics. The size dependence of for conductor's electrical resistivity rho due to electron surface scattering is most commonly described within the framework of Fuchs and Sondheimer (FS) and their various extensions, which uses a phenomenological scattering parameter p to define the probability of electrons being elastically (i.e. specularly) scattered by the surface without causing an increase of rho at reduced size. However, a basic understanding of what surface chemistry and structure parameters determine the specularity p is still lacking. In addition, the assumption of a spherical Fermi surface in the FS model is too simple for transition metals to give accurate account of the actual surface scattering effect. The goal of this study is to develop an understanding of the physics governing electron surface/interface scattering in transition metals and to study the significance of their Fermi surface shape on surface scattering. The advancement of the scientific knowledge in electron surface and interface scattering of transition metals can provide insights into how to design high-conductivity nanowires that will facilitate the viable development of advanced integrated circuits, thermoelectric power generation and spintronics. Sequential in situ and ex situ transport measurements as a function of surface chemistry demonstrate that electron surface/interface scattering can be engineered by surface doping, causing a decrease in the rho. For instance, the rho of 9.3-nm-thick epitaxial and polycrystalline Cu is reduced by 11--13% when coated with 0.75 nm Ni. This is due to electron surface scattering which exhibits a specularity p = 0.7 for the Cu-vacuum interface that transitions to completely diffuse (p = 0) when exposed to air. In contrast, Ni-coated surfaces

  18. Challenges related to flotation cleaning of oil shales. Issues due to compositional and surface features and post-grinding surface behavior

    Directory of Open Access Journals (Sweden)

    Altun N. Emre

    2016-01-01

    Full Text Available Oil shale is an important energy resource alternative. Despite its recognition as an unconventional oil source, oil shale is also considered as an important solid fossil fuel alternative to coal and lignites due to the solid form and remarkable extent of organic content. Utilization possibilites, similar to coal and lignites, have been considered in the past decades and direct use of oil shales in thermal power production has been possible in countries like Estonia and China. In the perspective of utilization of oil shales in a similar manner to coal and lignites, problems and restrictions related to the inorganic ash-making and potentially pollutant constituents are applied. In this respect, cleaning of this important energy source through mineral processing methods, particularly by flotation, is an outstanding option. However, on the basis of unique features and distinctive characteristics, treatment of oil shales like a type of coal is a big perception and may be highly misleading. This paper discusses specific challenges regarding flotation behavior of oil shales with reference to the surface characteristics and behavior of oil shale entities – probably the most important aspect that determines the efficiency and success of the flotation based cleaning process.

  19. Evaluation of decontamination efficacy of cleaning solutions on stainless steel and glass surfaces contaminated by 10 antineoplastic agents.

    Science.gov (United States)

    Queruau Lamerie, Thomas; Nussbaumer, Susanne; Décaudin, Bertrand; Fleury-Souverain, Sandrine; Goossens, Jean-François; Bonnabry, Pascal; Odou, Pascal

    2013-05-01

    The handling of antineoplastic agents results in chronic surface contamination that must be minimized and eliminated. This study was designed to assess the potential of several chemical solutions to decontaminate two types of work surfaces that were intentionally contaminated with antineoplastic drugs. A range of solutions with variable physicochemical properties such as their hydrophilic/hydrophobic balance, oxidizing power, desorption, and solubilization were tested: ultrapure water, isopropyl alcohol, acetone, sodium hypochlorite, and surfactants such as dishwashing liquid (DWL), sodium dodecyl sulfate (SDS), Tween 40, and Span 80. These solutions were tested on 10 antineoplastic drugs: cytarabine, gemcitabine, methotrexate, etoposide phosphate, irinotecan, cyclophosphamide, ifosfamide, doxorubicin, epirubicin, and vincristine. To simulate contaminated surfaces, these molecules (200ng) were deliberately spread onto two types of work surfaces: stainless steel and glass. Recovered by wiping with a specific aqueous solvent (acetonitrile/HCOOH; 20/0.1%) and an absorbent wipe (Whatman 903®), the residual contamination was quantified using high-performance liquid chromatography (HPLC) coupled to mass spectrometry. To compare all tested cleaning solutions, a performance value of effectiveness was determined from contamination residues of the 10 drugs. Sodium hypochlorite showed the highest overall effectiveness with 98% contamination removed. Ultrapure water, isopropyl alcohol/water, and acetone were less effective with effectiveness values of 76.8, 80.7, and 40.4%, respectively. Ultrapure water was effective on most hydrophilic molecules (97.1% for cytarabine), while on the other hand, isopropyl alcohol/water (70/30, vol/vol) was effective on the least hydrophilic ones (85.2% for doxorubicin and 87.8% for epirubicin). Acetone had little effect, whatever the type of molecule. Among products containing surfactants, DWL was found effective (91.5%), but its formulation

  20. Byproduct metal requirements for U.S. wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios

    Science.gov (United States)

    Nassar, Nedal; Wilburn, David R.; Goonan, Thomas G.

    2016-01-01

    The United States has and will likely continue to obtain an increasing share of its electricity from solar photovoltaics (PV) and wind power, especially under the Clean Power Plan (CPP). The need for additional solar PV modules and wind turbines will, among other things, result in greater demand for a number of minor metals that are produced mainly or only as byproducts. In this analysis, the quantities of 11 byproduct metals (Ag, Cd, Te, In, Ga, Se, Ge, Nd, Pr, Dy, and Tb) required for wind turbines with rare-earth permanent magnets and four solar PV technologies are assessed through the year 2040. Three key uncertainties (electricity generation capacities, technology market shares, and material intensities) are varied to develop 42 scenarios for each byproduct metal. The results indicate that byproduct metal requirements vary significantly across technologies, scenarios, and over time. In certain scenarios, the requirements are projected to become a significant portion of current primary production. This is especially the case for Te, Ge, Dy, In, and Tb under the more aggressive scenarios of increasing market share and conservative material intensities. Te and Dy are, perhaps, of most concern given their substitution limitations. In certain years, the differences in byproduct metal requirements between the technology market share and material intensity scenarios are greater than those between the various CPP and No CPP scenarios. Cumulatively across years 2016–2040, the various CPP scenarios are estimated to require 15–43% more byproduct metals than the No CPP scenario depending on the specific byproduct metal and scenario. Increasing primary production via enhanced recovery rates of the byproduct metals during the beneficiation and enrichment operations, improving end-of-life recycling rates, and developing substitutes are important strategies that may help meet the increased demand for these byproduct metals.

  1. First principles investigation of heterogeneous catalysis on metal oxide surfaces

    Science.gov (United States)

    Ghoussoub, Mireille

    Metal oxides possess unique electronic and structural properties that render them highly favourable for applications in heterogeneous catalysis. In this study, computational atomistic modelling based on Density Functional Theory was used to investigate the reduction of carbon dioxide over hydroxylated indium oxide nanoparticles, as well at the activation of methane over oxygen-covered bimetallic surfaces. The first study employed metadynamics-biased ab initio molecular dynamics to obtain the free energy surface of the various reaction steps at finite temperature. In the second study, the nudged elastic band method was used to probe the C-H activation mechanisms for different surface configurations. In both cases, activation energies, reaction energies, transition state structures, and charge analysis results are used to explain the underlying mechanistic pathways.

  2. Core levels, valence band structure and unoccupied states of clean InN surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Himmerlich, Marcel; Eisenhardt, Anja; Schaefer, Juergen A.; Krischok, Stefan [Institut fuer Physik and Institut fuer Mikro- und Nanotechnologien, TU Ilmenau (Germany)

    2008-07-01

    In this study we used a surface analytics system directly connected to a MBE growth module to study the surface properties of thin InN films. The samples were prepared by plasma assisted molecular beam epitaxy on GaN/Al{sub 2}O{sub 3}(0001) templates and exhibited a 2 x 2 reconstruction after growth. The prepared samples were analysed by photoelectron spectroscopy as well as electron energy loss spectroscopy (EELS). For the occupied states, a very good agreement to available theoretical calculations is found. Although, the valence band maximum is located at 1.6 eV, indicating strong downward band bending of {proportional_to}0.9 eV, photoemission is detected up to E{sub F}. This indicates that the Fermi level is pinned above the conduction band minimum, as recently predicted. The spin-orbit splitting of the In 4d level at 17.8 eV could be resolved using He II radiation. Furthermore, from the fine structure of the secondary electron cascade peak we extract the energy of different unoccupied states 0 eV to 9 eV above the vacuum level. These measurements enable us to identify features in the InN EELS spectra, with a loss energy larger than 16 eV, as interband transitions from the In 4d level.

  3. Scanning tunneling microscopy I general principles and applications to clean and absorbate-covered surfaces

    CERN Document Server

    Wiesendanger, Roland

    1994-01-01

    Since the first edition of "Scanning 'funneling Microscopy I" has been pub­ lished, considerable progress has been made in the application of STM to the various classes of materials treated in this volume, most notably in the field of adsorbates and molecular systems. An update of the most recent develop­ ments will be given in an additional Chapter 9. The editors would like to thank all the contributors who have supplied up­ dating material, and those who have provided us with suggestions for further improvements. We also thank Springer-Verlag for the decision to publish this second edition in paperback, thereby making this book affordable for an even wider circle of readers. Hamburg, July 1994 R. Wiesendanger Preface to the First Edition Since its invention in 1981 by G. Binnig, H. Rohrer and coworkers at the IBM Zurich Research Laboratory, scanning tunneling microscopy (STM) has devel­ oped into an invaluable surface analytical technique allowing the investigation of real-space surface structures at th...

  4. Polydopamine/Cysteine surface modified isoporous membranes with self-cleaning properties

    KAUST Repository

    Shevate, Rahul

    2017-02-03

    The major challenge in membrane filtration is fouling which reduces the membrane performance. Fouling is mainly due to the adhesion of foulants on the membrane surfaces. In this work, we studied the fouling behaviour of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membrane and the mussel inspired polydopamine/L-cysteine isoporous zwitterionic membrane. Polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) isoporous membranes were fabricated via self-assembly and non-solvent induced phase separation method. Subsequently, the isoporous membrane was modified by a mild mussel-inspired polydopamine (PDA) coating; the isoporous surface structure and the water flux was retained. Zwitterionic L-cysteine was further anchored on the PDA coated membranes via Michael addition reaction at pH 7 and 50 °C to alleviate their antifouling ability with foulants solution. The membranes were thoroughly characterized using X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and zeta potential measurements. Contact angle and dynamic scanning calorimetry (DSC) measurements were carried out to examine the hydrophilicity. The pH-responsive behaviour of the modified membrane remains unchanged and antifouling ability after PDA/L-cysteine functionalization was improved. The modified and unmodified isoporous membranes were tested using humic acid and natural organic matter model solutions at 0.5 bar feed pressure.

  5. Speciation, distribution, and potential ecological risk assessment of heavy metals in Xiamen Bay surface sediment

    Institute of Scientific and Technical Information of China (English)

    LIN Cai; LIU Yang; LI Wenquan; SUN Xiuwu; JI Weidong

    2014-01-01

    Based on the survey of surface sediment in Xiamen Bay in October 2011, the speciation, distribution, and potential ecological risk assessment of heavy metals (Cu, Pb, Zn, Cd, and Cr) in this area were studied us-ing the sequential extraction method and ecological risk assessment method. The results indicated:(1) the total concentrations of these heavy metals were influenced by runoff, industrial wastewater, and sewage, and were all higher in the coastal area than the offshore area while the highest area of Pb was a little far-ther away from the coastal water due to atmosphere deposition;(2) sequential extractions suggested that Cu was mainly composed with residual and Fe/Mn-oxide bound fractions, Pb was bound to Fe/Mn-oxide, Zn and Cr were dominated by residual, and Cd bound to exchangeable and carbonate fractions; (3) the order of migration and transformation sequence was Cd>Pb>Cu>Zn>Cr and the degree of pollution was Cd>Pb>Cu>Zn>Cr;and (4) the ratios of the secondary and primary phases showed that Zn and Cr were both clean, Cu may be polluted, Pb was moderately polluted, while Cd was heavily polluted.

  6. HREELS and photoemission study of GaSb( 1 0 0 )-(1×3) surfaces prepared by optimal atomic hydrogen cleaning

    Science.gov (United States)

    Veal, T. D.; Lowe, M. J.; McConville, C. F.

    2002-03-01

    High-resolution electron-energy-loss spectroscopy (HREELS) and synchrotron-radiation photoemission spectroscopy (SRPES) have been used to study the Sb-stabilised GaSb(1 0 0)-(1×3) surface prepared by a two-stage low-temperature atomic hydrogen cleaning (AHC) procedure. The use of a maximum annealing temperature of 300 °C avoids the degradation of surface stoichiometry associated with higher annealing temperatures. After AHC at a sample temperature of 100 °C, SRPES results show that all Sb oxides have been removed and only a small amount of Ga oxide remains. Further AHC treatment at 300 °C results in a clean surface with a sharp (1×3) low energy electron diffraction pattern. SRPES results indicate that the surface stoichiometry is identical to that previously found for GaSb(1 0 0)-(1×3) prepared by in situ molecular beam epitaxy. Electron energy-dependent HREEL spectra exhibit a coupled plasmon-phonon mode which has been used to study the electronic structure of the near-surface region. Semi-classical dielectric theory simulations of the HREEL spectra of the clean GaSb(1 0 0)-(1×3) surface indicate no detectable electronic damage or dopant passivation results from the AHC treatment. Valence band SRPES indicates that the surface Fermi level is close to the valence band maximum, suggesting the presence of an inversion layer at the surface.

  7. Metal-insulator-metal diodes with sub-nanometre surface roughness for energy-harvesting applications

    KAUST Repository

    Khan, A.A.

    2017-07-27

    For ambient radio-frequency (RF) energy harvesting, the available power levels are quite low, and it is highly desirable that the rectifying diodes do not consume any power at all. Contrary to semiconducting diodes, a tunnelling diode – also known as a metal-insulator-metal (MIM) diode – can provide zero-bias rectification, provided the two metals have different work functions. This could result in a complete passive rectenna system. Despite great potential, MIM diodes have not been investigated much in the GHz-frequency regime due to challenging nano-fabrication requirements. In this work, we investigate zero-bias MIM diodes for RF energy-harvesting applications. We studied the surface roughness issue for the bottom metal of the MIM diode for various deposition techniques such as sputtering, atomic layer deposition (ALD) and electron-beam (e-beam) evaporation for crystalline metals as well as for an amorphous alloy, namely ZrCuAlNi. A surface roughness of sub-1nm has been achieved for both the crystalline metals as well as the amorphous alloy, which is vital for the reliable operation of the MIM diode. An MIM diode comprising of a Ti-ZnO-Pt combination yields a zero-bias responsivity of 0.25V−1 and a dynamic resistance of 1200Ω. Complete RF characterisation has been performed by integrating the MIM diode with a coplanar waveguide transmission line. The input impedance varies from 100Ω to 50Ω in the frequency range of between 2GHz and 10GHz, which can be easily matched to typical antenna impedances in this frequency range. Finally, a rectified DC voltage of 4.7mV is obtained for an incoming RF power of 0.4W at zero bias. These preliminary results of zero-bias rectification indicate that complete, passive rectennas (a rectifier and antenna combination) are feasible with further optimisation of MIM devices.

  8. Surface modes at metallic an photonic crystal interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Weitao [Iowa State Univ., Ames, IA (United States)

    2009-01-01

    A surface mode is an electromagnetic field distribution bounded at a surface. It decays exponentially with the distance from the surface on both sides of the surface and propagates at the surface. The surface mode exists at a metal-dielectric interface as surface plasmon (1) or at a photonic crystal surface terminated properly (34; 35; 36). Besides its prominent near-filed properties, it can connect structures at its propagation surface and results in far-field effects. Extraordinary transmission (EOT) and beaming are two examples and they are the subjects I am studying in this thesis. EOT means the transmission through holes in an opaque screen can be much larger than the geometrical optics limitation. Based on our everyday experience about shadows, the transmission equals the filling ratio of the holes in geometrical optics. The conventional diffraction theory also proved that the transmission through a subwavelength circular hole in an infinitely thin perfect electric conductor (PEC) film converges to zero when the hole's dimension is much smaller than the wavelength (40). Recently it is discovered that the transmission can be much larger than the the filling ratio of the holes at some special wavelengths (41). This cannot be explained by conventional theories, so it is called extraordinary transmission. It is generally believed that surface plasmons play an important role (43; 44) in the EOT through a periodic subwavelength hole array in a metallic film. The common theories in literatures are based on these arguments. The surface plasmons cannot be excited by incident plane waves directly because of momentum mismatch. The periodicity of the hole arrays will provide addition momentum. When the momentum-matching condition of surface plasmons is satisfied, the surface plasmons will be excited. Then these surface plasmons will collect the energy along the input surface and carry them to the holes. So the transmission can be bigger than the filling ratio. Based

  9. As Stainless as the Lotus--Fabricating Bionic Polymer Surface with a Self-cleaning Function

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    @@ The artificial imitation of natural creatures has always been a forever dream in the fairy tales or scientific fictions. Thanks to the development of science and technology, this long-cherished dream has come true in some ways. Bionics, a branch of science concerned with applying the data and mechanisms of the functions of biological system to the solution of engineering problems, has become one of the frontier areas of science in the 21 st century, as what was shown in many reviews and books published in the late 20th century. In fact, human being got inspiration from the nature and created lots of bionic products in the past decades, e.g. the airplane and the radar.However, few examples are given in molecular-level or nano-scale artificial plant surface.

  10. Petroleum-collecting and dispersing chemicals for cleaning sea surface from thin petroleum slicks

    Directory of Open Access Journals (Sweden)

    Z. H. Asadov,

    2014-05-01

    Full Text Available Monoethylolamide, diethylolamide and triethanolamine ester synthesized by us based on fish oil and their phosphate derivatives being surface-active and ecologically safe possess a high capacity of petroleum collecting and dispersing. When introducing phosphate group, a tendency to replacement of petroleum slick dispersing by its collection (accumulation into a spot is observed. Efficiency of the chemicals change depends on the type and concentration of ions in the water. Such salts as NaCl, KI, KBr, and MgSO4 positively influence petroleum-collecting activity whereas K2CO3 and NaHCO3 cause petroleum dispersing. DOI: http://dx.doi.org/10.4314/bcse.v28i2.5

  11. Graphene on metal surfaces and its hydrogen adsorption

    DEFF Research Database (Denmark)

    Andersen, Mie; Hornekær, L.; Hammer, B.

    2012-01-01

    The interaction of graphene with various metal surfaces is investigated using density functional theory and the meta-generalized gradient approximation (MGGA) M06-L functional. We demonstrate that this method is of comparable accuracy to the random-phase approximation (RPA). With M06-L we study...... large systems inaccessible to RPA with H adsorbed on graphene on a selected strongly (Ni) and a selected weakly (Pt) interacting substrate. Very stable graphane-like clusters, where every other C atom binds to a H atom above and every other to a metal atom below, are found on both substrates....... Such graphane-like clusters have been proposed to be responsible for opening a band gap in graphene. On Ni we find that the binding energies of the H clusters are almost constant with the cluster size, whereas on Pt the binding energies increase with the cluster size. Comparing the Perdew-Burke-Ernzerhof and M...

  12. Time-resolved two-photon photoemission from metal surfaces

    CERN Document Server

    Weinelt, M

    2002-01-01

    The Rydberg-like series of image-potential states is a prototype system for loosely bound electrons at a metal surface. The electronic structure and the femtosecond dynamics of these states is studied by high-resolution energy-and time-resolved two-photon photoemission spectroscopy. The electron trapped in the image potential moves virtually freely laterally to the surface where it is subject to inelastic and quasielastic scattering processes which cause decay of population and phase relaxation. The influence of surface corrugation on these processes has been investigated for adsorbates on Cu(001) and stepped Cu(117) and Cu(119) surfaces which are vicinal to Cu(001). The dynamics depend on both the distance of the electron in front of the surface and the parallel momentum. For CO molecules on Cu(001) inelastic scattering into bulk states and adsorbate-induced resonances determine the decay rate. For small numbers of Cu adatoms on Cu(001) and the vicinal surfaces the decay rate of image-potential states is sig...

  13. Molecular design of the microbial cell surface toward the recovery of metal ions.

    Science.gov (United States)

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-06-01

    The genetic engineering of microorganisms to adsorb metal ions is an attractive method to facilitate the environmental cleanup of metal pollution and to enrich the recovery of metal ions such as rare metal ions. For the recovery of metal ions by microorganisms, cell surface design is an effective strategy for the molecular breeding of bioadsorbents as an alternative to intracellular accumulation. The cell surface display of known metal-binding proteins/peptides and the molecular design of novel metal-binding proteins/peptides have been performed using a cell surface engineering approach. The adsorption of specific metal ions is the important challenge for the practical recovery of metal ions. In this paper, we discuss the recent progress in surface-engineered bioadsorbents for the recovery of metal ions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Modeling adsorption and reactions of organic molecules at metal surfaces.

    Science.gov (United States)

    Liu, Wei; Tkatchenko, Alexandre; Scheffler, Matthias

    2014-11-18

    CONSPECTUS: The understanding of adsorption and reactions of (large) organic molecules at metal surfaces plays an increasingly important role in modern surface science and technology. Such hybrid inorganic/organic systems (HIOS) are relevant for many applications in catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and switches, and photovoltaics. Obviously, the predictive modeling and understanding of the structure and stability of such hybrid systems is an essential prerequisite for tuning their electronic properties and functions. At present, density-functional theory (DFT) is the most promising approach to study the structure, stability, and electronic properties of complex systems, because it can be applied to both molecules and solids comprising thousands of atoms. However, state-of-the-art approximations to DFT do not provide a consistent and reliable description for HIOS, which is largely due to two issues: (i) the self-interaction of the electrons with themselves arising from the Hartree term of the total energy that is not fully compensated in approximate exchange-correlation functionals, and (ii) the lack of long-range part of the ubiquitous van der Waals (vdW) interactions. The self-interaction errors sometimes lead to incorrect description of charge transfer and electronic level alignment in HIOS, although for molecules adsorbed on metals these effects will often cancel out in total energy differences. Regarding vdW interactions, several promising vdW-inclusive DFT-based methods have been recently demonstrated to yield remarkable accuracy for intermolecular interactions in the gas phase. However, the majority of these approaches neglect the nonlocal collective electron response in the vdW energy tail, an effect that is particularly strong in condensed phases and at interfaces between different materials. Here we show that the recently developed DFT+vdW(surf) method that accurately accounts for the collective electronic

  15. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  16. Influence of the surface cleaning methods of composite products on the quality of coverings

    Science.gov (United States)

    Korolev, AN; Alexeev, AN; Tarasov, VA

    2016-10-01

    Studies have been conducted relating to a priority area - the sustainable use of natural resources, based on the suggested design arrangement of the operating module, with counter-current motion of washing liquid in the system of a distributed wash. The assignment of permittable concentrations of chemical compounds to be washed-off on elements as well in wash tanks is suggested. Regularities as to the change of electrolyte concentration on element surface and in distributed wash system are established. Results are presented of numeric calculations of the spray rinse process of the elements having blind and threaded holes filled with liquid impurities. Spray rinse of elements with blind holes, and blind threaded holes are compared. Substantiation of jet velocity and recommendations as to the minimal diameter of the washing of thread holes which ensures efficient removal of scum, is carried out. The studies make exposure of components at spray rinse more specific. The technique for assignment of cross-feed of parts towards multi-nozzle heads which ensures effective scum removal was substantiated.

  17. SNOM Observations of Surface Plasmon Polaritons on Metal Heterostructures

    Institute of Scientific and Technical Information of China (English)

    KITAZAWA Tazuko; MIYANISHI Shintaro; MURAKAMI Yoshiteru; KOJIMA Kunio; TAKAHASHI Akira

    2007-01-01

    We observe surface plasmon polariton (SPP) refraction on a metal heterostructured sample with a scattered-type scanning near-field optical microscope (SNOM). The sample consists of Al and Au in-plane whose boundary is smooth enough with proper etching time. SPPs excited on the Al film travel to the boundary and a portion of SPPs propagates into the Au film. In addition, interference fringes appear in the SNOM image bent at the boundary. The result is analysed with effective index method and the refracted angle is explained by Snell's law.

  18. Surface functionalization of metal organic frameworks for mixed matrix membranes

    Energy Technology Data Exchange (ETDEWEB)

    Albenze, Erik; Lartey, Michael; Li, Tao; Luebke, David R.; Nulwala, Hunaid B.; Rosi, Nathaniel L.; Venna, Surendar R.

    2017-03-21

    Mixed Matrix Membrane (MMM) are composite membranes for gas separation and comprising a quantity of inorganic filler particles, in particular metal organic framework (MOF), dispersed throughout a polymer matrix comprising one or more polymers. This disclosure is directed to MOF functionalized through addition of a pendant functional group to the MOF, in order to improve interaction with a surrounding polymer matrix in a MMM. The improved interaction aids in avoiding defects in the MMM due to incompatible interfaces between the polymer matrix and the MOF particle, in turn increasing the mechanical and gas separation properties of the MMM. The disclosure is also directed to a MMM incorporating the surface functionalized MOF.

  19. Erosion yield of metal surface under ion pulsed irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Krivobokov, Valery; Stepanova, Olga, E-mail: omsa@tpu.ru; Yuryeva, Alena

    2013-11-15

    The paper is devoted to the study of erosion processes on a metal surface (Ag, Ni, Cu, W) under argon ion bombardment. The erosion yields including the sputtered and evaporated particles have been calculated for a wide range of the initial ion energy (1–1000 keV). They are revealed to reach the values from units to 10{sup 4} atom/ion under a pulsed ion beam with the power density of 10{sup 2}–10{sup 10} W/cm{sup 2}. The ion beam and target parameters are shown to influence on the erosion intensity.

  20. Memory effects in nonadiabatic molecular dynamics at metal surfaces

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2010-01-01

    We study the effect of temporal correlation in a Langevin equation describing nonadiabatic dynamics at metal surfaces. For a harmonic oscillator, the Langevin equation preserves the quantum dynamics exactly and it is demonstrated that memory effects are needed in order to conserve the ground state...... energy of the oscillator. We then compare the result of Langevin dynamics in a harmonic potential with a perturbative master equation approach and show that the Langevin equation gives a better description in the nonperturbative range of high temperatures and large friction. Unlike the master equation...... the temporal correlation function and dynamical friction within density functional theory....