WorldWideScience

Sample records for clean energy development

  1. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  2. Clean Energy Finance Tool

    Science.gov (United States)

    This tool is for state and local governments interested in developing a financing program to support energy efficiency and clean energy improvements for large numbers of buildings within their jurisdiction.

  3. Clean Energy-Related Economic Development Policy across the States: Establishing a 2016 Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    States implement clean energy-related economic development policy to spur innovation, manufacturing, and to address other priorities. This report focuses on those policies most directly related to expanding new and existing manufacturing. The extent to which states invest in this policymaking depends on political drivers and jurisdictional economic development priorities. To date, no one source has collected all of the clean energy-related economic development policies available across the 50 states. Thus, it is unclear how many policies exist within each state and how these policies, when implemented, can drive economic development. Establishing the baseline of existing policy is a critical first step in determining the potential holistic impact of these policies on driving economic growth in a state. The goal of this report is to document the clean energy-related economic development policy landscape across the 50 states with a focus on policy that seeks to expand new or existing manufacturing within a state. States interested in promoting clean energy manufacturing in their jurisdictions may be interested in reviewing this landscape to determine how they compare to peers and to adjust their policies as necessary. This report documents over 900 existing clean energy-related economic development laws, financial incentives (technology-agnostic and clean energy focused), and other policies such as agency-directed programs and initiatives across the states.

  4. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  5. Clean Energy Solutions Center (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  6. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  7. The influence and ethics of interest groups on policy incentives for clean energy development

    Science.gov (United States)

    Maguire, Mariana C.

    The clean energy revolution in the United States is not going to happen until diverse stakeholders in the coalition of clean energy proponents strengthen their cohesion and influence—two critical tools for interest group's to be successful in driving the formulation of public policy. Currently, clean energy technology and resource development is supported by a highly diverse coalition of interest groups such as environmental groups, health organizations, industry, and the Defense Department, whose primary goals are often unrelated. Yet their objectives are increasingly well served by pursuing clean energy development by pushing lawmakers for supportive policies. However, characteristics of this ad hoc coalition can hinder its influence and cohesion. Whereas, fossil fuel interests—exemplified by the coalition of oil proponents—are highly cohesive and influential. This thesis will analyze whether there is a correlation between public policies on clean energy, and the strength of interest group influence over those policy decisions. It will begin with an analysis of interest group theories. Next it will analyze the histories of the oil industry as the model opponent of clean energy policies, and the biofuels, wind energy, and solar energy industries as the model proponents of clean energy policies. The composition of the respective coalitions will reveal if they are diverse or similar, with broad or narrow goals, and other important characteristics. Their respective policy positions and messages will show what values are important to them, and the presidential support each coalition has been achieved, or failed to achieve, will provide further insight into their effectiveness. This thesis will then apply interest group theories to the supporter and opponent coalitions. Results obtained indicate that the coalition of oil interests is large, yet very cohesive and influential, while the coalition for clean energy is large, generally diffuse but with some important

  8. Catalyzing Gender Equality-Focused Clean Energy Development in West Africa

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    The Economic Community of West African States (ECOWAS) Regional Center for Renewable Energy and Energy Efficiency (ECREEE) partnered with the Clean Energy Solutions Center (Solutions Center), the African Development Bank and other institutions to develop a Situation Analysis of Energy and Gender Issues in ECOWAS Member States. Through a systematic approach to assess interlinked gender and energy issues in the region, the report puts forth a number of key findings. This brochure highlights ECREEE's partnership with the Solutions Center and key findings from the report.

  9. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim [Pennsylvania State Univ., University Park, PA (United States)

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  10. Clean energy microgrids

    CERN Document Server

    Obara, Shin'ya

    2017-01-01

    This book describes the latest technology in microgrids and economic, environmental and policy aspects of their implementation, including microgrids for cold regions, and future trends. The aim of this work is to give this complete overview of the latest technology around the world, and the interrelation with clean energy systems.

  11. Clean Energy Infrastructure Educational Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify

  12. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  13. Optimal energy options under Clean Development Mechanism: Renewable energy projects for sustainable development and carbon emission reduction

    Science.gov (United States)

    Gilau, Asmerom M.

    This dissertation addresses two distinct objectives; designing cost-effective renewable energy powered projects including seawater reverse osmosis (SWRO), aquaculture, and ice-making plant, and analyzing the cost-effectiveness of these projects in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism. The results of SWRO analysis show that a wind powered system is the least expensive and a PV powered system the most expensive, with finished water costs of about 0.50 /m3 and 1.00 /m3, respectively. By international standards, these costs are competitive. The results of renewable energy powered commercial tilapia production indicate that a wind-diesel system has high potential for intensive tilapia production as well as carbon dioxide emission reductions. The study also investigates aeration failures in renewable energy powered tilapia production systems. With respect to the ice-making plant, unlike previous studies which consider nighttime operation only, we have found that a nighttime PV powered ice-making system is more expensive (1/kWh) than daytime ice-making system (0.70/kWh). Our optimal energy options analysis at project scale which includes SWRO, ice-making plant and household energy consumption for about 100 households shows that compared to diesel only energy option, PV-D, W-D, and PV-W-D hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy including 100% renewables have the lowest net present cost and they are already cost-effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries. Thus in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market oriented

  14. Sustainable energy for cashew production chain using innovative clean technology project developments

    Energy Technology Data Exchange (ETDEWEB)

    Pannir Selvam, P.V.; Nandenha, Julio; Santiago, Brunno Henrique de Souza; Silva, Rosalia Tatiane da [Universidade Federal do Rio Grande do Norte (GPEC/DEQ/UFRN), Lagoa Nova, RN (Brazil). Dept. de Engenharia Quimica. Grupo de Pesquisa em Engenharia de Custos e Processos], e-mail: pannirbr@gmail.com

    2006-07-01

    The main objective is to develop a new process synthesis based on the residual biomass waste for the energy production applied to the fruit processing plant with co-production of hot, cold thermal energy using biogas from the wood biomass and animal wastes. After carried out the bibliographical research about the current state of art technology, an engineering project had been developed with the use of the software Super Pro Designer V 4.9. Some simulations of processes of the fast pyrolysis, gasification, bio digestion, generation of energy have been realized including the system integration of energy production as innovation of the present work. Three cases study have been developed: first, the current process of conventional energy using combustion, another one using combined pyrolysis and gasification, and the last one with bio digestion for combined power, heat and chilling. The results about the project investment and the cost analysis, economic viability and cash balance were obtained using software Orc 2004. Several techno-economic parameters of the selected cases study involving process innovation were obtained and compared, where a better energy and materials utilization were observed in relation to conventional process. This project which is still in development phase, involves small scale energy integrated system design. The energy and the process integration cashew fruit production chain, based on the clean technology process design, has enable significant improvement in terms of economic and environmental using optimal system configurations with viability and sustainability. (author)

  15. Sustainable energy for the future. Modelling transitions to renewable and clean energy in rapidly developing countries.

    NARCIS (Netherlands)

    Urban, Frauke

    2009-01-01

    The main objective of this thesis is first to adapt energy models for the use in developing countries and second to model sustainable energy transitions and their effects in rapidly developing countries like China and India. The focus of this thesis is three-fold: a) to elaborate the differences

  16. IDEA Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Robert P. [International District Energy Association, Westborough, MA (United States)

    2013-12-20

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems. A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening

  17. Locally Appropriate Energy Strategies for the Developing World: A focus on Clean Energy Opportunities in Borneo

    Science.gov (United States)

    Shirley, Rebekah Grace

    This dissertation focuses on an integration of energy modeling tools to explore energy transition pathways for emerging economies. The spate of growth in the global South has led to a global energy transition, evidenced in part by a surge in the development of large scale energy infrastructure projects for the provision of reliable electricity service. The rational of energy security and exigency often usher these large scale projects through to implementation with minimal analysis of costs: social and environmental impact, ecological risk, or opportunity costs of alternative energy transition pathways foregone. Furthermore, development of energy infrastructure is inherently characterized by the involvement of a number of state and non-state actors, with varying interests, objectives and access to authority. Being woven through and into social institutions necessarily impacts the design, control and functionality of infrastructure. In this dissertation I therefore conceptualize energy infrastructure as lying at the intersection, or nexus, of people, the environment and energy security. I argue that energy infrastructure plans and policy should, and can, be informed by each of these fields of influence in order to appropriately satisfy local development needs. This case study explores the socio-techno-environmental context of contemporary mega-dam development in northern Borneo. I describe the key actors of an ongoing mega-dam debate and the constellation of their interaction. This highlights the role that information may play in public discourse and lends insight into how inertia in the established system may stymie technological evolution. I then use a combination of power system simulation, ecological modeling and spatial analysis to analyze the potential for, and costs and tradeoffs of, future energy scenarios. In this way I demonstrate reproducible methods that can support energy infrastructure decision making by directly addressing data limitation barriers. I

  18. Renewable energies for the South. New support for clean energy investment in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Jung, W.; Schmitz-Borchert, H.P. (eds.)

    2001-07-01

    At the beginning of the 21st century there are still more than two billion people in the world without access to electricity and basic energy services. 'Energy poverty' impedes sustainable economic, social and environmental development of rural areas in developing countries. Large-scale diffusion of renewable energy technologies can help to overcome this situation. Major barriers are now beginning to be removed. This volume is the result of an international symposium on 'Renewable Energies for the South', held at the Science Park Gelsenkirchen, Gelsenkirchen/Germany. In took place on June 5-6, 2000 with more than 200 participants from 27 countries. The conference aimed at enhancing the dialogue between the multiple groups and actors involved in the development, transfer and application of renewable energy technologies. The following issues are covered in this book: - technology needs and framework conditions in developing countries - appropriate renewable energy technologies - financing renewable energy investment - capacity building and training programmes. (orig.)

  19. Developing an Online Database of National and Sub-National Clean Energy Policies

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, R.; Cross, S.; Heinemann, A.; Booth, S.

    2014-06-01

    The Database of State Incentives for Renewables and Efficiency (DSIRE) was established in 1995 to provide summaries of energy efficiency and renewable energy policies offered by the federal and state governments. This primer provides an overview of the major policy, research, and technical topics to be considered when creating a similar clean energy policy database and website.

  20. Clean Fossil Energy Conversion Processes

    Science.gov (United States)

    Fan, L.-S.

    2007-03-01

    Absolute and per-capita energy consumption is bound to increase globally, leading to a projected increase in energy requirements of 50% by 2020. The primary source for providing a majority of the energy will continue to be fossil fuels. However, an array of enabling technologies needs to be proven for the realization of a zero emission power, fuel or chemical plants in the near future. Opportunities to develop new processes, driven by the regulatory requirements for the reduction or elimination of gaseous and particulate pollutant abound. This presentation describes the chemistry, reaction mechanisms, reactor design, system engineering, economics, and regulations that surround the utilization of clean coal energy. The presentation will cover the salient features of the fundamental and process aspects of the clean coal technologies in practice as well as in development. These technologies include those for the cleaning of SO2, H2S, NOx, and heavy metals, and separation of CO2 from the flue gas or the syngas. Further, new combustion and gasification processes based on the chemical looping concepts will be illustrated in the context of the looping particle design, process heat integration, energy conversion efficiency, and economics.

  1. Chapter 2: Assessing the Potential Energy Impacts of Clean Energy Initiatives

    Science.gov (United States)

    Assessing the Multiple Benefits of Clean Energy” helps state energy, environmental, and economic policy makers identify and quantify the many benefits of clean energy to support the development and implementation of cost-effective clean energy initiatives

  2. Northeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, Tom [Pace Univ., New York, NY (United States)

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: Reduction of greenhouse gas emissions and criteria pollutants; Improvements in energy efficiency resulting in lower costs of doing business; Productivity gains in industry and efficiency gains in buildings; Lower regional energy costs; Strengthened energy security; Enhanced consumer choice; Reduced price risks for end-users; and Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences

  3. Midwest Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  4. Tracking Clean Energy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Global demand for energy shows no signs of slowing; carbon dioxide emissions keep surging to new records; and political uprisings, natural disasters and volatile energy markets put the security of energy supplies to the test. More than ever, the need for a fundamental shift to a cleaner and more reliable energy system is clear. What technologies can make that transition happen? How do they work? And how much will it all cost?.

  5. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  6. Sociology: Clean-energy conservatism

    Science.gov (United States)

    McCright, Aaron M.

    2017-03-01

    US conservatives receive a steady stream of anti-environmental messaging from Republican politicians. However, clean-energy conservatives sending strong counter-messages on energy issues could mobilize moderate conservatives to break away from the dominant right-wing defence of fossil fuels.

  7. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David [Washington State Univ., Pullman, WA (United States)

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  8. The nuclear: a clean energy; Le nucleaire: une energie propre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    At the beginning the Nuclear Energy was developed in a context of energy diversification and competitiveness. Today another of its assets shows the interest of this energy source: the nuclear energy is a clean energy which controls the wastes and offers an efficient solution against the atmospheric pollution and the climatic change. These two arguments are developed. (A.L.B.)

  9. Extreme laser pulses for possible development of boron fusion power reactors for clean and lasting energy

    Science.gov (United States)

    Hora, H.; Eliezer, S.; Kirchhoff, G. J.; Korn, G.; Lalousis, P.; Miley, G. H.; Moustaizis, S.

    2017-05-01

    The nuclear reaction of hydrogen (protons) with the boron isotope 11 (HB11) is aneutronic avoiding the production of dangerous neutrons in contrast to any other fusion but it is extremely difficult at thermal equilibrium plasma conditions. There are alternative schemes without thermal equilibrium, e.g. the Tri Alpha reversed magnetic field (RMF) confinement and others, however, the only historical first measurements of HB11 fusion were with lasers interacting with high density plasmas using non-thermal direct conversion of laser energy into ultrahigh acceleration of plasma blocks to avoid the thermal problems. Combining these long studied mechanisms with recently measured ultrahigh magnetic fields for trapping the reacting plasma arrives at a very compact design of an environmentally clean reactor for profitable low cost energy using present technologies.

  10. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  11. Clean Energy Manufacturing Analysis Center Benchmark Report: Framework and Methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-05-23

    This report documents the CEMAC methodologies for developing and reporting annual global clean energy manufacturing benchmarks. The report reviews previously published manufacturing benchmark reports and foundational data, establishes a framework for benchmarking clean energy technologies, describes the CEMAC benchmark analysis methodologies, and describes the application of the methodologies to the manufacturing of four specific clean energy technologies.

  12. Battery Technology Stores Clean Energy

    Science.gov (United States)

    2008-01-01

    Headquartered in Fremont, California, Deeya Energy Inc. is now bringing its flow batteries to commercial customers around the world after working with former Marshall Space Flight Center scientist, Lawrence Thaller. Deeya's liquid-cell batteries have higher power capability than Thaller's original design, are less expensive than lead-acid batteries, are a clean energy alternative, and are 10 to 20 times less expensive than nickel-metal hydride batteries, lithium-ion batteries, and fuel cell options.

  13. National Alliance for Clean Energy Incubators New Mexico Clean Energy Incubator

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Suzanne S.

    2004-12-15

    The National Alliance for Clean Energy Incubators was established by the National Renewable Energy Laboratory (NREL) to develop an emerging network of business incubators for entrepreneurs specializing in clean energy enterprises. The Alliance provides a broad range of business services to entrepreneurs in specific geographic locales across the U.S. and in diverse clean energy technology areas such as fuel cells, alternative fuels, power generation, and renewables, to name a few. Technology Ventures Corporation (TVC) participates in the Alliance from its corporate offices in Albuquerque, NM, and from its sites in Northern and Southern New Mexico, California, and Nevada. TVC reports on the results of its attempts to accelerate the growth and success of clean energy and energy efficiency companies through its array of business support services. During the period from September 2002 through September 2004, TVC describes contributions to the Alliance including the development of 28 clients and facilitating capital raises exceeding $35M.

  14. New Mexico Clean Energy Initiatives

    Science.gov (United States)

    This presentation addresses New Mexico oil and gas development, brownfields, mining development, renewable energy development, renewable resources, renewable standards, solar opportunities, climate change, and energy efficiency.

  15. Development of Thermoelectric and Permanent Magnet Nanoparticles for Clean Energy Applications

    Science.gov (United States)

    Nguyen, Phi-Khanh

    The global trend towards energy efficiency and environmental sustainability has generated a strong demand for clean energy technologies. Among the many energy solutions, the work in this dissertation contributes to two strategic goals: the reduction of fuel consumption in the transportation sector, and the increase of domestic wind power capacity. The key barriers to achieving these goals are materials challenges. Automobiles can be made more efficient by thermoelectric conversion of waste heat from the engine into electricity that can be used to power electrical components in the vehicle. Vehicles can forego petroleum fuel altogether by using electric or hybrid motors. Unfortunately, the conversion efficiency of current thermoelectric technology is too low to be considered economically feasible, and the permanent magnets used in electric vehicle motors and wind turbine generators require critical rare-earth elements that are economically unstable (often referred to as the "rare-earth crisis"). In order to combat these challenges, a "spark erosion" technique was utilized for producing nanoparticles that improve thermoelectric efficiency and contribute to the development of electromotors that do not require rare-earths. In Chapter 2 of this dissertation, I describe the utilization of spark erosion for producing high-quality thermoelectric nanoparticles at a remarkably high rate and with enhanced thermoelectric properties. The technique was employed to synthesize p-type bismuth-antimony telluride (BST) and n-type skutterudite nanoparticles, using a relatively small laboratory apparatus, with low energy consumption. The compacted BST nanocomposite samples made from these nanoparticles exhibit a well-defined, 20--50 nm size nanograin microstructure, and show an enhanced Figure of merit, ZT, of 1.36 at 360 K due to a reduction in lattice thermal conductivity. The skutterudite nanocomposites also show reduced thermal conductivity but still require enhancement in the

  16. Clean Energy Policy Analyses: Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  17. Clean Energy Policy Analyses. Analysis of the Status and Impact of Clean Energy Policies at the Local Level

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-12-01

    This report takes a broad look at the status of local clean energy policies in the United States to develop a better understanding of local clean energy policy development and the interaction between state and local policies. To date, the majority of clean energy policy research focuses on the state and federal levels. While there has been a substantial amount of research on local level climate change initiatives, this is one of the first analyses of clean energy policies separate from climate change initiatives. This report is one in a suite of reports analyzing clean energy and climate policy development at the local, state, and regional levels.

  18. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  19. Southwest Regional Clean Energy Incubation Initiative (SRCEII)

    Energy Technology Data Exchange (ETDEWEB)

    Webber, Michael [Univ. of Texas, Austin, TX (United States)

    2017-10-31

    The Austin Technology Incubator’s (ATI’s) Clean Energy Incubator at the University of Texas at Austin (ATI-CEI) utilized the National Incubator Initiative for Clean Energy (NIICE) funding to establish the Southwest Regional Clean Energy Incubation Initiative, composed of clean energy incubators from The University of Texas at Austin (UT-Austin), The University of Texas at El Paso (UTEP), The University of Texas at San Antonio (UTSA), and Texas A&M University (TAMU).

  20. Clean Energy Solutions Center Services (Vietnamese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  1. Clean Energy Solutions Center Services (Arabic Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  2. Clean Energy Solutions Center Services (French Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  3. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  4. Clean Energy Solutions Center Services (Portuguese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  5. The Dalian National Laboratory for Clean Energy.

    Science.gov (United States)

    Zhang, Tao; Li, Can; Bao, Xinhe

    2012-05-01

    The Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences conducts fundamental and applied research towards chemistry and chemical engineering, with strong competence in the development of new technologies. The research in this special issue, containing 19 papers, features some of the DICP's best work on sustainable energy, use of environmental resources, and advanced materials within the framework of the Dalian National Laboratory for Clean Energy (DNL). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Clean Water for Developing Countries.

    Science.gov (United States)

    Pandit, Aniruddha B; Kumar, Jyoti Kishen

    2015-01-01

    Availability of safe drinking water, a vital natural resource, is still a distant dream to many around the world, especially in developing countries. Increasing human activity and industrialization have led to a wide range of physical, chemical, and biological pollutants entering water bodies and affecting human lives. Efforts to develop efficient, economical, and technologically sound methods to produce clean water for developing countries have increased worldwide. We focus on solar disinfection, filtration, hybrid filtration methods, treatment of harvested rainwater, herbal water disinfection, and arsenic removal technologies. Simple, yet innovative water treatment devices ranging from use of plant xylem as filters, terafilters, and hand pumps to tippy taps designed indigenously are methods mentioned here. By describing the technical aspects of major water disinfection methods relevant for developing countries on medium to small scales and emphasizing their merits, demerits, economics, and scalability, we highlight the current scenario and pave the way for further research and development and scaling up of these processes. This review focuses on clean drinking water, especially for rural populations in developing countries. It describes various water disinfection techniques that are not only economically viable and energy efficient but also employ simple methodologies that are effective in reducing the physical, chemical, and biological pollutants found in drinking water to acceptable limits.

  7. Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Ledley, T. S.; McCaffrey, M.

    2009-12-01

    “Climate Science Literacy is an understanding of your influence on climate and climate’s influence on you and society.” In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been developed. In order to promote the implementation of these Climate Literacy Essential Principles the Climate Literacy Network (CLN, http://www.climateliteracynow.org) was formed in January 2008. Made up of a broad spectrum of stakeholders, this group addresses the complex issues involved in making climate literacy real for all citizens. Efforts within the CLN to improve climate literacy and energy awareness include: 1) the development of the Climate Literacy and Energy Awareness Network (CLEAN) Pathway project, recently funded by NSF’s National STEM Education Distributed Learning (NSDL) and Climate Change Education programs; and 2) the development of a regional model (Climate Literacy and Energy Awareness Network-New England - CLEAN-NE) to coordinate and leverage the wide range of activities focused on climate and energy that are already occurring, with plans that the model will be adapted to other regions around the country. The CLEAN Pathway project will steward a collection of resources that directly address the Climate Literacy: Essential Principles of Climate Science. In addition, it will provide a number of avenues of professional and community development opportunities to facilitate cyberlearning on climate and energy. CLEAN-NE is an initiative to educate high school and college students in the region about climate change and energy and its importance to our planet and society. Through this program, high school students will connect with college mentors, and together they will gain the foundation of climate literacy necessary to change their actions to reflect a more energy-conscious lifestyle. They will then engage their peers and communities in their mission to become climate-literate citizens and

  8. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Arne [Humboldt State Univ., MN (United States). Schatz Energy Research Center; Bond, Tami C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Civil and Environmental Engineering; Lam, Nicholoas L. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Health Sciences; Hultman, Nathan [The Brookings Institution, Washington, DC (United States)

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  9. Clean fuel technology for world energy security

    Energy Technology Data Exchange (ETDEWEB)

    Sunjay, Sunjay

    2010-09-15

    Clean fuel technology is the integral part of geoengineering and green engineering with a view to global warming mitigation. Optimal utilization of natural resources coal and integration of coal & associated fuels with hydrocarbon exploration and development activities is pertinent task before geoscientist with evergreen energy vision with a view to energy security & sustainable development. Value added technologies Coal gasification,underground coal gasification & surface coal gasification converts solid coal into a gas that can be used for power generation, chemical production, as well as the option of being converted into liquid fuels.

  10. Gulf Coast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Dillingham, Gavin [Houston Advanced Research Center, TX (United States)

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  11. Clean Energy Policy Analysis: Impact Analysis of Potential Clean Energy Policy Options for the Hawaii Clean Energy Initiative (HCEI)

    Energy Technology Data Exchange (ETDEWEB)

    Busche, S.; Doris, E.; Braccio, R.; Lippert, D.; Finch, P.; O' Toole, D.; Fetter, J.

    2010-04-01

    This report provides detailed analyses of 21 clean energy policy options considered by the Hawaii Clean Energy Initiative working groups for recommendation to the 2010 Hawaii State Legislature. The report considers the impact each policy may have on ratepayers, businesses, and the state in terms of energy saved, clean energy generated, and the financial costs and benefits. The analyses provide insight into the possible impacts, both qualitative and quantitative, that these policies may have in Hawaii based on the experience with these policies elsewhere. As much as possible, the analyses incorporate Hawaii-specific context to reflect the many unique aspects of energy use in the State of Hawaii.

  12. Developing Clean Energy Projects on Tribal Lands: Data and Resources for Tribes (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-12-01

    This is a outreach brochure (booklet) for the DOE Office of Indian Energy summarizing the renewable energy technology potential on tribal lands. The booklet features tech potential maps for various technologies, information about the activities of DOE-IE, and resources for Tribes.

  13. Energy Servers Deliver Clean, Affordable Power

    Science.gov (United States)

    2010-01-01

    K.R. Sridhar developed a fuel cell device for Ames Research Center, that could use solar power to split water into oxygen for breathing and hydrogen for fuel on Mars. Sridhar saw the potential of the technology, when reversed, to create clean energy on Earth. He founded Bloom Energy, of Sunnyvale, California, to advance the technology. Today, the Bloom Energy Server is providing cost-effective, environmentally friendly energy to a host of companies such as eBay, Google, and The Coca-Cola Company. Bloom's NASA-derived Energy Servers generate energy that is about 67-percent cleaner than a typical coal-fired power plant when using fossil fuels and 100-percent cleaner with renewable fuels.

  14. Evaluation of Teaching on Clean Energy with Wind Power Generation

    OpenAIRE

    塩沢, 臣城; 石田, 聡一; 干川, 圭吾

    2000-01-01

    Evaluation of teaching material on clean energy with wind power generation is reported in this paper. A wind power generation system was developed as a teaching material in electric and electronics field in technology education of junior high school. It is shown that the teaching material was effective for students to understand the wind power generation and the clean energy.

  15. Emerging forward osmosis (FO) technologies and challenges ahead for clean water and clean energy applications

    KAUST Repository

    Chung, Tai-Shung

    2012-08-01

    The purpose of this short review is to share our understanding and perspectives with the chemical, environmental, water and osmotic power communities on FO processes in order to conduct meaningful R & D and develop effective and sustainable FO technologies for clean water and clean energy. © 2012 Elsevier Ltd. All rights reserved.

  16. Falling behind - Canada's lost clean energy jobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    With the depletion of conventional resources and the increasing concerns about the environment, emphasis has been put on developing clean energy. Clean energy is expected to become one of the main industrial sectors within the next decade, thus creating numerous jobs. While significant investments have been made by several countries to shift to clean energy, Canada is investing in highly polluting resources such as the tar sands. It is shown that if Canada were to match U.S. efforts in terms of clean energy on a per person basis, they would need to invest 11 billion additional dollars and this would result in the creation of 66,000 clean energy jobs. This paper showed that Canada is falling behind in terms of clean energy and the authors recommend that the Canadian government match U.S. investments and design policies in support of clean energy and put a price on carbon so as to favor the development of the clean energy sector and its consequent job creation.

  17. Clean Technology Evaluation & Workforce Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Glaza

    2012-12-01

    The overall objective of the Clean Technology Evaluation portion of the award was to design a process to speed up the identification of new clean energy technologies and match organizations to testing and early adoption partners. The project was successful in identifying new technologies targeted to utilities and utility technology integrators, in developing a process to review and rank the new technologies, and in facilitating new partnerships for technology testing and adoption. The purpose of the Workforce Development portion of the award was to create an education outreach program for middle & high-school students focused on clean technology science and engineering. While originally targeting San Diego, California and Cambridge, Massachusetts, the scope of the program was expanded to include a major clean technology speaking series and expo as part of the USA Science & Engineering Festival on the National Mall in Washington, D.C.

  18. Experimental study on energy performance of clean air heat pump

    DEFF Research Database (Denmark)

    Fang, Lei; Nie, Jinzhe; Olesen, Bjarne W.

    2014-01-01

    to investigate its energy performance. Energy consumption of the prototype of CAHP was measured in laboratory at different climate conditions including mild-cold, mildhot and extremely hot and humid climates. The energy saving potential of the clean air heat pump compared to a conventional ventilation and air......-conditioning system was calculated. The experimental results showed that the clean air heat pump saved substantial amount of energy compared to the conventional system. For example, the CAHP can save up to 59% of electricity in Copenhagen, up to 40% of electricity in Milan and up to 30% of electricity in Colombo......An innovative clean air heat pump (CAHP) was designed and developed based on the air purification capacity of regenerative silica gel rotor. The clean air heat pump integrated air purification, dehumidification and cooling in one unit. A prototype of the clean air heat pump was developed...

  19. Emerging clean energy technology investment trends

    Science.gov (United States)

    Bumpus, A.; Comello, S.

    2017-06-01

    Early-stage capital providers and clean energy technology incubators are supporting a new wave of innovations focused on end-use efficiency and demand control. This wave complements expanding investments in supply technologies required for electricity sector decarbonization.

  20. Colorado's clean energy choices

    Energy Technology Data Exchange (ETDEWEB)

    Strawn, N.; Jones, J.

    2000-04-15

    The daily choices made as consumers affect the environment and the economy. Based on the state of today's technology and economics, Colorado consumers can include energy efficiency and renewable energy into many aspects of their lives. These choices include where they obtain electricity, how they use energy at home, and how they transport themselves from one place to another. In addition to outlining how they can use clean energy, Colorado's Clean Energy Choices gives consumers contacts and links to Web sites for where to get more information.

  1. Clean energy for development and economic growth: Biomass and other renewable options to meet energy and development needs in poor nations

    Energy Technology Data Exchange (ETDEWEB)

    Lilley, Art; Pandey, Bikash; Karstad, Elsen; Owen, Matthew; Bailis, Robert; Ribot, Jesse; Masera, Omar; Diaz, Rodolpho; Benallou, Abdelahanine; Lahbabi, Abdelmourhit

    2012-10-01

    The document explores the linkages between renewable energy, poverty alleviation, sustainable development, and climate change in developing countries. In particular, the paper places emphasis on biomass-based energy systems. Biomass energy has a number of unique attributes that make it particularly suitable to climate change mitigation and community development applications.

  2. Southeast Regional Clean Energy Policy Analysis

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  3. Southeast Regional Clean Energy Policy Analysis (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, J.

    2011-04-01

    More than half of the electricity produced in the southeastern states is fuelled by coal. Although the region produces some coal, most of the states depend heavily on coal imports. Many of the region's aging coal power facilities are planned for retirement within the next 20 years. However, estimates indicate that a 20% increase in capacity is needed over that time to meet the rapidly growing demand. The most common incentives for energy efficiency in the Southeast are loans and rebates; however, total public spending on energy efficiency is limited. The most common state-level policies to support renewable energy development are personal and corporate tax incentives and loans. The region produced 1.8% of the electricity from renewable resources other than conventional hydroelectricity in 2009, half of the national average. There is significant potential for development of a biomass market in the region, as well as use of local wind, solar, methane-to-energy, small hydro, and combined heat and power resources. Options are offered for expanding and strengthening state-level policies such as decoupling, integrated resource planning, building codes, net metering, and interconnection standards to support further clean energy development. Benefits would include energy security, job creation, insurance against price fluctuations, increased value of marginal lands, and local and global environmental paybacks.

  4. Advanced materials for clean energy

    CERN Document Server

    Xu (Kyo Jo), Qiang

    2015-01-01

    Arylamine-Based Photosensitizing Metal Complexes for Dye-Sensitized Solar CellsCheuk-Lam Ho and Wai-Yeung Wongp-Type Small Electron-Donating Molecules for Organic Heterojunction Solar CellsZhijun Ning and He TianInorganic Materials for Solar Cell ApplicationsYasutake ToyoshimaDevelopment of Thermoelectric Technology from Materials to GeneratorsRyoji Funahashi, Chunlei Wan, Feng Dang, Hiroaki Anno, Ryosuke O. Suzuki, Takeyuki Fujisaka, and Kunihito KoumotoPiezoelectric Materials for Energy HarvestingDeepam Maurya, Yongke Yan, and Shashank PriyaAdvanced Electrode Materials for Electrochemical Ca

  5. Challenges in the Quest for Clean Energies

    Indian Academy of Sciences (India)

    IAS Admin

    SERIES │ ARTICLE. Keywords. Wind energy, horizontal and ver- tical axis turbines, Betz law, offshore wind parks. Challenges in the Quest for Clean Energies. 3. Wind Technologies. Sheela K Ramasesha. Sheela K Ramasesha is currently working on renewable energy technologies with primary focus on photovoltaics at.

  6. Coalbed methane: Clean energy for the world

    Science.gov (United States)

    Ahmed, A.-J.; Johnston, S.; Boyer, C.; Lambert, S.W.; Bustos, O.A.; Pashin, J.C.; Wray, A.

    2009-01-01

    Coalbed methane (CBM) has the potential to emerge as a significant clean energy resource. It also has the potential to replace other diminishing hydrocarbon reserves. The latest developments in technologies and methodologies are playing a key role in harnessing this unconventional resource. Some of these developments include adaptations of existing technologies used in conventional oil and gas generations, while others include new applications designed specifically to address coal's unique properties. Completion techniques have been developed that cause less damage to the production mechanisms of coal seams, such as those occurring during cementing operations. Stimulation fluids have also been engineered specifically to enhance CBM production. Deep coal deposits that remain inaccessible by conventional mining operations offer CBM development opportunities.

  7. Challenges in the Quest for Clean Energies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 8. Challenges in the Quest for Clean Energies - Wind Technologies. Sheela K Ramasesha. Series Article Volume 18 Issue 8 August 2013 pp 756-770 ... Keywords. Wind energy; horizontal and vertical axis turbines; Betz law; offshore wind parks.

  8. Challenges in the Quest for Clean Energies

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 5. Challenges in the Quest for Clean Energies - Solar Energy Technologies. Sheela K Ramasesha. Series Article Volume 18 Issue 5 May 2013 pp 440-457. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Clean Energy Solutions Center Services (Arabic Translation) (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-06-01

    This is the Arabic translation of the Clean Energy Solutions Center Services fact sheet. The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  10. Accelerating Clean Energy Commercialization. A Strategic Partnership Approach

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Richard [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pless, Jacquelyn [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Arent, Douglas J. [Joint Institute for Strategic Energy Analysis, Golden, CO (United States); Locklin, Ken [Impax Asset Management Group (United Kingdom)

    2016-04-01

    Technology development in the clean energy and broader clean tech space has proven to be challenging. Long-standing methods for advancing clean energy technologies from science to commercialization are best known for relatively slow, linear progression through research and development, demonstration, and deployment (RDD&D); and characterized by well-known valleys of death for financing. Investment returns expected by traditional venture capital investors have been difficult to achieve, particularly for hardware-centric innovations, and companies that are subject to project finance risks. Commercialization support from incubators and accelerators has helped address these challenges by offering more support services to start-ups; however, more effort is needed to fulfill the desired clean energy future. The emergence of new strategic investors and partners in recent years has opened up innovative opportunities for clean tech entrepreneurs, and novel commercialization models are emerging that involve new alliances among clean energy companies, RDD&D, support systems, and strategic customers. For instance, Wells Fargo and Company (WFC) and the National Renewable Energy Laboratory (NREL) have launched a new technology incubator that supports faster commercialization through a focus on technology development. The incubator combines strategic financing, technology and technical assistance, strategic customer site validation, and ongoing financial support.

  11. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  12. 76 FR 16646 - Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

    Science.gov (United States)

    2011-03-24

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Circadian, Inc., Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc... concerning the securities of Clean Energy Combustion, Inc. (n/k/a Clean Energy Combustion Systems, Inc...

  13. Mesoporous materials for clean energy technologies.

    Science.gov (United States)

    Linares, Noemi; Silvestre-Albero, Ana M; Serrano, Elena; Silvestre-Albero, Joaquín; García-Martínez, Javier

    2014-11-21

    Alternative energy technologies are greatly hindered by significant limitations in materials science. From low activity to poor stability, and from mineral scarcity to high cost, the current materials are not able to cope with the significant challenges of clean energy technologies. However, recent advances in the preparation of nanomaterials, porous solids, and nanostructured solids are providing hope in the race for a better, cleaner energy production. The present contribution critically reviews the development and role of mesoporosity in a wide range of technologies, as this provides for critical improvements in accessibility, the dispersion of the active phase and a higher surface area. Relevant examples of the development of mesoporosity by a wide range of techniques are provided, including the preparation of hierarchical structures with pore systems in different scale ranges. Mesoporosity plays a significant role in catalysis, especially in the most challenging processes where bulky molecules, like those obtained from biomass or highly unreactive species, such as CO2 should be transformed into most valuable products. Furthermore, mesoporous materials also play a significant role as electrodes in fuel and solar cells and in thermoelectric devices, technologies which are benefiting from improved accessibility and a better dispersion of materials with controlled porosity.

  14. African perspectives on the clean development mechanism

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-08-01

    The papers, which are all written from an African perspective, are an important contribution to the debate surrounding the relevance and applicability of the Clean Development Mechanism in Africa. In addition to sector-specific discussions on the prospects for CDM in the energy, transport, industry and forestry sectors, various authors have attempted to tackle complex issues related to the instituional design of CDM, its mode of operation, participatory implementation and methodological questions such as baselines and additionality. (au)

  15. The Clean Energy Manufacturing Analysis Center (CEMAC): Providing Analysis and Insights on Clean Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Nicholi S [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-28

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  16. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  17. Improved clean development mechanism and joint implementation to promote holistic sustainable development - an integrated policy and methodology for international energy collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Kua Harn Wei

    2007-07-01

    The current Clean Development Mechanism/Joint Implementation framework does not emphasize on wholistic sustainability of energy projects. The Golden Standard was a good example of how this framework can be fine-tuned. However, it does not explicitly incentivize the adoption of the sustainability standards it outlines. A 4-element integrated policy strategy is proposed. A Sustainability Assessment Matrix is constructed to evaluate project proposals' sustainability performance. The Probational Sustainability Performance Demand requires continual monitoring of this performance of approved projects throughout a designated probation period. The involved countries will be awarded Sustainability Credits (measured with the matrix) in installments according to their performance within this period. The Probational Emission Reduction Demand requires investing countries to meet moderated emission reduction targets in order for them to claim the certified emission reductions/ emission reduction credits and their share of Sustainability Credits. These credits are converted into Sustainability Assistance Funds, which can be channeled back to finance either the approved projects or independent renewable energy projects in the involved countries. The MIT Energy Cost Model is used to estimate the required amount and identify the forms of such assistance package. Finally, an integrated policymaking framework is suggested to execute and monitor these interconnected policy elements. (auth)

  18. NREL's Clean Energy Policy Analyses Project. 2009 U.S. State Clean Energy Data Book

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, Racel [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hummon, Marissa [National Renewable Energy Lab. (NREL), Golden, CO (United States); McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2009-10-01

    This data book provides a summary of the status of state-level energy efficiency and renewable energy (taken together as clean energy) developments and supporting policy implementation. It is intended as a reference book for those interested in the progress of the states and regions toward a clean energy economy. Although some national-scale data are given in the initial section, the data are mostly aggregated by states and region, and no data on federal- or utility-level policies are presented here.

  19. NREL's Clean Energy Policy Analyses Project: 2009 U.S. State Clean Energy Data Book, October 2010

    Energy Technology Data Exchange (ETDEWEB)

    Gelman, R.; Hummon, M.; McLaren, J.; Doris, E.

    2010-10-01

    This data book provides a summary of the status of state-level energy efficiency and renewable energy (taken together as clean energy) developments and supporting policy implementation. It is intended as a reference book for those interested in the progress of the states and regions toward a clean energy economy. Although some national-scale data are given in the initial section, the data are mostly aggregated by states and region, and no data on federal- or utility-level policies are presented here.

  20. Scenarios for a Clean Energy Future: Interlaboratory Working Group on Energy-Efficient and Clean-Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2000-12-18

    This study estimates the potential for public policies and R and D programs to foster clean energy technology solutions to the energy and environmental challenges facing the nation. These challenges include global climate change, air pollution, oil dependence, and inefficiencies in the production and use of energy. The study uses a scenario-based approach to examine alternative portfolios of public policies and technologies. Although the report makes no policy recommendations, it does present policies that could lead to impressive advances in the development and deployment of clean energy technologies without significant net economic impacts. Appendices are available electronically at: www.nrel.gov/docs/fy01osti/29379appendices.pdf (6.4 MB).

  1. Clean and Secure Energy from Coal

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Philip [Univ. of Utah, Salt Lake City, UT (United States); Davies, Lincoln [Univ. of Utah, Salt Lake City, UT (United States); Kelly, Kerry [Univ. of Utah, Salt Lake City, UT (United States); Lighty, JoAnn [Univ. of Utah, Salt Lake City, UT (United States); Reitze, Arnold [Univ. of Utah, Salt Lake City, UT (United States); Silcox, Geoffrey [Univ. of Utah, Salt Lake City, UT (United States); Uchitel, Kirsten [Univ. of Utah, Salt Lake City, UT (United States); Wendt, Jost [Univ. of Utah, Salt Lake City, UT (United States); Whitty, Kevin [Univ. of Utah, Salt Lake City, UT (United States)

    2014-08-31

    The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues.

  2. Clean Economy, Living Planet. The Race to the Top of Global Clean Energy Technology Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Van der Slot, A.; Van den Berg, W. [Roland Berger Strategy Consultants RBSC, Amsterdam (Netherlands)

    2012-05-15

    For four years, WWF and Roland Berger have tracked developments in the global clean energy technology (cleantech) sector and ranked countries according to their cleantech sales. The 3rd annual 'Clean Economy, Living Planet' report ranks 40 countries based on the 2011 sales value of the clean energy technology products they manufacture. The report shows that the EU has lost its position to China as the leader in the fast growing global cleantech energy manufacturing sector. However, when cleantech sales are weighted as a percentage of GDP, Denmark and Germany occupied the first and third position globally. Last year the sector's global sales value rose by 10% to almost 200 billion euros, close to the scale of consumer electronics manufacturing. It is projected to overtake oil and gas equipment in the next three years.

  3. Energy efficiency and CDM (Clean Development Mechanism): an attractive combination?; Eficiencia energetica e MDL (Mecanismo de Desenvolvimento Limpo): uma combinacao atrativa?

    Energy Technology Data Exchange (ETDEWEB)

    Aragao Neto, Raymundo Moniz de; Silva, Pedro Paulo [Programa GERBI - Reducao da Emissao de Gases Causadores do Efeito Estufa na Industria Brasileira, CE (Brazil); Almeida, Jose Ricardo Uchoa Cavalcanti [PETROBRAS S.A., Pojuca, BA (Brazil). Unidade de Negocios de Gas Natural (UNGN)

    2004-07-01

    The agreements that defined associated practices to the CDM (Clean Development Mechanism) include energy efficiency in end users as a possible candidate to CDM eligibility. Worldwide, the experience of using 'carbon credits' resulted from reduced emissions in end users, as consequence of increased energy efficiency in processes, is limited. The paper presents preliminary conclusions of case studies developed by GERBI, evaluating the emissions reduction potential achieved by energy efficiency improvements in industrial processes, as well as financial impacts due to emissions reduction certificates traded. The paper considers a simplified methodology for feasibility analysis, but with necessary information to demonstrate how CDM and Energy Efficiency combination can support the decision for project implementation. (author)

  4. Clean Energy Policies Analysis: The Role of Policy in Clean Energy Market Transformation (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.

    2010-11-01

    This presentation was written and presented by Elizabeth Doris (NREL) at the November 17 TAP Webinar to provide background detail about how state policies are transforming the clean energy market in different regions of the country.

  5. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  6. Renewable Energy Zones for the Africa Clean Energy Corridor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Grace C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Deshmukh, Ranjit [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Ndhlukula, Kudakwashe [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Radojicic, Tijana [International Renewable Energy Agency (IRENA), Abu Dhabi (United Arab Emirates); Reilly, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States)

    2015-07-01

    Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmental impacts. The Renewable Energy Zones for the Africa Clean Energy Corridor study sought to identify and comprehensively value high-quality wind, solar photovoltaic (PV), and concentrating solar power (CSP) resources in 21 countries in the East and Southern Africa Power Pools to support the prioritization of areas for development through a multi-criteria planning process. These countries include Angola, Botswana, Burundi, Djibouti, Democratic Republic of Congo, Egypt, Ethiopia, Kenya, Lesotho, Libya, Malawi, Mozambique, Namibia, Rwanda, South Africa, Sudan, Swaziland, Tanzania, Uganda, Zambia, and Zimbabwe. The study includes the methodology and the key results including renewable energy potential for each region.

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  8. Energy resources integrated planning as instrument for clean development; Planejamento integrado de recursos energeticos como instrumento de desenvolvimento limpo

    Energy Technology Data Exchange (ETDEWEB)

    Galvao, Luis Claudio Ribeiro; Kanayama, Paulo Helio [Universidade de Sao Paulo (EPUSP), SP (Brazil). Escola Politecnica; Grimoni, Jose Aquiles Baeso; Udaeta, Miguel Edgar Morales [Universidade de Sao Paulo (IEE/USP), SP (Brazil). Inst. de Eletrotecnica e Energia

    2008-07-01

    This paper presents the RIP - Resources Integrated Planning, viewing the sustainable development. In the RIP the regional energy resource utilization are a prioritization and the regional economic talent is viewing as a competitive advantage for improvement of the social indexes, and the environmental limitations are considered, including the effects of global heating. Also, the political forces are respected, the involved and interested participates in the planning, and the most important the systemic approaching for obtaining the sustainable, rational and efficient use of the energy are obtained in advance which allows to predict the development consequences before the implantation of projects.

  9. Survey for making a data book on the new energy technological development. Waste-fueled power generation, solar heat utilization, geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traversal themes; Shin energy gijutsu kaihatsu kankei data shu sakusei chosa. Haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika, gas ka oyobi odanteki tema

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The paper concerns the following six fields among the fields of new energy technology: the waste-fueled power generation, solar heat utilization, geothermal power generation, clean energy vehicles, coal liquefaction and coal gasification. The up-to-date data made public were collected and classified into the following items: outline of systems, specific examples of the introduction in Japan and other countries, policies/laws and rules/subsidy systems, production quantity/actual amount of introduction/projected amount of introduction (target), cost, terminology, listing of main related companies and groups, etc. Further, arrangement was traversally conducted on the outlook of the energy introduction by the Japanese government and measures taken for development of new energy by Japan and other countries. Namely, the items of the book are as follows: classification of new energy, outlook for energy supply/demand, cost of new energy technology (power generation) and outlook for the introduction, menus of buying surplus electricity of electric companies, policies/laws and rules/subsidy systems concerning the new energy introduction in Japan and overseas, and a list of organizations engaged in the new energy technological development.

  10. The clean energy partnership Berlin-CEP

    Science.gov (United States)

    Bonhoff, Klaus

    The clean energy partnership (CEP) is an international cooperation comprising 11 energy and technology companies as well as car manufacturers (Aral/BP, BMW, Berliner Verkehrsbetriebe (BVG), Daimler, Ford, GM/Opel, Hydro, Linde, TOTAL, Vattenfall Europe and Volkswagen AG). The vision of mobility based on hydrogen is commonly shared by the partners. The objective of the CEP is to prove everyday suitability of hydrogen for transportation purposes by real-life operation of hydrogen stations integrated into conventional filling stations, by efficient and reliable hydrogen vehicles in customer operation and by fast, convenient and safe fuelling of vehicles with liquid an gaseous hydrogen.

  11. Leading the Nation in Clean Energy Deployment (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-07-01

    This document summarizes key efforts and projects that are part of the DOE/NREL Integrated Deployment effort to integrated energy efficiency and renewable energy technologies in cities, states, island locations, and communities around the world. The U.S. Department of Energy (DOE) is pursuing an aggressive, scalable, and replicable strategy to accelerate market adoption of clean energy solutions to power homes, businesses, and vehicles. Using the comprehensive Integrated Deployment approach developed by the National Renewable Energy Laboratory (NREL), DOE partners with communities, cities, states, federal agencies, and territories to identify and implement a variety of efficiency and renewable energy technology solutions.

  12. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Meza, Juan [LBNL, Computational Research Division

    2010-08-09

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  13. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret

    2017-05-25

    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  14. Clean energy and the hydrogen economy.

    Science.gov (United States)

    Brandon, N P; Kurban, Z

    2017-07-28

    In recent years, new-found interest in the hydrogen economy from both industry and academia has helped to shed light on its potential. Hydrogen can enable an energy revolution by providing much needed flexibility in renewable energy systems. As a clean energy carrier, hydrogen offers a range of benefits for simultaneously decarbonizing the transport, residential, commercial and industrial sectors. Hydrogen is shown here to have synergies with other low-carbon alternatives, and can enable a more cost-effective transition to de-carbonized and cleaner energy systems. This paper presents the opportunities for the use of hydrogen in key sectors of the economy and identifies the benefits and challenges within the hydrogen supply chain for power-to-gas, power-to-power and gas-to-gas supply pathways. While industry players have already started the market introduction of hydrogen fuel cell systems, including fuel cell electric vehicles and micro-combined heat and power devices, the use of hydrogen at grid scale requires the challenges of clean hydrogen production, bulk storage and distribution to be resolved. Ultimately, greater government support, in partnership with industry and academia, is still needed to realize hydrogen's potential across all economic sectors.This article is part of the themed issue 'The challenges of hydrogen and metals'. © 2017 The Author(s).

  15. Clean Energy Generation and Dispatch in Reformed Wholesale Electricity Markets: Experience in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengru [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hurlbut, David J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Li, Ma [State Grid Energy Research Institute; Fan, Zhang [State Grid Energy Research Institute; Menghua, Fan [State Grid Energy Research Institute; Jing, Li [State Grid Energy Research Institute; Haoyuan, Qu [State Grid Energy Research Institute

    2017-04-01

    In recent years, the US electricity market has undergone several stages of reform, and gradually formed the market where the wholesale electricity price is determined by the supply and demand. The US electricity market also changes along with the rapid development of clean energy, forming a number of the market mechanisms that is specifically developed for clean energy power generation characteristics. On the basis of discussing the pricing mechanism of US electricity market, this paper analyzes the experience and practice of encouraging renewable energy development policy and clean energy dispatch from the angle of market mechanism and dispatching decision, and puts forward the reference for clean energy dispatching in China.

  16. Improving the Clean Development Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kjellen, B. [Stockholm Environment Institute SEI, Stockholm (Sweden); Egenhofer, C.; Van Schaik, L. [Centre for European Policy Studies CEPS, Brussels (Belgium); Cornland, D. [Swedish Foundation for Strategic Environmental Research MISTRA, Stockholm (Sweden)

    2005-11-22

    The creation of the CDM - as well as the other Kyoto Protocol flexible mechanisms - is an unprecedented achievement. It has created an international market-based cooperation mechanism for sustainable development to the benefit of both industrialised and developing countries. However, learning-by-doing has demonstrated the difficulty of achieving the environmental and development aims envisioned for the CDM. Both environmental and development priorities require a rapid transition away from fossil-fuel-based economic development in developing countries. In addition, the scale of the climate challenge necessitates an efficient use of resources for reducing emissions in industrialised countries. From this perspective, clearly, the scale of the contribution that can be made by the CDM under current conditions is insufficient. Although small in its current form, over time the CDM could radically transform international economic and environmental cooperation, notably by using the power of markets to achieve economic efficiency in meeting Annex I emission targets while stimulating the deployment of renewable energy and energy-efficient technologies in developing countries. To harness this potential without sacrificing the environmental effectiveness of the mechanism requires a upgrading of the institutional capacity to manage and use the mechanism (in industrialised and developing countries). Moreover, in order to fulfil its tasks, the CDM must meet the fundamental challenge of linking together two hitherto separate international logics; that of global capital markets and that of international negotiations between sovereign nation states.

  17. Mapping of Ethiopian higher education institutions on clean energy

    Energy Technology Data Exchange (ETDEWEB)

    2011-04-15

    Norad commissioned Econ Poeyry to map teaching and research activities and capacity related to clean energy in selected Ethiopian universities. The mapping identified challenges and opportunities with the aim of facilitating future intervention by the Ethiopian Government and donors to help improve the energy sector development of the country. The report covered the government-owned universities of Bahir Dar, Mekelle, Jimma, Arba Minch and Addis Ababa. The mapping was based on a questionnaire and on interviews at each university. (Author)

  18. EDIN-USVI Clean Energy Quarterly: Volume 1, Issue 2, March 2011, Energy Development in Island Nations, U.S. Virgin Islands (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2011-03-01

    This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the five working groups, and project-related renewable energy and energy efficiency projects.

  19. Assessment of Hydrogen as suistinable clean energy

    OpenAIRE

    Funez Guerra, C.; Clemente Jul, María del Carmen; Montes Ponce de León, M.

    2011-01-01

    The progressive depletion of fossil fuels and their high contribution to the energy supply in this modern society forces that will be soon replaced by renewable fuels. But the dispersion and alternation of renewable energy production also undertake to reduce their costs to use as energy storage and hydrogen carrier. It is necessary to develop technologies for hydrogen production from all renewable energy storage technologies and the development of energy production from hydrogen fuel cells an...

  20. G20 Clean Energy, and Energy Efficiency Deployment and Policy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    G-20 Clean Energy, and Energy Efficiency Deployment and Policy Progress, a report prepared by the International Energy Agency (IEA) in collaboration with the G-20 Clean Energy and Energy Efficiency Working Group, provides an overview of clean energy and energy efficiency technology deployment and summarises support policies in place across G-20 countries. The report highlights that while clean energy technology deployment has made steady progress and energy efficiency improvements have been made, continued reliance on fossil fuels to meet growth in global energy demand presents a significant challenge. Scaling-up the deployment of renewable energy, in addition to improving end-use efficiency, enhancing the efficiency of fossil fuel based power generation, and supporting the widespread deployment of CCS will, therefore, also be crucial aspects of the transition to a cleaner energy future. Because the G-20 group of countries represent close to 80% of energy-related CO2 emissions, by developing and deploying energy efficiency and clean energy technologies, they are presented with a unique opportunity to make collective progress in transitioning the global energy system. IEA Deputy Executive Director Richard Jones emphasised the importance of G-20 efforts, saying, 'The IEA welcomes this important collaboration with the G-20. Enhanced deployment of clean energy technologies and of energy efficiency improvements offers energy security and environmental benefits. It will also enable cost savings over the medium and long term -- an aspect that is particularly relevant at a time of economic uncertainty. We believe that enhanced policy assessment and analysis, building on this initial report, will enable governments to take more cost effective and efficient policy decisions.' This report was issued on the authority of the IEA Executive Director, it does not necessarily represent the views of IEA Member countries or the G20.

  1. Clean energy, renewable energies; Energie propre, energies renouvelables

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    This document is the compilation of the 4 issues of the 'energie propre - energie renouvelables' newsletter published by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE). Each issue is a technical file presenting a particular facility or installation: the pico-hydraulic power plant of the Allos lake (Mercantour, French Alps), the 'Chute de la Guerche' and 'Chute de Chastillon' hydraulic power plant exploited by the Isola town; the pico-hydraulic power plant of the drinkable water network of Hameau des Agnielles village, the direct solar thermal floor. (J.S.)

  2. Get Current: Switch on Clean Energy Activity Book

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-06-01

    Switching on clean energy technologies means strengthening the economy while protecting the environment. This activity book for all ages promotes energy awareness, with facts on different types of energy and a variety of puzzles in an energy theme.

  3. MIT Clean Energy Prize: Final Technical Report May 12, 2010 - May 11, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Snyder, Chris [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Campbell, Georgina [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Salony, Jason [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Aulet, Bill [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2011-08-09

    The MIT Clean Energy Prize (MIT CEP) is a venture creation and innovation competition to encourage innovation in the energy space, specifically with regard to clean energy. The Competition invited student teams from any US university to submit student-led ventures that demonstrate a high potential of successfully making clean energy more affordable, with a positive impact on the environment. By focusing on student ventures, the MIT CEP aims to educate the next generation of clean energy entrepreneurs. Teams receive valuable mentoring and hard deadlines that complement the cash prize to accelerate development of ventures. The competition is a year-long educational process that culminates in the selection of five category finalists and a Grand Prize winner and the distribution of cash prizes to each of those teams. Each entry was submitted in one of five clean energy categories: Renewables, Clean Non-Renewables, Energy Efficiency, Transportation, and Deployment.

  4. 75 FR 6180 - Mission Statement; Secretarial China Clean Energy Business Development Mission; May 16-21, 2010

    Science.gov (United States)

    2010-02-08

    ... approximately 65 percent of China's total energy consumption and 80 percent of all electricity generation is... ranks number one in the world. In 2009, solar energy investment in China reached $1.9 billion. In.... By 2010, total renewable energy capacity is likely to increase drastically with wind power generation...

  5. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    Science.gov (United States)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  6. Public-Private roundtables at the fourth Clean Energy Ministerial, 17-18 April 2013, New Delhi, India

    Energy Technology Data Exchange (ETDEWEB)

    Crowe, Tracey [Energetics, Incorporated, Washington, DC (United States)

    2013-06-30

    The Clean Energy Ministerial (CEM) is a high-level global forum to share best practices and promote policies and programs that advance clean energy technologies and accelerate the transition to a global clean energy economy. The CEM works to increase energy efficiency, expand clean energy supply, and enhance clean energy access worldwide. To achieve these goals, the CEM pursues a three-part strategy that includes high-level policy dialogue, technical cooperation, and engagement with the private sector and other stakeholders. Each year, energy ministers and other high-level delegates from the 23 participating CEM governments come together to discuss clean energy, review clean energy progress, and identify tangible next steps to accelerate the clean energy transition. The U.S. Department of Energy, which played a crucial role in launching the CEM, hosted the first annual meeting of energy ministers in Washington, DC, in June 2010. The United Arab Emirates hosted the second Clean Energy Ministerial in 2011, and the United Kingdom hosted the third Clean Energy Ministerial in 2012. In April 2013, India hosted the fourth Clean Energy Ministerial (CEM4) in New Delhi. Key insights from CEM4 are summarized in the report. It captures the ideas and recommendations of the government and private sector leaders who participated in the discussions on six discussion topics: reducing soft costs of solar PV; energy management systems; renewables policy and finance; clean vehicle adoption; mini-grid development; and power systems in emerging economies.

  7. Clean development mechanism: Perspectives from developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Agus P.; Meyers, Stephen

    1999-06-01

    This paper addresses the political acceptability and workability of CDM by and in developing countries. At COP-3 in Kyoto in 1997, the general position among developing countries changed from strong rejection of joint implementation to acceptance of CDM. The outgrowth of CDM from a proposal from Brazil to establish a Clean Development Fund gave developing countries a sense of ownership of the idea. More importantly, establishing support for sustainable development as a main goal for CDM overcame the resistance of many developing countries to accept a carbon trading mechanism. The official acceptance of CDM is not a guarantee of continued acceptance, however. Many developing countries expect CDM to facilitate a substantial transfer of technology and other resources to support economic growth. There is concern that Annex I countries may shift official development assistance into CDM in order to gain carbon credits, and that development priorities could suffer as a result. Some fear that private investments could be skewed toward projects that yield carbon credits. Developing country governments are wary regarding the strong role of the private sector envisioned for CDM. Increasing the awareness and capacity of the private sector in developing countries to initiate and implement CDM projects needs to be a high priority. While private sector partnerships will be the main vehicle for resource transfer in CDM, developing country governments want to play a strong role in overseeing and guiding the process so that it best serves their development goals. Most countries feel that establishment of criteria for sustainable development should be left to individual countries. A key issue is how CDM can best support the strengthening of local capacity to sustain and replicate projects that serve both climate change mitigation and sustainable development objectives.There is support among developing countries for commencing CDM as soon as possible. Since official commencement must

  8. USVI Energy Road Map: Charting the Course to a Clean Energy Future (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    This brochure provides an overview of the integrated clean energy deployment process and progress of the Energy Development in Island Nations U.S. Virgin Islands pilot project road map, including over-arching goals, organization, strategy, technology-specific goals and accomplishments, challenges, solutions, and upcoming milestones.

  9. The constraints in managing a transition towards clean energy technologies in developing nations: reflection on energy governance and alternative policy options.

    NARCIS (Netherlands)

    Thiam, D.R.; Moll, H.C.

    2012-01-01

    The purpose of this paper is to provide a conceptual framework stimulating a sustainable energy transition in developing nations. Based on the existing literature, we first index theoretical factors preventing deployment of low carbon technologies. After having identified these factors, we provide

  10. Assessing the Multiple Benefits of Clean Energy: A Resource for States

    Science.gov (United States)

    Clean energy provides multiple benefits. The Multiple Benefits Guide provides an overview of the environmental, energy system and economic benefits of clean energy, specifically energy efficiency, renewable energy and clean distributed generation, and why it is important to thin...

  11. CCS Research Development and Deployment in a Clean Energy Future: Lessons from Australia over the Past Two Decades

    Directory of Open Access Journals (Sweden)

    Peter J. Cook

    2017-08-01

    Full Text Available There is widespread, though by no means universal, recognition of the importance of carbon capture and storage (CCS as a carbon mitigation technology. However, the rate of deployment does not match what is required for global temperatures to stay well below 2 °C. Although some consider the hurdles to achieving the widespread application of CCS to be almost insurmountable, a more optimistic view is that a great deal is now known about CCS through research, demonstration, and deployment. We know how to do it; we are confident it can be done safely and effectively; we know what it costs; and we know that costs are decreasing and will continue to do so. We also know that the world will need CCS as long as countries, companies, and communities continue to use fossil fuels for energy and industrial processes. What is lacking are the necessary policy drivers, along with a technology-neutral approach to decrease carbon emissions in a cost-effective and timely manner while retaining the undoubted benefits of ready access to reliable and secure electricity and energy-intensive industrial products. In this paper, Australia is used as an example of what has been undertaken in CCS over the past 20 years, particularly in research and demonstration, but also in international collaboration. Progress in the large-scale deployment of CCS in Australia has been too slow. However, the world’s largest storage project will soon be operational in Australia as part of the Gorgon liquefied natural gas (LNG project, and investigations are underway into several large-scale CCS Flagship program opportunities. The organization and progress of the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC Otway Project, which is currently Australia’s only operational storage project, is discussed in some detail because of its relevance to the commercial deployment of CCS. The point is made that there is scope for building on this Otway activity to investigate

  12. Clean Energy Innovation: Sources of Technical and Commercial Breakthroughs

    Energy Technology Data Exchange (ETDEWEB)

    Perry, T. D., IV; Miller, M.; Fleming, L.; Younge, K.; Newcomb, J.

    2011-03-01

    Low-carbon energy innovation is essential to combat climate change, promote economic competitiveness, and achieve energy security. Using U.S. patent data and additional patent-relevant data collected from the Internet, we map the landscape of low-carbon energy innovation in the United States since 1975. We isolate 10,603 renewable and 10,442 traditional energy patents and develop a database that characterizes proxy measures for technical and commercial impact, as measured by patent citations and Web presence, respectively. Regression models and multivariate simulations are used to compare the social, institutional, and geographic drivers of breakthrough clean energy innovation. Results indicate statistically significant effects of social, institutional, and geographic variables on technical and commercial impacts of patents and unique innovation trends between different energy technologies. We observe important differences between patent citations and Web presence of licensed and unlicensed patents, indicating the potential utility of using screened Web hits as a measure of commercial importance. We offer hypotheses for these revealed differences and suggest a research agenda with which to test these hypotheses. These preliminary findings indicate that leveraging empirical insights to better target research expenditures would augment the speed and scale of innovation and deployment of clean energy technologies.

  13. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  14. NREL Spectrum of Clean Energy Innovation: Issue 3 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-11-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on the NREL Spectrum of Clean Energy Innovation.

  15. Benchmarks of Global Clean Energy Manufacturing: Summary of Findings

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    The Benchmarks of Global Clean Energy Manufacturing will help policymakers and industry gain deeper understanding of global manufacturing of clean energy technologies. Increased knowledge of the product supply chains can inform decisions related to manufacturing facilities for extracting and processing raw materials, making the array of required subcomponents, and assembling and shipping the final product. This brochure summarized key findings from the analysis and includes important figures from the report. The report was prepared by the Clean Energy Manufacturing Analysis Center (CEMAC) analysts at the U.S. Department of Energy's National Renewable Energy Laboratory.

  16. FY 1998 survey report. Survey to prepare a data book related to new energy technology development (Trends on the waste power generation, solar heat utilization, geothermal power generation, clean energy cars, coal liquefaction/coal gasification and new energy); 1998 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy, jidosha, sekitan ekika gas ka oyobi shin energy kanren doko)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Together with the progress of technology development, policies for the introduction/promotion of new energy technology are being developed such as promotion of the commercialization development, revision of the law system, and expansion of the subsidy system for promotion. To push the introduction/promotion forward more effectively, it is necessary to arrange various kinds of data comprehensively/systematically and to make them the basic data for contribution to the spread/education. As to the six fields of the waste power generation, solar heat utilization, geothermal power generation, clean energy cars, coal liquefaction, and coal gasification of the technology fields of new energy, this report collected/arranged the data made public recently in terms mainly of the following: trends of the introduction in Japan and abroad, policy/law/subsidy system in Japan and abroad, cost, system outline, basic terms, a list of the main affiliated companies and groups, and the nation's outlook for energy introduction and policies of each new energy technology in Japan and abroad, and the trends. Moreover, characteristics by field were described of the state of the commercialization/introduction of new energy technology. (NEDO)

  17. Energy storage deployment and innovation for the clean energy transition

    Science.gov (United States)

    Kittner, Noah; Lill, Felix; Kammen, Daniel M.

    2017-09-01

    The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.

  18. Innovation, renewable energy, and state investment: Case studies of leading clean energy funds

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, Ryan; Bolinger, Mark; Milford, Lewis; Porter, Kevin; Clark, Roger

    2002-09-01

    Over the last several years, many U.S. states have established clean energy funds to help support the growth of renewable energy markets. Most often funded by system-benefits charges (SBC), the 15 states that have established such funds are slated to collect nearly $3.5 billion from 1998 to 2012 for renewable energy investments. These clean energy funds are expected to have a sizable impact on the energy future of the states in which the funds are being collected and used. For many of the organizations tapped to administer these funds, however, this is a relatively new role that presents the challenge of using public funds in the most effective and innovative fashion possible. Fortunately, each state is not alone in its efforts; many other U.S. states and a number of countries are undertaking similar efforts. Early lessons are beginning to be learned by clean energy funds about how to effectively target public funds towards creating and building renewable energy markets. A number of innovative programs have already been developed that show significant leadership by U.S. states in supporting renewable energy. It is important that clean energy fund administrators learn from this emerging experience.

  19. Decentralized energy systems for clean electricity access

    Science.gov (United States)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  20. Clean coal technologies: Research, development, and demonstration program plan

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  1. Sustainable development, clean technology and knowledge from industry

    Directory of Open Access Journals (Sweden)

    Sokolović Slobodan M.

    2012-01-01

    Full Text Available Clean technology or clean production is the most important factor for the economic growth of a society and it will play the main role not only in the area of cleaner production, but also in sustainable development. The development of clean technology will be the main factor of the company’s strategy in the future. Each company, which wants to reach the competitive position at the market and wants to be environmentally friendly, has to accept the new approach in corporate management and the strategy of new clean technology. The main principles of clean technology are based on the concept of maximum resource and energy productivity and virtually no waste. This approach may be limited by human resources and the level of their environmental knowledge. Companies are committed to the development of the workers’ skills, and thus to the improvement of the company for the full implementation of the environmental legislation and clean production concept. Based on this commitment, one of Tempus projects is designed to improve the university-enterprise cooperation in the process of creating sustainable industry in Serbia, Bosnia and Herzegovina and the Former Yugoslav Republic of Macedonia. To achieve this goal, partner universities will create special courses on sustainable industry and thus enhance the lifelong learning process and cooperation between industry and universities in the Western Balkan countries.

  2. State of the States 2010: The Role of Policy in Clean Energy Market Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Gelman, R.

    2011-01-01

    This report builds on the emerging body of literature seeking to identify quantitative connections between clean energy policy and renewable energy. The methods presented test the relationships between a broad set of policies and clean energy resources (energy efficiency, biomass, geothermal, solar, and wind). Energy efficiency findings are an initial foray into this type of analysis and indicate significant connections between reduced energy use and buildings codes, energy efficiency resource standards (in some cases), and electricity price. Renewable energy findings specify that there is most often a relationship between state policies and solar and wind development, indicating that while policies might apply to a wide variety of renewable resources, further tailoring of policy specifics to resource needs may lead to increased development of a wider variety of renewable energy resources. Further research is needed to refine the connections between clean energy development and policy, especially in the area of the impact of the length of time that a policy has been in place.

  3. State of the States 2010. The Role of Policy in Clean Energy Market Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gelman, Rachel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2011-01-01

    This report builds on the emerging body of literature seeking to identify quantitative connections between clean energy policy and renewable energy. The methods presented test the relationships between a broad set of policies and clean energy resources (energy efficiency, biomass, geothermal, solar, and wind). Energy efficiency findings are an initial foray into this type of analysis and indicate significant connections between reduced energy use and buildings codes, energy efficiency resource standards (in some cases), and electricity price. Renewable energy findings specify that there is most often a relationship between state policies and solar and wind development, indicating that while policies might apply to a wide variety of renewable resources, further tailoring of policy specifics to resource needs may lead to increased development of a wider variety of renewable energy resources. Further research is needed to refine the connections between clean energy development and policy, especially in the area of the impact of the length of time that a policy has been in place.

  4. The clean development mechanism and Africa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This document presents a summary of the issues presented and discussed at the African Regional Workshop on the Clean Development Mechanism (CDM). The CDM was introduced in Article 12 of the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). The objectives of CDM are to assist non-Annex I Parties to the UNFCCC to promote sustainable development, and to assist Annex I Parties to achieve compliance with their emission limitation and reduction commitments under the Convention. Africa contributes a very small proportion of the world`s greenhouse gas emissions. At the same time the continent is highly vulnerable to the effects of climate change which may seriously impact on countries` development efforts. In order to set the background for the workshop and the deliberations of the participants, Chapter 2 presents a brief discussion of Climate Change and Sustainable Development in Africa. Chapter 3 further defines the context, aims and format of the workshop. This is followed in Chapter 4 by a summary of the papers presented during the four days. The papers covered activities in the energy, forestry, agriculture, industry and transport sectors, and addressed issues including: general perspectives on the CDM; institutions and governance of the CDM; baselines and additionality in the CDM; design of projects; project finance under the CDM. Chapter 5 presents a summary of the main issues discussed including modalities of the CDM, governance, equity, CDM projects, share of proceeds and capacity building. A number of areas of consensus emerged among workshop participants. These areas are described in Chapter 6. Finally a full list of participants is provided. (au)

  5. First-Annual Global Clean Energy Manufacturing Report Shows Strong Domestic Benefits for the United States

    Energy Technology Data Exchange (ETDEWEB)

    EERE Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-02-01

    The Energy Department’s Office of Energy Efficiency and Renewable Energy (EERE) commissioned the Clean Energy Manufacturing Analysis Center to conduct the first-ever annual assessment of the economic state of global clean energy manufacturing. The report, Benchmarks of Global Clean Energy Manufacturing, makes economic data on clean energy technology widely available.

  6. Final Technical Report_Clean Energy Program_SLC-SELF

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, Glenn; Coward, Doug

    2014-01-22

    This is the Final Technical Report for DOE's Energy Efficiency and Conservation Block Grant, Award No. DE-EE0003813, submitted by St. Lucie County, FL (prime recipient) and the Solar and Energy Loan Fund (SELF), the program's third-party administrator. SELF is a 501(c)(3) and a certified Community Development Financial Institution (CDFI). SELF is a community-based lending organization that operates the Clean Energy Loan Program, which focuses on improving the overall quality of life of underserved populations in Florida with an emphasis on home energy improvements and cost-effective renewable energy alternatives. SELF was launched in 2010 through the creation of the non-profit organization and with a $2.9 million Energy Efficiency and Conservation Block (EECBG) grant from the U.S. Department of Energy (DOE). SELF has its main office and headquarters in St. Lucie County, in the region known as the Treasure Coast in East-Central Florida. St. Lucie County received funding to create SELF as an independent non-profit institution, outside the control of local government. This was important for SELF to create its identity as an integral part of the business community and to help in its quest to become a Community Development Financial Institution (CDFI). This goal was accomplished in 2013, allowing SELF to focus on its mission to increase energy savings while serving markets that have struggled to find affordable financial assistance. These homeowners are most impacted by high energy costs. Energy costs are a disproportionate percentage of household expenses for low to moderate income (LMI) households. Electricity costs have been steadily rising in Florida by nearly 5% per year. Housing in LMI neighborhoods often includes older inefficient structures that further exacerbate the problem. Despite the many available clean energy solutions, most LMI property owners do not have the disposable income or equity in their homes necessary to afford the high upfront cost

  7. Krakow clean fossil fuels and energy efficiency project

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.A.; Pierce, B.L. [Brookhaven National Lab., Upton, NY (United States)

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  8. Fiscal 1997 report on the survey for a data book on new energy technology development. Waste power generation, solar energy utilization. geothermal power generation, clean energy vehicles, coal liquefaction/gasification, and traverse themes; 1997 nendo chosa hokokusho. Shin energy gijutsu kaihatsu kankei data shu sakusei chosa (haikibutsu hatsuden, taiyonetsu riyo, chinetsu hatsuden, clean energy jidosha, sekitan ekika gas ka oyobi odanteki theme)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper collected and arranged data on new energy technology. As to the waste power generation, in terms of general waste, 161 places have power generation facilities, 657,000 kW in output, as of the end of FY 1996. Out of them, 100 facilities (scale of output: 555,000 kW) are selling power. In terms of industrial waste, 53 places (209,000 kW) have power generation facilities. The output will be 2 million kW in FY 2000. In relation to the solar energy utilization, the number of solar systems introduced in FY 1996 is 25,000, that of water heating appliances produced in FY 1996 is 170,000. Geothermal power of 494,000 kW and 37,000 kW was introduced for electric power industry use and private use, respectively. Clean energy vehicles have not been so much spread, but the hybrid car was put on sale in 1997. Concerning the coal liquefaction, the R and D were made at a pilot plant of NEDOL process, and operation started in 1997. As to the coal gasification, investigational study and element study on the demonstration plant are being conducted in FY 1997 and 1998, making use of the research results obtained from the existing pilot plant of coal gasification combined power generation

  9. Clean energy firms’ stock prices, technology, oil prices, and carbon price

    OpenAIRE

    Mara Madaleno; Alfredo Marvão Pereira

    2015-01-01

    Production costs of alternative energies are still high, but increased demand for oil, future oil supply shortage concerns and climate change concerns, have led to the fast development of renewable energy firms. The sector accomplished has accomplished remarkable progress and attracted attention to clean energy, both at the industry level and at the academic side. With this work we attempt to determine whether or not the placement of a price on carbon emissions encourages investments in clean...

  10. Clean Energy Manufacturing Analysis Center (CEMAC) 2015 Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Mone, Christopher; Chung, Donald; Elgqvist, Emma; Das, Sujit; Mann, Margaret; Gossett, Scott

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber. This booklet summarizes key findings of CEMAC work to date, describes CEMAC's research methodology, and describes work to come.

  11. Enhancing Tribal Energy Security and Clean Energy (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-07-01

    This fact provides information on the Strategic Technical Assistance Response Team (START) Program, a U.S. Department of Energy Office of Indian Energy Policy and Programs (DOE-IE) initiative to provide technical expertise to support the development of next-generation energy projects in Indian Country.

  12. Research and development of electric vehicles for clean transportation.

    Science.gov (United States)

    Wada, Masayoshi

    2009-01-01

    This article presents the research and development of an electric vehicle (EV) in Department of Human-Robotics Saitama Institute of Technology, Japan. Electric mobile systems developed in our laboratory include a converted electric automobile, electric wheelchair and personal mobile robot. These mobile systems contribute to realize clean transportation since energy sources and devices from all vehicles, i.e., batteries and electric motors, does not deteriorate the environment. To drive motors for vehicle traveling, robotic technologies were applied.

  13. Covalent Organic Framework Electrocatalysts for Clean Energy Conversion.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Detao; Zhao, Zhenghang; Xia, Zhenhai

    2018-02-01

    Covalent organic frameworks (COFs) are promising for catalysis, sensing, gas storage, adsorption, optoelectricity, etc. owning to the unprecedented combination of large surface area, high crystallinity, tunable pore size, and unique molecular architecture. Although COFs are in their initial research stage, progress has been made in the design and synthesis of COF-based electrocatalysis for the oxygen reduction reaction, oxygen evolution reaction, hydrogen evolution reaction, and CO 2 reduction in energy conversion and fuel generation. Design principles are also established for some of the COF materials toward rational design and rapid screening of the best electrocatalysts for a specific application. Herein, the recent advances in the design and synthesis of COF-based catalysts for clean energy conversion and storage are presented. Future research directions and perspectives are also being discussed for the development of efficient COF-based electrocatalysts. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Global Gaps in Clean Energy RD and D

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This report seeks to inform decision makers seeking to prioritise RD&D investments in a time of financial uncertainty. It is an update of the December 2009 IEA report Global Gaps in Clean Energy Research, Development and Demonstration, which examined whether rates of LCET investment were sufficient to achieve shared global energy and environmental goals (IEA,2009). It discusses the impact of the green stimulus spending announcements, and provides private sector perspectives on priorities for government RD&D spending. Finally, it includes a revised assessment of the gaps in public RD&D, together with suggestions for possible areas for expanded international collaboration on specific LCETs. The conclusion re-affirms the first Global Gaps study finding that governments and industry need to dramatically increase their spending on RD&D for LCETs.

  15. A survey of state clean energy fund support for biomass

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, Garrett; Bolinger, Mark; Wiser, Ryan

    2004-08-20

    This survey reviews efforts by CESA member clean energy funds to promote the use of biomass as a renewable energy source. For each fund, details are provided regarding biomass eligibility for support, specific programs offering support to biomass projects, and examples of supported biomass projects (if available). For the purposes of this survey, biomass is defined to include bio-product gasification, combustion, co-firing, biofuel production, and the combustion of landfill gas, though not all of the programs reviewed here take so wide a definition. Programs offered by non-CESA member funds fall outside the scope of this survey. To date, three funds--the California Energy Commission, Wisconsin Focus on Energy, and the New York State Energy Research and Development Authority--have offered programs targeted specifically at the use of biomass as a renewable energy source. We begin by reviewing efforts in these three funds, and then proceed to cover programs in other funds that have provided support to biomass projects when the opportunity has arisen, but otherwise do not differentially target biomass relative to other renewable technologies.

  16. Baseline methodologies for clean development mechanism projects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K. (ed.); Shrestha, R.M.; Sharma, S.; Timilsina, G.R.; Kumar, S.

    2005-11-15

    The Kyoto Protocol and the Clean Development Mechanism (CDM) came into force on 16th February 2005 with its ratification by Russia. The increasing momentum of this process is reflected in more than 100 projects having been submitted to the CDM Executive Board (CDM-EB) for approval of the baselines and monitoring methodologies, which is the first step in developing and implementing CDM projects. A CDM project should result in a net decrease of GHG emissions below any level that would have resulted from other activities implemented in the absence of that CDM project. The 'baseline' defines the GHG emissions of activities that would have been implemented in the absence of a CDM project. The baseline methodology is the process/algorithm for establishing that baseline. The baseline, along with the baseline methodology, are thus the most critical element of any CDM project towards meeting the important criteria of CDM, which are that a CDM should result in 'real, measurable, and long term benefits related to the mitigation of climate change'. This guidebook is produced within the frame work of the United Nations Environment Programme (UNEP) facilitated 'Capacity Development for the Clean Development Mechanism (CD4CDM)' Project. This document is published as part of the projects effort to develop guidebooks that cover important issues such as project finance, sustainability impacts, legal framework and institutional framework. These materials are aimed to help stakeholders better understand the CDM and are believed to eventually contribute to maximize the effect of the CDM in achieving the ultimate goal of UNFCCC and its Kyoto Protocol. This Guidebook should be read in conjunction with the information provided in the two other guidebooks entitled, 'Clean Development Mechanism: Introduction to the CDM' and 'CDM Information and Guidebook' developed under the CD4CDM project. (BA)

  17. Challenges in the Quest for Clean Energies

    Indian Academy of Sciences (India)

    /fulltext/reso/018/12/1110-1126. Keywords. Hydroelectric ity; bio-energy; geothermal; renewable energy. Author Affiliations. Sheela K Ramasesha1. Divecha Centre for Climate Change, Indian Institute of Science, Bangalore 560 012, India.

  18. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    Energy Technology Data Exchange (ETDEWEB)

    Lipman, Tim [Univ. of California, Berkeley, CA (United States); Kammen, Dan [Univ. of California, Berkeley, CA (United States); McDonell, Vince [Univ. of California, Irvine, CA (United States); Samuelsen, Scott [Univ. of California, Irvine, CA (United States); Beyene, Asfaw [San Diego State Univ., CA (United States); Ganji, Ahmad [San Francisco State Univ., CA (United States)

    2013-09-30

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC

  19. Renewable Energy Zones for the Africa Clean Energy Corridor

    OpenAIRE

    Wu, G.; R Deshmukh; Ndhlukula, K; Radojicic, T; Reilly, J.

    2015-01-01

    Multi-criteria Analysis for Planning Renewable Energy (MapRE) is a study approach developed by the Lawrence Berkeley National Laboratory with the support of the International Renewable Energy Agency (IRENA). The approach combines geospatial, statistical, energy engineering, and economic methods to comprehensively identify and value high-quality wind, solar PV, and solar CSP resources for grid integration based on techno-economic criteria, generation profiles (for wind), and socio-environmenta...

  20. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 4. Development of hydrogen production technology; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 4. Suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes development of hydrogen production technology as a part of the WE-NET project. For the solid polymer water electrolysis method higher in efficiency and lower in cost than the previous methods, 5 companies have developed element technologies for improving electrolysis cells and synthesis technologies of hot solid polymer electrolyte based on each proper catalyst electrode production method. In fiscal 1996, the initial study on large-scale systems by middle laboratory cells was made as well as improvement of electrolysis performance by small laboratory cells and endurance tests. Among the previous methods such as a hot press method (bonding of an ion exchange membrane to an electrode), an electroless plating method (preparation of porous surface onto a membrane electrode assembly), a zero gap method (preparation of high-efficiency high-current density cells), and a sintered porous electrode method (carrying of the mixture of catalytic powder and ion exchange resin-dissipated solution onto sintered metallic porous electrode surface), the former two methods were adopted for development of bench-scale cells as effective promising methods. 192 refs., 183 figs., 108 tabs.

  1. The Climate Literacy and Energy Awareness Network (CLEAN) - Enabling Collective Impact on Climate and Energy Literacy

    Science.gov (United States)

    Ledley, T. S.; Gold, A. U.; Niepold, F., III

    2015-12-01

    Numerous climate change education efforts exist that aim to enable citizens and society to make informed decisions addressing environmental and societal issues arising from climate change. To extend the reach and impact of these efforts, it is necessary to coordinate them in order to reach a greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network, as an example of a rudimentary form of such an organization, engages in continuous communication through weekly teleconferences, an active listserv and other activities to share resources, activities, and ideas that is moving the network to develop common understandings that will likely lead to the development of effective collective impact on increasing climate and energy literacy. A Spring 2013 survey of the CLEAN Network provided insight as to how the CLEAN Network was addressing member needs and identified what other support was needed to increase its collective impact. In addition, community discussions identified the components needed for an effective overarching backbone support organization. A Fall 2015 survey of the CLEAN Network and the broader climate change education community is being conducted to examine 1) how the CLEAN Network make up and needs have evolved and how they compare to the broader community, and 2) to gather further input into the shaping of the elements of collective impact on climate and energy literacy. This presentation will describe the results from the 2015 survey and compare them to the 2013 survey and the community discussions. This will include describing the CLEAN Network's evolving professional make up, engagement of its members network activities, the importance of the network to members; how the findings compare with the broader climate

  2. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti [Etc Group, LLC, Salt Lake City, UT (United States)

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  3. Impact of Clean Energy R&D on the U.S. Power Sector

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul [Dept. of Energy (DOE), Washington DC (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group; Mowers, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group; Porro, Gian [National Renewable Energy Lab. (NREL), Golden, CO (United States). Strategic Energy Analysis Center. Energy Forecasting and Modeling Group

    2017-01-01

    The U.S. government, along with other governments, private corporations and organizations, invests significantly in research, development, demonstration and deployment (RDD&D) activities in clean energy technologies, in part to achieve the goal of a clean, secure, and reliable energy system. While specific outcomes and breakthroughs resulting from RDD&D investment are unpredictable, it can be instructive to explore the potential impacts of clean energy RDD&D activities in the power sector and to place those impacts in the context of current and anticipated market trends. This analysis builds on and leverages analysis by the U.S. Department of Energy (DOE) titled “Energy CO2 Emissions Impacts of Clean Energy Technology Innovation and Policy” (DOE 2017). Similar to DOE (2017), we explore how additional improvements in cost and performance of clean energy technologies could impact the future U.S. energy system; however, unlike the economy-wide modeling used in DOE (2017) our analysis is focused solely on the electricity sector and applies a different and more highly spatially-resolved electric sector model. More specifically, we apply a scenario analysis approach to explore how assumed further advancements in clean electricity technologies would impact power sector generation mix, electricity system costs, and power sector carbon dioxide (CO2) emissions.

  4. Clean Energy and Water : an Assessment of Services for Adaptation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to assess the potential of - and barriers to - the use of decentralized renewable energy technologies, as opposed to fossil-fuel based large-scale-systems. Independent researchers will ... Clean energy and water : low-cost climate adaptation options for East Africa; draft journal article. Articles de revue.

  5. Clean Energy and Water : an Assessment of Services for Adaptation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to assess the potential of - and barriers to - the use of decentralized renewable energy technologies, as opposed to fossil-fuel based large-scale-systems. Independent researchers will ... Articles de revue. Clean energy and water : low-cost climate adaptation options for East Africa; draft journal article ...

  6. Clean Energy Manufacturing: U.S. Competitiveness and State Policy Strategies (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2014-02-01

    The capital intensive nature of clean energy technologies suggests that manufacturing clean energy equipment has the potential to support state and local economic development efforts. However, manufacturing siting decisions tend to be complex and multi-variable decision processes that require in-depth knowledge of specific markets, the logistical requirements of a given technology, and insight into global clean tech trends. This presentation highlights the potential of manufacturing in supporting economic development opportunities while also providing examples of the financial considerations affecting manufacturing facility siting decisions for wind turbine blades and solar PV. The presentation also includes discussion of other more qualitative drivers of facility siting decisions as gleaned from NREL industry interviews and discusses strategies state and local policymakers may employee to bolster their chances of successfully attracting clean energy manufacturers to their localities.

  7. Revolution Now: The Future Arrives for Four Clean Energy Technologies

    Science.gov (United States)

    Tillemann, Levi; Beck, Fredric; Brodrick, James; Brown, Austin; Feldman, David; Nguyen, Tien; Ward, Jacob

    2013-09-17

    For decades, America has anticipated the transformational impact of clean energy technologies. But even as costs fell and technology matured, a clean energy revolution always seemed just out of reach. Critics often said a clean energy future would "always be five years away." This report focuses on four technology revolutions that are here today. In the last five years they have achieved dramatic reductions in cost and this has been accompanied by a surge in consumer, industrial and commercial deployment. Although these four technologies still represent a small percentage of their total market, they are growing rapidly. The four key technologies this report focuses on are: onshore wind power, polysilicon photovoltaic modules, LED lighting, and electric vehicles.

  8. The hydrogen: a clean and durable energy; L'hydrogene: une energie propre et durable

    Energy Technology Data Exchange (ETDEWEB)

    Alleau, Th. [Association Francaise de l' Hydrogene (France); Nejat Veziroglu, T. [Clean Energy Research Institute, University of Miami (United States); Lequeux, G. [Commission europeenne, DG de la Recherche, Bruxelles (Belgium)

    2000-07-01

    All the scientific experts agree, the hydrogen will be the energy vector of the future. During this conference day on the hydrogen, the authors recalled the actual economic context of the energy policy with the importance of the environmental policy and the decrease of the fossil fuels. The research programs and the attitudes of the France and the other countries facing the hydrogen are also discussed, showing the great interest for this clean and durable energy. They underline the importance of an appropriate government policy, necessary to develop the technology of the hydrogen production, storage and use. (A.L.B.)

  9. Krakow Clean Fossil Fuels and Energy Efficiency Program

    Energy Technology Data Exchange (ETDEWEB)

    Butcher, T.; Pierce, B.; Krishna, C.R.

    1992-09-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

  10. Development of a magnetic liquid seal for clean robots

    Science.gov (United States)

    Mizumoto, M.; Inoue, H.

    1987-03-01

    A magnetic liquid seal is developed for clean robots used in semiconductor producing factories. This seal is made of a O-ring type elastic magnet in which magnetic liquid is attracted to the magnet directly. The results of experimental tests prove that the newly developed seal affords reliable sealing performance for clean robots in a cleanness class of 10 or less.

  11. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  12. Clean energy partnerships: A decade of success

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-03-01

    This report contains a partial catalog of recent accomplishments of the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE)in collaboration with its many private- and public-sector partners. This compendium of success stories illustrates the range and diversity of EERE programs and achievements. Part of an ongoing effort, the principal goal of this collection is to provide stakeholders with the evidence they need to assess the value they are receiving from investments in these DOE programs. The report begins with an introduction and a description of the methodology. It then presents an overview of the accomplishments of EERE programs. This is followed by the stories themselves.

  13. Realizing a Clean Energy Future: Highlights of NREL Analysis (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2013-12-01

    Profound energy system transformation is underway. In Hawaiian mythology, Maui set out to lasso the sun in order to capture its energy. He succeeded. That may have been the most dramatic leap forward in clean energy systems that the world has known. Until now. Today, another profound transformation is underway. A combination of forces is taking us from a carbon-centric, inefficient energy system to one that draws from diverse energy sources - including the sun. NREL analysis is helping guide energy systems policy and investment decisions through this transformation. This brochure highlights NREL analysis accomplishments in the context of four thematic storylines.

  14. Challenges in the Quest for Clean Energies

    Indian Academy of Sciences (India)

    IAS Admin

    music and movies. The global warming issues were discussed in Part 1 of this series of articles. This part describes the different solar energy technologies that are available for generating electricity to meet our daily power requirement. The article focuses on different kinds of materials that can be used to make the.

  15. Strengthening Clean Energy Technology Cooperation under the UNFCCC: Steps toward Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Benioff, R.; de Coninck, H.; Dhar, S.; Hansen, U.; McLaren, J.; Painuly, J.

    2010-08-01

    Development of a comprehensive and effective global clean technology cooperation framework will require years of experimenting and evaluation with new instruments and institutional arrangements before it is clear what works on which scale and in which region or country. In presenting concrete examples, this paper aims to set the first step in that process by highlighting successful models and innovative approaches that can inform efforts to ramp up clean energy technology cooperation. This paper reviews current mechanisms and international frameworks for global cooperation on clean energy technologies, both within and outside of the UNFCCC, and provides selected concrete options for scaling up global cooperation on clean energy technology RD&D, enabling environment, and financing.

  16. WP/072 Is the Clean Development Mechanism Promoting Sustainable Development?

    DEFF Research Database (Denmark)

    Huang, Yongfu; He, Jingjing; Tarp, Finn

    One of the dual objectives of the Clean Development Mechanism (CDM) of the Kyoto Protocol is to promote sustainable development in the host countries. With different CDM indicators for 58 CDM host countries over 2005-10, this paper empirically assesses whether CDM project development fulfils...

  17. Determinants and outcome of a Clean Development Mechanism in Malaysia

    DEFF Research Database (Denmark)

    Govindan, Kannan; Zainuddin, Zainorfarah Binti; Zailani, Suhaiza

    2017-01-01

    The Clean Development Mechanism (CDM) enables transferring technology from developed countries to developing countries, such as Malaysia, and simultaneously promotes sustainable growth. Although this has been proven, the contribution of Malaysian companies in CDM projects is low. Therefore......, this study has been aimed at investigating the determinants of CDM adoption and its impact on companies' performances. Data were gathered by surveying 91 companies in the energy, agriculture, and forestry sectors in Malaysia implementing CDM projects. The data were analysed using the partial least squares...

  18. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most

  19. Public-Private Partnerships for Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-09-01

    As part of its mission, CEMI builds partnerships around strategic priorities to increase U.S. clean energy manufacturing competitiveness. This requires an “all-hands-on-deck” approach that involves the nation’s private and public sectors, universities, think tanks, and labor leaders working together.

  20. Challenges in the Quest for Clean Energies-Background

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 3. Challenges in the Quest for Clean Energies - Background. Sheela K Ramasesha. Series Article Volume 18 Issue 3 March 2013 pp 206-217. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. The US Department of Energy - investing in clean transport

    Science.gov (United States)

    Chalk, Steven G.; Milliken, JoAnn; Miller, James F.; Venkateswaran, S. R.

    The US Department of Energy (DOE), together with six other federal agencies and America's three largest car makers, are jointly investing in the development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient technology for automotive propulsion under the Partnership for a New Generation of Vehicles (PNGV). (PEM is sometimes referred to as `proton exchange membrane'. The correctness, or otherwise, of that interpretation will depend on the mechanism of apparent proton transfer in the membrane implied). It is anticipated that the successful development of PEM fuel cells (and other long-term technologies) to meet automotive requirements will extend beyond the PNGV's 2004 timeframe for achieving 80 miles per gallon in production prototypes. Given the extraordinary promise of large energy, environmental and economic benefits to the nation from fuel cells and other long-term technologies, the PNGV partners will continue to invest in these technologies beyond 2004. The DOE's Transportation Fuel Cells Program has recently announced US$50 million of new contract awards for focused R&D to overcome critical technical barriers such as fuel-flexible fuel processing technology. The progress achieved toward automotive goals through these and past investments will also enable nearer-term application of fuel cells (e.g. in buses). This paper describes the status of the PNGV program and the key role and technical accomplishments of the DOE Transportation Fuel Cells Program. The DOE's recent investments in new fuel cell R&D activities will be discussed.

  2. Hydrogen Storage Experiments for an Undergraduate Laboratory Course--Clean Energy: Hydrogen/Fuel Cells

    Science.gov (United States)

    Bailey, Alla; Andrews, Lisa; Khot, Ameya; Rubin, Lea; Young, Jun; Allston, Thomas D.; Takacs, Gerald A.

    2015-01-01

    Global interest in both renewable energies and reduction in emission levels has placed increasing attention on hydrogen-based fuel cells that avoid harm to the environment by releasing only water as a byproduct. Therefore, there is a critical need for education and workforce development in clean energy technologies. A new undergraduate laboratory…

  3. Threats, opportunities, options - renewables and the Clean Development Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Mallon, Karl; Pearson, Ben; McGill, Iain [Greenpeace International (United States)

    2000-12-01

    The view of Greenpeace is that the only way to achieve a clean and green CDM (Clean Development Mechanism) - one of the Kyoto Protocol mechanisms for negotiation at COP6, is by focusing on renewable and demand-side efficiency technologies: COP6 should be used to establish a 'positive list' of these technologies. Both short- and long-term advantages of CDM are discussed. However, Greenpeace is apprehensive that some of the proposals relating to CDM could facilitate investment in carbon-intensive energy infrastructure. Four threats to a CDM are identified. The article is presented under the sub-headings of (i) Background; (ii) Subsidizing the problem - coal in the CDM; (iii) Dumping dead technology - nuclear in the CDM; (iv) Responsibility dumping (v) A race to the bottom? - A non-exclusive CDM; (vi) Renewables - the exclusive positive list and (vii) Conclusions.

  4. Transition through co-optation: Harnessing carbon democracy for clean energy

    Science.gov (United States)

    Meng, Kathryn-Louise

    This dissertation explores barriers to a clean energy transition in the United States. Clean energy is demonstrably viable, yet the pace of clean energy adoption in the U.S. is slow, particularly given the immediate threat of global climate change. The purpose of this dissertation is to examine the factors inhibiting a domestic energy transition and to propose pragmatic approaches to catalyzing a transition. The first article examines the current political-economic and socio-technical energy landscape in the U.S. Fossil fuels are central to the functioning of the American economy. Given this centrality, constellations of power have been constructed around the reliable and affordable access of fossil fuels. The fossil fuel energy regime is comprised of: political-economic networks with vested interests in continued fossil fuel reliance, and fixed infrastructure that is minimally compatible with distributed generation. A transition to clean energy threatens the profitability of fossil fuel regime actors. Harnessing structural critiques from political ecology and process and function-oriented socio-technical systems frameworks, I present a multi-level approach to identifying pragmatic means to catalyzing an energy transition. High-level solutions confront the existing structure, mid-level solutions harness synergy with the existing structure, and low-level solutions lie outside of the energy system or foster the TIS. This is exemplified using a case study of solar development in Massachusetts. Article two presents a case study of the clean energy technological innovation system (TIS) in Massachusetts. I examine the actors and institutions that support cleantech development. Further, I scrutinize the actors and institutions that help sustain the TIS support system. The concept of a catalyst is presented; a catalyst is an actor that serves to propel TIS functions. Catalysts are critical to facilitating anchoring. Strategic corporate partners are identified as powerful

  5. Overcoming barriers to Clean Development Mechanism projects

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J. [OECD, Paris (France); Kamel, S. [UNEP Risoe Centre on Energy, Climate and Sustainable Development URC, Roskilde (Denmark)

    2007-05-15

    The market for Clean Development Mechanism (CDM) projects is continuing to grow rapidly, with the current portfolio expecting to deliver 2 billion tons of CO2-eq greenhouse gas (GHG) emission reductions by 2012, equivalent to 17% of Annex I Parties' base year GHG emissions. In total, governments and companies have earmarked over USD11 billion for CDM funding to 2012. This study analyses the various barriers to CDM market expansion in developing countries, and makes recommendations on how some of them can be removed or reduced. It also examines the distribution of CDM projects amongst regions and sectors. Different types of barriers can impede the development of CDM projects. These include: National-level barriers not related specifically to the CDM such as the policy or legislative framework within which a CDM project operates, e.g. electricity-related regulations that constrain generation by independent power producers; National-level CDM-related barriers such as institutional capability/effectiveness or lack of awareness about CDM potential. For example, delays in host country approval of CDM projects can dampen interest in CDM project development; Project-related issues including availability (or not) of underlying project finance, or other country or project-related risks that render the performance of the project uncertain; International-level barriers such as constraints on project eligibility (e.g. on land use and forestry projects), available guidance and decisions (e.g. with respect to the inclusion of carbon capture and storage projects), etc. Thus, barriers to CDM development can arise at different parts of the CDM project cycle. The relative importance of particular barriers varies between countries as well as over time. A combination of factors is needed to drive growth in a country's CDM activity. This includes the presence of attractive CDM opportunities, a positive investment climate, and an enabling policy and legislative framework (in

  6. Wind Energy Workforce Development & Jobs

    Energy Technology Data Exchange (ETDEWEB)

    Tegen, Suzanne

    2016-11-08

    The United States needs a skilled and qualified wind energy workforce to produce domestic clean power. To assist with wind energy workforce development, the U.S. Department of Energy (DOE) and National Renewable Energy Laboratory are engaged with several efforts.This presentation by Suzanne Tegen describes these efforts, including a wind industry survey, DOE's Wind Career Map, the DOE Wind Vision report, and an in-depth discussion of the Jobs & Economic Development Impacts Model.

  7. Development of Electrostatically Clean Solar Array Panels

    Science.gov (United States)

    Stern, Theodore G.

    2000-01-01

    Certain missions require Electrostatically Clean Solar Array (ECSA) panels to establish a favorable environment for the operation of sensitive scientific instruments. The objective of this program was to demonstrate the feasibility of an ECSA panel that minimizes panel surface potential below 100mV in LEO and GEO charged particle environments, prevents exposure of solar cell voltage and panel insulating surfaces to the ambient environment, and provides an equipotential, grounded structure surrounding the entire panel. An ECSA panel design was developed that uses a Front Side Aperture-Shield (FSA) that covers all inter-cell areas with a single graphite composite laminate, composite edge clips for connecting the FSA to the panel substrate, and built-in tabs that interconnect the FSA to conductive coated coverglasses using a conductive adhesive. Analysis indicated the ability of the design to meet the ECSA requirements. Qualification coupons and a 0.5m x 0.5m prototype panel were fabricated and tested for photovoltaic performance and electrical grounding before and after exposure to acoustic and thermal cycling environments. The results show the feasibility of achieving electrostatic cleanliness with a small penalty in mass, photovoltaic performance and cost, with a design is structurally robust and compatible with a wide range of current solar panel technologies.

  8. Investigation into introduction and promotion of clean energy cars; Clean energy jidosha no donyu sokushin ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Gazing the introduction target for fiscal 2000 and 2010, the paper arranged comprehensively and systematically the trend in Japan and overseas of clean energy cars and described subjects. Themes of the study to be promoted in terms of electric cars are: Li secondary batteries, heightening of performance of batteries such as Ni-hydrogen, power generation/power storage hybridization to make the long-distance travel possible. For the price reduction, the body is so made as to make it possible to select three kinds of power unit, that is, gasoline, hybrid, and electricity. Low noise and easy operation are also important. As to natural gas vehicles, the price is more than three times as high as that of gasoline vehicles, and relaxation of the related regulations on metal tanks, the Road Traffic Act, etc. is necessary. It is indispensable to establish quantity production and technical standards and reduce cost by the remodeling for bi-fueling with gasoline engines, development of FRP tanks, etc. Methanol vehicles are the closest to gasoline vehicles, but the introduction is delayed having no groups for generalization. Solar and hydrogen cars are promising, but are on a stage of developing the basic technology. 43 figs., 104 tabs.

  9. Framework for Evaluating the Total Value Proposition of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Pater, J. E.

    2006-02-01

    Conventional valuation techniques fail to include many of the financial advantages of clean energy technologies. By omitting benefits associated with risk management, emissions reductions, policy incentives, resource use, corporate social responsibility, and societal economic benefits, investors and firms sacrifice opportunities for new revenue streams and avoided costs. In an effort to identify some of these externalities, this analysis develops a total value proposition for clean energy technologies. It incorporates a series of values under each of the above categories, describing the opportunities for recapturing investments throughout the value chain. The framework may be used to create comparable value propositions for clean energy technologies supporting investment decisions, project siting, and marketing strategies. It can also be useful in policy-making decisions.

  10. Energy development

    Science.gov (United States)

    Lovich, Jeffrey E.; Jones, L.L.C.; Lovich, R. L.; Halama, K.J.

    2016-01-01

    Large areas of the desert southwest are currently developed or being evaluated for construction of utility-scale renewable energy projects. These projects include numerous solar and wind energy facilities some of which will be massive. Unfortunately, peer-reviewed scientific publications are not yet available to evaluate the potential effects of solar-based utility-scale renewable energy development (USRED) on any species of wildlife, including amphibians and reptiles (herpetofauna). Scientific publications on the effects of wind-based USRED and operation (USREDO) are focused almost exclusively on flying wildlife including birds and bats. To the best of our knowledge the only publications on the effects of wind-based USREDO on herpetofauna are three publications on desert tortoise ecology at a wind energy facility near Palm Springs, California. Those studies suggested that not all effects of USREDO were detrimental in the short-term. However, additional research is required to determine if wind energy operation is compatible with conservation of this long-lived species over longer periods of time.

  11. Developments in surface contamination and cleaning fundamentals and applied aspects

    CERN Document Server

    Kohli, Rajiv

    2015-01-01

    Developments in Surface Contamination and Cleaning, Vol. 1: Fundamentals and Applied Aspects, Second Edition, provides an excellent source of information on alternative cleaning techniques and methods for characterization of surface contamination and validation. Each volume in this series contains a particular topical focus, covering the key techniques and recent developments in the area. This volume forms the heart of the series, covering the fundamentals and application aspects, characterization of surface contaminants, and methods for removal of surface contamination. In addition, new cleaning techniques effective at smaller scales are considered and employed for removal where conventional cleaning techniques fail, along with new cleaning techniques for molecular contaminants. The Volume is edited by the leading experts in small particle surface contamination and cleaning, providing an invaluable reference for researchers and engineers in R&D, manufacturing, quality control, and procurement specific...

  12. Enact legislation supporting residential property assessed clean energy financing (PACE)

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Devashree

    2012-11-15

    Congress should enact legislation that supports residential property assessed clean energy (PACE) programs in the nation’s states and metropolitan areas. Such legislation should require the Federal Housing Finance Agency (FHFA) to allow Fannie Mae and Freddie Mac to purchase residential mortgages with PACE assessments while at the same time providing responsible underwriting standards and a set of benchmarks for residential PACE assessments in order to minimize financial risks to mortgage holders. Congressional support of residential PACE financing will improve energy efficiency, encourage job creation, and foster economic growth in the nation’s state and metropolitan areas.

  13. The optimal time path of clean energy R&D policy when patents have finite lifetime

    NARCIS (Netherlands)

    Gerlagh, R.; Kverndokk, S.; Rosendahl, K.E.

    We study the optimal time path for clean energy innovation policy. In a model with emission reduction through clean energy deployment, and with R&D increasing the overall productivity of clean energy, we describe optimal R&D policies jointly with emission pricing policies. We find that while

  14. Microalgal hydrogen production: prospects of an essential technology for a clean and sustainable energy economy.

    Science.gov (United States)

    Bayro-Kaiser, Vinzenz; Nelson, Nathan

    2017-09-01

    Modern energy production is required to undergo a dramatic transformation. It will have to replace fossil fuel use by a sustainable and clean energy economy while meeting the growing world energy needs. This review analyzes the current energy sector, available energy sources, and energy conversion technologies. Solar energy is the only energy source with the potential to fully replace fossil fuels, and hydrogen is a crucial energy carrier for ensuring energy availability across the globe. The importance of photosynthetic hydrogen production for a solar-powered hydrogen economy is highlighted and the development and potential of this technology are discussed. Much successful research for improved photosynthetic hydrogen production under laboratory conditions has been reported, and attempts are underway to develop upscale systems. We suggest that a process of integrating these achievements into one system to strive for efficient sustainable energy conversion is already justified. Pursuing this goal may lead to a mature technology for industrial deployment.

  15. Essays on Infrastructure Design and Planning for Clean Energy Systems

    Science.gov (United States)

    Kocaman, Ayse Selin

    The International Energy Agency estimates that the number of people who do not have access to electricity is nearly 1.3 billion and a billion more have only unreliable and intermittent supply. Moreover, current supply for electricity generation mostly relies on fossil fuels, which are finite and one of the greatest threats to the environment. Rising population growth rates, depleting fuel sources, environmental issues and economic developments have increased the need for mathematical optimization to provide a formal framework that enables systematic and clear decision-making in energy operations. This thesis through its methodologies and algorithms enable tools for energy generation, transmission and distribution system design and help policy makers make cost assessments in energy infrastructure planning rapidly and accurately. In Chapter 2, we focus on local-level power distribution systems planning for rural electrification using techniques from combinatorial optimization. We describe a heuristic algorithm that provides a quick solution for the partial electrification problem where the distribution network can only connect a pre-specified number of households with low voltage lines. The algorithm demonstrates the effect of household settlement patterns on the electrification cost. We also describe the first heuristic algorithm that selects the locations and service areas of transformers without requiring candidate solutions and simultaneously builds a two-level grid network in a green-field setting. The algorithms are applied to real world rural settings in Africa, where household locations digitized from satellite imagery are prescribed. In Chapter 3 and 4, we focus on power generation and transmission using clean energy sources. Here, we imagine a country in the future where hydro and solar are the dominant sources and fossil fuels are only available in minimal form. We discuss the problem of modeling hydro and solar energy production and allocation, including

  16. Providing clean energy and energy access through cooperatives

    CERN Document Server

    Studies, International Institute of Labour

    2013-01-01

    This publication is a collection of case studies on cooperatives in energy production, distribution and consumption as a contribution to the on-going search for ways in which the goal of sustainable Energy for All can be turned into a reality.

  17. Clean energy, technical files; Energie propre, les fiches techniques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This document is the compilation of the 42 issues of the 'Energie propre - Maitrise de la Demande d'Energie' newsletter published between September 1996 and July 1999 by the regional energy agency of Provence-Alpes-Cote d'Azur region (ARENE). Each issue is a technical file presenting a particular action or study carried out in the framework of the program of mastery of energy demand in Provence-Alpes-Cote d'Azur region (SE France). These studies and actions concern various types of buildings: high schools, residential buildings for old people, office buildings, social buildings, hotels, recreational facilities, and cover all aspects of energy conservation: space heating, lighting systems, ventilation systems, thermal insulation, appliances.. (J.S.)

  18. 77 FR 74520 - Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media Holdings Corporation...

    Science.gov (United States)

    2012-12-14

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media Holdings Corporation, eTotalSource, Inc., Extensions, Inc., Firepond, Inc., and GNC Energy Corporation; Order Withdrawing...

  19. 76 FR 77977 - U.S. Clean Energy and Energy Efficiency Trade Mission to Saudi Arabia Riyadh and Dhahran, Saudi...

    Science.gov (United States)

    2011-12-15

    ..., with an emphasis on solar power; electricity transmission and smart grid; and green building in... a commitment to invest $100 billion dollars over the next ten years to develop clean, non.... companies in the green building and energy efficiency subsectors. Companies will have the opportunity to...

  20. The Mesaba Energy Project: Clean Coal Power Initiative, Round 2

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Richard; Gray, Gordon; Evans, Robert

    2014-07-31

    The Mesaba Energy Project is a nominal 600 MW integrated gasification combine cycle power project located in Northeastern Minnesota. It was selected to receive financial assistance pursuant to code of federal regulations (?CFR?) 10 CFR 600 through a competitive solicitation under Round 2 of the Department of Energy?s Clean Coal Power Initiative, which had two stated goals: (1) to demonstrate advanced coal-based technologies that can be commercialized at electric utility scale, and (2) to accelerate the likelihood of deploying demonstrated technologies for widespread commercial use in the electric power sector. The Project was selected in 2004 to receive a total of $36 million. The DOE portion that was equally cost shared in Budget Period 1 amounted to about $22.5 million. Budget Period 1 activities focused on the Project Definition Phase and included: project development, preliminary engineering, environmental permitting, regulatory approvals and financing to reach financial close and start of construction. The Project is based on ConocoPhillips? E-Gas? Technology and is designed to be fuel flexible with the ability to process sub-bituminous coal, a blend of sub-bituminous coal and petroleum coke and Illinois # 6 bituminous coal. Major objectives include the establishment of a reference plant design for Integrated Gasification Combined Cycle (?IGCC?) technology featuring advanced full slurry quench, multiple train gasification, integration of the air separation unit, and the demonstration of 90% operational availability and improved thermal efficiency relative to previous demonstration projects. In addition, the Project would demonstrate substantial environmental benefits, as compared with conventional technology, through dramatically lower emissions of sulfur dioxide, nitrogen oxides, volatile organic compounds, carbon monoxide, particulate matter and mercury. Major milestones achieved in support of fulfilling the above goals include obtaining Site, High Voltage

  1. Materials, critical materials and clean-energy technologies

    Science.gov (United States)

    Eggert, R.

    2017-07-01

    Modern engineered materials, components and systems depend on raw materials whose properties provide essential functionality to these technologies. Some of these raw materials are subject to supply-chain risks, and such materials are known as critical materials. This paper reviews corporate, national and world perspectives on material criticality. It then narrows its focus to studies that assess "what is critical" to clean-energy technologies. The focus on supply-chain risks is not meant to be alarmist but rather to encourage attention to monitoring these risks and pursuing technological innovation to mitigate the risks.

  2. State Clean Energy Policies Analysis. State, Utility, and Municipal Loan Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-05-01

    This report relies on six in-depth interviews with loan program administrators to provide descriptions of existing programs. Findings from the interviews are combined with a review of relevant literature to elicit best practices and lessons learned from existing loan programs. Data collected from each of the loan programs profiled are used to quantify the impacts of these specific loan programs on the commonly cited, overarching state clean energy goals of energy security, economic development, and environmental protection.

  3. Protocolo de Quioto e as possibilidades de inserção do Brasil no Mecanismo de Desenvolvimento Limpo por meio de projetos em energia limpa The Kyoto Protocol and the possibilities for the insertion of Brazil at the Clean Development Mechanism through projects in clean energy

    Directory of Open Access Journals (Sweden)

    Helena Margarido Moreira

    2008-04-01

    Full Text Available Este artigo pretende estudar a inserção do Brasil no Mecanismo de Desenvolvimento Limpo (MDL do Protocolo de Quioto, por meio de projetos em energia limpa, enfatizando a cooperação entre países desenvolvidos e em desenvolvimento e visando as ações práticas que esse mecanismo permite desenvolver para se alcançar o desenvolvimento sustentável e para conter o aquecimento global. Para isto, realizou-se extensa revisão bibliográfica dos acordos internacionais referentes às mudanças climáticas e de livros e artigos sobre a inserção brasileira no Protocolo de Quioto e no Mecanismo de Desenvolvimento Limpo. O Protocolo de Quioto é um acordo internacional que prevê a redução das emissões de gases de efeito estufa por intermédio de mecanismos flexibilizadores. O Mecanismo de Desenvolvimento Limpo é o único que permite a participação de países em desenvolvimento, para que eles reduzam emissões por meio de projetos que busquem o desenvolvimento sustentável. Neste contexto, o Brasil surge como um país atrativo para o recebimento destes projetos, por sua vocação para desenvolver fontes alternativas de energia e pela sua liderança no processo negociador do Protocolo. O MDL configura-se, portanto, em uma grande oportunidade para o Brasil, visto que esses projetos representam uma fonte de recursos financeiros para que o país busque o desenvolvimento sustentável, além de incentivarem um maior conhecimento científico e a adoção de novas tecnologias.This article intends to study the insertion of Brazil at the Clean Development Mechanism (CDM of the Kyoto Protocol, through clean energy projects, emphasizing the cooperation between developed and developing countries, and aiming the practical actions that this mechanism allows to build up in order to reach the sustainable development and to stop the global warming. To achieve this, an intense bibliographic review of the international agreements concerning climate change, and

  4. US-China Clean Energy Research Center on Building Energy Efficiency: Materials that Improve the Cost-Effectiveness of Air Barrier Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-12-01

    The US–China Clean Energy Research Center (CERC) was launched in 2009 by US Energy Secretary Steven Chu, Chinese Minister of Science and Technology Wan Gang, and Chinese National Energy Agency Administrator Zhang Guobao. This 5-year collaboration emerged from the fact that the United States and China are the world’s largest energy producers, energy consumers, and greenhouse gas emitters, and that their joint effort could have significant positive repercussions worldwide. CERC’s main goal is to develop and deploy clean energy technologies that will help both countries meet energy and climate challenges. Three consortia were established to address the most pressing energy-related research areas: Advanced Coal Technology, Clean Vehicles, and Building Energy Efficiency (BEE). The project discussed in this report was part of the CERC-BEE consortia; its objective was to lower energy use in buildings by developing and evaluating technologies that improve the cost-effectiveness of air barrier systems for building envelopes.

  5. Clean energy funds: An overview of state support for renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    Bolinger, Mark; Wiser, Ryan

    2001-04-01

    Across the United States, as competition in the supply and delivery of electricity has been introduced, states have sought to ensure the continuation of ''public benefits'' programs traditionally administered or funded by electric utilities. Many states have built into their restructuring plans methods of supporting renewable energy sources. One of the most popular policy mechanisms for ensuring such continued support has been the system-benefits charge (SBC), a non-bypassable charge to electricity customers (usually applied on a cents/kWh basis) used to collect funds for public purpose programs. Thus far, at least fourteen states have established SBC funds targeted in part towards renewable energy. This paper discusses the status and performance of these state renewable or ''clean'' energy funds supported by system-benefits charges. As illustrated later, existing state renewable energy funds are expected to collect roughly $3.5 billion through 2012 for renewable energy. Clearly, these funds have the potential to provide significant support for clean energy technologies over at least the next decade. Because the level of funding for renewable energy available under these programs is unprecedented and because fund administrators are developing innovative and new programs to fund renewable projects, a certain number of program failures are unavoidable. Also evident is that states are taking very different approaches to the distribution of these funds and that many lessons are being learned as programs are designed, implemented, and evaluated. Our purpose in this paper is therefore to relay early experience with these funds and provide preliminary lessons learned from that experience. It is our hope that this analysis will facilitate learning across states and help state fund managers develop more effective and more coordinated programs. Central to this paper are case studies that provide information on the SBC-funded renewable

  6. COCOMO based on Clean room Development Methodology

    OpenAIRE

    Mahesh Bahadur Singh; Hradesh Kumar; Anendra Kumar

    2011-01-01

    The typical software lifecycle is about 40% design, 20% code, and 40% unit testing. The Clean room lifecycle is 80% design and 20% code and no unit test. And effort estimation using the COCOMO(constructive cost model) is based on the typical software lifecycle. In Detail COCOMO, Plan/requirement 6% to 8% (Effort); 10% to 40%(Time) Product Design 16% to 18% (Effort); 19% to 38% (Time) Programming 48% to 68% (Effort); 24% to 64% (Time) Integration/Test 16% to 34% (Effort); 24% to 64% (Time) is...

  7. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  8. The Development of Mini Portable Digester Designs for Domestic and Restaurant Solid Waste Processing to be Clean Biogas as Energy's Alternative to Replace LPG

    Science.gov (United States)

    Mansur, A.; Janari dan, D.; Setiawan, N.

    2016-02-01

    Biofuel is developed as an alternative source of second generation energy that could be attained from organic waste. This research is purposed to create applicative and cheap Portable digester unit for society. The design concepts’ screening that was made under considerations of the experts is finally resumed. Design 1 with final weight score of 1, design 2 with final weight score of -1, design 3 with final weight score of 2, design 4 with final weight score 3, design 5 with final weight score of -1, design 6 with final weight score of 0. Accepted designs for further concept assessment are design 1, 2 and 6. The result of concept assessment applies weighting for the scoring. Design 1 resulting 2.67, design 2 results 2.15 while design 3 results 2.52. Design 1 is concluded as the design with biggest result, which is 2.67. Its specification is explained as follows: tank capacity of 60 liters, manual rotating crank pivot, tank's material is plastic with symbol 1, material of axle swivel arm is grey cast iron, 2 mm rotary blades with hole. The experiment 1 contained 23.78% methane and 13.65 carbon dioxide that resulted from content test.

  9. Clean Energy Finance: Challenges and Opportunities of Early-Stage Energy Investing (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Heap, D.; Pless, J.; Aieta, N.

    2013-12-01

    Characterized by a changing landscape and new opportunities, today's increasingly complex energy decision space will need innovative financing and investment models to appropriately assess risk and profitability. This report provides an overview of the current state of clean energy finance across the entire spectrum but with a focus on early stage investing, and it includes insights from investors across all investment classes. Further, this report aims to provide a roadmap with the mechanisms, limitations, and considerations involved in making successful investments by identifying risks, challenges, and opportunities in the clean energy sector.

  10. Clean Energy in City Codes: A Baseline Analysis of Municipal Codification across the United States

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Jeffrey J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Aznar, Alexandra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dane, Alexander [National Renewable Energy Lab. (NREL), Golden, CO (United States); Day, Megan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mathur, Sivani [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-12-01

    Municipal governments in the United States are well positioned to influence clean energy (energy efficiency and alternative energy) and transportation technology and strategy implementation within their jurisdictions through planning, programs, and codification. Municipal governments are leveraging planning processes and programs to shape their energy futures. There is limited understanding in the literature related to codification, the primary way that municipal governments enact enforceable policies. The authors fill the gap in the literature by documenting the status of municipal codification of clean energy and transportation across the United States. More directly, we leverage online databases of municipal codes to develop national and state-specific representative samples of municipal governments by population size. Our analysis finds that municipal governments with the authority to set residential building energy codes within their jurisdictions frequently do so. In some cases, communities set codes higher than their respective state governments. Examination of codes across the nation indicates that municipal governments are employing their code as a policy mechanism to address clean energy and transportation.

  11. 78 FR 57629 - Eagle Valley Clean Energy, LLC; Notice of Filing

    Science.gov (United States)

    2013-09-19

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Valley Clean Energy, LLC; Notice of Filing Take notice that on September 9, 2013, Eagle Valley Clean Energy, LLC filed Form 556 and a petition for certification as a...

  12. Energy efficiency, renewable energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    Ervin, C.A.

    1994-12-31

    The Office of Energy Efficiency and Renewable Energy (EE) is part of the U.S. Department of Energy that is specifically charged with encouraging the more efficient use of energy resources, and the use of renewable energy resources - such as solar power, wind power, biomass energy and geothermal energy. In the past several years, EE has increased its emphasis on technology deployment through partnerships with states, local governments and private companies. Partnerships move new discoveries more quickly into the marketplace, where they can create jobs, prevent pollution, save resources, and produce many other benefits. The author then emphasizes the importance of this effort in a number of different sections of the paper: energy consumption pervades everything we do; U.S. energy imports are rising to record levels; transportation energy demand is increasing; U.S. energy use is increasing; population growth increases world energy demand; total costs of energy consumption aren`t always counted; world energy markets offer incredible potential; cost of renewables is decreasing; clean energy is essential to sustainable development; sustainable energy policy; sustainable energy initiatives: utilities, buildings, and transportation.

  13. Addressing climate and energy misconceptions - teaching tools offered by the Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Gold, A. U.; Ledley, T. S.; Kirk, K. B.; Grogan, M.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Niepold, F.; Howell, C.; Lynds, S. E.

    2011-12-01

    Despite a prevalence of peer-reviewed scientific research and high-level reports by intergovernmental agencies (e.g., IPCC) that document changes in our climate and consequences for human societies, the public discourse regards these topics as controversial and sensitive. The chasm between scientific-based understanding of climate systems and public understanding can most easily be addressed via high quality, science-based education on these topics. Well-trained and confident educators are required to provide this education. However, climate science and energy awareness are complex topics that are rapidly evolving and have a great potential for controversy. Furthermore, the interdisciplinary nature of climate science further increases the difficulty for teachers to stay abreast of the science and the policy. Research has shown that students and educators alike hold misconceptions about the climate system in general and the causes and effects of climate change in particular. The NSF-funded CLEAN Pathway (http://cleanet.org) as part of the National Science Digital Library (http://www.nsdl.org) strives to address these needs and help educators address misconceptions by providing high quality learning resources and professional development opportunities to support educators of grade levels 6 through 16. The materials focus on teaching climate science and energy use. The scope and framework of the CLEAN Pathway is defined by the Essential Principles of Climate Science (CCSP, 2009) and the Energy Literacy Principles recently developed by the Department of Energy. Following this literacy-based approach, CLEAN helps with developing mental models to address misconceptions around climate science and energy awareness through a number of different avenues. These are: 1) Professional development opportunities for educators - interactive webinars for secondary teachers and virtual workshops for college faculty, 2) A collection of scientifically and pedagogically reviewed, high

  14. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  15. Treatment analysis of incentive politics for renewable energy projects in the clean development mechanism (CDM): the Brazilian case; Analise do tratamento das politicas de incentivos a projetos de energias renovaveis no mecanismo de desenvolvimento limpo (MDL): o caso brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Anamelia; Hauser, Philipp, Emails: anameliam@yahoo.com.br, philipphauser@web.de

    2010-07-01

    This paper analyses the politics for mitigation recently adopted by the Brazil, and discuss his treatment under the rules of CDM, viewing to contribute for a transparent solution which to allow the conciliation global and national politics for the clean expansion of the energy sector in Brazil.

  16. Energy efficiency procedures for agricultural machinery used in onion cultivation (Allium fistulosum) as an alternative to reduce carbon emissions under the clean development mechanism at Aquitania (Colombia)

    Science.gov (United States)

    Ochoa, K.; Carrillo, S.; Gutierrez, L.

    2014-06-01

    Climate change has both causes and consequences over agriculture. This paper focuses on the first element and presents scenarios for ASOLAGO -an onion cropper's association in Colombia with 250 members- to reduce their carbon footprint. It evaluates a case study at "La Primavera" farm using a methodology approved by the United Nations Framework Convention on Climate Change. Land preparation and crop irrigation were analyzed as stages in order to propose energy efficiency alternatives for both the farm and the association. They include field efficiency, fuel economy and energy efficiency from biofuels for the first stage as well as solar and wind energy supply for the second. A cost-benefit analysis to generate additional income selling additional power produced by the system to the National Grid was done.

  17. Vertical Silicon Nanowire Platform for Low Power Electronics and Clean Energy Applications

    Directory of Open Access Journals (Sweden)

    D.-L. Kwong

    2012-01-01

    Full Text Available This paper reviews the progress of the vertical top-down nanowire technology platform developed to explore novel device architectures and integration schemes for green electronics and clean energy applications. Under electronics domain, besides having ultimate scaling potential, the vertical wire offers (1 CMOS circuits with much smaller foot print as compared to planar transistor at the same technology node, (2 a natural platform for tunneling FETs, and (3 a route to fabricate stacked nonvolatile memory cells. Under clean energy harvesting area, vertical wires could provide (1 cost reduction in photovoltaic energy conversion through enhanced light trapping and (2 a fully CMOS compatible thermoelectric engine converting waste-heat into electricity. In addition to progress review, we discuss the challenges and future prospects with vertical nanowires platform.

  18. Critical resources in clean energy technologies and waste flows

    DEFF Research Database (Denmark)

    Habib, Komal

    is fraught with the risk of shifting the supply security problem from one type of non‐renewable resources (fossil fuels) to another type (metals), in particular the specialty metals such as rare earth elements e.g. neodymium and dysprosium. This PhD work presented an in‐depth analysis of potential resource...... constraints for the emerging clean energy technologies in future, along with an insight into the resource criticality assessment methodologies, detailed material flow analysis (MFA) of critical resources, and recovery of critical resources from the waste streams. The key findings of this PhD study were......, and is dispersed over a myriad of different products in the present waste flows, rendering their economically feasible recovery from waste.    This study has revealed the complete loss of neodymium and dysprosium in the current waste electrical and electronic equipment (WEEE) treatment system...

  19. Energy Efficient in-Sensor Data Cleaning for Mining Frequent Itemsets

    Directory of Open Access Journals (Sweden)

    Jacques M. BAHI

    2012-03-01

    Full Text Available Limited energy, storage, computational power represent the main constraint of sensor networks. Development of algorithms that take into consideration this extremely demanding and constrained environment of sensor networks became a major challenge. Communicating messages over a sensor network consume far more energy than processing it and mining sensors data should respect the characteristics of sensor networks in terms of energy and computation constraints, network dynamics, and faults. This lead us to think of a data cleaning pre processing phase to reduce the packet size transmitted and prepare the data for an efficient and scalable data mining. This paper introduces a tree-based bi-level periodic data cleaning approach implemented on both the source node and the aggregator levels. Our contribution in this paper is two folds. First we look on a periodic basis at each data measured and periodically clean it while taking into consideration the number of occurrences of the measures captured which we shall call weight. Then, a data cleaning is performed between groups of nodes on the level of the aggregator, which contains lists of measures along with their weights. The quality of the information should be preserved during the in-network transmission through the weight of each measure captured by the sensors. This weight will constitute the key optimization of the frequent pattern tree. The result set will constitute a perfect training set to mine without higher CPU consumption allowing us to send only the useful information to the sink. The experimental results show the effectiveness of this technique in terms of energy efficiency and quality of the information by focusing on a periodical data cleaning while taking into consideration the weight of the data captured.

  20. Fiscal 2000 survey report on R and D results of advanced clean energy vehicle; 2000 nendo kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With problems inherent to clean energy vehicles such as cruising distance, fuel supply and fuel consumption, ACEVs (advanced clean energy vehicles) are in demand featuring both low pollution and high efficiency compatibly. This paper explains the fiscal 2000 results of development. The target is, by using oil-alternative fuel, to reduce driving energy consumption and carbon dioxide emission to less than half and to control the life cycle cost (total of manufacturing cost, operating cost, fuel cost, etc.) to not more than twice as much as those of conventional vehicles. As ACEVs, an ANG (adsorbed natural gas) engine and flywheel battery mounted passenger car was selected, as were a CNG ceramics engine and capacitor mounted truck, CNG engine and lithium-ion battery mounted truck, LNG engine and capacitor mounted bus, and a DME engine and capacitor mounted bus. All are hybrid systems with an energy saving device. In the research of synthetic fuels, the results of the studies were summarized including the effect of various synthetic light oils on engine performance, fuel characteristics, effect of PM grain size and the optimum properties. (NEDO)

  1. Energy efficient biological air cleaning for farm stable ventilation; Energieffektiv biologisk luftrensning til staldventilation

    Energy Technology Data Exchange (ETDEWEB)

    Groenborg Nicolaisen, C.; Hansen, Mads P.R. [Teknologisk Institut, Aarhus (Denmark); Stroem, J.; Soerensen, Keld [DXT. Danish Exergy Technology A/S, Skoerping (Denmark); Goetke, C. [Lokalenergi Aarhus, Viby J. (Denmark); Morsing, S.; Soerensen, Lars C. [SKOV A/S, Roslev (Denmark); Ladegaerd Jensen, T.; Pedersen, Poul [Videncenter for svineproduktion, Copenhagen (Denmark)

    2013-05-01

    The project has been designed to reduce energy consumption for air purification by 30% while having a payback period of maximum 3 years. The project has achieved very significant results which are far above the target. Particularly satisfying is the wide range of new components that are launched in late 2012. By implementing the newly developed system at 100% cleaning (LPC 13 ventilators and Dynamic multistep control) in relation to Best Practice (SKOV's original system with DA600 fans) in a concrete pigsty, a saving of 61% and a simple payback of 1.7 years is achieved. Similarly, it is found that the energy used for pump operation can be reduced by 37% with the new Dynamic sprinkling control. At 20% cleaning a potential saving of 15% per year and a payback period of between 0 and 5 years was found, which is dependent on the desired performance as the capacities in the bio-filter's upper capacity range between 26 thousand to 30 thousand m3 / h entails costs for an additional extraction unit in the new solution. Furthermore, the newly developed components proved highly suitable for standard installations without air cleaning where a savings potential is 53% and the payback period 1.5 years. Product-wise, the project formed the basis for the development of: 1. New energy-efficient ventilation units (LPC11, 12,13) that are suitable for air purification; 2. A new energy-saving control principle (Dynamic Multi-Step) which is particularly suitable for low-energy ventilators; 3. A new energy-saving flow measurement system for ventilating ducts (Dynamic air to the central exhaust); 4. An energy-saving pressure control in common ducts (pressure control as a function of outside temperature); 5. Proposal for a new energy-saving pump operation for sprinkling of biological filters (Dynamic sprinkling). (LN)

  2. Potential impacts of energy efficiency policies in the U.S. industry: Results from the clean energy futures study

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Price, Lynn

    2001-07-24

    Scenarios for a Clean Energy Future (CEF) studied the role that efficient clean energy technologies can play in meeting the economic and environmental challenges for our future energy supply. The study describes a portfolio of policies that would motivate energy users and businesses to invest in innovative energy efficient technologies. On the basis of the portfolios, two policy scenarios have been developed, i.e. a moderate scenario and an advanced scenario. We focus on the industrial part of the CEF-study. The studied policies include a wide scope of activities, which are organized under the umbrella of voluntary industrial sector agreements. The policies for the policy scenarios have been modeled using the National Energy Modeling System (CEF-NEMS). Under the reference scenario industrial energy use would grow to 41 Quads in 2020, compared to 34.8 Quads in 1997, with an average improvement of the energy intensity by 1.1% per year. In the Moderate scenario the annual improvement is a bout 1.5%/year, leading to primary energy use of 37.8 Quads in 2020, resulting in 10% lower CO2 emissions by 2020 compared to the reference scenario. In the Advanced scenario the annual improvement increases to 1.8% per year, leading to primary energy use of 34.3 Quads in 2020, and 29% lower CO2 emissions. We report on the policies, assumptions and results for industry.

  3. Is the Clean Development Mechanism Effective for Emission Reductions?

    DEFF Research Database (Denmark)

    Tarp, Finn; Huang, Yongfu; He, Jingjing

    2014-01-01

    with great challenges, given the wide divide between developed and developing nations. Against this background, comprehensive evaluations of the effectiveness of Kyoto market‐based mechanisms such as the Clean Development Mechanism (CDM) in terms of mitigating human‐induced climate change are urgently needed...

  4. An Investigation into Kyoto Protocol's Clean Development ...

    African Journals Online (AJOL)

    CDM) as a transition mechanism to Kenya's green economy and the contribution of CDM projects towards sustainable development in Kenya. Accordingly, a positive checklist approach to sustainable development indicators was applied as ...

  5. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / Development of an environmentally friendly industrial cleaning system using near-critical and supercritical carbon dioxide (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / chorinkai ryutai wo mochiita kankyo chowagata kogyo senjo sochi no kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In the manufacturing process of semiconductors and in the high tech industry, cleaning is indispensable. At present, when regulation of the use of CFC which used to be much used has been decided on, the conversion to the use of substitutes for CFC cleaning is urgently needed. Transfer to cleaning by water/alcohol/hydrocarbon has been proceeded with, but there are a lot of problems. Out of the development of the cleaning method using supercritical fluid, the paper described the fiscal 1997 result. As to enhancement of efficiency and decrease in size of equipment, a cleaning experiment by high pressure CO2 around the critical point was conducted by integrating nozzle, ultrasonic generator and cavitation generator and adding solvent circulating system. Multi-purpose and energy saving of the equipment were also studied. To establish an analysis method for the cleaning degree, the contaminated component film of trace organic matter with a specified thickness was formed on the silicon wafer, and using the Fourier transform ultrared spectroscopy, a method to determine the film thickness was studied. For the function evaluation for precision machine parts and determination of optimum cleaning conditions, the cleaning/degreasing process of valves were compared with the conventional method. For the product manufacturing, the paper investigated and prepared the data in Japan and from abroad. 55 refs., 79 figs., 18 tabs.

  6. An analysis of key issues in the clean development mechanism based on the UNEP Risoe clean development mechanism pipeline

    DEFF Research Database (Denmark)

    Fenhann, Jørgen Villy; Staun, Frederik

    2010-01-01

    This paper provides a description of the analysis contained in the UNEP Risoe Clean Development Mechanism (CDM) pipeline not available on the site, some of the impacts/problems of the CDM and a way forward post-2012. The successful development of the CDM since it started in December 2003 is docum......This paper provides a description of the analysis contained in the UNEP Risoe Clean Development Mechanism (CDM) pipeline not available on the site, some of the impacts/problems of the CDM and a way forward post-2012. The successful development of the CDM since it started in December 2003...

  7. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    In order to address these tar related problems a cleaning and cooling system has been developed in house that facilitates tar removal to acceptable levels tolerated by the internal combustion (IC) engine and meets emission standards as well. The main objective of the present work is to reduce tar level and develop control ...

  8. State Clean Energy Policies Analysis: State, Utility, and Municipal Loan Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.

    2010-05-01

    High initial costs can impede the deployment of clean energy technologies. Financing can reduce these costs. And, state, municipal, and utility-sponsored loan programs have emerged to fill the gap between clean energy technology financing needs and private sector lending. In general, public loan programs are more favorable to clean energy technologies than are those offered by traditional lending institutions; however, public loan programs address only the high up-front costs of clean energy systems, and the technology installed under these loan programs rarely supports clean energy production at levels that have a notable impact on the broader energy sector. This report discusses ways to increase the impact of these loan programs and suggests related policy design considerations.

  9. Geothermal today: 1999 Geothermal Energy Program highlights (Clean energy for the 21st century booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Green, B.; Waggoner, T.

    2000-05-10

    The purpose of this publication is to educate and inform readers about research activities being carried out by the federal Geothermal Energy Program, and its achievements and future goals. This publication should help raise the visibility and awareness of geothermal energy contributions and potential, especially as part of the nation's clean energy technologies portfolio. The message of the publication is that program resources are being well spent and the results are real and tangible. A secondary message is that geothermal energy is a viable generation option with environmental, economic, and other benefits.

  10. Community Renewable Energy Deployment Provides Replicable Examples of Clean Energy Projects (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-09-01

    This fact sheet describes the U.S. Department of Energy's Community Renewable Energy Deployment (CommRE) program, which is a more than $20 million effort funded through the American Recovery and Reinvestment Act of 2009, to promote investment in clean energy solutions and provide real-life examples for other local governments, campuses, and small utilities to replicate. Five community-based renewable energy projects received funding from DOE through the CommRE and their progress is detailed.

  11. Quiet Clean Short-haul Experimental Engine (QCSEE). Double-annular clean combustor technology development report

    Science.gov (United States)

    Bahr, D. W.; Burrus, D. L.; Sabla, P. E.

    1979-01-01

    A sector combustor technology development program was conducted to define an advanced double annular dome combustor sized for use in the quiet clean short haul experimental engine (QCSEE). A design which meets the emission goals, and combustor performance goals of the QCSEE engine program was developed. Key design features were identified which resulted in substantial reduction in carbon monoxide and unburned hydrocarbon emission levels at ground idle operating conditions, in addition to very low nitric oxide emission levels at high power operating conditions. Their significant results are reported.

  12. Demonstration projects of hydrogen mobility. The clean energy partnership (CEP)

    Energy Technology Data Exchange (ETDEWEB)

    Kirchner, Rene [TOTAL Deutschland GmbH / Clean Energy Partnership, Berlin (Germany)

    2013-06-01

    The Clean Energy Partnership (CEP)- an alliance of currently sixteen leading companies in Germany- shows that it may be doable to establish hydrogen as 'fuel of the future'. With Air Liquide, Berliner Verkehrsbetriebe (BVG), BMW, Daimler, EnBW, Ford, GM/Opel, Hamburger Hochbahn, Honda, Linde, Shell, Siemens, Total, Toyota, Vattenfall Europe and Volkswagen, the project partners include technology, oil and utility companies as well as major car manufacturers and two leading public transport companies of the two biggest German cities. The goal of CEP is to test using hydrogen- and fuel-cell technology on an everyday basis in the mobility sector with regard to individual traffic and public transport. Challenges are the use and supply of ''green'' hydrogen as well the serial production of hydrogen vehicles as well as the extension of the hydrogen filling station network. Nevertheless, Germany is a frontrunner when it comes to hydrogen mobility with currently 15 stations and 50% green hydrogen offered already today. (orig.)

  13. Insights and Opportunities: Technologies, Policies, and Markets for Clean Energy Solutions (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Arent, D.

    2009-11-01

    A presentation highlighting how strategic energy analysis can affect technologies, policies, and markets for clean energy solutions. This includes an overview of some of NREL's models and tools as well as results from laboratory analysis.

  14. The economic conditions for the application of advanced energy technologies (Clean Coal Technologies in the Slovakia´s energy sector

    Directory of Open Access Journals (Sweden)

    Šalamonová Alena

    1998-09-01

    Full Text Available The article entitled “The economic conditions for the application of advanced energy technologies (clean coal technologies in the Slovakia`s energy sector” is based on the development program for the Slovakia`s energy industry, which includes the implementation of the advanced energy technologies (CCT in utilities. It quantifies the needs of the implementation of projects applying such technologies and specifies a rough production costs for the energy produced by different types of energy facilities. The current economic conditions of the CCT operation are decribed along with the definition of the conditions for their future efficient application. The authors outline expected system measures aimed at enhancing the application of highly efficient technologies in the energy industry, including renewable energy sources. The article, in a transparent form, makes a realistic evaluation of the current situation and a likely development in the application of clean energy technologies.

  15. Fiscal 2000 achievement report. Research and development of semiconductor CVD chamber cleaning systems for electronic device manufacturing using new alternative gas instead of SF6, PFCs, and other gases; 2000 nendo sokkoteki kakushinteki energy kankyo gijutsu kaihatsu seika hokokusho. SF6 tou ni daitaisuru gasu wo riyo shita denshi debaisu seizo cleaning system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The efforts aim to develop a CVD (chemical vapor deposition) mechanism cleaning gas with less environmental impact such as global warming and a CVD process using the same. The candidate gas synthesizing study for the development of such a gas continues from the preceding fiscal year. In addition, various candidate gases and tentatively synthesized gases are evaluated for their cleaning performance using a simplified experimental system. As the result, patent applications were filed for three novel alternative gases low in environmental impact and high in cleaning performance. In the research and development of CVD processes, a verification test process is developed for the evaluation of alternative gases at the real system level using a large CVD evaluation system. Studies are also made in which some existing gases are utilized to improve on CVD cleaning efficiency and to reduce greenhouse gas emissions. In relation to the process, one domestic patent application is made, and three essays are presented at an international conference on electrochemistry in the United States. (NEDO)

  16. Clean generation of electric energy; Generacion limpia de energia electrica

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Juan M.; Torres, Emmanuel [Centro de Investigacion y de Estudios Avanzados (CINVESTAV), Unidad Guadalajara (Mexico)

    2006-10-15

    This article deals on the existing alternatives of renewable energy for generation of electricity free from polluting sequels within the Mexican territory and presents a global overview on the electricity generation in Mexico. Wind power, hydraulic energy, biomass, photovoltaic and fuel cells are sources of renewable energy that could contribute to Mexico's sustainable development, for this reason it is discussed on the main sources of renewable energy in Mexico - solar and wind energy, mini-hydraulic, biomass and geothermal -, on their development and evolution, cost, insertion projects and obstacles for their correct development in this country. [Spanish] Este articulo versa sobre las alternativas de energia renovable existentes para una generacion de electricidad libre de secuelas contaminantes dentro del territorio mexicano y presenta un panorama global sobre la generacion de electricidad en Mexico. La energia eolica, hidraulica, biomasa, fotovoltaica y las celdas de combustible son fuentes de energia renovable que podrian contribuir al desarrollo sustentable de Mexico, por esto se arguye sobre las principales fuentes de energia renovable en Mexico -energia solar, eolica, minihidraulica, biomasa y geotermia-, sobre su desarrollo y evolucion, costo, proyectos de insercion y obstaculos para su correcto desarrollo en ese pais.

  17. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  18. Improving Reliability and Durability of Efficient and Clean Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Prabhakar [Univ. of Connecticut, Storrs, CT (United States)

    2010-08-01

    Overall objective of the research program was to develop an in-depth understanding of the degradation processes in advanced electrochemical energy conversion systems. It was also the objective of the research program to transfer the technology to participating industries for implementation in manufacturing of cost effective and reliable integrated systems.

  19. A Clean Energy Roadmap: Forging the Path Ahead

    Science.gov (United States)

    Ewing Marion Kauffman Foundation, 2010

    2010-01-01

    In 2010, the Ewing Marion Kauffman Foundation co-convened three cross-sector summits to develop recommendations for growing energy innovation in the United States. The first summit was held in Washington, D.C., on May 7, 2010, in partnership with the White House. Gallup and the city of Omaha, Nebraska, hosted the second summit on June 16, 2010,…

  20. NREL's Industry Growth Forum Boosts Clean Energy Commercialization Efforts (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2010-12-01

    For more than a decade, the National Renewable Energy Laboratory's (NREL) Industry Growth Forum has been the nation's premier event for early-stage clean energy investment. The forum features presentations from the most innovative, promising, and emergent clean energy companies; provocative panels led by thought leaders; and organized networking opportunities. It is the perfect venue for growing cleantech companies to present their business to a wide range of investors.

  1. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  2. Reactive Programming and Clean Architecture in Android Development

    OpenAIRE

    Bui, Duy

    2017-01-01

    Software application becomes more and more complex nowadays. To provide a good software application that is easy to scale, developers need to design a good software architecture. The purpose of the project was to find a good Android architecture that can be used in later projects of the team C63-Studio. The project was implemented by refactoring a legacy Android application of team C63-Studio using clean architecture, dependency injection and reactive programming. From the refactoring...

  3. Benefits to the United States of Increasing Global Uptake of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kline, D.

    2010-07-01

    A previous report describes an opportunity for the United States to take leadership in efforts to transform the global energy system toward clean energy technologies (CET). An accompanying analysis to that report provides estimates of the economic benefits to the United States of such a global transformation on the order of several hundred billion dollars per year by 2050. This report describes the methods and assumptions used in developing those benefit estimates. It begins with a summary of the results of the analysis based on an updated and refined model completed since the publication of the previous report. The framework described can be used to estimate the economic benefits to the U.S. of coordinated global action to increase the uptake of CETs worldwide. Together with a Monte Carlo simulation engine, the framework can be used to develop plausible ranges for benefits, taking into account the large uncertainty in the driving variables and economic parameters. The resulting estimates illustrate that larger global clean energy markets offer significant opportunities to the United States economy.

  4. Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies.

    Science.gov (United States)

    Li, Changyi; Meckler, Stephen M; Smith, Zachary P; Bachman, Jonathan E; Maserati, Lorenzo; Long, Jeffrey R; Helms, Brett A

    2018-02-01

    Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment in the basic research of microporous materials is beginning to pay dividends in membrane technology maturation. Specifically, improvements in membrane selectivity, permeability, and durability are being leveraged for more efficient carbon capture, desalination, and energy storage, and the market adoption of membranes in those areas appears to be on the horizon. Herein, an overview of the microporous materials chemistry driving advanced membrane development, the clean-energy separations employing them, and the theoretical underpinnings tying membrane performance to membrane structure across multiple length scales is provided. The interplay of pore architecture and chemistry for a given set of analytes emerges as a critical design consideration dictating mass transport outcomes. Opportunities and outstanding challenges in the field are also discussed, including high-flux 2D molecular-sieving membranes, phase-change adsorbents as performance-enhancing components in composite membranes, and the need for quantitative metrologies for understanding mass transport in heterophasic materials and in micropores with unusual chemical interactions with analytes of interest. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Geothermal energy: clean power from the Earth's heat

    Science.gov (United States)

    Duffield, Wendell A.; Sass, John H.

    2003-01-01

    Societies in the 21st century require enormous amounts of energy to drive the machines of commerce and to sustain the lifestyles that many people have come to expect. Today, most of this energy is derived from oil, natural gas, and coal, supplemented by nuclear power. Local exceptions exist, but oil is by far the most common source of energy worldwide. Oil resources, however, are nonrenewable and concentrated in only a few places around the globe, creating uncertainty in long-term supply for many nations. At the time of the Middle East oil embargo of the 1970s, about a third of the United States oil supply was imported, mostly from that region. An interruption in the flow of this import disrupted nearly every citizen’s daily life, as well as the Nation’s economy. In response, the Federal Government launched substantial programs to accelerate development of means to increasingly harness “alternative energies”—primarily biomass, geothermal, solar, and wind. The new emphasis on simultaneously pursuing development of several sources of energy recognized the timeless wisdom found in the proverb of “not putting all eggs in one basket.” This book helps explain the role that geothermal resources can play in helping promote such diversity and in satisfying our Nation’s vast energy needs as we enter a new millennium. For centuries, people have enjoyed the benefits of geothermal energy available at hot springs, but it is only through technological advances made during the 20th century that we can tap this energy source in the subsurface and use it in a variety of ways, including the generation of electricity. Geothermal resources are simply exploitable concentrations of the Earth’s natural heat (thermal energy). The Earth is a bountiful source of thermal energy, continuously producing heat at depth, primarily by the decay of naturally occurring radioactive isotopes—principally of uranium, thorium, and potassium—that occur in small amounts in all rocks

  6. Hawaii Clean Energy Initiative Existing Building Energy Efficiency Analysis: November 17, 2009 - June 30, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Finch, P.; Potes, A.

    2010-06-01

    In June 2009, the State of Hawaii enacted an Energy Efficiency Portfolio Standard (EEPS) with a target of 4,300 gigawatt hours (GWh) by 2030 (Hawaii 2009). Upon setting this goal, the Hawaii Clean Energy Initiative, Booz Allen Hamilton (BAH), and the National Renewable Energy Laboratory (NREL), working with select local stakeholders, partnered to execute the first key step toward attaining the EEPS goal: the creation of a high-resolution roadmap outlining key areas of potential electricity savings. This roadmap was divided into two core elements: savings from new construction and savings from existing buildings. BAH focused primarily on the existing building analysis, while NREL focused on new construction forecasting. This report presents the results of the Booz Allen Hamilton study on the existing building stock of Hawaii, along with conclusions on the key drivers of potential energy efficiency savings and on the steps necessary to attain them.

  7. Feasibility of zeolitic imidazolate framework membranes for clean energy applications

    NARCIS (Netherlands)

    Thornton, A. W.; Dubbeldam, D.; Liu, M. S.; Ladewig, B. P.; Hill, A. J.; Hill, M. R.

    2012-01-01

    Gas separation technologies for carbon-free hydrogen and clean gaseous fuel production must efficiently perform the following separations: (1) H2/CO2 (and H2/N2) for pre-combustion coal gasification, (2) CO2/N2 for post-combustion of coal, (3) CO2/CH4 for natural gas sweetening and biofuel

  8. The Paris-Nairobi climate initiative. Access to clean energy for all in Africa and countries vulnerable to climate change. Access to energy, sustainable development and climate change; Initiative climat Paris-Nairobi. Acces aux energies propres en Afrique et dans les pays vulnerables au changement climatique. Livre-Blanc, Acces a l'energie, developpement durable et changements climatiques

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-04-21

    The first part of this report highlights the importance of a universal access to energy, the role of public policies and renewable energies, the need to implement sustainable economic models for energy services, and indicates the major objectives and essential actions for these purposes. The second part outlines the weakness of electricity production in Africa, the degradation of the energy mix balance, the vulnerability to climate change, and the fact that Africa, like other countries vulnerable to climate change, possess huge and unexploited renewable energy resources (biomass, hydroelectricity, geothermal, solar, wind). The third part proposes an approach to energy services by developing sustainable cooking, supplying energy to support rural development and to poles of economic growth, by developing sustainable cities (notably in transports and buildings), and by developing national and regional electricity grids. The last part addresses the issue of energy financing in developing countries

  9. VISION: Illuminating the Pathways to a Clean Energy Economy - JISEA 2016 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This report demonstrates JISEA's successes over the past year and previews our coming work. The 2016 Annual Report highlights JISEA accomplishments in low-carbon electricity system research, international collaboration, clean energy manufacturing analysis, 21st century innovation strategy, and more. As we look to the coming year, JISEA will continue to navigate complex issues, present unique perspectives, and envision a clean energy economy.

  10. Power System Challenge: Synthesis Report for the 7th Clean Energy Ministerial

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-06-01

    The Clean Energy Ministerial's (CEM's) Power System Challenge was established in 2015 to create a shared vision among major economies regarding the pathway to clean, reliable, resilient, and affordable power. Endorsing governments have created core principles and challenge propositions as a framework for government and industry action to support and guide power system transformation. This brochure details the status of the Challenge, how countries are working to meet the Challenge, and the relevant milestones reached by initiatives of the Clean Energy Ministerial.

  11. Photobiological hydrogen production and artificial photosynthesis for clean energy: from bio to nanotechnologies.

    Science.gov (United States)

    Nath, K; Najafpour, M M; Voloshin, R A; Balaghi, S E; Tyystjärvi, E; Timilsina, R; Eaton-Rye, J J; Tomo, T; Nam, H G; Nishihara, H; Ramakrishna, S; Shen, J-R; Allakhverdiev, S I

    2015-12-01

    Global energy demand is increasing rapidly and due to intensive consumption of different forms of fuels, there are increasing concerns over the reduction in readily available conventional energy resources. Because of the deleterious atmospheric effects of fossil fuels and the uncertainties of future energy supplies, there is a surge of interest to find environmentally friendly alternative energy sources. Hydrogen (H2) has attracted worldwide attention as a secondary energy carrier, since it is the lightest carbon-neutral fuel rich in energy per unit mass and easy to store. Several methods and technologies have been developed for H2 production, but none of them are able to replace the traditional combustion fuel used in automobiles so far. Extensively modified and renovated methods and technologies are required to introduce H2 as an alternative efficient, clean, and cost-effective future fuel. Among several emerging renewable energy technologies, photobiological H2 production by oxygenic photosynthetic microbes such as green algae and cyanobacteria or by artificial photosynthesis has attracted significant interest. In this short review, we summarize the recent progress and challenges in H2-based energy production by means of biological and artificial photosynthesis routes.

  12. Navajo Generating Station and Clean-Energy Alternatives: Options for Renewables

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, D. J.; Haase, S.; Turchi, C. S.; Burman, K.

    2012-06-01

    In January 2012, the National Renewable Energy Laboratory delivered to the Department of the Interior the first part of a study on Navajo Generating Station (Navajo GS) and the likely impacts of BART compliance options. That document establishes a comprehensive baseline for the analysis of clean energy alternatives, and their ability to achieve benefits similar to those that Navajo GS currently provides. This analysis is a supplement to NREL's January 2012 study. It provides a high level examination of several clean energy alternatives, based on the previous analysis. Each has particular characteristics affecting its relevance as an alternative to Navajo GS. It is assumed that the development of any alternative resource (or portfolio of resources) to replace all or a portion of Navajo GS would occur at the end of a staged transition plan designed to reduce economic disruption. We assume that replacing the federal government's 24.3% share of Navajo GS would be a cooperative responsibility of both the U.S. Bureau of Reclamation (USBR) and the Central Arizona Water Conservation District (CAWCD).

  13. The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition

    DEFF Research Database (Denmark)

    Dominkovic, Dominik Franjo; Bačeković, Ivan; Pedersen, Allan Schrøder

    2017-01-01

    and energy resources. Especially challenging transition is envisaged for heavy-weight, long-range vehicles and airplanes. A detailed literature review was carried out in order to detect the current state of the research on clean transport sector, as well as to point out the gaps in the research. In order...... to calculate the resources needed for the transition towards completely renewable transport sector, four main alternatives to the current fossil fuel systems were assessed and their potential was quantified, i.e. biofuels, hydrogen, synthetic fuels (electrofuels) and electricity. Results showed that electric...

  14. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  15. The role of government in supporting the emergence of clean energy venture capital investing in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Buerer, M.J.; Wuestenhagen, R.

    2005-07-01

    This report for the Swiss Federal Office of Energy (SFOE) takes a look at the role of the Swiss government in supporting the provision of venture capital for clean energy projects. Topics examined include the lack of sufficient venture capital investment in clean energy technology, the situation encountered in Switzerland today as far as energy entrepreneurship is concerned, key challenges and cultural, legal and fiscal aspects. Present government support in these areas, the relevance of current Swiss programmes and improvements that are to be made are also discussed. Also, activities in other countries are examined and suggestions are made concerning new activities to improve the situation in Switzerland.

  16. Cleaning Inefficiency of the LHC Collimation System During the Energy Ramp: Simulations and Measurements

    CERN Document Server

    Quaranta, E; Lari, L; Mirarchi, D; Redaelli, S; Rossi, A; Salvachua, B; Valentino, G

    2013-01-01

    The cleaning inefficiency of the LHC collimation system for the operational scenarios in 2010-12 has already been studied in detail at injection and top energy (450 GeV and 4 TeV respectively). In this paper, results are presented for the cleaning inefficiency at intermediate energies, simulated using the SixTrack code. The first comparisons with measured provoked losses are discussed. This study helps in benchmarking the energy dependence of the simulated inefficiency and is thus important for the extrapolation to future operation at higher energies.

  17. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 8. Research and development of hydrogen combustion turbines (development of ultra-high temperature materials); Suiso riyo kokusai clean energy system (WE-NET). Subtask 8. Suiso nensho turbine no kenkyu kaihatsu chokoon zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the result of the fiscal 1996 development of ultra-high temperature materials for parts of hydrogen combustion turbines, as part of the hydrogen utilization technology, which have excellent environmental protectivity and remarkably high efficiency. By the optimized solution heat treatment of monocrystal alloy developed in the previous fiscal year, obtained was strength property the same as the existing super alloys. As to FRC, pore size and strength property of SiC organic hybrid were made clear. ODS alloy cooling blades and heat insulation coating were studied, and YSZ was found to be most excellent as coating material. Concerning intermetallic compounds, the applicability to ultra-high temperatures up to 1700degC was not obtained. For improvement of heat resistance and environment resistance, adopted were highly compacting SiC matrix and BN coatings. Al2O3 was excellent in long-time stability. In the 1600degC steam corrosion test on multiplex structural materials with Al2O3 as surface material, chemical stability was confirmed. Three-dimensional woven fiber reinforced composite materials of C/C{center_dot}CMC were trially produced by changing the fiber orientation, and improvement in ultra-high temperature thermal shock resistance was confirmed. A study was made of spot observation of the specimen surface by laser microscope, and development was conducted of a temperature measuring method with no influence of radiant heat. 44 refs., 250 figs., 40 tabs.

  18. 77 FR 71846 - In the Matter of Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media...

    Science.gov (United States)

    2012-12-04

    ... COMMISSION In the Matter of Encore Clean Energy, Inc., Energy & Engine Technology Corp., Equity Media... concerning the securities of Energy & Engine Technology Corp. because it has not filed any periodic reports... there is a lack of current and accurate information concerning the securities of Equity Media Holdings...

  19. The wind energy, a clean and renewable energy; L'energie eolienne, une energie propre et renouvelable

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    Facing the context of greenhouse gases reduction, the France began a national program of fight against the climatic change, in which the development of the renewable energies plays a major part. Among the renewable energy sources, the wind energy is the only one which is cheap and easily used. After a presentation of the leader of the wind energy in Europe (Germany, Spain and Denmark) and the position of the France, the document details the economical and environmental advantages of the wind energy, as the public opinion concerning this energy source. (A.L.B.)

  20. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 9. Development of liquid hydrogen transportation and storage technologies - 1; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 9. Ekitai suiso yuso chozo gijutsu no kaihatsu - 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of liquid hydrogen transportation and storage technologies. Discussions were given on the following three types of specimens as the heat insulation performance test structures: the vacuum panel type (polyurethane foam coated with SUS sheet, while the inside is kept in the vacuum state); the solid vacuum type (combination of polyurethane foam with vacuum heat insulation); and the powder under normal pressure type (a structure in which the ambient of powder pearlite heat insulating material becomes the atmospheric pressure, whereas a SUS case is set up to separate vacuum layer of the test apparatus from atmosphere layer of the specimen, with the SUS case filled with pearlite). Adding the two types of specimens used in the previous fiscal year, five test specimens in total were discussed on the result of the performance tests to advance the database management. As a low temperature strength test for the insulating materials, the compression test was performed on a microsphere being a kind of solid vacuum (normal pressure) heat insulating materials at room temperature, the liquid nitrogen temperature and in liquid hydrogen atmosphere. The compression strength under liquid hydrogen is 1,044 MPa, which is two times greater than the normal temperature strength of 496 MPa, representing the compression strength rising in proportion with temperature drop. Problems were extracted in developing a small capacity liquid hydrogen transportation and storage system. (NEDO)

  1. Achievement report for fiscal 2000 on the phase II research and development for hydrogen utilizing international clean energy system technology (WE-NET). Task 10. Development of low-temperature materials; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 10. Teion zairyo no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the development of candidate low-temperature materials for liquid hydrogen transportation and storage (including mother materials and welds) for WE-NET. Evaluation tests were performed on material properties (mechanical properties, low-temperature embrittlement, and hydrogen embrittlement sensitivity) under room temperature and low temperature regions including liquid hydrogen atmosphere. Low temperature toughness of welds was assessed particularly to identify characteristics of different welding methods developed newly for improvements. The stainless steels and the mother materials of aluminum alloy selected as the candidates have sufficient characteristics even under the liquid hydrogen atmosphere, but the welds have lower low-temperature toughness, requiring improvement. For the stainless steels, since the amount of {delta} ferrite in welds affects greatly the low-temperature toughness, adoption of complete austenite type welding metal is effective. The reduced pressure electron beam welding method can enhance drastically the low-temperature toughness of stainless steel. For the aluminum alloy, it can be one of the alternatives to use an alloy system with composition of high low-temperature toughness. The friction stir welding method for the aluminum alloy was found to provide extremely high low-temperature toughness, which can be evaluated as a new welding method. (NEDO)

  2. Worldwide clean energy system technology using hydrogen (WE-NET). subtask 5. Development of hydrogen transfer and storage technology (research and development of technologies for hydrogen transport and storage by hydrogen absorbing alloys); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (bunsan yuso chozoyo suiso kyuzo gokin no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes a guiding principle of new hydrogen absorbing alloy design, case studies on the stationary hydrogen storage systems for multiple dwelling houses using hydrogen absorbing alloys and on the hydrogen fuel tank systems for a motor vehicle, and survey on development status in the world. As a result of the investigation of alloys, it was concluded that realization of hydrogen absorbing alloys with new target properties of the WE-NET Project is not easy through the current technology. It was found that two kinds of Mg-based and V-based high capacity materials must be selected as target alloys among current alloys, and that three techniques, i.e., ultra-fine microstructure, composite, and amorphousness, are effective for improving the hydrogen discharge property which has been a problem of these alloys. It was desired that the latest techniques are established by integrating these materials and techniques. It is necessary to promote the development of brake-through new materials by new concepts and technologies through the cooperation of national institutes, universities, and companies. 124 refs., 56 figs., 11 tabs.

  3. Climate Literacy and Energy Awareness Network (CLEAN) - Supporting the Scientists and Citizens of Tomorrow

    Science.gov (United States)

    Ledley, T. S.; McCaffrey, M. S.; Gold, A. U.; Buhr, S. M.; Manduca, C. A.; Fox, S.; Kirk, K. B.; Grogan, M.; Niepold, F.; Lynds, S. E.; Howell, C.

    2011-12-01

    The US Global Change Research Program and a consortium of science and education partners in 2009 concluded "climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both." In order for citizens to achieve that understanding there is a clear need to support teachers, students, and the public in becoming climate and energy literate and to enable them to make responsible decisions about the environment and energy use for themselves and for society. However, to pursue climate and energy literacy it is necessary to identify and access educational materials that are scientifically accurate, pedagogically effective, and technically robust, and to use them effectively. The CLEAN Pathway (http://cleanet.org) is a National Science Digital Library (http://www.nsdl.org) project that is stewarding a collection of materials for teaching climate and energy science in grades 6-16. The collection contains classroom activities, lab demonstrations, visualizations, simulations and more. Each resource is extensively reviewed for scientific accuracy, pedagogical effectiveness, and technical quality. Once accepted into the CLEAN collection, a resource is aligned with the Climate Literacy Essential Principles for Climate Science, the AAAS Project 2061 Benchmarks for Science Literacy and other national standards. The CLEAN website hosts a growing collection of currently 300+ resources that represent the leading edge of climate and energy science resources for the classroom. In this presentation we will demonstrate the various avenues of how the CLEAN portal that can help educators improve their own climate and energy literacy, help them determine why and how to effectively integrate the climate and energy principles into their teaching, and facilitate educators successfully using the resources with their students. This will include a brief overview of the: a

  4. Engineering development of advanced physical fine coal cleaning technologies - froth flotation

    Energy Technology Data Exchange (ETDEWEB)

    Ferris, D.D.; Bencho, J.R. [ICF Kaiser Engineers, Inc., Pittsburgh, PA (United States)

    1995-11-01

    In 1988, ICF Kaiser Engineers was awarded DOE Contract No. DE-AC22-88PC88881 to research, develop, engineer and design a commercially acceptable advanced froth flotation coal cleaning technology. The DOE initiative is in support of the continued utilization of our most abundant energy resource. Besides the goal of commercialability, coal cleaning performance and product quality goals were established by the DOE for this and similar projects. primary among these were the goals of 85 percent energy recovery and 85 percent pyrite rejection. Three nationally important coal resources were used for this project: the Pittsburgh No. 8 coal, the Upper Freeport coal, and the Illinois No. 6 coal. Following is a summary of the key findings of this project.

  5. Agent-Based Modleing of Power Plants Placement to Evaluate the Clean Energy Standard Goal

    Energy Technology Data Exchange (ETDEWEB)

    Omitaomu, Olufemi A [ORNL

    2014-01-01

    There is a political push for utilities to supply a specified share of their electricity sales from clean energy resources under the clean energy standard (CES). The goal is to achieve 80% clean energy by 2035. However, there are uncertainties about the ability of the utility industry to ramp up quickly even with the incentives that will be provided. Water availability from the streams is one of the major factors. The contiguous United States is divided into eighteen water regions, and multiple states share water from a single water region. Consequently, water usage decisions made in one state (located upstream of a water region that crosses multiple states) will greatly impact what is available downstream in another state. In this paper, an agent-based modeling approach is proposed to evaluate the clean energy standard goal for water-dependent energy resources. Specifically, using a water region rather than a state boundary as a bounding envelope for the modeling and starting at the headwaters, virtual power plants are placed based on the conditions that there is: (i) suitable land to site a particular power plant, (ii) enough water that meet regulatory guidelines within 20 miles of the suitable land, and (iii) a 20-mile buffer zone from an existing or a virtual power plant. The results obtained are discussed in the context of the proposed clean energy standard goal for states that overlap with one water region.

  6. Worldwide clean energy system technology using hydrogen (WE-NET). Subtask 5. Development of hydrogen transfer and storage technology (development of various common equipment); Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 5. Suiso yuso chozo gijutsu no kaihatsu (kakushu kyotsu kikirui no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes large pumps for liquid hydrogen, large-size vacuum-insulated tubes, valves for liquid hydrogen, and instrumentation equipment. In the WE-NET Project, large pumps for liquid hydrogen are to be used for feeding pressurized liquid hydrogen to the combustors in power generative facilities as well as transferring large amounts of liquid hydrogen in liquefying facilities, and to or from tankers, etc. As a result of the examination, axial flow pump and mixed flow pump are to be applied to the large pumps, and centrifugal pump is to be applied to the pressurized pump. A vertical shaft wet motor pump which is directly connected to wound-rotor induction motor has been adopted as a basic specification. For the large-size vacuum-insulated tubes, examination has been conducted with the emphasis on method of relaxing the thermal stress from the viewpoint of transferring the liquid hydrogen at large flow-rate and cryogenic temperature in a stable and safe manner over long distances. It has been shown that the development of marine loading arm is indispensable. For the valves for liquid hydrogen, a ball valve and a butterfly valve, which are operated pneumatically, have been investigated. For the instrumentation equipment, level sensor for tanks, flow meter, and method of leakage detection have been examined. 315 refs., 50 figs., 16 tabs.

  7. Fiscal 1997 survey report. Subtask 5 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen transportation/storage technology. 2. development of the liquid hydrogen transportation tanker); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 5 suiso yuso chozo gijutsu no kaihatsu dai 2 hen ekitai suiso yuso tanker no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Technology development is being conducted for construction of the long distance transportation tanker of large quantity liquid hydrogen. In fiscal 1997, test pieces of thermal insulating materials to be planned for fiscal 1998 were designed and studied. The purpose of the test is to confirm thermal insulating performance and behaviors of each material under the temperature of liquid hydrogen. The inside of the outer tank of the experimental equipment was held at vacuum of 10{sup -6} to 10{sup -7} Torr to exclude thermal convection effects and evaluate only heat coming from heater through the test piece. The heat from the heater at the lower part of the test piece is through the test piece and makes the liquid hydrogen of the upper tank evaporate. Thermal conductivity of the test piece is calculated from the evaporation quantity. As to PUF (polyurethane foam) panels, studied were reformation preventive measures, influential evaluation of the side transfer heat quantity, and the time required for vacuuming. In the vacuum panel, study subjects were extracted on the selection of core materials, reformation preventive measures, deterioration with age, the practical manufacturing method of experimental panels, etc. As to the super insulation, subjects were studied on the performance measuring method/accuracy, measures against heat transfer from the inside of the experimental equipment, control of the vacuum degree, etc. 10 refs., 45 figs., 6 tabs.

  8. Hydrogen utilization international clean energy system technology (WE-NET). Subtask 8. Development of hydrogen combustion turbines (development of the main component devices such as turbine blades and rotors); Suiso riyo kokusai clean energy system gijutsu (WE-NET). Subtask 8. Suiso nensho turbine no kaihatsu (turbine yoku, rotor nado shuyo kosei kiki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The paper described the result of the fiscal 1996 development relating to hydrogen combustion turbines, as one of the hydrogen utilization technologies, which have excellent environmentality and are expected of remarkably high efficiency. In the film cooling system of first-stage moving/stationary blades, the smaller the pitch of film pore is, the higher the mean cooling efficiency becomes, indicating 0.7 at maximum. As compared with the conventional shower head type, the metal temperature can be reduced 30-40degC. In the recovery type inner (convection) cooling system, by reducing the blade number, the consumption amount of coolant can be reduced 6% in stationary blade and 13% in moving blade, as compared with the result of the preceding year. In the element test of the hybrid cooling system, film cooling efficiency was actually measured by the porous module test equipment, and the result well agreed with the calculation result. In the water cooling system, studied were water (stationary blade) and vapor (moving blade) of the closed cooling structure for realization of a cycle efficiency of 60%. In rotor/disk cooling, analyses were made of seal characteristic grasp tests and characteristics of the rotor. The effect of deflection in the mainstream was small. Besides, proper value of the seal overlapping amount could be obtained. 6 refs., 368 figs., 55 tabs.

  9. Fiscal 1997 survey report. Subtask 8 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen combustion turbines/development of combustion control technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system (WE-NET) subtask 8 suiso nensho turbine no kaihatsu nensho seigyo gijutsu no kaihatsi

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Concerning the development of hydrogen combustion turbines, the paper described the fiscal 1997 results. As a hydrogen/oxygen combustor, the annular combustor was studied. Based on the results obtained by the last fiscal year, a combustor for the evaluation test was designed/fabricated. Oxygen is mixed with vapor at the portion of the burner, rotated/jetted (flame held by the circulation flow generated) and made to burn with hydrogen (porous injection). The smooth ignition and equilibrium wall temperature distribution were made possible. Concentrations of the residual hydrogen/oxygen in the stoichiometric mixture ratio combustion were both less than 1%. Further, can type combustor I is a type in which hydrogen and oxygen are burned near the burner and then are diluted by vapor. Improved of the burner structure and diluted vapor hole, it was tested. In can type combustor II, a mixture of oxygen and vapor is supplied and burned with hydrogen. The appropriate supply of oxygen was 20% distribution to the primary scoop and 80% to secondary. In both combustors, smooth ignition was possible, and concentrations of the residual hydrogen/oxygen in the stoichiometric mixture ratio combustion were controlled at minimum (approximately 1%). The evaluation method for the optimum hydrogen/oxygen combustor was studied. 142 figs., 24 tabs.

  10. Saving energy and improving IAQ through application of advanced air cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J; Destaillats, H.; Sidheswaran, M.A.

    2011-03-01

    In the future, we may be able use air cleaning systems and reduce rates of ventilation (i.e., reduce rates of outdoor air supply) to save energy, with indoor air quality (IAQ) remaining constant or even improved. The opportunity is greatest for commercial buildings because they usually have a narrower range of indoor pollutant sources than homes. This article describes the types of air cleaning systems that will be needed in commercial buildings.

  11. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  12. A pilot study of energy efficient air cleaning for ozone

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara A.; Sullivan, Douglas P.; Katsapov, Gregory Y.; Fisk, William J.

    2002-11-01

    A laboratory pilot study has been undertaken with the material that showed the most promise (high capacity and low pressure drop) based on the literature review and associated calculations. The best-performing air cleaner was a commercially available pleated filter that contained a thin layer of small activated carbon particles between two sheets of non-woven fibrous webbing. We will refer to this unit as the ''ozone filter'' although it is marketed for removal of volatile organic compounds (VOCs) from automobile passenger compartments. This pilot study strongly suggests that ozone air cleaning can be practical in commercial air handling systems; however, further tests are needed to assess air cleaner performance under a wider range of conditions.

  13. Development of the chemical and electrochemical coal cleaning (CECC) process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  14. Texas Clean Energy Project: Topical Report, Phase 1 - February 2010-December 2012

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Karl

    2012-11-01

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into a synthetic gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and additional work

  15. Study on Clean Development Mechanism, Quantitative and Sustainable Mechanism

    Directory of Open Access Journals (Sweden)

    Donghai Yuan

    2015-01-01

    Full Text Available Aiming at the system and market problem of clean development mechanism (CDM, this study is carried out to establish the feasibility of certified emission reduction (CER quantitative evaluation method and reserve mechanism in host country at the United Nations Framework Convention on Climate Change (UNFCCC level. After the introduction of CER quantitative and sustainable mechanism, the amount of CER that can enter the market was cut to a quarter, which reduces about 75% of the expected CER supply. Market CER from the technology types of higher CER market share and lower support for sustainable development appears to have different degrees of reduction. As for the technology types of lower CER market share and higher support for sustainable development, the amount of market CER is maintained in line with prevailing scenario, and market CER supply becomes more balanced.

  16. Holistic processes and practices for clean energy in strengthening bioeconomic strategies (INDO-NORDEN)

    Science.gov (United States)

    Shurpali, Narasinha J.; Parameswaran, Binod; Raud, Merlin; Pumpanen, Jukka; Sippula, Olli; Jokiniemi, Jorma; Lusotarinen, Sari; Virkajarvi, Perttu

    2017-04-01

    We are proud to introduce the project, INDO-NORDEN, funded in response to the Science and Technology call of the INNO INDIGO Partnership Program (IPP) on Biobased Energy. The project is scheduled to begin from April 2017. The proposed project aims to address both subtopics of the call, Biofuels and From Waste to Energy with research partners from Finland (coordinating unit), India and Estonia. The EU and India share common objectives in enhancing energy security, promoting energy efficiency and energy safety, and the pursuit of sustainable development of clean and renewable energy source. The main objective of INDO-NORDEN is to investigate, evaluate and develop efficient processes and land use practices of transforming forest and agricultural biomass, agricultural residues and farm waste into clean fuels (solid, liquid or gas), by thermochemical or biochemical conversions. Forestry and agriculture are the major bioenergy sectors in Finland. Intensive forest harvesting techniques are being used in Finland to enhance the share of bioenergy in the total energy consumption in the future. However, there are no clear indications how environmentally safe are these intensive forestry practices in Finland. We address this issue through field studies addressing the climate impacts on the ecosystem carbon balance and detailed life cycle assessment. The role of agriculture in Finland is expected to grow significantly in the years to come. Here, we follow a holistic field experimental approach addressing several major issues relevant to Nordic agriculture under changing climatic conditions - soil nutrient management, recycling of nutrients, farm and agricultural waste management, biogas production potentials, greenhouse gas inventorying and entire production chain analysis. There is a considerable potential for process integration in the biofuel sector. This project plans to develop biofuel production processes adopted in Estonia and India with a major aim of enhancing biofuel

  17. Energy Zones Study: A Comprehensive Web-Based Mapping Tool to Identify and Analyze Clean Energy Zones in the Eastern Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Koritarov, V.; Kuiper, J.; Hlava, K.; Orr, A.; Rollins, K.; Brunner, D.; Green, H.; Makar, J.; Ayers, A.; Holm, M.; Simunich, K.; Wang, J.; Augustine, C.; Heimiller, D.; Hurlbut, D. J.; Milbrandt, A.; Schneider, T. R.; et al.

    2013-09-01

    This report describes the work conducted in support of the Eastern Interconnection States’ Planning Council (EISPC) Energy Zones Study and the development of the Energy Zones Mapping Tool performed by a team of experts from three National Laboratories. The multi-laboratory effort was led by Argonne National Laboratory (Argonne), in collaboration with the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). In June 2009, the U.S. Department of Energy (DOE) and the National Energy Technology Laboratory published Funding Opportunity Announcement FOA-0000068, which invited applications for interconnection-level analysis and planning. In December 2009, the Eastern Interconnection Planning Collaborative (EIPC) and the EISPC were selected as two award recipients for the Eastern Interconnection. Subsequently, in 2010, DOE issued Research Call RC-BM-2010 to DOE’s Federal Laboratories to provide research support and assistance to FOA-0000068 awardees on a variety of key subjects. Argonne was selected as the lead laboratory to provide support to EISPC in developing a methodology and a mapping tool for identifying potential clean energy zones in the Eastern Interconnection. In developing the EISPC Energy Zones Mapping Tool (EZ Mapping Tool), Argonne, NREL, and ORNL closely collaborated with the EISPC Energy Zones Work Group which coordinated the work on the Energy Zones Study. The main product of the Energy Zones Study is the EZ Mapping Tool, which is a web-based decision support system that allows users to locate areas with high suitability for clean power generation in the U.S. portion of the Eastern Interconnection. The mapping tool includes 9 clean (low- or no-carbon) energy resource categories and 29 types of clean energy technologies. The EZ Mapping Tool contains an extensive geographic information system database and allows the user to apply a flexible modeling approach for the identification and analysis of potential energy zones

  18. Industrial Technologies Program - Manufacturing Workforce for a Clean Energy Economy (Green Jobs)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-05-01

    Making the transition to a clean energy economy will strengthen our energy security, improve the environment, and create jobs. In 2009, Congress passed a stimulus package to help jump-start all sectors of the U.S. economy and accelerate this transition.

  19. Clean Energy Application Centers: Annual Metrics Report for Fiscal Year 2012

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Martin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-02-01

    Between fiscal year (FY) 2010 and 2013, the U.S. Department of Energy (DOE) funded nine Clean Energy Application Centers (CEACs) with national coverage to promote and assist in transforming the market for Combined Heat and Power (CHP), Waste Heat to Power CHP, and district energy (DE) with CHP1. Prior to that, similar services were provided by eight Regional Application Centers (RACs). The key services that the CEACs provided were market assessments, education and outreach, and technical assistance. There were eight regional CEACs, each of which served a specific area of the country, and a separate center operated by the International District Energy Association (IDEA) which supported the regional centers with technical assistance, education, training, publicity, and outreach related to district energy with CHP. Oak Ridge National Laboratory (ORNL) has performed four previous studies of CEAC activities. The first one examined what the centers had done each year from the initiation of the program through FY 2008; the second addressed center activities for FY 2009; the third one focused on what was accomplished in FY 2010; and the fourth looked at the CEACs’ FY 2011 accomplishments, with a heightened emphasis on the adoption of CHP\\DE technologies and the activities thought to be most closely related to CHP/DE development and use. The most recent study, documented in this report, examines CEAC activities in FY 2012.

  20. Fiscal 1997 survey report. Subtask 4 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of hydrogen production technology); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 4 suiso seizo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    As a WE-NET subtask, a study has been conducted of the solid polyelectrolyte water electrolysis method by which higher efficiency and lower cost hydrogen production is expected than in the conventional hydrogen production method. Production methods of electrode, electrolyte, etc. were studied. In the electroless plating method, the manufacturing process of membrane-electrode assemblies was realized in a large area of 2500 cm{sup 2} by the porous-surfaced method by studying manufacturing conditions for slurry membrane/membrane assembly/electroless plating processes. In the hot-press method, the refining degree and dispersibility of iridium dioxide powder were studied to improve characteristics of anode catalyst. A method was developed to form polyelectrolyte coatings homogeneously on the surface of electrode layer catalytic powder, and a large area of 2500 cm{sup 2} was realized. Beside the performance test using large single cells, FS was conducted to discuss optimum operating conditions and optimum structures of plants. Both methods indicated the performance exceeding the energy conversion efficiency of 90%, a WE-NET target, at current density of 1A/cm{sup 2} and electrolysis temperature of 80degC. A key was found to a bench-scale development (electrode area of 2500 cm{sup 2}, about 5 layers) to be planned in fiscal 1998. 136 figs., 50 tabs.

  1. Off-momentum collimation and cleaning in the energy ramp in the LHC

    CERN Document Server

    Quaranta, Elena; Giulini Castiglioni Agosteo, Stefano Luigi Maria

    This Master thesis work has been carried out at CERN in the framework of the LHC (Large Hadron Collider) Collimation project. The LHC is a two-beam proton collider, built to handle a stored energy of 360MJ for each beam. Since the energy deposition from particle losses could quench the superconducting magnets, a system of collimators has been installed in two cleaning insertions in the ring and in the experimental areas. The achievable LHC beam intensity is directly coupled to the beam loss rate and, consequently, to the cleaning eciency of the collimation system. This study analyses the collimation cleaning performance in dierent scenarios inside the accelerator. First, simulations are performed of the transverse losses in the LHC collimation system during the acceleration process. The results are compared with data taken during a dedicated session at the LHC machine. Simulations are also performed to predict the collimation eciency during future operation at higher energy. Furthermore, an investigation of t...

  2. State Support for Clean Energy Deployment: Lessons Learned for Potential Future Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kubert, C.; Sinclair, M.

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  3. State Support for Clean Energy Deployment. Lessons Learned for Potential Future Policy

    Energy Technology Data Exchange (ETDEWEB)

    Kubert, Charles [Clean Energy States Alliance, Montpelier, VT (United States); Sinclair, Mark [Clean Energy States Alliance, Montpelier, VT (United States)

    2011-04-01

    Proposed federal clean energy initiatives and climate legislation have suggested significant increases to federal funding for clean energy deployment and investment. Many states and utilities have over a decade of experience and spend billions of public dollars every year to support EE/RE deployment through programs that reduce the cost of technologies, provide financing for EE/RE projects, offer technical assistance, and educate market participants. Meanwhile, constraints on public expenditures at all levels of government continue to call upon such programs to demonstrate their value. This report reviews the results of these programs and the specific financial incentives and financing tools used to encourage clean energy investment. Lessons from such programs could be used to inform the future application of EE/RE incentives and financing tools. These lessons learned apply to use of distributed resources and the historical focus of these EE/RE programs.

  4. Solar energy emplacement developer

    Science.gov (United States)

    Mortensen, Michael; Sauls, Bob

    1991-01-01

    A preliminary design was developed for a Lunar Power System (LPS) composed of photovoltaic arrays and microwave reflectors fabricated from lunar materials. The LPS will collect solar energy on the surface of the Moon, transform it into microwave energy, and beam it back to Earth where it will be converted into usable energy. The Solar Energy Emplacement Developer (SEED) proposed will use a similar sort of solar energy collection and dispersement to power the systems that will construct the LPS.

  5. The Krakow clean fossil fuels and energy efficiency program

    Energy Technology Data Exchange (ETDEWEB)

    Feibus, H.

    1995-12-31

    The joint effort by Polish and American organizations in Krakow has accomplished a great deal in just a few years. In particular, the low emission sources program has had major successes. Poland and America have a lot to learn from each other in the clean and economical use of coal. Both our countries are major producers and users of coal. Both have had to deal with the emissions of particulate and organics from coal combustion. We were fortunate, since our free market economy and democratic government helped us deal with a lot of these problems in the 1950s. In Poland, the freedom to solve these problems has evolved only in the last few years. In the first phase of the program, Polish and American engineers ran combustion tests on boilers and stoves in Krakow. They also performed analyses on the cost and feasibility of various equipment changes. The results of the first phase were used in refining the spreadsheet model to give better estimates of costs emissions. The first phase also included analyses of incentives for proceeding with needed changes. These analyses identified actions needed to create a market for the goods and services which control pollution. Such actions could include privatization, regulation, or financial incentives. The second phase of the program consisted of public meetings in Chicago, Washington, and Krakow. The purpose of the meetings was to inform U.S. and Polish firms about the results of phase 1 and to encourage them to compete to take part in phase 3. The third phase currently underway consists of the commercial ventures that were competitively selected. These ventures were consistent with recommendations unanimously made by the BSC. The three phases of the Polish-American program are discussed.

  6. Low carbon Finland 2050. VTT clean energy technology strategies for society

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Simila, L.; Sipila, K. [and others

    2012-11-15

    The Low Carbon Finland 2050 project by VTT Technical Research Centre of Finland aims to assess the technological opportunities and challenges involved in reducing Finland's greenhouse gas emissions. A target for reduction is set as at least 80% from the 1990 level by 2050 as part of an international effort, which requires strong RD and D in clean energy technologies. Key findings of the project are presented in this publication, which aims to stimulate enlightening and multidisciplinary discussions on low-carbon futures for Finland. The project gathered together VTT's technology experts in clean energy production, smart energy infrastructures, transport, buildings, and industrial systems as well as experts in energy system modelling and foresight. VTT's leading edge 'Low Carbon and Smart Energy' enables new solutions with a demonstration that is the first of its kind in Finland, and the introduction of new energy technology onto national and global markets. (orig.)

  7. Hawaii Clean Energy Initiative 2008-2018: Celebrating 10 Years of Success

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-04

    Launched in January 2008, the Hawaii Clean Energy Initiative (HCEI) set out transform Hawaii into a world model for energy independence and sustainability. With its leading-edge vision to transition to a Hawaii-powered clean energy economy within a single generation, HCEI established the most aggressive clean energy goals in the nation. Ten years after its launch, HCEI has significantly outdistanced the lofty targets established as Hawaii embarked on its ambitious quest for energy independence. The state now generates 27 percent of its electricity sales from clean energy sources like wind and solar, placing it 12 percentage points ahead of HCEI's original 2015 RPS target of 15 percent. This brochure highlights some of HCEI's key accomplishments and impacts during its first decade and reveals how its new RPS goal of 100 percent by 2045, which the Hawaii state legislature adopted in May 2015, has positioned Hawaii to become the first U.S. state to produce all of its electricity from indigenous renewable sources.

  8. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    Energy Technology Data Exchange (ETDEWEB)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  9. Financial Incentives to Enable Clean Energy Deployment: Policy Overview and Good Practices

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Sadie [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-24

    Financial incentives have been widely implemented by governments around the world to support scaled up deployment of renewable energy and energy efficiency technologies and practices. As of 2015, at least 48 countries have adopted financial incentives to support renewable energy and energy efficiency deployment. Broader clean energy strategies and plans provide a crucial foundation for financial incentives that often complement regulatory policies such as renewable energy targets, standards, and other mandates. This policy brief provides a primer on key financial incentive design elements, lessons from different country experiences, and curated support resources for more detailed and country-specific financial incentive design information.

  10. Clean Energy and Water : an Assessment of Services for Adaptation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project aims to assess the potential of - and barriers to - the use of decentralized renewable energy technologies, as opposed to fossil-fuel based large-scale-systems. Independent researchers will prepare 12 case studies that will provide the basis for four reports to be presented and discussed in an expert meeting ...

  11. Clean energy generation using capacitive electrodes in reverse electrodialysis

    NARCIS (Netherlands)

    Vermaas, David; Bajracharya, S.; Bastos Sales, B.; Saakes, Michel; Hamelers, B.; Nijmeijer, Dorothea C.

    2013-01-01

    Capacitive reverse electrodialysis (CRED) is a newly proposed technology to generate electricity from mixing of salt water and fresh water (salinity gradient energy) by using a membrane pile as in reverse electrodialysis (RED) and capacitive electrodes. The salinity difference between salt water and

  12. EC-LEDS Mexico: Advancing Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    2016-07-01

    EC-LEDS works with the government of Mexico to help meet its goals of reducing greenhouse gas emissions from the energy sector. The program targets specific, highly technical areas where Mexico has indicated the program can add value and make an impact.

  13. ENGINEERING DEVELOPMENT OF ADVANCED PHYSICAL FINE COAL CLEANING FOR PREMIUM FUEL APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1997-06-01

    Bechtel, together with Amax Research and Development Center (Amax R&D), has prepared this study which provides conceptual cost estimates for the production of premium quality coal-water slurry fuel (CWF) in a commercial plant. Two scenarios are presented, one using column flotation technology and the other the selective agglomeration to clean the coal to the required quality specifications. This study forms part of US Department of Energy program "Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications," (Contract No. DE-AC22- 92PC92208), under Task 11, Project Final Report. The primary objective of the Department of Energy program is to develop the design base for prototype commercial advanced fine coal cleaning facilities capable of producing ultra-clean coals suitable for conversion to stable and highly loaded CWF. The fuels should contain less than 2 lb ash/MBtu (860 grams ash/GJ) of HHV and preferably less than 1 lb ash/MBtu (430 grams ash/GJ). The advanced fine coal cleaning technologies to be employed are advanced column froth flotation and selective agglomeration. It is further stipulated that operating conditions during the advanced cleaning process should recover not less than 80 percent of the carbon content (heating value) in the run-of-mine source coal. These goals for ultra-clean coal quality are to be met under the constraint that annualized coal production costs does not exceed $2.5 /MBtu ($ 2.37/GJ), including the mine mouth cost of the raw coal. A further objective of the program is to determine the distribution of a selected suite of eleven toxic trace elements between product CWF and the refuse stream of the cleaning processes. Laboratory, bench-scale and Process Development Unit (PDU) tests to evaluate advanced column flotation and selective agglomeration were completed earlier under this program with selected coal samples. A PDU with a capacity of 2 st/h was designed by Bechtel and installed at Amax R

  14. U.S. Department of Energy clean cities five-year strategic plan.

    Energy Technology Data Exchange (ETDEWEB)

    Cambridge Concord Associates

    2011-02-15

    Clean Cities is a government-industry partnership sponsored by the U.S. Department of Energy's (DOE) Vehicle Technologies Program, which is part of the Office of Energy Efficiency and Renewable Energy. Working with its network of about 100 local coalitions and more than 6,500 stakeholders across the country, Clean Cities delivers on its mission to reduce petroleum consumption in on-road transportation. In its work to reduce petroleum use, Clean Cities focuses on a portfolio of technologies that includes electric drive, propane, natural gas, renewable natural gas/biomethane, ethanol/E85, biodiesel/B20 and higher-level blends, fuel economy, and idle reduction. Over the past 17 years, Clean Cities coalitions have displaced more than 2.4 billion gallons of petroleum; they are on track to displace 2.5 billion gallons of gasoline per year by 2020. This Clean Cities Strategic Plan lays out an aggressive five-year agenda to help DOE Clean Cities and its network of coalitions and stakeholders accelerate the deployment of alternative fuel and advanced technology vehicles, while also expanding the supporting infrastructure to reduce petroleum use. Today, Clean Cities has a far larger opportunity to make an impact than at any time in its history because of its unprecedented $300 million allocation for community-based deployment projects from the American Recovery and Reinvestment Act (ARRA) (see box below). Moreover, the Clean Cities annual budget has risen to $25 million for FY2010 and $35 million has been requested for FY2011. Designed as a living document, this strategic plan is grounded in the understanding that priorities will change annually as evolving technical, political, economic, business, and social considerations are woven into project decisions and funding allocations. The plan does not intend to lock Clean Cities into pathways that cannot change. Instead, with technology deployment at its core, the plan serves as a guide for decision-making at both the

  15. Proceedings of the Clean and Efficient Use of Fossil Energy for Power Generation in Thailand. The Joint Eighth APEC Clean Fossil Energy Technical Seminar and the Seventh APEC Coal Flow Seminar

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-30

    The convention named above held jointly by the two seminars also named above took place in Bangkok, Thailand, in the period October 30 through November 3. Open remarks were delivered by Mr. Piromsakdi Laparojkit, Secretary General of National Energy Policy Council, Thailand; Mr. Yoshito Yoshimura, Ministry of International Trade and Industry, Japan; Mr. Paul Toghe, Embassy of Australia in Bangkok; and Mr. Robert Gee, Department of Energy, U.S.A. There were ten technical sessions, in which presentations were made and discussion was held over coal in the APEC (Asia-Pacific Economic Cooperation Conference) economy, important role of coal and natural gas in developing economies, coal and environmental situation in Thailand, coal fired power plant related environmental issues, commercially available CCTs (clean coal technologies) in the APEC region, emerging technologies for reducing GHG (greenhouse gas) emissions, clean fuels in the APEC region, growing importance of IPPs (independent power producers) in the APEC region, cooperation among APEC economies, and the like. (NEDO)

  16. Cracow clean fossil fuels and energy efficiency program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    Since 1990 the US Department of Energy has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The program focuses on the city of Cracow and is designed so that results will be applicable and extendable to the entire region. This report serves both as a review of the progress which has been made to date in achieving the program objectives and a summary of work still in progress.

  17. Achievement report for fiscal 2000 on the phase II research and development for the hydrogen utilizing international clean energy system technology (WE-NET). Task 1. Investigations and researched on system assessment; 2000 nendo suiso riyo kokusai clean energy system gijutsu (WE-NET) dai 2 ki kenkyu kaihatsu. Task 1. System hyoka ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper describes the achievements in fiscal 2000 from the WE-NET Phase II for Task-1. Technologies drawing attentions relate to fuel cell driven automobiles and hybrid automobiles in the field of utilizing hydrogen derived from reproducible energies and fossil energies, and fuel cell co-generation and micro gas turbine co-generation in the field of electric power generation. Hydrogen reformed from gasoline on board the automobile as the fuel for fuel cell driven automobiles, hydrogen as a by-product of coke furnace off-gas (COG), and reproducible energy hydrogen have the same fuel consumption performance as in the hybrid automobiles. Particularly the COG is low in cost, and has large supply potential. Liquefied hydrogen is as promising as compressed hydrogen in view of the cost for automotive hydrogen supply stations. What has high economic performance as the self-sustaining systems for islands are photovoltaic and wind power generation, and the system using hydrogen as the secondary energy. Since much of the reproducible energies is used for electric power demand in Japan, the by-product hydrogen and the reformed hydrogen in an amount of 9.3 billion Nm{sup 3}/year would take care of majority of the demand in view of the short time period. For a longer time span, hydrogen originated from the reproduced energies in the Pan-Pacific Region should be introduced. (NEDO)

  18. Clean energy proposals are chance for nuclear to have rightful place at policy table

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, Redditch (United Kingdom)

    2017-06-15

    Foratom, the Brussels based trade association for the nuclear industry in Europe, published a position paper on the European Commission's 'Clean Energy for All Europeans' package of EU legislative proposals. The proposals seek to improve the functioning of the energy market and ensure all energy technologies can compete on a level-playing field without jeopardising climate and energy targets. If Europe seeks to have a coherent and inclusive energy policy, which encompasses all lowcarbon contributors, nuclear must be allowed a place at the policy table.

  19. State Clean Energy Policies Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, E.; Oteri, F.; Tegen, S.; Doris, E.

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assets--like human capital and modern infrastructure--as well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  20. State Clean Energy Policies Analysis (SCEPA). State Policy and the Pursuit of Renewable Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oteri, Frank [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tegen, Suzanne [National Renewable Energy Lab. (NREL), Golden, CO (United States); Doris, Elizabeth [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2010-02-01

    Future manufacturing of renewable energy equipment in the United States provides economic development opportunities for state and local communities. However, demand for the equipment is finite, and opportunities are limited. U.S. demand is estimated to drive total annual investments in renewable energy equipment to $14-$20 billion by 2030. Evidence from leading states in renewable energy manufacturing suggests that economic development strategies that target renewable energy sector needs by adapting existing policies attract renewable energy manufacturing more than strategies that create new policies. Literature suggests that the states that are most able to attract direct investment and promote sustained economic development can leverage diverse sets of durable assets—like human capital and modern infrastructure–as well as low barriers to market entry. State marketing strategies for acquiring renewable energy manufacturers are likely best served by an approach that: (1) is multi-faceted and long-term, (2) fits within existing broad-based economic development strategies, (3) includes specific components such as support for renewable energy markets and low barriers to renewable energy deployment, and (4) involves increased differentiation by leveraging existing assets when applicable.

  1. Deliberate Science, Continuum Magazine: Clean Energy Innovation at NREL, Winter 2012 (Book)

    Energy Technology Data Exchange (ETDEWEB)

    2012-02-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on deliberate science.

  2. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Study on the global network; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Global network kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the introduction condition of hydrogen as substituting energy and CO2 reduction effect were analyzed using a global energy model. The WE-NET project aims at global-wide introduction of clean energy by converting abundant renewable clean energy into hydrogen transportable to distant consumers all over the world. The study result in fiscal 1996 is as follows. Undeveloped hydroelectric resources in the world are estimated to be 12 trillion kWh/y equivalent to the existing developed one in the world. Since the cost of the hydroelectric power generation projects over 1000MW in the planning stage is estimated to be 0.02-0.05$/kWh lower than that of other renewable energies, such projects are expected as energy source in the initial stage of the practical WE-NET project. The GREEN model was modified by adding a hydrogen analysis function, and extending an analysis period. The modified model allowed evaluation of the long-term important role of hydrogen energy, in particular, the capability of CO2 gas reduction all over the world. 28 refs., 92 figs., 56 tabs.

  3. The Clean Air Act Amendments of 1990: Opportunities for Promoting Renewable Energy; Final Report: December 11, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Wooley, D.R.; Morss, E.M. (Young, Sommer, Ward, Ritzenberg, Wooley, Baker and Moore, LLC, Albany, New York)

    2001-01-08

    This report explores key aspects of the intersection between the nation's clean air and energy goals and proposes alternatives for encouraging renewable energy in the context of the federal Clean Air Act (CAA). As with most environmental statutes enacted in the early 1970s, the 1970 CAA embraced a somewhat rigid ''command-and-control'' approach to achieving its clean air goals. Although effective, this approach has been criticized for discouraging creative and cost-effective solutions to reducing air emissions. In response to this concern, Congress included the first significant market-based program to address an environmental problem-in this case, acid rain caused by sulfur dioxide (SO2) emissions from power plants-in the 1990 CAA Amendments. This program prompted the federal government and various state governments to pursue other market-based programs to address air pollution problems. Ten years have elapsed since the passage of the 1990 CAA Amendments, so the time is ripe to consider expanding opportunities for renewable energy development in the reform of clean air policies. A significant potential for renewables exists in conjunction with international efforts to reduce emissions of greenhouse gases (GHG), including CO2. Unfortunately, Congressional opposition to international GHG reduction agreements makes it difficult to develop GHG emission-reduction programs, including a cap-and-trade alternative, that would enable the renewables industry to harness this potential. The renewable industry can, however, track developments both nationally and internationally to ensure that the programs developed adequately address renewables.

  4. Development of clean coal and clean soil technologies using advanced agglomeration techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ignasiak, B.; Ignasiak, T.; Szymocha, K.

    1990-01-01

    Three major topics are discussed in this report: (1) Upgrading of Low Rank Coals by the Agflotherm Process. Test data, procedures, equipment, etc., are described for co-upgrading of subbituminous coals and heavy oil; (2) Upgrading of Bituminous Coals by the Agflotherm Process. Experimental procedures and data, bench and pilot scale equipments, etc., for beneficiating bituminous coals are described; (3) Soil Clean-up and Hydrocarbon Waste Treatment Process. Batch and pilot plant tests are described for soil contaminated by tar refuse from manufactured gas plant sites. (VC)

  5. Joint Implementation, Clean Development Mechanism and Tradable Permits

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, L.; Rose Olsen, K.

    2000-06-01

    This report deals with international environmental instruments aimed at a cost-effective reduction of greenhouse gas emissions. More precisely the instruments mentioned in the Kyoto Protocol, namely Joint Implementation (JI), the Clean Development Mechanism (CDM) and Tradable Permits (TP). The report describes the background for the international co-operation on reducing the greenhouse gases and the background for the instruments. How the instruments work in theory and what the practical problems may be. What agents' incentives are when they engage in JI or CDM, and how the initiation of the instruments can be organised. The institutional frameworks for JI, CDM and TP are discussed. The report describes how the Kyoto instruments and the Kyoto commitments interact with other instruments and describe distributive effects between countries. It is analysed how the use of CDM may influence the developing countries incentives to participate in the coalition of committed countries. In the concluding chapter some recommendations on the use of JI, TP and CDM are given. The recommendations are a kind of dialog with especially the Norwegian and Swedish reports on tradable permits. Some of the issues described in this main report are analysed in separate working papers. The working papers are collected in an appendix to the main report. (au)

  6. ARPEL's approach : Kyoto Protocol: Clean Development Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Bocanegra, J. [PEMEX, Mexico City (Mexico)

    2000-07-01

    ARPEL's (Regional Association of Oil and Natural Gas Companies in Latin America and the Carribean) interest in clean development mechanisms is described. Several uncertainties related to the Kyoto Protocol and the CDM were addressed, such as the science behind the climate change phenomena, the impact on oil demand, the cost of emission reduction to the oil industry and the 'additionality' criteria. Relative benefits of participating in CDM projects by member companies of ARPEL were examined, with due regard to the fact that Latin American countries are not now required to reduce emissions. Some actions that individual companies in ARPEL could take to consider investing in CDM projects were also reviewed. With reference to PEMEX (Petroleos Mexicanos), the speaker explained the PEMEX view of the climate change issue, how it is integrated into the company's sustainable development strategy, and how CDM could become an important means to accessing the financial and technology support needed to implement CDM projects. An industrial prototype project that PEMEX could implement to reduce its carbon dioxide emissions was also described as an indication of PEMEX's capacity to contribute towards mitigating global climate change.

  7. Low-Energy Electron Diffraction Study of Clean, Unreconstructed Au(111)

    Science.gov (United States)

    Ash, Stephanie; Caragiu, Mellita; Thompson, James; Diehl, Renee; Shin, Heekeun; McGuirk, Garry

    2011-04-01

    The present study investigates the surface of clean gold, cut along the (111) crystallographic plane. Computational Low-Energy Electron Diffraction (LEED) analysis of experimental data reveals an unreconstructed Au(111) surface with the main feature being the relaxation of the top- most atomic layers, i.e. a variation in the interatomic distance between consecutive layers within the surface, as compared to the bulk interatomic distance. Understanding of the clean Au surface precedes future studies of the gold surface on which different species of atoms are adsorbed and expected to induce a reconstruction of the substrate.

  8. 35 Years of Innovation - Leading the Way to a Clean Energy Future (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2014-12-01

    The U.S. Department of Energy (DOE) National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) is at the forefront of energy innovation. For more than three decades, our researchers have built unparalleled expertise in renewable energy technologies while supporting the nation's vision that wind and water can provide clean, reliable, and cost-effective electricity. The NWTC strives to be an essential partner to companies, other DOE laboratories, government agencies, and universities around the world seeking to create a better, more sustainable future.

  9. Can the Clean Development Mechanism attain both cost-effectiveness and sustainable development objectives?

    Energy Technology Data Exchange (ETDEWEB)

    Kolshus, Hans H; Vevatne, Jonas; Torvanger, Asbjoern; Aunan, Kristin

    2001-06-01

    The Clean Development Mechanism (CDM), as defined in the Kyoto Protocol, has two objectives: to promote sustainable development in host developing countries, and to improve global cost-effectiveness by assisting developed countries in meeting their Kyoto targets. The aim of this paper is to explore the background of the CDM and discuss to what extent its current design allows it to achieve its dual objective. The first part of the paper is a literature review that includes descriptions of the flexibility mechanisms under the Kyoto Protocol; the CDM's market potential, and the issues of cost-effectiveness and sustainable development. In the second part of the paper, we discuss to what extent there is a conflict between cost-effectiveness and sustain ability, and whether the two objectives of the CDM can be achieved simultaneously. We develop a set of indicators to evaluate non-carbon benefits of CDM projects on the environment, development, and. equity, and show how these indicators can be used in practice by looking at case studies of CDM project candidates in the energy sector from Brazil and China. We demonstrate that for some CDM projects there is a trade-off between cost-effectiveness, in terms of a low quota price, and a high score on sustain ability indicators. We have reason to believe that the size of the CDM market in some studies is over-estimated since transaction costs and the challenge of promoting sustainable development are not fully accounted for. Also, we find that the proposed set of indicators can be a necessary tool to assure that sustain ability impacts of CDM projects are taken into consideration. (author)

  10. Decentralized enforcement, sequential bargaining, and the clean development mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hovi, Jon

    2001-07-01

    While there is a vast literature both on international bargaining and on how international agreements can be enforced, very little work has been done on how bargaining and enforcement interact. An important exception is Fearon (1998), who models international cooperation as a two-stage process in which the bargaining process is constrained by a need for decentralized enforcement (meaning that the agreement must be enforced by the parties themselves rather than a third party, such as a court). Using the Clean Development Mechanism as an example, the present paper proposes a different model of this kind of interaction. The model follows Fearon's in so far as we both use the infinitely repeated Prisoners' Dilemma to capture the enforcement phase of the game. However, while Fearon depicts the bargaining stage as a War of Attrition, the present model sees that stage as a sequential bargaining game of the Staahl-Rubinstein type. The implications of the present model are compared both to those of the Staahl-Rubinstein model and to those of the Fearon model. A surprising conclusion is that a need for decentralized enforcement tends to make the bargaining outcome more symmetrical than otherwise. Thus, the impact of bargaining power is actually smaller when the resulting agreement must be enforced by the parties themselves than it is if enforcement is taken care of by a third party. (author)

  11. Teaching about Climate and Energy using NGSS-aligned resources from the CLEAN Collection and a new Earth System Investigation framework

    Science.gov (United States)

    Ledley, T. S.; Gold, A. U.; Grogan, M.; Sullivan, S. M.; Lockwood, J.; Youngman, E.; Manning, C. L. B.; Holzer, M.; Niepold, F., III

    2016-12-01

    The Climate Literacy and Energy Awareness Network (CLEAN) Collection of reviewed educational climate and energy science resources for grades 6­16 has been aligned with the Next Generation Science Standards (NGSS). The CLEAN resources stand-alone and can thus be used by educators to supplement or build their existing curriculum. However, CLEAN has developed a template of how resources can also be organized into NGSS­aligned units that teachers can use to integrate climate and Earth science into their classes. In this presentation we will describe how to search the CLEAN Collection with an NGSS lens, and present the new framework of building Earth System Investigation units following the NGSS Practices. We will also showcase two examples of such NGSS-aligned Earth System Investigations, which use the new framework, and model the three­ dimensional learning advocated for in the NGSS.

  12. Preliminary Public Design Report for the Texas Clean Energy Project: Topical Report - Phase 1, June 2010-July 2011

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Karl

    2012-02-01

    Summit Texas Clean Energy, LLC (Summit) is developing the Texas Clean Energy Project (TCEP or the project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin sub-bituminous coal delivered by rail from Wyoming into a synthetic gas (syngas) which will be cleaned and further treated so that at least 90 percent of the overall carbon entering the facility will be captured. The clean syngas will then be divided into two high-hydrogen (H2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. Front-end Engineering and Design (FEED) commenced in June 2010 and was completed in July 2011, setting the design basis for entering into the detailed engineering phase of the project. During Phase 1, TCEP conducted and completed the FEED, applied for and received its air construction permit, provided engineering and other technical information required for development of the draft Environmental Impact Statement, and

  13. Research and Development Financing in the Renewable Energy Industry in Brazil

    Directory of Open Access Journals (Sweden)

    Muriel de Oliveira Gavira

    2014-09-01

    Full Text Available In the last decades, the Brazilian government has put many public policies in place in order to create a favourable environment to promote energy efficiency and clean energy. In this paper we discuss the use of research and development financing support by the clean energy industry in Brazil. To do so, we carried out an empirical research analysing secondary data from legislation, literature case studies, and public and industry reports in order to determine if the companies of the clean energy industry have public financial support to research and development. Our ongoing research shows that, despite incentives to stimulate the dissemination of clean energy, the participation of some of the clean energy is very small (especially solar. We believe that the contributions of this study will assist policy makers, and the whole industry, to improve clean energy research and development investments in Brazil.

  14. NREL Topic 1 Final Report: Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sparn, Bethany F [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Seal, Brian [Electric Power Research Institute (EPRI)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project entitled 'Cohesive Application of Standards-Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL) Integrated Network Test-bed for Energy Grid Research and Technology (INTEGRATE) initiative. The Electric Power Research Institute (EPRI) and a team of partners were selected by NREL to carry out a project to develop and test how smart, connected consumer devices can act to enable the use of more clean energy technologies on the electric power grid. The project team includes a set of leading companies that produce key products in relation to achieving this vision: thermostats, water heaters, pool pumps, solar inverters, electric vehicle supply equipment, and battery storage systems. A key requirement of the project was open access at the device level - a feature seen as foundational to achieving a future of widespread distributed generation and storage. The internal intelligence, standard functionality and communication interfaces utilized in this project result in the ability to integrate devices at any level, to work collectively at the level of the home/business, microgrid, community, distribution circuit or other. Collectively, the set of products serve as a platform on which a wide range of control strategies may be developed and deployed.

  15. Energy efficiency system development

    Science.gov (United States)

    Leman, A. M.; Rahman, K. A.; Chong, Haw Jie; Salleh, Mohd Najib Mohd; Yusof, M. Z. M.

    2017-09-01

    By subjecting to the massive usage of electrical energy in Malaysia, energy efficiency is now one of the key areas of focus in climate change mitigation. This paper focuses on the development of an energy efficiency system of household electrical appliances for residential areas. Distribution of Questionnaires and pay a visit to few selected residential areas are conducted during the fulfilment of the project as well as some advice on how to save energy are shared with the participants. Based on the collected data, the system developed by the UTHM Energy Team is then evaluated from the aspect of the consumers' behaviour in using electrical appliances and the potential reduction targeted by the team. By the end of the project, 60% of the participants had successfully reduced the electrical power consumption set by the UTHM Energy Team. The reasons for whether the success and the failure is further analysed in this project.

  16. Evaluation of the combined betatron and momentum cleaning in point 3 in terms of cleaning efficiency and energy deposition for the LHC Collimation upgrade

    CERN Document Server

    Lari, L; Boccone, V; Brugger, M; Cerutti, F; Ferrari, A; Rossi, A; Versaci, R; Vlachoudis, V; Wollmann, D; Mereghetti, A; Faus-Golfe, A

    2011-01-01

    The Phase I LHC Collimation System Upgrade could include moving part of the Betatron Cleaning from LHC Point 7 to Point 3 to improve both operation flexibility and intensity reach. In addition, the partial relocation of beam losses from the current Betatron cleaning region at Point 7 will mitigate the risks of Single Event Upsets to equipment installed in adjacent and partly not sufficient shielded areas. The combined Betatron and Momentum Cleaning at Point 3 implies that new collimators have to be added as well as to implement a new collimator aperture layout. This paper shows the whole LHC Collimator Efficiency variation with the new layout at different beam energies. As part of the evaluation, energy deposition distribution in the IR3 region give indications about the effect of this new implementations not only on the collimators themselves but also on the other beam line elements as well as in the IR3 surrounding areas.

  17. Fiscal 1997 survey report. Subtask 6 (hydrogen utilization worldwide clean energy system technology) (WE-NET) (development of technology of low temperature materials); 1997 nendo seika hokokusho. Suiso riyo kokusai clean energy system gijutsu (WE-NET) subtask 6 teion zairyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the results of the development of technology of low temperature materials in the fiscal 1997 WE-NET. Using experimental equipment for materials under the atmosphere of liquid hydrogen, an experiment on mechanical characteristics under the liquid hydrogen atmosphere (20K) was conducted of the base materials of candidate steels (SUS304L, SUS316L and A5083). In material evaluation experiments (tension/fracture toughness/fracture tests), characteristic behaviors of the materials were shown which are different from those shown in the environment of liquid He (4k), etc. Even if the amount of {delta} ferrite in the metal welded of the stainless steel is small, approximately 1%, the degradation of low temperature toughness occurred. Welded joints of stainless steel by submerged arc welding and MAG welding were in now way inferior in tension characteristic to those by TIG welding, but were inferior in toughness ranging from room temperature to extremely low temperature. As to aluminum alloys, materials excellent in extremely-low temperature toughness were able to be found. Under the low temperature hydrogen gas atmosphere, the lower the strain rate is, the higher the hydrogen brittleness susceptibility is around 220K (extremely large hydrogen brittleness temperature) (SUS304L). In the hydrogen gas of 100 atm, hydrogen invades the material at 100degC, but does not at 77k. 38 refs., 173 figs., 48 tabs.

  18. Using a Clean Energy Version of Moore's Law to Plan for the Extreme Efficiency of the Future

    Science.gov (United States)

    van Buskirk, Robert

    2014-03-01

    In 1965, Gordon Moore predicted a decade of exponential growth in the transistor density growth (and hence computing power) for integrated circuits that--with some modification--has held to the present day. In this talk, we discuss to what extent clean energy technologies are subject to similar laws of long term exponential improvement and how these improvement rates may be accelerating due to recent developments. We review a range of long term energy efficiency and technology productivity improvement trends ranging from lighting, televisions, refrigerators, HVAC, batteries, motors, power electronics and solar PV. After reviewing historical and recent trends, we discuss several factors that may lead to an acceleration of improvement rates in the clean energy technology sector. Finally, we discuss the Baumol effect which predicts how differential trends in technology productivity may affect trends in relative prices in the economy. We conclude with a discussion of some of the implications that Baumol's theories may have for the development of extreme levels of energy efficiency in the coming decades.

  19. Clean energy systems in the subsurface. Production, storage and conversion. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhengmeng Michael; Were, Patrick (eds.) [Clausthal Univ. of Technology, Goslar (Germany). Energie-Forschungszentrum Niedersachsen (EFZN); Xie, Heping [Sichuan Univ., Chengdu (China)

    2013-04-01

    Recent research on Integrated Energy and Environmental Utilization of Deep Underground Space. Results of the 3{sup rd} Sino-German Conference ''Underground Storage of CO{sub 2} and Energy'', held at Goslar, Germany, 21-23 May 2013. Researchers and professionals from academia and industry discuss the future of deep underground space technologies for an integrated energy and environmental utilization. Anthropogenic greenhouse gas emissions, energy security and sustainability are three of the greatest contemporary global challenges today. This year the Sino-German Cooperation Group ''Underground Storage of CO{sub 2} and Energy'', is meeting on the 21-23 May 2013 for the second time in Goslar, Germany, to convene its 3{sup rd} Sino-German conference on the theme ''Clean Energy Systems in the Subsurface: Production, Storage and Conversion''.

  20. Revolution...Now The Future Arrives for Five Clean Energy Technologies – 2016 Update

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo-Vallett, Paul

    2016-09-30

    Decades of investments by the federal government and industry in five key clean energy technologies are making an impact today. The cost of land-based wind power, utility and distributed photovoltaic (PV) solar power, light emitting diodes (LEDs), and electric vehicles (EVs) has fallen by 41% to as high as 94% since 2008. These cost reductions have enabled widespread adoption of these technologies with deployment increasing across the board.

  1. The political economy of Australia’s climate change and clean energy legislation: lessons learned

    OpenAIRE

    Spencer, Thomas; Carole-Anne, Senit; Anna, Drutschinin

    2012-01-01

    In November 2011, Australia adopted a highly innovative, ambitious and comprehensive climate change policy, the Clean Energy Legislative Package(CELP). This outcome was not self-evident.The CELP embeds an innovative carbon pricing mechanism in a comprehensive and highly generous package of complementary measures designed to increase its public acceptability, and environmental and economic efficiency. It is combined with progressive income tax cuts, increases in government transfer payments, a...

  2. Assistance Focus: Asia/Pacific Region; Clean Energy Solutions Center (CESC)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-05-11

    The Clean Energy Solutions Center Ask an Expert service connects governments seeking policy information and advice with one of more than 30 global policy experts who can provide reliable and unbiased quick-response advice and information. The service is available at no cost to government agency representatives from any country and the technical institutes assisting them. This publication presents summaries of assistance provided to governments in the Asia/Pacific region, including the benefits of that assistance.

  3. Piezoelectric Energy Harvesting: A Green and Clean Alternative for Sustained Power Production

    Science.gov (United States)

    Cook-Chennault, Kimberly Ann; Thambi, Nithya; Bitetto, Mary Anne; Hameyie, E. B.

    2008-01-01

    Providing efficient and clean power is a challenge for devices that range from the micro to macro in scale. Although there has been significant progress in the development of micro-, meso-, and macro-scale power supplies and technologies, realization of many devices is limited by the inability of power supplies to scale with the diminishing sizes…

  4. Modeling complex dispersed energy and clean water systems for the United States/Mexico border

    Science.gov (United States)

    Herrera, Hugo Francisco Lopez

    As world population grows, and its technology evolves, the demand for electricity inexorably increases. Until now most of this electricity has been produced via fossil fuels, non-renewable energy resources that are irreversibly deteriorating our environment. On the economical aspect it does not get any better. Let's not forget market rules, the higher the demand and lower the offer, the higher the price we will have to pay. Oil is an excellent example. Some countries try to solve this situation with Pharaohnic projects, i.e. investing absurd amounts of money in 'green electricity' building monstrous dams to power equally monstrous hydroelectric power plants. The only problem with this is that it is not green at all---it does have an enormous environmental impact---it is extremely complicated and expensive to implement. It is important to point out, that this research project does not try to solve world's thirst for electricity. It is rather aimed to help solve this problematic at a much lower scale---it should be considered as an extremely small step in the right direction. It focuses on satisfying the local electricity needs with renewable, non-contaminating and locally available resources. More concisely, this project focuses on the attainment and use of hydrogen as an alternate energy source in El Paso/Juarez region. Clean technology is nowadays available to produce hydrogen and oxygen, i.e. the photoelectrolysis process. Photovoltaic cells coupled with electrolytic devices can be used to produce hydrogen and oxygen in a sustainable manner. In this research, simulation models of hybrid systems were designed and developed. They were capable to compare, predict and evaluate different options for hydrogen generation. On the other hand, with the produced hydrogen from the electrolysis process it was possible to generate electricity through fuel cells. The main objectives of the proposed research were to define how to use the resources for the attainment of hydrogen

  5. Roadmaps to Transition Countries to 100% Clean, Renewable Energy for All Purposes to Curtail Global Warming, Air Pollution, and Energy Risk

    Science.gov (United States)

    Jacobson, Mark Z.

    2017-10-01

    Solving the problems of global warming, air pollution, and energy security requires a massive effort by individuals, communities, businesses, nonprofits, and policy makers around the world. The first step in that process is to have a plan. To that end, roadmaps to transition 139 countries of the world to 100% clean, renewable wind, water, and solar power for all energy purposes (electricity, transportation, heating, cooling, industry, agriculture, forestry, and fishing) by 2050, with 80% by 2030, have been developed. The evolution, characteristics, and impacts to date of these plans are briefly described.

  6. Optimization of cascade hydropower system operation by genetic algorithm to maximize clean energy output

    Directory of Open Access Journals (Sweden)

    Aida Tayebiyan

    2016-06-01

    Full Text Available Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently operated and manage according to policies determined at the construction time. It is worth noting that with little enhancement in operation of reservoir system, there could be an increase in efficiency of the scheme for many consumers. Methods: This research develops simulation-optimization models that reflect discrete hedging policy (DHP to manage and operate hydropower reservoir system and analyse it in both single and multireservoir system. Accordingly, three operational models (2 single reservoir systems and 1 multi-reservoir system were constructed and optimized by genetic algorithm (GA. Maximizing the total power generation in horizontal time is chosen as an objective function in order to improve the functional efficiency in hydropower production with consideration to operational and physical limitations. The constructed models, which is a cascade hydropower reservoirs system have been tested and evaluated in the Cameron Highland and Batang Padang in Malaysia. Results: According to the given results, usage of DHP for hydropower reservoir system operation could increase the power generation output to nearly 13% in the studied reservoir system compared to present operating policy (TNB operation. This substantial increase in power production will enhance economic development. Moreover, the given results of single and multi-reservoir systems affirmed that hedging policy could manage the single system much better than operation of the multi-reservoir system. Conclusion: It can be summarized that DHP is an efficient and feasible policy, which could be used

  7. Hydrothermal energy development projects

    Science.gov (United States)

    Dibello, E. G.

    The development of hydrothermal energy for direct heat applications is being accelerated by twenty-two demonstration projects that are funded on a cost sharing basis by the US Department of Energy, Division of Geothermal Energy. These projects are designed to demonstrate the technical and economic feasibility of the direct use of hydrothermal resources in the United States. Engineering and economic data for the projects are summarized. The data and experience being generated by these projects will serve as an important basis for future direct heat development.

  8. Energy, sustainability and development

    Energy Technology Data Exchange (ETDEWEB)

    Llewellyn Smith, Ch

    2006-07-01

    The author discusses in a first part the urgent need to reduce energy use (or at least curb growth) and seek cleaner ways of producing energy on a large scale. He proposes in a second part what must be done: introduce fiscal measures and regulation to change behavior of consumers, provide incentives to encourage the market to expand use of low carbon technologies, stimulate research and development by industry and develop the renewable energies sources. In a last part he looks what part can fusion play. (A.L.B.)

  9. Clean energy storage technology in the making: An innovation systems perspective on flywheel energy storage.

    Science.gov (United States)

    Wicki, Samuel; Hansen, Erik G

    2017-09-20

    The emergence and diffusion of green and sustainable technologies is full of obstacles and has therefore become an important area of research. We are interested in further understanding the dynamics between entrepreneurial experimentation, market formation, and institutional contexts, together playing a decisive role for successful diffusion of such technologies. Accordingly, we study these processes by adopting a technological innovation system perspective focusing on actors, networks, and institutions as well as the functions provided by them. Using a qualitative case study research design, we focus on the high-speed flywheel energy storage technology. As flywheels are based on a rotating mass allowing short-term storage of energy in kinetic form, they represent an environmentally-friendly alternative to electrochemical batteries and therefore can play an important role in sustainable energy transitions. Our contribution is threefold: First, regarding the flywheel energy storage technology, our findings reveal two subsystems and related markets in which development took different courses. In the automotive sector, flywheels are developing well as a braking energy recovery technology under the influence of two motors of innovation. In the electricity sector, they are stagnating at the stage of demonstration projects because of two important system weaknesses that counteract demand for storage. Second, we contribute to the theory of technological innovation systems by better understanding the internal dynamics between different functions of an innovation system as well as between the innovation system and its (external) contextual structures. Our third contribution is methodological. According to our best knowledge, we are the first to use system dynamics to (qualitatively) analyze and visualize dynamics between the diverse functions of innovation systems with the aim of enabling a better understanding of complex and iterative system processes. The paper also

  10. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  11. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  12. Energy solutions for sustainable development. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Soenderberg Petersen, L.; Larsen, Hans (eds.)

    2007-05-15

    The Risoe International Energy Conference took place 22 - 24 May 2007. The conference focused on: 1) Future global energy development options. 2) Scenario and policy issues. 3) Measures to achieve low-level stabilization at, for example, 500 ppm CO2 concentrations in the atmosphere. 4) Local energy production technologies such as fuel cells, hydrogen, bio-energy and wind energy. 5) Centralized energy technologies such as clean coal technologies. 6) Providing renewable energy for the transport sector. 7) Systems aspects, differences between the various major regions throughout the world. 8) End-use technologies, efficiency improvements and supply links. 9) Security of supply with regard to resources, conflicts, black-outs, natural disasters and terrorism. (au)

  13. Fiscal year 2013 energy department budget: Proposed investments in clean energy research

    Science.gov (United States)

    Balcerak, Ernie

    2012-03-01

    Energy and environmental research programs generally fared well in President Barack Obama's proposed budget for the Department of Energy (DOE) for fiscal year (FY) 2013. In his State of the Union address, Obama called for the United States to pursue an "all of the above" energy strategy that includes fossil fuels, as well as a variety of renewable sources of energy. The DOE budget request supports that strategy, Energy Secretary Steven Chu said in a 13 February press briefing announcing the budget proposal. The proposed budget gives DOE 27.2 billion overall, a 3.2% increase from the FY 2012 enacted budget (see Table 1). This budget "reflects some tough choices," Chu said. The proposed budget would cut 4 billion in subsidies for oil and gas companies; many Republican members of Congress have already indicated that they oppose such cuts, suggesting that congressional approval of this budget may run into stumbling blocks. The budget would also cut funding for research and development projects that are already attracting private-sector investment or that are not working, and would reduce some of the department's operational costs.

  14. Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources

    Energy Technology Data Exchange (ETDEWEB)

    Spinti, Jennifer [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Birgenheier, Lauren [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Deo, Milind [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Facelli, Julio [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Hradisky, Michal [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Kelly, Kerry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Miller, Jan [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); McLennan, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ring, Terry [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Ruple, John [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States); Uchitel, Kirsten [Inst. for Clean and Secure Energy, Salt Lake City, UT (United States)

    2015-09-30

    This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated via sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges

  15. Clean development mechanism PDD guidebook: Navigating the pitfalls

    Energy Technology Data Exchange (ETDEWEB)

    Kamel, S. (ed.)

    2005-11-01

    This guidebook is designed to help readers navigate the pitfalls of preparing a Project Design Document (PDD) for Clean Development Mechanism (CDM) projects. The purpose of a PDD is to prepare project information for relevant stakeholders. These stakeholders include the investment community, the Designated Operating Entity (DOE) performing validation of the project, the CDM Executive Board (EB), the Designated National Authorities (DNA) of the involved countries and the local population. The PDD, together with the validation report and the approval letter of the DNA, are the basis for the registration of the project and its recognition as a credible CDM project. The PDD is about the project's design that is, how the project intends to reduce greenhouse gas (GHG) emissions below those levels that would otherwise have been emitted. Each and every CDM project is unique, from the project design to the application of even the simplest baseline methodology. Some of the projects submitted for validation may be very efficient in reducing emissions and score well in terms of economic, social and environmental benefits, but may still not qualify as CDM projects. Experience has shown that the information needed to judge a suitability of a project for the CDM is vast and can take months to assemble. Also, the time required to assemble relevant information increases with the number and diversity of stakeholders involved and the complexity of the information itself. This guidebook is based on a review of all PDDs submitted to DNV for validation. The advice given and the pitfalls described in this guidebook are, therefore, based on day-to-day, hands-on experience and real instances of mistakes made in submissions. In summary, then, this guidebook takes a practical stance: it is concerned with the practical issues of how to get projects through the validation process. It will help those submitting a PDD by: 1) Describing the most common and costly mistakes made in the process

  16. Hydrogen evolution by fermentation using seaweed as substrates and the contribution to the clean energy production

    Energy Technology Data Exchange (ETDEWEB)

    Tanisho, S.; Suganuma, T.; Yamaguchi, A. [Yokohama National Univ. (Japan). Dept. of Environmental Sciences

    2001-07-01

    It is an important theme in Japan to use the sea for energy production, because Japan is surrounded by seas on all sides. Brown algae such as Laminaria have high value as the substrate of fermentative hydrogen production, since they have very high growth rate and also have high ability on the productivity of mannitol. I would like to present about the affection of salt concentration on the hydrogen production of Enterobacter aerogenes, and also the contribution on clean energy production by the seaweed cultivation in Japan. (orig.)

  17. Clean Development Mechanism PDD Guidebook: Navigating the Pitfalls; 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    2008-04-15

    This guidebook is designed to help readers navigate the pitfalls of preparing a Project Design Document (PDD) for Clean Development Mechanism (CDM) projects. This second edition also aims at helping project developers to navigate the pitfalls of preparing a Monitoring Report and be better prepared to face the verification process. The purpose of a PDD is to prepare project information for relevant stakeholders. These stakeholders include the investment community, the Designated Operating Entity (DOE) performing validation of the project, the CDM Executive Board (EB), the Designated National Authorities (DNA) of the involved countries and the local population. The PDD, together with the validation report and the approval letter of the DNA, are the basis for the registration of the project and its recognition as a credible CDM project. The PDD is about the project's design--that is, how the project intends to reduce greenhouse gas (GHG) emissions below those levels that would otherwise have been emitted1. Each and every CDM project is unique, from the project design to the application of even the simplest baseline methodology. Some of the projects submitted for validation may be very efficient in reducing emissions and score well in terms of economic, social and environmental benefits, but may still not qualify as CDM projects. Experience has shown that the information needed to judge the suitability of a project for the CDM is vast and can take months to assemble. Also, the time required to assemble relevant information increases with the number and diversity of stakeholders involved and the complexity of the information itself. The objective of the verification of emissions reduction is the review and ex post determination of the monitored emission reductions that have occurred during a specified verification period. The verification is about the project's reality--that is, how the project has been implemented as described in the registered PDD and is

  18. Study on the Evolution Mechanism and Development Forecasting of China’s Power Supply Structure Clean Development

    Directory of Open Access Journals (Sweden)

    Xiaohua Song

    2017-02-01

    Full Text Available The clean development of China’s power supply structure has become a crucial strategic problem for the low-carbon, green development of Chinese society. Considering the subsistent developments of optimized allocation of energy resources and efficient utilization, the urgent need to solve environmental pollution, and the continuously promoted power market-oriented reform, further study of China’s power structure clean development has certain theoretical value. Based on the data analysis, this paper analyzes the key factors that influence the evolution process of the structure with the help of system dynamics theory and carries out comprehensive assessments after the construction of the structure evaluation system. Additionally, a forecasting model of the power supply structure development based on the Vector Autoregressive Model (VAR has been put forward to forecast the future structure. Through the research of policy review and scenario analysis, the paths and directions of structure optimization are proposed. In this paper, the system dynamics, vector autoregressive model (VAR, policy mining, and scenario analysis methods are combined to systematically demonstrate the evolution of China’s power structure, and predict the future direction of development. This research may provide a methodological and practical reference for the analysis of China’s power supply structure optimization development and for theoretical studies.

  19. MHD--Developing New Technology to Meet the Energy Crisis

    Science.gov (United States)

    Fitch, Sandra S.

    1978-01-01

    Magnetohydrodynamics is a technology that could utilize the nation's most abundant fossil fuel and produce electrical energy more efficiently and cleanly than present-day turbines. A national research and development program is ongoing in Butte, Montana at the Montana Energy and MHD Research and Development Institute (MERDI). (Author/RK)

  20. Monitoring Building Energy Systems at NASA Centers Using NASA Earth Science data, CMIP5 climate data products and RETScreen Expert Clean Energy Tool

    Science.gov (United States)

    Stackhouse, P. W., Jr.; Ganoe, R. E.; Westberg, D. J.; Leng, G. J.; Teets, E.; Hughes, J. M.; De Young, R.; Carroll, M.; Liou, L. C.; Iraci, L. T.; Podolske, J. R.; Stefanov, W. L.; Chandler, W.

    2016-12-01

    The NASA Climate Adaptation Science Investigator team is devoted to building linkages between NASA Earth Science and those within NASA responsible for infrastructure assessment, upgrades and planning. One of the focus areas is assessing NASA center infrastructure for energy efficiency, planning to meet new energy portfolio standards, and assessing future energy needs. These topics intersect at the provision of current and predicted future weather and climate data. This presentation provides an overview of the multi-center effort to access current building energy usage using Earth science observations, including those from in situ measurements, satellite measurement analysis, and global model data products as inputs to the RETScreen Expert, a clean energy decision support tool. RETScreen® Expert, sponsored by Natural Resources Canada (NRCan), is a tool dedicated to developing and providing clean energy project analysis software for the feasibility design and assessment of a wide range of building projects that incorporate renewable energy technologies. RETScreen Expert requires daily average meteorological and solar parameters that are available within less than a month of real-time. A special temporal collection of meteorological parameters was compiled from near-by surface in situ measurements. These together with NASA data from the NASA CERES (Clouds and Earth's Radiance Energy System)/FLASHFlux (Fast Longwave and SHortwave radiative Fluxes) provides solar fluxes and the NASA GMAO (Global Modeling and Assimilation Office) GEOS (Goddard Earth Observing System) operational meteorological analysis are directly used for meteorological input parameters. Examples of energy analysis for a few select buildings at various NASA centers are presented in terms of the energy usage relationship that these buildings have with changes in their meteorological environment. The energy requirements of potential future climates are then surveyed for a range of changes using the most

  1. The clean development mechanism's contribution to sustainable development: A review of the literature

    DEFF Research Database (Denmark)

    Olsen, Karen Holm

    2007-01-01

    The challenges of how to respond to climate change and ensure sustainable development are currently high on the political agenda among the world's leading nations. The Clean Development Mechanism (CDM) is part of the global carbon market developing rapidly as part of the Kyoto response towards...... the mitigation of global warming. One of the aims of the CDM is to achieve sustainable development in developing countries, but uncertainty prevails as to whether the CDM is doing what it promises to do. Close to 200 studies on the CDM have been carried out since its birth in 1997 including peer...

  2. Report of the results of the fiscal 1997 survey. R and D of high efficiency clean energy vehicles; 1997 nendo chosa hokokusho. Kokoritsu clean energy jidosha no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    For the purpose of developing an automobile which keeps low pollution using petroleum substituting clean energy, decreases the running energy consumption to a half at least, and reduces the CO2 emission to less than a half of the conventional one at the same time, the R and D started in fiscal 1997. As to the study of a high efficiency hybrid power system, conducted were the prediction of fuel consumption performance of the system proposed, evaluation of element technology using hybrid simulator, evaluation experiment on a new hybrid vehicle, and grasp of overseas trends. In relation to the development of hybrid vehicles, the following were studied: methanol fuel cell loading hybrid vehicle, CNG engine loading hybrid vehicle, CNG ceramic engine loading hybrid truck, CNG lean burn engine loading hybrid truck, LNG engine loading hybrid bus, and DME engine loading hybrid bus. Besides, a survey on synthetic fuel and the related survey were carried out. 17 refs., 185 figs., 101 tabs.

  3. Renewable energy project development

    Energy Technology Data Exchange (ETDEWEB)

    Ohi, J.

    1996-12-31

    The author presents this paper with three main thrusts. The first is to discuss the implementation of renewable energy options in China, the second is to identify the key project development steps necessary to implement such programs, and finally is to develop recommendations in the form of key issues which must be addressed in developing such a program, and key technical assistance needs which must be addressed to make such a program practical.

  4. Clean Development Mechanism: Latin American and Carribean perspectives on political and technical issues

    Energy Technology Data Exchange (ETDEWEB)

    Potes, V.

    2000-07-01

    Political positions of Latin American and Caribbean (LAC) countries are diverse, although certain principles are held in common. Diversity exists between the views of the small island developing nations, the oil producing nations, and the Amazon states. At the same time, all LAC countries agree on shared but differentiated responsibilities, poverty abatement, and the right to an 'ecological space' on equitable terms. As evidence of the political will to support climate change mitigation efforts, the various meetings and action plans developed by OLADE member countries for regional participation in global greenhouse gas reduction activities, are cited. Among Clean Development Mechanisms issues LAC countries have particular interest in issues concerning equity, supplementary, criteria for project eligibility, certified emission reduction, including independent auditing and verification systems, liability and compliance, sharing proceeds for adaptation and for administrative purposes, and the composition of the Executive Board, especially with respect to equality of representation. Among technical issues those of greatest interest to LAC countries are cogeneration, energy efficiency measures in industry and in the urban residential sector, gasification of biomass, renewable energy sources development, including small and mini-hydro development, fuel substitution, high efficiency gas turbines, and reduction of flaring in oil extraction wells. Development of priorities and objectives, inter-sectoral coordination, definition of development strategies, provision of institutional framework and capacity building, approval, endorsement and certification of CDM projects, are seen as the areas where the governments of LAC countries can play important and useful roles.

  5. Airing 'clean air' in Clean India Mission.

    Science.gov (United States)

    Banerjee, T; Kumar, M; Mall, R K; Singh, R S

    2017-03-01

    The submission explores the possibility of a policy revision for considering clean air quality in recently launched nationwide campaign, Clean India Mission (CIM). Despite of several efforts for improving availability of clean household energy and sanitation facilities, situation remain still depressing as almost half of global population lacks access to clean energy and proper sanitation. Globally, at least 2.5 billion people do not have access to basic sanitation facilities. There are also evidences of 7 million premature deaths by air pollution in year 2012. The situation is even more disastrous for India especially in rural areas. Although, India has reasonably progressed in developing sanitary facilities and disseminating clean fuel to its urban households, the situation in rural areas is still miserable and needs to be reviewed. Several policy interventions and campaigns were made to improve the scenario but outcomes were remarkably poor. Indian census revealed a mere 31% sanitation coverage (in 2011) compared to 22% in 2001 while 60% of population (700 million) still use solid biofuels and traditional cook stoves for household cooking. Further, last decade (2001-2011) witnessed the progress decelerating down with rural households without sanitation facilities increased by 8.3 million while minimum progress has been made in conversion of conventional to modern fuels. To revamp the sanitation coverage, an overambitious nationwide campaign CIM was initiated in 2014 and present submission explores the possibility of including 'clean air' considerations within it. The article draws evidence from literatures on scenarios of rural sanitation, energy practises, pollution induced mortality and climatic impacts of air pollution. This subsequently hypothesised with possible modification in available technologies, dissemination modes, financing and implementation for integration of CIM with 'clean air' so that access to both sanitation and clean household energy may be

  6. Energy Efficiency Project Development

    Energy Technology Data Exchange (ETDEWEB)

    IUEP

    2004-03-01

    The International Utility Efficiency Partnerships, Inc. (IUEP) has been a leader among the industry groups that have supported voluntary initiatives to promote international energy efficiency projects and address global climate change. The IUEP maintains its leadership by both supporting international greenhouse gas (GHG) reduction projects under the auspices of the U.S. Department of Energy (DOE) and by partnering with U.S. and international organizations to develop and implement strategies and specific energy efficiency projects. The goals of the IUEP program are to (1) provide a way for U.S. industry to maintain a leadership role in international energy efficiency infrastructure projects; (2) identify international energy project development opportunities to continue its leadership in supporting voluntary market-based mechanisms to reduce GHG emissions; and (3) demonstrate private sector commitment to voluntary approaches to global climate issues. The IUEP is dedicated to identifying, promoting, managing, and assisting in the registration of international energy efficiency projects that result in demonstrated voluntary reductions of GHG emissions. This Final Technical Report summarizes the IUEP's work in identifying, promoting, managing, and assisting in development of these projects and IUEP's effort in creating international cooperative partnerships to support project development activities that develop and deploy technologies that (1) increase efficiency in the production, delivery and use of energy; (2) increase the use of cleaner, low-carbon fuels in processing products; and (3) capture/sequester carbon gases from energy systems. Through international cooperative efforts, the IUEP intends to strengthen partnerships for energy technology innovation and demonstration projects capable of providing cleaner energy in a cost-effective manner. As detailed in this report, the IUEP met program objectives and goals during the reporting period January 1

  7. Samarinda City Development Policy That Neat And Clean

    Directory of Open Access Journals (Sweden)

    Florentinus Sudiran

    2017-02-01

    Full Text Available This study focuses on the cleanliness of the city of Samarinda using qualitative methods with the city environmental hygiene research objects. Data taken from the literature observations and interviews. Results of the study a. Public policy implementation has yet to achieve optimal results as expected because there are still some areas in the city of Samarinda is still dirty. b factors that support the implementation of public policies is the existence of binding rules and commitments DKP Samarinda to cleanliness while the obstacle is the lack of budget and lack of community participation as well as the increase in population of 2.43 per year. c The model of public policy implementation to realize the Samarinda city clean by taking the theory of Van Meter Van Horn 1975. To successfully realize Samarinda clean and tidy the government of Samarinda should draw upon the wide range of communication and consistency of the program activities of the cleanliness of the city of Samarinda based on the size and clear objectives involving the community as possible in order to get support resources a professional bureaucracy environment responds positively an increase in disposition help in trouble getting compliance gain synergies from the plurality of elements of society and increasingly understanding and agreement of all parties. Recommendation 1 The community is involved through communication in order to gain support. 2 Creative in mobilizing communities in hygiene program. 3 Penalties given to the offenders law rules l4 Provides education from an early age. 5 Establish a citizen mindset that cleanliness has a multiplier effect namely to attract people on vacation in Samarinda City so that increase revenue a city that is clean and healthy so that increase labor productivity and the face of the city to be beautiful. 6 the anticipation of environmental problems.

  8. Exploring the clean development mechanism: Malaysian case study

    DEFF Research Database (Denmark)

    Pedersen, Anne Rathmann

    2008-01-01

    During 2006 the CDM market in Malaysia became established and by December 2007 a total of 20 Malaysian projects had registered with the CDM Executive Board. The Kyoto Protocol defines the Annex I countries, as countries that are obliged to reduce their greenhouse gas (GHG) emissions and the clean...... by the Executive Board. The broad knowledge of CDM in Malaysia and the number of successful projects are partly due to the well-functioning CDM institutional framework in Malaysia. As an illustration this article focuses on a Malaysian-Danish project and describes the implementation of CDM in Malaysia and refers...

  9. Clean Development Mechanism and Least Developed Countries: Changing the Rules for Greater Participation

    DEFF Research Database (Denmark)

    De Lopez, Thanakvaro Thyl; Tin, Ponlok; Iyadomi, Keisuke

    2009-01-01

    with economic, social, and environmental benefits. Unfortunately, investments have tended to flow where CDM activities provide higher returns with limited economic and political risks, that is, outside of least developed countries (LDCs). To date, only a handful of LDCs have been able to participate in the CDM......The clean development mechanism (CDM) of the Kyoto Protocol is designed not only to mitigate greenhouse gas emissions (GHG) but also to contribute locally to sustainable development. As a market-based mechanism, CDM has the potential to channel private investments into development activities...

  10. LIFE: a sustainable solution for developing safe, clean fusion power.

    Science.gov (United States)

    Reyes, Susana; Dunne, Mike; Kramer, Kevin; Anklam, Tom; Havstad, Mark; Mazuecos, Antonio Lafuente; Miles, Robin; Martinez-Frias, Joel; Deri, Bob

    2013-06-01

    The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory (LLNL) in California is currently in operation with the goal to demonstrate fusion energy gain for the first time in the laboratory-also referred to as "ignition." Based on these demonstration experiments, the Laser Inertial Fusion Energy (LIFE) power plant is being designed at LLNL in partnership with other institutions with the goal to deliver baseload electricity from safe, secure, sustainable fusion power in a time scale that is consistent with the energy market needs. For this purpose, the LIFE design takes advantage of recent advances in diode-pumped, solid-state laser technology and adopts the paradigm of Line Replaceable Units used on the NIF to provide high levels of availability and maintainability and mitigate the need for advanced materials development. The LIFE market entry plant will demonstrate the feasibility of a closed fusion fuel cycle, including tritium breeding, extraction, processing, refueling, accountability, and safety, in a steady-state power-producing device. While many fusion plant designs require large quantities of tritium for startup and operations, a range of design choices made for the LIFE fuel cycle act to reduce the in-process tritium inventory. This paper presents an overview of the delivery plan and the preconceptual design of the LIFE facility with emphasis on the key safety design principles being adopted. In order to illustrate the favorable safety characteristics of the LIFE design, some initial accident analysis results are presented that indicate potential for a more attractive licensing regime than that of current fission reactors.

  11. Solar energy and substainable development

    Science.gov (United States)

    Roux, Maria Carmen; Nalin, Olivier

    2010-05-01

    At the dawn of the 21st century, the world population doesn't stop rising. More than ever, energy and environment problems remain at the heart of our society concerns. What will we leave to the future generations ? Therefore, a twenty pupil class of 4e (13 and 14 year old pupils) has made a specific work about this topic, called "solar power and sustainable development". Initially, the pupils participated to the settlement of a meteorological station on the school grounds. This station, which provides readings about temperature, relative humidity, rainfall, sun radiations, wind power and wind heading is fed by photovoltaic cells and thus works independently. The pupils have then come to realize the ecological and practical interests of such a functioning (e.g. : for the latter : neither batteries nor electrical wires are needed). These past few years, in Provence (a highly sunny region), many solar panel installations have been created and many private house roofs have been equipped with photovoltaic cells. Indeed, this energy presents some significant assets : it is free, clean and will never run out. The village of Vinon sur Verdon, where stands our college, is partly fed by a solar panel park, located a few kilometers away. Strongly sensitive to the assets of this energy source, the pupils have made a poster asserting the benefits of solar power. Another side of solar energy has been asserted : the output of hot sanitary water. They have built a miniature on this topic. In order to be thorough, some elements remain in shadow, such as environment impacts done by the making, the transport and the recycling of solar panels that will be brought up in a collaboration with research establishments.

  12. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Smit, F.J.; Jha, M.C.; Phillips, D.I.; Yoon, R.H.

    1997-04-25

    The goal of this project is engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. Its scope includes laboratory research and bench-scale testing on six coals to optimize these processes, followed by design and construction of a 2 t/h process development unit (PDU). Large lots of clean coal are to be produced in the PDU from three project coals. Investigation of the near-term applicability of the two advanced fine coal cleaning processes in an existing coal preparation plant is another goal of the project and is the subject of this report.

  13. Research and development of Ro-boat: an autonomous river cleaning robot

    Science.gov (United States)

    Sinha, Aakash; Bhardwaj, Prashant; Vaibhav, Bipul; Mohommad, Noor

    2013-12-01

    Ro-Boat is an autonomous river cleaning intelligent robot incorporating mechanical design and computer vision algorithm to achieve autonomous river cleaning and provide a sustainable environment. Ro-boat is designed in a modular fashion with design details such as mechanical structural design, hydrodynamic design and vibrational analysis. It is incorporated with a stable mechanical system with air and water propulsion, robotic arms and solar energy source and it is proceed to become autonomous by using computer vision. Both "HSV Color Space" and "SURF" are proposed to use for measurements in Kalman Filter resulting in extremely robust pollutant tracking. The system has been tested with successful results in the Yamuna River in New Delhi. We foresee that a system of Ro-boats working autonomously 24x7 can clean a major river in a city on about six months time, which is unmatched by alternative methods of river cleaning.

  14. Addressing the need for a Clean Development Mechanism (CDM) specific project management strategy

    CSIR Research Space (South Africa)

    Lotz, M

    2009-01-01

    Full Text Available Clean Development Mechanism (CDM) projects have additional technical, financial and regulatory requirements that are not fully addressed by classic project management approaches. Research has been done on individual novel concepts of the CDM, like...

  15. Testing Open-Air Storage of Stumps to Provide Clean Biomass for Energy Production

    Directory of Open Access Journals (Sweden)

    Luigi Pari

    2017-10-01

    Full Text Available When orchards reach the end of the productive cycle, the stumps removal becomes a mandatory operation to allow new soil preparation and to establish new cultivations. The exploitation of the removed stump biomass seems a valuable option, especially in the growing energy market of the biofuels; however, the scarce quality of the material obtained after the extraction compromises its marketability, making this product a costly waste to be disposed. In this regard, the identification of affordable strategies for the extraction and the cleaning of the material will be crucial in order to provide to plantation owners the chance to sell the biomass and offset the extraction costs. Mechanical extraction and cleaning technologies have been already tested on forest stumps, but these systems work on the singular piece and would be inefficient in the conditions of an intensive orchard, where stumps are small and numerous. The objective of this study was to test the possibility to exploit a natural stumps cleaning system through open-air storage. The tested stumps were obtained from two different vineyards, extracted with an innovative stump puller specifically designed for continuous stump removal in intensively-planted orchards. The effects of weathering were evaluated to determine the fuel quality immediately after the extraction and after a storage period of six months with respect to moisture content, ash content, and heating value. Results indicated interesting storage performance, showing also different dynamics depending on the stumps utilized.

  16. Property-Assessed Clean Energy (PACE) Financing of Renewables and Efficiency: Fact Sheet Series on Financing Renewable Energy Projects (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    Speer, B.; Koenig, R.

    2010-07-01

    Under property-assessed clean energy (PACE) and similar programs, municipal financing districts lend the proceeds of bonds to property owners for financing energy retrofits. Property owners who invest in energy efficiency (EE) measures and small renewable energy (RE) systems then repay these loans over 15-20 years via annual assessments on their property tax bills. States and local governments can use PACE bonds to help property owners finance EE and RE projects. This factsheet outlines the benefits of PACE programs and describes how they can be designed, implemented, and funded. The factsheet also summarizes the benefits and challenges experienced by PACE programs in Boulder County, Colorado; Annapolis, Maryland; Berkeley, California; Sonoma County, California; Palm Desert, California; and Babylon, New York.

  17. A Medium-Scale 50 MWfuel Biomass Gasification Based Bio-SNG Plant: A Developed Gas Cleaning Process

    Directory of Open Access Journals (Sweden)

    Ramiar Sadegh-Vaziri

    2015-06-01

    Full Text Available Natural gas is becoming increasingly important as a primary energy source. A suitable replacement for fossil natural gas is bio-SNG, produced by biomass gasification, followed by methanation. A major challenge is efficient gas cleaning processes for removal of sulfur compounds and other impurities. The present study focuses on development of a gas cleaning step for a product gas produced in a 50 MWfuel gasification system. The developed gas cleaning washing process is basically a modification of the Rectisol process. Several different process configurations were evaluated using Aspen plus, including PC-SAFT for the thermodynamic modeling. The developed configuration takes advantage of only one methanol wash column, compared to two columns in a conventional Rectisol process. Results from modeling show the ability of the proposed configuration to remove impurities to a sufficiently low concentrations - almost zero concentration for H2S, CS2, HCl, NH3 and HCN, and approximately 0.01 mg/Nm3 for COS. These levels are acceptable for further upgrading of the gas in a methanation process. Simultaneously, up to 92% of the original CO2 is preserved in the final cleaned syngas stream. No process integration or economic consideration was performed within the scope of the present study, but will be investigated in future projects to improve the overall process.

  18. Renewable energy development in China

    Energy Technology Data Exchange (ETDEWEB)

    Junfeng, Li

    1996-12-31

    This paper presents the resources availability, technologies development and their costs of renewable energies in China and introduces the programs of renewable energies technologies development and their adaptation for rural economic development in China. As the conclusion of this paper, renewable energies technologies are suitable for some rural areas, especially in the remote areas for both household energy and business activities energy demand. The paper looks at issues involving hydropower, wind energy, biomass combustion, geothermal energy, and solar energy.

  19. Energy development in the US Rockies: A Role for counties?

    Energy Technology Data Exchange (ETDEWEB)

    Davis, C.; Hoffer, K. [Colorado State University, Fort Collins, CO (United States)

    2010-04-01

    This article analyzes the role played by county commissioners in Colorado and Montana in restricting or facilitating the use of clean energy sources in the generation of electrical power. Using data obtained from responses to an internet survey, we found that many commissioners in both states developed land use policies dealing with renewable energy resources over the preceding five years. Colorado and Montana officials were quite similar in terms of their positive reaction to changes that would facilitate greater county interest in clean energy policies. Most respondents favored increasing the pace of renewable energy use in relation to traditional energy sources but were also supportive of a more inclusive renewable portfolio standard that would embrace clean coal technologies and nuclear power.

  20. Development of an Electrostatically Clean Solar Array Panel

    Science.gov (United States)

    Stern, Theodore G.; Krumweide, Duane; Gaddy, Edward; Katz, Ira

    2000-01-01

    The results of design, analysis, and qualification of an Electrostatically Clean Solar Array (ECSA) panel are described. The objective of the ECSA design is to provide an electrostatic environment that does not interfere with sensitive instruments on scientific spacecraft. The ECSA design uses large, ITO-coated coverglasses that cover multiple solar cells, an aperture grid that covers the intercell areas, stress-relieved interconnects for connecting the aperture grid to the coverglasses, and edge clips to provides an electromagnetically shielded enclosure for the solar array active circuitry. Qualification coupons were fabricated and tested for photovoltaic response, conductivity, and survivability to launch acoustic and thermal cycling environments simulating LEO and GEO missions. The benefits of reducing solar panel interaction with the space environment are also discussed.

  1. Guidelines for the Presentation of Clean Development Mechanism Projects in Bolivia

    Energy Technology Data Exchange (ETDEWEB)

    Guevara, M.E.; Peres, A.; Jauregui, S.; Lorini, N.; Gonzales, J.; Sol Bagur, M. [National Climate Change Program, Clean Development Mechanism Office, La Paz (Bolivia)

    2004-03-01

    Bolivia ratified the United Nations Framework Convention on Climate Change in 1994 with its National Law Nr. 15761. The Kyoto Protocol (KP) was approved, and Bolivia ratified it through its National Law Nr. 1988 on 22nd July, 1999. The KP quantifies emission reductions of GHG for developed countries and countries with economies in transition (Annex I countries). The KP establishes that these reductions must be real, measurable, and long-term and that they should be achieved primarily through domestic efforts. However, the KP creates three flexibility mechanisms to mitigate climate change in a cost effective way: Joint Implementation allows claim credits for the emission reductions generated in projects between Annex I countries; GHG Emissions Trading allows the sale and purchase of emission certificates by Annex I countries; and Clean Development Mechanism (CDM) contemplates to undertake projects of emissions reduction/offset of GHG in developing countries agreed that these projects support the sustainable development of host countries. The CDM gives Bolivia an opportunity to attract clean foreign investment to the forestry, energy, industrial and transport sectors as well as an entry channel to the GHG emission allowances market. To take advantage of these windows of opportunity, the National Climate Change Program established the National Clean Development Office (NCDMO) in March 2002. The NCDMO has, among its main purposes, the promotion, evaluation, operation and negotiation of climate change mitigation projects (in the CDM or in other schemes) in addition to the capacity building for social actors. The present guidelines define the criteria for submitting potential CDM projects to the Bolivian NCDMO, for the approval of the Designated National Authority (DNA), the Vice ministry for Natural Resources and the Environment, and their subsequent submission to the Executive Board of the CDM. This document has seven sections. The first three sections define the

  2. Wind energy technology developments

    DEFF Research Database (Denmark)

    Madsen, Peter Hauge; Hansen, Morten Hartvig; Pedersen, Niels Leergaard

    2014-01-01

    This chapter describes the present mainstream development of the wind turbine technology at present. The turbine technology development trend is characterized by up-scaling to turbines with larger capacity for both onshore and offshore applications, larger rotors and new drivetrain solution...... turbine blades and towers are very large series-produced components, which costs and quality are strongly dependent on the manufacturing methods. The industrial wind energy sector is well developed in Denmark, and the competitive advantage of the Danish sector and the potential for job creation...

  3. Development of CFC-Free Cleaning Processes at the NASA White Sands Test Facility

    Science.gov (United States)

    Beeson, Harold; Kirsch, Mike; Hornung, Steven; Biesinger, Paul

    1995-01-01

    The NASA White Sands Test Facility (WSTF) is developing cleaning and verification processes to replace currently used chlorofluorocarbon-113- (CFC-113-) based processes. The processes being evaluated include both aqueous- and solvent-based techniques. The presentation will include the findings of investigations of aqueous cleaning and verification processes that are based on a draft of a proposed NASA Kennedy Space Center (KSC) cleaning procedure. Verification testing with known contaminants, such as hydraulic fluid and commonly used oils, established correlations between nonvolatile residue and CFC-113. Recoveries ranged from 35 to 60 percent of theoretical. WSTF is also investigating enhancements to aqueous sampling for organics and particulates. Although aqueous alternatives have been identified for several processes, a need still exists for nonaqueous solvent cleaning, such as the cleaning and cleanliness verification of gauges used for oxygen service. The cleaning effectiveness of tetrachloroethylene (PCE), trichloroethylene (TCE), ethanol, hydrochlorofluorocarbon-225 (HCFC-225), tert-butylmethylether, and n-Hexane was evaluated using aerospace gauges and precision instruments and then compared to the cleaning effectiveness of CFC-113. Solvents considered for use in oxygen systems were also tested for oxygen compatibility using high-pressure oxygen autoignition and liquid oxygen mechanical impact testing.

  4. Rural energy and development

    Energy Technology Data Exchange (ETDEWEB)

    Stern, R.

    1997-12-01

    The author discusses the worldwide problem and need for rural electrification to support development. He points out that rural areas will pay high rates to receive such services, but cannot afford the capital cost for conventional services. The author looks at this problem from the point of energy choices, subsides, initial costs, financing, investors, local involvement, and governmental actions. In particular he is concerned with ways to make better use of biofuels, to promote sustainable harvesting, and to encourage development of more modern fuels.

  5. Energy, environment and development in Bhutan

    Energy Technology Data Exchange (ETDEWEB)

    Uddin, Sk Noim; Taplin, Ros [Graduate School of the Environment, Macquarie University, Sydney, NSW 2109 (Australia); Yu, Xiaojiang [Department of Geography, Hong Kong Baptist University, Kowloon (China)

    2007-12-15

    Bhutan's energy and environmental situation and approaches to development are reviewed and analyzed in this paper. Conservation of natural resources and human happiness have been placed as central strategic policy themes and have been given high priority in the national development plans of Bhutan. Bhutan's unique approach to development via Gross National Happiness (GNH) or the Middle Path of development is being facilitated by the Royal Government of Bhutan as a tool to balance poverty alleviation, environmental conservation and development. However, challenges exist due to the constraints of resources, good governance, legal frameworks, and human capacity. This paper reviews selected sustainable energy projects (e.g. energy from renewables or energy conservation) in Bhutan and finds that in fact, Bhutan's renewable energy resources (e.g. water and forests) which have proved to be indispensable for development are vulnerable due to the adverse impacts of climate change and environmental degradation. Appropriate measures in order to reduce potential environmental degradation and mitigate climate change impacts have been acknowledged globally and these have potential for application in Bhutan. For example, implementation of sustainable energy projects under the Clean Development Mechanism (CDM) of the Kyoto Protocol could offer an opportunity for mitigating climate change impacts and also contributing to sustainable development. (author)

  6. Development of High Erosivity Well Scale Cleaning Tools

    Energy Technology Data Exchange (ETDEWEB)

    K. M. Kalumuck; G. L. Chahine; G. S. Frederick; P. D. Aley

    1999-07-01

    Build up of scale deposits on the walls of geothermal wells can occur rapidly due to the high dissolved solids content of geothermal fluids. Scale formation is a significant problem for both the well and for surface heat transfer equipment. Geothermal brines contain a wide variety if dissolved salts including carbonates, silicates, sulfates, and metal sulfides. One technology recently proposed for scale removal is the use of an ultrasonic device. In the present effort we apply cavitation in a more direct manner by the use of acoustically enhanced cavitating water jets which can be made to be much more efficient and aggressive than ultrasonic devices. Cavitating and self-resonating jet technologies have been proven to enhance the erosive power of liquid jets in a number of cutting, cleaning, and drilling applications. In this study we investigated two related technologies - one that employs cavitation and one that breaks the jet up into a series of slugs that produce water hammer type pressures upon impact. These technologies enable operation in both submerged and nonsubmerged conditions.

  7. Relevance of Clean Coal Technology for India’s Energy Security: A Policy Perspective

    Science.gov (United States)

    Garg, Amit; Tiwari, Vineet; Vishwanathan, Saritha

    2017-07-01

    Climate change mitigation regimes are expected to impose constraints on the future use of fossil fuels in order to reduce greenhouse gas (GHG) emissions. In 2015, 41% of total final energy consumption and 64% of power generation in India came from coal. Although almost a sixth of the total coal based thermal power generation is now super critical pulverized coal technology, the average CO2 emissions from the Indian power sector are 0.82 kg-CO2/kWh, mainly driven by coal. India has large domestic coal reserves which give it adequate energy security. There is a need to find options that allow the continued use of coal while considering the need for GHG mitigation. This paper explores options of linking GHG emission mitigation and energy security from 2000 to 2050 using the AIM/Enduse model under Business-as-Usual scenario. Our simulation analysis suggests that advanced clean coal technologies options could provide promising solutions for reducing CO2 emissions by improving energy efficiencies. This paper concludes that integrating climate change security and energy security for India is possible with a large scale deployment of advanced coal combustion technologies in Indian energy systems along with other measures.

  8. Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program Implementation

    Energy Technology Data Exchange (ETDEWEB)

    Liby, Alan L [ORNL; Rogers, Hiram [ORNL

    2013-10-01

    The goal of this activity was to carry out program implementation and technical projects in support of the ARRA-funded Advanced Materials in Support of EERE Needs to Advance Clean Energy Technologies Program of the DOE Advanced Manufacturing Office (AMO) (formerly the Industrial Technologies Program (ITP)). The work was organized into eight projects in four materials areas: strategic materials, structural materials, energy storage and production materials, and advanced/field/transient processing. Strategic materials included work on titanium, magnesium and carbon fiber. Structural materials included work on alumina forming austentic (AFA) and CF8C-Plus steels. The advanced batteries and production materials projects included work on advanced batteries and photovoltaic devices. Advanced/field/transient processing included work on magnetic field processing. Details of the work in the eight projects are available in the project final reports which have been previously submitted.

  9. Revolution…Now The Future Arrives for Five Clean Energy Technologies – 2015 Update

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-11-01

    In 2013, the U.S. Department of Energy (DOE) released the Revolution Now report, highlighting four transformational technologies: land-based wind power, silicon photovoltaic (PV) solar modules, light-emitting diodes (LEDs), and electric vehicles (EVs). That study and its 2014 update showed how dramatic reductions in cost are driving a surge in consumer, industrial, and commercial adoption for these clean energy technologies—as well as yearly progress. In addition to presenting the continued progress made over the last year in these areas, this year’s update goes further. Two separate sections now cover large, central, utility-scale PV plants and smaller, rooftop, distributed PV systems to highlight how both have achieved significant deployment nationwide, and have done so through different innovations, such as easier access to capital for utility-scale PV and reductions of non-hardware costs and third-party ownership for distributed PV. Along with these core technologies

  10. Overview of Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    An important opportunity exists for the energy future of Wyoming that will • Maintain its coal industry • Add substantive value to its indigenous coal and natural gas resources • Improve dramatically the environmental impact of its energy production capability • Increase its Gross Domestic Product These can be achieved through development of a carbon conversion industry that transforms coal and natural gas to synthetic transportation fuels, chemical feedstocks, and chemicals that are the building blocks for the chemical industry. Over the longer term, environmentally clean nuclear energy can provide the substantial energy needs of a carbon conversion industry and be part of the mix of replacement technologies for the current fleet of aging coal-fired electric power generating stations.

  11. Texas Clean Energy Project: Decision Point Application, Section 2: Topical Report - Phase 1, February 2010-October 2013

    Energy Technology Data Exchange (ETDEWEB)

    Mattes, Karl

    2013-09-01

    Summit Texas Clean Energy, LLC (STCE) is developing the Texas Clean Energy Project (TCEP or the Project) to be located near Penwell, Texas. The TCEP will include an Integrated Gasification Combined Cycle (IGCC) power plant with a nameplate capacity of 400 megawatts electric (MWe), combined with the production of urea fertilizer and the capture, utilization and storage of carbon dioxide (CO2) sold commercially for regional use in enhanced oil recovery (EOR) in the Permian Basin of west Texas. The TCEP will utilize coal gasification technology to convert Powder River Basin subbituminous coal delivered by rail from Wyoming into a synthetic gas (syngas) that will be cleaned and further treated so that at least 90 percent of the overall carbon entering the IGCC facility will be captured. The clean syngas will then be divided into two highhydrogen (H2) concentration streams, one of which will be combusted as a fuel in a combined cycle power block for power generation and the other converted into urea fertilizer for commercial sale. The captured CO2 will be divided into two streams: one will be used in producing the urea fertilizer and the other will be compressed for transport by pipeline for offsite use in EOR and permanent underground sequestration. The TCEP was selected by the U.S. Department of Energy (DOE) Office of Fossil Energy (FE) for cost-shared co-funded financial assistance under Round 3 of its Clean Coal Power Initiative (CCPI). A portion of this financial assistance was budgeted and provided for initial development, permitting and design activities. STCE and the DOE executed a Cooperative Agreement dated January 29, 2010, which defined the objectives of the Project for all phases. During Phase 1, STCE conducted and completed all objectives defined in the initial development, permitting and design portions of the Cooperative Agreement. This topical report summarizes all work associated with the project objectives, and

  12. Bolivia renewable energy development

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1997-12-01

    The author summarizes changes which have occurred in Bolivia in the past year which have had an impact on renewable energy source development. Political changes have included the privatization of power generation and power distribution, and resulted in a new role for state level government and participation by the individual. A National Rural Electrification Plan was adopted in 1996, which stresses the use of GIS analysis and emphasizes factors such as off grid, economic index, population density, maintenance risk, and local organizational structure. The USAID program has chosen to stress economic development, environmental programs, and health over village power programs. The national renewables program has adopted a new development direction, with state projects, geothermal projects, and private sector involvement stressed.

  13. Potential of wind power projects under the Clean Development Mechanism in India.

    Science.gov (United States)

    Purohit, Pallav; Michaelowa, Axel

    2007-07-30

    So far, the cumulative installed capacity of wind power projects in India is far below their gross potential (support, tax benefits, long term financing schemes etc., for more than 10 years etc. One of the major barriers is the high costs of investments in these systems. The Clean Development Mechanism (CDM) of the Kyoto Protocol provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. Wind power projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development, if developed correctly. Our estimates indicate that there is a vast theoretical potential of CO2 mitigation by the use of wind energy in India. The annual potential Certified Emissions Reductions (CERs) of wind power projects in India could theoretically reach 86 million. Under more realistic assumptions about diffusion of wind power projects based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 41 to 67 million and 78 to 83 million by 2020. The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of wind power projects is not likely to reach its maximum estimated potential in another 15 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced.

  14. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D. [Lawrence Livermore National Lab., CA (United States)

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  15. Energy, Sustainability and Development

    CERN Multimedia

    CERN. Geneva

    2008-01-01

    A huge increase in energy use is expected in the coming decades – see the IEA’s ‘business as usual’/reference scenario below. While developed countries could use less energy, a large increase is needed to lift billions out of poverty, including over 25% of the world’s population who still lack electricity. Meeting demand in an environmentally responsible manner will be a huge challenge. The World Bank estimates that coal pollution leads to 300,000 deaths in China each year, while smoke from cooking and heating with biomass kills 1.3 million world-wide – more than malaria. The IEA’s alternative scenario requires a smaller increase in energy use than the reference scenario and is also less carbon intensive, but it still implies that CO2 emissions will increase 30% by 2030 (compared to 55% in the reference scenario). Frighteningly, implementing the alternative scenario faces “formidable hurdles” according to the IEA, despite the fact that it would yield financial savings for consumers that...

  16. Development of cooling and cleaning systems for enhanced gas ...

    African Journals Online (AJOL)

    DR OKE

    Energy from biomass based gasifier-engine integrated systems are becoming more popular for power generation applications in rural and urban driven societies. The quality of producer gas from the down draft gasifiers plays a significant role in power generation aspects. During gasification, tar is produced and its ...

  17. Development, testing, and demonstration of an optimal fine coal cleaning circuit

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, M.; Placha, M.; Bethell, P. [and others

    1995-11-01

    The overall objective of this project is to improve the efficiency of fine coal cleaning. The project will be completed in two phases: bench-scale testing and demonstration of four advanced flotation cells and; in-plant proof-of-concept (POC) pilot plant testing of two flotation cells individually and in two-stage combinations. The goal is to ascertain if a two-stage circuit can result in reduced capital and operating costs while achieving improved separation efficiency. The plant selected for this project, Cyprus Emerald Coal Preparation plant, cleans 1200 tph of raw coal. The plant produces approximately 4 million tonnes of clean coal per year at an average as received energy content of 30.2 MJ/Kg (13,000 Btu/lb).

  18. Challenges in the Quest for Clean Energies: 2. Solar Energy Technologies

    National Research Council Canada - National Science Library

    Ramasesha, Sheela K

    2013-01-01

    The global warming issues were discussed in Part 1 of this series of articles. This part describes the different solar energy technologies that are available for generating electricity to meet our daily power requirement...

  19. Renewable Energy for Rural Economic Development

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, Cathy L. [Utah State Univ., Logan, UT (United States); Stafford, Edwin R. [Utah State Univ., Logan, UT (United States)

    2013-09-30

    When Renewable Energy for Rural Economic Development (RERED) began in 2005, Utah had no commercial wind power projects in operation. Today, the state hosts two commercial wind power plants, the Spanish Fork Wind Project and the Milford Wind Corridor Project, totaling 324 megawatts (MW) of wind capacity. Another project in San Juan County is expected to break ground very soon, and two others, also in San Juan County, are in the approval process. RERED has played a direct role in advancing wind power (and other renewable energy and clean technology innovations) in Utah through its education outreach and research/publication initiatives. RERED has also witnessed and studied some of the persistent barriers facing wind power development in communities across Utah and the West, and its research expanded to examine the diffusion of other energy efficiency and clean technology innovations. RERED leaves a legacy of publications, government reports, and documentary films and educational videos (archived at www.cleantech.usu.edu) to provide important insights for entrepreneurs, policymakers, students, and citizens about the road ahead for transitioning society onto a cleaner, more sustainable future.

  20. Alternative Energy Development and China's Energy Future

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Nina; Fridley, David

    2011-06-15

    In addition to promoting energy efficiency, China has actively pursued alternative energy development as a strategy to reduce its energy demand and carbon emissions. One area of particular focus has been to raise the share of alternative energy in China’s rapidly growing electricity generation with a 2020 target of 15% share of total primary energy. Over the last ten years, China has established several major renewable energy regulations along with programs and subsidies to encourage the growth of non-fossil alternative energy including solar, wind, nuclear, hydro, geothermal and biomass power as well as biofuels and coal alternatives. This study thus seeks to examine China’s alternative energy in terms of what has and will continue to drive alternative energy development in China as well as analyze in depth the growth potential and challenges facing each specific technology. This study found that despite recent policies enabling extraordinary capacity and investment growth, alternative energy technologies face constraints and barriers to growth. For relatively new technologies that have not achieved commercialization such as concentrated solar thermal, geothermal and biomass power, China faces technological limitations to expanding the scale of installed capacity. While some alternative technologies such as hydropower and coal alternatives have been slowed by uneven and often changing market and policy support, others such as wind and solar PV have encountered physical and institutional barriers to grid integration. Lastly, all alternative energy technologies face constraints in human resources and raw material resources including land and water, with some facing supply limitations in critical elements such as uranium for nuclear, neodymium for wind and rare earth metals for advanced solar PV. In light of China’s potential for and barriers to growth, the resource and energy requirement for alternative energy technologies were modeled and scenario analysis

  1. EDIN-USVI Clean Energy Quarterly: Volume 1, Issue 3, September 2011 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2011-09-01

    This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations-U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the five working groups, and project-related renewable energy and energy efficiency educational outreach and technology deployment efforts.

  2. Final Report for Clean, Reliable, Affordable Energy that Reflects the Values of the Pinoleville Pomo Nation

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Lenora [Self-Governance Director; Sampsel, Zachary N [Program Director

    2014-07-21

    This report aims to present and analyze information on the potential of renewable energy power systems and electric vehicle charging near the Pinoleville Pomo Nation in Ukiah, California to provide an environmentally-friendly, cost-effective energy and transportation options for development. For each renewable energy option we examine, solar, wind, microhydro, and biogas in this case, we compiled technology and cost information for construction, estimates of energy capacity, and data on electricity exports rates.

  3. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications

    Energy Technology Data Exchange (ETDEWEB)

    Smit, Frank J; Schields, Gene L; Jha, Mehesh C; Moro, Nick

    1997-09-26

    The ash in six common bituminous coals, Taggart, Winifrede, Elkhorn No. 3, Indiana VII, Sunnyside and Hiawatha, could be liberated by fine grinding to allow preparation of clean coal meeting premium fuel specifications (< 1- 2 lb/ MBtu ash and <0.6 lb/ MBtu sulfur) by laboratory and bench- scale column flotation or selective agglomeration. Over 2,100 tons of coal were cleaned in the PDU at feed rates between 2,500 and 6,000 lb/ h by Microcel™ column flotation and by selective agglomeration using recycled heptane as the bridging liquid. Parametric testing of each process and 72- hr productions runs were completed on each of the three test coals. The following results were achieved after optimization of the operating parameters: The primary objective was to develop the design base for commercial fine coal cleaning facilities for producing ultra- clean coals which can be converted into coal-water slurry premium fuel. The coal cleaning technologies to be developed were advanced column flotation and selective agglomeration, and the goal was to produce fuel meeting the following specifications.

  4. Cogeneration and Carbon bonds: clean development; Cogeneracion y bonos de carbono: desarrollo limpio

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Perez, Nidia [Facultad de Contaduria y Administracion, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2004-06-15

    The growing preoccupation for the environment in our country and its interest to ratify the Kyoto Protocol with respect to the contamination of the atmosphere, offers great opportunities for the cogeneration so that it fortifies the scientific and technological research and gives a good international image about the sustainable development and care of the environment, so that companies that invest in clean technology will be able to assign a monetary value to their environmental patrimony, this through the so called Green Bonds or Carbon Bonds, this opens a new dimension to finance projects by means of these bonds that can be negotiated at an international level; by means of the Clean of Energy Production the investment can be stimulated and revenues for projects that contribute to the sustainable development of the country and the power efficiency. At the moment the country has at least 13 projects in different analysis stages to enter the carbon bond market, which are presented as co-generation projects of energy, in addition to the formation of the Mexican Committee for Projects of Reduction and Capture of Gas Discharges of Greenhouse Effect. [Spanish] La creciente preocupacion por el medio ambiente en nuestro pais y su interes por ratificar el Protocolo de Kyoto en lo referente a la contaminacion de la atmosfera, ofrece grandes oportunidades para la cogeneracion de manera que fortalezca la investigacion cientifica y tecnologica y dar una buena imagen internacional en torno a temas de desarrollo sustentable y cuidado del medio ambiente, de manera que empresas que invierten en tecnologia limpia podran asignar un valor monetario a su patrimonio ambiental, esto a traves de los llamados Bonos Verdes o Bonos de Carbono, esto abre una dimension nueva para financiar proyectos por medio de estos bonos que pueden negociarse a nivel internacional; por medio de la Produccion Limpia de energia se puede estimular inversion y ganancias para proyectos que contribuyan al

  5. Operationalizing clean development mechanism baselines: A case study of China's electrical sector

    Science.gov (United States)

    Steenhof, Paul A.

    The global carbon market is rapidly developing as the first commitment period of the Kyoto Protocol draws closer and Parties to the Protocol with greenhouse gas (GHG) emission reduction targets seek alternative ways to reduce their emissions. The Protocol includes the Clean Development Mechanism (CDM), a tool that encourages project-based investments to be made in developing nations that will lead to an additional reduction in emissions. Due to China's economic size and rate of growth, technological characteristics, and its reliance on coal, it contains a large proportion of the global CDM potential. As China's economy modernizes, more technologies and processes are requiring electricity and demand for this energy source is accelerating rapidly. Relatively inefficient technology to generate electricity in China thereby results in the electrical sector having substantial GHG emission reduction opportunities as related to the CDM. In order to ensure the credibility of the CDM in leading to a reduction in GHG emissions, it is important that the baseline method used in the CDM approval process is scientifically sound and accessible for both others to use and for evaluation purposes. Three different methods for assessing CDM baselines and environmental additionality are investigated in the context of China's electrical sector: a method based on a historical perspective of the electrical sector (factor decomposition), a method structured upon a current perspective (operating and build margins), and a simulation of the future (dispatch analysis). Assessing future emission levels for China's electrical sector is a very challenging task given the complexity of the system, its dynamics, and that it is heavily influenced by internal and external forces, but of the different baseline methods investigated, dispatch modelling is best suited for the Chinese context as it is able to consider the important regional and temporal dimensions of its economy and its future development

  6. Overview of Variable Renewable Energy Regulatory Issues: A Clean Energy Regulators Initiative Report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.; Cox, S.

    2014-05-01

    This CERI report aims to provide an introductory overview of key regulatory issues associated with the deployment of renewable energy -- particularly variable renewable energy (VRE) sources such wind and solar power. The report draws upon the research and experiences from various international contexts, and identifies key ideas that have emerged from the growing body of VRE deployment experience and regulatory knowledge. The report assumes basic familiarity with regulatory concepts, and although it is not written for a technical audience, directs the reader to further reading when available. VRE deployment generates various regulatory issues: substantive, procedural, and public interest issues, and the report aims to provide an empirical and technical grounding for all three types of questions as appropriate.

  7. Biofilm development on new and cleaned membrane surfaces

    NARCIS (Netherlands)

    Bereschenko, L.A.

    2010-01-01

    This thesis presents a comprehensive research report on microbiological aspects of biofouling occurrence in full-scale reverse osmosis (RO) systems. Biofouling is a process in which microorganisms attach to membranes and develop into a thick film that can choke the entire RO system. Management of

  8. Development of coal energy utilization technologies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    Coal liquefaction produces new and clean energy by performing hydrogenation, decomposition and liquefaction on coal under high temperatures and pressures. NEDO has been developing bituminous coal liquefaction technologies by using a 150-t/d pilot plant. It has also developed quality improving and utilization technologies for liquefied coal, whose practical use is expected. For developing coal gasification technologies, construction is in progress for a 200-t/d pilot plant for spouted bed gasification power generation. NEDO intends to develop coal gasification composite cycle power generation with high efficiency and of environment harmonious type. This paper summarizes the results obtained during fiscal 1994. It also dwells on technologies to manufacture hydrogen from coal. It further describes development of technologies to manufacture methane and substituting natural gas (SNG) by hydrogenating and gasifying coal. The ARCH process can select three operation modes depending on which of SNG yield, thermal efficiency or BTX yield is targeted. With respect to promotion of coal utilization technologies, description is given on surveys on development of next generation technologies for coal utilization, and clean coal technology promotion projects. International coal utilization and application projects are also described. 9 figs., 3 tabs.

  9. Strategies for Sustainable Energy Development

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2009-01-01

    The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming.......The paper analyses international strategies for establishing a sustainable energy development. Proposals are given for mitigation of global warming....

  10. Use of mechanism of clean development as tool for viabilization of renewable energy tool in the context of isolated systems at the northern region; Uso do mecanismo de desenvolvimento limpo como ferramenta de viabilizacao de tecnologias de energia renovavel no contexto dos sistemas isolados da Regiao Norte

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Kamyla Borges da; Walter, Arnaldo [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Programa de Pos-Graduacao em Planejamento de Sistemas Energeticos]. E-mail: kamyla_energia@terra.com.br; Rei, Fernando [Servico Nacional de Aprendizagem Comercial (SENAC), Santo Amaro, SP (Brazil)

    2006-07-01

    The present document have as main objectives to evaluate the potential and eligibility of the Clean Development Mechanism (CDM) as a tool for the sustainable access to electric power at the isolated amazon region and discuss some reasons why that potential have not been exploited.

  11. Of the clean development mechanism to the program of activities: an analysis of the bio diesel and wind energy uses in Brazil; Do mecanismo de desenvolvimento limpo ao programa de atividades: uma analise do uso do biodiesel e da energia eolica no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Mayra Jupyara Braga

    2009-05-15

    The current actions of economic and industrial activities have resulted in increase of the concentration of greenhouse gases in the atmosphere since 1750. According to IPCC (2007) this alteration can increase the average temperature in the planet between 1,8 and 4,0 deg C up to 2100. The climate changes and the global warming are the most complicated environmental questions of our time and the actions took now will have effect on the future generations. In this context, a series of world-wide conferences and diverse scientific quarrels had occurred throughout the last decade, which culminated in the most important multilateral agreement firmed on climate changes, the Kyoto Protocol, signed in 1997. The Protocol is a landmark in the attempts of mitigation of the climate changes, since it established the commitment of the industrialized countries with emissions reduction targets of 5,2% to the level of 1990 emissions. To achieve such targets these countries count on three flexibilization mechanisms provided by the Kyoto Protocol: Joint implementation, Emission Trading and the Clean Development Mechanism (CDM) that it will be object of this study. The objective of this thesis is to carry through an evaluation of the CDM since its conception until the current days, searching to identify its dynamics and the main inherent gaps of this instrument and finally present two case studies of the bio diesel and wind energy uses in Brazil. (author)

  12. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    Science.gov (United States)

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  13. Development Trends of World Energy

    OpenAIRE

    Hu, Yuetong

    2009-01-01

    Energy has been one of the most important issues and challenge humans face in the 21st century which has a bearing on international economic and social development, global climate changes and environment protection. With a focus on development trends of world energy, this paper analyses the current world energy status and from the perspectives of energy sources, regions, end-use sectors, the balance of energy production and consumption, and in the context of its implications on the global env...

  14. Outdoor cooking prevalence in developing countries and its implication for clean cooking policies

    Science.gov (United States)

    Langbein, Jörg; Peters, Jörg; Vance, Colin

    2017-11-01

    More than 3 billion people use wood fuels for their daily cooking needs, with detrimental health implications related to smoke emissions. Best practice global initiatives emphasize the dissemination of clean cooking stoves, but these are often expensive and suffer from interrupted supply chains that do not reach rural areas. This emphasis neglects that many households in the developing world cook outdoors. Our calculations suggest that for such households, the use of less expensive biomass cooking stoves can substantially reduce smoke exposure. The cost-effectiveness of clean cooking policies can thus be improved by taking cooking location and ventilation into account.

  15. Implementing CDM projects. A guidebook to host country legal issues; CDM - Clean Development Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Curnow, P. (Baker and McKenzie, London (United Kingdom)); Hodes, G. (UNEP Risoe Centre on Energy, Climate and Sustainable Development, DTU, Roskilde (Denmark))

    2009-08-15

    The Clean Development Mechanism (CDM) continues to evolve organically, and many legal issues remain to be addressed in order to maximise its effectiveness. This Guidebook explains through case studies how domestic laws and regulatory frameworks in CDM Host Countries interact with international rules on carbon trading, and how the former can be enhanced to facilitate the implementation and financing of CDM projects. (author)

  16. Introduction: exploring and explaining the Asia-Pacific Partnership on Clean Development and Climate

    NARCIS (Netherlands)

    Karlsson-Vinkhuyzen, S. I.; van Asselt, H.D.

    2009-01-01

    This introduction lays the groundwork for this Special Issue by providing an overview of the Asia-Pacific Partnership on Clean Development and Climate (APP), and by introducing three main analytical themes. The first theme concerns the emergence and continuation of the APP. The contributions show

  17. Potential of wind power projects under the Clean Development Mechanism in India

    Directory of Open Access Journals (Sweden)

    Michaelowa Axel

    2007-07-01

    Full Text Available Abstract Background So far, the cumulative installed capacity of wind power projects in India is far below their gross potential (≤ 15% despite very high level of policy support, tax benefits, long term financing schemes etc., for more than 10 years etc. One of the major barriers is the high costs of investments in these systems. The Clean Development Mechanism (CDM of the Kyoto Protocol provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. Wind power projects could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development, if developed correctly. Results Our estimates indicate that there is a vast theoretical potential of CO2 mitigation by the use of wind energy in India. The annual potential Certified Emissions Reductions (CERs of wind power projects in India could theoretically reach 86 million. Under more realistic assumptions about diffusion of wind power projects based on past experiences with the government-run programmes, annual CER volumes by 2012 could reach 41 to 67 million and 78 to 83 million by 2020. Conclusion The projections based on the past diffusion trend indicate that in India, even with highly favorable assumptions, the dissemination of wind power projects is not likely to reach its maximum estimated potential in another 15 years. CDM could help to achieve the maximum utilization potential more rapidly as compared to the current diffusion trend if supportive policies are introduced.

  18. National Renewable Energy Laboratory (NREL) Topic 2 Final Report: End-to-End Communication and Control System to Support Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Hudgins, Andrew P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Carrillo, Ismael M [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jin, Xin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simmins, John [Electric Power Research Institute (EPRI)

    2018-02-21

    This document is the final report of a two-year development, test, and demonstration project, 'Cohesive Application of Standards- Based Connected Devices to Enable Clean Energy Technologies.' The project was part of the National Renewable Energy Laboratory's (NREL's) Integrated Network Testbed for Energy Grid Research and Technology (INTEGRATE) initiative hosted at Energy Systems Integration Facility (ESIF). This project demonstrated techniques to control distribution grid events using the coordination of traditional distribution grid devices and high-penetration renewable resources and demand response. Using standard communication protocols and semantic standards, the project examined the use cases of high/low distribution voltage, requests for volt-ampere-reactive (VAR) power support, and transactive energy strategies using Volttron. Open source software, written by EPRI to control distributed energy resources (DER) and demand response (DR), was used by an advanced distribution management system (ADMS) to abstract the resources reporting to a collection of capabilities rather than needing to know specific resource types. This architecture allows for scaling both horizontally and vertically. Several new technologies were developed and tested. Messages from the ADMS based on the common information model (CIM) were developed to control the DER and DR management systems. The OpenADR standard was used to help manage grid events by turning loads off and on. Volttron technology was used to simulate a homeowner choosing the price at which to enter the demand response market. Finally, the ADMS used newly developed algorithms to coordinate these resources with a capacitor bank and voltage regulator to respond to grid events.

  19. Utility-Scale Future, Continuum Magazine: Clean Energy Innovation at NREL, Spring 2011, Issue 1 Vol. 1

    Energy Technology Data Exchange (ETDEWEB)

    2011-08-01

    This quarterly magazine is dedicated to stepping beyond the technical journals to reveal NREL's vital work in a real-world context for our stakeholders. Continuum provides insights into the latest and most impactful clean energy innovations, while spotlighting those talented researchers and unique facilities that make it all happen. This edition focuses on creating a utility-scale future.

  20. Realizing Clean Energy's Potential: Lessons Learned in the U.S. West (Technical Report)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    NREL Analysis Insights connects the dots between NREL studies, pulling big picture insights from a larger body of work. In the premiere issue of our new periodical Analysis Insights, we explore lessons learned from experience in the U.S. West for realizing clean energy's potential.

  1. The clean development mechanism versus international permit trading: The effect on technological change

    Energy Technology Data Exchange (ETDEWEB)

    Hagem, Cathrine [Statistics Norway, Research Department, P.O. Box 8131 Dep., N-0033 Oslo (Norway)

    2009-01-15

    The clean development mechanism of the Kyoto Protocol may induce technological change in developing countries. As an alternative to the clean development mechanism regime, developing countries may accept a (generous) cap on their own emissions, allow domestic producers to invest in new efficient technologies, and sell the excess emission permits on the international permit market. The purpose of this article is to show how the gains from investment, and hence the incentive to invest in new technology in developing countries, differ between the two alternative regimes. We show that the difference in the gains from investment depends on whether the producers in developing countries face competitive or noncompetitive output markets, whether the investment affects fixed or variable production costs, and whether producers can reduce emissions through means other than investing in new technology. (author)

  2. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  3. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Clean Steel Casting Production

    Energy Technology Data Exchange (ETDEWEB)

    Kuyucak, Selcuk [CanmetMATERIALS; Li, Delin [CanmetMATERIALS

    2013-12-31

    Inclusions in steel castings can cause rework, scrap, poor machining, and reduced casting performance, which can obviously result in excess energy consumption. Significant progress in understanding inclusion source, formation and control has been made. Inclusions can be defined as non-metallic materials such as refractory, sand, slag, or coatings, embedded in a metallic matrix. This research project has focused on the mold filling aspects to examine the effects of pouring methods and gating designs on the steel casting cleanliness through water modeling, computer modeling, and melting/casting experiments. Early in the research project, comprehensive studies of bottom-pouring water modeling and low-alloy steel casting experiments were completed. The extent of air entrainment in bottom-poured large castings was demonstrated by water modeling. Current gating systems are designed to prevent air aspiration. However, air entrainment is equally harmful and no prevention measures are in current practice. In this study, new basin designs included a basin dam, submerged nozzle, and nozzle extension. The entrained air and inclusions from the gating system were significantly reduced using the new basin method. Near the end of the project, there has been close collaboration with Wescast Industries Inc., a company manufacturing automotive exhaust components. Both computer modeling using Magma software and melting/casting experiments on thin wall turbo-housing stainless steel castings were completed in this short period of time. Six gating designs were created, including the current gating on the pattern, non-pressurized, partially pressurized, naturally pressurized, naturally pressurized without filter, and radial choke gating without filter, for Magma modeling. The melt filling velocity and temperature were determined from the modeling. Based on the simulation results, three gating designs were chosen for further melting and casting experiments on the same casting pattern using

  4. Development of a method to determine the effectiveness of cleaning agents in removal of biofilm derived spores in milking system

    Directory of Open Access Journals (Sweden)

    Ievgeniia Ostrov

    2016-09-01

    Full Text Available Microbial damages caused by biofilm forming bacteria in the dairy industry are a fundamental threat to safety and quality of dairy products. In order to ensure the optimal level of equipment hygiene in the dairy industry, it is necessary to determine the biofilm removal efficiency of cleaning agents used for cleaning-in-place procedures. However, currently there is no standard method available for evaluating and comparing cleaning agents for use in cleaning-in-place procedures in the dairy industry under realistic conditions. The present study aims to establish a cleaning-in-place model system to evaluate the effectiveness of cleaning agents in removal of biofilm derived spores from the surfaces of stainless steel which is the predominant substrate in milking equipment on dairy farms. The system is based on Bacillus subtilis spores surrounded with exopolymeric substances produced by bacteria during biofilm formation. The spores applied on sampling plates were mounted on T-junctions protruding 1.5 – 11-times the milk pipe diameter from the main loop to resemble different levels of cleaning difficulty. The cleaning tests were conducted using commercial alkaline detergents and caustic soda at conditions which are relevant to actual farm environment. The spores removal effect was evaluated by comparing the number of viable spores (attached to sampling plates before and after cleaning. Evaluation of the cleaning and disinfecting effect of cleaning agents towards biofilm derived spores was further performed, which indicates whether spores elimination effect of an agent is due to killing the spores or removing them from the surfaces of dairy equipment. Moreover, it was established that the presence of extracellular matrix is an important factor responsible for high level of cleaning difficulty characteristic for surface attached spores. In overall, the results of this study suggest that the developed model system simulates actual farm conditions for

  5. Lessons learned from a rigorous peer-review process for building the Climate Literacy and Energy Awareness (CLEAN) collection of high-quality digital teaching materials

    Science.gov (United States)

    Gold, A. U.; Ledley, T. S.; McCaffrey, M. S.; Buhr, S. M.; Manduca, C. A.; Niepold, F.; Fox, S.; Howell, C. D.; Lynds, S. E.

    2010-12-01

    The topic of climate change permeates all aspects of our society: the news, household debates, scientific conferences, etc. To provide students with accurate information about climate science and energy awareness, educators require scientifically and pedagogically robust teaching materials. To address this need, the NSF-funded Climate Literacy & Energy Awareness Network (CLEAN) Pathway has assembled a new peer-reviewed digital collection as part of the National Science Digital Library (NSDL) featuring teaching materials centered on climate and energy science for grades 6 through 16. The scope and framework of the collection is defined by the Essential Principles of Climate Science (CCSP 2009) and a set of energy awareness principles developed in the project. The collection provides trustworthy teaching materials on these socially relevant topics and prepares students to become responsible decision-makers. While a peer-review process is desirable for curriculum developer as well as collection builder to ensure quality, its implementation is non-trivial. We have designed a rigorous and transparent peer-review process for the CLEAN collection, and our experiences provide general guidelines that can be used to judge the quality of digital teaching materials across disciplines. Our multi-stage review process ensures that only resources with teaching goals relevant to developing climate literacy and energy awareness are considered. Each relevant resource is reviewed by two individuals to assess the i) scientific accuracy, ii) pedagogic effectiveness, and iii) usability/technical quality. A science review by an expert ensures the scientific quality and accuracy. Resources that pass all review steps are forwarded to a review panel of educators and scientists who make a final decision regarding inclusion of the materials in the CLEAN collection. Results from the first panel review show that about 20% (~100) of the resources that were initially considered for inclusion

  6. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 2. Research study on promotion of international cooperation; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 2. Kokusai kyoryoku suishin no tame no chosa kento

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This paper describes the research result on promotion of international cooperation in the WE-NET project in fiscal 1996. The WE-NET project aims at development of the total system for hydrogen production, transport, storage and utilization, and construction of the earth-friendly innovative global clean energy network integrating elemental technologies. Since the standpoint is different between latent resource supplying countries and technology supplying countries, the WE-NET project should be constantly promoted under international understanding and cooperation. The committee distributed the annual summary report prepared by NEDO to overseas organizations, and made positive PR activities in the 11th World Conference and others. The committee made the evaluation on the improvement effect of air pollution by introducing a hydrogen vehicle in combination with Stanford University, and preparation of PR video tapes for hydrogen energy. Preliminary arrangement of Internet home pages, establishment of a long-term vision for international cooperation, and proposal toward the practical WE-NET are also made. 9 figs., 13 tabs.

  7. Sustainable Energy in Remote Indonesian Grids. Accelerating Project Development

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Brian [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Burman, Kari [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Davidson, Carolyn [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Elchinger, Michael [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hardison, R. [Winrock International, Little Rock, AR (United States); Karsiwulan, D. [Winrock International, Little Rock, AR (United States); Castermans, B. [Winrock International, Little Rock, AR (United States)

    2015-06-30

    Sustainable Energy for Remote Indonesian Grids (SERIG) is a U.S. Department of Energy (DOE) funded initiative to support Indonesia’s efforts to develop clean energy and increase access to electricity in remote locations throughout the country. With DOE support, the SERIG implementation team consists of the National Renewable Energy Laboratory (NREL) and Winrock International’s Jakarta, Indonesia office. Through technical assistance that includes techno-economic feasibility evaluation for selected projects, government-to-government coordination, infrastructure assessment, stakeholder outreach, and policy analysis, SERIG seeks to provide opportunities for individual project development and a collective framework for national replication office.

  8. Green, Clean, & Mean: Pushing the Energy Envelope in Tech Industry Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Evan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Rengie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Diamond, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Haves, Philip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Nordman, Bruce [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robinson, Gerald [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Selkowitz, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-05-01

    When it comes to innovation in energy and building performance, one can expect leading-edge activity from the technology sector. As front-line innovators in design, materials science, and information management, developing and operating high-performance buildings is a natural extension of their core business. The energy choices made by technology companies have broad importance given their influence on society at large as well as the extent of their own energy footprint. Microsoft, for example, has approximately 250 facilities around the world (30 million square feet of floor area), with significant aggregate energy use of approximately 4 million kilowatt-hours per day (Figure 1).

  9. Analysis of Long-range Clean Energy Investment Scenarios forEritrea, East Africa

    Energy Technology Data Exchange (ETDEWEB)

    Van Buskirk, Robert D.

    2004-05-07

    We discuss energy efficiency and renewable energy investments in Eritrea from the strategic long-term economic perspective of meeting Eritrea's sustainable development goals and reducing greenhouse gas emissions. Energy efficiency and renewable energy are potentially important contributors to national productive capital accumulation, enhancement of the environment, expansion of energy services, increases in household standard of living, and improvements in health. In this study we develop a spreadsheet model for calculating some of the national benefits and costs of different levels of investment in energy efficiency and renewable energy. We then present the results of the model in terms of investment demand and investment scenario curves. These curves express the contribution that efficiency and renewable energy projects can make in terms of reduced energy sector operating expenses, and reduced carbon emissions. We provide demand and supply curves that show the rate of return, the cost of carbon emissions reductions vs. supply, and the evolution of the marginal carbon emissions per dollar of GDP for different investment levels and different fuel-type subsectors.

  10. A Blueprint for Florida's Clean Energy Future - Case Study of a Regional Government's Environmental Strategy

    Directory of Open Access Journals (Sweden)

    Margaret Lowman

    2009-04-01

    Full Text Available On 13 July 2007, Governor Charlie Crist of Florida signed executive orders to establish greenhouse gas emission targets that required an 80 percent reduction below 1990 levels by the year 2050. Florida is a very high-risk state with regard to climate change. Its 1,350-mile-long coastline, location in "Hurricane Alley," reliance on coral reefs and other vulnerable natural resources for its economy, and the predictions that state population could double in the next 30 years all contribute to this designation of "high-risk. As a consequence of the potential economic and ecological impacts of climate change to Florida, a series of Action Teams were created to plan for adaptation to impending environmental changes. As the 26th largest emitter of carbon dioxide on a global scale, Florida needs to act aggressively to create a clean energy footprint as part of its statewide initiatives but with global impacts. This case study examines the process and expected outcomes undertaken by a regional government that anticipates the need for stringent adaptation.

  11. Atomic configuration of hydrogenated and clean tantalum(111) surfaces: Bond relaxation, energy entrapment and electron polarization

    Science.gov (United States)

    Bo, Maolin; Li, Lei; Guo, Yongling; Yao, Chuang; Peng, Cheng; Sun, Chang Q.

    2018-01-01

    By studying the tantalum (Ta)(111) surface with X-ray photoemission spectroscopy and density functional theory, we determined binding energy values for the clean Ta(111) (+3.068 eV) and hydrogenated Ta(111) (+3.421 eV) surfaces with an isolated atom level of 18.977 eV. Using the bond-band barrier and zone-selective electron spectroscopy correlation, we investigated the mechanism of hydrogenation adsorption on the Ta(111) surface. We found the local densities of states of the first layer of Ta atoms in the reconstructed structure, which formed on the adsorbent hydrogen of the surface chemical bond contracts and dipole polarization. Moreover, we showed that on the Ta(111) surface, the hydrogen-induced surface core level shifts are dominated by quantum entrapment and are proportional to the calculated hybridized orbitals of the valence band. The latter is therefore correlated to the local surface chemical reactivity and is useful for other adsorbate systems on transition metals.

  12. Low-Energy Electron Diffraction investigation of the clean, stepped Cu(511) surface

    Science.gov (United States)

    Lemon, Christopher; Caragiu, Mellita; Diehl, Renee; Hanna, Kelly; Li, Hsin; Wan, Rundong

    2008-03-01

    Results of a Low-Energy Electron Diffraction (LEED) investigation of the clean, stepped Cu(511) surface are reported for two different sets of experimental data. The results show a good match between experimental and theoretical beams for one experimental set, but not so good in the case of the second set, in which case the results presented are only preliminary. The origin of the disparity is attributed to the angle of incidence of the electron beam probing the Cu(511) surface. Ideally, the electron beam would hit the surface under normal incidence, a situation hard to control due to the existence of only one symmetry plane of the real structure, which, in turn, gets translated into only one symmetry plane in the reciprocal space. The uncertainty in the angle of incidence together with computational problems arose by the very small interlayer spacing of the stepped sample [K. Pussi, M. Caragiu, M. Lindroos, R.D. Diehl, Surf. Sci. 544 (2003), 35], make the investigation of this particular surface challenging.

  13. Development strategy of alternative energy responding to Climate Change Concerns

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Oh; Moon, Young Seok; Cho, Gyeong Lyeob [Korea Energy Economics Institute, Euiwang (Korea)

    1999-09-01

    Since UNICEF (UN Framework Convention on Climate Change) has adopted in Brazil, June 1992, there have been four times of COPS taken place to discuss more detailed and realistic international action plan for regulating greenhouse gas emission and reduction scheme. Due to this, the direction of future energy policy has been changed in a large scale. The reduction of greenhouse gas is the most urgent issue at present rather than the stable supply of energy in the past. It is natural that improving energy efficiency and developing clean alternative energy have been a major issue. In case of the advanced countries, the energy policy has been changed to the harmonization of so called 3E, environmental conservation, economic growth, and energy security from the economic growth oriented energy policy and has tried to enhance industrial competition through developing new technology and alternative energy for improving energy efficiency. Alternative energy, called as new renewable energy, does not have to concern about its exhaustion and is the only clean future energy source. Therefore this is an important project that should be implemented with a long-term vision and interest by the people as well as the government. (author). 8 refs., 4 figs., 15 tabs.

  14. Offshore wind energy developments

    OpenAIRE

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu; Kiil, Søren; Holbøll, Joachim; Piirainen, Kalle

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services.

  15. Offshore wind energy developments

    DEFF Research Database (Denmark)

    Stolpe, Mathias; Buhl, Thomas; Sumer, B. Mutlu

    2014-01-01

    This chapter will give a brief overview of a few of the activities within offshore wind energy research, specifically 1) Support structure optimization, 2) Blade coatings for wind turbines; 3) Scour protection of foundations, 4) Offshore HVDC and 5) Offshore wind services....

  16. Conclusions drawn from actions implemented within the first stage of the Cracow program of energy conservation and clean fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, J.; Bardel, J.; Pierce, B.

    1995-12-31

    Since 1992 Brookhaven National Laboratory (BNL) and Pacific Northwest Laboratory (PNL), acting on behalf of the U.S. Department of Energy, executed the first stage of the Cracow Program of Energy Conservation and Clean Fossil Fuels, called also American-Polish Program of Actions for Elimination of Low Emission Sources in Cracow. The main contractor for BNL and PNL was the Cracow Development Office (BRK). The interest in improving the condition of Cracow air results from the fact that the standard for permissible air pollution was exceeded several times in Cracow and especially within the central part of the town. Therefore, air pollution appeared one of the most important problems that faced the municipal authorities. It followed from monitoring investigations that the high level of air pollutant concentration is caused by in-home coal-fired tile stoves operated in winter seasons and by coal- and coke-fired boiler houses simulated mainly in the central part of the town. The results obtained in first stage are presented. This paper is an attempt to formulate conclusions drawn from these works and recommendations with regard to the future policy of the town authorities; selected results are presented to clarify or illustrate the conclusions.

  17. Business development in renewable energy

    NARCIS (Netherlands)

    Krozer, Yoram; Visa, Ion

    2014-01-01

    This paper discusses how to foster development of renewable energy business. Factors that impede or enhance renewable energy in the EU 27 member states in the period 1998–2008 are analyzed. Nine factors are considered: population density, production output and energy sector output to indicate market

  18. Photo-Enhanced Hydrogen Transport Technology for Clean Renewable Electrochemical Energy Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Solid oxide fuel cells and electrolyzers are promising electrochemical devices for space and terrestrial applications due to their high power densities and clean...

  19. Economic Impacts from the Boulder County, Colorado, ClimateSmart Loan Program: Using Property-Assessed Clean Energy Financing

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, M.; Cliburn, J. K.; Coughlin, J.

    2011-04-01

    This report examines the economic impacts (including job creation) from the Boulder County, Colorado, ClimateSmart Loan Program (CSLP), an example of Property-Assessed Clean Energy (PACE) financing. The CSLP was the first test of PACE financing on a multi-jurisdictional level (involving individual cities as well as the county government). It was also the first PACE program to comprehensively address energy efficiency measures and renewable energy, and it was the first funded by a public offering of both taxable and tax-exempt bonds.

  20. Test results of heat-exchanger cleaning in support of ocean thermal energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lott, D F

    1980-12-01

    These tests evaluated flow-driven brushes, recirculating sponge rubber balls, chlorination, and mechanical system/chlorination combinations for in-situ cleaning of two potential heat exchanger materials: titanium and aluminum alloy 5052. Tests were successful when fouling resistance was <3.0 x 10/sup -4/ ft/sup 2/ hr-/sup 0/F/Btu. Results indicated systems and cleaning techniques using brushes, soft sponge balls, and various concentrations of chlorine had some potential for maintaining heat transfer efficiency.

  1. WP/073 Is the Clean Development Mechanism Effective for Emission Reductions?

    DEFF Research Database (Denmark)

    Huang, Yongfu; He, Jingjing; Tarp, Finn

    This research studies whether the Clean Development Mechanism (CDM) of the Kyoto Protocol achieves its objective of emission reductions in the host countries. It empirically investigates the impacts of CDM projects on CO2 emission reductions for 60 CDM host countries over 2005-10. This research...... makes use of the newly-developed econometric methods for dynamic panel data models associated with X-differencing procedure. It provides evidence in support of a decline in CO2 emissions in the CDM host countries. It has important policy implications that encourage the international community to support...... developing countries’ efforts towards low-carbon development via CDM projects....

  2. Developments in high energy theory

    Indian Academy of Sciences (India)

    It provides a panoramic view of the main theoretical developments in high energy physics since its inception more than half a century ago, a period in which experiments have spanned an enormous range of energies, theories have been developed leading up to the Standard Model, and proposals – including the radical ...

  3. Clean Plate Movement and Empowerment of Civil Leadership for Developing Sustainable Life Style

    Science.gov (United States)

    Choi, Kwang Soo; Kim, Seung Woo; Jung, Sin Yeong; Choi, Byeong Dae; Mun, Sung Joo; Lee, Dong Ho

    This paper describes the backgrounds, process, outcomes, and characteristics of "Clean plate" movement carried out in Korea. That was aimed at the reduction of food waste production as well as developing and disseminating a sustainable life style. Excessive foods are wasted every year in Korea and it reaches to 270 g/day/capita. Clean plate movement was started 2004 and over 1.5 million peoples, which is 3% of the population, did pledge for 15 months. Over one million students participated in the pledge campaign and they became conscious about the importance of food and get sustainable eating habit in which they don't leave any food behind. While the campaign carried out successfully, civil volunteers of a Buddhist NGO EcoBuddha, who were the housewives mainly, were in charge of the whole processes and were trained as civil leaders for sustainable development. They awakened to the interrelationship between human being and the nature, based on a series of Buddhist lectures and self practicing asceticism. Clean plate movement as an educational program for sustainable development has various factors in three pillars of environmental, economical and socio-cultural aspects for EfSD.

  4. Development of a Method to Determine the Effectiveness of Cleaning Agents in Removal of Biofilm Derived Spores in Milking System

    Science.gov (United States)

    Ostrov, Ievgeniia; Harel, Avraham; Bernstein, Solange; Steinberg, Doron; Shemesh, Moshe

    2016-01-01

    Microbial damages caused by biofilm forming bacteria in the dairy industry are a fundamental threat to safety and quality of dairy products. In order to ensure the optimal level of equipment hygiene in the dairy industry, it is necessary to determine the biofilm removal efficiency of cleaning agents used for cleaning-in-place (CIP) procedures. However, currently there is no standard method available for evaluating and comparing cleaning agents for use in CIP procedures in the dairy industry under realistic conditions. The present study aims to establish a CIP model system to evaluate the effectiveness of cleaning agents in removal of biofilm derived spores from the surfaces of stainless steel which is the predominant substrate in milking equipment on dairy farms. The system is based on Bacillus subtilis spores surrounded with exopolymeric substances produced by bacteria during biofilm formation. The spores applied on sampling plates were mounted on T-junctions protruding 1.5–11-times the milk pipe diameter from the main loop to resemble different levels of cleaning difficulty. The cleaning tests were conducted using commercial alkaline detergents and caustic soda at conditions which are relevant to actual farm environment. The spores removal effect was evaluated by comparing the number of viable spores (attached to sampling plates) before and after cleaning. Evaluation of the cleaning and disinfecting effect of cleaning agents toward biofilm derived spores was further performed, which indicates whether spores elimination effect of an agent is due to killing the spores or removing them from the surfaces of dairy equipment. Moreover, it was established that the presence of extracellular matrix is an important factor responsible for high level of cleaning difficulty characteristic for surface attached spores. In overall, the results of this study suggest that the developed model system simulates actual farm conditions for quantitative evaluation of the effectiveness

  5. Clean growth 2.0 - how Canada can be a leader in energy and environmental innovation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-11-15

    Canada is blessed with a variety of natural resources in significant quantities; the country has important reserves of oil, natural gas, uranium and coal as well as a significant potential for renewable energies such as hydroelectricity, biofuels, wind and tidal power. This abundance of natural resources combined with a strategic location from which to access both the United States and Chinese markets play a significant part in contributing to Canada's prosperity. The aim of this paper is to show that Canada can be an energy and resource powerhouse and a leader in energy and environmental innovation. The Canadian Council of Chief Executives believes that government, industry and Canadians need to pull in the same direction in order to achieve it. This document points out that Canada can have an important role in the development of new energy and environmental technologies and 5 recommendations are made on how to achieve this goal.

  6. Advanced Manufacturing for a U.S. Clean Energy Economy (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-01

    This fact sheet is an overview of the U.S. Department of Energy's Advanced Manufacturing Office. Manufacturing is central to our economy, culture, and history. The industrial sector produces 11% of U.S. gross domestic product (GDP), employs 12 million people, and generates 57% of U.S. export value. However, U.S. industry consumes about one-third of all energy produced in the United States, and significant cost-effective energy efficiency and advanced manufacturing opportunities remain unexploited. As a critical component of the National Innovation Policy for Advanced Manufacturing, the U.S. Department of Energy's (DOE's) Advanced Manufacturing Office (AMO) is focused on creating a fertile environment for advanced manufacturing innovation, enabling vigorous domestic development of transformative manufacturing technologies, promoting coordinated public and private investment in precompetitive advanced manufacturing technology infrastructure, and facilitating the rapid scale-up and market penetration of advanced manufacturing technologies.

  7. IHCE '95. International Hydrogen and Clean Energy Symposium '95. (February 6-8, 1995)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-06

    This is a collection of speeches and lectures delivered at the above-named symposium that took place in Tokyo. Three speakers from Japan, Germany, and the U.S. made remarks about the future energy systems and the role of hydrogen; the hydrogen energy development status and plans in Europe; and the role of hydrogen in meeting southern California's air quality goals, respectively. Technical lectures numbering 22 in total included the photocatalytic reactions - water splitting and environmental applications; realization and operation of SWB's (Solar-Wasserstof-Bayern GmBH) development assembling major industrial-scale components of solar hydrogen technology; hydrogen production by UT-3 (University of Tokyo-3) thermochemical water decomposition cycle; energy and environmental technology in Japan - the New Sunshine Program; and research and development plans for WE-NET (World Energy Network). In the poster session, there were 45 exhibitions, which included development on solid polymer electrolyte water electrolysis in Mitsubishi Heavy Industries, Ltd.; development of environmentally friendly technology for the production of hydrogen; and recent progress of hydrogen storage and transportation technologies in North America. (NEDO)

  8. Criteria, potentials and costs of forestry activities to sequester carbon within the framework of the clean development mechanism

    NARCIS (Netherlands)

    Waterloo, M.J.; Spiertz, P.H.; Diemont, W.H.; Emmer, I.; Aalders, E.; Wichink Kruit, R.J.; Kabat, P.

    2003-01-01

    Forest activities in developing countries can be used to sequester carbon for gaining emission reductions within the Clean Development Mechanism of the Kyoto Protocol. This study has assessed the potentials and costs for carbon sequestration through afforestation, reforestation and deforestation

  9. Hawaii Clean Energy Initiative (HCEI) Scenario Analysis: Quantitative Estimates Used to Facilitate Working Group Discussions (2008-2010)

    Energy Technology Data Exchange (ETDEWEB)

    Braccio, R.; Finch, P.; Frazier, R.

    2012-03-01

    This report provides details on the Hawaii Clean Energy Initiative (HCEI) Scenario Analysis to identify potential policy options and evaluate their impact on reaching the 70% HECI goal, present possible pathways to attain the goal based on currently available technology, with an eye to initiatives under way in Hawaii, and provide an 'order-of-magnitude' cost estimate and a jump-start to action that would be adjusted with a better understanding of the technologies and market.

  10. Feasibility of Applying Clean Development Mechanism and GHGs Emission Reductions in the Gold Mining Industry: A Case of Thailand

    Directory of Open Access Journals (Sweden)

    Kittipongvises Suthirat

    2015-12-01

    Full Text Available There is presently overwhelming scientific consensus that global climate change is indeed occurring, and that human activities are the primary driver. An increasingly resource and carbon constrained world will continue to pose formidable challenges to major industries, including mining. Understanding the implications of climate change mitigation for the mining industry, however, remains limited. This paper presents the results of a feasibility study on the implementation of a clean development mechanism and greenhouse gases (GHGs emission reductions in the gold mining industry. It draws upon and extends the analysis of a case study conducted on gold mining operations in Thailand. The results from the case study indicated that total GHGs emissions by company A were approximately 36,886 tons carbon dioxide equivalents (tCO2e per annual gold production capacity that meet the eligibility criteria for small-scaled clean development mechanism (CDM projects. The electrostatic separation process was found to release the lowest amount of GHGs, whereas comminution (i.e. crushing and grinding generated the highest GHGs emissions. By scope, the emission from purchased electricity (scope 2 is the most significant source. Opportunities for CDM projects implementation in the gold mining sector can be found in employing energy efficiency measures. Through innovation, some technical efficiency and technological development in gold processing (i.e. high pressure grinding rolls (HPGR, vertical roller mills (VRM, gravity pre-concentration and microwave heating technologies that have the potential to reduce energy use and also lower carbon footprint of the gold mining were further discussed. The evidence reviews found that HPGR and VRM abatement technologies have shown energy and climate benefits as electricity savings and CO2 reduction of about 8-25.93 kWh/ton ore processed and 1.8-26.66 kgCO2/ton ore processed, respectively. Implications for further research and

  11. Feasibility of Applying Clean Development Mechanism and GHGs Emission Reductions in the Gold Mining Industry: A Case of Thailand

    Science.gov (United States)

    Kittipongvises, Suthirat

    2015-12-01

    There is presently overwhelming scientific consensus that global climate change is indeed occurring, and that human activities are the primary driver. An increasingly resource and carbon constrained world will continue to pose formidable challenges to major industries, including mining. Understanding the implications of climate change mitigation for the mining industry, however, remains limited. This paper presents the results of a feasibility study on the implementation of a clean development mechanism and greenhouse gases (GHGs) emission reductions in the gold mining industry. It draws upon and extends the analysis of a case study conducted on gold mining operations in Thailand. The results from the case study indicated that total GHGs emissions by company A were approximately 36,886 tons carbon dioxide equivalents (tCO2e) per annual gold production capacity that meet the eligibility criteria for small-scaled clean development mechanism (CDM) projects. The electrostatic separation process was found to release the lowest amount of GHGs, whereas comminution (i.e. crushing and grinding) generated the highest GHGs emissions. By scope, the emission from purchased electricity (scope 2) is the most significant source. Opportunities for CDM projects implementation in the gold mining sector can be found in employing energy efficiency measures. Through innovation, some technical efficiency and technological development in gold processing (i.e. high pressure grinding rolls (HPGR), vertical roller mills (VRM), gravity pre-concentration and microwave heating technologies) that have the potential to reduce energy use and also lower carbon footprint of the gold mining were further discussed. The evidence reviews found that HPGR and VRM abatement technologies have shown energy and climate benefits as electricity savings and CO2 reduction of about 8-25.93 kWh/ton ore processed and 1.8-26.66 kgCO2/ton ore processed, respectively. Implications for further research and practice were

  12. Engineering development of advanced physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Shields, G.L.; Smit, F.J.; Jha, M.C.

    1997-08-28

    The primary goal of this project is the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing on six coals to optimize these processes, followed by the design, construction and operation of 2 t/hr process development unit (PDU). This report represents the findings of the PDU Advanced Column Flotation Testing and Evaluation phase of the program and includes a discussion of the design and construction of the PDU. Three compliance steam coals, Taggart, Indiana VII and Hiawatha, were processed in the PDU to determine performance and design parameters for commercial production of premium fuel by advanced flotation. Consistent, reliable performance of the PDU was demonstrated by 72-hr production runs on each of the test coals. Its capacity generally was limited by the dewatering capacity of the clean coal filters during the production runs rather than by the flotation capacity of the Microcel column. The residual concentrations of As, Pb, and Cl were reduced by at least 25% on a heating value basis from their concentrations in the test coals. The reduction in the concentrations of Be, Cd, Cr, Co, Mn, Hg, Ni and Se varied from coal to coal but the concentrations of most were greatly reduced from the concentrations in the ROM parent coals. The ash fusion temperatures of the Taggart and Indiana VII coals, and to a much lesser extent the Hiawatha coal, were decreased by the cleaning.

  13. Development of advanced coal cleaning process; Kodo sekitan kaishitsu gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, S. [Center for Coal Utilization, Japan, Tokyo (Japan); Akimoto, A.; Yamashita, T. [Idemitsu Kosan Co. Ltd., Tokyo (Japan)

    1996-09-01

    This paper aims to develop a clean coal production process which excellently removes environmental pollutant, is low-costed, and need no particular systems for distribution of products. The result of the development was described paying attention to column flotation which is a technology to high-efficiently select particulate regions, particulate heavy media cyclone, magnetic separation, and the basic design of the process into which those above were integrated. The two-stage selection process, which is an integration of column flotation and particulate heavy media cyclone into the conventional coal preparation equipment, can produce low-ash clean coal at high separation efficiency and also suppress the rise in processing cost. This process was also effective for removal of sulfur content and trace metal elements. The use of clean coal at power plant can be effective for not only the reduction in ash treatment amount, but the aspect of boiler operation characteristics such as heat transfer efficiency of boiler furnace wall, ash related troubles, loads of electrostatic precipitator, loads of flue gas desulfurization facilities. 17 figs., 5 tabs.

  14. CDM. Information and guidebook - Developed for the UNEP project 'CD4CDM'[Clean development nedianism

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.K. (ed.)

    2003-12-01

    Since the Clean Development Mechanism (CDM) was defined at Conference of the Parties 3 in Kyoto 1997, it took the international community another 4 years to reach the Marrakesh Accords in which the modalities and procedures to implement the CDM was elaborated. Even if more detailed rules, procedures and modalities have to be further developed a general framework to implement the CDM and other Kyoto mechanisms are now in place. This guidebook is produced to support the UNEP project 'Capacity Development for the Clean Development Mechanism'. Focus is on the CDM project cycle, the Project Design Document (PDD), and related issues such as sustainable development goals, financing and market intelligence. The appendices present frequently asked questions and answers, a short overview of existing guidelines and a possible future list of eligible CDM projects categories. (BA)

  15. Moving toward Collective Impact in Climate Change Literacy: The Climate Literacy and Energy Awareness Network (CLEAN)

    Science.gov (United States)

    Ledley, Tamara Shapiro; Gold, Anne U.; Niepold, Frank; McCaffrey, Mark

    2014-01-01

    In recent years, various climate change education efforts have been launched, including federally (National Oceanic and Atmospheric Administration, National Aeronautics and Space Administration, National Science Foundation, etc.) and privately funded projects. In addition, climate literacy and energy literacy frameworks have been developed and…

  16. EDIN-USVI Clean Energy Quarterly: Volume 2, Issue 1, June 2012 (Newsletter)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    This quarterly newsletter provides timely news and information about the plans and progress of the Energy Development in Island Nations-U.S. Virgin Islands pilot project, including significant events and milestones, work undertaken by each of the working groups, and project-related technology deployment efforts.

  17. ANNULUS CLOSURE TECHNOLOGY DEVELOPMENT INSPECTION/SALT DEPOSIT CLEANING MAGNETIC WALL CRAWLER

    Energy Technology Data Exchange (ETDEWEB)

    Minichan, R; Russell Eibling, R; James Elder, J; Kevin Kane, K; Daniel Krementz, D; Rodney Vandekamp, R; Nicholas Vrettos, N

    2008-06-01

    The Liquid Waste Technology Development organization is investigating technologies to support closure of radioactive waste tanks at the Savannah River Site (SRS). Tank closure includes removal of the wastes that have propagated to the tank annulus. Although amounts and types of residual waste materials in the annuli of SRS tanks vary, simple salt deposits are predominant on tanks with known leak sites. This task focused on developing and demonstrating a technology to inspect and spot clean salt deposits from the outer primary tank wall located in the annulus of an SRS Type I tank. The Robotics, Remote and Specialty Equipment (RRSE) and Materials Science and Technology (MS&T) Sections of the Savannah River National Laboratory (SRNL) collaborated to modify and equip a Force Institute magnetic wall crawler with the tools necessary to demonstrate the inspection and spot cleaning in a mock-up of a Type I tank annulus. A remote control camera arm and cleaning head were developed, fabricated and mounted on the crawler. The crawler was then tested and demonstrated on a salt simulant also developed in this task. The demonstration showed that the camera is capable of being deployed in all specified locations and provided the views needed for the planned inspection. It also showed that the salt simulant readily dissolves with water. The crawler features two different techniques for delivering water to dissolve the salt deposits. Both water spay nozzles were able to dissolve the simulated salt, one is more controllable and the other delivers a larger water volume. The cleaning head also includes a rotary brush to mechanically remove the simulated salt nodules in the event insoluble material is encountered. The rotary brush proved to be effective in removing the salt nodules, although some fine tuning may be required to achieve the best results. This report describes the design process for developing technology to add features to a commercial wall crawler and the results of the

  18. Energy Diversity and Development in Kenya

    Science.gov (United States)

    2013-01-01

    efforts to expand this resource.32 Private-sector firms and individual entrepreneurs , to some extent sup- ported by both governmental and nongovern...measure the interference with ecosystems . Kenya desires to encourage investments in clean energy to augment the current energy sources to meet...turbines, and other key energy accessories. Wind remains readily available, and the gov- ernment ought to encourage entrepreneurs to deploy windmills

  19. An energy-dispersive X-ray analysis and SEM study of debris remaining on endodontic instruments after ultrasonic cleaning and autoclave sterilization.

    Science.gov (United States)

    Parirokh, Masoud; Asgary, Saeed; Eghbal, Mohammad Jafar

    2005-08-01

    This study was carried out to investigate metallic and non-metallic debris remaining on endodontic files after ultrasonic cleaning and autoclave processing. Forty-eight unused rotary and hand endodontic files, including eight different brands, were tested. Instruments were cleaned with ultrasound, autoclaved and before and after each step were observed by scanning electron microscopy (SEM). Adherent debris was analysed by energy-dispersive X-ray analysis (EDXA). All of the instruments before ultrasound cleaning were contaminated with metallic and non-metallic debris. Although most non-metallic debris was removed by ultrasonic cleaning, most of the metallic debris remained even after the final step of sterilization.

  20. Cleaning verification: A five parameter study of a Total Organic Carbon method development and validation for the cleaning assessment of residual detergents in manufacturing equipment.

    Science.gov (United States)

    Li, Xue; Ahmad, Imad A Haidar; Tam, James; Wang, Yan; Dao, Gina; Blasko, Andrei

    2018-02-05

    A Total Organic Carbon (TOC) based analytical method to quantitate trace residues of clean-in-place (CIP) detergents CIP100® and CIP200® on the surfaces of pharmaceutical manufacturing equipment was developed and validated. Five factors affecting the development and validation of the method were identified: diluent composition, diluent volume, extraction method, location for TOC sample preparation, and oxidant flow rate. Key experimental parameters were optimized to minimize contamination and to improve the sensitivity, recovery, and reliability of the method. The optimized concentration of the phosphoric acid in the swabbing solution was 0.05M, and the optimal volume of the sample solution was 30mL. The swab extraction method was 1min sonication. The use of a clean room, as compared to an isolated lab environment, was not required for method validation. The method was demonstrated to be linear with a correlation coefficient (R) of 0.9999. The average recoveries from stainless steel surfaces at multiple spike levels were >90%. The repeatability and intermediate precision results were ≤5% across the 2.2-6.6ppm range (50-150% of the target maximum carry over, MACO, limit). The method was also shown to be sensitive with a detection limit (DL) of 38ppb and a quantitation limit (QL) of 114ppb. The method validation demonstrated that the developed method is suitable for its intended use. The methodology developed in this study is generally applicable to the cleaning verification of any organic detergents used for the cleaning of pharmaceutical manufacturing equipment made of electropolished stainless steel material. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Our On-Its-Head-and-In-Your-Dreams Approach Leads to Clean Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kazmerski, Lawrence; Gwinner, Don; Hicks, Al

    2013-07-18

    Representing the Center for Inverse Design (CID), this document is one of the entries in the Ten Hundred and One Word Challenge. As part of the challenge, the 46 Energy Frontier Research Centers were invited to represent their science in images, cartoons, photos, words and original paintings, but any descriptions or words could only use the 1000 most commonly used words in the English language, with the addition of one word important to each of the EFRCs and the mission of DOE: energy. The mission of the CID is to revolutionize the discovery of new materials by design with tailored properties through the development and application of a novel inverse design approach powered by theory guiding experiment with an initial focus on solar energy conversion.

  2. Clean energy from sugarcane waste: feasibility study of an innovative application of bagasse and barbojo

    Science.gov (United States)

    Dellepiane, Daniela; Bosio, Barbara; Arato, Elisabetta

    Due to the existing difficulty of finding energy sources and reducing pollution, the use of renewable sources and highly efficient technologies for electrical energy production stands out as one of the promising solutions for the future. This paper shows the results of the combination of these two aspects, namely, a molten carbonate fuel cell system fed with biomass derived syngas. In particular, the biogas comes from bagasse and barbojo, the sugarcane residues. So far in developing countries they have been wasted or partly used with poorly efficient technology. The feasibility of such an application is studied by means of the process simulator Aspen Plus © in which a detailed Fortran model has been integrated for the electrochemical reactor simulation. The results of the predictive model are presented and discussed; in particular, the substantial economic and environmental advantages obtainable by applying the technical solution here proposed to the Peruvian energy scenario, are shown.

  3. Mapping of Norwegian civil society organizations working on energy and sustainable development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This study provides a mapping of Norwegian CSOs working on energy and development issues in developing countries and an overview assessment of how the CSOs fit with the priorities of the Norwegian Governments Clean Energy for Development Initiative. The study has been commissioned by Norad, the Norwegian agency for development aid. The study surveys 10 Norwegian CSOs, five of which are primarily environmentally oriented (Bellona, FIVAS, Naturvernforbundet, WWF-Norway and Zero, with green backgrounds in the tables) and five of which are primarily socially oriented (ARC-Aid, Kirkens Noedhjelp, Misjonsalliansen, Norges Vel and Utviklingsfondet, with reddish background in the tables). The study is based on a desk-top review of available material from the CSOs as well as semi-structured interviews. The goal of the Clean Energy for Development Initiative is to increase access to clean energy at an affordable price based on the long-term management of natural resources and efficient energy use. Activities shall also contribute to sustainable economic and social development in selected partner countries and to international efforts to reduce greenhouse gas emissions.The study shows that many Norwegian CSOs have potential to contribute further to effective implementation of Clean Energy for Development Initiative strategies and realization of goals: At least five Cos are already carrying out relevant work in the Initiatives core countries (ref. table A below). In addition, most of the Cos surveyed have a long track-record of relevant activities in non-core countries (ref. table A), something which provides substantial potential for transfer of relevant experience and concepts from non-core countries to work in core countries. Most of the Cos have a relevant and professional competence base, capacity and plans for scaling-up Clean Energy for Development Initiative related work.The CSOs engaged in clean energy for development activities are mainly engaged in developing clean

  4. Electronic structure, total energies, and STM images of clean and oxygen-covered Al(111)

    DEFF Research Database (Denmark)

    Jacobsen, Joachim; Hammer, Bjørk; Jacobsen, Karsten Wedel

    1995-01-01

    an attractive O-O interaction is identified together with an enhancement in the dipole moment induced per O atom. Finally, Tersoff-Hamann-type scanning tunneling microscopy (STM) topographs are derived based on the calculated one-electron wave functions and spectra. For the clean Al(111) a theoretical STM...

  5. Wind Energy Career Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  6. Comparative cost-benefit analysis of renewable energy resources for rural community development in Nigeria / A.A. Ogunlade

    OpenAIRE

    Ogunlade, Abimbola Adegoke

    2008-01-01

    Rural development by means of providing uninterruptible power supply has become a priority among developing countries. Nigeria especially has on its top agenda the mandate to provide clean and cost-effective means of energy to the rural communities, hardest hit by wave of incessant outages of electricity supply. Renewable Energy (RE), a clean form of energy that can be derived from natural sources is widely available throughout Nigeria but is not harnessed. In this dissertation a Cost-Ben...

  7. Estimation and diminution of CO2 emissions by clean development mechanism option at power sector in Oman

    Energy Technology Data Exchange (ETDEWEB)

    Singh Solanki, Parmal; Sarma Mallela, Venkateswara [Caledonian (University) College of Engineering, Muscat (Oman); Zhou, Chengke [Glasgow Caledonian University, Glasgow, Scotland (United Kingdom)

    2013-07-01

    Carbon dioxide (CO2) is one of the major pollutants among greenhouse gases emitted by fossil fuel based power plants and responsible for environmental tribulations. Therefore diminution of carbon dioxide level by Clean Development Mechanism (CDM) is now serious concern worldwide. This paper evaluates the emission factors of national electric grid in Oman and proposes a wind energy based CDM project to diminish the CO2 emissions. Estimations show that operating margin emission factors of national grid during five years lies in the range of 0.74 to 0.69 kg CO2/kWh. Further, proposed CDM project revealed the annual baseline emissions reduction of 45552 ton CO2 and able to earn the revenue of US$ 61.49 million by certify emission reductions in the first crediting period of project. Paper also critically analyse the opportunities for CDM project, its lucrative aspect, barrier and challenges.

  8. Duke Energy Subsidiaries Plead Guilty and Sentenced for Clean Water Act Crimes/The companies will pay a fine and conduct community service and wetlands mitigation

    Science.gov (United States)

    WASHINGTON - Three subsidiaries of North Carolina-based Duke Energy Corporation, the largest utility in the United States, pleaded guilty today to nine criminal violations of the Clean Water Act at several of its North Carolina facilities and agreed

  9. Environmental boundaries to energy development

    Energy Technology Data Exchange (ETDEWEB)

    Trivelpiece, A.W.

    1989-01-01

    Public concern about the environment, health and safety consequences of energy technology has been growing steadily for more than two decades in the United States. This concern forms an important boundary condition as the United States seeks to develop a new National Energy Strategy. Furthermore, the international aspects of the energy/environment interface such as acid rain global climate change and stratospheric ozone depletion are very prominent in US thinking. In fact, the energy systems of the world are becoming more closely coupled environmentally and otherwise. Now where is this coupling more important than that between the industrialized and developing world; the choices made by each will have profound effects on the other. The development of energy technologies compatible with both economic growth and improving and sustaining environmental quality represents a major R D challenge to the US and USSR. Decision about adoption of new technology and R D priorities can be improved by better measurements of how energy sources and uses are changing throughout the world and better methods to project the potential consequences of these decisions. Such projection require understanding relative risks of alternating existing and evolving technologies. All of these R D areas, technology improvement energy system monitoring and projection and comparative risk assessment are the topics of this seminar. Progress in each may be enhanced by collaboration and cooperation between our two countries. 7 refs., 27 figs., 5 tabs.

  10. Developing Government Renewable Energy Projects

    Energy Technology Data Exchange (ETDEWEB)

    Kurt S. Myers; Thomas L. Baldwin; Jason W. Bush; Jake P. Gentle

    2012-07-01

    The US Army Corps of Engineers has retained Idaho National Laboratory (INL) to conduct a study of past INL experiences and complete a report that identifies the processes that are needed for the development of renewable energy projects on government properties. The INL has always maintained expertise in power systems and applied engineering and INL’s renewable energy experiences date back to the 1980’s when our engineers began performing US Air Force wind energy feasibility studies and development projects. Over the last 20+ years of working with Department of Defense and other government agencies to study, design, and build government renewable projects, INL has experienced the do’s and don’ts for being successful with a project. These compiled guidelines for government renewable energy projects could include wind, hydro, geothermal, solar, biomass, or a variety of hybrid systems; however, for the purpose of narrowing the focus of this report, wind projects are the main topic discussed throughout this report. It is our thought that a lot of what is discussed could be applied, possibly with some modifications, to other areas of renewable energy. It is also important to note that individual projects (regardless the type) vary to some degree depending on location, size, and need but in general these concepts and directions can be carried over to the majority of government renewable energy projects. This report focuses on the initial development that needs to occur for any project to be a successful government renewable energy project.

  11. Clean energy and water conflicts: Contested narratives of small hydropower in Mexico’s Sierra Madre Oriental

    Directory of Open Access Journals (Sweden)

    Noah Silber-Coats

    2017-06-01

    Full Text Available Small hydropower is poised to undergo a global boom, potentially accounting for as much as 75% of new hydroelectric installations over the next two decades. There are extensive bodies of literature arguing both that small hydropower is an environmentally benign technology benefitting rural communities, and, conversely, that unchecked small hydro development is a potential environmental calamity with dire consequences for rivers and those who depend upon them. Despite this debate, few studies have considered the ways in which small hydropower is socially constructed in the sites targeted for its development. This paper focuses on the Bobos-Nautla River Basin, in the Sierra Madre Oriental of Mexico, where numerous small hydropower projects are planned. The central argument is that the dominant framing of small hydropower in Mexico focuses on claimed benefits of 'clean' energy, sidelining any consideration of impacts on water resources and local environments. However, even if this narrative has dominated policy-making, it is being actively contested by a social movement that constructs these projects as water theft. The narratives surrounding small hydropower are reconstructed from interviews with government officials, activists, NGO workers and residents of communities near project sites conducted during ten weeks of fieldwork in 2014. The results of this fieldwork are contextualised by an overview of evolving trends in hydropower governance globally that situates the boom in small hydro within shifting relationships between states, international financial institutions, and private finance, as well as an historical account of the evolution of hydropower governance in Mexico that speaks to long-standing conflicts over water use for hydroelectric generation.

  12. Engineering development of advance physical fine coal cleaning for premium fuel applications

    Energy Technology Data Exchange (ETDEWEB)

    Jha, M.C.; Smit, F.J.; Shields, G.L. [AMAX R& D Center/ENTECH Global Inc., Golden, CO (United States)

    1995-11-01

    The objective of this project is to develop the engineering design base for prototype fine coal cleaning plants based on Advanced Column Flotation and Selective Agglomeration processes for premium fuel and near-term applications. Removal of toxic trace elements is also being investigated. The scope of the project includes laboratory research and bench-scale testing of each process on six coals followed by design, construction, and operation of a 2 tons/hour process development unit (PDU). Three coals will be cleaned in tonnage quantity and provided to DOE and its contractors for combustion evaluation. Amax R&D (now a subsidiary of Cyprus Amax Mineral Company) is the prime contractor. Entech Global is managing the project and performing most of the research and development work as an on-site subcontractor. Other participants in the project are Cyprus Amax Coal Company, Arcanum, Bechtel, TIC, University of Kentucky and Virginia Tech. Drs. Keller of Syracuse and Dooher of Adelphi University are consultants.

  13. Energy Development Opportunities for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Larry Demick

    2012-11-01

    The Wyoming Business Council, representing the state’s interests, is participating in a collaborative evaluation of energy development opportunities with the NGNP Industry Alliance (an industry consortium), the University of Wyoming, and the US Department of Energy’s Idaho National Laboratory. Three important energy-related goals are being pursued by the State of Wyoming: Ensuring continued reliable and affordable sources of energy for Wyoming’s industries and people Restructuring the coal economy in Wyoming Restructuring the natural gas economy in Wyoming

  14. The Need for a Rights-Based Approach to the Clean Development Mechanism

    DEFF Research Database (Denmark)

    Filzmoser, Eva; Voigt, Juliane; Trunkl, Urska

    2015-01-01

    The adoption of a range of resolutions by the United Nations Human Rights Council (UNHRC) signals the introduction of a human rights-based approach into the lexicon of climate change negotiation and resulting initiatives. This development has been subsequently reinforced by the Conference...... of Parties Decision 1/CP.16 which calls upon parties that are implementing programmes under the aegis of the United Nations Framework Convention on Climate Change (UNFCCC) to fully respect human rights in all climate related actions. Despite this recognition, the Clean Development Mechanism (CDM) developed...... under the climate change instruments to deliver sustainable projects in developing states has not adopted measures to implement these obligations. Its prospects remain questionable in terms of compatibility with key principles of a rights-based approach, namely, universality and inalienability, equity...

  15. Development of the chemical and electrochemical coal cleaning (CECC) process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Roe-Hoan; Basilio, C.I.

    1992-05-01

    The Chemical and Electrochemical Coal Cleaning (CECC) process developed at Virginia Polytechnic Institute and State University was studied further in this project. This process offers a new method of physically cleaning both low- and high-rank coals without requiring fine grinding. The CECC process is based on liberating mineral matter from coal by osmotic pressure. The majority of the work was conducted on Middle Wyodak, Pittsburgh No. 8 and Elkhorn No. 3 coals. The coal samples were characterized for a variety of physical and chemical properties. Parametric studies were then conducted to identify the important operating parameters and to establish the optimum conditions. In addition, fundamental mechanisms of the process were studied, including mineral matter liberation, kinetics of mineral matter and pyrite dissolution, ferric ion regeneration schemes and alternative methods of separating the cleaned coal from the liberated mineral matter. The information gathered from the parametric and fundamental studies was used in the design, construction and testing of a bench-scale continuous CECC unit. Using this unit, the ash content of a Middle Wyodak coal was reduced from 6.96 to 1.61% at a 2 lbs/hr throughput. With an Elkhorn No. 3 sample, the ash content was reduced from 9.43 to 1.8%, while the sulfur content was reduced from 1.57 to 0.9%. The mass balance and liberation studies showed that liberation played a more dominant role than the chemical dissolution in removing mineral matter and inorganic sulfur from the different bituminous coals tested. However, the opposite was found to be the case for the Wyodak coal since this coal contained a significant amount of acid-soluble minerals.

  16. Modeling and simulation of a solar power source at 3kW for a clean energy without pollution

    Directory of Open Access Journals (Sweden)

    Louzazni M.

    2014-04-01

    Full Text Available The air pollution was much worse, and it became necessary to replace the fossil energy sources by the renewable energies. The causes are related to reserves that can be exhausted, to pollution and their impacts on the environment. Production of toxic gases from the combustion of coal for the effect of increasing the temperature of the earth. Solar energy is a clean and inexhaustible excellent alternative. We propose a modeling and simulation of a solar system consists of a photovoltaic generator (PVG, a boost chopper, to supply a telecommunications relay station (BTS, According to the load characteristics (I = 60A, V = 48V DC (3 kW. A stage adaptation composed of this chopper controlled by a PWM controller (Pulse Width Modulation is used to control the optimal operating point (MPPT and optimize system performance using Matlab / Simulink.

  17. Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production.

    Science.gov (United States)

    Lin, Chun-Yu; Zhang, Lipeng; Zhao, Zhenghang; Xia, Zhenhai

    2017-05-01

    Covalent organic frameworks (COFs), an emerging class of framework materials linked by covalent bonds, hold potential for various applications such as efficient electrocatalysts, photovoltaics, and sensors. To rationally design COF-based electrocatalysts for oxygen reduction and evolution reactions in fuel cells and metal-air batteries, activity descriptors, derived from orbital energy and bonding structures, are identified with the first-principle calculations for the COFs, which correlate COF structures with their catalytic activities. The calculations also predict that alkaline-earth metal-porphyrin COFs could catalyze the direct production of H 2 O 2 , a green oxidizer and an energy carrier. These predictions are supported by experimental data, and the design principles derived from the descriptors provide an approach for rational design of new electrocatalysts for both clean energy conversion and green oxidizer production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Clay and clay-supported materials for clean energy storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2015-01-01

    Full Text Available sources of cleaner energy. Among other challenges, the high cost of production together with limited reliable energy storage materials have contributed to the main obstacles for delayed the widespread switch toward cleaner energy sources. Clay materials...

  19. Urethrogluteal Fistula Developing Secondary to the Use of Clean Intermittent Self-Catheterization: First Case Report in the Literature

    Directory of Open Access Journals (Sweden)

    Aliseydi Bozkurt

    2014-01-01

    Full Text Available Clean intermittent self-catheterization is the standard method for bladder evacuation in these patients today. The patient was diagnosed with urethrogluteal fistula and gluteal-perineal abscess by radiological evaluation. Gluteal drainage decreased after cystostomy. In our paper, a case of urethrogluteal fistula and pelvic urinoma that developed as a result of the use of clean intermittent self-catheterization (CISC, which is rarely found in the literature, is presented.

  20. Accelerating the implementation of the clean development mechanism in South African industry

    Directory of Open Access Journals (Sweden)

    G Little

    2014-05-01

    Full Text Available One of the responses to the threat of global warming is the Kyoto Protocol and the associated Clean Development Mechanism (CDM to reduce greenhouse gases. South Africa is an ideal country for the implementation of industrial CDM projects, yet lags behind many other countries. This qualitative research determines the factors that cause South Africa to lag other developing countries in the implementation of industrial CDM projects and the interventions that will have the most impact on accelerating implementation. The research involved interviews with 30 experts involved in the South African CDM process. The results identify the factors perceived to be facilitating and inhibiting the use of CDM opportunities and a framework for CDM practitioners to develop an implementation strategy within South African industry is established.

  1. Energy access and sustainable development

    Science.gov (United States)

    Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry

    2015-03-01

    With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

  2. Heart of the Hearth: Making the Popular Clean, Not the Clean Popular - Technology Research, Development, and Tools for Clean Biomass Cookstoves

    Energy Technology Data Exchange (ETDEWEB)

    Gist, Ryan [BioLite, Inc., Brooklyn, NY (United States)

    2016-12-28

    This technical report summarizes the work completed by BioLite in fulfilment of the US DOE EERE award. The work plan focused on three key objectives: developing an optimized combustion system that demonstrates high combustion efficiency and low PM2.5 and CO emissions, integrate the system into popular stove phenotypes – side-fed rocket stove architecture like the BioLite HomeStove, and the Patsari chimney stove in Mexico such that they maintain their important phenotypical characteristics, independently evaluate quantitative fuel and emissions performance of the integrated ‘Turbo-Patsari’ in Mexican households. The project activities were organized into six major tasks: A. Develop, fabricate, and test proof-of-concept prototypes B. Develop field prototypes, assess user feedback and field performance C. Define revised stove design for pre-production model, Identify manufacturing requirements and estimated cost to build, Conduct reliability, emissions, and performance testing of pre-production Turbo-Patsari D. Build pre-production Turbo-Patsari stove combustion cores E. Conduct pre-production field trials F. Summarize field trial results and evaluate Turbo-Patsari for potential volume production. A two-pronged approach was adopted for the above tasks. The first involved building a modular test platform that allowed parametric variation of multiple stove design parameters that directly affect its performance – heat output, thermal efficiency, and emissions. The second part of the approach comprised of building a surrogate Patsari based on GIRA’s specifications that could then be modified or retrofitted for optimum performance based on the learnings from the modular test platform. The following sections of the report will describe the findings of tests on these platform, the subsequent development, design, and installation of the Turbo-Patsari, and finally the in-home field trial.

  3. State perspectives on clean coal technology deployment

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, T. [State of Illinois Washington Office, Washington, DC (United States)

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  4. Wind power, a clean energy alternative; El viento, una alternativa energetica limpia

    Energy Technology Data Exchange (ETDEWEB)

    Cadenas Tovar, Roberto [Comision Federal de Electricidad, La Venta (Mexico)

    1994-12-31

    That a new energy source, renewable and environmentally benign is incorporated into our electric networks, is something really significative. What better contribution for the rational use of the conventional energy sources than substituting an important part of its share for a source of the stated characteristics. The wind is a resource that Nature offers US for free, whose energy can be transformed into electricity utilizing conversion technologies that have reached maturity and are currently available in the marketplace. This document presents the characteristics of the aeolian resource in the Tehuantepec Isthmus region. A description is made of the first pilot project in our country built by Comision Federal de Electricidad at La Venta, Oaxaca. The reasoning that support the development of the projects at a greater scale and investment and production costs are exhibited for the above mentioned project. [Espanol] Que una nueva fuente de energia, renovable y ambientalmente benigna se incorpore a nuestras redes electricas, es algo verdaderamente significativo. Que mejor contribucion para el uso racional de los energeticos convencionales que substituir una parte importante de su aportacion con una fuente de las caracteristicas mencionadas. El viento es un recurso que nos brinda la naturaleza en forma gratuita, cuya energia puede transformarse en electricidad utilizando tecnologias de conversion que han alcanzado madurez y que actualmente se encuentran disponibles en el mercado. En este documento se presentan las caracteristicas del recurso eolico en la region del Istmo de Tehuantepec, se hace una descripcion del primer proyecto piloto de nuestro pais, construido por la Comision Federal de Electricidad en La Venta, Oaxaca, se exponen los argumentos que apoyan al desarrollo de proyectos en mayor escala y se exhiben los costos de inversion y produccion para el proyecto mencionado.

  5. Alternative Fuel News: Official Publication of the U.S. Department of Energy's Clean Cities Network and the Alternative Fuels Data Center; Vol. 5, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    LaRocque, T.

    2001-08-01

    A quarterly magazine with articles the proposed National Energy Policy; the 2001 National Clean Cities Conference including Clean Cities Coalition Award and National Partner Award recipients; station cars (shared my multiple drivers); and new emissions-reducing incentives in Texas.

  6. DIRTY AND CLEAN TECHNOLOGIES

    National Research Council Canada - National Science Library

    DAS GUPTA, SUPRATIM

    2015-01-01

    ... out of these essential resources. In a model of total energy production from a dirty resource and a perfect substitute clean technology (backstop), we show the optimal solution implies using either one energy source at first before finally converging to a steady state of using both the dirty and clean technologies in fixed proportions. The di...

  7. Experimental Study of Magnesium Production with Laser for Clean Energy Cycle

    Science.gov (United States)

    Sato, Y.; Yabe, T.; Sakurai, Y.; Mohamed, M. S.; Uchida, S.; Baasandash, C.; Ohkubo, T.; Mori, Y.; Sato, H.

    2008-04-01

    A new scheme of generating power called magnesium injection cycle [MAGIC] engine was developed. Magnesium [Mg] and water are put into the chamber and ignited at 500 degree Celsius. Mg reaction with water produces hydrogen [H2] gas. The hydrogen blows out and reacts with oxygen [O2] gas to generate H2O and energy at the exit nozzle. These reactions occur simultaneously and generate thrust. In order to reproduce Mg, the residual MgO is irradiated by focused cw CO2 laser (1000 W) at 20 Pa. Then, high temperature (over 4000 degree Celsius) is exerted in tiny spot thus MgO reduction in equilibrium is achievable. Spectroscopic analysis was conducted on the Mg/MgO vapor under atmospheric condition. The Mg line at 518 nm, MgO line at 500 nm and O+ line were confirmed. This proves that the MgO is dissociated by laser irradiation These experiments confirm that the scheme can be used for magnesium energy cycle system with practical efficiency and large throughput.

  8. Análise e avaliação do mercado reprimido de energia no contexto do desenvolvimento limpo na Região Administrativa de Araçatuba Analysis and assessment of the restrained energy market in the clean development context of the Araçatuba Administrative Region

    Directory of Open Access Journals (Sweden)

    Raphael Bertrand Heideier

    2009-08-01

    Full Text Available Este artigo avalia o mercado reprimido de eletricidade, gás natural e álcool na Região Administrativa de Araçatuba (RAA, comparando o consumo com o consumo médio do estado de São Paulo e do estado da Flórida, EUA, onde se acredita que a demanda é plenamente satisfeita. O artigo apresenta uma projeção para o atendimento da demanda no contexto do desenvolvimento limpo em um cenário hipotético.This article assesses the restrained market of electricity, natural gas and alcohol in the Araçatuba Administrative Region (RAA, comparing the its consumption with the average consumption of the states of São Paulo and Florida (USA, where the demand is believed to be fully satisfied. Projections are made for answering the demand in a clean development context for a hypothetical scenario.

  9. Clean cars

    Energy Technology Data Exchange (ETDEWEB)

    Piffaretti, M.

    2008-07-01

    This well-illustrated presentation made at the Swiss 2008 research conference on traffic by the Protoscar company takes a look at research, design, engineering and communication topics in the area of 'clean cars'. The present situation with electrically driven and hybrid-drive cars is reviewed and the chances and problems of the present-day vehicles are examined. New developments and a number of vehicles that should be on the market in the period from 2012 to 2015 are presented. Also, 'clean' specialist vehicles such as trucks and buses are reviewed. Battery systems and associated problems and new developments are looked at. The promotion scheme in Mendrisio, Switzerland is reviewed. Bottom-up and top-down approaches are discussed and future market developments are looked at, as are promotional activities in various countries.

  10. Research on trading patterns of large users' direct power purchase considering consumption of clean energy

    Science.gov (United States)

    Guojun, He; Lin, Guo; Zhicheng, Yu; Xiaojun, Zhu; Lei, Wang; Zhiqiang, Zhao

    2017-03-01

    In order to reduce the stochastic volatility of supply and demand, and maintain the electric power system's stability after large scale stochastic renewable energy sources connected to grid, the development and consumption should be promoted by marketing means. Bilateral contract transaction model of large users' direct power purchase conforms to the actual situation of our country. Trading pattern of large users' direct power purchase is analyzed in this paper, characteristics of each power generation are summed up, and centralized matching mode is mainly introduced. Through the establishment of power generation enterprises' priority evaluation index system and the analysis of power generation enterprises' priority based on fuzzy clustering, the sorting method of power generation enterprises' priority in trading patterns of large users' direct power purchase is put forward. Suggestions for trading mechanism of large users' direct power purchase are offered by this method, which is good for expand the promotion of large users' direct power purchase further.

  11. Statistical Analysis of Development Trends in Global Renewable Energy

    Directory of Open Access Journals (Sweden)

    Marina D. Simonova

    2016-01-01

    Full Text Available The article focuses on the economic and statistical analysis of industries associated with the use of renewable energy sources in several countries. The dynamic development and implementation of technologies based on renewable energy sources (hereinafter RES is the defining trend of world energy development. The uneven distribution of hydrocarbon reserves, increasing demand of developing countries and environmental risks associated with the production and consumption of fossil resources has led to an increasing interest of many states to this field. Creating low-carbon economies involves the implementation of plans to increase the proportion of clean energy through renewable energy sources, energy efficiency, reduce greenhouse gas emissions. The priority of this sector is a characteristic feature of modern development of developed (USA, EU, Japan and emerging economies (China, India, Brazil, etc., as evidenced by the inclusion of the development of this segment in the state energy strategies and the revision of existing approaches to energy security. The analysis of the use of renewable energy, its contribution to value added of countries-producers is of a particular interest. Over the last decade, the share of energy produced from renewable sources in the energy balances of the world's largest economies increased significantly. Every year the number of power generating capacity based on renewable energy is growing, especially, this trend is apparent in China, USA and European Union countries. There is a significant increase in direct investment in renewable energy. The total investment over the past ten years increased by 5.6 times. The most rapidly developing kinds are solar energy and wind power.

  12. Going Clean - The Economics of China's Low-carbon Development

    Energy Technology Data Exchange (ETDEWEB)

    Hallding, Karl; Thai, Helen; Han, Guoyi; Olsson, Marie; Kartha, Sivan (Stockholm Environment Inst. (Sweden)); Eklund, Klas (SEB, Stockholm (Sweden)); SU Ming (Peking Univ. (China)); Cao Jing (Tsinghua Univ. (China)); Luderer (Potsdam Inst. for Climate Impact (Germany))

    2009-11-15

    This report shows that China can achieve the transition to a low-carbon economy. China can make these emissions reductions within the tight constraints of a global 2 deg C target while still meeting development and economic growth goals over the next four decades. There are strong mitigation potentials in the building, industry, transport and electricity generation sectors. China would benefit from early mitigation, but immediate action is critical for the world to have a reasonable chance of keeping warming below the 2 deg C target. Such a transition would also be an essential part of China's modernisation. A low-carbon transition presents opportunities for China to improve its energy security and move its economy up the value chain in the production of international goods and services. A low-carbon China is a country with a larger service sector, more advanced labour skills and less environmental degradation. During this transition, new, green job opportunities will emerge, and support an overall shift to a low-carbon economy. Active labour market and social policies, vocational training and upgrading of skills are imperative to facilitate this modernisation and reduce the impact of jobs lost in resource-intensive industries. With today's low price on carbon emissions, the incentives for a low-carbon transition are not sufficiently strong. Consumption and production patterns must be steered in a more resource-sustainable direction. A first step is to phase out subsidies on fossil fuels. Another is to place a price on carbon, either through a carbon tax or a cap-and-trade system, which would create incentives for companies and individuals to produce and consume less carbon-intensive goods and services, and to undertake abatement opportunities to reduce their overall carbon footprint. Advancing technology and innovation need to be fundamental, shared policy objectives in this transition. Early investment reduces costs and paves the way for large

  13. Arctic Energy Technology Development Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  14. Kyoto protocol. Obtaining emission rights from projects in developing countries[Clean Development Mechanism (CDM), Joint Implementation (JI)]; Kyoto Protokoll. Erwerb von Emissionsrechten durch Projekte in Entwicklungslaendern

    Energy Technology Data Exchange (ETDEWEB)

    Pohlmann, M.

    2004-07-01

    According to the Kyoto Protocol, emission rights can be obtained by investments in climate-friendly projects in developing countries (''Clean Development Mechanism'', CDM). The author discusses the manifold legal problems involved when emission reduction goals under international law are implemented by private industrial organisations. Among the problems are the integration of CDM in existing and future energy management systems, the position of private legal bodies in the context of international law, the structure of CDM in international law, and the legal nature of the emission rights obtained by CDM. On the basis of the results obtained and in consideration of the experience so far of the ''Prototype Carbon Fund'' of the World Bank, the author suggests solutions for contracts and for effective management of project-specific risks. (orig.)

  15. Renewable Energy Zones: Delivering Clean Power to Meet Demand, Greening the Grid

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, David; Chernyakhovskiy, Ilya; Cochran, Jaquelin

    2016-05-01

    Greening the Grid provides technical assistance to energy system planners, regulators, and grid operators to overcome challenges associated with integrating variable renewable energy into the grid. This document describes the renewable energy zone concept that has emerged as a transmission planning tool to help scale up the penetration of solar, wind, and other resources on the power system.

  16. Development of membrane technology for production of concentrated fertilizer and clean water

    DEFF Research Database (Denmark)

    Camilleri Rumbau, Maria Salud

    membranes, it was observed that 99% of the fouling resistance could be removed by flushing the membrane with water, suggesting that most fouling might be due to a transient gel layer. Furthermore, water flux could be recovered in more than 98% by using alkaline cleaning alone (NaOH), alkaline cleaning...... with anionic surfactants (SDS) or alkaline cleaning with chelating agents (EDTA). This suggests that NaOH could be a good and cheap strategy for cleaning RO membranes. Membrane soaking further helped in increasing the membrane water flux recovery. Forward osmosis (FO) was done using aquaporin based membranes...

  17. Engineering Development of Advanced Physical Fine Coal Cleaning for Premium Fuel Applications: Task 9 - Selective agglomeration Module Testing and Evaluation.

    Energy Technology Data Exchange (ETDEWEB)

    Moro, N.` Jha, M.C.

    1997-09-29

    The primary goal of this project was the engineering development of two advanced physical fine coal cleaning processes, column flotation and selective agglomeration, for premium fuel applications. The project scope included laboratory research and bench-scale testing of both processes on six coals to optimize the processes, followed by the design, construction, and operation of a 2 t/hr process development unit (PDU). The project began in October, 1992, and is scheduled for completion by September 1997. This report summarizes the findings of all the selective agglomeration (SA) test work performed with emphasis on the results of the PDU SA Module testing. Two light hydrocarbons, heptane and pentane, were tested as agglomerants in the laboratory research program which investigated two reactor design concepts: a conventional two-stage agglomeration circuit and a unitized reactor that combined the high- and low-shear operations in one vessel. The results were used to design and build a 25 lb/hr bench-scale unit with two-stage agglomeration. The unit also included a steam stripping and condensation circuit for recovery and recycle of heptane. It was tested on six coals to determine the optimum grind and other process conditions that resulted in the recovery of about 99% of the energy while producing low ash (1-2 lb/MBtu) products. The fineness of the grind was the most important variable with the D80 (80% passing size) varying in the 12 to 68 micron range. All the clean coals could be formulated into coal-water-slurry-fuels with acceptable properties. The bench-scale results were used for the conceptual and detailed design of the PDU SA Module which was integrated with the existing grinding and dewatering circuits. The PDU was operated for about 9 months. During the first three months, the shakedown testing was performed to fine tune the operation and control of various equipment. This was followed by parametric testing, optimization/confirmatory testing, and finally a

  18. Joint implementation, clean development mechanism and tradable permits. International regulation of greenhouse gases

    DEFF Research Database (Denmark)

    Nielsen, L.; Olsen, K.R.

    2000-01-01

    This report deals with international environmental instruments aimed at a cost-effective reduction of greenhouse gas emissions. More precisely the instruments mentioned in the Kyoto Protocol, namely Joint Implementation (JI), the Clean DevelopmentMechanism (CDM) and Tradable Permits (TP......). The report describes the background for the international co-operation on reducing the greenhouse gases and the background for the instruments. How the instruments work in theory and what the practical problemsmay be. What agents' incentives are when they engage in JI or CDM, and how the initiation...... of the instruments can be organised. The institutional frameworks for JI, CDM and TP are discussed. The report describes how the Kyoto instruments and the Kyotocommitments interact with other instruments and describe distributive effects between countries. It is analysed how the use of CDM may influence...

  19. Quiet, Clean, Short-Haul Experimental Engines /QCSEE/ - A technology development program

    Science.gov (United States)

    Willis, W. S.

    1977-01-01

    NASA's QCSEE Program (Quiet, Clean, Short-Haul Experimental Engine) performed by the General Electric Company covers a wide range of advanced propulsion technology features applicable to future subsonic engine concepts. These technology features are combined into two engine and nacelle configurations for demonstration of program goals. This paper presents descriptions of two engine/nacelle configurations and shows the flow of technology developed in component programs into the configurations. The under-the-wing (UTW) configuration, featuring major innovative and advanced components, such as a large variable pitch fan and a composite material integrated engine and nacelle structure, has been tested at General Electric's Peebles, Ohio test facility. The key characteristics of the engine as observed from the initial test series are presented.

  20. Analysis on spatial transfer model of energy development layout and the ecological footprint affection

    Science.gov (United States)

    Wei, Xiaoxia; Zhang, Jinfang

    2017-01-01

    Consider the global energy interconnection, the global is concentrating on carrying out clean energy alternative, which is mainly focusing on using the clean energy to take place of fossil energy, and change the global energy layout and ecological atmosphere condition. This research gives the energy spatial transfer model of energy development layout to analyse the global energy development layout condition and ecological affection. And it is a fast and direct method to analyse its energy usage process and environmental affection. The paper also gives out a system dynamics model of energy spatial transfer shows, which electric power transmission is better than original energy usage and transportation. It also gives the comparison of different parameters. The energy spatial transfer can affect the environment directly. Consider its three environmental factors, including energy saving, climate changing and conventional pollutant emission reduction, synthetic combine with the spatial transfer model, it can get the environmental change parameters, which showed that with the clean energy wide usage, the ecological footprint affection will be affected significantly.

  1. Status of implementation of the clean development mechanism in Brazil; Estado de implementacao do mecanismo de desenvolvimento limpo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Kamyla Borges da [Instituto de Energia e Meio Ambiente, Sao Paulo, SP (Brazil)], e-mail: kamyla_energia@terra.com.br; Walter, Arnaldo [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica. Programa de Pos-Graduacao em Planejamento de Sistemas Energeticos; Rei, Fernando Fernandes [Centro Universitario SENAC, Sao Paulo, SP (Brazil). Curso de Mestrado em Gestao Integrada

    2006-07-01

    Defined in the article 12 from Kyoto Protocol, the Clean Development Mechanism (CDM) was created as a market instrument. As a consequence, CDM projects distribution is becoming unequal among the regions of the globe and also among project activities types. Brazil is the second in number of projects and the third in emission reductions, but the market aspect of CDM is a factor that influences the domestic dynamics of CDM. In this way, the objective of this paper is to evaluate in which way the regional and technological differences between CDM projects are replicable in the national context. In order to meet this aim, it was assessed all Brazilian CDM projects that were submitted to UN until March 10{sup th} 2006. As a result, it could be identified that there is not any land use, land-use change and forestry (LULUCF CDM) projects, besides the Brazilian potential in this field, it could be noticed that the most part of Brazilian CDM projects is focused in renewable energy promotion, such as cogeneration with biomass and small hydro power plants and that there is a small number of projects related to energy efficiency. In addition, it was verified wide differences regarding regional distribution of projects and the predominance of unilateral initiatives. (author)

  2. CDM (Clean Development Mechanism) opportunities for the oil and gas sector

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Joana Chiavari [FEEM - Fondazione Eni Enrico Mattei, Milan (Italy). Eni/Agip Group

    2004-07-01

    Due to the broad impact of legislation limiting greenhouse gas emissions and the increasing public awareness concerning the environment, the oil industry has been currently incorporating climate change considerations in its corporate strategy. However, compliance in the carbon constrained economy does not merely represent a cost issue; it also represents an opportunity. Projects developed under the Clean Development Mechanism (CDM) in particular represent an incentive both for companies and governments to invest in emission reduction projects in developing countries and earn carbon credits, while promoting sustainable development. The oil industry is characterized by a high emission reduction potential and is able to deliver to the market an amount of credits which is by far higher than the amount that most projects developers are able to offer. However some critical issues, such as the current interpretation of the additionally concept, may represent a barrier for the full utilization of such mechanism, particularly regarding petroleum-sector projects, thus reducing the benefits the CDM can actually produce. Considering that a very large number of CDM projects may be needed for the implementation of a successful climate policy, the engagement of the oil industry on the Kyoto mechanisms is very important and auspicial. (author)

  3. CDM (Clean development mechanism) like instrument for sustainable development?; MDL (mecanismo de desenvolvimento limpo) como instrumento para o desenvolvimento sustentavel?

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Kamyla Borges da; Walter, Arnaldo Cesar Silva; Varella, Fabiana Karla de Oliveira; Streb, Cleci Schalemberger [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Fac. de Engenharia Mecanica. Curso de Pos-Graduaco em Planejamento de Sistemas Energeticos], e-mail: kamyla@fem.unicamp.br

    2004-07-01

    The intensification of the greenhouse effect, caused mainly by the anthropogenic activities, such as the intensive use of fossil fuels, reveals itself as a challenge to governments and international organizations. The institution of an international legal framework, resulted from the implementation of the United Nations Framework Convention on Climate Change and the Kyoto Protocol, is allowing the development of some mitigation instruments, such as the clean development mechanism (CDM). The article's purpose is to assess the social and economic aspects that are leading to the climate change process and to analyze the instruments foreseen in the international legal system to face this global concern, in special, the CDM as a tool to achieve sustainable development practices. In this way, the authors aims to demonstrate the connection and interdependence between those instruments and the sustainable development. (author)

  4. Development of a dynamic model for cleaning ultra filtration membranes fouled by surface water

    NARCIS (Netherlands)

    Zondervan, E.; Betlem, Bernardus H.L.; Roffel, B.

    2007-01-01

    In this paper, a dynamic model for cleaning ultra filtration membranes fouled by surface water is proposed. A model that captures the dynamics well is valuable for the optimization of the cleaning process. The proposed model is based on component balances and contains three parameters that can be

  5. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  6. Financing Renewable Energy Projects in Developing Countries: A Critical Review

    Science.gov (United States)

    Donastorg, A.; Renukappa, S.; Suresh, S.

    2017-08-01

    Access to clean and stable energy, meeting sustainable development goals, the fossil fuel dependency and depletion are some of the reasons that have impacted developing countries to transform the business as usual economy to a more sustainable economy. However, access and availability of finance is a major challenge for many developing countries. Financing renewable energy projects require access to significant resources, by multiple parties, at varying points in the project life cycles. This research aims to investigate sources and new trends in financing RE projects in developing countries. For this purpose, a detail and in-depth literature review have been conducted to explore the sources and trends of current RE financial investment and projects, to understand the gaps and limitations. This paper concludes that there are various internal and external sources of finance available for RE projects in developing countries.

  7. Final report spent nuclear fuel retrieval system primary cleaning development testing

    Energy Technology Data Exchange (ETDEWEB)

    Ketner, G.L.; Meeuwsen, P.V.

    1997-09-01

    Developmental testing of the primary cleaning station for spent nuclear fuel (SNF) and canisters is reported. A primary clean machine will be used to remove the gross sludge from canisters and fuel while maintaining water quality in the downstream process area. To facilitate SNF separation from canisters and minimize the impact to water quality, all canisters will be subjected to mechanical agitation and flushing with the Primary Clean Station. The Primary Clean Station consists of an outer containment box with an internally mounted, perforated wash basket. A single canister containing up to 14 fuel assemblies will be loaded into the wash basket, the confinement box lid closed, and the wash basket rotated for a fixed cycle time. During this cycle, basin water will be flushed through the wash basket and containment box to remove and entrain the sludge and carry it out of the box. Primary cleaning tests were performed to provide information concerning the removal of sludge from the fuel assemblies while in the basin canisters. The testing was also used to determine if additional fuel cleaning is required outside of the fuel canisters. Hydraulic performance and water demand requirements of the cleaning station were also evaluated. Thirty tests are reported in this document. Tests demonstrated that sludge can be dislodged and suspended sufficiently to remove it from the canister. Examination of fuel elements after cleaning suggested that more than 95% of the exposed fuel surfaces were cleaned so that no visual evidence of remained. As a result of testing, recommendations are made for the cleaning cycle. 3 refs., 16 figs., 4 tabs.

  8. Renewable energy policy and wind energy development in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Zitzer, Suzanne E. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Leipzig (Germany). Department Urban Ecology, Environmental Planing and Transport

    2009-07-15

    The author of the contribution under consideration reports on the renewable energy policy and wind energy development in the Federal Republic of Germany. First of all, the author describes the historical development of the renewable energy policy since the 1970ies. Then, the environmental policies of the Red-Green Coalition (till to 2005) and of the Grand Coalition (since 2005) as well as the Renewable Energy Sources Act are described. The next section of this contribution is concern to the development of wind energy in the Federal Republic of Germany under consideration of onshore wind energy and offshore wind energy.

  9. Cultural energy grassroots and development.

    Science.gov (United States)

    Kleymeyer, C D

    1992-01-01

    The importance of culture in economic development is discussed based on 10 years of case reports in the publication, Grassroots Development. Cultural energy is considered important for the launching, sustainment, and expansion of programs; yet, only 10% of IAF Foundation grants over 20 years have focused on cultural energy as a tool for development. By the late 1960s development theorists blamed the lack of progress on "backward looking traditional cultures." In Latin America culture was seen as an obstacle to be overcome rather than an opportunity. The debt and environmental crisis of the 1980s has opened the doors to new methods. A recent study of the Aymara and Mapuche in Chile found that uprooting local culture meant loss of land, cultural roots, and social relationships, as well as loss of stewardship of the environment. The Kuna is Panama were seen as successful in combining traditional ways with Western ideas in formation of an ecological park; this was accomplished through self-confidence and self-will in grassroots development. However, the Kuna have also undergone changes and the ancestral view of nature and humanity's place in it is being undermined. The acculturation of the young may leave an emptiness that is neither Panamanian nor Kuna. The Chimborazo Indians in the highlands of Ecuador have only achieved moderate success in eliminating poverty in spite of international efforts which imposed development schemes onto the community. The Feria Educativa (Educational Fair) was formed among indigenous volunteers working with the Serviceo Ecuatoriano de Voluntarios-Chimborazo to promote culture and self-help. Members enter the community only when invited; the program uses puppets and sociodramas to portray common problems such as illiteracy and stimulate group participation. Their efforts have been successful in establishing literacy, reforestation, and economic activity programs. The Kuna shopped among Western ideas to chose ones appropriate to their

  10. Development direction of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Hua, A. [China University of Mining and Technology, Xuzhou (China). College of Architecture and Civil Engineering

    2002-01-01

    According to the prediction of the developmental trend of the economy and population of the world, the mineral energy resource is faced with exhaustion. Exploitation and combustion of minerals are seriously polluting the environment. In addition, the production areas of mineral resources are not the energy consumption areas. Therefore, the energy resource of the world is at the stage of structural reorganisation. The exploitation and utilisation of green energy resources such as solar energy, wind energy, oceanic energy, geothermic energy, biologic energy and hydrogen in China are introduced briefly. The green energy resources have abundant reserves. Their utilisation is propitious to environment protection, and the relevant technique has come to a generalised stage. It is believed that green energy should be the developmental direction of energy resource and that the speciality of green energy ought to be set up in energy resources colleges to train the required personnel. 10 refs., 5 tabs.

  11. Energy, Equity, and Agricultural Development

    OpenAIRE

    Tyner, Wallace E.; Hrabovszky, Janos P.

    1983-01-01

    Energy is intricately related to agricultural production. Plants capture solar energy and convert it into food, energy, and other products useful for mankind. Agriculture is potentially a source of not only food, feed, and fibre, but also of energy. Agriculture is also an important user of energy. Technical progress in agriculture has meant more intensive use of commercial energy in agriculture. The rapid escalation of energy prices in the 1970s has important efficiency and equity implication...

  12. FEASIBILITY AND FINANCIAL ISSUES OF CLEAN PROJECT DEVELOPMENT MECHANISM IN ARGENTINA

    Directory of Open Access Journals (Sweden)

    García Fronti, Inés

    2013-01-01

    Full Text Available The objective of the research is to determine the current status and perspectives presented in Argentina in 2011 for different stakeholders regarding the development, execution and implementation of projects of clean development mechanism (CDM under the Kioto Protocol, with emphasis on the analysis of accounting issues.In the Argentinean research there is an analysis of the accounting issues under discussion and -taking as theirtory the Brazilian study mentioned- has surveyed and interviewed stakeholders belonging to government agencies, professional bodies such as councils accounting professionals in economics from different jurisdictions, academics, consultants and companies that deal or CDM projects plan to address issues relating to general and their views on potential regulations from bodies of the accounting profession and/or governmental and motivation of business and accounting issues of CDM projects such as moments of recognition of accounting entries and the different forms of the same recognition. The results showed that knowledge on the subject of stakeholders is initial but is possible an important increase in the future, accompanied by the development in Argentina of such projects.

  13. Governing China’s Clean Energy Transition: Policy Reforms, Flexible Implementation and the Need for Empirical Investigation

    Directory of Open Access Journals (Sweden)

    Kevin Lo

    2015-11-01

    Full Text Available In the ten years since committing to clean energy transition, China has formulated a large number of policies and programs to achieve some very ambitious targets. This paper argues that the dearth of empirical studies concerning the implementation of these new policies and programs has created a knowledge gap between official policy documents, which are vague and lacking in specifics, and official policy outcomes, which are unreliable. In particular, the merits and limitations of flexible implementation with regard to desirable outcomes need to be debated and clarified. This paper calls for more empirical investigation in four areas as a starting point: (1 the nature and extent of flexibility in the implementation; (2 implementation strategies and their impacts; (3 factors that shape the behavior of local officials responsible for implementation; and (4 the relationship between the central-local relation and policy implementation.

  14. Clean Air Act Standards and Guidelines for Energy, Engines, and Combustion

    Science.gov (United States)

    This page contains the stationary sources of air pollution for the energy, engines, and combustion industries, and their corresponding air pollution regulations. To learn more about the regulations for each industry, just click on the links below.

  15. Canada as an energy superpower : how clean, how powerful, how super?

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, M. [Canadian Gas Association, Ottawa, ON (Canada). Policy and Economics

    2007-12-15

    In 2006, Canada's Prime Minister declared Canada to be an emerging energy superpower due to its vast reserves of oil, gas, and uranium. This article clarified the attributes of a superpower and explained how they can be used to evaluate Canada's situation. The attributes of a superpower include a capability to potentially influence the behaviour of other countries and the course of world events; the capacity to deploy that capability when it can be effective; a clear understanding of one's national interests and policies; and, a will to use the energy capacity when called upon. This framework was used to test the hypothesis of Canada as a power in energy. It was agreed that in terms of reserves, production and exports, Canada is a significant player by world standards. Canada has technological leadership in some parts of the fuel cell industry, possibly nuclear energy and the deployment of advanced technology in resource extraction. However, it was argued that deployment capacity must be maintained and enhanced. The author claimed that Canada's ability to exercise power through unilateral deployment of energy resources is modest, although Canada does have an implicit policy expressed through international treaties such as its membership in the World Trade Organization (WTO), International Energy Agency (IEA), and the North American Free Trade Agreement (NAFTA). Canada also benefits from pipeline and powerline regulations for shared regulation of electricity reliability. It was suggested that Canada has the capability to be a voice in support of market-based approaches to energy and an open international trade and investment regime. It was determined that Canada is committed to market-based energy policies and to North American partnership in a broader international context. The author suggested that although Canada has many capabilities regarding energy resources and the capacity to deliver them to markets, it lacks energy policy at the national

  16. Sustainable Energy Development: The Key to a Stable Nigeria

    Directory of Open Access Journals (Sweden)

    Kalu Uduma

    2010-06-01

    Full Text Available This paper proposes the use of sustainable energy systems based on solar and biomass technologies to provide solutions to utility challenges in Nigeria and acute water shortage both in rural and urban areas of that country. The paper highlights the paradoxes of oil-rich Nigeria and the stark reality of social infrastructure deprivations in that country. Perennial power outages over many years have translated to the absence of or poorly-developed basic social infrastructures in Nigeria. The consequences of this lack have been an increase in abject poverty in rural and urban communities as well as the erosion of social order and threats to citizen and their property. This paper proposes the adaptation of two emerging technologies for building sustainable energy systems and the development of decentralized and sustainable energy sources as catalyst for much-needed social infrastructure development through the creation of Renewable Energy Business Incubators, creative lending strategies, NGO partnerships and shifting energy-distribution responsibilities. These changes will stimulate grassroots economies in the country, develop large quantities of much needed clean water, maintain acceptable standards of sanitation and improve the health and wellbeing of Nigerian communities. The proposed strategies are specific to the Nigerian context; however, the authors suggest that the same or similar strategies may provide energy and social infrastructure development solutions to other developing countries as well.

  17. Thermophotovoltaic Energy Conversion Development Program

    Science.gov (United States)

    Shukla, Kailash; Doyle, Edward; Becker, Frederick

    1998-01-01

    Completely integrated thermophotovoltaic (TPV) power sources in the range of 100 to 500 watts are being developed. The technical approach taken in this project focuses on optimizing the integrated performance of the primary subsystems in order to yield high energy conversion efficiency and cost effectiveness. An important aspect of the approach is the use of a narrow band fibrous emitter radiating to a bandgap matched photovoltaic array to minimize thermal and optical recuperation requirements, as well as the non-recoverable heat losses. For the prototype system, fibrous ytterbia emitters radiating in a narrow band centered at 980 nm are matched with high efficiency silicon photoconverters. The integrated system includes a dielectric stack filter for optical energy recovery and a ceramic recuperator for thermal energy recovery. The prototype TPV system uses a rapid mix distributed fuel delivery system with controlled feeding of the fuel and heated air into a flame at the surface of the emitter. This makes it possible to operate at air preheat temperatures well above the auto-ignition temperature of the fuel thereby substantially increasing the system efficiency. The system has been operated with air preheat temperatures up to 1367 K and has produced a uniform narrow band radiation over the surface of the emitter with this approach. The design of the system is described and test data for the system and some of the key components are presented. The results from a system model, which show the impact of various parameters on system performance, are also discussed.

  18. Clean air in the Anthropocene.

    Science.gov (United States)

    Lelieveld, Jos

    2017-08-24

    In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt "clean air" as a sustainable development goal.

  19. Achieving cheap clean energy for all in the 21^st Century?

    Science.gov (United States)

    Gupta, Rajan

    2006-11-01

    Energy is essential for modern life and is a critical resource that we take for granted. Unfortunately, we are increasingly confronted by many unsettling questions: Is there enough cheap oil and gas remaining and should we start changing our life styles towards energy efficiency? What will be the price of oil and gas next year and will we face shortages? Are rising prices reflective of greed and manipulation or geopolitics or of real constraints? Will renewable sources provide a significant fraction of our energy needs? Is global warming already happening and is it a result of our ``addiction to oil''? If the answer to these is ``yes'', then what can we, as individuals, do to help ourselves, the nation, and the world? This talk will attempt to answer these questions by examining the global oil, gas and other resources, emerging constraints and opportunities, and geopolitics.

  20. The effects of electrode cleaning and conditioning on the performance of high-energy, pulsed-power devices

    Energy Technology Data Exchange (ETDEWEB)

    Cuneo, M.E.

    1998-09-01

    High-energy pulsed-power devices routinely access field strengths above those at which broad-area, cathode-initiated, high-voltage vacuum-breakdown occur (> 1e7--3e7 V/m). Examples include magnetically-insulated-transmission-lines and current convolutes, high-current-density electron and ion diodes, high-power microwave devices, and cavities and other structures for electrostatic and RF accelerators. Energy deposited in anode surfaces may exceed anode plasma thermal-desorption creation thresholds on the time-scale of the pulse. Stimulated desorption by electron or photon bombardment can also lead to plasma formation on electrode or insulator surfaces. Device performance is limited above these thresholds, particularly in pulse length and energy, by the formation and expansion of plasmas formed primarily from electrode contaminants. In-situ conditioning techniques to modify and eliminate the contaminants through multiple high-voltage pulses, low base pressures, RF discharge cleaning, heating, surface coatings, and ion- and electron-beam surface treatment allow access to new regimes of performance through control of plasma formation and modification of the plasma properties. Experimental and theoretical progress from a variety of devices and small scale experiments with a variety of treatment methods will be reviewed and recommendations given for future work.

  1. The role of international business in clean technology transfer and development

    NARCIS (Netherlands)

    Kolk, A.

    2015-01-01

    While research has generated very useful insights, usually at the macro level, regarding the multifaceted nature of environmental innovation and regulation, the characteristics and drivers peculiar to international companies have remained underexposed in the policy-related literature on clean

  2. Energy for road passenger transport and sustainable development: assessing policies and goals interactions

    DEFF Research Database (Denmark)

    Meza, Maria Josefina Figueroa; Ribeiro, Suzana Kahn

    2013-01-01

    Development that is sustainable requires an operational, efficient and safe transportation system fueled by clean, low-carbon, secure and affordable energy. The energy used in road passenger transport enables social and economic development and is the target of interventions to fight pressing urban...... environmental problems, energy security concerns and dangerous climate change. This review explores a systematic approach to describe interactions documented in the literature, between policies targeting energy use in road passenger transport to reduce petroleum consumption and greenhouse gas emissions...... measures and goals as exemplified in this approach can help inform practical transport energy policy that better match an agenda for sustainable development....

  3. Within- and between-session reliability of power, force, and rate of force development during the power clean.

    Science.gov (United States)

    Comfort, Paul

    2013-05-01

    Although there has been extensive research regarding the power clean, its application to sports performance, and use as a measure of assessing changes in performance, no research has determined the reliability assessing the kinetics of the power clean across testing session. The aim of this study was to determine the within- and between-session reliability of kinetic variables during the power clean. Twelve professional rugby league players (age 24.5 ± 2.1 years; height 182.86 ± 6.97 cm; body mass 92.85 ± 5.67 kg; 1 repetition maximum [1RM] power clean 102.50 ± 10.35 kg) performed 3 sets of 3 repetitions of power cleans at 70% of their 1RM, while standing on a force plate, to determine within-session reliability and repeated on 3 separate occasions to determine reliability between sessions. Intraclass correlation coefficients revealed a high reliability within- (r ≥ 0.969) and between-sessions (r ≥ 0.988). Repeated-measures analysis of variance showed no significant difference (p > 0.05) in peak vertical ground reaction force, rate of force development, and peak power between sessions, with small standard error of the measurements and smallest detectable differences for each kinetic variable (3.13 and 8.68 N; 84.39 and 233.93 N·s; 24.54 and 68.01 W, respectively). Therefore, to identify a meaningful change in performance, the strength and conditioning coach should look for a change in peak force ≥8.68 N, rate of force development ≥24.54 N·s, and a change in peak power ≥68.01 W to signify an adaptive response to training, which is greater than the variance between sessions, in trained athletes proficient at performing the power clean.

  4. Clean Firetube Boiler Waterside Heat Transfer Surfaces, Energy Tips: STEAM, Steam Tip Sheet #7 (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-04-01

    A steam energy tip sheet for the Advanced Manufacturing Office (AMO). The prevention of scale formation in firetube boilers can result in substantial energy savings. Scale deposits occur when calcium, magnesium, and silica, commonly found in most water supplies, react to form a continuous layer of material on the waterside of the boiler heat exchange tubes. Scale creates a problem because it typically possesses a thermal conductivity, an order of magnitude less than the corresponding value for bare steel. Even thin layers of scale serve as an effective insulator and retard heat transfer. The result is overheating of boiler tube metal, tube failures, and loss of energy efficiency. Fuel consumption may increase by up to 5% in firetube boilers because of scale. The boilers steam production may be reduced if the firing rate cannot be increased to compensate for the decrease in combustion efficiency. Energy losses as a function of scale thickness and composition are given. Any scale in a boiler is undesirable. The best way to deal with scale is not to let it form in the first place. Prevent scale formation by: (1) Pretreating of boiler makeup water (using water softeners, demineralizers, and reverse osmosis to remove scale-forming minerals); (2) Injecting chemicals into the boiler feedwater; and (3) Adopting proper boiler blowdown practices.

  5. A Transforming Electricity System: Understanding the Interactions Between Clean Energy Technologies, Markets, and Policies

    Science.gov (United States)

    Mooney, David

    The U.S. electricity system is currently undergoing a dramatic transformation. State-level renewable portfolio standards, abundant natural gas at low prices, and rapidly falling prices for wind and solar technologies are among the factors that have ushered in this transformation. With objective, rigorous, technology-neutral analysis, NREL aims to increase the understanding of energy policies, markets, resources, technologies, and infrastructure and their connections with economic, environmental, and security priorities. The results of these analyses are meant to inform R&D, policy, and investment decisions as energy-efficient and renewable energy technologies advance from concept to commercial application to market penetration. This talk will provide an overview of how NREL uses high-fidelity data, deep knowledge of energy technology cost and performance, and advanced models and tools to provide the information needed to ensure this transformation occurs economically, while maintaining system reliability. Examples will be explored and will include analysis of tax credit impacts on wind and solar deployment and power sector emissions, as well as analysis of power systems operations in the Eastern Interconnection under 30% wind and solar penetration scenarios. Invited speaker number 47185.

  6. Exploring Rare Earths supply constraints for the emerging clean energy technologies and the role of recycling

    DEFF Research Database (Denmark)

    Habib, Komal; Wenzel, Henrik

    The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a broader implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along...

  7. Exploring Rare Earths supply constraints for the emerging clean energy technologies and the role of recycling

    DEFF Research Database (Denmark)

    Habib, Komal; Wenzel, Henrik

    2014-01-01

    The dependency on critical resources like Rare Earth Elements (REEs) has been pronounced as a potential barrier to a wider implementation of emerging renewable energy technologies. This study explores the dependency of such technologies especially wind turbines and electric vehicles along...

  8. Selective solar absorbers: A cost effective solution for access to clean energy in rural Africa

    CSIR Research Space (South Africa)

    Katumba, G

    2008-11-01

    Full Text Available by inadequate grid electricity infrastructure. This state of affairs has culminated in massive deforestation and desertification of some parts of Africa. One technology solution is to harness the energy from the sun through solar absorbers. This has applications...

  9. Development and use of microbial-based cleaning products (MBCPs): Current issues and knowledge gaps.

    Science.gov (United States)

    Arvanitakis, George; Temmerman, Robin; Spök, Armin

    2017-12-19

    Cleaning products containing microbes as active ingredients are becoming increasingly prevalent as an alternative to chemical-based cleaning products. These microbial-based cleaning products (MBCPs) are being used in domestic and commercial settings (i.e., households and businesses) and institutional settings (e.g., hospitals, schools, etc.), in a variety of cleaning activities (hard surface cleaning, odour control, degreasing, septic tank treatments, etc.). They are typically described as "environmentally friendly" and "non-toxic". Publicly available information sources (scientific literature, patent databases, commercial websites) were searched for information on microbial species contained in MBCPs, their mode of action, cleaning applications in which they are used, and their potential impacts on human health and the environment. Although information was found providing a broad indication of microbial genera/species used, information on specific species/strains and quantities produced and sold is generally lacking. This makes it difficult to conduct a meaningful examination of any risks to human health and the environment from the production and use of MBCPs and to determine how effective current policies and regulatory frameworks are in addressing these issues. These and other challenges were addressed at an international workshop in Ottawa, Canada in June 2013 by a number of stakeholders, including industry, government, academic and non-governmental organizations. Copyright © 2017. Published by Elsevier Ltd.

  10. Benefits of clean development mechanism application on the life cycle assessment perspective: a case study in the palm oil industry.

    Science.gov (United States)

    Chuen, Onn Chiu; Yusoff, Sumiani

    2012-03-01

    This study performed an assessment on the beneficial of the Clean Development Mechanism (CDM) application on waste treatment system in a local palm oil industry in Malaysia. Life cycle assessment (LCA) was conducted to assess the environmental impacts of the greenhouse gas (GHG) reduction from the CDM application. Calculations on the emission reduction used the methodology based on AM002 (Avoided Wastewater and On-site Energy Use Emissions in the Industrial Sector) Version 4 published by United Nations Framework Convention on Climate Change (UNFCC). The results from the studies showed that the introduction of CDM in the palm oil mill through conversion of the captured biogas from palm oil mill effluent (POME) treatment into power generation were able to reduce approximate 0.12 tonnes CO2 equivalent concentration (tCO2e) emission and 30 kW x hr power generation per 1 tonne of fresh fruit bunch processed. Thus, the application of CDM methodology on palm oil mill wastewater treatment was able to reduce up to 1/4 of the overall environment impact generated in palm oil mill.

  11. Development of a Stable TiO2 Nanocomposite Self-Cleaning Coating for Outdoor Applications

    Directory of Open Access Journals (Sweden)

    F. Madidi

    2016-01-01

    Full Text Available A convenient and low-cost approach for the elaboration of a stable superhydrophobic coating is reported, involving the use of TiO2 nanoparticles via the spray coating method. This method can be used for preparing self-cleaning superhydrophobic coatings on large areas for different kinds of substrates. The synergistic effect of the micro/nanobinary scale roughness was produced by a multilayer RTV SR/TiO2 composite. The influence of the nanofiller concentration in a specific frequency range (40 Hz to 2 MHz on the dielectric behavior was analyzed as well. It was found that the real relative permittivity (εr′ increases as the nanofiller concentration increases. Superhydrophobic behavior is analyzed by contact angle measurements, scanning electron microscopy (SEM, and profilometer. The stability of the developed coating also has been evaluated in terms of immersion in various aqueous solutions, heating, adhesion, and exposure to UV irradiation, and the results showed good stability against these factors. The coating retained its superhydrophobicity after several days of immersion in solutions of different pH levels (2, 4, 6, and 12 and different conductivities. In addition, they also exhibited exceptional stability against UV radiation and heating, as well as good mechanical stability.

  12. Knowledge Spillovers from Clean and Dirty Technologies

    OpenAIRE

    Martin, R; Dechezlepr?tre, A; Mohnen, M

    2014-01-01

    How much should governments subsidize the development of new clean technologies? We use patent citation data to investigate the relative intensity of knowledge spillovers in clean and dirty technologies in two technological fields: energy production and transportation. We introduce a new methodology that takes into account the whole history of patent citations to capture the indirect knowledge spillovers generated by patents. We find that conditional on a wide range of potential confounding f...

  13. Clean energy stakes too important for nuclear to be blown off course

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, John [nuclear 24, St George' s Redditch (United Kingdom)

    2017-10-15

    New figures indicating that offshore wind farms could be built for a record low price in the UK - and produce cheaper electricity than nuclear - sent an initial chill through the nuclear energy industry. Wind lobbyists were quick to trumpet the figures from the Department for Business, Energy and Industrial Strategy (UK), which were unveiled following a 'contracts for difference' auction for subsidies. The spokesperson's comments were more astonishing than the data that emerged from the report. As the chief executive of the Nuclear Industry Association (NIA), Tom Greatrex, pointed out: ''Reports that the cost of future offshore wind projects may fall (if they are constructed) is good news, but as the UK renewable trade body, informed commentators and industry experts have made clear, one technology alone can't solve the UK's power challenge''.

  14. Vacancies in functional materials for clean energy storage and harvesting: the perfect imperfection.

    Science.gov (United States)

    Li, Guowei; Blake, Graeme R; Palstra, Thomas T M

    2017-03-21

    Vacancies exist throughout nature and determine the physical properties of materials. By manipulating the density and distribution of vacancies, it is possible to influence their physical properties such as band-gap, conductivity, magnetism, etc. This can generate exciting applications in the fields of water treatment, energy storage, and physical devices such as resistance-change memories. In this review, we focus on recent progress in vacancy engineering for the design of materials for energy harvesting applications. A brief discription of the concept of vacancies, the way to create and control them, as well as their fundamental properties, is first provided. Then, emphasis is placed on the strategies used to tailor vacancies for metal-insulator transitions, electronic structures, and introducing magnetism in non-magnetic materials. Finally, we present representative applications of different structures with vacancies as active electrode materials of lithium or sodium ion batteries, catalysts for water splitting, and hydrogen evolution.

  15. CRACOW CLEAN FOSSIL FUELS AND ENERGY EFFICIENCY PROGRAM. PROGRESS REPORT, OCTOBER 1998

    Energy Technology Data Exchange (ETDEWEB)

    PIERCE,B.

    1998-10-01

    Since 1990 the US Department of Energy has been involved in a program aimed at reducing air pollution caused by small, coal-fired sources in Poland. The program focuses on the city of Cracow and is designed so that results will be applicable and extendable to the entire region. This report serves both as a review of the progress which has been made to date in achieving the program objectives and a summary of work still in progress.

  16. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  17. VT Renewable Energy Sites - Renewable Energy Professionals

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The Renewable Energy Atlas of Vermont and this dataset were created to assist town energy committees, the Clean Energy Development Fund and other...

  18. Modernization perspectives of the Sao Paulo State sugarcane sector through the clean development mechanism and potential carbon credits generation

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Lora, Beatriz Acquaro [Brazilian Reference Center on Biomass (CENBIO/USP), SP (Brazil)], Emails: suani@iee.usp.br, blora@iee.usp.br

    2009-07-01

    The world-wide necessity of greenhouse gases mitigation and the intergovernmental mobilization to reach the objectives established by the United Nations Framework on Climate Change (UNFCCC) has opened space for the renewable energy increase in the world's energy matrix. In Brazil, the solid sugarcane industry currently develops business in the scope of the clean development mechanism (CDM) under the Kyoto's Protocol, by means of 18 biomass-based projects, with renewable energy generation through bagasse cogeneration at 20 Sao Paulo State's sugarcane production units. The projects activity's consists of increasing the efficiency in the bagasse cogeneration facilities, qualifying the units to sell surplus electricity to the national grid, avoiding the dispatch of the same amount of energy produced by fossil-fuelled thermal plants to that grid. The reduced emissions are measured in carbon equivalent and can be converted into negotiable credits. The objective of this study was to build a 'state of art' scenario, calculating the potential emissions reduction through CDM projects for the sugarcane sector of Sao Paulo State, in which we consider the adherence of all the production units of the State to the CDM projects. The technological parameters used to elaborate the scenario were provided by the Sao Paulo State Government Bioenergy Special Commission and the baseline factor used of 0,268 tCO{sub 2}e/MWh was the adopted by the CDM projects in operation in the State. The sugarcane database for the calculations was the production ranking provided by UNICA for the 2006/2007 season. In the most conservative scenario (40 bar bagasse) 131 units could generate 607 MWm of surplus power avoiding the emission of 1.404.593 tCO{sub 2}e/year. For the 92 bar (bagasse and straw) scenario, the units could generate 3.055 MWm of surplus power avoiding 12.199.443 tCO{sub 2}e/year. (author)

  19. Hydrogen as a clean energy option; Option Wasserstoff als sauberer Energietraeger

    Energy Technology Data Exchange (ETDEWEB)

    Newi, G. [Consulectra Unternehmensberatung GmbH, Hamburg (Germany)

    1998-06-01

    Many visionary action programmes are based on the conviction that hydrogen produced from renewable, environmentally sustainable resources is the chemical energy carrier of the future. In Hamburg there have been various pilot projects over the past ten years which deal explicitly with problems of infrastructure relating to the integration of renewable energy sources in the existing energy supply. One such example is the fuel cell block heating station in Hamburg Behrenfeld which has been supplying residential buildings for some time now. Another is a practice-oriented pilot project involving a hydrogen-fuelled PAFC with 220 kW thermal and 200 kW electrical power output. The hydrogen is supplied by a 60 m-3 LH{sub 2} tank, the first of its kind to be approved by the authorities and accepted by the public. [Deutsch] Viele visionaere Aktionsprogramme sehen aus dauerhaft umweltvertraeglichen Quellen erzeugten Wasserstoff als chemischen Energietraeger der Zukunft. In Hamburg gibt es seit rd. 10 Jahren verschiedene Pilotprojekte, die sich insbesondere mit Fragen der Infrastruktur zur Integration erneuerbarer Energiequellen in die bestehende Energieversorgung befassen. Ein Beispiel ist das in Hamburg-Behrenfeld seit einiger Zeit betriebene Brennstoffzellen-Blockheizkraftwerk zur Versorgung von Wohngebaeuden. Als praxisbezogenes Pilotprojekt wird u.a. eine H{sub 2}-versorgte PAFC mit 220 kW thermischer und 200 kW elektrischer Leistung betrieben. Die Wasserstoffversorgung aus einem oberirdischen 60 m{sup 3} LH{sub 2}-Tank wurde erstmals in dieser Anwendungsform behoerdlich genehmigt und von der Oeffentlichkeit akzeptiert. (orig./MSK)

  20. Design and performance of a clean and economic power supply targeting energy independence and operative security

    Energy Technology Data Exchange (ETDEWEB)

    Mushtaha, Mohammed

    2012-07-01

    Stand alone wind-diesel power systems address the major issues for the supply of remotely located consumers or the provision of enhanced energy independence. The specific configuration considered here comprises a prior wind turbine driven induction generator and a supplementary synchronous generator driven by a combustion engine, the latter caring for frequency control and reactive power balance. An accumulator-bank and a hydrogen storage path consisting of an electrolyzer and a hydrogen storage tank are added as short-term and long-term storage devices - respectively - in order to adjust volatile wind generation and varying load demand. The hydrogen re-conversion to electricity is achieved by design of the drive of the synchronous generator as a dual-fuel engine, fed with stored hydrogen primarily, and with diesel oil in case of the rare event of hydrogen storage emptiness. An elementary waste heat recovery from engine cooling water and from exhaust gases makes the system even more energy efficient and environment friendly. For proper sizing of the particular system components under minimization of the life cycle cost - which are composed of the initial installation cost, the replacement cost, the operation and maintenance cost as well as the remaining fuel cost - the meta-heuristic computational method of Particle Swarm Optimization (PSO) was applied. The crucial task of intelligently managing the energy storage strategy depending on their actual states of charge and the current excess power under a given load profile was solved by a fuzzy system and a subsequent time scheduler, the latter providing definite set-point steps for definite periods of time to the electrolyzer in order to achieve smooth and conservative operation. The concrete design and performance of the proposed system structure is shown with the two relevant application examples of independent electricity supply of the main hospital in Gaza-Strip, Palestine, and a remotely located dairy farm. For