WorldWideScience

Sample records for clay mineral formation

  1. Impact-Induced Clay Mineral Formation and Distribution on Mars

    Science.gov (United States)

    Rivera-Valentin, E. G.; Craig, P. I.

    2015-01-01

    Clay minerals have been identified in the central peaks and ejecta blankets of impact craters on Mars. Several studies have suggested these clay minerals formed as a result of impact induced hydrothermalism either during Mars' Noachian era or more recently by the melting of subsurface ice. Examples of post-impact clay formation is found in several locations on Earth such as the Mjolnir and Woodleigh Impact Structures. Additionally, a recent study has suggested the clay minerals observed on Ceres are the result of impact-induced hydrothermal processes. Such processes may have occurred on Mars, possibly during the Noachian. Distinguishing between clay minerals formed preor post-impact can be accomplished by studying their IR spectra. In fact, showed that the IR spectra of clay minerals is greatly affected at longer wavelengths (i.e. mid-IR, 5-25 micron) by impact-induced shock deformation while the near-IR spectra (1.0-2.5 micron) remains relatively unchanged. This explains the discrepancy between NIR and MIR observations of clay minerals in martian impact craters noted. Thus, it allows us to determine whether a clay mineral formed from impact-induced hydrothermalism or were pre-existing and were altered by the impact. Here we study the role of impacts on the formation and distribution of clay minerals on Mars via a fully 3-D Monte Carlo cratering model, including impact- melt production using results from modern hydrocode simulations. We identify regions that are conducive to clay formation and the location of clay minerals post-bombardment.

  2. Clay mineral formation and transformation in rocks and soils

    Science.gov (United States)

    Eberl, D.D.

    1983-01-01

    Three mechanisms for clay mineral formation (inheritance, neoformation, and transformation) operating in three geological environments (weathering, sedimentary, and diagenetic-hydrothermal) yield nine possibilities for the origin of clay minerals in nature. Several of these possibilities are discussed in terms of the rock cycle. The mineralogy of clays neoformed in the weathering environment is a function of solution chemistry, with the most dilute solutions favoring formation of the least soluble clays. After erosion and transportation, these clays may be deposited on the ocean floor in a lateral sequence that depends on floccule size. Clays undergo little reaction in the ocean, except for ion exchange and the neoformation of smectite; therefore, most clays found on the ocean floor are inherited from adjacent continents. Upon burial and heating, however, dioctahedral smectite reacts in the diagenetic environment to yield mixed-layer illite-smectite, and finally illite. With uplift and weathering, the cycle begins again. Refs.

  3. Towards an understanding of the role of clay minerals in crude oil formation, migration and accumulation

    Science.gov (United States)

    Wu, Lin Mei; Zhou, Chun Hui; Keeling, John; Tong, Dong Shen; Yu, Wei Hua

    2012-12-01

    This article reviews progress in the understanding of the role of clay minerals in crude oil formation, migration and accumulation. Clay minerals are involved in the formation of kerogen, catalytic cracking of kerogen into petroleum hydrocarbon, the migration of crude oil, and the continued change to hydrocarbon composition in underground petroleum reservoirs. In kerogen formation, clay minerals act as catalysts and sorbents to immobilize organic matter through ligand exchange, hydrophobic interactions and cation bridges by the mechanisms of Maillard reactions, polyphenol theory, selective preservation and sorptive protection. Clay minerals also serve as catalysts in acid-catalyzed cracking of kerogen into petroleum hydrocarbon through Lewis and Brønsted acid sites on the clay surface. The amount and type of clay mineral affect the composition of the petroleum. Brønsted acidity of clay minerals is affected by the presence and state of interlayer water, and displacement of this water is a probable driver in crude oil migration from source rocks. During crude oil migration and accumulation in reservoirs, the composition of petroleum is continually modified by interaction with clay minerals. The clays continue to function as sorbents and catalysts even while they are being transformed by diagenetic processes. The detail of chemical interactions and reaction mechanisms between clay minerals and crude oil formation remains to be fully explained but promises to provide insights with broader application, including catalytic conversion of biomass as a source of sustainable energy into the future.

  4. Discussion on origin of clay minerals in outcropped sandstone from Lower Cretaceous Chengzihe Formation and Muling Formation in Jixi Basin

    Institute of Scientific and Technical Information of China (English)

    LIU Jianying; LIU Li; QU Xiyu

    2009-01-01

    Clay minerals in the outcropped sandstone from Lower Cretaceous Chengzihe Formation and Muling Formation in Jixi Basin were analyzed by X-ray diffraction. The results show that the clay minerals mainly consist of illite, kaollinite and illite/smectite, which can be divided into two types: kaolinite- and illite/smectite types. The outcropped sandstone occurred in middle diagenetic stage-A on the basis of the clay mineral composition. The development factor of the formation of kaolinite type clay mineral is caused mainly by the organic acid from the coal-bearing formation and mudstone during the diagenesis process in Lower Cretaceous Chengzihe Formation and Muling Formation in the Jixi Basin. The weak hydrodynamic force of sedimentary facies made the sandstone leaching condition poor, which is the reason forming the aggregation of clay minerals of the illite/smectite-and illite types.

  5. The formation of goethite and hydrated clay minerals on Mars

    Science.gov (United States)

    Huguenin, R. L.

    1974-01-01

    Laboratory studies reported by Huguenin (1973) on the kinetics and mechanism of the photostimulated oxidation of magnetic and preliminary laboratory data on the weathering of silicates, reported herein, are applied to Mars. Basalts in the Martian dark areas are predicted to alter to hydrated Fe(2 plus or minus) depleted clay minerals, minor goethite, and minor to trace amounts of transition metal oxides such as TiO2, MnO2, and Cr2O3 at a rate of 10 to the minus 1.5 plus or minus 1.5 micron/yr. Some Ca-Mg carbonates are also expected to be formed. The clay minerals are predicted to be more silica-rich than the silicate source material, SiO2 contents of 60% or higher being expected, and strongly depleted in Fe(2+). The oxygen, OH, and H2O contents of the bulk weathering product are predicted to be significantly greater than those of the dark-area source materials, whereas the relative bulk metal abundances should be the same.

  6. Catalysis of aluminosilicate clay minerals to the formation of the transitional zone gas

    Institute of Scientific and Technical Information of China (English)

    雷怀彦; 师育新; 关平; 房玄

    1997-01-01

    It has been shown that the major clay minerals of the biothermocatalytic transitional zone source rock are montmorillonite, illite/montmorillonite (I/M) interlayer mineral, illite, kaolinite and chlorite. Within the depth of the transitional zone, montmorillonite could convert to the I/M ordered interlayer mineral via the I/M disordered one, i.e. in the intercrystalline layer of montmorillonite, Al3+ replaces Si4+ abundantly, resulting in a surface charge imbalance and the occurrence of a surface acidity. By means of the pyridine analytic method, the surface acidity of these aluminosilicate clay minerals is measured. The catalysis of aluminosilicate clay minerals, such as montmorillonite, illite and kaolinite to the thermo-degraded gas formation of the transitional zone is simulated in the differential thermal analysis-gas chromatography system and the alcohol dehydration catalyzed by clay minerals is employed to discuss this catalytic mechanism. Experiments have shown that montmorillonite is the major

  7. CLAY MINERAL ASSEMBLAGES AND THEIR IMPLICATIONS IN SHIHEZI FORMATION FROM THE HUAIBEI COAL-BEARING STRATA

    Institute of Scientific and Technical Information of China (English)

    黄文辉; 许光泉; 刑军

    1998-01-01

    Clay mineral assemblages in Shihezi Formation of Huaibei coal-bearing strata are determined by X-ray diffraction and Differential Thermal Analyzer, that is restated to the sedimentfaces and climatic changes in the source area, and to a lesser extent, alterations during burial diagenesis. In the Upper Shihezi Formation, the clay fraction is dominated by kaolinite in norther npart of the coal field, which was formed in alluvial sediment environment. But in the South ofHuaibei coal field, the clay mineral assemblage consists of mainly illite that reflects the influenceof sea water. The predominately kaolinite and sederite composition of the clay fraction in the lower Shihezi Formation sediments documents less relief and gentle erosion of kaolinite rich soils developing under warm source area. In the lower part of Shihezi Formation, some chlorite is detected, which suggests transformation of illite or kaolinite to chlorite under conditions of burial diagenesis.

  8. Role of clay minerals in the formation of atmospheric aggregates of Saharan dust

    Science.gov (United States)

    Cuadros, Javier; Diaz-Hernandez, José L.; Sanchez-Navas, Antonio; Garcia-Casco, Antonio

    2015-11-01

    Saharan dust can travel long distances in different directions across the Atlantic and Europe, sometimes in episodes of high dust concentration. In recent years it has been discovered that Saharan dust aerosols can aggregate into large, approximately spherical particles of up to 100 μm generated within raindrops that then evaporate, so that the aggregate deposition takes place most times in dry conditions. These aerosol aggregates are an interesting phenomenon resulting from the interaction of mineral aerosols and atmospheric conditions. They have been termed "iberulites" due to their discovery and description from aerosol deposits in the Iberian Peninsula. Here, these aggregates are further investigated, in particular the role of the clay minerals in the aggregation process of aerosol particles. Iberulites, and common aerosol particles for reference, were studied from the following periods or single dust events and locations: June 1998 in Tenerife, Canary Islands; June 2001 to August 2002, Granada, Spain; 13-20 August 2012, Granada; and 1-6 June 2014, Granada. Their mineralogy, chemistry and texture were analysed using X-ray diffraction, electron microprobe analysis, SEM and TEM. The mineral composition and structure of the iberulites consists of quartz, carbonate and feldspar grains surrounded by a matrix of clay minerals (illite, smectite and kaolinite) that also surrounds the entire aggregate. Minor phases, also distributed homogenously within the iberulites, are sulfates and Fe oxides. Clays are apparently more abundant in the iberulites than in the total aerosol deposit, suggesting that iberulite formation concentrates clays. Details of the structure and composition of iberulites differ from descriptions of previous samples, which indicates dependence on dust sources and atmospheric conditions, possibly including anthropic activity. Iberulites are formed by coalescence of aerosol mineral particles captured by precursor water droplets. The concentration of

  9. Clay Mineral: Radiological Characterization

    Science.gov (United States)

    Cotomácio, J. G.; Silva, P. S. C.; Mazzilli, B. P.

    2008-08-01

    Since the early days, clays have been used for therapeutic purposes. Nowadays, most minerals applied as anti-inflammatory, pharmaceutics and cosmetic are the clay minerals that are used as the active ingredient or, as the excipient, in formulations. Although their large use, few information is available in literature on the content of the radionuclide concentrations of uranium and thorium natural series and 40K in these clay minerals. The objective of this work is to determine the concentrations of 238U, 232Th, 226Ra, 228Ra, 210Pb and 40K in commercial samples of clay minerals used for pharmaceutical or cosmetic purposes. Two kinds of clays samples were obtained in pharmacies, named green clay and white clay. Measurement for the determination of 238U and 232Th activity concentration was made by alpha spectrometry and gamma spectrometry was used for 226Ra, 228Ra, 210Pb and 40K determination. Some physical-chemical parameters were also determined as organic carbon and pH. The average activity concentration obtained was 906±340 Bq kg-1 for 40K, 40±9 Bq kg-1 for 226Ra, 75±9 Bq kg-1 for 228Ra, 197±38 Bq kg-1 for 210Pb, 51±26 Bq kg-1 for 238U and 55±24 Bq kg-1 for 232Th, considering both kinds of clay.

  10. Clay Minerals: Adsorbophysical Properties

    International Nuclear Information System (INIS)

    The structure and features of surfaces of clay minerals (kaolin, montmorillonite, etc) have an important scientific and practical value. On the surface the interrelation of processes at electronic, atomic and molecular levels is realized. Availability of mineral surface to external influences opens wide scientific and technical opportunities of use of the surface phenomena, so the research of crystal-chemical and crystal-physical processes in near-surface area of clay minerals is important. After long term researches of gas-clay mineral system in physical fields the author has obtained experimental and theoretical material contributing to the creation of the surface theory of clays. A part of the researches is dedicated to studying the mechanism of crystal-chemical and crystal-physical processes in near surface area of clay mineral systems, selectivity of the surface centers to interact with gas phase molecules and adsorbophysical properties. The study of physical and chemical properties of fine clay minerals and their modification has a decisive importance for development of theory and practice of nanotechnologies: they are sorbents, membranes, ceramics and other materials with required electronic features

  11. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks

    Science.gov (United States)

    Sun, Vivian Z.; Milliken, Ralph E.

    2015-12-01

    Clay minerals on Mars have commonly been interpreted as the remnants of pervasive water-rock interaction during the Noachian period (>3.7 Ga). This history has been partly inferred by observations of clays in central peaks of impact craters, which often are presumed uplifted from depth. However, combined mineralogical and morphological analyses of individual craters have shown that some central peak clays may represent post-impact, possibly authigenic processes. Here we present a global survey of 633 central peaks to assess their hydrous minerals and the prevalence of uplifted, detrital, and authigenic clays. Central peak regions are examined using high-resolution Compact Reconnaissance Imaging Spectrometer for Mars and High Resolution Imaging Science Experiment data to identify hydrous minerals and place their detections in a stratigraphic and geologic context. We find that many occurrences of Fe/Mg clays and hydrated silica are associated with potential impact melt deposits. Over 35% of central peak clays are not associated with uplifted rocks; thus, caution must be used when inferring deeper crustal compositions from surface mineralogy of central peaks. Uplifted clay-bearing rocks suggest the Martian crust hosts clays to depths of at least 7 km. We also observe evidence for increasing chloritization with depth, implying the presence of fluids in the upper portions of the crust. Our observations are consistent with widespread Noachian/Early Hesperian clay formation, but a number of central peak clays are also suggestive of clay formation during the Amazonian. These results broadly support current paradigms of Mars' aqueous history while adding insight to global crustal and diagenetic processes associated with clay mineral formation and stability.

  12. Lithologic Control on Secondary Clay Mineral Formation in the Valles Caldera, New Mexico

    Science.gov (United States)

    Caylor, E.; Rasmussen, C.; Dhakal, P.

    2015-12-01

    Understanding the transformation of rock to soil is central to landscape evolution and ecosystem function. The objective of this study was to examine controls on secondary mineral formation in a forested catchment in the Catalina-Jemez CZO. We hypothesized landscape position controls the type of secondary minerals formed in that well-drained hillslopes favor Si-poor secondary phases such as kaolinite, whereas poorly drained portions of the landscape that collect solutes from surrounding areas favor formation of Si-rich secondary phases such as smectite. The study focused on a catchment in Valles Caldera in northern New Mexico where soils are derived from a mix of rhyolitic volcanic material, vegetation includes a mixed conifer forest, and climate is characterized by a mean annual precipitation of ~800 mm yr-1 and mean annual temperature of 4.5°C. Soils were collected at the soil-saprolite boundary from three landscape positions, classified as well drained hillslope, poorly drained convergent area, and poorly drained hill slope. Clay fractions were isolated and analyzed using a combination of quantitative and qualitative x-ray diffraction (XRD) analyses and thermal analysis. Quantitative XRD of random powder mounts indicated the presence of both primary phases such as quartz, and alkali and plagioclase feldspars, and secondary phases that include illite, Fe-oxyhydroxides including both goethite and hematite, kaolinite, and smectite. The clay fractions were dominated by smectite ranging from 36-42%, illite ranging from 21-35%, and kaolinite ranging from 1-8%. Qualitative XRD of oriented mounts confirmed the presence of smectite in all samples, with varying degrees of interlayering and interstratification. In contrast to our hypothesis, results indicated that secondary mineral assemblage was not strongly controlled by landscape position, but rather varied with underlying variation in lithology. The catchment is underlain by a combination of porphorytic rhyolite and

  13. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life

    Science.gov (United States)

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D.; Sears, S. Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-01-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  14. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life.

    Science.gov (United States)

    Schumann, Dirk; Hartman, Hyman; Eberl, Dennis D; Sears, S Kelly; Hesse, Reinhard; Vali, Hojatollah

    2012-06-01

    The potential role of clay minerals in the abiotic origin of life has been the subject of ongoing debate for the past several decades. At issue are the clay minerals found in a class of meteorites known as carbonaceous chondrites. These clay minerals are the product of aqueous alteration of anhydrous mineral phases, such as olivine and orthopyroxene, that are often present in the chondrules. Moreover, there is a strong correlation in the occurrence of clay minerals and the presence of polar organic molecules. It has been shown in laboratory experiments at low temperature and ambient pressure that polar organic molecules, such as the oxalate found in meteorites, can catalyze the crystallization of clay minerals. In this study, we show that oxalate is a robust catalyst in the crystallization of saponite, an Al- and Mg-rich, trioctahedral 2:1 layer silicate, from a silicate gel at 60°C and ambient pressure. High-resolution transmission electron microscopy analysis of the saponite treated with octadecylammonium (n(C)=18) cations revealed the presence of 2:1 layer structures that have variable interlayer charge. The crystallization of these differently charged 2:1 layer silicates most likely occurred independently. The fact that 2:1 layer silicates with variable charge formed in the same gel has implications for our understanding of the origin of life, as these 2:1 clay minerals most likely replicate by a mechanism of template-catalyzed polymerization and transmit the charge distribution from layer to layer. If polar organic molecules like oxalate can catalyze the formation of clay-mineral crystals, which in turn promote clay microenvironments and provide abundant adsorption sites for other organic molecules present in solution, the interaction among these adsorbed molecules could lead to the polymerization of more complex organic molecules like RNA from nucleotides on early Earth.

  15. Clay minerals in pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Tateo, F. [Consiglio Nazionale delle Ricerche, Istituto di Ricerca sulle Argille, Tito Scalo, PZ (Italy)

    2000-07-01

    Clay minerals are fundamental constituents of life, not only as possible actors in the development of life on the Earth (Cairns-Smith and Hartman, 1986), but mainly because they are essential constituents of soils, the interface between the solid planet and the continental biosphere. Many, many authors have devoted themselves to the study of clays and clay minerals since the publication of the early modern studies by Grim (1953, 1962) and Millot (1964). In those years two very important associations were established in Europe (Association Internationale pour l'Etude des Argiles, AIPEA) and in the USA (Clay Mineral Society, CMS). The importance of these societies is to put together people that work in very different fields (agronomy, geology, geochemistry, industry, etc.), but with a common language (clays), very useful in scientific work. Currently excellent texts are being published, but introductory notes are also available on the web (Schroeder, 1998).

  16. Clay Minerals Deposit of Halakabad (Sabzevar- Iran)

    OpenAIRE

    Seyed Mohammad Hashemi

    2012-01-01

    Clay minerals are expanded in south of Sabzevar. They are identified with light color in the filed. The XRD and XRF chemical and mineralogical studies on the Clay minerals indicated that their main clay minerals are Kaolinite, Illite and Dickite. Pyrophyllite is minor clay mineral. Quartz and Sanidine non clay minerals are present with clay minerals .Ratio of Al2O3 is about 40 per cent, it is very good for industrial minerals .Volcanic rocks are origin clay minerals .Their composition are bas...

  17. Climatic control on clay mineral formation: Evidence from weathering profiles developed on either side of the Western Ghats

    Indian Academy of Sciences (India)

    R Deepthy; S Balakrishnan

    2005-10-01

    Many physico-chemical variables like rock-type,climate,topography and exposure age affect weathering environments.In the present study,an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering pro files in west coast of India,which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (> 200 cm rainfall)are studied using X-ray diffraction technique.In the west coast,1:1 clays (kaolinite)and Fe –Al oxides (gibb-site/goethite)are dominant clay minerals in the weathering pro files while 2:1 clay minerals are absent or found only in trace amounts.Weathering pro files in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite.Fe –Al oxides are either less or absent in clay fraction.The kaolinite –smectite interstrati fied mineral in Banasandra pro files are formed due to transformation of smectites to kaolinite,which is indicative of a humid paleo-climate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type.Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering.Mineral alteration reactions proceed through different pathways in water rich and water poor environments.

  18. Clay minerals and sedimentary basin history

    OpenAIRE

    Merriman, Richard J.

    2005-01-01

    Clay minerals in the mud and soil that coat the Earth's surface are part of a clay cycle that breaks down and creates rock in the crust. Clays generated by surface weathering and shallow diagenetic processes are transformed into mature clay mineral assemblages in the mudrocks found in sedimentary basins. During metamorphism, the release of alkali elements and boron from clay minerals generates magmas that are subsequently weathered and recycled, representing the magma-to-mud pathway of the cl...

  19. Recent advances in clay mineral-containing nanocomposite hydrogels.

    Science.gov (United States)

    Zhao, Li Zhi; Zhou, Chun Hui; Wang, Jing; Tong, Dong Shen; Yu, Wei Hua; Wang, Hao

    2015-12-28

    Clay mineral-containing nanocomposite hydrogels have been proven to have exceptional composition, properties, and applications, and consequently have attracted a significant amount of research effort over the past few years. The objective of this paper is to summarize and evaluate scientific advances in clay mineral-containing nanocomposite hydrogels in terms of their specific preparation, formation mechanisms, properties, and applications, and to identify the prevailing challenges and future directions in the field. The state-of-the-art of existing technologies and insights into the exfoliation of layered clay minerals, in particular montmorillonite and LAPONITE®, are discussed first. The formation and structural characteristics of polymer/clay nanocomposite hydrogels made from in situ free radical polymerization, supramolecular assembly, and freezing-thawing cycles are then examined. Studies indicate that additional hydrogen bonding, electrostatic interactions, coordination bonds, hydrophobic interaction, and even covalent bonds could occur between the clay mineral nanoplatelets and polymer chains, thereby leading to the formation of unique three-dimensional networks. Accordingly, the hydrogels exhibit exceptional optical and mechanical properties, swelling-deswelling behavior, and stimuli-responsiveness, reflecting the remarkable effects of clay minerals. With the pivotal roles of clay minerals in clay mineral-containing nanocomposite hydrogels, the nanocomposite hydrogels possess great potential as superabsorbents, drug vehicles, tissue scaffolds, wound dressing, and biosensors. Future studies should lay emphasis on the formation mechanisms with in-depth insights into interfacial interactions, the tactical functionalization of clay minerals and polymers for desired properties, and expanding of their applications.

  20. A STUDY OF MECHANISM OF GLAZE FORMATION IN THE PROCESS OF BURNING GLAZED BRICK ON THE BASIS OF BEIDELLITE CLAY AND MINERAL COTTON WASTE PRODUCTS

    OpenAIRE

    Ye. V. Vdovina; V. Z. Abdrakhimov

    2011-01-01

    Problem statement. It is essential to establish the values of temperature coefficient of linear expansionof glaze and ceramic material containing beidellite clay and waste products of mineral cotton,and to examine the mechanism of glaze formation in the course of burning by means of infraredspectroscopy and electronic microscopy.Results. The formation of glaze of type ЩЛСО involves glass phase separation which precedescrystallization process.Conclusions. The study of thermoprocessed monoliths...

  1. Stable silicon isotope signatures of marine pore waters - Biogenic opal dissolution versus authigenic clay mineral formation

    Science.gov (United States)

    Ehlert, Claudia; Doering, Kristin; Wallmann, Klaus; Scholz, Florian; Sommer, Stefan; Grasse, Patricia; Geilert, Sonja; Frank, Martin

    2016-10-01

    Dissolved silicon isotope compositions have been analysed for the first time in pore waters (δ30SiPW) of three short sediment cores from the Peruvian margin upwelling region with distinctly different biogenic opal content in order to investigate silicon isotope fractionation behaviour during early diagenetic turnover of biogenic opal in marine sediments. The δ30SiPW varies between +1.1‰ and +1.9‰ with the highest values occurring in the uppermost part close to the sediment-water interface. These values are of the same order or higher than the δ30Si of the biogenic opal extracted from the same sediments (+0.3‰ to +1.2‰) and of the overlying bottom waters (+1.1‰ to +1.5‰). Together with dissolved silicic acid concentrations well below biogenic opal saturation, our collective observations are consistent with the formation of authigenic alumino-silicates from the dissolving biogenic opal. Using a numerical transport-reaction model we find that approximately 24% of the dissolving biogenic opal is re-precipitated in the sediments in the form of these authigenic phases at a relatively low precipitation rate of 56 μmol Si cm-2 yr-1. The fractionation factor between the precipitates and the pore waters is estimated at -2.0‰. Dissolved and solid cation concentrations further indicate that off Peru, where biogenic opal concentrations in the sediments are high, the availability of reactive terrigenous material is the limiting factor for the formation of authigenic alumino-silicate phases.

  2. Cation exchange and adsorption on clays and clay minerals

    OpenAIRE

    Ammann, Lars

    2003-01-01

    The specific surface area of a clay mineral comprises the external and internal surface area and, finally, the surface area which is exposed to the solution (Chap. 6.1). The aim of this study was to correlate adsorption data of common clays with these specific surface areas.

  3. Mineral catalysis of the formation of the phosphodiester bond in aqueous solution - The possible role of montmorillonite clays

    Science.gov (United States)

    Ferris, James P.; Ertem, Gozen; KAMALUDDIN; Agarwal, Vipin; Hua, Lu Lin

    1989-01-01

    The possible role of montmorillonite clays in the spontaneous formation on the primitive earth of the phosphodiester bond in the presence of water was investigated in experiments measuring the binding of various nucleosides and nucleotides with Na(+)-montmorillonite 22A and the reactions of these compounds with a water-soluble carbodiimide. It was found that, at neutral pH, adenine derivatives bind stronger than the corresponding uracil derivatives, consistent with the protonation of the adenine by the acidic clay surface and a cationic binding of the protonated ring to the anionic clay surface. The reaction of the 5-prime-AMP with carbodiimide resulted in the formation of 2-prime,5-prime-pApA (18.9 percent), 3-prime,5-prime-pApA (11 percent), and AppA (4.8 percent). The yields of these oligomers obtained when poly(U) was used in place of the clay were 15.5 percent, 3.7 percent, and 14.9 percent AppA, respectively.

  4. Dehydration-induced luminescence in clay minerals

    Science.gov (United States)

    Coyne, L. M.; Lahav, N.; Lawless, J. G.

    1981-01-01

    Reports of triboluminescent phenomena in organic crystalline materials prompted a search for related processes in clay minerals. The reported extensive mechanical distortion produced on freezing and drying of montmorillonite was particularly interesting because of studies of condensation reactions in a wet/dry cycled reaction sequence. The discovery of an unusual luminescent process in several clay minerals is reported and its characteristics are described.

  5. Surface geochemistry of the clay minerals

    OpenAIRE

    Sposito, Garrison; Skipper, Neal T.; Sutton, Rebecca; Park, Sung-Ho; Soper, Alan K.; Greathouse, Jeffery A.

    1999-01-01

    Clay minerals are layer type aluminosilicates that figure in terrestrial biogeochemical cycles, in the buffering capacity of the oceans, and in the containment of toxic waste materials. They are also used as lubricants in petroleum extraction and as industrial catalysts for the synthesis of many organic compounds. These applications derive fundamentally from the colloidal size and permanent structural charge of clay mineral particles, which endow them with significant ...

  6. Charge Properties and Clay Mineral Composition of Tianbao Mountains Soils

    Institute of Scientific and Technical Information of China (English)

    HEJI-ZHENG; LIXUE-YUAN; 等

    1992-01-01

    The clay mineral association,oxides of clay fraction and surface charge properties of 7 soils,which are developed from granite,located at different altitudesof the Tianbao Mountains were studied.Results indicate that with the increase in altitude,1) the weathering process and desilicification of soil clay minerals became weaker,whereas the leaching depotassication and the formation process of hydroxy-aluminum interlayer got stronger;2)the contents of amorphous and complex aluminum and iron,and the activity of aluminum and iron oxides for soil clay fraction increased;and 3) the amount of variable negarive charge,anion exchange capacity and the values of PZC and PZNC also increased.The activity of aluminum and iron oxides,the accumulation of aluminum,and surface charge characteristics and their relation to clay oxides of the vertical zone soils were observed and recorded.

  7. Ostwald ripening of clays and metamorphic minerals

    Science.gov (United States)

    Eberl, D.D.; Srodon, J.; Kralik, M.; Taylor, B.E.; Peterman, Z.E.

    1990-01-01

    Analyses of particle size distributions indicate that clay minerals and other diagenetic and metamorphic minerals commonly undergo recrystallization by Ostwald ripening. The shapes of their particle size distributions can yield the rate law for this process. One consequence of Ostwald ripening is that a record of the recrystallization process is preserved in the various particle sizes. Therefore, one can determine the detailed geologic history of clays and other recrystallized minerals by separating, from a single sample, the various particle sizes for independent chemical, structural, and isotopic analyses.

  8. Clays and other minerals in prebiotic processes

    Science.gov (United States)

    Paecht-Horowitz, M.

    1984-01-01

    Clays and other minerals have been investigated in context with prebiotic processes, mainly in polymerization of amino acids. It was found that peptides adsorbed on the clay, prior to polymerization, influence the reaction. The ratio between the amount of the peptides adsorbed and that of the clay is important for the yield as well as for the degrees of polymerization obtained. Adsorption prior to reaction produces a certain order in the aggregates of the clay particles which might induce better reaction results. Excess of added peptides disturbs this order and causes lesser degrees of polymerization. In addition to adsorption, clays are also able to occlude between their layers substances out of the environment, up to very high concentrations.

  9. Mineral acquisition from clay by budongo forest chimpanzees

    NARCIS (Netherlands)

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consum

  10. Adsorption of nucleic Acid bases, ribose, and phosphate by some clay minerals.

    Science.gov (United States)

    Hashizume, Hideo

    2015-01-01

    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the "RNA world". The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.

  11. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    Directory of Open Access Journals (Sweden)

    Hideo Hashizume

    2015-02-01

    Full Text Available Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate how clays might catalyze the formation of nucleosides, nucleotides and polynucleotides in the “RNA world”. The adsorption of purines, pyrimidines and nucleosides from aqueous solution to clay minerals is affected by suspension pH. With montmorillonite, adsorption is also influenced by the nature of the exchangeable cations. Here, we review the interactions of some clay minerals with RNA components.

  12. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    OpenAIRE

    Vernon Reynolds; Andrew W Lloyd; English, Christopher J.; Peter Lyons; Howard Dodd; Catherine Hobaiter; Nicholas Newton-Fisher; Caroline Mullins; Noemie Lamon; Anne Marijke Schel; Brittany Fallon

    2015-01-01

    Date of Acceptance: 06/07/2015 Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay ea...

  13. Soil Clay Minerals in Namibia and their Significance for the Terrestrial and Marine Past Global Change Research

    OpenAIRE

    HEINE, Klaus; Völkel, Jörg

    2010-01-01

    We delineated seven soil clay mineral provinces in Namibia. Many individual clay mineral assemblages occur in fluvial, pan, cave and other environments. Previous researchers have used clay mineral compositions as evidence for palaeoenvironmental reconstructions, often without analyzing the formation, the transport and the deposition of these clay minerals. In Namibia, rates of erosion and denudation by water and wind have been very small since early Quaternary times. During the Quaternary, th...

  14. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    Science.gov (United States)

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  15. Sorption Energy Maps of Clay Mineral Surfaces

    International Nuclear Information System (INIS)

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation

  16. Sorption Energy Maps of Clay Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, Randall T.; Kirkpatrick, R. James

    1999-07-19

    A molecular-level understanding of mineral-water interactions is critical for the evaluation and prediction of the sorption properties of clay minerals that may be used in various chemical and radioactive waste disposal methods. Molecular models of metal sorption incorporate empirical energy force fields, based on molecular orbital calculations and spectroscopic data, that account for Coulombic, van der Waals attractive, and short-range repulsive energies. The summation of the non-bonded energy terms at equally-spaced grid points surrounding a mineral substrate provides a three dimensional potential energy grid. The energy map can be used to determine the optimal sorption sites of metal ions on the exposed surfaces of the mineral. By using this approach, we have evaluated the crystallographic and compositional control of metal sorption on the surfaces of kaolinite and illite. Estimates of the relative sorption energy and most stable sorption sites are derived based on a rigid ion approximation.

  17. A STUDY OF MECHANISM OF GLAZE FORMATION IN THE PROCESS OF BURNING GLAZED BRICK ON THE BASIS OF BEIDELLITE CLAY AND MINERAL COTTON WASTE PRODUCTS

    Directory of Open Access Journals (Sweden)

    Ye. V. Vdovina

    2011-11-01

    Full Text Available Problem statement. It is essential to establish the values of temperature coefficient of linear expansionof glaze and ceramic material containing beidellite clay and waste products of mineral cotton,and to examine the mechanism of glaze formation in the course of burning by means of infraredspectroscopy and electronic microscopy.Results. The formation of glaze of type ЩЛСО involves glass phase separation which precedescrystallization process.Conclusions. The study of thermoprocessed monoliths shows that liquation structure considerablydecreases at temperatures of 700 оС and 950 оС. Temperature interval of liquation is a function ofglaze thermal treatment conditions. It is shown that crazing resistance of glazed products is determinedby correlation of average temperature coefficients of linear expansion of mass and glaze,therefore, to obtain heat-resistant glazed ceramic brick with temperature coefficient of linear expansion6.53 · 10-4 оС, it is necessary to use glaze of type ЩЛСО with temperature coefficient oflinear expansion 6.45 · 10-4 оС.

  18. Clay mineral type effect on bacterial enteropathogen survival in soil.

    Science.gov (United States)

    Brennan, Fiona P; Moynihan, Emma; Griffiths, Bryan S; Hillier, Stephen; Owen, Jason; Pendlowski, Helen; Avery, Lisa M

    2014-01-15

    Enteropathogens released into the environment can represent a serious risk to public health. Soil clay content has long been known to have an important effect on enteropathogen survival in soil, generally enhancing survival. However, clay mineral composition in soils varies, and different clay minerals have specific physiochemical properties that would be expected to impact differentially on survival. This work investigated the effect of clay materials, with a predominance of a particular mineral type (montmorillonite, kaolinite, or illite), on the survival in soil microcosms over 96 days of Listeria monocytogenes, Salmonella Dublin, and Escherichia coli O157. Clay mineral addition was found to alter a number of physicochemical parameters in soil, including cation exchange capacity and surface area, and this was specific to the mineral type. Clay mineral addition enhanced enteropathogen survival in soil. The type of clay mineral was found to differentially affect enteropathogen survival and the effect was enteropathogen-specific.

  19. Clay Minerals – Mineralogy and Phenomenon of Clay Swelling in Oil

    OpenAIRE

    Karpiński B.; Szkodo M.

    2015-01-01

    Among the minerals found in the earth's crust, clay minerals are of the widest interest. Due to the specific properties such as plasticity, absorbing and catalytic properties clay minerals are used in many industries (oil & gas, chemistry, pharmacy, refractory technology, ceramics etc.). In drilling, a phenomenon of swelling clays is frequently observed. It has an important impact on the cementing quality. During the last few decades clays have been the subject of research on a scale unpreced...

  20. Prolonged triboluminescence in clays and other minerals

    Science.gov (United States)

    Lahav, N.; Coyne, L. M.; Lawless, J. G.

    1982-01-01

    Samples of various clays and minerals were ground or fractured and monitored with a liquid scintillation spectrometer in order to obtain triboluminescent decay curves. Kaolinite samples displayed several million counts/min after grinding, with a surface area emission estimated at tens of billions of photons/sq cm of surface. The photon production rates varied with the origin of the sample, and kaolinite continually yielded higher production rates than bentonite. The addition of water to the samples slightly increased the count rate of emitted light, while the addition of the fluorescent molecule substance tryptofan significantly enhanced the count rate. Freezing smears of kaolinite and montmorillonite in liquid nitrogen and in a salt ice mixture also induced triboluminescence in the montmorillonite. A possible connection between powdery triboluminescent materials formed in mining industries and respiratory disorders among miners is suggested.

  1. Alteration of swelling clay minerals by acid activation

    NARCIS (Netherlands)

    Steudel, A.; Batenburg, L.F.; Fischer, H.R.; Weidler, P.G.; Emmerich, K.

    2009-01-01

    The bulk material of six dioctahedral and two trioctahedral swellable clay minerals was leached in H2SO4 and HCl at concentrations of 1.0, 5.0 and 10.0 M at 80 °C for several hours. Alteration of the clay mineral structures was dependent on the individual character of each mineral (chemical composit

  2. DFT theoretical and FT-IR spectroscopic investigations of the plasticity of clay minerals dispersions

    Science.gov (United States)

    Kasprzhitskii, A.; Lazorenko, G.; Yavna, V.; Daniel, Ph.

    2016-04-01

    Plasticity is the most important property of dispersions of clay minerals that determine the character of participation of these systems in many natural and technological processes. We report on the results of studies of hydration mechanism in typical clay minerals making part of natural dispersions of sedimentation masses by means of IR spectroscopy and theoretical density functional theory (DFT) methods. X-ray diffraction analysis of clay minerals of Millerovo mineral deposit (Russian Federation) is carried out. Regularities and peculiarities of interaction of water molecules with kaolinite basal planes (001) and (00 1 bar) are analyzed. The role of water in the formation of plasticity of clay minerals dispersions is revealed. The modes of water molecules placement and their state and structure in the system "clay mineral-water" is defined. Phase transition processes of clay minerals dispersion into plastic and liquid state and their influence on spectral characteristics of the systems are investigated. The interpretation of clay minerals phase transitions into plastic and fluid state based on the results of DFT simulation is given. The relation is established between specific variation of spectral characteristics and phase transitions of clay minerals dispersions into plastic and liquid state.

  3. Clay minerals in the Meuse - Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution.

    OpenAIRE

    Claret, Francis; Sakharov, Boris.A.; Drits, Victor.A.; Velde, Bruce; Meunier, Alain; Griffault, Lise; Lanson, Bruno

    2004-01-01

    A clay-rich Callovo-Oxfordian sedimentary formation was selected in the eastern Paris Basin (MHM site) to host an underground laboratory dedicated to the assessment of nuclear waste disposal feasibility in deep geological formations. As described initially, this formation shows a mineralogical transition from an illite-smectite (I-S) mixed-layered mineral (MLM), which is essentially smectitic and randomly interstratified (R=0) in the top part of the series to a more illitic, ordered (R≥1) I-S...

  4. CO2 adsorption isotherm on clay minerals and the CO2 accessibility into the clay interlayer

    Science.gov (United States)

    Gensterblum, Yves; Bertier, Pieter; Busch, Andreas; Rother, Gernot; Krooß, Bernhard

    2013-04-01

    Large-scale CO2 storage in porous rock formations at 1-3 km depth is seen as a global warming mitigation strategy. In this process, CO2 is separated from the flue gas of coal or gas power plants, compressed, and pumped into porous subsurface reservoirs with overlying caprocks (seals). Good seals are mechanically and chemically stable caprocks with low porosity and permeability. They prevent leakage of buoyant CO2 from the reservoir. Caprocks are generally comprised of thick layers of shale, and thus mainly consist of clay minerals. These clays can be affected by CO2-induced processes, such as swelling or dissolution. The interactions of CO2 with clay minerals in shales are at present poorly understood. Sorption measurements in combination scattering techniques could provide fundamental insight into the mechanisms governing CO2-clay interaction. Volumetric sorption techniques have assessed the sorption of supercritical CO2 onto coal (Gensterblum et al., 2010; Gensterblum et al., 2009), porous silica (Rother et al., 2012a) and clays as a means of exploring the potential of large-scale storage of anthropogenic CO2 in geological reservoirs (Busch et al., 2008). On different clay minerals and shales, positive values of excess sorption were measured at gas pressures up to 6 MPa, where the interfacial fluid is assumed to be denser than the bulk fluid. However, zero and negative values were obtained at higher densities, which suggests the adsorbed fluid becomes equal to and eventually less dense than the corresponding bulk fluid, or that the clay minerals expand on CO2 charging. Using a combination of neutron diffraction and excess sorption measurements, we recently deduced the interlayer density of scCO2 in Na-montmorillonite clay in its single-layer hydration state (Rother et al., 2012b), and confirmed its low density, as well as the expansion of the basal spacings. We performed neutron diffraction experiments at the FRMII diffractometer on smectite, kaolinite and illite

  5. Identification of clay minerals by infrared spectroscopy and discriminant analysis

    OpenAIRE

    Ritz, Michal; Vaculíková, Lenka; Plevová, Eva

    2010-01-01

    Identification of clay minerals based on chemometric analysis of measured infrared (IR) spectra was suggested. IR spectra were collected using the diffuse reflection technique. Discriminant analysis and principal component analysis were used as chemometric methods. Four statistical models were created for separation and identification of clay minerals. More than 50 samples of various clay mineral standards from different localities were used for the creation of statistical models. The results...

  6. Radiation-induced defects in clay minerals : a review

    OpenAIRE

    Allard, T.; Balan, Etienne; Calas, G.; Fourdrin, C.; Morichon, E.; Sorieul, S.

    2012-01-01

    Extensive information has been collected on radiation effects on clay minerals over the last 35 years, providing a wealth of information on environmental and geological processes. The fields of applications include the reconstruction of past radioelement migrations, the dating of clay minerals or the evolution of the physico-chemical properties under irradiation. The investigation of several clay minerals, namely kaolinite, dickite, montmorillonite, illite and sudoite, by Electron Paramagneti...

  7. Optimization method for quantitative calculation of clay minerals in soil

    Indian Academy of Sciences (India)

    Libo Hao; Qiaoqiao Wei; Yuyan Zhao; Zilong Lu; Xinyun Zhao

    2015-04-01

    Determination of types and amounts for clay minerals in soil are important in environmental, agricultural, and geological investigations. Many reliable methods have been established to identify clay mineral types. However, no reliable method for quantitative analysis of clay minerals has been established so far. In this study, an attempt was made to propose an optimization method for the quantitative determination of clay minerals in soil based on bulk chemical composition data. The fundamental principles and processes of the calculation are elucidated. Some samples were used for reliability verification of the method and the results prove the simplicity and efficacy of the approach.

  8. Clays, clay minerals and cordierite ceramics - a review

    OpenAIRE

    Marta Valaskova

    2015-01-01

    The conventional methods for the synthesis of cordierite ceramics include the solid-state sintering of individual oxides of magnesium, aluminium and silicon of the corresponding chemical composition of cordierite, or sintering of the natural raw materials. Clays are used in the ceramics industries largely because of their contribution to the molding and drying properties. The most effective use of clays meets with the problems of the improvement of the working properties of clays and...

  9. Late Precambrian oxygenation; inception of the clay mineral factory.

    Science.gov (United States)

    Kennedy, Martin; Droser, Mary; Mayer, Lawrence M; Pevear, David; Mrofka, David

    2006-03-10

    An enigmatic stepwise increase in oxygen in the late Precambrian is widely considered a prerequisite for the expansion of animal life. Accumulation of oxygen requires organic matter burial in sediments, which is largely controlled by the sheltering or preservational effects of detrital clay minerals in modern marine continental margin depocenters. Here, we show mineralogical and geochemical evidence for an increase in clay mineral deposition in the Neoproterozoic that immediately predated the first metazoans. Today most clay minerals originate in biologically active soils, so initial expansion of a primitive land biota would greatly enhance production of pedogenic clay minerals (the "clay mineral factory"), leading to increased marine burial of organic carbon via mineral surface preservation.

  10. The systems containing clays and clay minerals from modified drug release: a review.

    Science.gov (United States)

    Rodrigues, Luís Alberto de Sousa; Figueiras, Ana; Veiga, Francisco; de Freitas, Rivelilson Mendes; Nunes, Lívio César Cunha; da Silva Filho, Edson Cavalcanti; da Silva Leite, Cleide Maria

    2013-03-01

    Clays are materials commonly used in the pharmaceutical industry, either as ingredients or as active ingredients. It was observed that when they are administered concurrently, they may interact with drugs reducing their absorption. Therefore, such interactions can be used to achieve technological and biopharmaceutical advantages, regarding the control of release. This review summarizes bibliographic (articles) and technological (patents) information on the use of systems containing clays and clay minerals in modified drug delivery. In this area, formulations such natural clay, commercial clay, synthetic clay, composites clay-polymers, nanocomposites clay-polymers, films and hidrogels composites clay-polymers are used to slow/extend or vectorize the release of drugs and consequently they increase their bioavailability. Finally, this review summarizes the fields of technology and biopharmaceutical applications, where clays are applied.

  11. [Mechanism of tritium persistence in porous media like clay minerals].

    Science.gov (United States)

    Wu, Dong-Jie; Wang, Jin-Sheng; Teng, Yan-Guo; Zhang, Ke-Ni

    2011-03-01

    To investigate the mechanisms of tritium persistence in clay minerals, three types of clay soils (montmorillonite, kaolinite and illite) and tritiated water were used in this study to conduct the tritium sorption tests and the other related tests. Firstly, the ingredients, metal elements and heat properties of clay minerals were studied with some instrumental analysis methods, such as ICP and TG. Secondly, with a specially designed fractionation and condensation experiment, the adsorbed water, the interlayer water and the structural water in the clay minerals separated from the tritium sorption tests were fractionated for investigating the tritium distributions in the different types of adsorptive waters. Thirdly, the location and configuration of tritium adsorbed into the structure of clay minerals were studied with infrared spectrometry (IR) tests. And finally, the forces and mechanisms for driving tritium into the clay minerals were analyzed on the basis of the isotope effect of tritium and the above tests. Following conclusions have been reached: (1) The main reason for tritium persistence in clay minerals is the entrance of tritium into the adsorbed water, the interlayer water and the structural water in clay minerals. The percentage of tritium distributed in these three types of adsorptive water are in the range of 13.65% - 38.71%, 0.32% - 5.96%, 1.28% - 4.37% of the total tritium used in the corresponding test, respectively. The percentages are different for different types of clay minerals. (2) Tritium adsorbed onto clay minerals are existed in the forms of the tritiated hydroxyl radical (OT) and the tritiated water molecule (HTO). Tritium mainly exists in tritiated water molecule for adsorbed water and interlayer water, and in tritiated hydroxyl radical for structural water. (3) The forces and effects driving tritium into the clay minerals may include molecular dispersion, electric charge sorption, isotope exchange and tritium isotope effect.

  12. The use of Clay minerals in stratigraphic correlations of carboniferous coal deposits. Les mineraux argileux au service des correlations stratigraphiques des formations houilleres du Carbonifere; Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Lorenzi, G.; Bossiroy, D.; Dreesen, R. (ISSeP, Liege (Belgium))

    1992-01-01

    The main objective of this research project has been achieved: the development of a new tool for the lithostratigraphical correlation of cored boreholes. The proposed technique is based on the processing and interpretation of the results of mineralogical analyses, carried out on the clay minerals from finegrained siliciclastic rocks, associated with coal seams. For this study, the stratigraphical interval below and above the Quaregnon Marine Band (limit between the Westphalian A and B), and more precisely the rock sequence between coal seams no KS 71 and 44 was selected: this interval has been recorded in several cored boreholes, north of the actual exploitation limits of the Beringen and Zolder-Houthalen collieries (Belgian Campine). Over 1000 samples (mainly from mudstones, some siltstones and sandstones) were taken out of the cores, at a regular spacing (about 2m), for further mineralogical analysis. Simultaneously, a sedimentological study was carried out on the the sampled sequences, as well as a petrographical analysis of the main rock types. This resulted in a reconstruction of the Westphalian depositional environments and in a better knowledge of the 'behaviour' (geological history) of the clay minerals. The mineralogical composition of the clay minerals was identified through X-ray diffraction and computer-aided graphical processing of the resulting data produced percentage or intensity ratio curves, which could then be used as a lithostratigraphical correlation tool. Correlations have been shown between relatively simple rock sequences (without split seams) in neighbouring boreholes (1 to 3 km apart) and positive correlations revealed between more complex sequences containing multiple coals seams. Some positive but less obvious correlations have also been discovered between sequences from widely spaced boreholes ({+-}10 km apart).

  13. The effect of clay minerals on diasterane/sterane ratios

    Science.gov (United States)

    van Kaam-Peters, Heidy M. E.; Köster, Jürgen; van der Gaast, Sjierk J.; Dekker, Marlèn; de Leeuw, Jan W.; Sinninghe Damsté, Jaap S.

    1998-09-01

    To examine the effect of clay minerals on diasterane/sterane ratios, the mineral compositions of three sample sets of sedimentary rocks displaying a wide range of diasterane/sterane ratios were analysed quantitatively. Diasterane/sterane ratios do not to correlate with clay content but depend on the amount of clay relative to the amount of organic matter (clay/TOC ratios). This correlation may explain the high diasterane/sterane ratios in crude oils and extracts derived from certain carbonate source rocks. Based on the concentrations of regular and rearranged steroids in the sample sets, it is proposed that diasterenes are partly reduced to diasteranes and partly degraded during diagenesis in a ratio largely determined by the availability of clay minerals. It is suggested that the hydrogen atoms required for reduction of the diasterenes originate from the water in the interlayers of clay minerals.

  14. The effect of clay minerals on diasterane/sterane ratios

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Kaam-Peters, H.M.E. van; Koster, J.; Gaast, S. J. van der; Dekker, M.H.A.; Leeuw, J.W. de

    1998-01-01

    To examine the effect of clay minerals on diasterane/sterane ratios, the mineral compositions of three sample sets of sedimentary rocks displaying a wide range of diasterane/sterane ratios were analysed quantitatively. Diasterane/sterane ratios do not to correlate with clay content but depend on the

  15. Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa

    Science.gov (United States)

    Toulkeridis, T.; Goldstein, S. L.; Clauer, N.; Kroner, A.; Lowe, D. R.

    1994-01-01

    Sm-Nd isotopic data from carbonate-derived clay minerals of the 3.22-3.25 Ga Fig Tree Group, Barberton greenstone belt, South Africa, form a linear array corresponding to an age of 3102 +/- 64 Ma, making these minerals the oldest dated clays on Earth. The obtained age is 120-160 m.y. younger than the depositional age determined by zircon geochronology. Nd model ages for the clays range from approximately 3.39 to 3.44 Ga and almost cover the age variation of the Barberton greenstone belt rocks, consistent with independent evidence that the clay minerals are derived from material of the belt. The combined isotopic and mineralogical data provide evidence for a cryptic thermal overprint in the sediments of the belt. However, the highest temperature reached by the samples since the time of clay-mineral formation was <300 degrees C, lower than virtually any known early Archean supracrustal sequence.

  16. Thermal Analysis: A Complementary Method to Study the Shurijeh Clay Minerals

    Directory of Open Access Journals (Sweden)

    Golnaz Jozanikohan

    2015-06-01

    Full Text Available Clay minerals are considered the most important components of clastic reservoir rock evaluation studies. The Shurijeh gas reservoir Formation, represented by shaly sandstones of the Late Jurassic-Early Cretaceous age, is the main reservoir rock in the Eastern Kopet-Dagh sedimentary Basin, NE Iran. In this study, X-ray diffraction (XRD, X-ray fluorescence (XRF, scanning electron microscopic (SEM studies, and thermal analysis including differential thermal analysis (DTA, and thermogravimetric analysis (TGA techniques were utilized in the characterization of the Shurijeh clay minerals in ten representative samples. The XRF studies showed that silica and aluminum oxides are present quantities. The XRD test was then used to determine the mineralogical composition of bulk components, as well as the clay fraction. The XRD patterns indicated the presence of dominant amount of quartz and plagioclase, with moderate to minor amounts of alkali feldspar, anhydrite, carbonates (calcite and dolomite, hematite and clay minerals. The most common clays in the Shurijeh Formation were illite, chlorite, and kaolinite. However, in very few samples, glauconite, smectite, and mixed layer clay minerals of both illite-smectite and chlorite-smectite types were also recognized. The XRD results were quantified, using the elemental information from the XRF test, showing that each Shurijeh exhibited low to moderate amounts of clay minerals, typically up to 21%. The amount of illite, the most dominant clay mineral, reached maximum of 13.5%, while the other clay types were significantly smaller. Based on the use of SEM and thermal data, the results of the identification of clay minerals, corresponded with the powder X-ray diffraction analysis, which can be taken into account as an evidence of the effectiveness of the thermal analysis technique in clay typing, as a complementary method besides the XRD.

  17. Clay Minerals – Mineralogy and Phenomenon of Clay Swelling in Oil

    Directory of Open Access Journals (Sweden)

    Karpiński B.

    2015-03-01

    Full Text Available Among the minerals found in the earth's crust, clay minerals are of the widest interest. Due to the specific properties such as plasticity, absorbing and catalytic properties clay minerals are used in many industries (oil & gas, chemistry, pharmacy, refractory technology, ceramics etc.. In drilling, a phenomenon of swelling clays is frequently observed. It has an important impact on the cementing quality. During the last few decades clays have been the subject of research on a scale unprecedented in the history of mineralogy. This paper presents review literature on mineralogy of clay minerals and phenomenon of swelling in oil and gas industry. Unique ion exchange properties and clay swelling mechanisms are also considered.

  18. Clay mineralogy of weathering rinds and possible implications concerning the sources of clay minerals in soils.

    Science.gov (United States)

    Colman, Steven M.

    1982-01-01

    Weathering rinds on volcanic clasts in Quaternary deposits in the western US contain only very fine-grained and poorly crystalline clay minerals. Rinds were sampled from soils containing well-developed argillic B horizons in deposits approx 105 yr old or more. The clay-size fraction of the rinds is dominated by allophane and iron hydroxy-oxides, whereas the B horizons contain abundant well-crystallized clay minerals. The contrast between the clay mineralogy of the weathering rinds, in which weathering is isolated from other soil processes, and that of the associated soil matrices suggests a need to reassess assumptions concerning the rates at which clay minerals form and the sources of clay minerals in argillic B horizons. It seems that crystalline clay minerals form more slowly in weathering rinds than is generally assumed for soil environments and that the weathering of primary minerals may not be the dominant source of crystalline clay minerals in Middle to Late Pleistocene soil.-A.P.

  19. Clay minerals reactivity under thermal gradient

    International Nuclear Information System (INIS)

    The argillaceous materials properties could be favourable to the radioelements confinement in high activity and thermogenic nuclear waste disposal. This study relates to the transformations induced on these materials under thermal stress and the impact on their properties. The samples were collected in the vicinity of a natural analogue: a basaltic intrusion in an argillaceous formation (argillites of Laumiere, Aveyron, France). This volcanic event has functioned for an unreachable time in a laboratory. The study of the mixed-layered illite-smectite minerals (I-S), major minerals of these argillites, shows an illitisation at the basaltic intrusion contact. The thin and disturbed variation of an index of crystallinity of the I-S corresponds to the influence of the geological context. Laumiere highlighted determining parameters (smectite formation during hydrothermal alteration) which has influenced the evolution of argillaceous materials in thermal context. (author)

  20. Neogene and Quaternary clay minerals in the southern North Sea

    OpenAIRE

    Adriaens, Rieko

    2015-01-01

    In this work it was demonstrated how the systematic quantitative analysis of clay minerals yields a better understanding of specific geologicaland stratigraphical issues. In the first part, a reliable and accurate method for the X-ray diffraction analysis of clay minerals, and glauconite minerals in particular, was established. Especially the decomposition and separate quantification of the 060-region in random oriented powder diffraction patterns was found a powerful tool for the characte...

  1. Characterization of clay minerals; Caracterizacion de minerales arcillosos

    Energy Technology Data Exchange (ETDEWEB)

    Diaz N, C.; Olguin, M.T.; Solache R, M.; Alarcon H, T.; Aguilar E, A. [Gerencia de Ciencias Basicas, Direccion de Investigacion Cientifica, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The natural clays are the more abundant minerals on the crust. They are used for making diverse industrial products. Due to the adsorption and ion exchange properties of these, a great interest for developing research directed toward the use of natural clays for the waste water treatment has been aroused. As part of such researches it is very important to carry out previously the characterization of the interest materials. In this work the results of the mineral and elemental chemical composition are presented as well as the morphological characteristics of clay minerals from different regions of the Mexican Republic. (Author)

  2. Enhance decarboxylation reaction of carboxylic acids in clay minerals

    International Nuclear Information System (INIS)

    Clay minerals are important constituents of the Earth's crust. These minerals catalyze reactions in several ways: by energy transfer processes, redox reactions, stabilization of intermediates and by Broensted or Lewis acidity behavior. Important set of organic reactions can be improved in the precedence of clay minerals. Besides the properties of clays to catalyze chemical reactions, it is possible to enhance some of its reactions by using ionizing radiation. The phenomenon of radiation-induced catalysis may be connected with ionizing process in the solid and with the trapped non-equilibrium charge carriers. In this paper we are reporting the decarboxylation reaction of carboxylic acids catalyzed by clay and by irradiation of the system acid-clay. We studied the behaviour of several carboxylic acids and analyzed them by gas chromatography, X-ray and infrared spectroscopy. The results showed that decarboxylation of the target compound is the dominating pathway. The reaction is enhanced by gamma radiation in several orders of magnitude. (author)

  3. Toxicological evaluation of clay minerals and derived nanocomposites: a review.

    Science.gov (United States)

    Maisanaba, Sara; Pichardo, Silvia; Puerto, María; Gutiérrez-Praena, Daniel; Cameán, Ana M; Jos, Angeles

    2015-04-01

    Clays and clay minerals are widely used in many facets of our society. This review addresses the main clays of each phyllosilicate groups, namely, kaolinite, montmorillonite (Mt) and sepiolite, placing special emphasis on Mt and kaolinite, which are the clays that are more frequently used in food packaging, one of the applications that are currently exhibiting higher development. The improvements in the composite materials obtained from clays and polymeric matrices are remarkable and well known, but the potential toxicological effects of unmodified or modified clay minerals and derived nanocomposites are currently being investigated with increased interest. In this sense, this work focused on a review of the published reports related to the analysis of the toxicological profile of commercial and novel modified clays and derived nanocomposites. An exhaustive review of the main in vitro and in vivo toxicological studies, antimicrobial activity assessments, and the human and environmental impacts of clays and derived nanocomposites was performed. From the analysis of the scientific literature different conclusions can be derived. Thus, in vitro studies suggest that clays in general induce cytotoxicity (with dependence on the clay, concentration, experimental system, etc.) with different underlying mechanisms such as necrosis/apoptosis, oxidative stress or genotoxicity. However, most of in vivo experiments performed in rodents showed no clear evidences of systemic toxicity even at doses of 5000mg/kg. Regarding to humans, pulmonary exposure is the most frequent, and although clays are usually mixed with other minerals, they have been reported to induce pneumoconiosis per se. Oral exposure is also common both intentionally and unintentionally. Although they do not show a high toxicity through this pathway, toxic effects could be induced due to the increased or reduced exposure to mineral elements. Finally, there are few studies about the effects of clay minerals on

  4. Polyaniline and mineral clay-based conductive composites

    OpenAIRE

    Samantha Oliveira Vilela; Mauro Alfredo Soto-Oviedo; Ana Paula Fonseca Albers; Roselena Faez

    2007-01-01

    Composite materials have attracted the attention of numerous researchers due to the distinct properties shown by this class of materials and the mineral clay used in their synthesis. In this study, conductive composites were obtained by mixing polyaniline (PAni) with clay (kaolinite and montmorillonite). The aniline was polymerized in a medium with clay and the powder was characterized by X ray diffraction, electrical conductivity and morphology. The results suggest PAni chain linearization i...

  5. Quantification of clay minerals by combined EWA/XRD method

    Institute of Scientific and Technical Information of China (English)

    XU; Jianhong; (徐建红); XU; Jianhong; (徐建红); T.; R.; Astin; PAN; Mao; (潘懋)

    2001-01-01

    Illite has been considered the main constraint on permeability in the Morecambe Gas Field, East Irish Sea, UK. Previous research has emphasized the morphology rather than the amount of clay minerals. By applying a new method of clay mineral quantification, EWA/XRD, and applying statistical analysis methods, we are able to establish a quantitative model of illite distribution in the field. The result also leads to a better understanding of permeability distribution in reservoir sandstones.

  6. Clays and clay minerals in Bikaner: Sources, environment pollution and management

    Science.gov (United States)

    Gayatri, Sharma; Anu, Sharma

    2016-05-01

    Environmental pollution can also be caused by minerals which include natural as well as human activities. Rapid urbanization, consumerist life style, anthropogenic deeds are increasing environmental pollution day by day. Fluctuation in our ecosystem or polluted environment leads to many diseases and shows adverse effects on living organisms. The main aim of this paper is to highlight the environmental pollution from clays and clay minerals and their mitigation..

  7. Layer Charge of Clay Minerals; Selected papers from the Symposium on Current Knowledge on the Layer Charge of Clay Minerals

    Science.gov (United States)

    This Special issue contains papers based on the contributions presented during the workshop “Current Knowledge on the Layer Charge of Clay Minerals”, held on September 18 and 19, 2004, in the Smolenice Castle, Slovakia. Layer charge is one of the most important characteristics of clay minerals as it...

  8. A new microenvironment for the formation of clay minerals: the example of authigenic halloysite-7Å and gibbsite in a stalactite from Agios Georgios Cave, Kilkis, north Greece

    Directory of Open Access Journals (Sweden)

    Elena Ifandi, University of Patras

    2015-09-01

    Full Text Available An unusual authigenic origin for halloysite and gibbsite is reported in a stalactite from Agios Georgios Cave, Kilkis. This speleothem includes mostly pure calcite whereas minor areas of Mg-rich calcite and scarce dolomite are present in four growth phases. Abundant pores are created due to imperfect coalescence of the calcite crystals. Several of them contain detrital muscovite, which was presumably transferred from the dripping water, during the formation of speleothem and has been variably altered to halloysite. Several pores in the stalactite contain different mineral assemblages that we interpret as in situ: halloysite-7Å, halloysite + silica, gibbsite + silica and gibbsite. The breakdown of the muscovite and the formation of halloysite require acidic conditions, which we suggest to have been established by potassium solubilising microorganisms. The silica minerals include spheroidal assemblages or needle-like and blade-like quartz and can be explained by further dissolution of halloysite, under the same acidic conditions in the presence of microorganisms. In our model, the precipitation of gibbsite is the result of direct formation from muscovite, promoted from abundant and undisturbed water percolation, at moderately low pH, also induced by the presence of bacteria. Given that microbial activities promote: (1 breakdown of muscovite and formation of halloysite, silica, and gibbsite, and (2 formation of Mg-calcite and dolomite after calcite, then it is likely that two or more different microbial communities may exist in the same speleothem. The first creates mild acidic conditions, aiming at the decomposition of muscovite in the microenvironment of the pores antagonising the second that produces alkaline microregimes and the local precipitation of Mg-rich carbonate minerals.

  9. Ground Truthing Orbital Clay Mineral Observations with the APXS Onboard Mars Exploration Rover Opportunity

    Science.gov (United States)

    Schroeder, C.; Gellert, R.; VanBommel, S.; Clark, B. C.; Ming, D. W.; Mittlefehldt, D. S.; Yen, A. S.

    2016-01-01

    NASA's Mars Exploration Rover Opportunity has been exploring approximately 22 km diameter Endeavour crater since 2011. Its rim segments predate the Hesperian-age Burns formation and expose Noachian-age material, which is associated with orbital Fe3+-Mg-rich clay mineral observations [1,2]. Moving to an orders of magnitude smaller instrumental field of view on the ground, the clay minerals were challenging to pinpoint on the basis of geochemical data because they appear to be the result of near-isochemical weathering of the local bedrock [3,4]. However, the APXS revealed a more complex mineral story as fracture fills and so-called red zones appear to contain more Al-rich clay minerals [5,6], which had not been observed from orbit. These observations are important to constrain clay mineral formation processes. More detail will be added as Opportunity is heading into her 10th extended mission, during which she will investigate Noachian bedrock that predates Endeavour crater, study sedimentary rocks inside Endeavour crater, and explore a fluid-carved gully. ESA's ExoMars rover will land on Noachian-age Oxia Planum where abundant Fe3+-Mg-rich clay minerals have been observed from orbit, but the story will undoubtedly become more complex once seen from the ground.

  10. Differentiation of pleistocene deposits in northeastern Kansas by clay minerals

    Science.gov (United States)

    Tien, P.-L.

    1968-01-01

    Seventy-four samples from eight stratigraphic sections of lower Pleistocene glacial and glaciofluvial deposits in Doniphan County, extreme northeastern Kansas, were analyzed using X-ray diffraction techniques. Clay-mineral assemblages of the clay mineral associated with minor amounts of kaolinite and illite. An attempt was made to differentiate units of till and nontill deposits by using the relative intensities of 001 reflections of "mixed-layer mineral," kaolinite, and illite. At least two tills were recognizable. Associated nontill deposits, could not be differentiated from one another, although the nontills are easily distinguished from tills. ?? 1968.

  11. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes.

    Science.gov (United States)

    Wacey, David; Saunders, Martin; Roberts, Malcolm; Menon, Sarath; Green, Leonard; Kong, Charlie; Culwick, Timothy; Strother, Paul; Brasier, Martin D

    2014-01-01

    Organic-walled microfossils provide the best insights into the composition and evolution of the biosphere through the first 80 percent of Earth history. The mechanism of microfossil preservation affects the quality of biological information retained and informs understanding of early Earth palaeo-environments. We here show that 1 billion-year-old microfossils from the non-marine Torridon Group are remarkably preserved by a combination of clay minerals and phosphate, with clay minerals providing the highest fidelity of preservation. Fe-rich clay mostly occurs in narrow zones in contact with cellular material and is interpreted as an early microbially-mediated phase enclosing and replacing the most labile biological material. K-rich clay occurs within and exterior to cell envelopes, forming where the supply of Fe had been exhausted. Clay minerals inter-finger with calcium phosphate that co-precipitated with the clays in the sub-oxic zone of the lake sediments. This type of preservation was favoured in sulfate-poor environments where Fe-silicate precipitation could outcompete Fe-sulfide formation. This work shows that clay minerals can provide an exceptionally high fidelity of microfossil preservation and extends the known geological range of this fossilization style by almost 500 Ma. It also suggests that the best-preserved microfossils of this time may be found in low-sulfate environments.

  12. Fixation of Selenium by Clay Minerals and Iron Oxides

    DEFF Research Database (Denmark)

    Hamdy, A. A.; Nielsen, Gunnar Gissel

    1977-01-01

    In studying Se fixation, soil components capable of retaining Se were investigated. The importance of Fe hydrous oxides in the fixation of Se was established. The clay minerals common to soils, such as kaolinite, montmorillonite and vermiculite, all exhibited Se fixation, but greater fixation...... occurred with the 1:1 than the 2:1 clay type. Experiments with finely ground minerals showed that the pH of the systems greatly influenced the rate of fixation, reaching a maximum between pH 3 and 5 and decreasing rapidly as the pH increased. With the Fe2O3 system fixed Se was slightly reduced as the p......H was increased to over 8. The extractability of Se from the clay minerals indicated that 1:1 clay type minerals fix selenite more indissolubly than 2:1 clays and that selenite was adsorbed on the clays mainly by a surface exchange reaction. The major part of the selenite added to the Fe2O3 system was found...

  13. Clay Mineral Assemblages as Proxies for Reconstructing Messinian Paleoenvironments in the Western Mediterranean

    Science.gov (United States)

    Martinez-Ruiz, Francisca; Comas, Menchu; Vasconcelos, Crisogono

    2014-05-01

    Significant tectonic and climate changes at time of the Messinian Salinity Crisis (MSC) led to a complex sedimentation involving marked changes in sediment composition, particularly in clay mineral assemblages. One of the noticeable mineralogical changes across this time interval is the strong smectite increase in Messinian deposits in comparison to the underlying Tortonian and overlaying Pliocene sediments. As no break in the clay mineralogy is recognized in the open ocean (Chamley et al., 1978), such changes are also distinctive of the Mediterranean basins. Since the early discoveries of the giant Messinian evaporite formation (DSDP Legs 13 and 42A), a vast literature contributed, during the last decades, to the continuous debate and re-examination of the actual Messinian paleoenvironment. Drilled records in the westernmost Mediterranean (Alboran Sea) have shown significant changes in the mineralogical assemblages associated to the Messinian events. This basin is depleted of significant salt deposits. Site 976 (ODP Leg 161) recovered a 670-m-thick, middle Miocene (Serravallian) to Pleistocene/Holocene sedimentary sequence, including a thin interval of Messinian sediment, lying directly upon the metamorphic basement. Analysis of clay mineral assemblages from the sedimentary cover of Hole 976B revealed an homogeneous clay association composed of illite, smectite, chlorite and kaolinite with no major changes in clay mineral abundances except for the sediment interval dated as Messinian, which is characterized by a sharp smectite increase (Martinez-Ruiz et al., 1999). Transmission Electron Microscope analyses of clay minerals revealed that smectite composition corresponds to Al-rich beidellites, which supports the existence of such smectites in peri-Mediterranean soils. Smectite formation was favored by the climate conditions at that time, comprising progressive aridification and the alternation of wet and dry climatic episodes. Diagenesis in these smectites is

  14. Black Carbon, The Pyrogenic Clay Mineral?

    Science.gov (United States)

    Most soils contain significant amounts of black carbon, much of which is present as discrete particles admixed with the coarse clay fraction (0.2–2.0 µm e.s.d.) and can be physically separated from the more abundant diffuse biogenic humic materials. Recent evidence has shown that naturally occurring...

  15. Intercalation of trichloroethene by sediment-associated clay minerals.

    Science.gov (United States)

    Matthieu, D E; Brusseau, M L; Johnson, G R; Artiola, J L; Bowden, M L; Curry, J E

    2013-01-01

    The objective of this research was to examine the potential for intercalation of trichloroethene (TCE) by clay minerals associated with aquifer sediments. Sediment samples were collected from a field site in Tucson, AZ. Two widely used Montmorillonite specimen clays were employed as controls. X-ray diffraction, conducted with a controlled-environment chamber, was used to characterize smectite interlayer d-spacing for three treatments (bulk air-dry sample, sample mixed with synthetic groundwater, sample mixed with TCE-saturated synthetic groundwater). The results show that the d-spacing measured for the samples treated with TCE-saturated synthetic groundwater are larger (~26%) than those of the untreated samples for all field samples as well as the specimen clays. These results indicate that TCE was intercalated by the clay minerals, which may have contributed to the extensive elution tailing observed in prior miscible-displacement experiments conducted with this sediment.

  16. Clay Minerals as Solid Acids and Their Catalytic Properties.

    Science.gov (United States)

    Helsen, J.

    1982-01-01

    Discusses catalytic properties of clays, attributed to acidity of the clay surface. The formation of carbonium ions on montmorillonite is used as a demonstration of the presence of surface acidity, the enhanced dissociation of water molecules when polarized by cations, and the way the surface can interact with organic substances. (Author/JN)

  17. Influence of Humic Acid on Interaction of Ammonium and Potassium Ions on Clay Minerals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen-Zhao; CHEN Xiao-Qin; ZHOU Jian-Min; LIU Dai-Huan; WANG Huo-Yan; DU Chang-Wen

    2013-01-01

    Interaction of ammonium (NH4+) and potassium (K+) is typical in field soils.However,the effects of organic matter on interaction of NH4+ and K+ have not been thoroughly investigated.In this study,we examined the changes in major physicochemical properties of three clay minerals (kaolinite,illite,and montmorillonite) after humic acid (HA) coating and evaluated the influences of these changes on the interaction of NH4+ and K+ on clay minerals using batch experiments.After HA coating,the cation exchange capacity (CEC) and specific surface area (SSA) of montmorillonite decreased significantly,while little decrease in CEC and SSA occurred in illite and only a slight increase in CEC was found in kaolinite.Humic acid coating significantly increased cation adsorption and preference for NH4+,and this effect was more obvious on clay minerals with a lower CEC.Results of Fourier transform infrared spectrometry analysis showed that HA coating promoted the formation of H-bonds between the adsorbed NH4+ and the organo-mineral complexes.HA coating increased cation fixation capacity on montmorillonite and kaolinite,but the opposite occurred on illite.In addition,HA coating increased the competitiveness of NH4+ on fixation sites.These results showed that HA coating affected both the nature of clay mineral surfaces and the reactions of NH4+ and K+ with clay minerals,which might influence the availability of nutrient cations to plants in field soils amended with organic matter.

  18. Fluoride content of clay minerals and argillaceous earth materials

    Science.gov (United States)

    Thomas, J., Jr.; Glass, H.D.; White, W.A.; Trandel, R.M.

    1977-01-01

    A reliable method, utilizing a fluoride ion-selective electrode, is described for the determination of fluoride in clays and shales. Interference by aluminum and iron is minimal. The reproducibility of the method is about ??5% at different levels of fluoride concentration. Data are presented for various clay minerals and for the clays and shales. Fluoride values range from 44 ppm (0.0044%) for nontronite from Colfax, WA, to 51,800 ppm (5.18%) for hectorite from Hector, CA. In general, clays formed under hydrothermal conditions are relatively high in fluoride content, provided the hydrothermal waters are high in fluoride content. Besides hectorite, dickite from Ouray, CO, was found to contain more than 50 times as much fluoride (6700 ppm) as highly crystalline geode kaolinite (125 ppm). The clay stratum immediately overlying a fluorite mineralized zone in southern Illinois was found to have a higher fluoride content than the same stratum in a nonmineralized zone approximately 1 mile away. Nonmarine shales in contact with Australian coals were found to be lower in fluoride content than were marine shales in contact with Illinois coals. It is believed that, in certain instances, peak shifts on DTA curves of similar clay minerals are the result of significant differences in their fluoride content. ?? 1977.

  19. Clay minerals in a denudation-accumulative soil catena

    Science.gov (United States)

    Chizhikova, N. P.; Sorokina, N. P.; Khitrov, N. B.; Samsonova, A. A.

    2010-01-01

    Chernozems and agrochernozems of the Kamennaya Steppe agroforest landscape have a silty clay or clay texture and similar associations of clay minerals. The plow horizons of the agrochernozems on a slope of 2°-3° to the Talovaya Balka have an increased content of the smectite phase (50-70%) compared to the upper horizons of the chernozems on flat watersheds (30-50%) due to the lithological discontinuity of the soil-forming material and the possible total removal of material on the slope by denudation. On slightly eroded areas, the clay minerals display a more intense disturbance of their crystal lattice structures by pedogenetic processes, which increase the degree of disorder in their layers and the accumulation of fine quartz in the clay fraction. In the areas with more significant erosion of the humus horizon, the clay minerals are characterized by their perfect structure and clean reflections, which are indicative of the outcropping of less weathered material from the middle part of the chernozem profile less transformed by pedogenesis.

  20. Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society (June 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Randall T. Cygan

    2007-06-01

    “Enchanted Clays: 44th Annual Meeting of the Clay Minerals Society” was held in early June 2007 in beautiful and historic Santa Fe, New Mexico, USA. Santa Fe provided an idyllic location in the southwestern United States for the attendees to enjoy technical and social sessions while soaking up the diverse culture and wonderful climate of New Mexico—The Land of Enchantment. The meeting included a large and varied group of scientists, sharing knowledge and ideas, benefitting from technical interactions, and enjoying the wonderful historic and enchanted environs of Santa Fe. Including significant number of international scientists, the meeting was attended by approximately two hundred participants. The meeting included three days of technical sessions (oral and poster presentations), three days of field trips to clay and geological sites of northern New Mexico, and a full day workshop on the stabilization of carbon by clays. Details can be found at the meeting web site: www.sandia.gov/clay.

  1. The influence of clay minerals on acoustic properties of sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Olav

    1997-12-31

    This thesis aims to provide better understanding of the relationship between the acoustic properties and the petrophysical/mineralogical properties in sand-prone rock. It emphasizes the influence of clay minerals. The author develops a method to deposit clay minerals/mineral aggregates in pore space of a rigid rock framework. Kaolinite aggregates were flushed into porous permeable Bentheimer sandstone to evaluate the effect of pore filling minerals on porosity, permeability and acoustic properties. The compressional velocity was hardly affected by the clay content and it was found that the effect of minor quantities of pore filling minerals may be acoustically modelled as an ideal suspension, where the pore fluid bulk modulus is modified by the bulk modulus of the clay minerals. The influence of clays on acoustic velocities in petroleum reservoir rocks was investigated through ultrasonic measurements of compressional- and shear-waves on core material from reservoir and non-reservoir units on the Norwegian Continental Shelf. The measured velocities decrease as the porosity increases, but are not strongly dependent on the clay content. The measured velocities are less dependent on the petrophysical and lithological properties than indicated by previous authors and published mathematical models, and stiffness reduction factors are introduced in two of the models to better match the data. Velocities are estimated along the wellbores based on non-sonic well logs and reflect well the actual sonic log well measurements. In some wells the compressional velocity cannot be modelled correctly by the models suggested. Very high compressional wave anisotropy was measured in the dry samples at atmospheric conditions. As the samples were saturated, the anisotropy was reduced to a maximum of about 30% and decreases further upon pressurization. Reservoir rocks retrieved from 2500 m are more stress dependent than those retrieved from less than 200 m depth. 168 refs., 117 figs., 24

  2. Crystallite size distribution of clay minerals from selected Serbian clay deposits

    Directory of Open Access Journals (Sweden)

    Simić Vladimir

    2006-01-01

    Full Text Available The BWA (Bertaut-Warren-Averbach technique for the measurement of the mean crystallite thickness and thickness distributions of phyllosilicates was applied to a set of kaolin and bentonite minerals. Six samples of kaolinitic clays, one sample of halloysite, and five bentonite samples from selected Serbian deposits were analyzed. These clays are of sedimentary volcano-sedimentary (diagenetic, and hydrothermal origin. Two different types of shape of thickness distribution were found - lognormal, typical for bentonite and halloysite, and polymodal, typical for kaolinite. The mean crystallite thickness (T BWA seams to be influenced by the genetic type of the clay sample.

  3. First Direct Detection of Clay Minerals on Mars

    Science.gov (United States)

    Singer, R. B.; Owensby, P. D.; Clark, R. N.

    1985-01-01

    Magnesian clays or clay-type minerals were conclusively detected in the martian regolith. Near-IR spectral observations of Mars using the Mauna Kea 2.2-m telescope show weak but definite absorption bands near microns. The absorption band positions and widths match those produced by combined OH stretch and Mg-OH lattice modes and are diagnostic of minerals with structural OH such as clays and amphiboles. Likely candidate minerals include serpentine, talc, hectorite, and sponite. There is no spectral evidence for aluminous hydroxylated minerals. No distinct band occurs at 2.55 microns, as would be expected if carbonates were responsible for the 2.35 micron absorption. High-albedo regions such as Elysium and Utopia have the strongest bands near 2.35 microns, as would be expected for heavily weathered soils. Low-albedo regions such as Iapygia show weaker but distinct bands, consistent with moderate coatings, streaks, and splotches of bright weathered material. In all areas observed, the 2.35-micron absorption is at least three times weaker than would be expected if well-crystallized clay minerals made up the bulk of bright soils on Mars.

  4. Clay mineral composition of river sediments in the Amazon Basin

    OpenAIRE

    Guyot, Jean-Loup; Jouanneau, J.M.; Soares, L; Boaventura, G.R.; Maillet, N; Lagane, Christelle

    2007-01-01

    Clay minerals are important in evaluating the maturity of suspended sediments, weathering intensity and source area. However, there are processes that can change the mineral assemblage such as river transportation, deposition, remobilization and tributary inputs. In terms of water discharge and sediment yield, the Amazon is one of the largest rivers in the world. Most of the suspended sediments come from the Andes, crossing the lowlands before reaching the ocean. This study measures the spati...

  5. Radiation-induced defects in clay minerals: A review

    Energy Technology Data Exchange (ETDEWEB)

    Allard, Th., E-mail: thierry.allard@impmc.upmc.fr [IMPMC, UMR CNRS 7590, Universite Pierre et Marie Curie, Universite Denis Diderot, IRD, IPGP, Case 115, 4 Place Jussieu, 75005 Paris (France); Balan, E.; Calas, G.; Fourdrin, C.; Morichon, E.; Sorieul, S. [IMPMC, UMR CNRS 7590, Universite Pierre et Marie Curie, Universite Denis Diderot, IRD, IPGP, Case 115, 4 Place Jussieu, 75005 Paris (France)

    2012-04-15

    Extensive information has been collected on radiation effects on clay minerals over the last 35 years, providing a wealth of information on environmental and geological processes. The fields of applications include the reconstruction of past radioelement migrations, the dating of clay minerals or the evolution of the physico-chemical properties under irradiation. The investigation of several clay minerals, namely kaolinite, dickite, montmorillonite, illite and sudoite, by Electron Paramagnetic Resonance Spectroscopy has shown the presence of defects produced by natural or artificial radiations. These defects consist mostly of electron holes located on oxygen atoms of the structure. The various radiation-induced defects are differentiated through their nature and their thermal stability. Most of them are associated with a {pi} orbital on a Si-O bond. The most abundant defect in clay minerals is oriented perpendicular to the silicate layer. Thermal annealing indicates this defect in kaolinite (A-center) to be stable over geological periods at ambient temperature. Besides, electron or heavy ion irradiation easily leads to an amorphization in smectites, depending on the type of interlayer cation. The amorphization dose exhibits a bell-shaped variation as a function of temperature, with a decreasing part that indicates the influence of thermal dehydroxylation. Two main applications of the knowledge of radiation-induced defects in clay minerals are derived: (i) The use of defects as tracers of past radioactivity. In geological systems where the age of the clay can be constrained, ancient migrations of radioelements can be reconstructed in natural analogues of high level nuclear waste repositories. When the dose rate may be assumed constant over time, the paleodose is used to date clay populations, an approach applied to fault gouges or laterites of the Amazon basin. (ii) The influence of irradiation over physico-chemical properties of clay minerals. An environmental

  6. Interaction of oil components and clay minerals in reservoir sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Changchun Pan; Linping Yu; Guoying Sheng; Jiamo Fu [Chinese Academy of Sciences, State Key Lab. of Organic Geochemistry, Wushan, Guangzhou (China); Jianhui Feng; Yuming Tian [Chinese Academy of Sciences, State Key Lab. of Organic Geochemistry, Wushan, Guangzhou (China); Zhongyuan Oil Field Co., Puyang, Henan (China); Xiaoping Luo [Zhongyuan Oil Field Co., Puyang, Henan (China)

    2005-04-15

    The free oil (first Soxhlet extract) and adsorbed oil (Soxhlet extract after the removal of minerals) obtained from the clay minerals in the <2 {mu}m size fraction as separated from eight hydrocarbon reservoir sandstone samples, and oil inclusions obtained from the grains of seven of these eight samples were studied via GC, GC-MS and elemental analyses. The free oil is dominated by saturated hydrocarbons (61.4-87.5%) with a low content of resins and asphaltenes (6.0-22.0% in total) while the adsorbed oil is dominated by resins and asphaltenes (84.8-98.5% in total) with a low content of saturated hydrocarbons (0.6-9.5%). The inclusion oil is similar to the adsorbed oil in gross composition, but contains relatively more saturated hydrocarbons (16.87-31.88%) and less resins and asphaltenes (62.30-78.01% in total) as compared to the latter. Although the amounts of both free and adsorbed oils per gram of clay minerals varies substantially, the residual organic carbon content in the clay minerals of the eight samples, after the free oil extraction, is in a narrow range between 0.537% and 1.614%. From the decrease of the percentage of the extractable to the total of this residual organic matter of the clay minerals with burial depth it can be inferred that polymerization of the adsorbed polar components occurs with the increase of the reservoir temperature. The terpane and sterane compositions indicate that the oil adsorbed onto the clay surfaces appears to be more representative of the initial oil charging the reservoir than do the oil inclusions. This phenomenon could possibly demonstrate that the first oil charge preferentially interacts with the clay minerals occurring in the pores and as coatings around the grains. Although the variation of biomarker parameters between the free and adsorbed oils could be ascribed to the compositional changes of oil charges during the filling process and/or the differential maturation behaviors of these two types of oils after oil

  7. [Occurrence relationship between iron minerals and clay minerals in net-like red soils: evidence from X-ray diffraction].

    Science.gov (United States)

    Yin, Ke; Hong, Han-Lie; Han, Weni; Ma, Yu-Bo; Li, Rong-Biao

    2013-04-01

    The high purity of clay minerals is a key factor to reconstruct the palaeoclimate in clay mineralogy, however, the existence of iron minerals (such as goethite and hematite) and organics lead to the intergrowth of clay minerals and other minerals, producing other mineral impurities in enriched clay minerals. Although the removal of organics in soil sediments has been fully investigated, the occurrence state of iron minerals remains controversial, hindering the preparation of high-purity clay minerals. Therefore, the occurrence relationship of iron minerals and clay minerals in Jiujiang net-like red soils of the middle to lower reaches of the Yangtze River was investigated using the sequential separation method, which provided some implications for the removal of iron minerals in soil sediments. The results indicated that goethite and hematite were mostly absorbed on the surface of hydroxy-interlayered smectite and illite in the form of films, and the rest were absorbed by kaolinite.

  8. Picloram and Aminopyralid Sorption to Soil and Clay Minerals

    Science.gov (United States)

    Aminopyralid sorption data are lacking, and these data are needed to predict off-target transport and plant available herbicide in soil solution. The objective of this research was to determine the sorption of picloram and aminopyralid to five soils and three clay minerals and determine if the pote...

  9. Main Clay Minerals in Soils of Fujian Province,China

    Institute of Scientific and Technical Information of China (English)

    WANGGUO; ZHANGWEIMING; 等

    1996-01-01

    The clay minerals of more than 200 soil samples collected from various sites of Fujian Province were studied by the X-ray diffraction method and transmission electron microscopy to study their distribution and evolution.Montmorillonite was found in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit,and some lateritic red soil,red soil and yellow soil with a low weathering degree.Chlorite existed mainly in coastal solonchak and paddy soil developed from marine deposit.1.4nm intergradient mineral appeared frequently in yellow soil,red soil and lateritic red soil.The content of 1.4nm intergradient mineral increased with the decrease of weathering degree from lateritic red soil to red soil to yellow soil.Hydrous micas were more in coastal solonchak,paddy soils derived from marine deposit,lacustrine deposit and river deposit.and puple soil from purple shale than in other soils.Kaolinte was the most important clay mineral in the soils iun this province.The higher the soil weathering degree,the more the kaolinite existed.From yellow soil to red soil to lateritic red soil,kaolinite increased gradually,Kaolinite was the predominant clay mineral accompanied by few other minerals in typical lateritic red soil. Tubular halloysite was a widespread clay mineral in soils of Fujian Province with varying quantities.The soil derived from the paent rocks rich in feldspar contained more tubular halloysite.Spheroidal halloysite was found in a red soil and a paddy soil developed from olivine basalt gibbsite in the soils in this district was largely“primary gibbsite” which formed in the early weathering stage.Gibbsite decreased with the increase of weathering degree from yellow soil to red soil to lateritic red soil.Goethite also decreased in the same sequence while hematite increased.

  10. Reactivity of clay minerals with acids and alkalies

    Science.gov (United States)

    Carroll, D.; Starkey, H.C.

    1971-01-01

    One-g samples of a montmorillonite, a metabentonite, an illite, two kaolinites, and three halloysites were treated with 50 ml of hydrochloric acid (6??45 N, 1:1), acetic acid (4??5 N, 1:3), sodium hydroxide (2??8 N), sodium chloride solution (pH 6??10; Na = 35???; Cl = 21??5???), and natural sea water (pH 7??85; Na = 35??5???; Cl = 21??5???) for a 10-day period in stoppered plastic vials. The supernatant solutions were removed from the clay minerals and analyzed for SiO2, Al2O3, CaO, MgO, Na2O, and K2O. All the solutions removed some SiO2, Al2O3, and Fe2O3 from the samples, but the quantities were small. Sodium hydroxide attacked the kaolin group minerals more strongly than it did montmorillonite, metabentonite, or illite. Halloysite was more strongly attacked by hydrochloric acid than was any of the other experimental minerals. Hydrochloric acid removed iron oxide coatings from soil clay minerals, but acetic acid did not remove them completely. The samples most strongly attacked by HCl and NaOH were examined by X-ray diffraction. Acid treatment did not destroy the structure of the clays, but the halloysite structure was partially destroyed. Sodium hydroxide attacked the halloysite structure, as shown by chemical analysis and X-ray diffraction. These experiments show that treatment in dilute acids has no harmful effect in the preparation of clays for X-ray diffraction. Acetic acid is preferred to hydrochloric acid for this purpose. Hydrochloric acid cleans clay minerals by removing free iron oxide from the surface; acetic acid is less effective. ?? 1971.

  11. Exploring biotic vs. abiotic controls on syngenetic carbonate and clay mineral precipitation

    Science.gov (United States)

    Nascimento, Gabriela S.; McKenzie, Judith A.; Martinez Ruiz, Francisca; Bontognali, Tomaso R. R.; Vasconcelos, Crisogono

    2016-04-01

    A possible syngenetic relationship between carbonate and clay mineral precipitation has been reported for sedimentary rocks deposited in both lacustrine and marine sedimentary environments throughout the geological record. In particular, the mineral dolomite is often found associated with Mg-rich clays, such as stevensite. It is notable that this carbonate/clay association has been recorded in numerous samples taken from modern dolomite precipitating environments; for example, the Coorong lakes, South Australia, coastal sabkhas, Abu Dhabi, UAE and coastal hypersaline lagoons (Lagoa Vermelha and Brejo do Espinho) east of Rio de Janeiro, Brazil. An HRTEM study of samples from these three locations indicates a possible physical/chemical association between the Ca-dolomite and Mg-rich clays, demonstrating a probable co-precipitation. To test this hypothesis, we have conducted a series of biotic and abiotic laboratory experiments. If this syngenesis actually occurs in nature, what, if any, are the biogeochemical processes controlling these precipitation reactions? Our experiments were designed to determine the extent of the biotic versus abiotic component influencing the mineral precipitation and, in the case of a biotic influence, to understand the mechanism through which microorganisms might mediate the formation of clay minerals. The experiments were carried out in the Geomicrobiology Laboratory of ETH Zürich using cultures of living microbes and artificial organic compounds that simulate functional groups present in natural biofilms formed under both aerobic and anaerobic conditions. In addition, pure inorganic experiments were designed to understand possible physico-chemical conditions for diagenetic processes that could induce dissolution of Mg-carbonates and precipitation of Mg-rich clays. Our results show a remarkable biotic influence during the formation of clay minerals. Specifically, extracellular polymeric substances (EPS), released by microbes in their

  12. Sorption of tylosin on clay minerals.

    Science.gov (United States)

    Zhang, Qian; Yang, Chen; Huang, Weilin; Dang, Zhi; Shu, Xiaohua

    2013-11-01

    The equilibrium sorption of tylosin (TYL) on kaolinite and montmorillonite was measured at different solution pH using batch reactor systems. The results showed that all the sorption isotherms were nonlinear and that the nonlinearity decreased as the solution pH increased for a given clay. At a specific aqueous concentration, the single-point sorption distribution coefficient (KD) of TYL decreased rapidly as the solution pH increased. A speciation-dependent sorption model that accounted for the contributions of the cationic and neutral forms of TYL fit the data well, suggesting that the sorption may be dominated by both ion exchange and hydrophobic interactions. The isotherm data also fit well to a dual mode model that quantifies the contributions of a site-limiting Langmuir component (ion exchange) and a non-specific linear partitioning component (hydrophobic interactions). X-ray diffraction analyses revealed that the interlayers of montmorillonite were expanded due to the uptake of TYL. TYL molecules likely form a monolayer surface coverage.

  13. Cesium sorption and desorption behavior of clay minerals

    International Nuclear Information System (INIS)

    Cesium sorption and desorption of clay minerals (montmorillonite, beidellite, nontronite, weathered biotite, rectorite and illite) were investigated by consecutive sorption-desorption (CSD) experiments. In batch sorption experiment, two solutions with different Cs concentration 10-3 and 10-7 mol/L) were used. In batch desorption experiments, Cs sorbed samples in sorption experiments were treated 5 times with 1 mol/L ammonium acetate solution. In the case of CSD experiments using 10-3 mol/L Cs solution, the exchangeable cations (Na, Ca, and K) in the clay samples affected to the sorption ratio of Cs, and this effect depended on the type of clay mineral. The desorption ratios of untreated, Na-exchanged and Ca-exchanged weathered biotite ranged from 23 to 33%, while that of other samples was over 80%. In the case of CSD experiments using 10-7 mol/L Cs solution, the sorption ratio of montmorillonite was smaller than that of the other clay samples. In desorption experiments, more than 10-9 mol sorbed Cs remained in 1.0 g of the sample after 5 extraction times. These results indicate that all examined clay samples are able to strongly adsorb Cs with a capacity of more than 10-9 mol/g. (author)

  14. Features of Clay Minerals in the YSDP102 Core on the Continental Shelf of the Southeast Yellow Sea

    Institute of Scientific and Technical Information of China (English)

    JIANG Xuejun; QU Gaosheng; LI Shaoquan

    2004-01-01

    Ninety-eight clay mineral samples from the YSDP102 core were analyzed by x-ray diffractometer to study the four clay minerals: illite, chlorite, kaolinite and smectite. Twenty-eight samples had been analyzed on the laser particle-size analyzer to reveal the particle features of the sediments. Distribution of the clay minerals and the particle characteristics in the YSDP102 core show that the core experienced three different depositional periods and formed three different sedimentary intervals due to different sediment sources and different depositional environments. Features of the clay minerals and the heavy minerals in the YSDP102 core indicate that coarse-grained sediments and fine-grained sediments result from different sources. The Yellow Sea Warm Current has greatly influenced the sedimentary framework of this region since the current's formation.

  15. Adsorption of diethyl phthalate ester to clay minerals.

    Science.gov (United States)

    Wu, Yanhua; Si, Youbin; Zhou, Dongmei; Gao, Juan

    2015-01-01

    Phthalate esters are a group of plasticizers, which have been widely detected in China's agricultural and industrial soils. In this study, batch adsorption experiments were conducted to investigate the environmental effects on the adsorption of diethyl phthalate ester (DEP) to clay minerals. The results showed that DEP adsorption isotherms were well fitted with the Freundlich model; the interlayer spacing of K(+) saturated montmorillonite (K-mont) was the most important adsorption area for DEP, and di-n-butyl ester (DnBP) was limited to intercalate into the interlayer of K-mont due to the bigger molecular size; there was no significant effect of pH and ionic strength on DEP adsorption to K-mont/Ca-mont, but to Na-mont clay. The adsorption to kaolinite was very limited. Data of X-ray diffraction and FTIR spectra further proved that DEP molecules could intercalate into K-/Ca-mont interlayer, and might interact with clay through H-bonding between carbonyl groups and clay adsorbed water. Coated humic acid on clay surface would enhance DEP adsorption at low concentration, but not at high concentration (eg. Ce>0.26 mM). The calculated adsorption enthalpy (ΔHobs) and adsorption isotherms at varied temperatures showed that DEP could be adsorbed easier as more adsorbed. This study implied that clay type, compound structure, exchangeable cation, soil organic matter and temperature played important roles in phthalate ester's transport in soil.

  16. Adsorption of Nucleic Acid Bases, Ribose, and Phosphate by Some Clay Minerals

    OpenAIRE

    Hideo Hashizume

    2015-01-01

    Besides having a large capacity for taking up organic molecules, clay minerals can catalyze a variety of organic reactions. Derived from rock weathering, clay minerals would have been abundant in the early Earth. As such, they might be expected to play a role in chemical evolution. The interactions of clay minerals with biopolymers, including RNA, have been the subject of many investigations. The behavior of RNA components at clay mineral surfaces needs to be assessed if we are to appreciate ...

  17. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L-1, CaCl2 0.04 M.L-1) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic (57Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe

  18. Phase transformations of pyrophyllite clay mineral after heat treatment

    International Nuclear Information System (INIS)

    The termal transformation of the Pyrophyllite clay mineral, given by the equations: AL sub(2) O sub(3).4SiO sub(2).H sub(2) O → Al sub(2) O sub(3).4SiO sub(2) + H sub(2) O Pyrophyllite Anhydride Water vapour. 3 (Al sub(2) O sub(3).4SiO sub(2)) → 3 Al sub(2) O sub(3). 2SiO sub(2) + 10 (SiO sub(2)) Pyrophyllite Anhydride Mullite Cristobalite, were studied by Transmission Electron Microscopy (TEM) associated to Selected Area Electron Diffraction (SAD), applied to a very pure sample, colected at Diamantina, M.G. Some other tgechniques were also used, as X-ray Diffraction (XRD), Differential Thermal Analysis (DTA) and Thermogravimetric Analysis (TGA), applied to other different Pyrophyllite samples. A thermodynamical theoretical study was undertaken to estimate the values for the entropyu of formation, enthalpy and molar thermal capacity for the Pyrophyllite Anhydride. (author)

  19. Transport and selective uptake of radium into natural clay minerals

    Science.gov (United States)

    Hidaka, Hiroshi; Horie, Kenji; Gauthier-Lafaye, Françoise

    2007-12-01

    Understanding of the environmental behavior of Ra is important from the viewpoint of the long-termed repository safety of radioactive waste, but investigation of Ra behavior in natural environment is difficult to detect. We found isotopic evidence of Ra transportation and its selective uptake into clay minerals from Pb isotopic analyses. Illite grains found in calcite veins included in sandstone near the Oklo uranium deposit, Republic of Gabon, show extremely low 207Pb/ 206Pb (˜ 0.0158) isotopic ratios. Although the Pb isotopic ratios of calcite and quartz coexisting with illite indicate the formation age of each component, those of illite do not. In addition, illite grains having low 207Pb/ 206Pb isotopic ratios contain a strongly large amount of Ba (1230 to 6010 ppm) in contrast with low contents of Ba in calcite and quartz (< 0.26 ppm). Considering the chemical similarity between Ba and Ra, the 207Pb/ 206Pb isotopic data suggest an excess of 206Pb due to selective adsorption of 226Ra (and also Ba) into illite grains. This is a very rare example to show evidence of the selective adsorption behavior of Ra from the isotopic excesses of 206Pb, although the adsorption ability of Ra itself in nature was largely reported.

  20. Formation of stable nanocomposite clays from small peptides reacted with montmorillonite and illite-smectite mixed layer clays

    Science.gov (United States)

    Block, K. A.; Katz, A.; LeBlanc, J.; Peña, S.; Gottlieb, P.

    2015-12-01

    Understanding how organic compounds interact with clay minerals and which functional groups result in the strongest bonds is pivotal to achieving a better understanding of how mineral composition affects the residence time of carbon and nitrogen in soils. In this work, we describe how small peptides derived from tryptone casein digest are dissolved and suspended with clay minerals to examine the nature of OM adsorption to mineral surfaces and the resulting effect on clay mineral structure. XRD analyses indicate that peptides intercalation results in expansion of the d001 spacing of montmorillonite (Mt) and the smectite component of a 70-30 illite-smectite mixed layer clay (I-S) and poorer crystallinity overall as a result of exfoliation of tactoids. Peptide adsorption is concentration-dependent, however, surface adsorption appears to mediate interlayer adsorption in Mt reaching a maximum of 16% of the mass of the organoclay complex, indicating that at a critical concentration, peptide intercalation will supersede surface adsorption resulting in a more stable attachment. In I-S the degree of surface adsorption and intercalation is proportional to concentration, however, surface adsorption is not a priming mechanism for interlayer adsorption. Thermogravimetric analysis of the organoclay complexes determined by TGA coupled to GC-MS indicate that the most prominent product species measured was 1-(1-Trimethylsiloxyethenyl)-3-trimethylsiloxy-benzene, likely from tryptophan monomer decomposition. The compound was detected over a broad temperature range, greater than 300 oC, during pyrolysis and suggests a carbon-silicon covalent bond formed between the peptide and tetrahedral layers in the clay. An additional silicon-bearing VOC detected at lower pyrolysis temperature by GC was N,N-Diethyl-1-(trimethylsilyl)-9,10-didehydroergoline-8-carboxamide, likely derived from a lysine-bearing peptide derivative. We hypothesize that hydrophobic (non-ionic) peptides react with silanol

  1. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti

    2012-01-01

    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. DSC (differential scanning calorimeter measurements were performed on the kaolinites KGa-1b and KGa-2 from the Clay Mineral Society and kaolinite from Sigma-Aldrich; the montmorillonites SWy-2 and STx-1b from the Clay Mineral Society and the acid treated montmorillonites KSF and K-10 from Sigma Aldrich; the illites NX and SE from Arginotec. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites showed quite narrow standard peaks with onset temperatures 239 K < Tonstd < 242 K and best sites with averaged median freezing temperature Tmedbest = 257 K. Only the kaolinite from Sigma Aldrich featured a special peak with freezing onset at 248 K. The illites showed broad standard peaks with freezing onsets at 244 K < Tonstd < 246 K and best sites with averaged median freezing temperature Tmedbest = 262 K. Montmorillonites had standard peaks with onsets 238 K < Tonstd < 240 K and best sites with Tmedbest=257 K. SWy-2, M K10, and KSF featured special peaks with onsets at Tonspcl=247, 240, and 242 K

  2. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals

    Science.gov (United States)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor

    2014-05-01

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  3. Reduction And Immobilization Of Hexavalent Chromium By Microbially Reduced Fe-bearing Clay Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce W.; Kovarik, Libor

    2014-05-15

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10°, 20°, and 30°C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10°C, though at 30°C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  4. Deposition kinetics of MS2 bacteriophages on clay mineral surfaces.

    Science.gov (United States)

    Tong, Meiping; Shen, Yun; Yang, Haiyan; Kim, Hyunjung

    2012-04-01

    The deposition of bacteriophage MS2 on bare and clay-coated silica surfaces was examined in both monovalent (NaCl) and divalent (CaCl(2) and MgCl(2)) solutions under a wide range of environmentally relevant ionic strength and pH conditions by utilizing a quartz crystal microbalance with dissipation (QCM-D). Two types of clay, bentonite and kaolinite, were concerned in this study. To better understand MS2 deposition mechanisms, QCM-D data were complemented by zeta potentials measurements and Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction forces calculation. In both monovalent and divalent solutions, deposition efficiencies of MS2 increased with increasing ionic strength both on bare and clay-coated surfaces, which agreed with the trends of interaction forces between MS2 and solid surface and thus was consistent with DLVO theory. The presence of divalent ions (Ca(2+) and Mg(2+)) in solutions greatly increased virus deposition on both silica and clay deposited surfaces. Coating silica surfaces with clay minerals, either kaolinite or bentonite, could significantly increase MS2 deposition.

  5. X-ray diffraction identification of clay minerals by microcomputer

    International Nuclear Information System (INIS)

    The identification of clay minerals by X-ray powder diffraction are done by searching an unknown pattern with a file of standard X-ray diffraction patterns. For this searching done by hand is necessary a long time. This paper shows a program in ''Basic'' language to be utilized in microcomputers for the math of the unknown pattern, using the high velocity of comparison of the microcomputer. A few minutes are used for the match. (author)

  6. METODOLOGY FOR LATERÍTICS CU-BEARING CLAY MINERALS CHARACTERIZATION

    OpenAIRE

    Eliana Satiko Mano; Laurent Caner; Arthur Pinto Chaves

    2015-01-01

    Lateritic material lies over nearly 75% of the Brazilian surface area; but not more than 30% of this material is exploited. The expressive volume of clay minerals associated to the ores is the main reason of this low figure, especially because clay minerals are very complex, most of the time, impossible to concentrate. Under this circumstance, a proper mineral identification and the knowledge of the clay mineral structure are essential for the best mineral processing route choice. This stu...

  7. Studies of clays and clay minerals using x-ray powder diffraction and the Rietveld method

    Energy Technology Data Exchange (ETDEWEB)

    Bish, D.L.

    1993-09-01

    The Rietveld method was originally developed (Rietveld, 1967, 1969) to refine crystal structures using neutron powder diffraction data. Since then, the method has been increasingly used with X-ray powder diffraction data, and today it is safe to say that this is the most common application of the method. The method has been applied to numerous natural and synthetic materials, most of which do not usually form crystals large enough for study with single-crystal techniques. It is the ability to study the structures of materials for which sufficiently large single crystals do not exist that makes the method so powerful and popular. It would thus appear that the method is ideal for studying clays and clay minerals. In many cases this is true, but the assumptions implicit in the method and the disordered nature of many clay minerals can limit titsapplicability. This chapter will describe the Rietveld method, emphasizing the assumptions important for the study of disordered materials, and it will outline the potential applications of the method to these minerals. These applications include, in addition to the refinement of crystal structures, quantitative analysis of multicomponent mixtures, analysis of peak broadening, partial structure solution, and refinement of unit-cell parameters.

  8. Transformation of anthracene on various cation-modified clay minerals.

    Science.gov (United States)

    Li, Li; Jia, Hanzhong; Li, Xiyou; Wang, Chuanyi

    2015-01-01

    In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe-smectite > Cu-smectite > Al-smectite ≈ Ca-smectite ≈ Mg-smectite ≈ Na-smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)-smectite exhibits the highest catalytic activity followed by Fe(III)-illite, Fe(III)-pyrophyllite, and Fe(III)-kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.

  9. Clays and Clay Minerals and their environmental application in Food Technology

    Science.gov (United States)

    del Hoyo Martínez, Carmen; Cuéllar Antequera, Jorge; Sánchez Escribano, Vicente; Solange Lozano García, Marina; Cutillas Díez, Raul

    2013-04-01

    The clay materials have led to numerous applications in the field of public health (del Hoyo, 2007; Volzone, 2007) having been demonstrated its effectiveness as adsorbents of all contaminants. Some biodegradable materials are used for for adsorption of chemical contaminants: lignins (Valderrabano et al., 2008) and also clays and clay minerals, whose colloidal properties, ease of generating structural changes, abundance in nature, and low cost make them very suitable for this kind of applications. Among the strategies used at present to preserve the quality of the water and this way to diminish the environmental risk that supposes the chemical pollution, stands out the use of adsorbents of under cost, already they are natural or modified, to immobilize these compounds and to avoid the pollution of the water with the consequent reduction of environmental and economic costs Thanks to the development of the science and the technology of the nourishment in the last 50 years, there have revealed itself several new substances that can fulfill beneficial functions in the food, and these substances, named food additives, are today within reach of all. The food additives recover a very important role in the complex nourishing supply. The additives fulfill several useful functions in the food, which often we give for sat. Nevertheless the widespread use of food additives in the food production also influences the public health. The food industries, which are very important for the economy, spill residues proved from its activity that they have to be controlled to evaluate the environmental impact and to offer the necessary information about the quantitative evaluation of the chemical risk of the use of food additives for the public health. We have studied the adsorption of several contaminants by natural or modified clays, searching their interaction mechanisms and the possible recycling of these materials for environmental purposes and prevention of the health. References

  10. Program and Abstracts for Clay Minerals Society 28th Annual Meeting

    Science.gov (United States)

    1991-01-01

    This volume contains abstracts that were accepted for presentation at the annual meeting. Some of the main topics covered include: (1) fundamental properties of minerals and methods of mineral analysis; (2) surface chemistry; (3) extraterrestrial clay minerals; (4) geothermometers and geochronometers; (5) smectite, vermiculite, illite, and related reactions; (6) soils and clays in environmental research; (7) kaolinite, halloysite, iron oxides, and mineral transformations; and (8) clays in lakes, basins, and reservoirs.

  11. Aqueous dissolution, solubilities and thermodynamic stabilities of common aluminosilicate clay minerals: Kaolinite and smectites

    Science.gov (United States)

    May, Howard M.; Klnniburgh, D.G.; Helmke, P.A.; Jackson, M.L.

    1986-01-01

    Determinations of the aqueous solubilities of kaolinite at pH 4, and of five smectite minerals in suspensions set between pH 5 and 8, were undertaken with mineral suspensions adjusted to approach equilibrium from over- and undersaturation. After 1,237 days, Dry Branch, Georgia kaolinite suspensions attained equilibrium solubility with respect to the kaolinite, for which Keq = (2.72 ?? 0.35) ?? 107. The experimentally determined Gibbs free energy of formation (??Gf,2980) for the kaolinite is -3,789.51 ?? 6.60 kj mol-1. Equilibrium solubilities could not be determined for the smectites because the composition of the solution phase in the smectite suspensions appeared to be controlled by the formation of gibbsite or amorphous aluminum hydroxide and not by the smectites, preventing attempts to determine valid ??Gf0 values for these complex aluminosilicate clay minerals. Reported solubility-based ??Gf0 determinations for smectites and other variable composition aluminosilicate clay minerals are shown to be invalid because of experimental deficiencies and of conceptual flaws arising from the nature of the minerals themselves. Because of the variable composition of smectites and similar minerals, it is concluded that reliable equilibrium solubilities and solubility-derived ??Gf0 values can neither be rigorously determined by conventional experimental procedures, nor applied in equilibriabased models of smectite-water interactions. ?? 1986.

  12. Iron(III)-bearing clay minerals enhance bioreduction of nitrobenzene by Shewanella putrefaciens CN32.

    Science.gov (United States)

    Luan, Fubo; Liu, Yan; Griffin, Aron M; Gorski, Christopher A; Burgos, William D

    2015-02-01

    Iron-bearing clay minerals are ubiquitous in the environment, and the clay-Fe(II)/Fe(III) redox couple plays important roles in abiotic reduction of several classes of environmental contaminants. We investigated the role of Fe-bearing clay minerals on the bioreduction of nitrobenzene. In experiments with Shewanella putrefaciens CN32 and excess electron donor, we found that the Fe-bearing clay minerals montmorillonite SWy-2 and nontronite NAu-2 enhanced nitrobenzene bioreduction. On short time scales (clay minerals became increasingly important. We found that chemically reduced (dithionite) iron-bearing clay minerals reduced nitrobenzene more rapidly than biologically reduced iron-bearing clay minerals despite the minerals having similar structural Fe(II) concentrations. We also found that chemically reduced NAu-2 reduced nitrobenzene faster as compared to chemically reduced SWy-2. The different reactivity of SWy-2 versus NAu-2 toward nitrobenzene was caused by different forms of structural clay-Fe(II) in the clay minerals and different reduction potentials (Eh) of the clay minerals. Because most contaminated aquifers become reduced via biological activity, the reactivity of biogenic clay-Fe(II) toward reducible contaminants is particularly important.

  13. Interaction between clay minerals and hydrocarbon-utilizing indigenous microorganisms in high concentrations of heavy oil: implications for bioremediation

    International Nuclear Information System (INIS)

    This study focused on whether the presence of clay minerals (montmorillonite and kaolinite) in marine or coastal environments contaminated with high concentrations of heavy-oil spills were able to support the growth of hydrocarbon degraders to enable bioremediation. The bacterial growth experiment utilizing ∼150 g/l of heavy oil (from the Nakhodka oil spill) was conducted with 1500 mg/l of montmorillonite or kaolinite. Bacterial strain Pseudomonas aeruginosa (isolated from Atake seashore, Ishikawa Prefecture, Japan), capable of degrading heavy oil, was employed in combination with other hydrocarbon degraders inhabiting the heavy oil and seawater (collected from the Sea of Japan). The interactions among microbial cells, clay minerals and heavy oil were studied. Both clays were capable of promoting microbial growth and allowed microorganisms to proliferate (to a greater degree than in a control sample which contained no clay) in an extremely high concentration of heavy oil. Observation by transmission electron microscopy of the clay-oil-cell complexes showed that microbial cells tended to be bound primarily on the edges of the clays. X-ray diffraction analysis showed that the clay-oil and clay-oil-cell complexes involved the adsorption of microbial cells and/or heavy oil on the external surfaces of the clays. How do the interactions among clay minerals, microbial cells and heavy oil contribute to environmental factors influencing the bioremediation process? To our knowledge, there are no previous reports on the use of clay minerals in the bioremediation of the Nakhodka oil spill in combination with biofilm formation. (author)

  14. Ice nucleation efficiency of clay minerals in the immersion mode

    Directory of Open Access Journals (Sweden)

    V. Pinti

    2012-07-01

    Full Text Available Emulsion and bulk freezing experiments were performed to investigate immersion ice nucleation on clay minerals in pure water, using various kaolinites, montmorillonites, illites as well as natural dust from the Hoggar Mountains in the Saharan region. Differential scanning calorimeter measurements were performed on three different kaolinites (KGa-1b, KGa-2 and K-SA, two illites (Illite NX and Illite SE and four natural and acid-treated montmorillonites (SWy-2, STx-1b, KSF and K-10. The emulsion experiments provide information on the average freezing behaviour characterized by the average nucleation sites. These experiments revealed one to sometimes two distinct heterogeneous freezing peaks, which suggest the presence of a low number of qualitatively distinct average nucleation site classes. We refer to the peak at the lowest temperature as "standard peak" and to the one occurring in only some clay mineral types at higher temperatures as "special peak". Conversely, freezing in bulk samples is not initiated by the average nucleation sites, but by a very low number of "best sites". The kaolinites and montmorillonites showed quite narrow standard peaks with onset temperatures 238 K<Tonstd<242 K and best sites with averaged median freezing temperature Tmedbest=257 K, but only some featuring a special peak (i.e. KSF, K-10, K-SA and SWy-2 with freezing onsets in the range 240–248 K. The illites showed broad standard peaks with freezing onsets at 244 K Tonstd<246 K and best sites with averaged median freezing temperature Tmedbest=262 K. The large difference between freezing temperatures of standard and best sites shows that characterizing ice nucleation efficiencies of dust particles on the basis of freezing onset temperatures from bulk experiments, as has been done in some atmospheric studies, is not appropriate. Our investigations

  15. Geothermal alteration of clay minerals and shales: diagenesis

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, C.E.

    1979-07-01

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes.

  16. Geothermal alteration of clay minerals and shales: diagenesis

    International Nuclear Information System (INIS)

    The objective of this report is to perform a critical review of the data on the mineral and chemical alterations that occur during diagenesis and low-grade metamorphism of shale and other clay-rich rocks - conditions similar to those expected from emplacement of heat-producing radioactive waste in a geologic repository. The conclusions drawn in this document are that the following type of alterations could occur: smectite alteration, ion mobilization, illitic shales, kaolinite reactions, chlorite reactions, organic reactions, paleotemperatures, low temperature shales, high temperature shales, and phase equilibrium changes

  17. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials.

    Science.gov (United States)

    Freedman, Miriam Arak

    2015-10-01

    Few aerosol particles in clouds nucleate the formation of ice. The surface sites available for nucleus formation, which can include surface defects and functional groups, determine in part the activity of an aerosol particle toward ice formation. Although ice nucleation on particles has been widely studied, exploration of the specific sites at which the initial germ forms has been limited, but is important for predicting the microphysical properties of clouds, which impact climate. This Perspective focuses on what is currently known about surface sites for ice nucleation on aluminosilicate clay minerals, which are commonly found in ice residuals, as well as related materials.

  18. Potential Sites for Ice Nucleation on Aluminosilicate Clay Minerals and Related Materials.

    Science.gov (United States)

    Freedman, Miriam Arak

    2015-10-01

    Few aerosol particles in clouds nucleate the formation of ice. The surface sites available for nucleus formation, which can include surface defects and functional groups, determine in part the activity of an aerosol particle toward ice formation. Although ice nucleation on particles has been widely studied, exploration of the specific sites at which the initial germ forms has been limited, but is important for predicting the microphysical properties of clouds, which impact climate. This Perspective focuses on what is currently known about surface sites for ice nucleation on aluminosilicate clay minerals, which are commonly found in ice residuals, as well as related materials. PMID:26722881

  19. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography

    OpenAIRE

    Petschick, Rainer; Kuhn, Gerhard; Gingele, Franz

    1996-01-01

    Surface samples, mostly from abyssal sediments of the South Atlantic, from parts of the equatorial Atlantic, and of the Antarctic Ocean, were investigated for clay content and clay mineral composition. Maps of relative clay mineral content were compiled, which improve previous maps by showing more details, especially at high latitudes. Large-scale relations regarding the origin and transport paths of detrital clay are revealed. High smectite concentrations are observed in abyssal regions, pri...

  20. Separation of Clay Minerals from Host Sediments Using Cation Exchange Resins

    Institute of Scientific and Technical Information of China (English)

    I.S. Ismael; H.M. Baioumy

    2003-01-01

    Classic physical and chemical treatments applied to separating clay minerals from the host sediments are often difficult or aggressive for clay minerals. A technique using cation exchange resins (amberlite IRC-50H and amberlite IR-120) is used to separate clay minerals from the host sediments. The technique is based on the exchange of cations in the minerals that may be associated clay minerals in sediments,such as Ca and Mg from dolomite; Ca from calcite,gypsum and francolite with cations carried by resin radicals. The associated minerals such as gypsum,calcite,dolomite and francolite are removed in descending order. Separation of clay minerals using cation exchange resins is less aggressive than that by other classic treatments.The efficiency of amberlite IRC-50H in the removal of associated minerals is greater than that of amberlite IR-120.

  1. Analysis of mixed-layer clay mineral structures

    Science.gov (United States)

    Bradley, W.F.

    1953-01-01

    Among the enormously abundant natural occurrences of clay minerals, many examples are encountered in which no single specific crystallization scheme extends through a single ultimate grain. The characterization of such assemblages becomes an analysis of the distribution of matter within such grains, rather than the simple identification of mineral species. It having become established that the particular coordination complex typified by mica is a common component of many natural subcrystalline assemblages, the opportunity is afforded to analyze scattering from random associations of these complexes with other structural units. Successful analyses have been made of mixed hydration states of montmorillonite, of montmorillonite with mica, of vermiculite with mica, and of montmorillonite with chlorite, all of which are variants of the mica complex, and of halloysite with hydrated halloysite.

  2. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater.

    Science.gov (United States)

    Hunter, W R; Battin, T J

    2016-01-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with (13)C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of (13)C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments. PMID:27481013

  3. Microbial metabolism mediates interactions between dissolved organic matter and clay minerals in streamwater

    Science.gov (United States)

    Hunter, W. R.; Battin, T. J.

    2016-08-01

    Sorption of organic molecules to mineral surfaces is an important control upon the aquatic carbon (C) cycle. Organo-mineral interactions are known to regulate the transport and burial of C within inland waters, yet the mechanisms that underlie these processes are poorly constrained. Streamwater contains a complex and dynamic mix of dissolved organic compounds that coexists with a range of organic and inorganic particles and microorganisms. To test how microbial metabolism and organo-mineral complexation alter amino acid and organic carbon fluxes we experimented with 13C-labelled amino acids and two common clay minerals (kaolinite and montmorillonite). The addition of 13C-labelled amino acids stimulated increased microbial activity. Amino acids were preferentially mineralized by the microbial community, concomitant with the leaching of other (non-labelled) dissolved organic molecules that were removed from solution by clay-mediated processes. We propose that microbial processes mediate the formation of organo-mineral particles in streamwater, with potential implications for the biochemical composition of organic matter transported through and buried within fluvial environments.

  4. The First X-ray Diffraction Patterns of Clay Minerals from Gale Crater

    Science.gov (United States)

    Bristow, Thomas; Blake, David; Bish, David L.; Vaniman, David; Ming, Douglas W.; Morris, Richard V.; Chipera, Steve; Rampe, Elizabeth B.; Farmer, Jack, D.; Treiman, Allan H; Downs, Robert; Morrison, Shaunna; Achilles, Cherie; DesMarais, David J.; Crisp, Joy A.; Sarrazin, Philippe; Morookian, John Michael; Grotzinger. John P.

    2013-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 021 band consistent with a trioctahedral phyllosilicate. A broad peak at approx 10A with a slight inflexion at approx 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and heating

  5. Paleoenvironmental Implications of Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Bristow, Thomas F.; Blake, David F.

    2014-01-01

    The Mars Science Laboratory (MSL) Rover, Curiosity spent approx 150 sols at Yellowknife Bay (YKB) studying a section of fluvio-lacustrine sedimentary rocks (with potential indications of volcanic influence), informally known as the Yellowknife Bay formation. YKB lies in a distal region of the Peace Vallis alluvial fan, which extends from the northern rim of Gale Crater toward the dune field at the base of Mt Sharp. Sedimentological and stratigraphic observations are consistent with the Yellowknife Bay formation being part of a distal fan deposit, which could be as young as middle Hesperian to even early Amazonian in age (approx. 3.5 to 2.5 Ga). The Yellowknife Bay formation hosts a unit of mudstone called the Sheepbed member. Curiosity obtained powdered rock samples from two drill holes in the Sheepbed Member, named John Klein and Cumberland, and delivered them to instruments in Curiosity. Data from CheMin, a combined X-ray diffraction (XRD)/X-ray fluorescence instrument (XRF), has allowed detailed mineralogical analysis of mudstone powders revealing a clay mineral component of approx. 20 wt.% in each sample. The clay minerals are important indicators of paleoenvironmental conditions and sensitive recorders of post-depositional alteration processes. The XRD pattern of John Klein reveals a 02l band consistent with a trioctahedral phyllosilicate. A broad peak at approx. 10A with a slight inflexion at approx. 12A indicates the presence of 2:1 type clay minerals in the John Klein sample. The trioctahedral nature of the clay minerals, breadth of the basal reflection, and presence of a minor component with larger basal spacing suggests that John Klein contains a trioctahedral smectite (probably saponite), whose interlayer is largely collapsed because of the low-humidity conditions. The XRD patterns show no evidence of corrensite (mixed-layer chlorite/smectite) or chlorite, which are typical diagenetic products of trioctahedral smectites when subjected to burial and

  6. Kinetic Study of Denatonium Sorption to Smectite Clay Minerals.

    Science.gov (United States)

    Crosson, Garry S; Sandmann, Emily

    2013-06-01

    The denatonium cation, as a benzoate salt, is the most bitter cation known to modern society and is frequently added to consumer products to reduce accidental and intentional consumption by humans and animals. Denatonium can enter the environment by accidental discharges, potentially rendering water supplies undrinkable. Interactions of denatonium with soil components (i.e., smectite minerals) ultimately control the environmental fate of denatonium, but the current literature is devoid of studies that evaluate denatonium sorption to smectite minerals. This study investigated the mechanism and kinetics of denatonium sorption to smectite clay minerals as a function of smectite type, temperature, pH and ionic strength. Uptake by synthetic mica montmorillonite (Syn-1), Wyoming montmorillonite (SWy-2), and Texas montmorillonite (STx-1b) at 305K was rapid, with equilibrium being reached within 2 min for all clays. Complete removal of denatonium was observed for STx-1b at pH 6.9, while partial removal was observed for Syn-1 and SWy-2. Kinetic behavior of SWy-2 and Syn-1 is consistent with a pseudo-second-order model at 305K. An activation energy of +25.9 kJ/mol was obtained for sorption to Syn-1 and was independent of temperature between 286K and 338K. Activation-free energy (ΔG*), activation enthalpy (ΔH*), and activation entropy (ΔS*) for Syn-1 were found to be +62.91 kJ/mol, +23.36 kJ/mol, and -0.130 kJ/(K·mol), respectively. Sorption capacities at pH 3.6, 6.9, and 8.2 were constant at 1.3×10(-2) g denatonium/g clay; however, the kinetic rate constant increased by 56%, going from acidic to basic solution conditions. Distribution coefficients were negatively correlated with ionic strength, suggesting cation exchange. Collectively, results suggested that smectite minerals can serve as efficient sinks for denatonium cations. This is much-needed information for agencies developing regulations regarding denatonium usage and for water treatment professionals who may

  7. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf

    Science.gov (United States)

    Hein, J.R.; Dowling, J.S.; Schuetze, A.; Lee, H.J.

    2003-01-01

    Clay mineralogy is useful in determining the distribution, sources, and dispersal routes of fine-grained sediments. In addition, clay minerals, especially smectite, may control the degree to which contaminants are adsorbed by the sediment. We analyzed 250 shelf sediment samples, 24 river-suspended-sediment samples, and 12 river-bed samples for clay-mineral contents in the Southern California Borderland from Point Conception to the Mexico border. In addition, six samples were analyzed from the Palos Verdes Headland in order to characterize the clay minerals contributed to the offshore from that point source. The clay-mineral suite for the entire shelf sediment data set (26% smectite, 50% illite, 24% kaolinite+chlorite) is closely comparable to that for the mean of all the rivers (31% smectite, 49% illite, 20% kaolinite+chlorite), indicating that the main source of shelf fine-grained sediments is the adjacent rivers. However, regional variations do exist and the shelf is divided into four provinces with characteristic clay-mineral suites. The means of the clay-mineral suites of the two southernmost provinces are within analytical error of the mineral suites of adjacent rivers. The next province to the north includes Santa Monica Bay and has a suite of clay minerals derived from mixing of fine-grained sediments from several sources, both from the north and south. The northernmost province clay-mineral suite matches moderately well that of the adjacent rivers, but does indicate some mixing from sources in adjacent provinces.

  8. A Preliminary Study on Identification of Clay Minerals in Soils with Reference to Reflectance Spectra

    Institute of Scientific and Technical Information of China (English)

    XUBIN-BIN; LIDE-CHENG; 等

    1995-01-01

    The characteristics of the reflectance spectra of clay minerals and their influences on the reflectance spectra of soils are dealt with in the paper.The results showed that dominant clay minerals in soils could be distinguished in light of the spectral -form parameters of the reflectance spectra of soils,thus making it possible to develop a quick method to determine clay minerals by means of reflectance spectra of soils in the lab.and providing a theoretic basis for remote sensing of clay minerals in soils with a high resolution imaging spectrometer.

  9. Mineral Surface Control of Organic Carbon Burial: Secular Rise of Clay Mineral Deposition in the Precambrian and the Rise of Oxygen

    Science.gov (United States)

    Kennedy, M. J.; Droser, M. L.; Mayer, L.; Pevear, D.

    2004-12-01

    Accumulation of oxygen in the earth's atmosphere requires burial of organic matter in marine sediments. Today, the major mode of organic carbon burial is in association with detrital pedogenic clay minerals which serve to protect organic matter against biological oxidation during burial in marine sediments. The bulk of detrital clays that are ultimately deposited in marine sediments are formed in biologically active soils that require plant processes to retain water, concentrate weathering produced solutes, stablize soils, and provide an adsorptive media. At some point in Earth history before the colonization of land surfaces by plants and the formation of biotic soils, clay mineral surface limitation may have severely reduced the preservation potential of organic carbon during burial. An important consequence of this would have also been a reduced flux of oxygen to the atmosphere because organic carbon and oxygen release are coupled. Multiple independent lines of evidence indicate a significant change in continental weathering and pedogenic clay mineral formation and establishment of the `clay factory' that coincides with colonization of land surfaces by primitive plant like organisms in the late Precambrian. The enhanced burial efficiency that would have accompanied the shift to the modern mode of detrital pedogenic clay hosted carbon burial would have driven an increase in oxygen levels toward present values. Evidence suggests that this rise in oxygen occurred just prior to the advent of the first complex animals in the Ediacaran.

  10. The Combination of Salt Induced Peptide Formation Reaction and Clay Catalysis: A Way to Higher Peptides under Primitive Earth Conditions

    Science.gov (United States)

    Rode, Bernd M.; Son, Hoang L.; Suwannachot, Yuttana; Bujdak, Juraj

    1999-05-01

    Two reactions with suggested prebiotic relevance for peptide evolution, the saltinduced peptide formation reaction and the peptide chain elongation/stabilization on clay minerals have been combined in experimental series starting from dipeptides and dipeptide/amino acid mixtures. The results show that both reactions can take place simultaneously in the same reaction environment and that the presence of mineral catalysts favours the formation of higher oligopeptides. These findings lend further support to the relevance of these reactions for peptide evolution on the primitive earth. The detailed effects of the specific clay mineral depend both on the nature of the mineral and the reactants in solution.

  11. Clay surface catalysis of formation of humic substances: potential role of maillard reactions

    Science.gov (United States)

    The mechanisms of the formation of humic substances are poorly understood, especially the condensation of amino acids and reducing sugars products (Maillard reaction) in soil environments. Clay minerals behave as Lewis and Brönsted acids and catalyze several reactions and likely to catalyze the Mai...

  12. Origin of clay-mineral variation in Wisconsinan age sediments from the Lake Michigan basin

    Energy Technology Data Exchange (ETDEWEB)

    Monaghan, G.W. (Geocomp Research, Eaton, NY (United States)); Larson, G.J. (Michigan State Univ., East Lansing, MI (United States). Dept. of Geological Sciences)

    1994-04-01

    Drift samples collected in Wisconsin and Michigan from exposures representative of the Wisconsinan stratigraphy of the Lake Michigan Lobe indicate that clay mineral and shale lithology systematically vary between successive till sheets as a result of differential erosion of two unique source beds: shale bedrock, rich in 10[angstrom] clay (illite) and pre-existing drift (particularly lacustrine clay), depleted in 10[angstrom] clay. A general increase in relative amounts of 10[angstrom] clay and shale clasts begins with early or middle Wisconsinan (Altonian) Glenn Shores till and continues through late Wisconsinan (Woodfordian) Ganges-New Berlin till and Saugatuck-Oak Creek till. Both 10[angstrom] clay and shale decrease in post Mackinaw (late Woodfordian) Interstade Ozaukee-Haven and Two Rivers tills. Clay minerals in till rich in 10[angstrom] clay (Saugatuck-Oak Creek) were derived mainly from extensive erosion and comminution of shale whereas those in tills depleted in 10[angstrom] clay (Ganges-New Berlin, Ozaukee-Haven, and Two Rivers) were eroded mainly from lacustrine clay. Because it is compositionally dissimilar to either the shale or lake clay source and relatively rich in kaolinite, clay minerals in early-middle Wisconsinan Glenn Shores till may have been derived from Sangamon saprolite eroded during an early post-Sangamon ice advance. Variations in source bed erosion and subsequent changes in till lithology result either from depletion of the source bed (Glenn Shores till) or from progressively eroding drift mantling shale outcrops (unroofing) during successive late Wisconsinan ice advances.

  13. Assessing the redox properties of iron-bearing clay minerals using homogeneous electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Gorski, Christopher A., E-mail: Christopher.gorski@eawag.ch [Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Sander, Michael; Aeschbacher, Michael [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Universitaetstrasse 16, 8092 Zuerich (Switzerland); Hofstetter, Thomas B. [Environmental Chemistry, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Uberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland)] [Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Universitaetstrasse 16, 8092 Zuerich (Switzerland)

    2011-06-15

    Iron-bearing clay minerals are ubiquitous in the environment and have been shown to play important roles in several biogeochemical processes. Previous efforts to characterize the Fe{sup 2+}-Fe{sup 3+} redox couple in clay minerals using electrochemical techniques have been limited by experimental difficulties due to inadequate reactivity between clay minerals and electrodes. The current work overcomes this limitation by utilizing organic electron transfer mediators that rapidly transfer electrons with both the Fe-bearing clay minerals and electrodes. Here, an Fe-rich source clay mineral (ferruginous smectite, SWa-1) is examined with respect to what fraction of structural Fe participates in oxidation/reduction reactions and the relationship between bulk Fe{sup 2+}/Fe{sup 3+} ratios to the reduction potential (E{sub h}).

  14. Clay Minerals in Mawrth Vallis Region of Mars

    Science.gov (United States)

    2008-01-01

    This map showing the location of some clay minerals in of a portion of the Mawrth Vallis region of Mars covers an area about 10 kilometers (6.2 mile) wide. The map is draped over a topographical model that exaggerates the vertical dimension tenfold. The mineral mapping information comes from an image taken on Sept. 21, 2007, by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM). Iron-magnesium phyllosilicate is shown in red. Aluminum phyllosyllicate is shown in blue. Hydrated silica and a ferrous iron phase are shown in yellow/green. The topographical information comes from the Mars Orbiter Laser Altimeter instrument on NASA's Mars Global Surveyor orbiter. Mawrth Vallis is an outflow channel centered near 24.7 degrees north latitude, 339.5 degrees east longitude, in northern highlands of Mars. CRISM is one of six science instruments on the Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  15. Study of Adsorption of Phenanthrene on Different Types of Clay Minerals

    International Nuclear Information System (INIS)

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay minerals also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represents ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs

  16. Bioremediation of PAHs and VOCs: Advances in clay mineral-microbial interaction.

    Science.gov (United States)

    Biswas, Bhabananda; Sarkar, Binoy; Rusmin, Ruhaida; Naidu, Ravi

    2015-12-01

    Bioremediation is an effective strategy for cleaning up organic contaminants, such as polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs). Advanced bioremediation implies that biotic agents are more efficient in degrading the contaminants completely. Bioremediation by microbial degradation is often employed and to make this process efficient, natural and cost-effective materials can serve as supportive matrices. Clay/modified clay minerals are effective adsorbents of PAHs/VOCs, and readily available substrate and habitat for microorganisms in the natural soil and sediment. However, the mechanism underpinning clay-mediated biodegradation of organic compounds is often unclear, and this requires critical investigation. This review describes the role of clay/modified clay minerals in hydrocarbon bioremediation through interaction with microbial agents in specific scenarios. The vision is on a faster, more efficient and cost-effective bioremediation technique using clay-based products. This review also proposes future research directions in the field of clay modulated microbial degradation of hydrocarbons.

  17. Biomineralization: mineral formation by organisms

    Science.gov (United States)

    Addadi, Lia; Weiner, Steve

    2014-09-01

    Organisms form many different types of minerals, with diverse shapes and sizes. These minerals fulfill a variety of functions. Inspired by the late H A Lowenstam, Steve Weiner and Lia Addadi have addressed many questions that relate to the mechanisms by which biological organisms produce these mineral phases and how their structures relate to their functions. Addadi and Weiner have explored the manner in which macromolecules extracted from mineralized tissues can interact with some crystal planes and not others, how these macromolecules can be occluded inside the forming crystals residing preferentially on specific crystal planes, and how they can induce one polymorph of calcium carbonate and not another to nucleate. Addadi and Weiner have also identified a novel strategy used by the sea urchin to form its smooth and convoluted mineralized skeletal elements. The strategy involves the initial production by cells of a highly disordered mineral precursor phase in vesicles, and then the export of this so-called amorphous phase to the site of skeletal formation, where it crystallizes. This strategy is now known to be used by many different invertebrate phyla, as well as by vertebrates to build bones and teeth. One of the major current research aims of the Weiner--Addadi group is to understand the biomineralization pathways whereby ions are extracted from the environment, are transported and deposited inside cells within vesicles, how these disordered phases are then transferred to the site of skeletal formation, and finally how the so-called amorphous phase crystallizes. Biology has clearly evolved unique strategies for forming crystalline minerals. Despite more than 300 years of research in this field, many challenging questions still remain unanswered.

  18. Clay mineral liner system for leachates containing organic contaminants

    OpenAIRE

    Sreedharan, Vandana; Sivapullaiah, PV

    2011-01-01

    A conventional liner with a good performance against inorganic contaminants with a minimal hydraulic conductivity does not usually perform well for retention/removal of leachates containing organic contaminants. Organic modification of clay can render the naturally organophobic clay tobe organophilic. Incorporation of modified organo clay along with unmodified inorganic clay in liner systems can overcome the inherent incompatibility of conventional liners to organic contaminants and can incre...

  19. Radiation sensitivity of natural organic matter: Clay mineral association effects in the Callovo-Oxfordian argillite

    International Nuclear Information System (INIS)

    Clay-rich low-organic carbon formations (e.g., Callovo-Oxfordian argillite in France and Opalinus Clay in Switzerland) are considered as host rocks for radioactive waste disposal. The clay-organic carbon has a strong impact on the chemical stability of the clays. For this reason, the nature of the clay-organic carbon, the release of hydrophilic organic compounds, namely, humic (HA) and fulvic acids (FA) and the radiation sensitivity of the undisturbed host rock organics was investigated. The clay sample originates from Oxfordian argillite (447 m depth, borehole EST 104). HA and FA were extracted following the standard International Humic Substance Society (IHSS) isolation procedure. Synchrotron based (C-, K-, Ca-, O- and Fe-edge XANES) scanning transmission X-ray microscopy (STXM) and FT-IR microspectroscopy was used to identify under high spatial resolution the distribution of clay-organic matter with different functionality using principal component and cluster analysis. The results show that in this old (Jurassic) geological formation, small parts of the organic inventory (1-5%) keeps the structure/functionality and can be mobilized as hydrophilic humic substance type material (HA and FA). Target spectra analysis shows best correlation for isolated humic acids with organics found in smectite-rich regions, whereas the extractable FA has better spectral similarities with the illite mixed layer minerals (MLM) regions. After radiation of 1.7 GGy under helium atmosphere the same rock sample area was investigated for radiation damage. Radiation damage in the smectite and illite-MLM associated organic matter is comparably low with 20-30% total oxygen mass loss and 13-18% total carbon mass loss. A critical dose dc of 2.5 GGy and a optical density after infinite radiation (OD∝) of 54% was calculated under room temperature conditions. C(1s) XANES show a clear increase in C=C bonds especially in the illite-MLM associated organics. This results suggests a combination of

  20. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.

    Science.gov (United States)

    Chen, Chunmei; Dynes, James J; Wang, Jian; Karunakaran, Chithra; Sparks, Donald L

    2014-06-17

    There is a growing acceptance that associations with soil minerals may be the most important overarching stabilization mechanism for soil organic matter. However, direct investigation of organo-mineral associations has been hampered by a lack of methods that can simultaneously characterize organic matter (OM) and soil minerals. In this study, STXM-NEXAFS spectroscopy at the C 1s, Ca 2p, Fe 2p, Al 1s, and Si 1s edges was used to investigate C associations with Ca, Fe, Al, and Si species in soil clay fractions from an upland pasture hillslope. Bulk techniques including C and N NEXAFS, Fe K-edge EXAFS spectroscopy, and XRD were applied to provide additional information. Results demonstrated that C was associated with Ca, Fe, Al, and Si with no separate phase in soil clay particles. In soil clay particles, the pervasive C forms were aromatic C, carboxyl C, and polysaccharides with the relative abundance of carboxyl C and polysaccharides varying spatially at the submicrometer scale. Only limited regions in the soil clay particles had aliphatic C. Good C-Ca spatial correlations were found for soil clay particles with no CaCO3, suggesting a strong role of Ca in organo-mineral assemblage formation. Fe EXAFS showed that about 50% of the total Fe in soils was contained in Fe oxides, whereas Fe-bearing aluminosilicates (vermiculite and Illite) accounted for another 50%. Fe oxides in the soil were mainly crystalline goethite and hematite, with lesser amounts of poorly crystalline ferrihydrite. XRD revealed that soil clay aluminosilicates were hydroxy-interlayered vermiculite, Illite, and kaolinite. C showed similar correlation with Fe to Al and Si, implying a similar association of Fe oxides and aluminosilicates with organic matter in organo-mineral associations. These direct microscopic determinations can help improve understanding of organo-mineral interactions in soils.

  1. Clay mineral distribution in surface sediments between Indonesia and NW Australia - source and transport by ocean currents

    OpenAIRE

    Gingele, F. X.; De Deckker, P.; Hillenbrand, C.-D.

    2001-01-01

    The clay mineral distribution in sediments between Indonesia and NW Australia has been assessed on the basis of 166 core-top samples. Clay mineral assemblages are closely related to the geology and weathering regime of the adjacent hinterland and allow the distinction of four clay mineral provinces. Three provinces, Western, Central and Eastern Province are situated along the Indonesian Islands Arc, from Sumatra in the west to Timor in the east. Illite is the major clay mineral of the Western...

  2. Distribution of Clay Minerals in Light Coal Fractions and the Thermal Reaction Products of These Clay Minerals during Combustion in a Drop Tube Furnace

    Directory of Open Access Journals (Sweden)

    Sida Tian

    2016-06-01

    Full Text Available To estimate the contribution of clay minerals in light coal fractions to ash deposition in furnaces, we investigated their distribution and thermal reaction products. The light fractions of two Chinese coals were prepared using a 1.5 g·cm−3 ZnCl2 solution as a density separation medium and were burned in a drop-tube furnace (DTF. The mineral matter in each of the light coal fractions was compared to that of the relevant raw coal. The DTF ash from light coal fractions was analysed using hydrochloric acid separation. The acid-soluble aluminium fractions of DTF ash samples were used to determine changes in the amorphous aluminosilicate products with increasing combustion temperature. The results show that the clay mineral contents in the mineral matter of both light coal fractions were higher than those in the respective raw coals. For the coal with a high ash melting point, clay minerals in the light coal fraction thermally transformed more dehydroxylation products compared with those in the raw coal, possibly contributing to solid-state reactions of ash particles. For the coal with a low ash melting point, clay minerals in the light coal fraction produced more easily-slagging material compared with those in the raw coal, playing an important role in the occurrence of slagging. Additionally, ferrous oxide often produces low-melting substances in coal ash. Due to the similarities of zinc oxide and ferrous oxide in silicate reactions, we also investigated the interactions of clay minerals in light coal fractions with zinc oxide introduced by a zinc chloride solution. The extraneous zinc oxide could react, to a small extent, with clay minerals in the coal during DTF combustion.

  3. Clay Veins and Clay Minerals in the Granitic Rocks in Hiroshima and Shimane Prefectures, Southwest Japan : Effect of the hydrothermal activities on the decomposition of the granitic rocks

    OpenAIRE

    Kitagawa, Ryuji

    1986-01-01

    This paper deals with the clay minerals found in the granitic rocks distributed in Hiroshima and Shimane Prefectures with special reference to the effects of hydrothermal activities on the decomposition process of the granitic rocks. Many clay veins and hydrothermal clay deposits are commonly developed in the granitic rocks and their mode of occurrences were investigated in detail. the preferred orientations of the clay veins and microcracks found in the constituent minerals of granitic rocks...

  4. MAX--An Interactive Computer Program for Teaching Identification of Clay Minerals by X-ray Diffraction.

    Science.gov (United States)

    Kohut, Connie K.; And Others

    1993-01-01

    Discusses MAX, an interactive computer program for teaching identification of clay minerals based on standard x-ray diffraction characteristics. The program provides tutorial-type exercises for identification of 16 clay standards, self-evaluation exercises, diffractograms of 28 soil clay minerals, and identification of nonclay minerals. (MDH)

  5. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin

    2013-01-01

    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  6. A SEM, EDS and vibrational spectroscopic study of the clay mineral fraipontite.

    Science.gov (United States)

    Theiss, Frederick L; López, Andrés; Scholz, Ricardo; Frost, Ray L

    2015-08-01

    The mineral fraipontite has been studied by using a combination of scanning electron microscopy with energy dispersive analysis and vibrational spectroscopy (infrared and Raman). Fraipontite is a member of the 1:1 clay minerals of the kaolinite-serpentine group. The mineral contains Zn and Cu and is of formula (Cu,Zn,Al)₃(Si,Al)₂O₅(OH)₄. Qualitative chemical analysis of fraipontite shows an aluminium silicate mineral with amounts of Cu and Zn. This kaolinite type mineral has been characterised by Raman and infrared spectroscopy; in this way aspects about the molecular structure of fraipontite clay are elucidated.

  7. [Species Determination and Spectral Characteristics of Swelling Clay Minerals in the Pliocene Sandstones in Xinghai, Qinghai].

    Science.gov (United States)

    Wang, Chao-wen; Chen, Jiang-jun; Fang, Qian; Yin, Ke; Hong, Han-lie

    2015-10-01

    X-ray diffraction (XRD) and Fourier infrared absorption spectroscopy (FTIR) were conducted to deepen our research on specific species and spectral characteristics of swelling clay minerals in the Pliocene sandstones in Xinghai, Qinghai province. XRD results show that swelling clay minerals are dominant clay minerals in the sandstones, which can be up to 97% in percentage. XRD patterns show 060 reflections of the samples occur both remarkably at 1.534 Å and 1.498 Å, indicating the samples contain physical mixtures of trioctahedral and dioctahedral swelling clay minerals, respectively. Further treatment of Li-300 degrees C heat and glycerol saturation shows the swelling clay minerals collapse to 9.3-9.9 Å with a partial expansion to -18 Å. This indicates the swelling clay minerals dominate montmorillonite and contain minor saponite. The montmorillonite shows no swelling after Li-300 degrees C heat and glycerol saturation because of Li+ inserting into the octahedral layers, which balances the layer charge caused by the substitution of Mg to Al. FTIR results show the samples are composed of a kind of phyllosilicate with absorbed and structural water, which is in agreement with the results of XRD. Absorbed peaks at 913, 842, 880 cm(-1), corresponding to OH associated with Al-Al, Al-Mg, and Al-Fe pairs, further indicates the minerals are dominant dioctahedron in structure. Meanwhile, absorbed peaks at 625 and 519 cm(-1), corresponding to coupled Si-O and Al-O-Si deformation, indicates parts of Si is replaced by Al in tetrahedron. The spectral characteristics of the samples are against the presence of beidellite and nontronite based on the results of XRD and FTIR, while demonstrating an,existence of montmorillonite. This study, to distinguish the specific species of swelling clay species in clay minerals, would be of great importance when using clay mineralogy to interpret provenance and climatic information.

  8. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron supply to the oceans

    OpenAIRE

    G. Y. Jeong; E. P. Achterberg

    2014-01-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the clay minerals in As...

  9. Characteristics and genesis of clay minerals in the northern margin of the Qaidam Basin

    Institute of Scientific and Technical Information of China (English)

    Wang Linlin; Jiang Bo; Peng Dehua; Yin Chengming; Zeng Chunlin

    2011-01-01

    In order to develop appropriate reservoir protection measures in the northern margin of the Qaidam Basin and improve its oil and gas recovery efficiency, characteristics of clay minerals from eleven clay rock samples from the northern margin of the Qaidam Basin were investigated using X-ray diffraction analysis, the Scanning Electron Microscope (SEM) and energy spectrum analysis. Clay mineral composition and distribution characteristics of the main hydrocarbon reservoirs, I.e., from the Jurassic and Paleogene-Neogene, were explored. We analyzed the main factors which affected these attributes. The results show that the major clay minerals in the northern margin are chlorite, kaolinite, illite, smectite and illite/smectite inter-stratified minerals, Illite is the most widely spread clay mineral in this area.Chlorite is mainly found in the entire Neogene and in shallow horizons of the Paleogene. Smectite is enriched in the shallow Paleogene-Neogene. There are large amounts of kaolinite and illite/smectite inter-stratified minerals in the Jurassic. The major factors affecting the different development of clay minerals in the region are properties of parent rocks, paleoclimate and paleowater media conditions,diagenesis transformation, tectonic and terrain conditions.

  10. Effects of magnesium minerals representative of the Callovian-Oxfordian clay-stone on borosilicate glass alteration

    International Nuclear Information System (INIS)

    Borosilicate glasses dissolution has been studied in presence of magnesium minerals. Those minerals (dolomite, illite, smectite...) belong to the Callovo-Oxfordian (COx) clay-stone layer, studied in France as a potential site for nuclear waste disposal. Such minerals contain magnesium, an element able to sustain glass alteration when it is available in solution. In the confined media of the wastes disposal, the solids reactivity controls the solution composition and can be the driving force of nuclear glass alteration. Experiments show that magnesium carbonates (hydro-magnesite and dolomite) increase in the glass alteration: the precipitation of magnesium silicates consumes silicon which slows down the formation of the glass passivating layer. The lower the magnesium mineral solubility, the lower the glass alteration. The purified clay phases (illite, smectite...) from the COx layer increase the glass alteration. Half the magnesium was replaced by sodium during the purification process. In such conditions, the effect of clay phases on glass alteration is in part due to the acidic pH-buffering effect of the clay fraction. The GRAAL model implemented in the geochemical transport code HYTEC has confirmed and quantified the mechanisms put in evidence in the experiments. Cells diffusion experiments where the two solids were separated by an inert diffusion barrier allow to valid reactive transport modelling. Such experiments are more representative of the glass package which will be separated from the COx by corrosion products. They show that glass alteration rate is reduced when solids are not close. (author)

  11. Clay mineral distribution in the continental shelf and slope off Saurashtra, West coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    of montmorillonite derived from basic and gneissic rocks are identified. Review of the clay mineralogy suggests that their distribution is related to the provenance, and the latitudinal zonation of clay minerals may not be valid in this part of the Arabian Sea....

  12. Spatial distribution and longitudinal variation of clay minerals in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Valsangkar, A.

    Grain size and clay mineral distribution up to 45 cm depth in the silty clay sediments from 26 box cores from 10 degrees to 16 degrees S along four longitudes (73.5 degrees-76.5 degrees E) were studied for understanding spatial variability...

  13. Clay Mineral Image Collection for Education in Geotechnical Engineering and the Earth Sciences

    OpenAIRE

    Stone, Gordon; Dove, Joseph E.; Han, Nizhou; Dove, Patricia

    2015-01-01

    This file contains a collection of scanning electron microscope images of Kaolinite and Bentonite pure clay minerals, and the fine portion of a natural soil. National Science Foundation Grant No. 1301124

  14. Clay mineral distributions in the southern Yellow Sea and their significance

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeongsan River, while those in the southern part are of multi-origin.

  15. Selenite reduction in Boom clay: Effect of FeS2, clay minerals and dissolved organic matter

    International Nuclear Information System (INIS)

    Several experiments were set up to study Se speciation and solubility in the reducing Boom clay environment, starting from oxidized Se species which were added in oversaturation with respect to the thermodynamic solubility of reduced Se solid phases. Upon introduction of SeO32- to FeS2-containing samples, adsorption of SeO32- occurred at the FeS2 surface, and led to a reduction and precipitation of a Se0 solid phase with a solubility of 3x10-9 M (after 60 days). In the presence of humic substances, an association of Se with these humic substances was observed and the 3x10-9 M solubility limit was not reached in the same time delay. Upon introduction of SeO32- to Boom clay suspensions (equilibration up to 9 months), the initial adsorption of SeO32- on the solid phase was increased with respect to systems containing only FeS2, due to the presence of (illite) clay minerals. This competing adsorption process, and the presence of humic substances, again decreased the kinetics of reduction with respect to FeS2 samples. Also, an association of Se with Boom clay humic substances was observed, and amounted up to ∼10-7 M in some samples after 9 months equilibration. - Selenite reduction by FeS2 is kinetically controlled, with clay minerals and organic matter playing an important role

  16. Pyrite Formation in Organic-rich Clay, Calcitic and Coal-Forming Environments

    Institute of Scientific and Technical Information of China (English)

    Gordana DEVI(C); Petar PFENDT; Branimir JOVAN(C)I(C)EVI(C); Zoran POPOVIC

    2006-01-01

    The early diagenetic characteristics of pyrite formation processes in a Miocene freshwater sequence of mixed sediments (coal fragments in clays, sandstones or shales) alternating with continuous brown coal layers was investigated. Based on abundant minerals, the following main sedimentary environments were distinguished: the illite-montmorillonitic (I-M), calcitic (Ct) and coal-forming environment (CL). For these hydrogeochemically differing environments the effects of limiting factors on the pyrite formation process (availability of sulphate and Fe, amount of organic matter and participation of organic sulphur) were assessed by correlation analysis. Significant differences in the effects of these limiting factors in the particular environments were observed. These differences were explained taking in account the different oxidative activity, Fe-complex and surface complex forming properties of hnmic substances in dependence of pH of environment and the abundance of sorptionally active clay minerals. In environments having a relatively low pH and containing clay minerals (I-Mand CL-environments) the oxidative activity of humic substances (Hs) on pyrite precursors was greatly prevented however pyrite formation depended on reactive Fe availability as the consequence of complex formation. On the contrary, in environments with a relatively high pH, as it was the calcitic,the oxidative activity of Hs was greatly enhanced, thus oxidizing the sulfur precursors of pyrite. The oxidation degree of organic matter was probably also a consequence of the differing activity of the humic electron-acceptors.

  17. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    OpenAIRE

    Faheem Uddin

    2013-01-01

    The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of po...

  18. Evaluation of the medicinal use of clay minerals as antibacterial agents.

    Science.gov (United States)

    Williams, Lynda B; Haydel, Shelley E

    2010-07-01

    . Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall. PMID:20640226

  19. Terrestrial Analogs for Clay Minerals at Yellowknife Bay, Gale Crater, Mars

    Science.gov (United States)

    Treiman, Allan H; Morris, Richard V.; Bristow, Thomas; Ming, Douglas W.; Achillies, Cherie; Bish, David L.; Blake, David; Vaniman, David; Chipera, Steve

    2013-01-01

    the last three varieties may be contemporaneous. One sample shows agate (alpha- quartz) that was precipitated between the episodes of deposition of the fine-grained and coarse-grained 'griffithite.' 'Griffithite' is not unique as a possible terrestrial analog - some clay minerals from the Doushantou formation, China, have similar 02L diffraction bands, and many basalts contain smectites in vesicles and as replacements after olivine. Similar trioctahedral smectites occur also in the nakhlite martian meteorites - as veinlets and replacements of olivine. By understanding the formation of these terrestrial clays, we hope to constrain the nature and mechanism of formation of the Sheepbed clay mineral.

  20. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  1. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  2. Lability of soil organic carbon in tropical soils with different clay minerals

    DEFF Research Database (Denmark)

    Bruun, Thilde Bech; Elberling, Bo; Christensen, Bent Tolstrup

    2010-01-01

    Soil organic carbon (SOC) storage and turnover is influenced by interactions between organic matter and the mineral soil fraction. However, the influence of clay content and type on SOC turnover rates remains unclear, particularly in tropical soils under natural vegetation. We examined the lability....... Basal soil respiration rates were determined from bulk soils and soil fractions. Substrate induced respiration rates were determined from soil fractions. SOC lability was significantly influenced by clay mineralogy, but not by clay content when compared across contrasting clay minerals. The lability...... of SOC in tropical soils with contrasting clay mineralogy (kaolinite, smectite, allophane and Al-rich chlorite). Soil was sampled from A horizons at six sites in humid tropical areas of Ghana, Malaysian Borneo and the Solomon Islands and separated into fractions above and below 250 µm by wet sieving...

  3. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B.; Chen, Wenli

    2015-11-01

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10-18 J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  4. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles.

    Science.gov (United States)

    Huang, Qiaoyun; Wu, Huayong; Cai, Peng; Fein, Jeremy B; Chen, Wenli

    2015-11-20

    Bacterial adhesion onto mineral surfaces and subsequent biofilm formation play key roles in aggregate stability, mineral weathering, and the fate of contaminants in soils. However, the mechanisms of bacteria-mineral interactions are not fully understood. Atomic force microscopy (AFM) was used to determine the adhesion forces between bacteria and goethite in water and to gain insight into the nanoscale surface morphology of the bacteria-mineral aggregates and biofilms formed on clay-sized minerals. This study yields direct evidence of a range of different association mechanisms between bacteria and minerals. All strains studied adhered predominantly to the edge surfaces of kaolinite rather than to the basal surfaces. Bacteria rarely formed aggregates with montmorillonite, but were more tightly adsorbed onto goethite surfaces. This study reports the first measured interaction force between bacteria and a clay surface, and the approach curves exhibited jump-in events with attractive forces of 97 ± 34 pN between E. coli and goethite. Bond strengthening between them occurred within 4 s to the maximum adhesion forces and energies of -3.0 ± 0.4 nN and -330 ± 43 aJ (10(-18) J), respectively. Under the conditions studied, bacteria tended to form more extensive biofilms on minerals under low rather than high nutrient conditions.

  5. Micro and nano-size pores of clay minerals in shale reservoirs: Implication for the accumulation of shale gas

    Science.gov (United States)

    Chen, Shangbin; Han, Yufu; Fu, Changqin; Zhang, han; Zhu, Yanming; Zuo, Zhaoxi

    2016-08-01

    A pore is an essential component of shale gas reservoirs. Clay minerals are the adsorption carrier second only to organic matter. This paper uses the organic maturity test, Field-Emission Scanning Electron Microscopy (FE-SEM), and X-ray Diffraction (XRD) to study the structure and effect of clay minerals on storing gas in shales. Results show the depositional environment and organic maturity influence the content and types of clay minerals as well as their structure in the three types of sedimentary facies in China. Clay minerals develop multi-size pores which shrink to micro- and nano-size by close compaction during diagenesis. Micro- and nano-pores can be divided into six types: 1) interlayer, 2) intergranular, 3) pore and fracture in contact with organic matter, 4) pore and fracture in contact with other types of minerals, 5) dissolved and, 6) micro-cracks. The contribution of clay minerals to the presence of pores in shale is evident and the clay plane porosity can even reach 16%, close to the contribution of organic matter. The amount of clay minerals and pores displays a positive correlation. Clay minerals possess a strong adsorption which is affected by moisture and reservoir maturity. Different pore levels of clay minerals are mutually arranged, thus essentially producing distinct reservoir adsorption effects. Understanding the structural characteristics of micro- and nano-pores in clay minerals can provide a tool for the exploration and development of shale gas reservoirs.

  6. Potential bioavailability of mercury in humus-coated clay minerals.

    Science.gov (United States)

    Zhu, Daiwen; Zhong, Huan

    2015-10-01

    It is well-known that both clay and organic matter in soils play a key role in mercury biogeochemistry, while their combined effect is less studied. In this study, kaolinite, vermiculite, and montmorillonite were coated or not with humus, and spiked with inorganic mercury (IHg) or methylmercury (MeHg). The potential bioavailability of mercury to plants or deposit-feeders was assessed by CaCl2 or bovine serum albumin (BSA) extraction. For uncoated clay, IHg or MeHg extraction was generally lower in montmorillonite, due to its greater number of functional groups. Humus coating increased partitioning of IHg (0.5%-13.7%) and MeHg (0.8%-52.9%) in clay, because clay-sorbed humus provided more strong binding sites for mercury. Furthermore, humus coating led to a decrease in IHg (3.0%-59.8% for CaCl2 and 2.1%-5.0% for BSA) and MeHg (8.9%-74.6% for CaCl2 and 0.5%-8.2% for BSA) extraction, due to strong binding between mercury and clay-sorbed humus. Among various humus-coated clay particles, mercury extraction by CaCl2 (mainly through cation exchange) was lowest in humus-coated vermiculite, explained by the strong binding between humus and vermiculite. The inhibitory effect of humus on mercury bioavailability was also evidenced by the negative relationship between mercury extraction by CaCl2 and mercury in the organo-complexed fraction. In contrast, extraction of mercury by BSA (principally through complexation) was lowest in humus-coated montmorillonite. This was because BSA itself could be extensively sorbed onto montmorillonite. Results suggested that humus-coated clay could substantially decrease the potential bioavailability of mercury in soils, which should be considered when assessing risk in mercury-contaminated soils.

  7. Distribution of clay minerals in marine sediments off Chennai, Bay of Bengal, India: Indicators of sediment sources and transport processes .

    Digital Repository Service at National Institute of Oceanography (India)

    Veerasingam, S.; Venkatachalapathy, R.; Ramkumar, T.

    Clay mineralogy, texture size and statistical analyses were carried out on surface sediments from the continental shelf of Chennai, Bay of Bengal, India. The purpose of this study is to characterize the clay mineral distribution and its relation...

  8. Reconstruction of late Quaternary monsoon oscillations based on clay mineral proxies using sediment cores from the western margin of India

    Digital Repository Service at National Institute of Oceanography (India)

    Thamban, M.; Rao, V.P.; Schneider, R.R.

    sites were from the hinterland rocks and soils. Careful evaluations of several factors that could complicate the clay distribution in marine environment indicate that the clay mineral parameters can be used as proxies for the intensity of summer monsoon...

  9. Alteration of non-swelling clay minerals and magadiite by acid activation

    NARCIS (Netherlands)

    Steudel, A.; Batenburg, L.F.; Fischer, H.R.; Weidler, P.G.; Emmerich, K.

    2009-01-01

    The bulk material of three kaolins, a sepiolite, an illite and one magadiite were treated with 1, 5 and 10 M H2SO4 at 80 °C for several hours. The alteration of the non-swelling clay mineral structures was controlled by the individual character of each mineral (chemical composition and initial parti

  10. Structural and sorption characteristics of adsorbed humic acid on clay minerals.

    Science.gov (United States)

    Wang, Kaijun; Xing, Baoshan

    2005-01-01

    Clay-humic complexes are commonly distributed in natural environments. They play very important roles in regulating the transport and retention of hydrophobic organic contaminants in soils and sediments. This study examined the structural changes of humic acid (HA) after adsorption by clay minerals and determined phenanthrene sorption by clay-humic complexes. Solid- and liquid-state 13C nuclear magnetic resonance (NMR), for the first time, provided direct evidence for HA fractionation during adsorption on mineral surfaces, that is, aliphatic fractions were preferentially adsorbed by clay minerals while aromatic fractions were left in the solution. The ratio of UV absorbance of HA at 465 and 665 nm (E4 to E6 ratio), which is related to aromaticity, corroborated with the NMR results. For both montmorillonite and kaolinite, adsorbed HA fractions had higher sorption linearity (N) and affinity (K(oc)) than the source HA. The K(oc) of adsorbed HA for the clay-humic complexes could be up to several times higher than that of the source HA. This large increase may be contributed by the low polarity of the bound HA. Moreover, for each mineral, the N values of adsorbed HA increased with increasing HA loading. It is believed that HA may develop a more condensed structure on mineral surface at lower HA loading level due to the stronger interactions between HA and mineral surface as a result of close contacts. PMID:15647564

  11. The Imprint of Atmospheric Evolution in the D/H of Hesperian Clay Minerals on Mars

    Science.gov (United States)

    Mahaffy, P. R.; Webster, C. R.; Stern, J. C.; Brunner, A. E.; Atreya, S. K.; Conrad, P. G.; Domagal-Goldman, S.; Eigenbrode, J. L.; Flesch, G. J.; Christensen, L. E.; Franz, H. B.; Glavin, D. P.; Jones, J. H.; McAdam, A. C.; Pavlov, A. A.; Trainer, M. G.; Williford, K. H.

    2014-01-01

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient Martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550 degrees Centigrade and 950 degrees Centigrade from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (plus or minus 0.2) times the ratio in standard mean ocean water. The D/H ratio in this approximately 3-billion-year-old mudstone, which is half that of the present Martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  12. [Analysis of XRD spectral characteristics of soil clay mineral in two typical cultivated soils].

    Science.gov (United States)

    Zhang, Zhi-Dan; Luo, Xiang-Li; Jiang, Hai-Chao; Li, Qiao; Shen, Cong-Ying; Liu, Hang; Zhou, Ya-Juan; Zhao, Lan-Po; Wang, Ji-Hong

    2014-07-01

    The present paper took black soil and chernozem, the typical cultivated soil in major grain producing area of Northeast, as the study object, and determinated the soil particle composition characteristics of two cultivated soils under the same climate and location. Then XRD was used to study the composition and difference of clay mineral in two kinds of soil and the evolutionary mechanism was explored. The results showed that the two kinds of soil particles were composed mainly of the sand, followed by clay and silt. When the particle accumulation rate reached 50%, the central particle size was in the 15-130 microm interval. Except for black soil profile of Shengli Xiang, the content of clay showed converse sequence to the central particle in two soils. Clay accumulated under upper layer (18.82%) in black soil profile while under caliche layer (17.41%) in chernozem profile. Clay content was the least in parent material horizon except in black profile of Quanyanling. Analysis of clay XRD atlas showed that the difference lied in not only the strength of diffraction peak, but also in the mineral composition. The main contents of black soil and chernozem were both 2 : 1 clay, the composition of black soil was smectite/illite mixed layer-illite-vermiculite and that of chernozem was S/I mixture-illite-montmorillonite, and both of them contained little kaolinite, chlorite, quartz and other primary mineral. This paper used XRD to determine the characteristics of clay minerals comprehensively, and analyzed two kinds of typical cultivated soil comparatively, and it was a new perspective of soil minerals study.

  13. Study of different disposal concepts in clay formations

    International Nuclear Information System (INIS)

    Within the scope of an R and D project which deals with the comparison of concepts in salt and clay formations the main work was to work out the major features of a final repository concept in clay for spent fuel and vitrified waste. The work focused on the topics safety, conceptual design, and economical aspects. The planning was carried out taking into account results of previous R+D projects and international experiences with repositories in clay (namely in France, Spain, Belgium and Switzerland). Open questions were to be identified for further research and development. The work was restricted to the final repository itself. Nevertheless, aspects of the siting procedure, of the final disposal casks, conditioning, long-term safety, and geochemical processes were also considered. The German Ministry of Economics and Labour represented by PtWT+E has funded the project. The project consisted of the following five work packages. Compilation of fundamentals and boundary conditions for the comparison: This included a compilation of the state of the art of national and international waste management concepts in clay. Furthermore, the amount of waste to be dealt with, cask materials, requirements for filling and closure material, and siting aspects were described. Disposal cask concepts: compilation of available information about waste conditioning processes and cask concepts including cost estimates.Conceptual design of a repository and repository techniques: the conceptual design of a repository in the host rock clay was performed considering the surface and subsurface installations and the required equipment including cost estimates. Repository safety in the operational phase: the radiation protection for the operational personnel, safeguards related questions, and criticality during the operational phase were analysed. Long-term safety of the repository: here special aspects of the geochemistry in clay were considered as well as basics for demonstrating the

  14. Molecular Basis of Clay Mineral Structure and Dynamics in Subsurface Engineering Applications

    Science.gov (United States)

    Cygan, R. T.

    2015-12-01

    Clay minerals and their interfaces play an essential role in many geochemical, environmental, and subsurface engineering applications. Adsorption, dissolution, precipitation, nucleation, and growth mechanisms, in particular, are controlled by the interplay of structure, thermodynamics, kinetics, and transport at clay mineral-water interfaces. Molecular details of these processes are typically beyond the sensitivity of experimental and analytical methods, and therefore require accurate models and simulations. Also, basal surfaces and interlayers of clay minerals provide constrained interfacial environments to facilitate the evaluation of these complex processes. We have developed and used classical molecular and quantum methods to examine the complex behavior of clay mineral-water interfaces and dynamics of interlayer species. Bulk structures, swelling behavior, diffusion, and adsorption processes are evaluated and compared to experimental and spectroscopic findings. Analysis of adsorption mechanisms of radionuclides on clay minerals provides a scientific basis for predicting the suitability of engineered barriers associated with nuclear waste repositories and the fate of contaminants in the environment. Similarly, the injection of supercritical carbon dioxide into geological reservoirs—to mitigate the impact of climate change—is evaluated by molecular models of multi-fluid interactions with clay minerals. Molecular dynamics simulations provide insights into the wettability of different fluids—water, electrolyte solutions, and supercritical carbon dioxide—on clay surfaces, and which ultimately affects capillary fluid flow and the integrity of shale caprocks. This work is supported as part of Center for Frontiers of Subsurface Energy Security, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science and by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program

  15. Microorganism-induced weathering of clay minerals in a hydromorphic soil

    Science.gov (United States)

    Hong, Hanlie; Fang, Qian; Cheng, Liuling; Wang, Chaowen; Churchman, Gordon Jock

    2016-07-01

    In order to improve the understanding of factors influencing weathering in hydromorphic soils, the clay mineral and chemical compositions, iron (hydr)oxides, organic compounds, and Sr and Nd isotopic compositions, of hydromorphic soils on the banks of the Liangzi Lake, Hubei province, south China, were investigated. The B horizon in the lower profile exhibits a distinct net-like pattern, with abundant short white veins within the red-brown matrix. Their various 87Sr/86Sr and 143Nd/144Nd isotopic compositions showed only small variations of 0.7270-0.7235 and 0.51200-0.51204, respectively, consistent with the composition of Yangtze River sediments, indicating that the soils were all derived from alluvium from the catchment. The white veins contained notably more SiO2, Al2O3, TiO2, and mobile elements relative to the red-brown matrix, while they both showed similar values for the chemical index of alteration of 86.7 and 87.1, respectively, and displayed similar degrees of weathering. The clay minerals in A, AE, and E horizons of the soil profile were illite, kaolinite, and mixed-layer illite-smectite. These same three clay minerals comprised the white net-like veins in the soil B horizon, whereas only illite and kaolinite were observed in the red-brown matrix. Iron (hydr)oxides in A, AE, and E horizons of the soil profile were hematite and goethite, whereas in the red-brown matrix of the B horizon they were hematite, goethite, and ferrihydrite. Different organic compounds were observed for the white vein and the red-brown matrix in the soil B horizon: an 18:2 fatty acid biomarker for fungi in the net-like vein, but not in the red-brown matrix. Compared with the red-brown matrix, the white net-like vein also clearly contained more mono-unsaturated fatty acids, which are sometimes associated with bacteria that have the capacity to reduce Fe(III). Thus, migration of iron and the formation of the net-like veins involved the participation of biota during the hydromorphic

  16. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.

    Science.gov (United States)

    Sarkar, Binoy; Naidu, Ravi; Krishnamurti, Gummuluru S R; Megharaj, Mallavarapu

    2013-01-01

    Unlike lower valent iron (Fe), the potential role of lower valent manganese (Mn) in the reduction of hexavalent chromium (Cr(VI)) in soil is poorly documented. In this study, we report that citrate along with Mn(II) and clay minerals (montmorillonite and kaolinite) reduce Cr(VI) both in aqueous phase and in the presence of dissolved organic carbon (SDOC) extracted from a forest soil. The reduction was favorable at acidic pH (up to pH 5) and followed the pseudo-first-order kinetic model. The citrate (10 mM) + Mn(II) (182.02 μM) + clay minerals (3% w/v) system in SDOC accounted for complete reduction of Cr(VI) (192.32 μM) in about 72 h at pH 4.9. In this system, citrate was the reductant, Mn(II) was a catalyst, and the clay minerals acted as an accelerator for both the reductant and catalyst. The clay minerals also serve as a sink for Cr(III). This study reveals the underlying mechanism of the Mn(II)-induced reduction of Cr(VI) by organic ligand in the presence of clay minerals under certain environmental conditions.

  17. Effect of Clay Minerals on the Chemical Characteristics of Soil Humus

    Institute of Scientific and Technical Information of China (English)

    YEWEI; WENQIXIAO

    1996-01-01

    Chemical characteristics of humic substances in soils with different mineralogical characteristics and under different utilization paterns in Zhangpu,Fujian Province,together with two pairs of cultivated soils in North China Plain were studied by chemical analysis,visible and IR spectroscopy and 13C NMR spectrometry.For soils in Zhanpu the HA/FA ratio and both the aromaticity and the degree of humification of HA were higher in soils with montmorillonite as the predominant clay mineral than in those with kaolinite as the predominant clay mineral,provided these soils were under the same utilization pattern.While for each pair of soils with similar mineralogical characteristics the HA/FA ratio was higher and the C/H ratio and the contnet of carboxyl group of HA were lower in paddy soil than in upland soil.Among the upland soils(or paddy soils)studied the Ha/FA ratio of soil in Zhangpu with kaolinite as the predominant clay mineral was the lowest,and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest .the lowest.and that of soil in Zhangpu with montmorillonite as the predominant clay mineral was the highest It was concluded that the presence of montmorillonite favored the fromation and maturation of humic acid.

  18. Modeling of Cation Binding in Hydrated 2:1 Clay Minerals - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David E.

    2000-09-14

    Hydrated 2:1 clay minerals are high surface area, layered silicates that play a unique role in determining the fate of radionuclides in the environment. This project consisted of developing and implementing computer simulation methods for molecular characterization of the swelling and ion exchange properties of Hydrated 2:1 clay minerals, and the subsequent analysis and theoretical modeling with a view toward improving contaminant transport modeling as well as soil remediation and radionuclide containment strategies. Project results included the (a) development of simulation methods to treat clays under environmentally relevant conditions of variable water vapor pressure; (b) calculation of clay swelling thermodynamics as a function of interlayer ion size and charge (calculated quantities include immersion energies, free energies, and entropies of swelling); and (c) calculation of ion exchange free energies, including contributions from changing interlayer water contents and layer spacing.

  19. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    OpenAIRE

    Warr, Laurence N.; André Friese; Florian Schwarz; Frieder Schauer; Portier, Ralph J.; Basirico, Laura M.; Gregory M. Olson

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contai...

  20. Caracterização dos argilominerais usados em matéria-prima cerâmica, da formação Rio do Rasto, Bacia do Paraná, no município de Turvo, SC Characterization of clay minerals used in the ceramic industry, from Rio do Rasto formation, Paraná basin, exploitation in Turvo, SC, Brazil

    Directory of Open Access Journals (Sweden)

    J. A. Costa

    2010-12-01

    Full Text Available No sudeste de Santa Catarina existem inúmeras minas de exploração de argilas destinadas à indústria cerâmica da região. Para o conhecimento desta matéria prima foi realizada a caracterização em detalhe de uma frente de lavra em atividade. A exploração é realizada em terrenos sedimentares da Formação Rio do Rasto (Permiano Superior na Bacia do Paraná que afloram como morros testemunho. Foram coletadas quatorze amostras representativas dos níveis desta mina composta de argilitos com intercalação de siltitos de pequena espessura. As amostras foram analisadas por difratometria de raios X pelo método do pó na rocha total e na fração In the southeastern part of Santa Catarina state, Brazil, many mines of clays used as raw material for the ceramic industry are found. A detail study of this material was developed in a mine in activity. The exploitation of clays is held in sedimentary rocks of Rio do Rasto Formation (Upper Permian in the Paraná Basin. The outcrops are in hills testimonies. Fourteen samples were collected and represent the levels of this mine which consisted of argillites with intercalation of slim siltite layer. These samples were analyzed by X-ray diffraction using the powder method and in the fraction < 4 µm. The chemical composition was determined by X-ray fluorescence spectrometer. Petrographic observations in thin section were also performed. Scanning electron microscope images was obtained in samples fragments by secondary electron method. Electron microprobe microanalysis was performed in one thin section. The results showed large vertical variation in the mineralogy and it has been identified three different levels. Up to 2.00 m there is a predominance of smectite. Between 5.50 m 2.00 m the smectite is the main clay mineral, but with significant amounts of illite/mica and above 5.50 m occurs large increase in K-feldspar and detrital mica. Studies in detail by X-ray diffraction (determination of the b

  1. Characterization of Heat-treated Clay Minerals in the Context of Nuclear Waste Disposal

    Science.gov (United States)

    Matteo, E. N.; Wang, Y.; Kruichak, J. N.; Mills, M. M.

    2015-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes, if any, that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of repository-relevant clay minerals (illite, mixed layer illite/smectite, and montmorillonite), were heated for a range of temperatures between 100-1000 °C. These samples were characterized to determine surface area, mineralogical alteration, and cation exchange capacity (CEC). Our results show that for conditions up to 500 °C, no significant change occurs, so long as the clay mineral remains mineralogically intact. At temperatures above 500 °C, transformation of the layered silicates into silica phases leads to alteration that impacts important clay characteristics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: SAND2015-6524 A

  2. Paleoenvironmental significance of clay mineral assemblages in the southeastern Arabian Sea during last 30 kyr

    Indian Academy of Sciences (India)

    Siddhartha Sankar Das; Ajai K Rai; Vaseem Akaram; Dhananjai Verma; A C Pandey; Koushik Dutta; G V Ravi Prasad

    2013-02-01

    A gravity core SK-221 recovered from the southeastern Arabian Sea near Laccadive–Chagos Ridge was examined to identify the sources of detrital clay minerals and to decipher paleoenvironmental changes for the last 30 kyr. The clay mineral assemblages predominantly consist of illite, kaolinite and chlorite with small amounts of smectite. Quartz, feldspar and occasionally gibbsite are the clay-sized non-clay minerals present in the examined section. The detrital clay minerals primarily originated from the hinterland and were supplied to the present site by the numerous small rivers draining western India during preglacial and Holocene periods, and partly by the strong reworking of Indian continental shelf during glacial period. The low values of humidity proxies (kaolinite content, kaolinite to illite and smectite to illite ratios) and better illite crystallinity indicate relatively weak summer monsoon condition that resulted in reduced chemical weathering during glacial period, which was interrupted by a discrete event of winter monsoon intensification at ∼20–17 ka. The increased kaolinite content, higher values of humidity indices and poorer illite crystallinity reflect high humidity that resulted in strong hydrolysis activity during the preglacial and Holocene periods. The increased CaCO3 during above periods also indicates less terrigenous dilution and intensified southwest monsoon-led upwelling which result in higher surface biogenic productivity. The characteristic clay mineral associations broadly suggest dry to semi-drier conditions during Heinrich Events H1, H2, and H3 and also during Younger Dryas. The low values of biogenic carbonate and organic carbon also indicate low productivity associated with weak summer monsoons during Heinrich Events. Abrupt increased humidity was recorded at 15–12.7 ka (Bølling/Allerød Event) sandwiched between two lows of Heinrich Events. Cycles of millennial timescale variations 2300, 1800, 1300 and 1000 yr have been

  3. Interaction of surface-modified silica nanoparticles with clay minerals

    Science.gov (United States)

    Omurlu, Cigdem; Pham, H.; Nguyen, Q. P.

    2016-05-01

    In this study, the adsorption of 5-nm silica nanoparticles onto montmorillonite and illite is investigated. The effect of surface functionalization was evaluated for four different surfaces: unmodified, surface-modified with anionic (sulfonate), cationic (quaternary ammonium (quat)), and nonionic (polyethylene glycol (PEG)) surfactant. We employed ultraviolet-visible spectroscopy to determine the concentration of adsorbed nanoparticles in conditions that are likely to be found in subsurface reservoir environments. PEG-coated and quat/PEG-coated silica nanoparticles were found to significantly adsorb onto the clay surfaces, and the effects of electrolyte type (NaCl, KCl) and concentration, nanoparticle concentration, pH, temperature, and clay type on PEG-coated nanoparticle adsorption were studied. The type and concentration of electrolytes were found to influence the degree of adsorption, suggesting a relationship between the interlayer spacing of the clay and the adsorption ability of the nanoparticles. Under the experimental conditions reported in this paper, the isotherms for nanoparticle adsorption onto montmorillonite at 25 °C indicate that adsorption occurs less readily as the nanoparticle concentration increases.

  4. Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., SW Hungary

    Directory of Open Access Journals (Sweden)

    Németh Tibor

    2016-04-01

    Full Text Available Boda Claystone Formation (BCF is the host rock of the planned site for high level nuclear waste repository inHungary. Samples representing the dominant rock types of BCF were studied: albitic claystone, claystone with high illite content, and analcime bearing claystone. Clay minerals in these three rock types were characterized by Xray powder diffraction (XRD, transmission electron microscopy (TEM and thermal analysis (DTA-TG, and the results were discussed from the point of view of the radionuclide sorption properties being studied in the future. Mineral compositions of bulk BCF samples vary in wide ranges. In the albitic sample, besides the dominant illite, few percent of chlorite represents the layer silicates in the clay fraction. Illite is the dominating phase in the illitic sample, with a few percent of chlorite. HRTEM study revealed that the thickness of illite particles rarely reaches 10 layers, usually are of 5-6 TOT layer thick. Illite crystals are generally thicker in the albitic sample than in the illitic one. The significant difference between the clay mineral characterisitics of the analcimous and the other two samples is that the former contains regularly interstratified chlorite/smectite beside the dominant illite.

  5. Atom exchange between aqueous Fe(II) and structural Fe in clay minerals.

    Science.gov (United States)

    Neumann, Anke; Wu, Lingling; Li, Weiqiang; Beard, Brian L; Johnson, Clark M; Rosso, Kevin M; Frierdich, Andrew J; Scherer, Michelle M

    2015-03-01

    Due to their stability toward reductive dissolution, Fe-bearing clay minerals are viewed as a renewable source of Fe redox activity in diverse environments. Recent findings of interfacial electron transfer between aqueous Fe(II) and structural Fe in clay minerals and electron conduction in octahedral sheets of nontronite, however, raise the question whether Fe interaction with clay minerals is more dynamic than previously thought. Here, we use an enriched isotope tracer approach to simultaneously trace Fe atom movement from the aqueous phase to the solid ((57)Fe) and from the solid into the aqueous phase ((56)Fe). Over 6 months, we observed a significant decrease in aqueous (57)Fe isotope fraction, with a fast initial decrease which slowed after 3 days and stabilized after about 50 days. For the aqueous (56)Fe isotope fraction, we observed a similar but opposite trend, indicating that Fe atom movement had occurred in both directions: from the aqueous phase into the solid and from the solid into aqueous phase. We calculated that 5-20% of structural Fe in clay minerals NAu-1, NAu-2, and SWa-1 exchanged with aqueous Fe(II), which significantly exceeds the Fe atom layer exposed directly to solution. Calculations based on electron-hopping rates in nontronite suggest that the bulk conduction mechanism previously demonstrated for hematite1 and suggested as an explanation for the significant Fe atom exchange observed in goethite2 may be a plausible mechanism for Fe atom exchange in Fe-bearing clay minerals. Our finding of 5-20% Fe atom exchange in clay minerals indicates that we need to rethink how Fe mobility affects the macroscopic properties of Fe-bearing phyllosilicates and its role in Fe biogeochemical cycling, as well as its use in a variety of engineered applications, such as landfill liners and nuclear repositories.

  6. Degradative crystal–chemical transformations of clay minerals under the influence of cyanobacterium-actinomycetal symbiotic associations

    Directory of Open Access Journals (Sweden)

    Ekaterina Ivanova

    2014-04-01

    Full Text Available Cyanobacteria and actinomycetes are essential components of soil microbial community and play an active role in ash elements leaching from minerals of the parent rock. Content and composition of clay minerals in soil determine the sorption properties of the soil horizons, water-holding capacity of the soil, stickiness, plasticity, etc. The transformative effect of cyanobacterial–actinomycetes associations on the structure of clay minerals – kaolinite, vermiculite, montmorillonite, biotite and muscovite – was observed, with the greatest structural lattice transformation revealed under the influence of association in comparison with monocultures of cyanobacterium and actinomycete. The range of the transformative effect depended both on the type of biota (component composition of association and on the crystal–chemical parameters of the mineral itself (trioctahedral mica – biotite, was more prone to microbial degradation than the dioctahedral – muscovite. The formation of the swelling phase – the product of biotite transformation into the mica–vermicullite mixed-layered formation was revealed as a result of association cultivation. Crystal chemical transformation of vermiculite was accompanied by the removal of potassium (К, magnesium (Mg and aluminum (Al from the crystal lattice. The study of such prokaryotic communities existed even in the early stages of the Earth's history helps to understand the causes and nature of the transformations undergone by the atmosphere, hydrosphere and lithosphere of the planet.contribution of treatments on structure induces and model parameters are discussed in the paper.

  7. Rheological properties of different minerals and clay soils

    Directory of Open Access Journals (Sweden)

    Dolgor Khaydapova

    2015-07-01

    Full Text Available Rheological properties of kaolinite, montmorillonite, ferralitic soil of the humid subtropics (Norfolk island, southwest of Oceania, alluvial clay soil of arid subtropics (Konyaprovince, Turkey and carbonate loess loam of Russian forest-steppe zone were determined. A parallel plate rheometer MCR-302 (Anton Paar, Austria was used in order to conduct amplitude sweep test. Rheological properties allow to assess quantitatively structural bonds and estimate structural resistance to a mechanical impact. Measurements were carried out on samples previously pounded and capillary humidified during 24 hours. In the amplitude sweep method an analyzed sample was placed between two plates. The upper plate makes oscillating motions with gradually extending amplitude. Software of the device allows to receive several rheological parameters such as elastic modulus (G’, Pa, viscosity modulus (G", Pa, linear viscoelasticity range (G’>>G”, and point of destruction of structure at which the elastic modulus becomes equal to the viscosity modulus (G’=G”- crossover. It was found out that in the elastic behavior at G '>> G " strength of structural links of kaolinite, alluvial clay soil and loess loam constituted one order of 105 Pa. Montmorillonit had a minimum strength - 104 Pa and ferrallitic soil of Norfolk island [has] - a maximum one -106 Pa. At the same time montmorillonite and ferralitic soil were characterized by the greatest plasticity. Destruction of their structure (G '= G" took place only in the cases when strain was reaching 11-12%. Destraction of the kaolinite structure happened at 5% of deformation and of the alluvial clay soil and loess loam - at 4.5%.

  8. The effect of high pH alkaline solutions on the mineral stability of the Boom Clay - Batch experiments at 60 deg. C

    International Nuclear Information System (INIS)

    Boom Clay is currently viewed as a reference host formation for studies on deep geological disposal of radioactive waste in Belgium. The interactions between bulk rock Boom Clay and 0.1 M KOH, 0.1 M NaOH, 0.1 M Ca(OH)2, young cement water and evolved cement water solutions, ranging in pH from 12.5 to 13.2, were examined as static batch experiments at 60 deg. C to simulate alkaline plume perturbations, which are expected to occur in the repository due to the presence of concrete. Both liquids and solids were investigated at specific times between 90 and 510 days in order to control the elemental budget and to search for potential mineralogical alterations. Also, the clay fraction was separated from the whole-rock Boom Clay at the end of each run and characterized for its mineralogical composition. Thereby, the importance of the mineral matrix to buffer the alkaline attack and the role of organic matter to protect clay minerals were also addressed. The results indicate that the degree of geochemical perturbation in Boom Clay is dependent on the initial pH of the applied solution together with the nature of the major cation in the reactant fluids. The higher the initial pH of the media, the stronger its interaction with Boom Clay. No major non-clay mineralogical alteration of the Boom Clay was detected, but dissolution of kaolinite, smectite and illite occurred within the studied experimental conditions. The dissolution of clays is accompanied by the decrease in the layer charge, followed by a decrease in the cation-exchange capacity. The highest TOC values coincide with the highest total elemental concentrations in the leachates, and correspondingly, the highest dissolution degree. However, no quantitative link could be established between the degree of organic matter decomposition and clay dissolution.

  9. Chemistry and mineralogy of clay minerals in Asian and Saharan dusts and the implications for iron availability

    OpenAIRE

    G. Y. Jeong; E. P. Achterberg

    2014-01-01

    Mineral dust supplied to remote ocean regions stimulates phytoplankton growth through delivery of micronutrients, notably iron (Fe). Although attention is usually paid to Fe (hydr)oxides as major sources of available Fe, Fe-bearing clay minerals are typically the dominant phase in mineral dust. The mineralogy and chemistry of clay minerals in dust particles, however, are largely unknown. We conducted microscopic identification and chemical analysis of the c...

  10. Networking and rheology of concentrated clay suspensions "matured" in mineral medicinal water.

    Science.gov (United States)

    Aguzzi, Carola; Sánchez-Espejo, Rita; Cerezo, Pilar; Machado, José; Bonferoni, Cristina; Rossi, Silvia; Salcedo, Inmaculada; Viseras, César

    2013-09-10

    This work studied the influence of "maturation" conditions (time and agitation) on aggregation states, gel structure and rheological behaviour of a special kind of pharmaceutical semisolid products made of concentrated clay suspensions in mineral medicinal water. Maturation of the samples was carried out in distilled and sulphated mineral medicinal water, both in static conditions (without agitation) and with manual stirring once a week, during a maximum period of three months. At the measured pH interval (7.5-8.0), three-dimensional band-type networks resulting from face/face contacts were predominant in the laminar (disc-like) clay suspensions, whereas the fibrous (rod-like) particles formed micro-aggregates by van der Waals attractions. The high concentration of solids in the studied systems greatly determined their behaviour. Rod-like sepiolite particles tend to align the major axis in aggregates promoted by low shearing maturation, whereas aggregates of disc-like smectite particles did not have a preferential orientation and their complete swelling required long maturation time, being independent of stirring. Maturation of both kinds of suspensions resulted in improved rheological properties. Laminar clay suspensions became more structured with time, independently from static or dynamic maturation conditions, whereas for fibrous clay periodic agitation was also required. Rheological properties of the studied systems have been related to aggregation states and networking mechanisms, depending on the type of clay minerals constituents. Physical stability of the suspensions was not impaired by the specific composition of the Graena medicinal water.

  11. Si isotopes record cyclical dissolution and re-precipitation of pedogenic clay minerals in a podzolic soil chronosequence

    Science.gov (United States)

    Cornelis, Jean-Thomas; Weis, Dominique; Lavkulich, Les; Vermeire, Marie-Liesse; Delvaux, Bruno; Barling*, Jane

    2014-05-01

    Soils are a major resource on the planet, acting as a key component for ecosystem function. The secondary minerals in the clay fraction are important players in soil biogeochemical processes as they provide a large reactive surface area. However, the origin and evolution of secondary minerals in soils are not yet fully understood. We determined the Si isotope compositions in the clay fraction of a podzolic soil chronosequence and document light 28Si enrichment during pedogenesis that increases with soil age. Relative to the original 'unweathered' clay-size minerals in deepsoil (δ30Si = -0.52±0.16 permil), the clay fraction of the topsoil eluvial horizon show less negative δ30Si values (δ30Sifrom -0.33 to -0.10 permil), while the clay fraction of the subsoil illuvial horizons is isotopically lighter (δ30Si from -0.60 to -0.84 permil). Geochemical and X-ray diffraction analyses show that the on-going enrichment in light 28Si in pedogenic minerals of illuvial subsoil horizons can only be related to the dissolution in the topsoil horizon of clay minerals previously enriched in 28Si. The 28Si enrichment in the clay fraction with pedogenesis and soil age provides consistent evidence for the cyclical dissolution and re-precipitation of pedogenic minerals. Our study shows that the successive generations of clay minerals occur over very short time scales (ca. 300 years). This is instrumental in the evolution of the clay mineral genesis in soils. This soil-forming process has implications for the modeling of soil evolution. Given the importance of clay minerals in the chemical cycles of elements, deciphering the origin of pedogenic Si in clay mineral genesis is central to a better understanding of soil development and associated terrestrial biogeochemical processes.

  12. Biofilm Formation of Pasteurella Multocida on Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Ramachandranpillai Rajagopal

    2013-06-01

    Full Text Available Background and objectives: Biofilms are structural communities of bacterial cells enshrined in a self produced polymeric matrix. The studies on biofilm formation of Pasteurella multocida have become imperative since it is a respiratory pathogen and its biofilm mode could possibly be one of its virulence factors for survival inside a host. The present study describes a biofilm assay for P. multocida on inert hydrophilic material called bentonite clay.Materials and methods: The potential of the organism to form in vitro biofilm was assessed by growing the organism under nutrient restriction along with the inert substrate bentonite clay, which will provide a surface for attachment. For quantification of biofilm, plate count by the spread plate method was employed. Capsule production of the attached bacteria was demonstrated by light microscopic examination following Maneval staining and capsular polysaccharide estimation was done using standard procedures.Results and Conclusion: The biofilm formation peaked on the third day of incubation (1.54 ×106 cfu/g of bentonite clay while the planktonic cells were found to be at a maximum on day one post inoculation (8.10 ×108 cfu/ml of the broth. Maneval staining of late logarithmic phase biofilm cultures revealed large aggregates of bacterial cells, bacteria appearing as chains or as a meshwork. The capsular polysaccharide estimation of biofilm cells revealed a 3.25 times increase over the planktonic bacteria. The biofilm cells cultured on solid media also produced some exclusive colony morphotypes

  13. Bulk and clay mineral composition indicate origin of terra rossa soils in Western Herzegovina

    OpenAIRE

    Durn, Goran; Ćorić, Radica; Tadej, Neven; Barudžija, Uroš; Rubinić, Vedran; Husnjak, Stjepan

    2014-01-01

    The B horizons of terra rossa soils developed on three different carbonate lithologies having variable insoluble residue contents were studied in Western Herzegovina. Comparison of  their composition and properties illustrates to what extent mineral (especially clay mineral assemblage) and particle size composition of those horizons and the insoluble residue of the underlying carbonate rocks can be used as indicators of the polygenetic nature of terra rossa in this region. Terra rossa B horiz...

  14. Surficial clay mineral distribution on the southwestern continental margin of India: Evidence of input from the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Gujar, A.R.

    Kerala coast, contain a clay mineral suite of kaolinite (60-65%), smectite (15-20%), and illite (10%) (Nair, 1976). Two conflicting opinions exist about the regional distribution of the clay minerals and the sources of the sediments along the western...

  15. Effect of purity on adsorption capacities of a Mars-like clay mineral at different pressures

    Science.gov (United States)

    Jenkins, Traci; Mcdoniel, Bridgett; Bustin, Roberta; Allton, Judith H.

    1992-01-01

    There has been considerable interest in adsorption of carbon dioxide on Marslike clay minerals. Some estimates of the carbon dioxide reservoir capacity of the martian regolith were calculated from the amount of carbon dioxide adsorbed on the ironrich smectite nontronite under martian conditions. The adsorption capacity of pure nontronite could place upper limits on the regolith carbon dioxide reservoir, both at present martian atmospheric pressure and at the postulated higher pressures required to permit liquid water on the surface. Adsorption of carbon dioxide on a Clay Mineral Society standard containing nontronite was studied over a wide range of pressures in the absence of water. Similar experiments were conducted on the pure nontronite extracted from the natural sample. Heating curves were obtained to help characterize and determine the purity of the clay sample.

  16. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    Directory of Open Access Journals (Sweden)

    M. A. Tolbert

    2007-08-01

    Full Text Available Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH, organic acid pressure and clay mass. A high vacuum chamber equipped with a quadrupole mass spectrometer and a transmission Fourier transform infrared spectrometer was used to detect the gas and condensed phases, respectively. Our results show that while the initial uptake efficiency was found to be independent of organic acid pressure, it increased linearly with increasing clay mass. Thus, the small masses studied allow access to the entire surface area of the clay sample with minimal effects due to surface saturation. Additionally, results from this study show that the initial uptake efficiency for butanoic (butyric acid on the clay increases by an order of magnitude as the RH is raised from 0% to 45% RH at 212 K while the initial uptake efficiency of formic, acetic and propanoic (propionic acids increases only slightly at higher humidities. However, the initial uptake efficiency decreases significantly in a short amount of time due to surface saturation effects. Thus, although the initial uptake efficiencies are appropriate for initial times, the fact that the uptake efficiency will decrease over time as the surface saturates should be considered in atmospheric models. Surface saturation results in sub-monolayer coverage of organic acid on montmorillonite under dry conditions and relevant organic acid pressures that increases with increasing humidity for all organic acids studied. Additionally, the presence of large organic acids may slightly enhance the water content of the clay above 45% RH. Our results indicate

  17. Sedimentological and clay mineral studies in Kakinada Bay, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Reddy, N.P.C.; Rao, K.M.

    are of sandy sediments (2.9 to 3.05 phi). Interrelationships of size statistical parameters and the CM diagram of the bay sediments suggest a mechanism of slow deposition from quiet water. Montmorillonite is the predominant clay mineral followed by kaolinite...

  18. Selenium containing clays minerals as additive for the discoloration of glass

    NARCIS (Netherlands)

    Timmer, K.; Limpt, J.A.C. van; Fischer, H.R.

    2010-01-01

    While selenium is applied as decolorizing agent for flint container glass or tableware glass, the retention of selenium in glass however is very low. Generally more than 75% of the total selenium input sublimes from the glass melt and leaves the clay minerals due to the high volatility of SeO2<

  19. Spectral characteristics of clay minerals in the 2.5 - 14 µm wavelength region

    NARCIS (Netherlands)

    Yitagesu, F.A.; Meer, F.D. van der; Werff, H.M.A. van der; Hecker, C.A.

    2011-01-01

    Identification and quantification of clay minerals, particularly those that are responsible for susceptibility of soils to expansion and shrinkage, is a constant focus of research in geotechnical engineering. The visible, near infrared and short wave infrared wavelength regions are well explored. Ho

  20. Clay mineral stratigraphy of Miocene to recent marine sediments in the central Mediterranean

    NARCIS (Netherlands)

    Visser, J.P. de

    1992-01-01

    X-ray diffraction analyses were made of the smaller than 2 J..Lm fraction from about 1250 samples of the central Mediterranean Miocene to Recent and the southeastern North-Atlantic Miocene in order to reconstruct climatic changes. Relative quantities of the clay minerals chlorite, illite, pyrophylli

  1. Clay Mineral Distribution Patterns of Tertiary Continental Oil-bearing Basins in China

    Institute of Scientific and Technical Information of China (English)

    Zhao Xingyuan

    1996-01-01

    @@ Induction This paper studies the clay mineral distribution patterns of Tertiary continental oil-bearing basins in China. More than 9 000 shale samples from Paleogene (E) to Neogene (N) Series distributed in Bohai Gulf, Subei, Jianghan,Nanxiang, Zhoukou, Sanshui, Beibu Bay, East China Sea,Hetao, Juiquan, Qaidam and Tarim basins, and so on.

  2. Modeling selenate adsorption behavior on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenate adsorption behavior was investigated on amorphous aluminum oxide, amorphous iron oxide, goethite, clay minerals: kaolinites, montmorillonites, illite, and 18 soil samples from Hawaii, and the Southwestern and the Midwestern regions of the US as a function of solution pH. Selenate adsorpti...

  3. Modeling selenite adsorption envelopes on oxides, clay minerals, and soils using the triple layer model

    Science.gov (United States)

    Selenite adsorption behavior was investigated on amorphous aluminum and iron oxides, clay minerals: kaolinite, montmorillonite, and illite, and 45 surface and subsurface soil samples from the Southwestern and Midwestern regions of the USA as a function of solution pH. Selenite adsorption decreased ...

  4. Clay minerals in primitive meteorites and interplanetary dust 1

    Science.gov (United States)

    Zolensky, M. E.; Keller, L. P.

    1991-01-01

    Many meteorites and interplanetary dust particles (IDPs) with primitive compositions contain significant amounts of phyllosilicate minerals, which are generally interpreted as evidence of protoplanetary aqueous alteration at an early period of the solar system. These meteorites are chondrites (near solar composition) of the carbonaceous and ordinary varieties. The former are subdivided (according to bulk composition and petrology) into CI, CM, CV, CO, CR, and ungrouped classes. IDPs are extraterrestrial particulates, collected in stratosphere, which have chemical compositions indicative of a primitive origin; they are typically distinct from the primitive meteorites. Characterization of phyllosilicates in these materials is a high priority because of the important physico-chemical information they hold. The most common phyllosilicates present in chondritic extraterrestrial materials are serpentine-group minerals, smectites, and micas. We discuss these phyllosilicates and describe the interpretation of their occurrence in meteorites and IDPs and what this indicates about history of their parent bodies, which are probably the hydrous asteroids.

  5. Determination of geochemical characters of insterstitial waters of pleistocene Italian clay formations

    International Nuclear Information System (INIS)

    The geochemical characters of clay formations and of their pore water are fundamental with regards to the mobility of the radionuclides as well as to the corrosion processes on enginered barriers. Experimental researches have been carried out in different types of clay, which represent Italian formations, for the characterization of pore water. A squeezer system, which reaches 1500 Kg/cm2 in pressure, and an analytical micro-scale methodology, for the determination of dissolved constituents in pore water, were set up. The extracted pore water ranges from 60% to 85% in relation to consolidation state of clay. The chemical composition of the extracted fluid has been checked during the squeezing. During this step the observed variations were smaller than those between the different specimens of the same sample. The comparison between the results obtained by squeezing and by a multiple washing technique, using increasing water/sediment ratios, shows that the last one does not give reliable results on the chemical composition of pore water. This is due to the presence of easily weatherable minerals and to the exchange processes between the clayey minerals and the solution. Nevertheless both these techniques have supplied complementary information about geochemical processes in water-rock interaction. The salinity of pore water ranges from 0.45 g/l to 24.5 g/l and the chemism always shows a high content of calcium-magnesium sulfate, or sodium chloride or calcium-magnesium-sulfate with sodium chloride. The correlation between geochemical composition of pore water and mineralogical composition of clay is not significant

  6. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    Science.gov (United States)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  7. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima.

    Science.gov (United States)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the (137)Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of (137)Cs (10(-11) ~ 10(-9 )molL(-1) of (137)Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed "weathered biotite" (WB) in this study, from Fukushima sorbed (137)Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of (137)Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed (137)Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  8. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah

    Science.gov (United States)

    Solum, J.G.; van der Pluijm, B.A.; Peacor, D.R.

    2005-01-01

    Pronounced changes in clay mineral assemblages are preserved along the Moab Fault (Utah). Gouge is enriched up to ???40% in 1Md illite relative to protolith, whereas altered protolith in the damage zone is enriched ???40% in illite-smectite relative to gouge and up to ???50% relative to protolith. These mineralogical changes indicate that clay gouge is formed not solely through mechanical incorporation of protolith, but also through fault-related authigenesis. The timing of mineralization is determined using 40Ar/39Ar dating of size fractions of fault rocks with varying detrital and authigenic clay content. We applied Ar dating of illite-smectite samples, as well as a newer approach that uses illite polytypes. Our analysis yields overlapping, early Paleocene ages for neoformed (1Md) gouge illite (63??2 Ma) and illite-smectite in the damage zone (60??2 Ma), which are compatible with results elsewhere. These ages represent the latest period of major fault motion, and demonstrate that the fault fabrics are not the result of recent alteration. The clay fabrics in fault rocks are poorly developed, indicating that fluids were not confined to the fault zone by preferentially oriented clays; rather we propose that fluids in the illite-rich gouge were isolated by adjacent lower permeability, illite-smectite-bearing rocks in the damage zone. ?? 2005 Elsevier Ltd. All rights reserved.

  9. Influence of Water Content on the Mechanical Behaviour of Limestone: Role of the Clay Minerals Content

    Science.gov (United States)

    Cherblanc, F.; Berthonneau, J.; Bromblet, P.; Huon, V.

    2016-06-01

    The mechanical characteristics of various sedimentary stones significantly depend on the water content, where 70 % loss of their mechanical strengths can be observed when saturated by water. Furthermore, the clay fraction has been shown to be a key factor of their hydro-mechanical behaviour since it governs for instance the hydric dilation. This work aims at investigating the correlations between the clay mineral content and the mechanical weakening experienced by limestones when interacting with water. The experimental characterization focuses on five different limestones that exhibit very different micro-structures. For each of them, we present the determination of clay mineral composition, the sorption isotherm curve and the dependences of tensile and compressive strengths on the water content. It emerges from these results that, first, the sorption behaviour is mainly governed by the amount of smectite layers which exhibit the larger specific area and, second, the rate of mechanical strength loss depends linearly on the sorption capacity. Indeed, the clay fraction plays the role of a retardation factor that delays the appearance of capillary bridges as well as the mechanical weakening of stones. However, no correlation was evidenced between the clay content and the amplitude of weakening. Since the mechanisms whereby the strength decreases with water content are not clearly established, these results would help to discriminate between various hypothesis proposed in the literature.

  10. Clay mineralogy of the Boda Claystone Formation (Mecsek Mts., SW Hungary)

    Science.gov (United States)

    Németh, Tibor; Máthé, Zoltán; Pekker, Péter; Dódony, István; Kovács-Kis, Viktória; Sipos, Péter; Cora, Ildikó; Kovács, Ivett

    2016-04-01

    Boda Claystone Formation (BCF) is the host rock of the planned site for high level nuclear waste repository inHungary. Samples representing the dominant rock types of BCF were studied: albitic claystone, claystone with high illite content, and analcime bearing claystone. Clay minerals in these three rock types were characterized by Xray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal analysis (DTA-TG), and the results were discussed from the point of view of the radionuclide sorption properties being studied in the future. Mineral compositions of bulk BCF samples vary in wide ranges. In the albitic sample, besides the dominant illite, few percent of chlorite represents the layer silicates in the clay fraction. Illite is the dominating phase in the illitic sample, with a few percent of chlorite. HRTEM study revealed that the thickness of illite particles rarely reaches 10 layers, usually are of 5-6 TOT layer thick. Illite crystals are generally thicker in the albitic sample than in the illitic one. The significant difference between the clay mineral characterisitics of the analcimous and the other two samples is that the former contains regularly interstratified chlorite/smectite beside the dominant illite. Based on the structural and chemical data two illite type minerals are present in the BCF samples: 1M polytype containing octahedral Fe and Mg besides Al, 2M polytype illite generally is free of Fe andMg. Close association of very thin illite plates and nanosized hematite crystals is typical textural feature for BCF. The goal of this study is to provide solid mineralogical basis for further studies focusing on radionuclide sorption properties.

  11. Bioreduction of Fe-bearing clay minerals and their reactivity toward pertechnetate (Tc-99)

    Science.gov (United States)

    Bishop, Michael E.; Dong, Hailiang; Kukkadapu, Ravi K.; Liu, Chongxuan; Edelmann, Richard E.

    2011-09-01

    99Technetium ( 99Tc) is a fission product of uranium-235 and plutonium-239 and poses a high environmental hazard due to its long half-life ( t1/2 = 2.13 × 10 5 y), abundance in nuclear wastes, and environmental mobility under oxidizing conditions [i.e., Tc(VII)]. Under reducing conditions, Tc(VII) can be reduced to insoluble Tc(IV). Ferrous iron, either in aqueous form (Fe 2+) or in mineral form [Fe(II)], has been used to reduce Tc(VII) to Tc(IV). However, the reactivity of Fe(II) from clay minerals, other than nontronite, toward immobilization of Tc(VII) and its role in retention of reduced Tc(IV) has not been investigated. In this study the reactivity of a suite of clay minerals toward Tc(VII) reduction and immobilization was evaluated. The clay minerals chosen for this study included five members in the smectite-illite (S-I) series, (montmorillonite, nontronite, rectorite, mixed layered I-S, and illite), chlorite, and palygorskite. Surface Fe-oxides were removed from these minerals with a modified dithionite-citrate-bicarbonate (DCB) procedure. The total structural Fe content of these clay minerals, after surface Fe-oxide removal, ranged from 0.7% to 30.4% by weight, and the structural Fe(III)/Fe(total) ratio ranged from 45% to 98%. X-ray diffraction (XRD) and Mössbauer spectroscopy results showed that after Fe oxide removal the clay minerals were free of Fe-oxides. Scanning electron microscopy (SEM) revealed that little dissolution occurred during the DCB treatment. Bioreduction experiments were performed in bicarbonate buffer (pH-7) with structural Fe(III) in the clay minerals as the sole electron acceptor, lactate as the sole electron donor, and Shewanella putrefaciens CN32 cells as a mediator. In select tubes, anthraquinone-2,6-disulfate (AQDS) was added as electron shuttle to facilitate electron transfer. In the S-I series, smectite (montmorillonite) was the most reducible (18% and 41% without and with AQDS, respectively) and illite the least (1% for both

  12. Investigating the Thermal Limit of Clay Minerals for Applications in Nuclear Waste Repository Design

    Science.gov (United States)

    Matteo, E. N.; Miller, A. W.; Kruichak, J.; Mills, M.; Tellez, H.; Wang, Y.

    2013-12-01

    Clay minerals are likely candidates to aid in nuclear waste isolation due to their low permeability, favorable swelling properties, and high cation sorption capacities. Establishing the thermal limit for clay minerals in a nuclear waste repository is a potentially important component of repository design, as flexibility of the heat load within the repository can have a major impact on the selection of repository design. For example, the thermal limit plays a critical role in the time that waste packages would need to cool before being transferred to the repository. Understanding the chemical and physical changes that occur in clay minerals at various temperatures above the current thermal limit (of 100 °C) can enable decision-makers with information critical to evaluating the potential trade-offs of increasing the thermal limit within the repository. Most critical is gaining understanding of how varying thermal conditions in the repository will impact radionuclide sorption and transport in clay materials either as engineered barriers or as disposal media. A variety of clays (illite, mixed layer illite/smectite, montmorillonite, and palygorskite) were heated for a range of temperatures between 100-500 °C. These samples were characterized by a variety of methods, including nitrogen adsorption, x-ray diffraction, thermogravimetric analysis, barium chloride exchange for cation exchange capacity (CEC), and iodide sorption. The nitrogen porosimetry shows that for all the clays, thermally-induced changes in BET surface area are dominated by collapse/creation of the microporosity, i.e. pore diameters Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's Nation Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Number: 2013-6352A.

  13. Modified clay minerals efficiency against chemical and biological warfare agents for civil human protection.

    Science.gov (United States)

    Plachá, Daniela; Rosenbergová, Kateřina; Slabotínský, Jiří; Kutláková, Kateřina Mamulová; Studentová, Soňa; Martynková, Gražyna Simha

    2014-04-30

    Sorption efficiencies of modified montmorillonite and vermiculite of their mono ionic Na and organic HDTMA and HDP forms were studied against chemical and biological warfare agents such as yperite and selected bacterial strains. Yperite interactions with modified clay minerals were observed through its capture in low-density polyethylene foil-modified clay composites by measuring yperite gas permeation with using chemical indication and gas chromatography methods. The antibacterial activities of synthetized organoclays were tested against selected Gram-positive and Gram-negative bacterial species in minimum inhibitory concentration tests. The obtained results showed a positive influence of modified clay minerals on the significant yperite breakthrough-time increase. The most effective material was the polyethylene-Na form montmorillonite, while the polyethylene-Na form vermiculite showed the lowest efficiency. With increasing organic cations loading in the interlayer space the montmorillonite efficiency decreased, and in the case of vermiculite an opposite effect was observed. Generally the modified montmorillonites were more effective than modified vermiculites. The HDP cations seem to be more effective compare to the HDTMA. The antibacterial activity tests confirmed efficiency of all organically modified clay minerals against Gram-positive bacteria. The confirmation of antibacterial activity against Y. pestis, plague bacteria, is the most interesting result of this part of the study.

  14. Bioremediating Oil Spills in Nutrient Poor Ocean Waters Using Fertilized Clay Mineral Flakes: Some Experimental Constraints

    Directory of Open Access Journals (Sweden)

    Laurence N. Warr

    2013-01-01

    Full Text Available Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98% of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity.

  15. Bioremediating oil spills in nutrient poor ocean waters using fertilized clay mineral flakes: some experimental constraints.

    Science.gov (United States)

    Warr, Laurence N; Friese, André; Schwarz, Florian; Schauer, Frieder; Portier, Ralph J; Basirico, Laura M; Olson, Gregory M

    2013-01-01

    Much oil spill research has focused on fertilizing hydrocarbon oxidising bacteria, but a primary limitation is the rapid dilution of additives in open waters. A new technique is presented for bioremediation by adding nutrient amendments to the oil spill using thin filmed minerals comprised largely of Fullers Earth clay. Together with adsorbed N and P fertilizers, filming additives, and organoclay, clay flakes can be engineered to float on seawater, attach to the oil, and slowly release contained nutrients. Our laboratory experiments of microbial activity on weathered source oil from the Deepwater Horizon spill in the Gulf of Mexico show fertilized clay treatment significantly enhanced bacterial respiration and consumption of alkanes compared to untreated oil-in-water conditions and reacted faster than straight fertilization. Whereas a major portion (up to 98%) of the alkane content was removed during the 1 month period of experimentation by fertilized clay flake interaction; the reduced concentration of polyaromatic hydrocarbons was not significantly different from the non-clay bearing samples. Such clay flake treatment could offer a way to more effectively apply the fertilizer to the spill in open nutrient poor waters and thus significantly reduce the extent and duration of marine oil spills, but this method is not expected to impact hydrocarbon toxicity. PMID:23864952

  16. Experimental investigation of magnetic mineral formation in hydrocarbon environments

    Science.gov (United States)

    Abubakar, Rabiu; Muxworthy, Adrian; Sephton, Mark; Fraser, Alastair

    2013-04-01

    Experimental investigation of magnetic mineral formation in hydrocarbon environments Rabiu Abubakar, Adrian Muxworthy, Mark Septhon and Alastair Fraser Dept. of Earth Science and Engineering, Imperial College London Magnetic anomalies have been observed over oil fields from aeromagnetic surveys. These anomalies have been linked with the presence of hydrocarbons and that has generated a lot of interest over possible application of magnetism in the exploration of oil and gas but there has also been debate over the origin of the magnetic minerals causing the magnetic anomaly. Our approach was to generate crude oil in the lab using three source rocks from the Wessex Basin, England, which is a hydrocarbon province. The source rocks were the Kimmeridge Clay, Oxford Clay and the Blue Lias. The source rocks were powered and pyrolysed in a high pressure vessel. The crude oil was then extracted and the magnetic signal of the remaining pyrolysate measured. We discovered a significant contrast in the magnetic hysteresis and thermomagnetic properties between the pyrolysate and the unpyrolysed (immature) source rocks. We will present the preliminary results, which indicate that magnetic minerals were generated as a result of heat and therefore related linked to maturation of the source rocks

  17. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    Science.gov (United States)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  18. Structural Transformation of Clay Minerals by a New Molecular Dynamics Simulation Method

    Science.gov (United States)

    Wang, Jianfeng; Gutierrez, Marte

    2010-05-01

    A MD simulation study of 2:1 clay minerals is carried out using a new MD simulation method which is capable of simulating a system under the most general external stress conditions by considering the changes of MD cell size and shape. The tensor defining the cell size and shape is correlated with the atomic level stress tensors (both internal and external) through a Lagrangian formulation. Due to this feature, the method is able to predict the crystal transformation of molecular structures which is compatible with the imposed external stress and boundary conditions. In this paper, the new method has been applied for the first time to the simulations of dehydrated montmorillonite sheets, and has successfully revealed unforeseen structural transformations of clay minerals upon relaxation under different normal stress conditions. In order to first achieve the correct coupled simulation of atomic structural change and MD cell deformation, parametric studies were made on the effects of the time step and the "imaginary" mass M of the MD cell on the model behavior. It is found that the time step essentially controls the convergence behavior of the system, while the "imaginary" mass M has large influences on the final equilibrated structure of the system. Results of the parametric study suggest that values of 1.0×10-17 sec for the time step and 1.0×105 for the "imaginary" mass M are appropriate for the simulation of 2:1 clay minerals using the current method. Simulation results reveal the strong correlations between the degrees of constraints imposed on the simulation cell (i.e., whether the cell size or shape change is allowed) and the final equilibrated crystal structure of clay minerals. It is found during the relaxation process that large shear distortions of clay minerals will occur if full allowance is given to the cell size and shape change, while large shear stress in the sheet plane will be retained if only the cell size change is allowed. These structural

  19. Reactive Clay Minerals in a land use sequence of disturbed soils of the Belgian Loam Belt

    Science.gov (United States)

    Barao, Lucia; Vandevenne, Floor; Ronchi, Benedicta; Meire, Patrick; Govers, Gerard; Struyf, Eric

    2014-05-01

    Clay minerals play a key role in soil biogeochemistry. They can stabilize organic matter, improve water storage, increase cation exchange capacity of the soil (CEC) and lower nutrient leaching. Phytoliths - the biogenic silica bodies (BSi) deposited in cell walls of plants - are important Si pools in soil horizons due to their higher solubility compared to minerals. They provide the source of Si for plant uptake in short time scales, as litter dissolves within soils. In a recent study, we analyzed the BSi pool differences across a set of different land uses (forests, pastures, croplands) in 6 long-term disturbed (multiple centuries) soil sites in the Belgium Loam Belt. Results from a simultaneous chemical extraction in 0.5M NaOH of Si and Al, showed that soils were depleted in the BSi pool while showing high levels of reactive secondary clay minerals, mainly in the deeper horizons and especially in the forests and the croplands. During the extraction, clays were similar in reactivity to the biogenic pool of phytoliths. In order to study the kinetics in a more natural environment, batch dissolution experiments were conducted. Samples from different soil depths for each land use site (0.5 g) were mixed with 0.5 L of demineralised water modified to pH 4, 7 and 10. Subsamples of 2 ml were taken during 3 months. In the end of the period, results for pH 7 showed that in the pastures, where reactive clays were almost absent, the ratio Si/RSi (defined as the Si concentration in the end of the batch experiment divided by the reactive silica extracted from the soil with the alkaline extraction) was lower than 0.005%. The same ratio was higher in the mineral horizons of forests (Si/RSi>0.01%) and croplands (0.005% < Si/RSi <0.01%) where clay minerals were the dominant fraction. These preliminary results highlight the clay minerals' strong potential for Si mobilization. More attention should be paid to this important fraction as it can contribute strongly to Si availability

  20. Influence of clay minerals on sorption and bioreduction of arsenic under anoxic conditions.

    Science.gov (United States)

    Ghorbanzadeh, Nasrin; Lakzian, Amir; Halajnia, Akram; Kabra, Akhil N; Kurade, Mayur B; Lee, Dae S; Jeon, Byong-Hun

    2015-12-01

    Adsorption of As(V) on various clay minerals including kaolinite (KGa-1), montmorillonite (SWy-1) and nontronites (NAU-1 and NAU-2), and subsequent bioreduction of sorbed As(V) to As(III) by bacterium Shewanella putrefaciens strain CN-32 were investigated. Nontronites showed relatively higher sorption capacity for As(V) primarily due to higher iron oxide content. Freundlich equation well described the sorption of As(V) on NAU-1, NAU-2 and SWy-1, while As(V) sorption isotherm with KGa-1 fitted well in the Langmuir model. The bacterium rapidly reduced 50% of dissolved As(V) to As(III) in 2 h, followed by its complete reduction (>ca. 98%) within 12 h. In contrast, sorption of As(V) to the mineral surfaces interferes with the activity of bacterium, resulting in low bioreduction of As(V) by 27% for 5 days of incubation. S. putrefaciens also promoted the reduction of Fe(III) present in the clay mineral to Fe(II). This study indicates that the sorption and subsequent bioreduction of As(V) on clay minerals can significantly influence the mobility of As(V) in subsurface environment.

  1. Clay minerals and metal oxides strongly influence the structure of alkane-degrading microbial communities during soil maturation.

    Science.gov (United States)

    Steinbach, Annelie; Schulz, Stefanie; Giebler, Julia; Schulz, Stephan; Pronk, Geertje J; Kögel-Knabner, Ingrid; Harms, Hauke; Wick, Lukas Y; Schloter, Michael

    2015-07-01

    Clay minerals, charcoal and metal oxides are essential parts of the soil matrix and strongly influence the formation of biogeochemical interfaces in soil. We investigated the role of these parental materials for the development of functional microbial guilds using the example of alkane-degrading bacteria harbouring the alkane monooxygenase gene (alkB) in artificial mixtures composed of different minerals and charcoal, sterile manure and a microbial inoculum extracted from an agricultural soil. We followed changes in abundance and community structure of alkane-degrading microbial communities after 3 and 12 months of soil maturation and in response to a subsequent 2-week plant litter addition. During maturation we observed an overall increasing divergence in community composition. The impact of metal oxides on alkane-degrading community structure increased during soil maturation, whereas the charcoal impact decreased from 3 to 12 months. Among the clay minerals illite influenced the community structure of alkB-harbouring bacteria significantly, but not montmorillonite. The litter application induced strong community shifts in soils, maturated for 12 months, towards functional guilds typical for younger maturation stages pointing to a resilience of the alkane-degradation function potentially fostered by an extant 'seed bank'.

  2. Clay mineral facies and lateritization in basalts of the southeastern Parana Basin, Brazil

    International Nuclear Information System (INIS)

    Seventeen samples from two lateritic profiles, each with five facies, were studied. These profiles occur on the old planation surface of the plateau basalts of the southern part of ParanáBasin, Brazil. Optical microscopy, X-ray diffraction, electron microprobe, Mössbauer spectroscopy and Fourier Transform Infrared Spectra were used to obtain information about the nature and chemical composition of each weathering facies. In addition, scanning electron microscopy and analyses of clay minerals were performed to detect microcrystalline environmental changes. Both profiles have two major parts: a loose red-clay latosol separated from an underlying mottled clay and an alterite facies; a stone line may or may not be present between the latosol and the underlying units. In both profiles the latosol consists principally of kaolinite, hematite and goethite. Two alterite facies, shaped by differential weathering, are also present in the lower profile: a halloysite–nontronite clayey matrix with a well developed fissure system occurs in the argillaceous alterite and a network of Al–goethite aggregates is typical of the highly porous cortex of the boulder alterite that is found in the stone line and below it. Gibbsite has crystallized in the large pores of porphyritic boulder alterite but is absent in the small pores of the subaphyric boulder alterite. Clay minerals observed in fissures include halloysite associated with goethite and manganese oxides. The basalt has hydrothermal green-clays (mixed layers and trioctahedral smectites) that formed between primary plagioclase, pyroxene and Ti–magnetite crystals while fresh corestones of the boulder alterite have cryptocrystalline iron-rich material. The study of these profiles shows one principal evolutionary trend for clay minerals. This trend is from smectite and mixed layers that form green clays in altered bedrock at the base of the profile to an intermediate association of nontronite and halloysite in the argillaceous

  3. Effect of potassium on fixation of ammonium by clay minerals in different soil layers

    Directory of Open Access Journals (Sweden)

    Agelda Ajazi

    2013-12-01

    Full Text Available In intensive agriculture systems, efficient nutrient use is necessary for high crop yields as well as for sustainable environment management. Fixation of NH4+ and K+ by soil clays affect N and K availability to plants. Latest studies indicates that non-exchangeable NH4+, may affect crop productivity and soil N dynamics more than previously thought. An incubation study with K2SO4 and NH4NO3 was conducted to evaluate NH4+ and K+ fixation in two southern Albanian soils. Soils contained significant amount of native-fixed NH4+ and showed relatively high NH4+ fixing capacity. Native fixed ammonium content varied for horizons Ap and BCg, from 97 to 133 mg/kg and accounted for between 5 to 19, 8 % of the total nitrogen, respectively . Ammonium fixation was increased with N rates and was reduced with increased K rates. When K was added to the soil prior to the NH4, the amount of ammonium fixed was reduced. By contrast, when K+ and NH4+ were added to the soils simultaneously (equivalent amount; 2mEq/100g, the ammonium fixation was increased somewhat in the BCg horizon , whereas no such preference for ammonium fixation was found in the Ap horizon. In case when NH4+ and K+ were added to the soil samples in form of solutions, containing equal amounts of NH4+ (corresponding to 2 mEq NH4+/100 g soil but varying amounts of K+, the capacity of the soil to fix ammonium was reduced in proportion to the amount of K+ added. The soil samples incubated anaerobically, were with high differences in clay minerals content. The dominate clay minerals for profile (I-Ap horizon are smectite > vermiculite > Ilite, while vermiculite plus ilite (as the most important clay fixed minerals, comprised 21% of clay fraction and 13 % of the soil. In the profile (II-BCg horizon, the dominant clay minerals ranged; vermiculite > Ilite > smectite, while (vermiculite + ilite, comprised 52% of the clay fraction and 23, 4 % of the soil. Studies on Ap and BCg horizons comparing the amount of

  4. Competitive sorption between glyphosphate and inorganic phosphate on clay minerals and low organic matter soils

    International Nuclear Information System (INIS)

    Inorganic phosphate may influence the adsorption of glyphosate to soil surface sites. It has been postulated that glyphosphate sorption is dominated by the phosphoric acid moiety, therefore, inorganic phosphate could compete with glyphosate for surface sorption sites. Sorption of glyphosate is examined in low organic carbon systems where clay minerals dominate the available adsorption sites using 32P-labeled phosphate and 14C-labeled glyphosate to track sorption. Glyphosate sorption was found to be strongly dependent on phosphate additions. Isotherms were generally of the L type, which is consistent with a limited number of surface sites. Most sorption on whole soils could be accounted for by sorption observed on model clays of the same mineral type as found in the soils. (author)

  5. Effect of clay mineral addition on properties of bio-based polymer blends

    OpenAIRE

    Abreu, Ana S.; M. de OLIVEIRA; Machado, A.V.

    2015-01-01

    The effect of clay mineral addition to bio-based blends on morphology and physical properties of thermoplastic starch (TPS) and polypropylene grafted with maleic anhydride (PP-g-MA) was investigated. Blends and nanocomposites containing organoclay, Cloisite 30B, were prepared by melt mixing and characterized by several techniques. X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM, STEM) and dynamic mechanical analysis (DMA) demonstrate a very good dispers...

  6. Competitive adsorption of a pool of pharmaceuticals onto a raw clay mineral

    OpenAIRE

    Thiebault, Thomas; Boussafir, Mohammed; Le Forestier, Lydie; Le Milbeau, Claude; Monnin, Lucie; Guégan, Régis

    2016-01-01

    International audience The removal of a Pharmaceutically Active Compound (PhAC) pool using a well referenced clay mineral from Wyoming (SWy-2) as geosorbent was studied for a better understanding of their environmental fate. As expected, the selected material shows its particular adsorption properties to PhAC under different experimental conditions with two main features depending on the chemical nature of the emerging micro-pollutants. Cationic PhACs, for which the driving force for their...

  7. METODOLOGY FOR LATERÍTICS CU-BEARING CLAY MINERALS CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    Eliana Satiko Mano

    2015-12-01

    This study describes an optimized methodology to characterize a Cu-lateritic ore, mainly composed of Cu-bearing clay minerals. Cations saturations and particle sizes separation, combined with X-ray diffraction, mid infrared spectroscopy and scanning electron microscopy allow concluding that this Cu-lateritic ore is mainly composed of smectites, micas and kaolinite; furthermore, the copper is especially associated to mica and secondarily to smectite.

  8. Effect of clay minerals on the stabilization of black cotton and lateritic soils

    International Nuclear Information System (INIS)

    The problem associated with black cotton and lateritic soils because of the swelling-shrinkage property of their constituent clay minerals were investigated. Samples of black cotton lateritic soils were collected from different parts of Kenya. The samples were analysed for their mineral compositions and later treated with hydrated lime in order to eliminate the swelling shrinkage behaviour. The samples were subsequently tested for their engineering properties in a soil mechanics laboratory using shear box and Casagrande apparatus. It was found that the chemical treatment of the soils with hydrated lime removes their plastic property and improves their shear strength. (author)

  9. Effect of heavy metal cations on the fate of extracellular DNA adsorbed and bound on clay minerals.

    OpenAIRE

    Ascher J.; Ceccherini M.T.; Arfaioli P.; Borgogni F.; Pietramellara G.

    2011-01-01

    The presence of high-valent metal cations on clay mineral surfaces is hypothesised to induce conformational changes in the secondary and tertiary structure of the DNA molecule adsorbed and bound onto clays, defined as M-conformation, and its condensation. The hypothesis that these reversible phenomena could enhance the resistance of DNA to enzymatic degradation strongly encourages the studies on the effects of heavy metal contamination in clay rich soils on the fate of extracellular soil DNA ...

  10. Relationship between heavy metal contents and clay mineral properties in surface sediments: Implications for metal pollution assessment

    Science.gov (United States)

    Chen, Yueh-Min; Gao, Jin-bo; Yuan, Yong-Qiang; Ma, Jun; Yu, Shen

    2016-08-01

    Clay minerals in surface sediments can affect the adsorption of heavy metals. However, few historical studies have focused on the influence of fine clay mineral characteristics on metal sorption. Since the reactions between heavy metals and fine clay minerals in sediments remain obscure, this study investigates the influence of fine clay mineral characteristics on metal sorption in a typical urbanizing small watershed. Clay minerals, including nanoparticles with various size fractions ranging from 1000 to 2000 (clay), 450-1000 (fine clay), and 220-450 (very fine clay) nm were used to demonstrate their transformation from well crystalline to poorly crystalline. The nanoparticles were collected and evaluated by determination of their surface area, X-ray diffraction, scanning electron microscopy (SEM) and chemical analyses. The relationship between metal content and properties of the surface sediments was also revealed by canonical correlation analysis. With smaller particle sizes, nanoparticles (very fine clay) were observed to be poorly crystalline, possibly indicating few repetitions of unit cells as a result of preferential structural disruption of other crystal planes caused by pressure-induced phase transition in the fine-size fractions. The first canonical matrix (M) variables of metal contents can be predicted by both surface area and pore volume, followed by kaolinite and illite contents. On the other hand, the category of metal, i.e., Cu, Cr, Zn, or Pb, was significantly correlated with the first 'M' canonical variables. The data obtained in the present study are of fundamental significance in advancing our understanding of the reactions between heavy metals and fine clay minerals in the terrestrial ecosystem.

  11. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  12. R and D programme on radioactive waste disposal into geological formations (study of a clay formation)

    International Nuclear Information System (INIS)

    This report deals with the R and D activities performed by the Belgian Nuclear Research Establishment (SCK/CEN) and its subcontractors concerning the disposal of high-level and long-life conditioned wastes in a deep clay formation, the Boom clay. The studies reported concern equally experimental as theoretical work spread over the following research issues: geochemical characterization of the Boom clay, modelling of radionuclide migration in the clay environment, irradiation effects and corrosion behaviour of candidate canister materials in the Boom clay, geomechanical, construction, backfilling and sealing studies related to underground facilities, regional hydrological investigations of the Mol site and safety and risk analysis. The geomechanical and construction-related studies are to a large extent focused on in situ research, performed along the construction of the underground Hades laboratory. The corrosion studies are also dealing with the preparation of in situ experiments in the same underground laboratory. These various research issues are meant to contribute to the assessment of the technical feasibility and safety of the geological disposal in an argillaceous host formation

  13. Significance of saturation index of certain clay minerals in shallow coastal groundwater, in and around Kalpakkam, Tamil Nadu, India

    Indian Academy of Sciences (India)

    S Chidambaram; U Karmegam; P Sasidhar; M V Prasanna; R Manivannan; S Arunachalam; S Manikandan; P Anandhan

    2011-10-01

    The saturation index of clay minerals like Gibbsite, Kaolinite, Illite, Montmorillonite and Chlorite in groundwater were studied in detail by collecting 29 groundwater samples from the shallow coastal aquifers in and around Kalpakkam. The samples collected were analysed for major cations, anions and trace elements by using standard procedures. The study reveals that pH has a significant role in the saturation index (SI) of minerals. It also shows that the relationship of electrical conductivity to the SI of these minerals is not significant than that of the ionic strength, log pCO2 values, and alumina silica ratio have significant relation to the SI of these clay minerals. The SI of these clay minerals was spatially distributed to identify the areas of higher SI. Silica has good correlation to SI of Kaolinite, Gibbsite and Montmorillonite and Al has good correlation to SI of all the minerals except to that of Chlorite.

  14. Origin and evolution of Upper Triassic to Miocene clay-mineral associations from the eastern Algarve of Portugal

    OpenAIRE

    Hendriks, Frits; Kellner, Thomas; Liebermann, Lutz

    2010-01-01

    XRD-analyses of pelitic deposits of Upper Jurassic to Miocene age occuring in the eastern Algarve (Portugal), give evidence of the occurrence of detrital clay minerals of continental origin as well as of conspicuous neoformations of marine provenance. The vertical succession of clay-mineral associations indicates the existence of three distinctive evolutionary cycles which are thought to reflect tectonically controlled transgressive-regressive events.

  15. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  16. [Effect of treatments of hydrogen peroxide and sodium dithionite-citrate-bicarbonate on clay minerals of red earth sediments].

    Science.gov (United States)

    Li, Rong-Biao; Hong, Han-Lie; Yin, Ke; Wang, Chao-Wen; Gao, Wen-Peng; Han, Wen; Wu, Qing-Feng

    2013-04-01

    As classical procedures for pretreatment of soil sediments, hydrogen peroxide (H2O2) and sodium dithionite-citrate-bicarbonate (DCB) treatment methods are very important in removing the organic matter and iron oxides acting as cementing agents in the soils. However, both of these methods have less been focused on the effect on the clay minerals when separating. Here, we report the comparable methods between H2O2 and DCB to reveal their effect on clay minerals in red earth sediments using X-ray diffraction (XRD). The XRD results suggested that mineral particles can be totally decentralized by either H2O2 or DCB method in the soils and high purity clay minerals can be obtained by separating quartz and other impurities from clay minerals effectively. However, the XRD data were distorted by the DCB treatment owning to the cation exchange between Na+ and interlayer cation. On the contrary, the authentic data can be obtained by H2O2 treatment. Therefore, the H2O2 treatment seems to be a more appropriate method to obtain authentic information of clay mineralogy when separating of clay minerals from red earth sediments.

  17. Bioavailability of iron in geophagic earths and clay minerals, and their effect on dietary iron absorption using an in vitro digestion/Caco-2 cell model.

    Science.gov (United States)

    Seim, Gretchen L; Ahn, Cedric I; Bodis, Mary S; Luwedde, Flavia; Miller, Dennis D; Hillier, Stephen; Tako, Elad; Glahn, Raymond P; Young, Sera L

    2013-08-01

    Geophagy, the deliberate consumption of earth, is strongly associated with iron (Fe) deficiency. It has been proposed that geophagy may be practiced as a means to improve Fe status by increasing Fe intakes and, conversely, that geophagy may cause Fe deficiency by inhibiting Fe absorption. We tested these hypotheses by measuring Fe concentration and relative bioavailable Fe content of 12 samples of geophagic earth and 4 samples of pure clay minerals. Further, we assessed the impact of these samples on the bioavailability of Fe from an Fe-rich test meal (cooked white beans, WB). Fe concentrations were measured with inductively coupled plasma atomic emission spectroscopy. Fe bioavailability was determined using an in vitro digestion/Caco-2 cell model in which ferritin formation was used as an index of Fe bioavailability. Geophagic earth and clay mineral samples were evaluated with this model, both alone and in combination with WB (1 : 16 ratio, sample : WB). Median Fe concentration of the geophagic earth was 3485 (IQR 2462, 14 ,571) μg g⁻¹ and mean Fe concentration in the clay minerals was 2791 (±1782) μg g⁻¹. All specimens had Fe concentrations significantly higher (p ≤ 0.005) than the Fe concentration of WB (77 μg g⁻¹). Ferritin formation (i.e. Fe uptake) in cells exposed to geophagic earths and clay minerals was significantly lower than in cells exposed to WB (p ≤ 0.05) and Fe uptake responses of 11 of the 16 samples were not significantly different from the blank, indicating no bioavailable Fe. When samples were combined with WB, 5 of 16 had mean ferritin levels that were significantly lower (p ≤ 0.05, one tail) than the WB alone, indicating that the samples inhibited Fe uptake from the WB. None of the ferritin responses of cells exposed to both WB and earth/clay were significantly higher than WB alone. Thus, although geophagic earths and mineral clays are high in total Fe, very little of this Fe is bioavailable. Further, some

  18. Ectopic mineral formation in the prostate gland

    Directory of Open Access Journals (Sweden)

    R.A.Moskalenko

    2011-01-01

    Full Text Available This work analyzes the data of cont emporary scientific literature regarding the ectopic mineralization in the prostate gland, its pathogenetic features are considered. The scientific literature of recent decades gives grounds to assert that the processes of concrement formation in the prostate gland are influenced by many factors, pathological mineralization can be realized by different mechanisms. They include chronic inflammation, stagnation fract ions in gland, reflux of urine from the urethra at intravesicle obstruction, malformation of prostate and seminal vesicles, specific inflammation, polymorphism of gene protein inhibitors of calcification. These mechanisms are interconnected, each of them may participate in the overall development of concrement fo rmation in the prostate. In recent years, due to improved instrumental diagnosis we observe a significant increase of the number of patients, who were found with pathogenic prostate gland biol iths, which requires more detailed and in-depth study of the mechanisms of mineral formation in the prostate.

  19. Transmission X-ray Microscopy—A New Tool in Clay Mineral Floccules Characterization

    Directory of Open Access Journals (Sweden)

    Ray L. Frost

    2012-10-01

    Full Text Available Effective flocculation and dewatering of mineral processing streams containing clays are microstructure dependent in clay-water systems. Initial clay flocculation is crucial in the design and for the development of a new methodology of gas exploitation. Microstructural engineering of clay aggregates using covalent cations and Keggin macromolecules have been monitored using the new state of the art Transmission X-ray Microscope (TXM with 60 nm tomography resolution installed in a Taiwanese synchrotron. The 3-D reconstructions from TXM images show complex aggregation structures in montmorillonite aqueous suspensions after treatment with Na+, Ca2+ and Al13 Keggin macromolecules. Na-montmorillonite displays elongated, parallel, well-orientated and closed-void cellular networks, 0.5–3 µm in diameter. After treatment by covalent cations, the coagulated structure displays much smaller, randomly orientated and openly connected cells, 300–600 nm in diameter. The average distances measured between montmorillonite sheets was around 450 nm, which is less than half of the cell dimension measured in Na-montmorillonite. The most dramatic structural changes were observed after treatment by Al13 Keggin; aggregates then became arranged in compacted domains of a 300 nm average diameter composed of thick face-to-face oriented sheets, which forms porous aggregates with larger intra-aggregate open and connected voids.

  20. Fundamental study on the effect of clay mineral content and compacted direction on the orientation properties of clay particles and nuclide diffusive pathway in compacted bentonite

    International Nuclear Information System (INIS)

    Scanning Electron microscopic (SEM) observations for micropore structure in compacted bentonite and through-diffusion experiments for non-sorptive tritiated water (HTO) were conducted in order to evaluate the effect of clay mineral content and the compacted direction of bentonite on the orientation of clay particles and nuclide diffusive pathway in compacted bentonite used as a buffer material in the geological disposal of high-level radioactive wastes. The SEM observations and through-diffusion experiments were conducted for axial and perpendicular directions to the compacted direction of bentonite as a function of bentonite's dry density. Two type of Na-bentonites, Kunigel-V1 and Kunipia-F with different smectite contents, which are major constituent clay mineral, were used in both experiments. No orientation of clay particles was found for Kunigel-V1 with 50wt% smectite content, while layers of clay particles orientated in the perpendicular direction to compacted direction were observed for Kunipia-F with approximately 100wt% smectite content. This trend is in good agreement with that for the effective diffusivities of HTO obtained from diffusion experiments. This indicates that smectite content in bentonite affects the orientation of clay particles and diffusive pathway. (author)

  1. Mineral Composition of Clay Fraction of the Chernozems Spread out in Ovče Pole in Republic of Macedonia

    OpenAIRE

    Mile Markoski; Tatjana Mitkova; Vedran Rubinić

    2011-01-01

    The results of mineral composition of the clay fraction of the chernozems spread out in Ovče Pole are presented. The mechanical composition of the soil samples show high domination of the physical clay and clay fractions in the soil separates, what is one of the reasons for strong influence on the physical and physical-mechanical properties of the soil. The clay content is dominant in the soil separates fraction and varies from 23.60% to 56.90%, or 36.23% average. The average content of physi...

  2. Bio-Mobilization of Potassium from Clay Minerals: I. By Ectomycorrhizas

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A pot experiment was carried out to investigate effect of ectomycorrhizal fungi on eucalyptus growth and K bio-mobilization from soils and clay minerals. In the experiment, sands mixed with soil, KCl-saturated vermiculate and mica, respectively, were used to nurse eucalyptus seedlings which were nonectomycorrhized or ectomycorrhized by an ectomycorrhizal fungus Pisolithus tinctorius strain XC1 (Pt XC1) isolated from a forest soil from Xichang, Sichuan Province, China, and a worldwide well-known ectomycorrhizal fungus Pisolithus tinctorius strain 2 144 (Pt 2 144) obtained in Australia. More depletion of HCl-soluble K by mycorrhizas from the soil and minerals than nonmycorrhizas suggested that mycorrhizas had a great ability to mobilize K present in the interlayer and feldspar. Mycorrhizal seedlings depressed greatly K digested with HF-HClO4 from substrates after consecutive extractions of soils and minerals by water, ammonium acetate and boiling HCl, while nonmycorrhizal seedlings reduced it little if any, showing that the mycorrhizal seedlings could mobilize and then utilize the structural K in mineral lattice. Ectomycorrhizal fungi played a very important role not only in promoting the growth of eucalyptus seedlings but also in mobilizing K in soils and minerals. The infection of Pt XC1 led to a better growth of eucalyptus seedlings and more K accumulation in the seedlings than that of Pt 2 144. The large differences in K accumulation by the seedlings might be due to different abilities of the two ectomycorrhizal fungi to mobilize K in interlayer and lattice pools in the clay minerals.

  3. Mineral Composition of Clay Fraction of the Chernozems Spread out in Ovče Pole in Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Mile Markoski

    2011-03-01

    Full Text Available The results of mineral composition of the clay fraction of the chernozems spread out in Ovče Pole are presented. The mechanical composition of the soil samples show high domination of the physical clay and clay fractions in the soil separates, what is one of the reasons for strong influence on the physical and physical-mechanical properties of the soil. The clay content is dominant in the soil separates fraction and varies from 23.60% to 56.90%, or 36.23% average. The average content of physical sand and physical clay fractions is 42.20% and 57.80% respectively. Analysis of the mineral composition of clay in its entirety showed that no one of the minerals in the analyzed chernozem samples is not in absolute domination, but there is evident higher presence of clay minerals with 2:1 lattice type (vermiculite, illite and smectites in comparison with 1:1 lattice type (kaolinite. This shows that our variety of vertical chernozems has little deteriorated physical and physical-mechanical properties compared with typical chernozems.

  4. Removal of phosphate ions from aqueous solution using Tunisian clays minerals and synthetic zeolite

    Institute of Scientific and Technical Information of China (English)

    Noureddine Hamdi; Ezzeddine Srasra

    2012-01-01

    Phosphate ions are usually considered to be responsible for the algal bloom in receiving water bodies and aesthetic problems in water.From the environmental point of view,the management of such contaminant and valuable resource is very important.The present work deals with the removal of phosphate ions from aqueous solutions using kaolinitic and smectic clay minerals and synthetic zeolite as adsorbent.The pH effect and adsorption kinetic were studied.It was found that phosphate could be efficiently removed at acidic pH (between 4 and 6) and the second order model of kinetics is more adopted for all samples.The isotherms of adsorption of phosphate ions by the two clays and the zeolite samples show that the zeolite has the highest rate of uptake (52.9 mg P/g).Equilibrium data were well fitted with Langmuir and Freundlich isotherm.

  5. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.

    Science.gov (United States)

    Tenney, Craig M; Cygan, Randall T

    2014-01-01

    Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide. PMID:24410258

  6. Molecular simulation of carbon dioxide, brine, and clay mineral interactions and determination of contact angles.

    Science.gov (United States)

    Tenney, Craig M; Cygan, Randall T

    2014-01-01

    Capture and subsequent geologic storage of CO2 in deep brine reservoirs plays a significant role in plans to reduce atmospheric carbon emission and resulting global climate change. The interaction of CO2 and brine species with mineral surfaces controls the ultimate fate of injected CO2 at the nanoscale via geochemistry, at the pore-scale via capillary trapping, and at the field-scale via relative permeability. We used large-scale molecular dynamics simulations to study the behavior of supercritical CO2 and aqueous fluids on both the hydrophilic and hydrophobic basal surfaces of kaolinite, a common clay mineral. In the presence of a bulk aqueous phase, supercritical CO2 forms a nonwetting droplet above the hydrophilic surface of kaolinite. This CO2 droplet is separated from the mineral surface by distinct layers of water, which prevent the CO2 droplet from interacting directly with the mineral surface. Conversely, both CO2 and H2O molecules interact directly with the hydrophobic surface of kaolinite. In the presence of bulk supercritical CO2, nonwetting aqueous droplets interact with the hydrophobic surface of kaolinite via a mixture of adsorbed CO2 and H2O molecules. Because nucleation and precipitation of minerals should depend strongly on the local distribution of CO2, H2O, and ion species, these nanoscale surface interactions are expected to influence long-term mineralization of injected carbon dioxide.

  7. Adsorption of Pentachlorophenol onto Oxide and Clay Minerals: Surface Reaction Model and Environmental Implications

    Institute of Scientific and Technical Information of China (English)

    WU Daqing; DIAO Guiyi; YUAN Peng; PENG Jinlian

    2006-01-01

    The adsorption of pentachlorophenol (PCP) onto quartz, kaolinite, illite, montmorillonite and iron oxides has been investigated by batch equilibrium techniques. The pH-dependent isotherms are curves with peak values, the position of which is at about pH= 5-6 depending on the mineral species. Based on distribution of both speciation of surface hydroxyls on minerals and PCP in solution a surface reaction model involving surface complexation and surface electrostatic attraction is presented to fit the pH-dependent isotherms, and both reaction constants are calculated. The results show that on quartz and phyllosilicate minerals the predominant adsorption reaction is surface complexation,meanwhile both of surface electrostatic attraction and surface complexation are involved on the iron oxide minerals. The reaction constants of surface electrostatic adsorption are usually one to three orders in magnitude, larger than that of surface complexation. The concentration-dependent isotherms can be well fitted by Langmuir equation with the correlation coefficient R>0.93 for kaolinite and iron oxides. The maximum adsorption is found in the order: hematite > lepidocrocite > goethite > kaolinite >quartz > montmorillonite ≈ illite, which can be interpreted by consideration of both reaction mechanism and surface hydroxyl density. The significant adsorption of PCP onto mineral surfaces suggests that clay and iron oxide minerals will play an important role as HIOCs are adsorbed in laterite or latertoid soil, which is widespread in South China.

  8. Allogenic and authigenic clays of the Lower Palæozoic sandstones of the Naqus Formation at Gebel Gunna, central Sinai, Egypt: their recognition and geological significance

    Science.gov (United States)

    Wanas, H. A.; Soliman, H. E.

    2001-01-01

    The Lower Palæozoic Naqus Formation of Gebel Gunna in the Sinai Peninsula is conformably underlain by the Araba Formation and unconformably overlain by the Cenomanian Malha Formation. It consists mainly of fine- to medium-grained pebbly sandstones with a few siltstone and granulestone interbeds. Petrographical, X-ray diffraction, scanning electron microscope and chemical analyses of the sandstones revealed that they are mainly quartzarenite, containing allogenic and authigenic clays. The allogenic clays were found in small amounts. Such clays exhibit some of the characteristic features of infiltration clay coats. The clays coat a few grain surfaces and form meniscus-shaped pore bridges at points of grain contact. In addition, the clays were observed on the surfaces of crystalline authigenic minerals and in-filled elongated pores of partially dissolved feldspar grains. The recorded authigenic clays are mainly kaolinite with a minor amount of illite. The kaolinite exhibits three morphological habits: vermicular, blocky and fan-shaped. The vermicular kaolinite is dominant and was interpreted to have formed by dissolution of feldspar grains. The blocky kaolinite was observed with a textural relationship, indicating that it was neomorphosed after vermicular kaolinite. The fan-shaped kaolinite was found to be a result of mica alteration. Study of both allogenic and authigenic clays has helped in understanding the sedimentological history of the studied sandstones. The sandstones were deposited in a braided stream, buried at depth of about 1-3 km, and afterwards subjected to surface exposure.

  9. Adsorption ability of rare earth elements on clay minerals and its practical performance

    Institute of Scientific and Technical Information of China (English)

    肖燕飞; 龙志奇; 黄莉; 冯宗玉; 王良士

    2016-01-01

    The adsorption behaviors of rare earth elements on clay minerals would have great influence on the mineralization process and the leaching process of the ion-adsorption type rare earths ore. In this work, the adsorption thermodynamics of REEs on kaolin were investigated thoroughly and systematically. The experimental results showed that the adsorption characteristics of La, Nd, Y on kaolin did fit well with the Langmuir isotherm model and their saturated adsorption capacities were 1.731, 1.587 and 0.971 mg/g, re-spectively. The free energy change (ΔG) values were –16.91 kJ/mol (La), –16.05 kJ/mol (Nd) and –15.58 kJ/mol (Y), respectively. The negative values ofΔG demonstrated that the adsorption of rare earth on kaolin was a spontaneously physisorption process. The deposit characteristic of the volcanic ion-adsorption type rare earths ore and the behavior of the rare earth in the column leaching process were also developed here. With the increase of the ore body depth, the distribution of the LREEs decreased and the HREEs increased. And the slight differences in the adsorption ability of REEs on clay minerals led to the fractionation effect in the column leaching process. These developed more evidences and better understanding of metallogenic regularity, and provided a theoretical ba-sis and scientific approach to separation of the HREEs and LREEs in the leaching process.

  10. Clay minerals on Mars: Riotinto mining district (Huelva, Spain) as Earth analogue for acidic alteration pathways

    Science.gov (United States)

    Mavris, C.; Cuadros, J.; Bishop, J. L.; Nieto, J. M.; Michalski, J. R.

    2015-12-01

    Combined satellite and in-situ measurements of Mars surface have detected mineral assemblages indicating processes for which Earth analogues exist. Among them, aluminous clay-sulfate assemblages have been observed, which suggest alteration by acidic fluids. The Riotinto mining district (SW Spain) provides an Earth analogue site for such Martian processes. The parent rocks belong to an Upper Palaeozoic (Late Famennian-Tournaisian) volcano-sedimentary complex including siliciclastic sediments and mafic and felsic volcanics, all of which underwent hydrothermal alteration. The oxidation of an extensive pyrite-rich orebody provided mild to extreme acidic fluxes that leached the surrounding rocks for over 20 million years. The mineral assemblages are strongly dependent on their acidic alteration intensity. The observed mineralogical parageneses and leaching conditions for our sites at Riotinto are consistent with three alteration sequences: i) Mild: containing a range of clay minerals from vermiculite to kaolinite, with a wide variety of crystal order and mixed-layering; ii) Intermediate: containing smectite to kaolinite with jarosite-group phases; iii) Advanced: containing kaolinite, jarosite-group phases, and iron oxides. Our findings suggest that, even within this general scheme, the specific alteration pathways can be different.

  11. Mechanisms of clay smear formation in 3D - a field study

    Science.gov (United States)

    Kettermann, Michael; Tronberens, Sebastian; Urai, Janos; Asmus, Sven

    2016-04-01

    Clay smears in sedimentary basins are important factors defining the sealing properties of faults. However, as clay smears are highly complex 3D structures, processes involved in the formation and deformation of clay smears are not well identified and understood. To enhance the prediction of sealing properties of clay smears extensive studies of these structures are necessary including the 3D information. We present extraordinary outcrop data from an open cast lignite mine (Hambach) in the Lower Rhine Embayment, Germany. The faults formed at a depth of 150 m, and have Shale Gouge Ratios between 0.1 and 0.3. Material in the fault zones is layered, with sheared sand, sheared clay and tectonically mixed sand-clay gouge. We studied the 3D thickness distribution of clay smear from a series of thin-spaced incremental cross-sections and several cross-sections in larger distances along the fault. Additionally, we excavated two large clay smear surfaces. Our observations show that clay smears are strongly affected by R- and R'-shears, mostly at the footwall side of our outcrops. These shears can locally cross and offset clay smears, forming holes. Thinnest parts of the clay smears are often located close to source layer cutoffs. Investigating the 3D thickness of the clay smears shows a heterogeneous distribution, rather than a continuous thinning of the smear with increasing distance to the source layers. We found two types of layered clay smears: one with continuous sheared sand between two clay smears providing vertical pathways for fluid flow, and one which consists of overlapping clay patches separated by sheared sand that provide a tortuous pathway across the clay smear. On smaller scale we identified grain-scale mixing as an important process for the formation of clay smears. Sand can be entrained into the clay smear by mixing from the surrounding host rock as well as due to intense shearing of sand lenses that were incorporated into the smear. This causes clay smears

  12. Redox properties of structural Fe in clay minerals: 3. Relationships between smectite redox and structural properties.

    Science.gov (United States)

    Gorski, Christopher A; Klüpfel, Laura E; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B

    2013-01-01

    Structural Fe in clay minerals is an important redox-active species in many pristine and contaminated environments as well as in engineered systems. Understanding the extent and kinetics of redox reactions involving Fe-bearing clay minerals has been challenging due to the inability to relate structural Fe(2+)/Fe(total) fractions to fundamental redox properties, such as reduction potentials (EH). Here, we overcame this challenge by using mediated electrochemical reduction (MER) and oxidation (MEO) to characterize the fraction of redox-active structural Fe (Fe(2+)/Fe(total)) in smectites over a wide range of applied EH-values (-0.6 V to +0.6 V). We examined Fe(2+)/Fe(total )- EH relationships of four natural Fe-bearing smectites (SWy-2, SWa-1, NAu-1, NAu-2) in their native, reduced, and reoxidized states and compared our measurements with spectroscopic observations and a suite of mineralogical properties. All smectites exhibited unique Fe(2+)/Fe(total) - EH relationships, were redox active over wide EH ranges, and underwent irreversible electron transfer induced structural changes that were observable with X-ray absorption spectroscopy. Variations among the smectite Fe(2+)/Fe(total) - EH relationships correlated well with both bulk and molecular-scale properties, including Fe(total) content, layer charge, and quadrupole splitting values, suggesting that multiple structural parameters determined the redox properties of smectites. The Fe(2+)/Fe(total) - EH relationships developed for these four commonly studied clay minerals may be applied to future studies interested in relating the extent of structural Fe reduction or oxidation to EH-values.

  13. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  14. Mud peeling and horizontal crack formation in drying clays

    KAUST Repository

    Style, Robert W.

    2011-03-01

    Mud peeling is a common phenomenon whereby horizontal cracks propagate parallel to the surface of a drying clay. Differential stresses then cause the layer of clay above the crack to curl up to form a mud peel. By treating the clay as a poroelastic solid, we analyze the peeling phenomenon and show that it is caused by the gradient in tensile stress at the surface of the clay, analogously to the spalling of thermoelastic materials. For a constant water evaporation rate at the clay surface we derive equations for the depth of peeling and the time of peeling as functions of the evaporation rate. Our model predicts a simple relationship between the radius of curvature of a mud peel and the depth of peeling. The model predictions are in agreement with the available experimental data. Copyright 2011 by the American Geophysical Union.

  15. Clay mineral content of continental shelf and river sediments, southern California

    Science.gov (United States)

    Hein, James R.; Dowling, Jennifer S.

    2001-01-01

    This report contains data on the clay mineral content of 250 shelf surface-sediment samples from the California Continental Borderland (Tables 1, 2; Figures 1-7), 79 samples with depth in cores from Santa Monica Bay (Table 3; see Table 1 for surface sediment data for those same cores and for core locations), 24 suspended and 13 bottom sediment samples from rivers draining Southern California (Table 4), and six rock samples or composite rock samples from the Palos Verdes Headland (Table 4). This report is designed as the data repository and these data are discussed in a paper by Hein et al. (2001).

  16. The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars

    OpenAIRE

    Bristow, Thomas F.; Grotzinger, John P.; Ehlmann, Bethany L.

    2015-01-01

    The Mars Science Laboratory (MSL) rover Curiosity has documented a section of fluvio-lacustrine strata at Yellowknife Bay (YKB), an embayment on the floor of Gale crater, approximately 500 m east of the Bradbury landing site. X-ray diffraction (XRD) data and evolved gas analysis (EGA) data from the CheMin and SAM instruments show that two powdered mudstone samples (named John Klein and Cumberland) drilled from the Sheepbed member of this succession contain up to ~20 wt% clay minerals. A trioc...

  17. Mars atmosphere. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars.

    Science.gov (United States)

    Mahaffy, P R; Webster, C R; Stern, J C; Brunner, A E; Atreya, S K; Conrad, P G; Domagal-Goldman, S; Eigenbrode, J L; Flesch, G J; Christensen, L E; Franz, H B; Freissinet, C; Glavin, D P; Grotzinger, J P; Jones, J H; Leshin, L A; Malespin, C; McAdam, A C; Ming, D W; Navarro-Gonzalez, R; Niles, P B; Owen, T; Pavlov, A A; Steele, A; Trainer, M G; Williford, K H; Wray, J J

    2015-01-23

    The deuterium-to-hydrogen (D/H) ratio in strongly bound water or hydroxyl groups in ancient martian clays retains the imprint of the water of formation of these minerals. Curiosity's Sample Analysis at Mars (SAM) experiment measured thermally evolved water and hydrogen gas released between 550° and 950°C from samples of Hesperian-era Gale crater smectite to determine this isotope ratio. The D/H value is 3.0 (±0.2) times the ratio in standard mean ocean water. The D/H ratio in this ~3-billion-year-old mudstone, which is half that of the present martian atmosphere but substantially higher than that expected in very early Mars, indicates an extended history of hydrogen escape and desiccation of the planet.

  18. Development and evaluation of a new sorption model for organic cations in soil: contributions from organic matter and clay minerals.

    Science.gov (United States)

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    This study evaluates a newly proposed cation-exchange model that defines the sorption of organic cations to soil as a summed contribution of sorption to organic matter (OM) and sorption to phyllosilicate clay minerals. Sorption to OM is normalized to the fraction organic carbon (fOC), and sorption to clay is normalized to the estimated cation-exchange capacity attributed to clay minerals (CECCLAY). Sorption affinity is specified to a fixed medium composition, with correction factors for other electrolyte concentrations. The model applies measured sorption coefficients to one reference OM material and one clay mineral. If measured values are absent, then empirical relationships are available on the basis of molecular volume and amine type in combination with corrective increments for specific polar moieties. The model is tested using new sorption data generated at pH 6 for two Eurosoils, one enriched in clay and the other, OM, using 29 strong bases (pKa > 8). Using experimental data on reference materials for all tested compounds, model predictions for the two soils differed on average by only -0.1 ± 0.4 log units from measured sorption affinities. Within the chemical applicability domain, the model can also be applied successfully to various reported soil sorption data for organic cations. Particularly for clayish soils, the model shows that sorption of organic cations to clay minerals accounts for more than 90% of the overall affinity.

  19. The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite)

    International Nuclear Information System (INIS)

    The suitability of clay minerals - kaolinite, nontronite and sepiolite - is studied for synthesis of nanocomposites based on carbon nanotubes. Particles of iron were used as catalysts. Prior to synthesis, kaolinite and sepiolite were doped by the catalytically active metal, whereas in the case of nontronite the presence was used of this metal in the matrix of this mineral. Synthesis of CNTs was performed by hot filament chemical vapor deposition method. The produced nanocomposites were examined by transmission and scanning electron microscopies and energy dispersive X-ray spectroscopy. The experiment verified the potential of the three microcrystalline phyllosilicates for the growth of carbon nanotubes. Under the same technology conditions, the type of catalyst carrier affects the morphology and structure of the nanotube product markedly.

  20. Clay minerals and geochemistry of the bottom sediments in the northwestern East China Sea

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Clay minerals of 34 sediments collected from the northwestern continental shelf of the East China Sea have been determined by X-ray diffraction analysis. The clay mineral distribution is mainly controlled by the sediment source and the dominant circulation pattern. The predominant clay mineral in our study area is illite comprising more than 67% of the whole clay fraction. The highest concentration of illite (>68%) is found in the southeastern offshore parts beyond the reach of terrigenous input from the Jeju Island. It means that these illites are largely transported by the Kuroshio Current from the South China Sea (SCS). Smectite is highly concentrated in the northwest middle part and in the outer-shelf mud patch. It seems to be due to the high supply of smectite transported from China where fine-grained sediments are discharged from modern and ancient Huanghe (Yellow) River. The relatively high abundant kaolinite is likely derived from the Changjiang (Yangtze) River via the Taiwan Warm Current. In contrast,large amounts of chlorite and high chlorite/kaolinite ratios occur in the northwestern area, reflecting the transportation by the Yellow Sea Coastal Current from the southern Yellow Sea. The discrimination diagrams clearly show that the sediments in the northwestern East China Sea are ultimately sourced from Chinese rivers, especially from the Huanghe River, whereas the sediment in the northeast part might come from the Jeju Island. The muddy sediments of the Changjiang River's submerged delta have much lower 87Sr/86Sr ratios (0.7162-0.7180) than those of the Shandong Peninsular mud wedge (0.7216-0.7249),which are supposed to be originated from the Huanghe River, suggesting the distribution pattern of 87Sr/86Sr ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. The 87Sr/86Sr ratios of the outer-shelf muddy sediments ranged from 0.7169 to 0.7216 in a wide range and was between those of the Huanghe River and Changjiang

  1. Oligomerization of glycine on clay mineral surface and implication to oligin of life under seafloor hydrothermal conditions

    Science.gov (United States)

    Fuchida, S.; Masuda, H.

    2012-12-01

    The sediments at hydrothermal and/or various parts of the crust has been believed to be good environments to proceed the chemical evolution of life precursor, since minerals promoted oligomerization of amino acids, sugars and lipids on the primitive earth. In this study, the thermal behaviors of glycine (Gly), the simplest amino acid, adsorbed on montmorillonite was observed to evaluate the role of clay minerals and water on the oligomerization under thermal condition of sediments. Gly was adsorbed on montmorillonite was heated at 150 degree C for 3-288 hrs under dry and wet condition. In the latter case, 10 - 60% water was added in the system. The amount of Gly monomer remaining in the montmorillonite exponentially decreased with time; 46% Gly remained in the montmorillonite under dry condition and 74% under wet condition after 288 hrs. The Gly monomer was more stable under hydrothermal condition than dry thermal condtion. FT-IR analysis suggested that the Gly was intercalated in the montmorillonite via hydrogen bond, which is likely to promote to stabilize Gly, between amino group of the Gly and silanol group of the montmorillonite. On the contrast, the yields of peptides were low on motmorillonite after heated under the wet condition: the amounts of glycilglycine (Gly-Gly) and diketopiperazine (DKP) are 0.8% and 0.9%, respectively. The amounts of DKP and GlyGly are 12.9% and 4.8% after heated under the dry condtion. Excessive water would promote to hydrolyze synthesized peptides. New band at 1671cm-1 by FT-IR implies that DKP was condensed on the montmorillonite. DKP was not formed without montmorillonite under the dry condition, although peptide formation is theoretically favorable. Water molecules including in the montmorillonite would act as proton transfer to promote the peptide formation. The peptide formation would be more proceeded under a little wet condition than completely dry condition. Results of this study suggested that deep sediments, where

  2. Effect of clay minerals and nanoparticles on chromium fractionation in soil contaminated with leather factory waste.

    Science.gov (United States)

    Taghipour, Marzieh; Jalali, Mohsen

    2015-10-30

    This study was conducted to investigate the effect of time, clay minerals and nanoparticles (NPs) on chromium (Cr) fractionation in a soil contaminated with leather factory waste (LFW). Soil was mixed with LFW, then, the contaminated soils were treated with clay minerals (bentonite and zeolite) and nanoparticles (MgO, TiO2 and ZnO) at 5% and 1%, respectively. The samples were incubated for 15-180 days at 25 °C and constant moisture. After incubation, Cr in control and treated soils was fractionated by the sequential extraction procedure. The distribution of various Cr fractions in control soil indicated that the greatest amounts of Cr were found in the residual fraction (RES) followed by the carbonate (CAR), organic matter (OM) and exchangeable (EXC) fractions. The addition of LFW in soils increased Cr concentration in all fractions. The higher proportion of EXC fraction in the soil treated with LFW indicates its higher potential of leaching and runoff transport. In all treated soils, the RES fraction was increased, while EXC and OM fractions were decreased during incubation. The results indicated that NPs are effective adsorbent for the removal of Cr ions from LFW treated soil, and they could be useful in reducing their environment risk.

  3. Removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay mineral: Bentonite.

    Science.gov (United States)

    Karaca, Gizem; Baskaya, Hüseyin S; Tasdemir, Yücel

    2016-01-01

    There has been limited study of the removal of polycyclic aromatic hydrocarbons (PAHs) from inorganic clay minerals. Determining the amount of PAH removal is important in predicting their environmental fate. This study was carried out to the degradation and evaporation of PAHs from bentonite, which is an inorganic clay mineral. UV apparatus was designed specifically for the experiments. The impacts of temperature, UV, titanium dioxide (TiO2), and diethylamine (DEA) on PAH removal were determined. After 24 h, 75 and 44 % of ∑12 PAH in the bentonite were removed with and without UV rays, respectively. DEA was more effective as a photocatalyst than TiO2 during UV application. The ∑12 PAH removal ratio reached 88 % with the addition of DEA to the bentonite. It was concluded that PAHs were photodegraded at high ratios when the bentonite samples were exposed to UV radiation in the presence of a photocatalyst. At the end of all the PAH removal applications, higher evaporation ratios were obtained for 3-ring compounds than for heavier ones. More than 60 % of the amount of ∑12 PAH evaporated consisted of 3-ring compounds.

  4. Microtomographic quantification of hydraulic clay mineral displacement effects during a CO2 sequestration experiment with saline aquifer sandstone.

    Science.gov (United States)

    Sell, Kathleen; Enzmann, Frieder; Kersten, Michael; Spangenberg, Erik

    2013-01-01

    We combined a noninvasive tomographic imaging technique with an invasive open-system core-flooding experiment and compared the results of the pre- and postflooded states of an experimental sandstone core sample from an ongoing field trial for carbon dioxide geosequestration. For the experiment, a rock core sample of 80 mL volume was taken from the 629 m Stuttgart Formation storage domain of a saline sandstone aquifer at the CCS research pilot plant Ketzin, Germany. Supercritical carbon dioxide and synthetical brine were injected under in situ reservoir p/T-conditions at an average flow rate of 0.1 mL/min for 256 h. X-ray computed microtomographic imaging was carried out before and after the core-flooding experiment at a spatial voxel resolution of 27 μm. No significant changes in microstructure were found at the tomographic imaging resolution including porosity and pore size distribution, except of an increase of depositional heterogeneous distribution of clay minerals in the pores. The digitized rock data were used as direct real microstructure input to the GeoDict software package, to simulate Navier-Stokes flow by a lattice Boltzmann equation solver. This procedure yielded 3D pressure and flow velocity fields, and revealed that the migration of clay particles decreased the permeability tensor probably due to clogging of pore openings.

  5. Assessment of Some Clay Deposits from Fatha Formation (M. Miocene for Brick Manufacturing in Koya Area, NE Iraq

    Directory of Open Access Journals (Sweden)

    Nawzat R. Ismail

    2014-06-01

    Full Text Available This paper deals with the evaluation of physical, chemical and mineralogical properties of claystone sediments of Miocene age (Fatha Formation and their suitability to use them as raw materials in manufacturing of building clay brick in Kurdistan (Koya city. The study based on the field reconnaissance for three sites of claystones which were selected from three different locations within Fatha Formation in Koya city, includes Haibat-Sultan area, Koya-Sulaimania road and central of Koya city. The clay samples were subjected to particle size distribution, chemical composition, mineralogical analysis, plasticity index and XRD tests. Clay tiles were produced by using Semi-dry method under load 78 kN/mm² and fired at 950 C°. The produced clay tiles were subjected to water absorption, efflorescence, shrinkage and compressive strength tests. The research has shown that the plasticity index depends on the mineral composition of the raw materials. The grain size analysis of raw materials, physical properties and mechanical properties of the produced tiles has shown the suitability of the used raw materials in producing class bricks of class A (first class according to the requirements of specification of the Iraqi Standard (1993.

  6. The New Phenomenon of Lithium Electrochemical (De)Intercalation in Mineral Clay Materials and Their Potential Application in Rechargeable Batteries

    OpenAIRE

    Shi-Jie Wen; Xiao-Tian Yin; L. Nazar

    1994-01-01

    A new phenomenon of Li electrochemical (de)intercalation on the pure mineral clay materials has been evidenced for the first time. These tests are initialized by the idea of putting an electronic conducting polymer or a multi-valent metal oxide in the layer of the clay to modify the electronic properties and also to modulate the charge and discharge potential of the clay during the Lithium electrochemical (de)intercalation processing. In this paper, as the beginning of our research, we will f...

  7. Origin of opal-ct in lower eocene tallahatta formation, mississippi, usa and pleistocene barind clay formation in bangladesh: A comparative study

    International Nuclear Information System (INIS)

    Opal-CT mineral in the lower Eocene Tallahatta formation in Mississippi. USA and the Pleistocene Barind clay formation in Bangladesh is of volcanogenic origin. X-ray diffraction patterns of claystones in the former indicated more ordered condition on the older sediments than those of the latter, which may be due to higher burial temperatures and longer time interval for transformation from volcanic ash to opal-CT of the former. Glass shards, present in the latter sediments, were not identified in the former, which may be due to transformation of glass shards of volcanic ash to opal-Cr over the time. (author)

  8. Determination of Tracer Arrival Times and Volumetric Contents of Clay and Mineral Fines Using Visible NearInfrared Spectroscopy

    DEFF Research Database (Denmark)

    Hermansen, Cecilie; Møldrup, Per; Karup, Dan;

    of clay and mineral fines (clay and silt), based on only a single visNIR measurement. The BTC TMATs were obtained using a conservative tracer pulse on 181 intact soil columns collected from six Danish fields, exhibiting wide ranges in texture and organic carbon (clay: 0.033 to 0.41 kg kg1...... and volumetric contents of clay and mineral fines were correlated to spectral data with partial least squares regression on a calibration set (133 samples) and then tested on a validation set (44 samples). We obtained accurate visNIR predictions of the 5% TMAT and volumetric contents of clay and mineral fines......, organic carbon: 0.011 to 0.084 kg kg1). The time required to recover selected 5, 10, 15, 20, 25, 30, 40 and 50% of the applied tracer mass were obtained from BTCs. Recently, 5% TMAT was found to correlate to the volumetric content of mineral fines, and the correlation was stronger compared to using...

  9. Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at clay mineral edge and basal sites.

    Science.gov (United States)

    Neumann, Anke; Olson, Tyler L; Scherer, Michelle M

    2013-07-01

    Despite the importance of Fe redox cycling in clay minerals, the mechanism and location of electron transfer remain unclear. More specifically, there is some controversy whether electron transfer can occur through both basal and edge surfaces. Here we used Mössbauer spectroscopy combined with selective chemical extractions to study electron transfer from Fe(II) sorbed to basal planes and edge OH-groups of clay mineral NAu-1. Fe(II) sorbed predominantly to basal planes at pH values below 6.0 and to edge OH-groups at pH value 7.5. Significant electron transfer occurred from edge OH-group bound Fe(II) at pH 7.5, whereas electron transfer from basal plane-sorbed Fe(II) to structural Fe(III) in clay mineral NAu-1 at pH 4.0 and 6.0 occurred but to a much lower extent than from edge-bound Fe(II). Mössbauer hyperfine parameters for Fe(II)-reacted NAu-1 at pH 7.5 were consistent with structural Fe(II), whereas values found at pH 4.0 and 6.0 were indicative of binding environments similar to basal plane-sorbed Fe(II). Reference experiments with Fe-free synthetic montmorillonite SYn-1 provided supporting evidence for the assignment of the hyperfine parameters to Fe(II) bound to basal planes and edge OH-groups. Our findings demonstrate that electron transfer to structural Fe in clay minerals can occur from Fe(II) sorbed to both basal planes and edge OH-groups. These findings require us to reassess the mechanisms of abiotic and microbial Fe reduction in clay minerals as well as the importance of Fe-bearing clay minerals as a renewable source of redox equivalents in subsurface environments.

  10. Clay mineral distribution in surface sediments of the South China Sea and its significance for in sediment sources and transport

    Institute of Scientific and Technical Information of China (English)

    刘建国; 陈木宏; 陈忠; 颜文

    2010-01-01

    Clay minerals of surface sediments in the South China Sea (SCS) are analyzed with X-ray diffraction, and their transport is explored with a grain size trend analysis (GSTA) model. Results show that clay mineral types in various sedimentary environments have different sediment sources and transport routes. Sediments in the northern SCS (north of 20°N) between the southwest of Taiwan Island and the outer mouth of the Pearl River have high contents of illite and chlorite, which are derived mainly from sediment...

  11. First-principles study of cesium adsorption to weathered micaceous clay minerals

    Science.gov (United States)

    Okumura, Masahiko; Nakamura, Hiroki; Machida, Masahiko

    2014-05-01

    A large amount of radioactive nuclides was produced into environment due to the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident. Residents near FDNPP were suffering from radioactive cesium and then evacuated, because which has long half-life and is retained by surface soil for long time. The Japanese government has been decontaminating the cesium by removing the surface soil in order to return them to their home. This decontamination method is very effective, but which produces huge amount of waste soil. This becomes another big problem in Fukushima, because it is not easy to find large storage sites. Then effective and economical methods to reduce the volume of the waste soil are needed. However, it has not been invented yet. One of the reasons is lack of knowledge about microscopic process of adsorption/desorption of cesium to/from soil. It is known that weathered micaceous clay minerals play crucial role on adsorption and retention of cesium. They are expected to have special sorption sites, called frayed edge sites (FESs), which adsorb cesium selectively and irreversibly. Properties of FES have been intensely investigated by experiments. But microscopic details of the adsorption process on FES are still unclear. Because direct observation of the process with current experimental techniques is quite difficult. We investigated the adsorption of cesium to FES in muscovite, which is a typical micaceous clay mineral, via first-principles calculations (density functional theory). We made a minimal model of FES and evaluate the energy difference before and after cesium adsorption to FES. This is the first numerical modeling of FES. It was shown that FES does adsorb cesium if the weathering of muscovite has been weathered. In addition, we revealed the mechanism of cesium adsorption to FES, which is competition between ion radius of cesium and the degree of weathering. I plan to discuss volume reduction of the waste soil based on our result. Reference M. Okumura

  12. The mineralogy, geochemistry and surface area of mudrocks from the London Clay Formation of southern England

    OpenAIRE

    Kemp, S.J.; Wagner, D.

    2006-01-01

    This report describes the results of mineralogical and geochemical analysis of a suite of mudstones from the London Clay Formation of southern and south-eastern England. The work was carried out as part of the ongoing ‘Ground Movements: Shrink/Swell’ project under the Physical Hazards Programme. The first part of the report gives an introduction to the geology of the London Clay Formation and a summary of previous mineralogical studies of these rocks. A summary of analytical methods employ...

  13. Reaction-path calculations of groundwater chemistry and mineral formation at Rainier Mesa, Nevada

    International Nuclear Information System (INIS)

    Reaction-patch calculations of groundwater chemistry and mineral formation at Rainier Mesa, Nevada, have been done using a model of volcanic-glass dissolution by water that is initially saturated with CO2. In the reaction-path calculation, rate processes control the availability of species through dissolution of volcanic glass, and equilibrium processes distribute the species between the aqueous phase and mineral phases in equilibrium at each step in the reaction path. The EQ3/6 chemical-equilibrium programs were used for the calculation. Formation constants were estimated for three zeolites (clinoptilolite, mordenite, and heulandite), so they could be considered as possible mineral precipitates. The first stage of mineral evolution, from volcanic glass to a cristobalite, smectite clay, and zeolite mixture, was modeled quite well. Predicted aqueous-phase compositions and precipitates agree with observations at Rainier Mesa and other Nevada Test Site areas. Further mineral evolution, to quartz, clay, analcime, and albite mixtures, was also modeled. Decreasing aqueous silica activity from the first stage, where cristobalite precipitates, to later stages, where quartz is present, was the controlling variable in the mineral evolution. 30 references, 20 figures, 4 tables

  14. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis.

    Science.gov (United States)

    Kang, Chunxi; Wu, Pingxiao; Li, Yuewu; Ruan, Bo; Li, Liping; Tran, Lytuong; Zhu, Nengwu; Dang, Zhi

    2015-11-01

    Laboratory batch experiments were conducted to investigate the role of clay minerals, e.g., kaolinite and vermiculite, in microbial Cr(VI) reduction by Pseudomonas aeruginosa under growth condition in glucose-amended mediums as a method for treating Cr(VI)-contaminated subsurface environment such as soil. Our results indicated that glucose could acted as an essential electron donor, and clay minerals significantly enhanced microbial Cr(VI) reduction rates by improving the consumption rate of glucose and stimulating the growth and propagation of P. aeruginosa. Cr(VI) bioreduction by both free cells and clay minerals-amended cells followed the pseudo-first-order kinetic model, with the latter one fitting better. The mass balance analyses and X-ray photoelectron spectroscopy analysis found that Cr(VI) was reduced to Cr(III) and the adsorption of total chromium on clay minerals-bacteria complex was small, implying that Cr(VI) bioremoval was not mainly due to the adsorption of Cr(VI) onto cells or clay minerals or clay minerals-cells complex but mainly due to the Cr(VI) reduction capacity of P. aeruginosa under the experimental conditions studied (e.g., pH 7). Atomic force microscopy revealed that the addition of clay minerals (e.g. vermiculite) decreased the surface roughness of Cr(VI)-laden cells and changed the cell morphology and dimension. Fourier transform infrared spectroscopy revealed that organic matters such as aliphatic species and/or proteins played an important role in the combination of cells and clay minerals. Scanning electron microscopy confirmed the attachment of cells on the surface of clay minerals, indicating that clay minerals could provide a microenvironment to protect cells from Cr(VI) toxicity and serve as growth-supporting materials. These findings manifested the underlying influence of clay minerals on microbial reduction of Cr(VI) and gave an understanding of the interaction between pollutants, the environment and the biota.

  15. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation.

    Science.gov (United States)

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak

    2014-09-25

    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity.

  16. Chemical and physical transformations of aluminosilicate clay minerals due to acid treatment and consequences for heterogeneous ice nucleation.

    Science.gov (United States)

    Sihvonen, Sarah K; Schill, Gregory P; Lyktey, Nicholas A; Veghte, Daniel P; Tolbert, Margaret A; Freedman, Miriam Arak

    2014-09-25

    Mineral dust aerosol is one of the largest contributors to global ice nuclei, but physical and chemical processing of dust during atmospheric transport can alter its ice nucleation activity. In particular, several recent studies have noted that sulfuric and nitric acids inhibit heterogeneous ice nucleation in the regime below liquid water saturation in aluminosilicate clay minerals. We have exposed kaolinite, KGa-1b and KGa-2, and montmorillonite, STx-1b and SWy-2, to aqueous sulfuric and nitric acid to determine the physical and chemical changes that are responsible for the observed deactivation. To characterize the changes to the samples upon acid treatment, we use X-ray diffraction, transmission electron microscopy, and inductively coupled plasma-atomic emission spectroscopy. We find that the reaction of kaolinite and montmorillonite with aqueous sulfuric acid results in the formation of hydrated aluminum sulfate. In addition, sulfuric and nitric acids induce large structural changes in montmorillonite. We additionally report the supersaturation with respect to ice required for the onset of ice nucleation for these acid-treated species. On the basis of lattice spacing arguments, we explain how the chemical and physical changes observed upon acid treatment could lead to the observed reduction in ice nucleation activity. PMID:25211030

  17. Clay minerals in uraniferous deposit of Imouraren (Tim Mersoi basin, Niger): implications on genesis of deposit and on ore treatment process

    International Nuclear Information System (INIS)

    Nigerian uraniferous deposits are located in carboniferous and Jurassic formations of Tim Mersoi basin. AREVA is shareholder of 3 mine sites in this area: SOMAIR and COMINAK, both in exploitation since 1960's and IMOURAREN, 80 km further South, whose exploitation is planned for 2015. Mineralization of Imouraren deposit is included in the fluvial formation of Tchirezrine 2 (Jurassic), composed of channels and flood plains. Facies of channel in-fillings range from coarse sandstones to siltstones, while overflow facies are composed of analcimolites. Secondary mineralogy was acquired during 2 stages: 1- diagenesis, with formation of clay minerals, analcime, secondary quartz and albites, and 2- stage of fluids circulations, which induced alteration of detrital and diagenetic minerals, formation of new phases and uranium deposition. A mineralogical zoning, at the scale of deposit resulted from this alteration. The heterogeneity of Tchirezrine 2, at the level of both facies and mineralogy, is also evidenced during ore treatment, as ore reacts differently depending on its source, with sometimes problems of U recovery. Ore treatment tests showed that analcimes and chlorites were both penalizing minerals, because of 1- the sequestration of U-bearing minerals into analcimes, 2- their dissolution which trends to move away from U solubilization conditions (pH and Eh) and to form numerous sulfates, and 3- problems of percolation. A detection method of analcime-rich ores, based on infrared spectroscopy, was developed in order to optimize ore blending and so to reduce negative effects during ore treatment process. (author)

  18. Effect of clay mineral on utilization of some mineral elements in ruminant feeding

    International Nuclear Information System (INIS)

    This study was carried out to evaluate the effects of tafla and bentofarm addition on feed intake, water intake, digestibility, nutritive values, some rumen parameters, nitrogen retention, some minerals retention and some blood parameters of rams, growth performance and some blood constituents of growing lambs. Twenty seven Rahmani mature rams, averaged 45 kg of live body weight were divided randomly to three main groups each main group subdivided into three treatments (three animals each). Main first group fed 100% bereseam and served as control (T1), the other two subgroups fed the T1diet plus 3% tafla (T2) or 3% bentofarm (T3).The second main group fed 50% bereseam and 50% concentrate feed mixture (T4), the other two subgroups fed the T4 diet plus 3% tafla (T5) or 3% bentofarm (T6).The third main group fed 100% concentrate feed mixture and rice straw (T7), the other subgroups fed (T7)diet plus 3% tafla (T8) or 3% bentofarm (T9).To carry out the growth trial, forty eight growing baladi male lambs about 2 months of age and average live body weight 17 kg were divided into six similar groups (eight lambs for each) according to their body weight. The experimental rations were: T4 -T9 in previous tasted rations. The results of digestibility of DM and CP significantly (P<0.05) decreased as a result of tafla and bentofarm addition than that of the control, while OM, CF, EE and NFE digestibilities were slightly improved with tafla or bentofarm compared with those of control, but the differences were not significant among treatments. However, the results of nutritive values as TDN, SV and DCP showed no significant differences among treatments. The results of ruminal parameters as TVFA's, ph and microbial protein significantly increased as a result of tafla and bentofarm addition than that of the control, but the values of ammonia-N concentrations significantly decreased by addition of tafla and bentofarm compared with the control treatments.

  19. Clay minerals in surface sediments of the Pearl River drainage basin and their contribution to the South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU ZhiFei; Christophe COLIN; HUANG Wei; CHEN Zhong; Alain TRENTESAUX; CHEN JianFang

    2007-01-01

    Clay minerals have played a significant role in the study of the East Asian monsoon evolution in the South China Sea by being able to track oceanic current variations and to reveal contemporaneous paleoclimatic changes prevailing in continental source areas. As one of the most important rivers inputting terrigenous matters to the northern South China Sea, the Pearl River was not previously paid attention to from the viewpoint of clay mineralogy. This paper presents a detailed study on clay minerals in surface sediments collected from the Pearl River drainage basin (including all three main channels,various branches, and the Lingdingyang in the estuary) by using the X-ray diffraction (XRD) method.The results indicate that the clay mineral assemblage consists dominantly of kaolinite (35%-65%),lesser abundance of chlorite (20%-35%) and illite (12%-42%), and very scare smectite occurrences (generally <5%). Their respective distribution does not present any obvious difference throughout the Pearl River drainage basin. However, downstream the Pearl River to the northern South China Sea, the clay mineral assemblage varies significantly: kaolinite decreases gradually, smectite and illite increase gradually. Additionally, illite chemistry index steps down and illite crystallinity steps up. These variations indicate the contribution of major kaolinite, lesser illite and chlorite, and very scarce smectite to the northern South China Sea from the Pearl River drainage basin. The maximum contribution of clay minerals from the Pearl River is 72% to the northern margin and only 15% to the northern slope of the South China Sea. In both glacials and interglacials, kaolinite indicates that the ability of mechanical erosion occurred in the Pearl River drainage basin.

  20. Efficient nonlinear optical properties of dyes confined in interlayer nanospaces of clay minerals.

    Science.gov (United States)

    Suzuki, Yasutaka; Tenma, Yuta; Nishioka, Yukihiro; Kawamata, Jun

    2012-06-01

    Nonlinear optical (NLO) responses from organic dyes can be maximized when the dyes are aligned in appropriate manners in bulk materials. The use of restricted nanospaces provided by interlayer spacing of inorganic layered materials is a promising strategy for imposing suitable molecular alignments for NLO materials on dyes. The hybrid materials thus obtained exhibit salient NLO responses owing to the improved molecular orientation. In some cases, extension of the π-electron system as a consequence of improved molecular planarity, obtained by the intercalation of a dye into the 2-dimensional interlayer space of an inorganic layered material, is also observed as a factor that enhances NLO responses of chromophores at the molecular level. This review focuses on recent progress in the strategies for controlling the molecular orientation of NLO-phores by employing clay minerals, which are one of the typical inorganic layered materials. In addition, development of a means for fabricating composites that satisfy the properties of an optical material, such as a sufficient size and thickness, a flat surface, and low light-scattering characteristics is required to utilize the superior NLO properties observed for clay/dye hybrid materials for practical applications. A novel means for obtaining such a hybrid material is also outlined.

  1. The differences in clay minerals between the northern and southern Chelungpu fault, Taiwan

    Science.gov (United States)

    Hashimoto, Y.

    2004-12-01

    In 1999, we obtained a detailed data about motion of fault from the Taiwan Chi-Chi earthquake. The motion represents the high frequency of acceleration and small slip distance in southern part, and low frequency of acceleration and large slip distance in the northern part. Those differences in the fault motion between the southern and northern parts are coincidence with occurrences of deformation textures of rocks which were sampled by drilling of shallow parts (a few hundreds meter) of the fault in 2000. In the southern core, a relatively strong deformation structure is preserved in total, and gouge containing fragments of pseudotachylytes and ultracataclasites is observed at the Chi-Chi- earthquake fault, which indicates that the main deformation mechanisms for the southern part of the fault was brittle. On the other hands, in the northern part, sand layer with much amount of water is found at the Chi-Chi- earthquake fault zone, and no breakage of sand grain is observed, which suggests that the deformation mechanism for northern part is independent particulate flow. The purpose of this study is to reveal the differences in clay minerals between the southern and northern part of the Chi-Chi earthquake fault. And then, we discuss about rock-fluid interaction and frictional heating characterized in seismogenic fault system. We analyzed clay minerals by X-ray diffract meter (XRD) after classification of rock types such as sandstone, alteration of sandstone and mudstone, breccia, and gouge. 1.33 micron meter of grains are obtained. Oriented sample was made. XRD analysis was conducted under following condition; 35kV, 15mA, 1 degree per minute of scan rate, and 0.02 degree of scan step. Range of 2 theta was from 2 degree to 35 degree. At first, air-dried condition of samples was measured. After that, ethylene glycol solvated samples were measured. The result represents that all samples contain smectite, illite, chlorite. No difference in components of clay mineral is

  2. Changes of Clay Minereal Association After High—Gradient Magenetic Separation

    Institute of Scientific and Technical Information of China (English)

    LIUFAN; A.VIOLANTE; 等

    1998-01-01

    The changes of clay mineral association after high-gradient magnetic separation(HGMS) treatment,and the effects of chemical and physical technologies on concentrating Fe oxides for mian soils in central and southern China were investigated by means of X-ray diffraction (XRD) and chemical analysis methods.Results indicated that the concentrating times of Fe oxides by HGMS treatment were the largest for 0.2-2μm size fraction in the examined soils .For the soils in which 2:1 phyllosilicates were dominant,concentrating times of iron oxides by HGMS treatment were larger than by 5 mol L-1 NaOH treatment .Phyllosili-cates were decreased after HGMS treatment ;however,the decrease was less than that of kaolinite,The goethite/(goethite+hematite) values in Fe oxides of the soils kept virtually constant after HGMS treatment.

  3. A comparison of heavy mineral assemblage between the loess and the Red Clay sequences on the Chinese Loess Plateau

    Science.gov (United States)

    Peng, Wenbin; Wang, Zhao; Song, Yougui; Pfaff, Katharina; Luo, Zeng; Nie, Junsheng; Chen, Wenhan

    2016-06-01

    QEMSCAN-based (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) heavy mineral analysis has recently been demonstrated an efficient way to allow a rapid extraction of provenance information from sediments. However, one key issue to correctly obtain a provenance signal using this technique is to clearly separate effects of diagenetic alteration on heavy minerals in sediments, especially in fine-grained loess. Here we compare heavy mineral assemblages of bottom Quaternary loess (L33) and upper Pliocene Red Clay of three sites on the Chinese Loess Plateau (CLP). Two sites (Chaona and Luochuan) with similar modern climate conditions show similar heavy mineral assemblages but contain much less of the unstable heavy mineral amphibole than the drier Xifeng site. This result provides strong evidence supporting that climate-caused diagenesis is an important factor controlling heavy mineral assemblages of fine-grained loess. However, heavy mineral assemblages are similar for loess and paleosol layers deposited after 0.5 Ma on the Chinese Loess Plateau regardless of climate differences, suggesting that time is also a factor controlling heavy mineral assemblages of loess and Red Clay. Our high resolution sampling of the upper Miocene-Pliocene Chaona Red Clay sequence reveals similar heavy mineral compositions with a minor amphibole content, different from the drier Xifeng site results of the same age. This result indicates that the monsoonal climate pattern might have been maintained since the late Miocene. Furthermore, it indicates that the heavy mineral method is promising in tracing provenance for sites northwest of the Xifeng site on the Loess Plateau.

  4. Stable Isotope Systematics of Abiotic Nitrite Reduction Coupled with Anaerobic Iron Oxidation: The Role of Reduced Clays and Fe-bearing Minerals

    Science.gov (United States)

    Grabb, K. C.; Buchwald, C.; Hansel, C. M.; Wankel, S. D.

    2014-12-01

    Under anaerobic conditions, it is widely assumed that nitrate (NO3-) and nitrite (NO2-) reduction is primarily the result of microbial respiration. However, it has also been shown that abiotic reduction of nitrate and nitrite by reduced iron (Fe(II)), whether mineral-bound or surface-associated, may also occur under certain environmentally relevant conditions. With a range of experimental conditions, we investigated the nitrogen and oxygen stable isotope systematics of abiotic nitrite reduction by Fe(II) in an effort to characterize biotic and abiotic processes in the environment. While homogenous reactions between NO2- and Fe(II) in artificial seawater showed little reduction, heterogeneous reactions involving Fe-containing minerals showed considerable nitrite loss. Specifically, rapid nitrite reduction was observed in experiments that included reduced clays (illite, Na-montmorillonite, and nontronite) and those that exhibited iron oxide formation (ferrihydrite, magnetite and/or green rust). While these iron oxides and clay minerals offer both a source of reduced iron in the mineral matrix as well as a surface for Fe(II) activation, control experiments with corundum as a non-Fe containing mineral surface showed little NO2- loss, implicating a more dominant role of structural Fe in the clays during nitrite reduction. The isotope effects for 15N and 18O (15ɛ and 18ɛ) ranged from 5 to 14‰ for 15ɛ and 5 to 17‰ for 18ɛ and were typically coupled such that 15ɛ ~ 18ɛ. Reactions below pH 7 were slower and the 18ɛ was affected by oxygen atom exchange with water. Although little data exist for comparison with the dual isotopes of microbial NO2- reduction, these data serve as a benchmark for evaluating the role of abiotic processes in N reduction, particularly in sediment systems low in organic carbon and high in iron.

  5. Selenite reduction in boom clay: effect of FeS{sub 2}, clay minerals and dissolved organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, C.; Maes, A.; Vancluysen, J. [Katholieke Universiteit Leuven, Lab. for Colloid Chemistry, Leuven (Belgium)

    2005-07-01

    In Belgium, the Boom clay layer is considered as the candidate host rock for the disposal of high-level radioactive waste (HLRW). For this disposal, Selenium 79 is considered to be a critical radionuclide and responsible for the highest dose to man over a period of tens of thousands of years. The behaviour and reactivity of Se thereby depend on its speciation and on its complex biogeochemical transformations. {sup 79}Se is thought to occur in, and be released from the solid waste matrix in a variety of redox states, including Se oxyanions such as SeO{sub 3}{sup 2-} or SeO{sub 4}{sup 2-}. The composition of the solid and liquid phases of Boom clay was published before. In this paper, the reduction of Se oxyanions was investigated by adding appropriate amounts of SeO{sub 3}{sup 2-} in over-saturation with respect to the proclaimed thermodynamical solubility of reduced Se solid phases (SeO, FeSe, FeSe{sub 2}), to a number of systems which represent Boom clay geochemical conditions. The range of systems is chosen in order to incorporate in an increasing way the different Se competing organic and inorganic phases present in the Boom clay matrix. (authors)

  6. Selenite reduction in boom clay: effect of FeS2, clay minerals and dissolved organic matter

    International Nuclear Information System (INIS)

    In Belgium, the Boom clay layer is considered as the candidate host rock for the disposal of high-level radioactive waste (HLRW). For this disposal, Selenium 79 is considered to be a critical radionuclide and responsible for the highest dose to man over a period of tens of thousands of years. The behaviour and reactivity of Se thereby depend on its speciation and on its complex biogeochemical transformations. 79Se is thought to occur in, and be released from the solid waste matrix in a variety of redox states, including Se oxyanions such as SeO32- or SeO42-. The composition of the solid and liquid phases of Boom clay was published before. In this paper, the reduction of Se oxyanions was investigated by adding appropriate amounts of SeO32- in over-saturation with respect to the proclaimed thermodynamical solubility of reduced Se solid phases (SeO, FeSe, FeSe2), to a number of systems which represent Boom clay geochemical conditions. The range of systems is chosen in order to incorporate in an increasing way the different Se competing organic and inorganic phases present in the Boom clay matrix. (authors)

  7. Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals.

    Science.gov (United States)

    Lin, Y; Munroe, P; Joseph, S; Ziolkowski, A; van Zwieten, L; Kimber, S; Rust, J

    2013-03-01

    In this study biochar mixtures comprising a Jarrah-based biochar, chicken litter (CL), clay and other minerals were thermally treated, via torrefaction, at moderate temperatures (180 and 220 °C). The objectives of this treatment were to reduce N losses from CL during processing and to determine the effect of both the type of added clay and the torrefaction temperature on the structural and chemical properties of the final product, termed as an enhanced biochar (EB). Detailed characterisation indicated that the EBs contained high concentrations of plant available nutrients. Both the nutrient content and plant availability were affected by torrefaction temperature. The higher temperature (220 °C) promoted the greater decomposition of organic matter in the CL and dissociated labile carbon from the Jarrah-based biochar, which produced a higher concentration of dissolved organic carbon (DOC). This DOC may assist to solubilise mineral P, and may also react with both clay and minerals to block active sites for P adsorption. This subsequently resulted in higher concentrations of plant available P. Nitrogen loss was minimised, with up to 73% of the initial total N contained in the feedstock remaining in the final EB. However, N availability was affected by both torrefaction temperature and the nature of the clay minerals added.

  8. First-Principles Molecular Dynamics Insight Into Fe2+ Complexes Adsorbed On Edge Surfaces Of Clay Minerals

    NARCIS (Netherlands)

    X. Liu; E.J. Meijer; X. Lu; R. Wang

    2012-01-01

    Using first-principles molecular-dynamics simulations, probable inner-sphere complexes of Fe2+ adsorbed on the edge surfaces of clay minerals were investigated. Ferrous ions are important reductants in natural processes and their properties can be altered significantly by complexation on edge surfac

  9. Synthesis and characterization of carbon nanotubes on clay minerals and its application to a hydrogen peroxide biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, H.-L. [Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China); Jehng, J.-M. [Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan (China)], E-mail: jmjehng@dragon.nchu.edu.tw

    2009-01-01

    In this study, we demonstrate the synthesis of carbon nanotubes (CNTs) on clay minerals, and the development of biosensors based on Nafion-CNT/Clay-Au and Nafion-CNT/Clay-Au-Glucose oxidase (GOD) composite films for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) and glucose, respectively. The CNTs are synthesized on nickel cation exchanged clay mineral platelets. From field-emission scanning electron microscope images, X-ray diffraction, Fourier transfer infrared and thermogravimetric analysis results, the clay layers are exfoliated and delaminated after the growth of CNTs on them. The mixed hybrid film of Nafion, CNT/Clay, Au particles and GOD is coated on the glassy carbon (GC) electrode to detect H{sub 2}O{sub 2} or glucose. This film exhibits a detection limit of 5.0 x 10{sup -5} M for H{sub 2}O{sub 2} with a sensitivity of 280 nA mM{sup -1}. In addition, the amperometric response for glucose containing 2.0 mg mL{sup -1} GOD in the Nafion-CNT/Clay-Au-GOD modified GC electrode exhibits a sensitivity of 620 nA mM{sup -1} with a linear range up to 1850 {mu}M. A higher sensitivity and shorter response time are observed with increasing GOD content in the composite matrix film. Besides, the highest sensitivity of 2032 nA mM{sup -1} is obtained with the addition of the 10.0 mg mL{sup -1} GOD in the composite film. Consequently, the CNT/Clay/Nafion medium can probably be a useful electrode for the development of sensors due to its high sensitivity and applicability.

  10. Determination of the composition of the organic matter chemically stabilized by agricultural soil clay minerals: Spectroscopy and Density Fractionation

    Science.gov (United States)

    Oufqir, Sofia; Bloom, Paul; Toner, Brandy; Hatcher, Patrick

    2014-05-01

    The interactions between soil organic matter and clay minerals are considered important processes because of their ability to sequester C in soil for long periods of time, and hence control C in the global C cycle when present. However, differing results have been reported regarding the composition of the soil organic matter - aromatic fractions versus aliphatic fractions - associated with clay minerals. To clarify this critical issue and better understand the C sequestration process in soils, we aimed to determine the nature of the chemically bound natural organic matter on clay surfaces, and to probe the speciation and spatial distribution of C in the soil clay nanoparticles using direct spectroscopic measurements namely solid-state CP-MAS and DP-MAS 13C NMR spectroscopy, x-ray diffraction spectroscopy (XRD), and scanning transmission x-ray microscopy (STXM). We tested the hypotheses that peptides and polysaccharides are stabilized by the smectite-illite clay while the lipids and black carbon are a separate phase; and that they are evenly distributed on clay surfaces. A soil clay fraction (5.5% organic C) was isolated from the surface of a prairie soil (Mollisol) in southwestern Minnesota, characterized by a pH 6.0, 32.5% clay content, and 3.7% organic carbon, using a sonication-sedimentation-siphoning process in distilled water. Then was subjected to density separation combined with low energy ultrasonic dispersion to separate the free organic and black C (light fraction) from the chemically bound C (heavy fraction). The XRD results indicated a dominance of interstratified smectite-illite clays in soil. The 13C-NMR spectra of the soil clay fraction suggested that polysaccharides and polypeptides are the prevailing components of the organic matter associated with the mineral clay, with only a minor component of aromatic C. The light fraction has strong alkyl C-H bands characteristic of fatty acids plus strong C-O bands characteristic of polysaccharides, including

  11. The nature and formation of aeolian mineral dust material

    Science.gov (United States)

    Smalley, Ian; O'hara-Dhand, Ken; McLaren, Sue

    2013-04-01

    Aeolian dust affects climate and records past climates. It has become a much studied material but there has been a certain lack of emphasis on the actual nature of the dust, and an even greater neglect of actual production mechanisms for dust particles. Huge amounts of dust may be raised from the Bodele depression and other parts of North Africa, and much of it may be carried across the North Atlantic to aid in soil formation in Brazil. But what does it consist of? We know that much of the Bodele dust is diatoms from old Lake Chad, but what of the lithological inorganic mineral content? A very crude division of aeolian dust into large dust(say around 20-50um) and small dust (2-5um)has been proposed. Much of the study of loess has been confused by the failure to make this distinction, and similar problems may arise in the study of the finer fractions of aeolian dust. Much aeolian material is clay-mineral based- formed from clay mineral aggregates(CMA), from lake bottom sediments. This can form large dust particles, as in parna in Australia, but also contributes largely to small long travel aerosolic dust. Another major contributor is the quartz fragment. The large dust for classic loess deposits is mostly quartz silt- and there is considerable discussion about the controls that affect quartz silt. There are some interesting modalities in the world of quartz particle sedimentology which need to be examined. Quartz sand (say 200-500um) is the key initiating material and the formation processes for quartz sand have a down-the-line effect on the formation of smaller particles. The central observation is the action of two processes- a eutectic-like reaction in the proto-rock granite which defines the essential nature of sand particles, and the high-low displacive crystallographic transformation which introduces tensile stresses into the quartz particle systems. The limited range of eutectic particle size means a limited range of tensile stresses. A neat combination of

  12. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    A series of CH4 adsorption experiments on natural organic-rich shales, isolated kerogen, clay-rich rocks, and artificially matured Woodford Shale samples were conducted under dry conditions. Our results indicate that physisorption is a dominant process for CH4 sorption, both on organic-rich shales and clay minerals. The Brunauer–Emmett–Teller (BET) surface area of the investigated samples is linearly correlated with the CH4 sorption capacity in both organic-rich shales and clay-rich rocks. The presence of organic matter is a primary control on gas adsorption in shale-gas systems, and the gas-sorption capacity is determined by total organic carbon (TOC) content, organic-matter type, and thermal maturity. A large number of nanopores, in the 2–50 nm size range, were created during organic-matter thermal decomposition, and they significantly contributed to the surface area. Consequently, methane-sorption capacity increases with increasing thermal maturity due to the presence of nanopores produced during organic-matter decomposition. Furthermore, CH4 sorption on clay minerals is mainly controlled by the type of clay mineral present. In terms of relative CH4 sorption capacity: montmorillonite ≫ illite – smectite mixed layer > kaolinite > chlorite > illite. The effect of rock properties (organic matter content, type, maturity, and clay minerals) on CH4 adsorption can be quantified with the heat of adsorption and the standard entropy, which are determined from adsorption isotherms at different temperatures. For clay-mineral rich rocks, the heat of adsorption (q) ranges from 9.4 to 16.6 kJ/mol. These values are considerably smaller than those for CH4 adsorption on kerogen (21.9–28 kJ/mol) and organic-rich shales (15.1–18.4 kJ/mol). The standard entropy (Δs°) ranges from -64.8 to -79.5 J/mol/K for clay minerals, -68.1 to -111.3 J/mol/K for kerogen, and -76.0 to -84.6 J/mol/K for organic-rich shales. The affinity of CH4 molecules for sorption on organic matter

  13. The role of clay minerals on the hardsetting properties of soils in the Carnarvon horticultural district of Western Australia

    International Nuclear Information System (INIS)

    Full text: We investigated the role of clay minerals on the hardsetting properties of soils used for intensive irrigated horticulture in the Carnarvon horticultural district of Western Australia. Hardsetting soils break down when wetted due to a combination of slaking and dispersion processes, resulting in a structureless mass of soil when dry. Soil samples were studied from several horizons from six profiles with hardsetting problems. On bulk samples, we measured the cation exchange capacity (CEC) and following treatment with sodium (Na), measured the tensile strength of (Na saturated) remoulded cores. On clay separates we measured the clay mineralogy using X-ray . diffraction (XRD) analysis and CEC by X-ray fluorescence (XRF) analysis after barium (Ba) saturation. Samples were also investigated using transmission electron microscopy (TEM). The tensile strength of the Na saturated remoulded cores was highly correlated (p ≤ 0.001) to both clay % and CEC of the soil. Lugo (1975) working with dried briquettes of soil materials produced similar results, and demonstrated that the increase in tensile strength adversely affected the stand of plants. When the tensile strength of the remoulded cores was compared to the CEC of the clay fractions, the soil clays with higher CEC had greater tensile strength than soils lower in CEC (p=0.09). Initial qualitative XRD results using the SIROQUANT method indicated that the soil clays mainly consisted of kaolinite with some illite, but very little smectite content. However the measured CEC's (by Ba saturation) were higher than expected and could not be explained on the basis of the illite and kaolinite contents. It was therefore inferred that interstratified smectite was also present. Using the proprietary software 'Traces', and a Pseudo-Voigt peak-shape algorithm, each XRD pattern was fitted with calculated peaks for the clay minerals present. Comparison with calculated patterns for interstratified illite/smectite (I/S) using

  14. Study of adsorption of Phenanthrene on Different Types of Clay Minerals; Estudio de Adsorcion de Fenentreno en Diferentes Tipos de Arcillas

    Energy Technology Data Exchange (ETDEWEB)

    Contreras, M. L.; Escolano, O.; Rodriguez, V.; Diaz, F. J.; Perez, R.; Garcia, S.; Garcia Frutos, F. J.

    2003-07-01

    The fate and behaviour of non-ionic hydrophobic organic compounds in deep soil is mainly controlled by the mineral fraction present in the soil due to the very low organic carbon content of the deep soil. The mineral fraction that may greatly influence the fate and transport of these compounds due to its presence and properties are the clay minerals. Clay mineral also become increasingly important in low organic matter content soils. There tree, studies of non-ionic hydrophobic organic compounds adsorption on clay minerals without organic matter are necessary lo better understand the fate and transport of these compounds. In this work we used phenanthrene as model compound of non-ionic hydrophobic organic compound and four pure clay minerals: kaolinite, illite, montmorillonite, and vermiculite including muscovite mica. These clays minerals are selected due to its abundance in represent ve Spanish soils and different properties as its structural layers and expanding capacity. Batch experiments were performed using phenanthrene aqueous solutions and the clays selected. Phenanthrene sorption isotherms for all clays, except muscovite mica, were best described by the Freundlich model. Physical sorption on the external surfaces is the most probable adsorption mechanisms. In this sense, the presence of non-polar nano-sites on clay surfaces could determine the adsorption of phenanthrene by hydrophobic interaction on these sites. (Author) 22 refs.

  15. Bio-Mobilization of Potassium from Clay Minerals: II. By Ectomycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ectomycorrhizal fungi, including Cenococcum geophilurn SIV (Cg SIV), and Pisolithus tinctorius 2144(Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4, KClsaturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2 144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCl-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and A1 in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.

  16. Calcium-ammonium exchange experiments on clay minerals using a (45)Ca tracer technique in marine pore water.

    Science.gov (United States)

    Ockert, Charlotte; Wehrmann, Laura M; Kaufhold, Stephan; Ferdelman, Tim G; Teichert, Barbara M A; Gussone, Nikolaus

    2014-01-01

    Understanding cation exchange processes is important for evaluating early diagenetic and synsedimentary processes taking place in marine sediments. To quantify calcium (Ca) exchange and Ca-ammonium exchange in a seawater environment, we performed experiments with a radioactive (45)Ca tracer on clay mineral standards (Fithian illite, montmorillonite and kaolinite) and marine sediments from the North Atlantic Integrated Ocean Drilling Program Site U1306A in artificial seawater (ASW). The results show that equilibrium during the initial attachment of Ca as well as the exchange of Ca by [Formula: see text] is attained in less than 2 min. On average 8-20% of the exchangeable sites of the clay minerals were occupied by Ca in a seawater medium. The conditional selectivity coefficient, describing the [Formula: see text] exchange in ASW is mineral specific and it was determined to be 0.07 for montmorillonite, 0.05 for a natural marine sediment and 0.013 for Fithian illite.

  17. Experiments on the reduction of radiocesium in pigs by adding clay minerals to the contaminated feed

    International Nuclear Information System (INIS)

    For some time now clay minerals are used as feed additives in animal production but are even discussed lately as a possibility of decontamination of radiocesium in the living animal because of their ion exchange property. The nuclear accident of Chernobyl in April 1986 induced the Austrian government to set radioactivity limits for contamination with Cs-137 and 134. For pork the total of 5nCi Cs-137 and 134/kg was set which proved to be a problem for pig fattening when fed on whey and concentrate. The aim of this study was to see if the addition of clays to the animal feed can reduce the cesium content in the meat. After 3 short-term-trials with the total amount of 21 animals one long-term pig-fattening experiment with 40 animals was conducted. For 70 days their feed contained fallout Cs in form of dried whey. The control group was fed the normal ration, for test group 1 bentonite and for test group 2 bolus alba were mixed into the concentrate in amounts corresponding to 5%. After administering fallout-Cs for 70 days 5 animals of each group were slaughtered and the Cs-activity specified in leg, butt, neck, liver, kidney and blood. With exception of the liver the mean values of the control group reached higher levels than 5nCi Cs-137 and 134, test group 2 showed the same tendency in the leg. Test group 1 proved satisfactorily with all mean values well beyond the limit with highly significant response. Feeding the remaining animals with uncontaminated rations of feed it could be demonstrated that bentonite decreases the biological half-life of cesium. 52 refs., 10 figs., 26 tabs

  18. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea

    Institute of Scientific and Technical Information of China (English)

    LIU Zhifei; C. Colin; A. Trentesaux; D. Blamart

    2005-01-01

    High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 190 ka during late Quaternary from core MD01-2393 off the Mekong River in the southern South China Sea are reported to reconstruct a history of East Asian monsoon evolution.The dominating clay mineral components indicate a strong glacial-interglacial cyclicity, with high glacial illite, chlorite, and kaolinite contents and high interglacial smectites content. The provenance analysis indicates the direct input of clay minerals via the Mekong River drainage basin.Illite and chlorite derived mainly from the upper reach of the Mekong River, where physical erosion of meta-sedimentary rocks is dominant. Kaolinite derived mainly from active erosion of inhered clays from reworked sediments in the middle reaches. Smectites originated mainly through bisiallitic soils in the middle to lower reaches of the Mekong River. The smectites/(illite+chlorite)and smectites/kaolinite ratios are determined as mineralogical indicators of East Asian monsoon variations. Relatively high ratios occur during interglacials and indicate strengthened summer-monsoon rainfall and weakened winter-monsoon winds; relatively lower ratios happened in glacials, indicating intensified winter monsoon and weakened summer monsoon. The evolution of the summer and winter monsoons provides an almost linear response to the summer insolation of the Northern Hemisphere, implying an astronomical forcing of the East Asian monsoon evolution.

  19. The Kimmeridge Clay Formation (Upper Jurassic-Lower Cretaceous) of the Norwegian continental shelf and Dorset, UK: a chemostratigraphical correlation

    Science.gov (United States)

    Turner, Holly; Gale, Andy; Gradstein, Felix

    2016-04-01

    The type section of the Kimmeridge Clay Formation (KCF) at Dorset, (UK) stands at the forefront in multidisciplinary research on climatic cyclicity, orbital forcing, sea level change and the productivity vs. preservation controversy. In economic terms, it is a prime source rock of the North Sea hydrocarbon province containing up to 35% total organic carbon. Lateral equivalents of the KCF occur widely in the North, Norwegian and Barents Sea regions of north-western Europe under other names: the Draupne, Mandal, Spekk, Hekkingen and Agardhfjellet (Svalbard) formations. Carbon isotopes and clay mineralogy have been extensively studied from the KCF type section at Dorset. However, between the North Sea and Western Barents Sea, little is known of these records. Correlation using both clay mineral and δ13Corg profiles across these areas would provide insights for our understanding of Late Jurassic climatic developments in north-western Europe. New chemostratigraphical records through the KCF of five Norwegian exploration wells of Lundin Petroleum and one of Statoil, are compared with the Kimmeridgian of Sub-Boreal Dorset, along with a correlation between Svalbard records with the Tithonian cores sampled in this project. Dinoflagellate biostratigraphy accompanies isotope stratigraphy in the placement of each core in time. Initial results show a strong overall correlation. On a smaller timescale, several events are described from Dorset, including a distinct mid-Eudoxus positive isotope peak reflecting a sea level rise, and the Hudlestoni aridity peak as recorded by low kaolinite/illite ratios. Off the Norwegian Continental Shelf, how are these events recorded, if recorded at all, in a δ13Corg and clay mineralogical profile? Such events are useful tools in correlation, and their identification regionally reduces the likelihood of local influence on oceanographical conditions, such as palaeoproductivity response to nutrient influxes, and instead reflects changes in the

  20. Preparation and characterization of bentonite clay for formation of nanocomposites

    International Nuclear Information System (INIS)

    This study we used the linear medium density polyethylene (PELMD) as polymer matrix and introduced, as reinforcement to increase the mechanical and thermal properties, the green bentonite deposit of Boa Vista/PB, rich montmorillonite (MMT), previously characterized by XRD, that passed by three stages of purification. The first stage was to clean by washing and filtering for removal of coarse material (sand and organic matter), followed by an acid attack. In the second, we used the quaternary ammonium surfactant, in order to increase the distance between the layers of MMT, and the third was removed from the wastewater, using absolute ethanol, finishing the purification of process. Then, the clay was introduced into the polymer matrix by polymerization in solution by intercalation and characterized by XRD. The results showed a partial exfoliation, satisfying the increasing properties. (author)

  1. Vanadium recovery from clay vanadium mineral using an acid leaching method

    Institute of Scientific and Technical Information of China (English)

    LI Haoran; FENG Yali; LIANG Jianglong; LUO Xiaobing; DU Zhuwei

    2008-01-01

    A technique including direct acid leaching,vanadium precipitation with alkaline,sodium hydroxide releaching,impurity removing by adjusting pH value,precipitation vanadium with ammonium chloride,and vanadium pentoxide by roasting steps was proposed according to the characteristic of Xichuan clay vanadium mineral.The factors influencing leaching vanadium such as temperature and the concentration of sulfuric acid were investigated and optimized.The experimental results indicate that the extract ratios of V2O5 can reach 94% and 92% at a sodium chlorate ratio of 3% and a manganese dioxide ratio of 3%,respectively.A completely chemical precipitation method was adopted to decontaminate and enrich the vanadium in the acid leaching solution.The X-ray diffraction (XRD) pattern and the purity analysis of vanadium pentoxide indicate that the purity of final vanadium pentoxide can reach 99% and meet the standard specifications.The total recovery can reach about 75%.The technique has the characteristics of simplicity,less investlnent,and more environment safety as compared with the traditional salt roasting method.

  2. Characteristics of Lead Sorption on Clay Minerals in Relation to Metal Oxides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Difference of montmorillonite (Mt), illite (It) and kaolinite (Kt) in lead sorption characteristics and the effects of amorphous Fe and Al oxide coatings on the haracteristics were experimentally studied with logistic model. The sorption curves had sigmoid feature due to use of acetate-type buffer solution. With the modelthe sorption process could be divided into four stages and the sorption characteristics at the stages were discussed. The results showed that, after Mt, It and Kt were coated by amorphous Fe oxide, their maximum sorption capacity (MSC) and percentage of high-SSC concentration scope (HCS) of Pb2+ increased markedly but the specific sorption capacity (SSC) decreased. With regard to effects of amorphous Al oxide coating,except for It+Al, the SSC of other samples showed a downtrend, despite that their MSC remained unchanged.Eventually, the gray correlation degrees to Pb2+ sorption for different physicochemical characteristics of the clay minerals were indicated to be higher for hydronium, zero point of surface charge and hydroxy, but lower for specific surface area, density of surface charge and amount of surface charges.

  3. Refinements of water parameters for molecular dynamics: Simulations of adsorption at the clay mineral/aqueous solution interface

    DEFF Research Database (Denmark)

    Schäfer, L.; Yu, C.; Teppen, B.J.;

    1999-01-01

    In the context of a long-term program involving molecular dynamics simulations of adsorption phenomena at the clay mineral/aqueous solution interface, we are testing the viability of combining a force field that we developed specificially for clays with other, independently derived potential...... parameters for molecular species which are important in clay adsorption. For the current study the importance of variations in the potential parameters of water were investigated and polarization effects on oxygen studied as a function of intermolecular interactions. For this purpose ab initio MP2/6-311GG...... atomic charges were determined for several oligomers of water and for the water dimer at different intermolecular separations. Charge variations of up to ~0.1 electron charge unit on oxygen are found and, together with changes in van der Waals constants, their significance for dynamics simulations...

  4. Tectonic?palaeoenvironmental forcing of clay-mineral assemblages in nonmarine settings: the Oligocene?Miocene As Pontes Basin (Spain)

    Science.gov (United States)

    Sáez, A.; Inglès, M.; Cabrera, L.; de las Heras, A.

    2003-07-01

    Two small, alluvial-lacustrine subbasins developed during the early restraining overstep stages of the Oligocene-Miocene As Pontes strike-slip Basin (NW Spain). Later, the basin evolved into a restraining bend stage and an alluvial-swamp-dominated depositional framework developed. The palaeobiological record demonstrates that the Oligocene-Miocene palaeoclimate in NW Spain was subtropical, warm and humid to subhumid. The metamorphic and igneous basin catchment yielded clay assemblages made up by kaolinite, illite and Al-smectite. Illite occurred as an original mineral in the source rock area, whereas kaolinite and Al-smectite resulted mainly from weathering of feldspar and clinochlore, respectively. This detrital primary clay assemblage remained preserved in the colluvial, alluvial fan and shallow lacustrine facies, whose early diagenesis was influenced by diluted, poorly evolved pore waters with neutral to slightly alkaline pH. The original clay assemblage was mildly to strongly transformed under early diagenetic conditions in the lacustrine and swampy environments where significant hydrochemical and Eh-pH changes took place. A fibrous magnesium-rich clay mineral-dominated assemblage (palygorskite and sepiolite) formed in shallow, saline lakes and palustrine zones under the influence of magnesium-rich, alkaline waters. Moreover, kaolinite-enriched assemblages formed in deep lacustrine, swamp and swamp-related alluvial zones under the influence of slightly to highly acidic pore waters. Pore water acidic conditions, characterising environments with organic matter accumulation, led to early diagenetic transformation of Al-smectite into kaolinite. This process was relatively limited in some environments such as organic matter-rich bottoms in meromictic lacustrine zones, whereas it was pervasive in peat-forming swamp zones. The stratigraphic relationships between the diverse clay mineral assemblages in the As Pontes Basin fill demonstrate the coeval development of

  5. Formation of hydrocarbons from acid-Clay suspensions by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Castaneda, J.; Negron-Mendoza, A.; Ramos-Bernal, S. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, UNAM. Cd. Universitaria, A. P. 70-543, 04510 Mexico (Mexico)

    2013-07-03

    The adsorption of certain organic compounds by clays gives rise to the transformation of the adsorbate through the action of the clays. This phenomenon can be enhanced using ionizing radiation. In this context, these kinds of reactions play an important role in many natural and industrial processes. For example, in oil and gas exploration, the source and trap of petroleum hydrocarbons is frequently clay-rich rocks. Clay-water-based muds are also seen as environmentally friendly alternatives to toxic oil-based fluids. The principal processes that occur in sediments are usually held to be of bacterial action and thermal transformation, which may include thermally induced catalytic alteration of the organic debris. On the other hand, radioactive materials are widely distributed throughout Earth. They were more abundant in the past, but are present in petroleum reservoirs. Their presence induced radioactive bombardment, which may have altered these sediments. This important subject has not been extensively studied. The aim of this work is to study the behavior of fatty acids-like behenic acid-and dicarboxylic acids-like fumaric acid-as model compounds, which are adsorbed in a clay mineral (Na-montmorillonite) and exposed to gamma radiation. The results show that the radiation-induced decomposition of the clay-acid system goes along a definitive path (oxidation), rather than following several modes of simultaneous decomposition, as happens in radiolysis without clay or by heating the system. The main radiolytic products for fatty acids are their corresponding hydrocarbons, with one C-atom less than the original acid.

  6. Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays.

    Science.gov (United States)

    Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Zhu, Yunqing; Wang, Chuanyi

    2016-06-21

    Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health. PMID:27224055

  7. Characterization of Adsorbed Alkali Metal Ions in 2:1 Type Clay Minerals from First-Principles Metadynamics.

    Science.gov (United States)

    Ikeda, Takashi; Suzuki, Shinichi; Yaita, Tsuyoshi

    2015-07-30

    Adsorption states of alkali metal ions in three kinds of 2:1 type clay minerals are systematically investigated via first-principles-based metadynamics. Our reconstructed free energy surfaces in a two-dimensional space of coordination numbers specifically employed as collective variables for describing the interlayer cations show that an inner-sphere (IS) complex is preferentially formed for Cs(+) in the 2:1 type trioctahedral clay minerals with saponite-like compositions, where lighter alkali metal ions show a tendency to form an outer-sphere one instead. The strong preference for an IS complex observed for Cs(+) is found to result partially from the capability of recognizing selectively Cs(+) ions at the basal O atoms with the Lewis basicity significantly enhanced by the isomorphic substitution in tetrahedral sheets.

  8. Geochemical studies of clay minerals III. The determination of free silica and free alumina in montmorillonites

    Science.gov (United States)

    Foster, M.D.

    1953-01-01

    Determination of free silica by the method proposed made possible the derivation of logical formulas for several specimens of montmorillonites for which the formulas could not be derived from the analyses alone. Other montmorillonites, for which logical formulas could be derived from their analyses, were found to contain small amounts of free silica or free alumina. Others were found to contain neither free silica nor free alumina. The method consists of the following steps: (1) digestion of 1 g of the specimen with 0.5 N NaOH solution in a covered platinum crucible or dish on a steam bath for 4 hrs, stirring the mixture at 30-min intervals, (2) filtration of the undissolved material, followed by washing several times with 1% NaOH solution, (3) neutralization of the filtrate with HCl, addition of 5 ml HCl in excess and determination of SiO and Al2O3 in the usual way and (4) calculation of the amount of free SiO2 or free Al2O3 if any and the amount of attack of the clay structure by the treatment from the ratio of SiO2 to Al2O3 dissolved and the ratio of SiO2 to Al2O3 obtained on analysis. Tests with 5% Na2CO3 solution, the reagent formerly used for the solution of free SiO2 in rocks and minerals, showed that solution of opal by this reagent is always fractional, never complete, no matter how small the amount present or how long the period of treatment. Re-treatment of the sample results in 90-95% solution if 10 mg or less of opal is present, but for larger amounts of opal the percentage dissolved decreases as the amount present increases. On the other hand, 75 ml of 0.5 N NaOH completely dissolves as much as 400 mg of opal in 4 hrs digestion in a covered platinum crucible or dish, on a steam bath. However, a weaker solution or a shorter period of digestion does not effect complete solution. The same amount (75 ml) of 0.5 N NaOH also dissolves 90 mg of cristobalite and 57 mg of quartz having a grain size of less than 2 microns. Use of NaOH also permits determination

  9. Role of Clay Minerals in Long-Distance Transport of Landslides in Valles Marineris, Mars

    Science.gov (United States)

    Watkins, J.; Ehlmann, B. L.; Yin, A.

    2014-12-01

    Long-runout (> 50 km) subaerial landslides are rare on Earth, but are common features episodically shaping Mars' Valles Marineris (VM) trough system over the past 3.5 billion years. They display two end-member morphologies: a thick-skinned inner zone, characterized by fault-bounded, rotated blocks near their source region, and a thin-skinned, exceptionally long-runout outer zone, characterized by thin sheets spreading over 10s of km across the trough floor. Four decades of studies on the latter have resulted in two main competing hypotheses to explain their long-distance transport: (1) movement of landslides over layers of trapped air or soft materials containing ice or snow, enabling basal lubrication, and (2) fluidization of landslide materials with or without the presence of water and volatiles. To address this issue, we examine the mineralogic composition of landslides across VM using Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) near-infrared spectral data analysis coupled with detailed geologic mapping and morphometric analysis of satellite images. Our survey reveals a general correlation between transport distance, significant lateral spreading, and the presence of hydrated silicates among VM landslides. Given that smectite clay absorbs water into its layered crystal structure and can reduce the friction coefficient by a factor of three v. that of dry rocks, these results suggest that hydrated silicates played a decisive role in facilitating long-runout landslide transport in VM. We propose that, concurrent with downslope failure and sliding of broken trough-wall rock, frontal landslide masses overrode and entrained hydrated-silicate-bearing trough-floor deposits, lubricating the basal sliding zones and permitting the landslide outer zones to spread laterally while moving forward over the low-friction surface. The key participation of hydrated silicates in episodic, sustained landslide activity throughout the canyon implies that clay minerals

  10. Provenance changes between recent and glacial-time sediments in the Amundsen Sea embayment, West Antarctica: clay mineral assemblage evidence

    OpenAIRE

    Ehrmann, Werner; Hillenbrand, Claus-Dieter; Smith, James A.; Graham, Alastair G.C.; Kuhn, Gerhard; Larter, Robert D.

    2011-01-01

    The Amundsen Sea embayment is a probable site for the initiation of a future collapse of the West Antarctic Ice Sheet. This paper contributes to a better understanding of the transport pathways of subglacial sediments into this embayment at present and during the last glacial period. It discusses the clay mineral composition of sediment samples taken from the seafloor surface and marine cores in order to decipher spatial and temporal changes in the sediment provenance. The most striking featu...

  11. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.

    OpenAIRE

    Lipson, S M; Stotzky, G

    1983-01-01

    The adsorption of reovirus to clay minerals has been reported by several investigators, but the mechanisms defining this association have been studied only minimally. The purpose of this investigation was to elucidate the mechanisms involved with this interaction. More reovirus type 3 was adsorbed, in both distilled and synthetic estuarine water, by low concentrations of montmorillonite than by comparable concentrations of kaolinite containing a mixed complement of cations on the exchange com...

  12. Adsorption Mechanisms of Emerging Micro-pollutants with a clay Mineral: Case of Tramadol and Doxepine Pharmaceutical Products

    OpenAIRE

    Thiebault, Thomas; Guégan, Régis; Boussafir, Mohammed

    2015-01-01

    International audience A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40 °C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin–Radushkevich equation models explicitl...

  13. Redox properties of structural Fe in clay minerals. 1. Electrochemical quantification of electron-donating and -accepting capacities of smectites.

    Science.gov (United States)

    Gorski, Christopher A; Aeschbacher, Michael; Soltermann, Daniela; Voegelin, Andreas; Baeyens, Bart; Marques Fernandes, Maria; Hofstetter, Thomas B; Sander, Michael

    2012-09-01

    Clay minerals often contain redox-active structural iron that participates in electron transfer reactions with environmental pollutants, bacteria, and biological nutrients. Measuring the redox properties of structural Fe in clay minerals using electrochemical approaches, however, has proven to be difficult due to a lack of reactivity between clay minerals and electrodes. Here, we overcome this limitation by using one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in clay minerals and a vitreous carbon working electrode in an electrochemical cell. Using this approach, the electron-accepting and -donating capacities (Q(EAC) and Q(EDC)) were quantified at applied potentials (E(H)) of -0.60 V and +0.61 V (vs SHE), respectively, for four natural Fe-bearing smectites (i.e., SWa-1, SWy-2, NAu-1, and NAu-2) having different total Fe contents (Fe(total) = 2.3 to 21.2 wt % Fe) and varied initial Fe(2+)/Fe(total) states. For every SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested E(H) range, demonstrating reliable quantification of Fe content and redox state. Yet for NAu-1 and NAu-2, a significant fraction of the structural Fe was redox-inactive, which was attributed to Fe-rich smectites requiring more extreme E(H)-values to achieve complete Fe reduction and/or oxidation. The Q(EAC) and Q(EDC) values provided here can be used as benchmarks in future studies examining the extent of reduction and oxidation of Fe-bearing smectites.

  14. Characterisation of gas transport properties of the Opalinus Clay, a potential host rock formation for radioactive waste disposal

    OpenAIRE

    Marschall, P; Horseman, S.; Gimmi, T.

    2005-01-01

    The Opalinus Clay in Northern Switzerland has been identified as a potential host rock formation for the disposal of radioactive waste. Comprehensive understanding of gas transport processes through this low-permeability formation forms a key issue in the assessment of repository performance. Field investigations and laboratory experiments suggest an intrinsic permeability of the Opalinus Clay in the order of 10-20 to 10-21 m2 and a moderate anisotropy ratio < 10. Porosity depends on clay con...

  15. Preparation and Coagulation Behavior of a Novel Multiple Flocculant Based on Cationic Polymer, Hydroxy Aluminum, and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Feng-shan Zhou

    2015-01-01

    Full Text Available Cationic polymer, hydroxy aluminum, and clay minerals are three flocculants with different action mechanisms and a more cost-efficient multiple flocculant can be prepared by compositing them through appropriate technology. All of attapulgite (ATP, clay minerals containing magnesium, aluminum, and silicate, are porous environmental mineral material with good absorbability and have found wide applications in industrial sewage treatment. With polyaluminum chloride (PAC, poly(dimethyl diallyl ammonium chloride (PDMDAAC, and attapulgite (ATP clay being the main raw materials, multiple flocculant CMHa (liquid with good storage stability was prepared and its optimized blending mass percent was PDMDAAC of 2%-3%, ATP of 4%–6%, and PAC of 20%–30%. The liquid poly(dimethyl diallyl ammonium chloride (PDMDAAC was firstly loaded on solid material in kneader and then mixed in certain proportion with PAC and ATP to prepare solid CMHa convenient for storage and transportation. The optimized mass ratio is PAC : ATP : PDMDAAC = 80 : 10 : 2.4. When this multiple flocculant was used to treat domestic sewage, coal washing sewage, dyeing wastewater, and papermaking wastewater, its equivalent dosage was just 50% of PAC, while overall production cost has been reduced to about 40%, viewing showing broad application prospect.

  16. Physicochemical Study of Photocatalytic Activity of TiO2 Supported Palygorskite Clay Mineral

    Directory of Open Access Journals (Sweden)

    Lahcen Bouna

    2013-01-01

    Full Text Available This study deals with the influence of physicochemical parameters, namely, the photocatalyst loading, dye concentration, and pH of polluted solutions, on the degradation efficiency of Orange G (OG solutions containing TiO2 nanoparticles supported on palygorskite clay mineral (TiO2-Pal. The TiO2 photocatalyst attached to natural palygorskite fibers was elaborated by colloidal sol-gel route. It exhibits the anatase structure that is the most photoactive crystallographic form. The highest performances of supported photocatalyst on OG degradation were found using an optimum amount of TiO2-Pal around 0.8 g·L−1, which corresponds properly to ca. 0.4 g·L−1 of TiO2. This amount is interestingly lower than the 2.5 g·L−1 generally reported when using pure unsupported TiO2 powder. The photodegradation rate increases by decreasing OG initial concentration, and it was found significantly higher when the OG solution is either acidic (pH<4 or basic (pH≈11. For OG concentrations in the range 5×10-6– 5×10-4 M, the kinetic law of the OG degradation in presence of TiO2-Pal is similar to that reported for unsupported TiO2 nanopowder. It follows a Langmuir-Hinshelwood model with a first-order reaction and an apparent rate constant of about 2.9×10-2 min−1.

  17. Methane Hydrate Formation and Dissociation in the Presence of Silica Sand and Bentonite Clay

    Directory of Open Access Journals (Sweden)

    Kumar Saw V.

    2015-11-01

    Full Text Available The formation and dissociation of methane hydrates in a porous media containing silica sand of different sizes and bentonite clay were studied in the presence of synthetic seawater with 3.55 wt% salinity. The phase equilibrium of methane hydrate under different experimental conditions was investigated. The effects of the particle size of silica sand as well as a mixture of bentonite clay and silica sand on methane hydrate formation and its dissociation were studied. The kinetics of hydrate formation was studied under different subcooling conditions to observe its effects on the induction time of hydrate formation. The amount of methane gas encapsulated in hydrate was computed using a real gas equation. The Clausius-Clapeyron equation is used to estimate the enthalpy of hydrate dissociation with measured phase equilibrium data.

  18. Heterogeneous uptake of the C1 to C4 organic acids on a swelling clay mineral

    OpenAIRE

    M. A. Tolbert; Gough, R. V.; C. D. Hatch

    2007-01-01

    International audience Mineral aerosol is of interest due to its physiochemical impacts on the Earth's atmosphere. However, adsorbed organics could influence the chemical and physical properties of atmospheric mineral particles and alter their impact on the biosphere and climate. In this work, the heterogeneous uptake of a series of small organic acids on the swelling clay, Na-montmorillonite, was studied at 212 K as a function of relative humidity (RH), organic acid pressure and clay mass...

  19. Distribution of clay minerals in drift sediments on the continental rise west of the Antarctic Peninsula, ODP Leg 178, Sites 1095 and 1096

    OpenAIRE

    Hillenbrand, C.-D.; W. Ehrmann

    2001-01-01

    The clay mineral compositions of upper Miocene to Quaternary sediments recovered at Ocean Drilling Program (ODP) Leg 178, Sites 1095 and 1096, from the continental rise west of the Antarctic Peninsula were analyzed in order to reconstruct the Neogene and Quaternary Antarctic paleoclimate and ice dynamics. The clay mineral assemblages are dominated by smectite, illite, and chlorite. Kaolinite occurs only in trace amounts. Analysis of a surface-sample data set facilitates the assignment of thes...

  20. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.

    Science.gov (United States)

    Kavurmaci, Sibel Sen; Bekbolet, Miray

    2014-01-01

    Application of photocatalysis for degradation of natural organic matter (NOM) has received wide interest during the last decades. Besides NOM, model compounds more specifically humic acids (HAs) were also studied. As a continuation of the previous research, TiO2 photocatalytic degradation of HA was investigated in the presence of clay minerals, i.e., montmorillonite (Mt) and kaolinite (Kt). Degradation of HA was expressed by the pseudo-first-order kinetic modelling of dissolved organic carbon (DOC) and UV-VIS parameters (Colour436 and UV254). A slight rate enhancement was attained for Colour436 and UV254 in the presence of either Mt or Kt. The presence of clay particles did not significantly change the DOC degradation rate of HA. The effect of ionic strength (Ca2+ loading from 5 x 10(-4) M to 5 x 1(-3) M) was also assessed for the photocatalytic degradation of sole HA and HA in the presence of either Mt or Kt. Following photocatalytic treatment, molecular size distribution profiles of HA were presented. Besides the effective removal of higher molecular size fractions (100 and 30 kDa fractions), transformation to lower molecular size fractions (clay minerals. Scanning electron microscopic images with the energy dispersive X-ray analysis confirmed the diversities in surface morphologies of the binary and ternary systems composed of HA, TiO2 and Mt or Kt both prior to and following photocatalysis. This study demonstrated that photocatalysis could be applicable for DOC degradation in the presence of clay minerals in natural waters.

  1. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.

    Science.gov (United States)

    Kavurmaci, Sibel Sen; Bekbolet, Miray

    2014-01-01

    Application of photocatalysis for degradation of natural organic matter (NOM) has received wide interest during the last decades. Besides NOM, model compounds more specifically humic acids (HAs) were also studied. As a continuation of the previous research, TiO2 photocatalytic degradation of HA was investigated in the presence of clay minerals, i.e., montmorillonite (Mt) and kaolinite (Kt). Degradation of HA was expressed by the pseudo-first-order kinetic modelling of dissolved organic carbon (DOC) and UV-VIS parameters (Colour436 and UV254). A slight rate enhancement was attained for Colour436 and UV254 in the presence of either Mt or Kt. The presence of clay particles did not significantly change the DOC degradation rate of HA. The effect of ionic strength (Ca2+ loading from 5 x 10(-4) M to 5 x 1(-3) M) was also assessed for the photocatalytic degradation of sole HA and HA in the presence of either Mt or Kt. Following photocatalytic treatment, molecular size distribution profiles of HA were presented. Besides the effective removal of higher molecular size fractions (100 and 30 kDa fractions), transformation to lower molecular size fractions (clay minerals. Scanning electron microscopic images with the energy dispersive X-ray analysis confirmed the diversities in surface morphologies of the binary and ternary systems composed of HA, TiO2 and Mt or Kt both prior to and following photocatalysis. This study demonstrated that photocatalysis could be applicable for DOC degradation in the presence of clay minerals in natural waters. PMID:25145193

  2. R and D programme on radioactive waste disposal into a clay formation

    International Nuclear Information System (INIS)

    The present report presents the main results obtained during the period 1980-82 in the Belgian R and D work on geological disposal of conditioned radioactive waste in the boom clay beneath the Mol site. Multiple research projects have been continued: both experimental research in the field and in the laboratory and theoretical studies. A regional hydrological observation network has been set up which permitted an assessment of the hydrogeological system over- and underlying the Boom clay as well as the modelling of groundwater flow in the area. Clay samples collected during the drilling campaigns were submitted to a number of analyses with a view to chemical characterization and determination of geotechnical properties. Various studies were performed concerning the migration of radionuclides through the clay and an analytical computer model was developed. The corrosion behaviour of various candidate materials for HLW containers and repository linings were tested under different conditions possibly encountered in the clay formation. Furthermore, various backfill and sealing materials and mixtures have been selected and are being tested. Finally, the activities deployed for the safety analysis were continued, mainly concentrated upon two approaches: the probabilistic risk assessment and the performance assessment of a mined repository under normal evolution conditions

  3. Formation of polygonal fault systems as a result of hydrodynamical instabilities in clay-rich deposits.

    Science.gov (United States)

    Lopez, Teodolina; Antoine, Raphael; Rabinowicz, Michel; Baratoux, David; Darrozes, José; Kurita, Kei; D'Uston, Lionel

    2015-04-01

    Fine grained deposits as chalks and clays are characterised by the development of polygonal fault systems [1]. For the clay-rich deposits, two different environments are associated with their formation. First, on continents, dewatering leads to the development of polygonal desiccation cracks which have a centimetric to metric size [2]. Polygonal faults are also observed in sub-marine sedimentary deposits and here, can reach hectometric to kilometric size [3]. Since the giant polygons develop on basins with no clear evidences of tectonic stresses, the fracturing is attributed to stresses due to horizontal density variations generated during the basin subsidence. Several models have been proposed to explain the formation of the giant polygons and the two main hypotheses are the syneresis (spontaneous horizontal contraction) proposed by [4] and the low coefficient of friction of clay proposed by [5]. However, new understandings in the clay rheology and in the hydrodynamical instabilities, controlling the development of compaction in unconsolidated and consolidated clay deposits, permit us to propose an alternative hypothesis. We consider that the development of giant polygons results from the superposition of hydrodynamical instabilities leading to the formation of (i) mm-size agglomerates of clay particles while the deposit is unconsolidated [6], followed after by the consolidation of this layer, then (ii) hectometric to kilometric compaction spheres develop [7] and (iii) finally ends with the occurrence of hydrothermal and plastic convections. We show that the crucial conditions for the development of hectometric to kilometric size polygonal fault systems are: 1) the high permeability of the clay-rich deposit composed of mm-size agglomerates and 2) the dramatic increase of the strength of the clay as the deposit consolidates. [1] Dewhurst et al., (1999), Mar. Petr. Geol., 16 (8), 793-810. [2] Weinberger (1999), J. Struct. Geol., 21, 379-386. [3] Andresen and Huuse

  4. [Mineralogy and genesis of mixed-layer clay minerals in the Jiujiang net-like red soil].

    Science.gov (United States)

    Yin, Ke; Hong, Han-Lie; Li, Rong-Biao; Han, Wen; Wu, Yu; Gao, Wen-Peng; Jia, Jin-Sheng

    2012-10-01

    Mineralogy and genesis were investigated using X-ray diffraction (XRD), Fourier infrared absorption spectroscopy (FTIR) and high resolution transmission electron microscopy (HRTEM) to understand the mineralogy and its genesis significance of mixed-layer clay minerals in Jiujiang red soil section. XRD and FTIR results show that the net-like red soil sediments are composed of illite, kaolinite, minor smectite and mixed-layer illite-smectite and minor mixed-layer kaolinite-smectite. HRTEM observation indicates that some smectite layers have transformed into kaolinite layers in net-like red soil. Mixed-layer illite-smectite is a transition phase of illite transforming into smectite, and mixed-layer kaolinite-smectite is a transitional product relative to kaolinite and smectite. The occurrence of two mixed-layer clay species suggests that the weathering sequence of clay minerals in net-like red soil traversed from illite to mixed-layer illite-smectite to smectite to mixed-layer kaolinite-smectite to kaolinite, which indicates that net-like red soil formed under a warm and humid climate with strengthening of weathering.

  5. A recommended procedure for the preparation of oriented clay-mineral specimens for X-ray diffraction analysis; modifications to Drever's filter-membrane peel technique

    Science.gov (United States)

    Pollastro, R.M.

    1982-01-01

    Extremely well-oriented clay mineral mounts for X-ray diffraction analysis can be prepared quickly and without introducing segregation using the filter-membrane peel technique. Mounting problems encountered with smectite-rich samples can be resolved by using minimal sample and partial air-drying of the clay film before transfer to a glass slide. Samples containing small quantities of clay can produce useful oriented specimens if Teflon masks having more restrictive areas are inserted above the membrane filter during clay deposition. War]page and thermal shock of glass slides can be controlled by using a flat, porous, ceramic plate as a holding surface during heat treatments.

  6. Metal oxides, clay minerals and charcoal determine the composition of microbial communities in matured artificial soils and their response to phenanthrene.

    Science.gov (United States)

    Babin, Doreen; Ding, Guo-Chun; Pronk, Geertje Johanna; Heister, Katja; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2013-10-01

    Microbial communities in soil reside in a highly heterogeneous habitat where diverse mineral surfaces, complex organic matter and microorganisms interact with each other. This study aimed to elucidate the long-term effect of the soil mineral composition and charcoal on the microbial community composition established in matured artificial soils and their response to phenanthrene. One year after adding sterile manure to different artificial soils and inoculating microorganisms from a Cambisol, the matured soils were spiked with phenanthrene or not and incubated for another 70 days. 16S rRNA gene and internal transcribed spacer fragments amplified from total community DNA were analyzed by denaturing gradient gel electrophoresis. Metal oxides and clay minerals and to a lesser extent charcoal influenced the microbial community composition. Changes in the bacterial community composition in response to phenanthrene differed depending on the mineral composition and presence of charcoal, while no shifts in the fungal community composition were observed. The abundance of ring-hydroxylating dioxygenase genes was increased in phenanthrene-spiked soils except for charcoal-containing soils. Here we show that the formation of biogeochemical interfaces in soil is an ongoing process and that different properties present in artificial soils influenced the bacterial response to the phenanthrene spike.

  7. Clay properties

    NARCIS (Netherlands)

    De Wit, P.J.

    1992-01-01

    In this report an overview will be given of the basic properties of (suspended) clay particles. In section 2 the structure of clay minerals will be described. The forces between suspended particles (section 3) and the possible consequences of them, flocculation or deflocculation (sections 4 and 5) w

  8. Alteration of glass as a possible source of clay minerals on Mars

    Science.gov (United States)

    Gooding, J. L.; Keil, K.

    1978-01-01

    Thermodynamic calculations show that, under present Martian surface conditions, favorable gas-solid weathering products of feldspar glasses should include beidellites (clays of the montmorillonite series) + carbonates + quartz. The gas-solid weathering of mafic silicate glass ( of volcanic or impact origin) may similarly favor the production of metastable Fe-rich montmorillonite clays. Simple mass-balance calculations suggest that gas-solid weathering of Martian proto-regolith containing 10% glass could conceivably produce a global blanket of clays at a rate of at least 0.4 cm/b.y. The production rate should be expected to increase significantly with the glass content and rate of reworking of the proto-regolith and with the availability of water. Complete extraction of altered glass from a lunar-like proto-regolith might yield a global Martian clay blanket about 10-100 cm in thickness.

  9. The effect of natural sand grains and associated mineral changes on methane hydrate formation

    Science.gov (United States)

    Heeschen, K. U.; Schicks, J. M.

    2014-12-01

    The highest gas hydrate saturations and possible energy resource targets are bound to sandy sediments. However, investigations regarding the influence of natural sand particles on gas hydrate formation are rare and almost missing with regards to the particle size effect of different grain size ranges of sand on the gas hydrate kinetics. Comparative investigations commonly use arbitrary sized sands and clay minerals. In addition, sand grains are often represented using glass beads or pure quartz grains instead of natural samples where additional effects from mineral compositions and coatings might occur. However, understanding the kinetics of hydrate formation in sand forms yet another foundation for a successful scale-up model of the production of natural gas hydrate reservoirs, where reformation of hydrates may occur under non-equilibrium conditions. We investigated the particle size effect of sand on methane hydrate formation kinetics using five different grain size ranges of Ottawa sand, a rather pure quartz sand. Conditions of the static and small-volume experiments were far within the methane hydrate stability (7 MPa/1°C). Pressure and temperature recording as well as microscopic and Raman spectroscopic observations could verify methane hydrate formation and growth. For the chosen experimental setup there is a strong particle size effect on the kinetics of gas hydrate formation. A high concentration of the finest range (sand or a small fraction of fine particles diluted in coarse sand grains. This is in contrast to the decrease of thermodynamic driving forces in the presence of fine sized particles given equilibrium conditions. The promoting kinetic effect of the mineral surface properties might be related to the impact of the surface area as well as crystal structures, and/or electrical charge since small fractions of natural sands commonly encounter different mineral compositions compared to the coarser, quartz rich sand fraction. Therefore, additional

  10. CHARACTERISTICS OF FLUORIDE EMISSION FROM FIVE CLAY MINERALS AS AFFECTED BY TEMPERATURE,HEATING TIME AND ADDITION OF CALCIUM COMPOUNDS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Characteristics of fluoride emission from five clay minerals (montmorillonite, kaolinite, vermiculite, geothite, and allophane) as affected by temperature, heating time and addition of calcium compounds were studied. Marked increase of the fluoride emission rate was noticed with increase of temperature. The fluoride release, began at 500 ℃-600 ℃, and the main bulk of the fluoride emission occurred at the temperature of about 800 ℃. The loss of crystalline water was primarily responsible for the increase of fluoride emission. When minerals were heated at 800 ℃, The fluoride emission rate from the clay minerals reached the highest after heating for 1 hour. The samples treated by CaO, CaCO3, Ca(OH)2, Ca3(PO4)2, and CaSO4 had 55.45%, 59.58%, 46.45%, 54.31%, 31.25% reduction in the fluoride emission from montmorillonite at the temperature of 800 ℃, respectively. CaCO3 had the highest fluoride fixing capacity compared to other calcium compounds.

  11. [X-ray powder diffraction of clay minerals of SZK01 core of Zabuye Lake, Tibetan Plateau].

    Science.gov (United States)

    Zhang, Xue-Fei; Zheng, Mian-Ping

    2014-11-01

    The present article chooses the core from the borehole SZK01 in Zabuye Lake as the main research object. According to the results of X-ray powder diffraction of clay minerals, the major components are illite, illite and smectite mixed layer mineral (I/S), kaolinite and chlorite. According to the different species and contents of clay, integration of the characteristics of mineral and the results of Δ18O, we reestablished the evolution process of paleoclimate in Zabuye Lake. In compaison with SZK02 core in Zabuye, Greenland GISP2 and GRIP and Guliya ice core, it contains 5 stages since 115 ka in Zabuye: the last interglacial (15-75.5 ka), the earlier last glacial (75.5-60 ka), the interstage of the last glacial (60-30.1 ka), the last glacial maximum (30.1-16.7 ka) and deglacial-holocene (since 16.7 ka). We also recognized 6 Heinrich events (H1-H6) and warm event in 71 ka. In particular, the content of kaolinite is low, with the negative-skewed value of Δ18O in 52-53 ka, while the value of Δ18O in SZK02 and Guliya ice core is negative-skewed too, indicating the cold event in Tibet plateau, named H5-1. All the above demonstrated that the climate in Tibet plateau is global since the earlier last glacial, and it also has regional characteristics.

  12. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects.

    Science.gov (United States)

    Droge, Steven T J; Goss, Kai-Uwe

    2013-12-17

    Sorption to the phyllosilicate clay minerals Illite, kaolinite, and bentonite has been studied for a wide variety of organic cations using a flow-through method with fully aqueous medium as the eluent. Linear isotherms were observed at concentrations below 10% of the cation-exchange capacity (CEC) for Illite and kaolinite and below 1 mmol/kg (clays was strongly influenced by the electrolyte composition of the eluent but with a consistent trend for a diverse set of compounds on all clays, thus allowing for empirical correction factors. When sorption affinities for a given compound to a given clay are normalized to the CEC of the clay, the differences in sorption affinities between clays are reduced to less than 0.5 log units for most compounds. Although CEC-normalized sorption of quaternary ammonium compounds to clay was up to 10-fold higher than CEC-normalized sorption to soil organic matter, CEC-normalized sorption for most compounds was comparable between clays and soil organic matter. The clay fraction is thus a potentially relevant sorption phase for organic cations in many soils. The sorption data for organic cations to clay showed several regular trends with molecular structure but also showed quite a few systematic effects that we cannot explain. A model on the basis of the molecular size and charge density at the ionized nitrogen is used here as a tool to obtain benchmark values that elucidate the effect of specific polar moieties on the sorption affinity.

  13. Characterization of groundwater flow in the environment of the Boom Clay formation

    International Nuclear Information System (INIS)

    Since 1975, the possibility to dispose of high-level radioactive waste in the Boom Clay formation has been investigated in Belgium at the test site in Mol. This research involves detailed studies of the hydrogeological system at various scales, observations of groundwater levels in the regional and local piezometric networks, several site investigations including geophysics and core-drilled boreholes. The knowledge gained during the long-term hydrogeological research is integrated in groundwater models. Major differences in the groundwater regimes above and below the Boom Clay gave rise to two models simulating these two sub-systems separately. The Neogene aquifer model is used to simulate the groundwater flow above the Boom Clay and the Deep aquifer pumping model to simulate the groundwater flow below the Boom Clay. The regional groundwater research improved the understanding of the regional flow system, since it has enabled to explain the behaviour of the aquifer system using a combination of a steady-state model for the Neogene aquifers and a transient model for the deep aquifers. This combination of modelling tools can offer a representative set of boundary conditions for the consecutive models that will depend on the scenarios required for the performance assessment of the integrated repository system. (authors)

  14. Geochemistry of rare earths in main media of clay formation and sedimentation

    International Nuclear Information System (INIS)

    This work aims i) at a better knowledge of rare earth behavior in surface conditions and ii) possible use of rare earth as a marker for argilaceous mineral genesis. Chemical properties of rare earths and geochemistry of these elements in main rocks are recalled. Rare earth behaviour during continental alteration process, experimental hydrolysis of various magmatic materials and rare earth geochemistry in argilaceous minerals in continental shelf are examined. Then some aspects of rare earth behaviour in oceans are studied: alteration of sea bed and hydrothermalism rare earth distribution in pelagic sediments red clays of deep seas and manganese nodules. In conclusion rare earth behaviour in sedimentary processes of the exogenous cycle is summarized

  15. Hydrothermal formation of Clay-Carbonate alteration assemblages in the Nili Fossae region of Mars

    CERN Document Server

    Brown, Adrian J; Baldridge, Alice M; Crowley, James K; Bridges, Nathan T; Thomson, Bradley J; Marion, Giles M; Filho, Carlos R de Souza; Bishop, Janice L

    2014-01-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) has returned observations of the Nili Fossae region indicating the presence of Mg- carbonate in small (<10km sq2), relatively bright rock units that are commonly fractured (Ehlmann et al., 2008b). We have analyzed spectra from CRISM images and used co-located HiRISE images in order to further characterize these carbonate-bearing units. We applied absorption band mapping techniques to investigate a range of possible phyllosilicate and carbonate minerals that could be present in the Nili Fossae region. We also describe a clay-carbonate hydrothermal alteration mineral assemblage in the Archean Warrawoona Group of Western Australia that is a potential Earth analog to the Nili Fossae carbonate-bearing rock units. We discuss the geological and biological implications for hydrothermal processes on Noachian Mars.

  16. Burial diagenetic processes of clay mineral and non-clay mineral, quartz cementation and dissolution in sandstones and mudstones of the Siri Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Kazerouni, Afsoon Moatari; Friis, Henrik; Svendsen, Johan Byskov

    reprecipitate as opal, quartz or other mineral phases inside the shale itself. The deep marine sandstones in the Siri Canyon, Danish North Sea, have been reported to import significant amounts of dissolve silica from adjacent Paleocene shales during early diagenesis, and the authigenesis of silica developed......), the alteration of volcanic ash has already been completed. Released silica was partly consumed for the precipitation of smectite and zeolite.  Opal-CT is not systematically related to volcanic ash, and some silica may have been mobilized and migrated into the interbeded sandstones.  In addition, a major part...... of the biogenic silica has been transformed into opal-CT and partly to microcrystalline quartz.  The microcrystalline quartz is an internal sink for dissolved silica, but the shale may also have been an active silica exporter during this transition. With deeper burial (2000-2900m), opal-CT is fully transformed...

  17. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    Science.gov (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  18. Sorption of Pyrene by Clay Minerals Coated with Dissolved Organic Matter (DOM from Landfill Leachate

    Directory of Open Access Journals (Sweden)

    Pingxiao Wu

    2015-01-01

    Full Text Available Interactions of dissolved organic matter (DOM from landfill leachate with clays could affect significantly the fate of hydrophobic organic compounds (HOCs in soils. The complexes of montmorillonite (MT and kaolinite (KL with DOM extracted from landfill leachate were prepared under controlled conditions, termed CMT and CKL, respectively. The bare clays and their complexes were characterized by powder X-ray diffraction (XRD, Fourier transform infrared (FTIR, thermogravimetry (TG, differential scanning calorimetry (DSC, and scanning electron microscopy (SEM. Batch experiments were designed to investigate the sorption behavior of pyrene onto the clays in the presence of DOM. The maximum sorption capacities of pyrene on MT, CMT, KL, and CKL were 22.18, 38.96, 42.00, and 44.99 μg·g−1, respectively, at the initial concentration of 1000 ± 150 μg·L−1. The sorption isotherms of pyrene by the bare clays followed the Henry model well, whereas the Freundlich sorption isotherm provided a better fit to the equilibrium data of the sorption by the complexes. The role of montmorillonite and kaolinite complexes with DOM in the retention of pyrene in soils was different. This may be due to the different crystal structures between montmorillonite and kaolinite.

  19. ADSORPTION, DESORPTION AND OXIDATION OF ARSENIC AFFECTED BY CLAY MINERALS AND AGING PROCESS

    Science.gov (United States)

    Adsorption/desorption and oxidation/reduction of arsenic at clay surfaces are very important to the natural attenuation of arsenic in the subsurface environment. Although numerous studies have concluded that iron oxides have high affinities for the adsorption of As(V), very litt...

  20. Distribution of clay minerals in marine sediments off Chennai, Bay of Bengal, India:Indicators of sediment sources and transport processes

    Institute of Scientific and Technical Information of China (English)

    Subramanian VEERASINGAM; Ramdoss VENKATACHALAPATHY; Thirunavukkarasu RAMKUMAR

    2014-01-01

    Clay mineralogy, texture size and statistical analyses were carried out on surface sediments from the continental shelf of Chennai, Bay of Bengal, India. The purpose of this study is to characterize the clay mineral distribution and its relation to the hydrodynamics off Chennai to identify the sources and transport pathways of the marine sediments. Characterization of clay minerals in coastal sediments by Fourier Transform Infrared (FTIR) spectroscopy has provided the association of quartz, feldspar, kaolinite, chlorite, illite and iron oxides (magnetite and hematite) derived from river catchments and coastal erosion. Kaolinite, chlorite, illite, iron oxides, and organic matter are the dominant minerals in Cooum, and Adayar region. High quartz and feldspar zones were identified in Marina, which are being confined the sand zone and paralleling the coast. The strong relationships among the wave energy density, sand, quartz and carbonate revealed that wave induced littoral drift system play a dominant role in transportation and deposition of sediments in the Chennai coast. The sediment texture and minerals data are in agreement well with the previous results of hydrodynamics and littoral drift models in this region. Multivariate statistical analyses (correlation, cluster and factor analyses) were carried out and obtained results suggested that clay minerals and organic matter are trapped in silt and clay particles, whereas quartz, feldspar and carbonate are associated with sand particles. Results of sediment sources and transport processes from this study will be useful to predict the fate of the pollutants released from land or the potential change in sediment delivery to coastal areas.

  1. The influence of mineral detritus on rock varnish formation

    Science.gov (United States)

    Dorn, Ronald I.; Krinsley, David H.; Langworthy, Kurt A.; Ditto, Jeffrey; Thompson, Tyler J.

    2013-09-01

    A mix of high resolution electron microscope methods imaged the textures and chemistry of rock varnish samples from 19 field sites on five continents. The vast majority of aeolian mineral is not incorporated into manganiferous rock varnish. Of those dust particles that are enveloped, submicron sized oval-shaped quartz minerals are the most common type of detritus seen, as they rest conformably between laminated layers. The dominance of quartz as the most common detrital mineral, combined with the relative rarity of feldspars - is consistent with the hypothesis that feldspars experience in situ decay into clay minerals. After the detritus is buried in varnish, mineral boundaries often develop enhanced porosity. Some porous zones around dust particles develop submicron skins of redeposited Mn-Fe. In other cases, the porous zones aid in the transport of capillary water that mobilizes and redeposits Mn-Fe as stringers in fissures. Larger dust particles ˜10 μm in diameter are deposited in microtopographic depressions, such as tubes created by acid-producing lithobionts. Varnishes growing in particularly dusty regions form alternating dust-rich and varnish-rich layers that potentially correlate to alternating dusty and less dusty periods. The very foundation of varnish, the underlying rock, is often less stable in the surficial environment than varnish - leading to enhanced porosity and mineral decay in the substrate. Sometimes, physical collapse of varnish into the underlying void space mixes varnish and rock; more commonly, however, remobilization of varnish constituents into these pore spaces creates case hardening of the weathering rind in the underlying rock.

  2. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite.

    Science.gov (United States)

    Kahle, Maren; Stamm, Christian

    2007-07-01

    Substantial amounts of sulfonamides, ionizable, polar veterinary antimicrobials, may reach the environment by spreading of manure. Sorption to soils and sediments is a crucial but not sufficiently understood process influencing the environmental fate of sulfonamides. Therefore, we investigated sorption of sulfathiazole to clay minerals (montmorillonite, illite) and ferrihydrite for varying pH values and two contact times (1d, 14 d) under sterile conditions. Results were compared to sulfathiazole sorption to organic sorbents. Sulfathiazole sorption to inorganic sorbents exhibited pronounced pH dependence consistent with sorbate speciation and sorbent charge properties. While sulfathiazole cations were most important for sorption to clay minerals, followed by neutral species, ferrihydrite was a specific anion sorbent, showing significant sorption only between pH 5.5-7. Experiments revealed a substantial increase of sorption with time for ferrihydrite (pH 5.5-7) and illite (pHsorbents was more than an order of magnitude lower than to organic sorbents. This implies that in many topsoils and sediments inorganic sorbents play a minor role. Our results highlight the need to account for contact time and speciation when predicting sulfonamide sorption in the environment.

  3. Adsorption mechanisms of emerging micro-pollutants with a clay mineral: Case of tramadol and doxepine pharmaceutical products.

    Science.gov (United States)

    Thiebault, Thomas; Guégan, Régis; Boussafir, Mohammed

    2015-09-01

    A sodium exchanged smectite clay mineral (Mt) was used as geo-sorbent for the adsorption of tramadol and doxepin: two pharmaceutical products (PPs) defined as emerging pollutants due to their presence at significant concentration in numerous water compartments. The adsorption isotherms for both the temperatures of 20 and 40°C and the derived data determined through the fitting procedure by using Langmuir, Freundlich and Dubinin-Radushkevich equation models explicitly pointed out that the sorption of both tramadol and doxepin is mainly driven by electrostatic interaction. The studied PPs are intercalated in a monolayer arrangement within the interlayer space through a cation exchange in stoichiometric proportion with the Na(+) cations leading to adsorbed PPs amounts that match the cation exchange capacity (CEC) of Mt. Due to their hydrophobic character, additional doxepin molecules could be adsorbed by weak molecular interaction driving to an increase of the adsorbed amount beyond the CEC at low temperature (20°C). The confinement of PPs within the interlayer space of Mt confirms the use of clay minerals as potential material for the wastewater treatment as well as it drives to an amorphous or glassy state, which can find echo in biopharmaceutical applications for a controlled release of PPs.

  4. Remediation of hexavalent chromium from aqueous solution using clay mineral Fe(II)-montmorillonite: Encompassing anion exclusion impact

    Science.gov (United States)

    Vinuth, Mirle; Bhojya Naik, Halehatty Seethya; Manjanna, Jayappa

    2015-12-01

    We have explored the highly efficient and environmentally benign clay mineral, Fe(II)-montmorillonite, for the reduction of Cr(VI) in aqueous solution. Fe(II)-Mt was treated with K2Cr2O7 solution at different pH, temperature and solid-to-liquid ratio. The [Cr2O7]2- was estimated by UV-vis spectra with a correction for anion exclusion impact. In general, the Cr(VI) reduction was rapid at acidic pH and increased with temperature up to 50 °C. A complete reduction occurred in about 5 min at pH 3-5. The time taken for complete reduction at 0 °C, RT (30 °C) and 40 °C are 12 min, 8 min and 5 min, respectively. The reduction followed by immobilization of Cr(III) on the spent clay mineral was well characterized by EDX and chemical extraction analysis. This remediation process could be easily scaled-up for real system applications.

  5. Deposition and survival of Escherichia coli O157:H7 on clay minerals in a parallel plate flow system.

    Science.gov (United States)

    Cai, Peng; Huang, Qiaoyun; Walker, Sharon L

    2013-02-19

    Understanding bacterial pathogens deposition and survival processes in the soil-groundwater system is crucial to protect public health from soilborne and waterborne diseases. However, mechanisms of bacterial pathogen-clay interactions are not well studied, particularly in dynamic systems. Also, little is known about the viability of bacterial pathogens when attached to clays. In this study, a parallel plate flow system was used to determine the deposition kinetics and survival of Escherichia coli O157:H7 on montmorillonite, kaolinite, and goethite over a wide range of ionic strengths (IS) (0.1-100 mM KCl). E. coli O157:H7 deposition on the positively charged goethite is greater than that on the negatively charged kaolinite and montmorillonite. Although the zeta potential of kaolinite was more negative than that of montmorillonite, kaolinite showed a greater deposition for E. coli O157:H7 than montmorillonite, which is attributed to the chemical heterogeneity of clay minerals. Overall, increasing IS resulted in an increase of E. coli O157:H7 deposition on montmorillonite and kaolinite, and a decrease on goethite. Interaction energy calculations suggest that E. coli O157:H7 deposition on clays was largely governed by DLVO (Derjaguin-Landau-Verwey-Overbeek) forces. The loss of bacterial membrane integrity was investigated as a function of time using the Live/Dead BacLight viability assay. During the examined period of 6 h, E. coli O157:H7 retained its viability in suspension and when attached to montmorillonite and kaolinite; however, interaction with the goethite was detrimental. The information obtained in this study is of fundamental significance for the understanding of the fate of bacterial pathogens in soil environments.

  6. Fracture-fluid relationships: implications for the sealing capacity of clay layers - Insights from field study of the Blue Clay formation, Maltese islands

    International Nuclear Information System (INIS)

    Sealing capacity of clay layers is a key parameter in many fields of geoscience, such as CO2 storage, hydrocarbons trapping, and waste disposal. In the context of deep geological disposal of radioactive waste, clayey formations are studied as potential host rocks. This work deals with tectonic fracturing, fluid flow, and the sealing capacity of clay layers in an outcropping formation sharing similarities to these potential host rocks. The Blue Clay formation (Maltese islands) outcrops between two limestones affected by slight extensional tectonics. Zones of oxidation around fractures are interpreted as evidence of palaeo-fluid circulation, and are used to assess the role of joints and faults in controlling the hydrological communication between adjacent layers. Joints and small faults (displacement 50 m) display clay smear structures, and the lack of oxidized zones around them suggests they served as barriers to fluid flow. Intermediate-sized faults die out up-section into complex deformation zones comprised of irregular joints that are filled with gypsum and surrounded by oxidation zones. These observations indicate that these intermediate-sized faults, usually considered as sealed by classical predictive methods such as 'Shale Smear Factor', may have played a significant role in the local palaeo-hydrology. (authors)

  7. Mineral formation during simulated leaks of Hanford waste tanks

    Energy Technology Data Exchange (ETDEWEB)

    Deng Youjun [Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164-6420 (United States); Harsh, James B. [Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164-6420 (United States)]. E-mail: harsh@wsu.edu; Flury, Markus [Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164-6420 (United States); Young, James S. [Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA 99352 (United States); Boyle, Jeffrey S. [Department of Crop and Soil Sciences, Center for Multiphase Environmental Research, Washington State University, Pullman, WA 99164-6420 (United States)

    2006-08-15

    Highly-alkaline waste solutions have leaked from underground tanks at the US DOE Hanford Site, Washington, causing mineral dissolution and re-precipitation upon contact with subsurface sediments. The main mineral precipitation and transformation pathways were studied in solutions mimicking tank leak conditions at the US DOE Hanford Site. In batch experiments, Si-rich solutions, representing dissolved silicate minerals, were mixed with caustic tank simulants. The tank wastes encompass a large range of chemical compositions. The effect of the following factors on mineral transformations were investigated: temperature (22, 50 and 80deg. C), concentration of NaOH (from 0 to 16M), 6 types of common inorganic anions in the tank supernatant, concentration of NaNO{sub 3} (the most abundant electrolyte in the tanks), and the Si/Al ratio in the starting solutions. Precipitates were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy. A general mineral transformation pathway was observed: poorly crystalline aluminosilicate->Linde Type A (LTA) zeolite->cancrinite/sodalite. Cancrinite and sodalite were the two stable mineral phases. The concentration of NaOH and the type of anion played the determinative roles in mineral formation and transformation. Increasing NaOH concentration and temperature favored the formation of cancrinite and sodalite. Cancrinite formed in the presence of NO{sub 3}{sup -} or SO{sub 4}{sup 2-}; sodalite formed in the presence of Cl{sup -} or NO{sub 2}{sup -}. The experiments indicate that (1) NaOH is a mineralization agent in the mineral transformation and the anions served as templates in the formation of cancrinite and sodalite by forming ion-pairs with Na{sup +} and (2) cancrinite and sodalite with various morphologies and crystallinity should form in the contaminated sediments.

  8. Travel time simulation of radionuclides in a 200 m deep heterogeneous clay formation locally disturbed by excavation

    OpenAIRE

    Huysmans, Marijke; Berckmans, Arne; Dassargues, Alain

    2005-01-01

    In the North of Belgium the Boom Clay Formation, at a depth of 200m below surface, is being evaluated as a potential host formation for the disposal of vitrified nuclear waste. The aim of this study is to model the transport of radionuclides through the clay, taking into account the geological heterogeneity and the excavation induced fractures around the galleries in which the waste will be stored. This is achieved by combining a transport model with geostatistical techniques used to simulate...

  9. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Science.gov (United States)

    Fu, Qingling; Deng, Yali; Li, Huishu; Liu, Jie; Hu, Hongqing; Chen, Shouwen; Sa, Tongmin

    2009-02-01

    The persistence of Bacillus thuringiensis ( Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L -1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ( ΔGmθr) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ( ΔHmθr) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  10. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    International Nuclear Information System (INIS)

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L-1. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy (ΔrGmθ) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy (ΔrHmθ) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  11. Relationship between the isotopic composition of strontium in newly formed continental clay minerals and their source material

    International Nuclear Information System (INIS)

    The 87Sr/86Sr ratios of recent montmorillonites and kaolinites newly formed in weathering profiles of western and central Africa and of Nosy Be and La Reunion islands near Madagascar are directly related to the composition and age of the parent rocks or minerals. They may, therefore, be used as a genetic tracer. The 87Sr/86Sr ratios are about 0.704 when these clays crystallise from recent basalts and they are higher than 0.715 when the parent rocks are of sialic composition and old in age. Kaolinites newly formed in situ from feldspars contain small amounts of Sr with abnormally high 87Sr/86Sr ratios: in this study they are higher than 1.094. When these minerals crystallize from biotites, their 87Sr/86Sr ratios are much lower and can be close to the value of the primary Sr trapped in the biotites during their crystallization. On the other hand, the 87Sr/86Sr of continental montmorillonites are less scattered: they range, in this study, between 0.704 and 0.722. These low values, as well as the high adsorption capacities of these minerals in the sedimentary environment, allow the assumption that they frequently have 87Sr/86Sr ratios close to that of marine Sr during sedimentation. Therefore, montmorillonites are able to form homogeneous authigenic minerals by synsedimentary alterations. (Auth.)

  12. Equilibrium, kinetic and thermodynamic studies on the adsorption of the toxins of Bacillus thuringiensis subsp. kurstaki by clay minerals

    Energy Technology Data Exchange (ETDEWEB)

    Fu Qingling; Deng Yali; Li Huishu; Liu Jie [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Hu Hongqing, E-mail: hqhu@mail.hzau.edu.cn [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Chen Shouwen [Key Laboratory of Subtropical Agricultural Resource and Environment, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070 (China); Sa Tongmin [Department of Agricultural Chemistry, College of Agriculture, Chungbuk National University, Cheongju, 361-763 (Korea, Republic of)

    2009-02-01

    The persistence of Bacillus thuringiensis (Bt) toxins in soil is further enhanced through association with soil particles. Such persistence may improve the effectiveness of controlling target pests, but impose a hazard to non-target organisms in soil ecosystems. In this study, the equilibrium adsorption of the Bt toxin by four clay minerals (montmorillonite, kaolinite, goethite, and silicon dioxide) was investigated, and the kinetic and thermodynamic parameters were calculated. The results showed that Bt toxin could be adsorbed easily by minerals, and the adsorption was much easier at low temperature than at high temperature at the initial concentration varying from 0 to 1000 mg L{sup -1}. The adsorption fitted well to both Langmuir and Freundlich isotherm models, but the Freundlich equation was more suitable. The pseudo-second-order (PSO) was the best application model to describe the adsorption kinetic. The adsorption process appeared to be controlled by chemical process, and the intra-particle diffusion was not the only rate-controlling step. The negative standard free energy ({Delta}{sub r}G{sub m}{sup {theta}}) values of the adsorption indicated that the adsorption of the Bt toxin by the minerals was spontaneous, and the changes of the standard enthalpy ({Delta}{sub r}H{sub m}{sup {theta}}) showed that the adsorption of the Bt toxin by montmorillonite was endothermic while the adsorption by the other three minerals was exothermic.

  13. Synthesis and structural characterization of ferrous trioctahedral smectites: Implications for clay mineral genesis and detectability on Mars

    Science.gov (United States)

    Chemtob, Steven M.; Nickerson, Ryan D.; Morris, Richard V.; Agresti, David G.; Catalano, Jeffrey G.

    2015-06-01

    Widespread detections of phyllosilicates in Noachian terrains on Mars imply a history of near-surface fluid-rock interaction. Ferrous trioctahedral smectites are thermodynamically predicted products of basalt weathering on early Mars, but to date only Fe3+-bearing dioctahedral smectites have been identified from orbital observations. In general, the physicochemical properties of ferrous smectites are poorly studied because they are susceptible to air oxidation. In this study, eight Fe2+-bearing smectites were synthesized from Fe2+-Mg-Al silicate gels at 200°C under anoxic conditions. Samples were characterized by inductively coupled plasma optical emission spectrometry, powder X-ray diffraction, Fe K-edge X-ray absorption spectroscopy (XAS), Mössbauer spectroscopy, and visible/near-infrared (VNIR) reflectance spectroscopy. The range of redox states was Fe3+/ΣFe = 0 to 0.06 ± 0.01 as determined by both XAS and, for short integration times, Mössbauer. The smectites have 060 distances (d(060)) between 1.53 and 1.56 Å, indicating a trioctahedral structure. d(060) and XAS-derived interatomic Fe-(Fe,Mg,Al) distance scaled with Fe content. Smectite VNIR spectra feature OH/H2O absorption bands at 1.4 and 1.9 µm, (Fe2+,Mg,Al)3-OH stretching bands near 1.4 µm, and Fe2+Fe2+Fe2+-OH, MgMgMg-OH, AlAl(Mg,Fe2+)-OH, and AlAl-OH combination bands at 2.36 µm, 2.32 µm 2.25 µm, and 2.20 µm, respectively. The spectra for ferrous saponites are distinct from those for dioctahedral ferric smectites, permitting their differentiation from orbital observations. X-ray diffraction patterns for synthetic high-Mg ferrosaponite and high-Mg ferrian saponite are both consistent with the Sheepbed saponite detected by the chemistry and mineralogy (CheMin) instrument at Gale Crater, Mars, suggesting that anoxic basalt alteration was a viable pathway for clay mineral formation on early Mars.

  14. A comparative study on the illite crystallinity and the clay mineral reflectance spectral index for subdividing the very low-grade metamorphic belt along the Lizhou-Hekou geological section in the Youjiang sedimentary basin, Guangxi,China

    Institute of Scientific and Technical Information of China (English)

    YAN Shouxun

    2004-01-01

    To examine the application potential of hyperspectral remote sensing techniques in classifying very low-grade metamorphic belts, the composition of clay minerals and the cyrstallinity of illite from mudstones were measured using XRD and VIS-SWIR (400-2500 nm) reflectance spectroscopy. Based on the illite cyrstallinity, Kubler Index (KI), the Early Triassic LuoLou Group and the Middle Triassic lower Baifeng Formation were classified as the lower Epizone with KI△2θ° ranging from 0.22 to 0.25, the upper Baifeng Formation as upper anchizone with KI△2θ°ranging from 0.26 to 0.33, and the Hekou Formation as lower anchizone with KI△2θ° ranging from 0.38 to 0.40. According to a KI△2θ° value of 0.43, it is possible that there may exist a local diagenetic zone in the upper strata. The illite cyrstallinity Kubler index and the metamorphic grade increase from the bottom to the top of the stratigraphic sequence. The metamorphic grade boundaries nearly match the stratigraphic boundaries, indicating a burial metamorphism nature for the stratigraphic sequence. From the bottom to the top of the sequence, the spectral absorption band center of clay minerals from fresh rocks is around 2200 nm. The absorption band centers change towards shorter wavelengths: the Luolou Group being at 2220 nm, the Baifeng Formation at 2217-2213 nm, the lower member of the Hekou Formation at 2214-2206 nm, and the upper member of the Hekou Formation at 2205-2197 nm. The spectral absorption band center of illite shows the same change pattern. These results indicate that very low-grade metamorphic belts can be subdivided using spectral indices of clay minerals, which are measured by using field portable spectroradiometers. However, it may not work well with satellite and airborne sensors.

  15. Formation of calcium containing minerals in the low temperature dolomite ceramics

    International Nuclear Information System (INIS)

    In order to elaborate low temperature dolomite ceramics, potentially suitable for the production of building materials, local low carbonate clay and dolomite siftings were used as a raw materials. Relationship between mechanical properties, mineral composition and firing temperature kept in the range of 600-800° C were established. According to the obtained data it was detected that the optimal burning temperature, giving the highest crushing strength (40 MPa) was around 700-750° C, optimal proportion of dolomite and clay expressed as ratio between CaO and Al2O3 - 2.5 wt%. Gradual formation of C3A occurs during firing, yielding C4AHX, i.e. mainly C4AH13 after hydratation of obtained composite material. The work was carried out in the frame of project, Innovative low temperature composite materials from local mineral deposits (N°2010/024/2DP/2.1.1.1.0/10/APIA/VIAA/152) financed by the European Regional Development Foundation (Activity 2.1.1.1.).

  16. Measurement techniques for in situ stresses around underground constructions in a deep clay formation

    Directory of Open Access Journals (Sweden)

    Li X.L.

    2010-06-01

    Full Text Available Disposal in deep underground geological formations is internationally recognized as the most viable option for the long-term management of high-level radioactive waste. In Belgium, the Boom clay formation is extensively studied in this context, in particular at the 225 m deep HADES Underground Research Facility in Mol. A cost-effective design of deep underground structures requires an accurate assessment of the in situ stresses; a good estimation of these stresses is also essential when interpreting in situ experiments regarding the hydro-mechanical behaviour of the host formation. Different measurement techniques are available to provide data on the stress evolution and other mechanical properties of the geological formation. The measurement can be direct (measurement of total pressure, or it can be an indirect technique, deriving the stress from related quantities such as strain (changes in structural members. Most total stress measurements are performed through permanently installed sensors; also once-only measurements are performed through specific methods (e.g. pressuremeter. Direct measurement of the stress state is challenging due to the complex mechanical behaviour of the clay, and the fact that the sensor installation inevitably disturbs the original stress field. This paper describes ways to deal with these problems and presents the results obtained using different techniques at HADES.

  17. The 1.7- to 4.2-micron spectrum of asteroid 1 Ceres - Evidence for structural water in clay minerals

    Science.gov (United States)

    Lebofsky, L. A.; Feierberg, M. A.; Larson, H. P.; Johnson, J. R.; Tokunaga, A. T.

    1981-01-01

    A high-resolution Fourier spectrum (1.7-3.5 microns) and medium-resolution spectrophotometry (2.7-4.2 microns) were obtained for Asteroid 1 Ceres. The presence of the 3-micron absorption feature due to water of hydration was confirmed. The 3-micron feature is compared with the 3-micron bands due to water of hydration in clays and salts. It is concluded that the spectrum of Ceres shows a strong absorption at 2.7-2.8 microns due to structural OH groups in clay minerals. The dominant minerals on the surface of Ceres are therefore hydrated clay minerals structurally similar to terrestrial montmorillonites. There is also a narrow absorption feature at 3.1 microns which is attributable to a very small amount of water ice on Ceres. This is the first evidence for ice on the surface of an asteroid.

  18. The protective effect of clay minerals against damage to adsorbed DNA induced by cadmium and mercury.

    Science.gov (United States)

    Hou, Yakun; Wu, Pingxiao; Zhu, Nengwu

    2014-01-01

    The adsorption of Salmon Sperm DNA on three kinds of raw clay (rectorite, montmorillonite and sericite) was investigated as a function of pH, ionic strength and the concentrations of DNA and phosphate ions in solution. The DNA adsorption was reduced in the following order: rectorite>montmorillonite>sericite. Based on these findings, there is a strong evidence that the mechanisms for DNA adsorption on clay involve electrostatic forces, cation bridging and ligand exchange. Cyclic voltammetry (CV) and UV-vis absorption and fluorescence spectroscopy were used to compare the properties of unbound DNA and the absorbed DNA on rectorite, both in the absence and presence of Cd(2+) and Hg(2+) inaqueous solutions. The interaction of heavy metals with the unbound DNA was evidenced by the disappearance of reduction peaks in CV, a small bathochromic shift in UV-vis spectroscopy and an incomplete quenching in the emission spectra. Such changes were not observed in the DNA-rectorite hybrids, which is evidence that adsorption on the clay can reduce the extent of the DNA damage caused by heavy metals. Therefore, in these experience the rectorite played an important role in protecting DNA against Cd(2+) and Hg(2+) induced damage.

  19. Effect of pH on the heavy metal-clay mineral interaction

    Energy Technology Data Exchange (ETDEWEB)

    Altyn, O.; Oezbelge, H.O.; Dogu, T.; Oezbelge, T.A. [Middle East Technical Univ., Ankara (Turkey)

    1997-12-31

    Adsorption and ion exchange of Pb and Cd on the surface of kaolinite and montmorillonite were studied with a strong emphasis on the pH values of solutions containing heavy metal ions. The pH range studied was 2.5 - 9. For kaolinite at a clay/solution ratio of 1/10 (w/w), Pb removal changes from 20 to 30% for an initial Pb concentration of 1640 ppm, and Cd removal changes from 10 to 20% for an initial Cd concentration of 1809 ppm. Due to its high exchange capacity, montmorillonite can remove more heavy metal than kaolinite. Removal rates for montmorillonite can reach up to 90% for both Pb and Cd. In the pH range of 3-6, there is a plateau for the removal rates. At pH values higher than 6, removal seems to increase artificially due to the precipitation of heavy metals. Under similar conditions for both clays, the rate of removal of Pb is always higher than that of Cd. As the pH value decreases for montmorillonite, there is a strong tendency for decreased surface area and swelling, as indicated by BET surface area measurements, adsorbed layer thickness and pore size distribution data. In the range of pH values studied, X-ray diffraction analysis showed the appearance of a characteristic (001) peak for montmorillonite, indicating that the crystalline structure of the clay was intact during the experiments.

  20. Effect of pH on the heavy metal-clay mineral interaction

    International Nuclear Information System (INIS)

    Adsorption and ion exchange of Pb and Cd on the surface of kaolinite and montmorillonite were studied with a strong emphasis on the pH values of solutions containing heavy metal ions. The pH range studied was 2.5 - 9. For kaolinite at a clay/solution ratio of 1/10 (w/w), Pb removal changes from 20 to 30% for an initial Pb concentration of 1640 ppm, and Cd removal changes from 10 to 20% for an initial Cd concentration of 1809 ppm. Due to its high exchange capacity, montmorillonite can remove more heavy metal than kaolinite. Removal rates for montmorillonite can reach up to 90% for both Pb and Cd. In the pH range of 3-6, there is a plateau for the removal rates. At pH values higher than 6, removal seems to increase artificially due to the precipitation of heavy metals. Under similar conditions for both clays, the rate of removal of Pb is always higher than that of Cd. As the pH value decreases for montmorillonite, there is a strong tendency for decreased surface area and swelling, as indicated by BET surface area measurements, adsorbed layer thickness and pore size distribution data. In the range of pH values studied, X-ray diffraction analysis showed the appearance of a characteristic (001) peak for montmorillonite, indicating that the crystalline structure of the clay was intact during the experiments

  1. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra

    Science.gov (United States)

    Robertson, K. M.; Milliken, R. E.; Li, S.

    2016-10-01

    Quantitative mineral abundances of lab derived clay-gypsum mixtures were estimated using a revised Hapke VIS-NIR and Shkuratov radiative transfer model. Montmorillonite-gypsum mixtures were used to test the effectiveness of the model in distinguishing between subtle differences in minor absorption features that are diagnostic of mineralogy in the presence of strong H2O absorptions that are not always diagnostic of distinct phases or mineral abundance. The optical constants (k-values) for both endmembers were determined from bi-directional reflectance spectra measured in RELAB as well as on an ASD FieldSpec3 in a controlled laboratory setting. Multiple size fractions were measured in order to derive a single k-value from optimization of the optical path length in the radiative transfer models. It is shown that with careful experimental conditions, optical constants can be accurately determined from powdered samples using a field spectrometer, consistent with previous studies. Variability in the montmorillonite hydration level increased the uncertainties in the derived k-values, but estimated modal abundances for the mixtures were still within 5% of the measured values. Results suggest that the Hapke model works well in distinguishing between hydrated phases that have overlapping H2O absorptions and it is able to detect gypsum and montmorillonite in these simple mixtures where they are present at levels of ∼10%. Care must be taken however to derive k-values from a sample with appropriate H2O content relative to the modeled spectra. These initial results are promising for the potential quantitative analysis of orbital remote sensing data of hydrated minerals, including more complex clay and sulfate assemblages such as mudstones examined by the Curiosity rover in Gale crater.

  2. The HADES demonstration and pilot project on radioactive waste disposal in a clay formation

    International Nuclear Information System (INIS)

    The overall objective of the HADES programme is the evaluation of the technical feasibility and safety of the disposal of radwaste in a deep clay formation. The pilot phase is aimed at demonstrating the system behaviour for those components of the system and those operations and issues which can be demonstrated directly. The time period considered covers a first phase of the development programme of the pilot project which includes: -The construction of a concrete lined tests drift of about 30 m length with a useful inner diameter of 3.5 m. In the lining, a number of openings or ports are foreseen for emplacing the various tests and sensors for the general auscultation in the host rock; - Mine-by test for the investigation of the response of the surrounding clay on the excavating; - CERBERUS test, a combined heating-irradiation test aiming at evaluating by simulation (electrical heaters and Co-60 radiation source) the impact of a HLW canister on its immediate near field; - Design of a gallery heating test for the demonstration by simulation of the behaviour of a concrete lined gallery structure and of the surrounding clay mass in a temperature field (TEMPPRES code for temperature and pressure evolution simulation). 21 refs

  3. Effect of chlorine in clay-mineral specimens prepared on silver metal-membrane mounts for X-ray powder diffraction analysis

    Science.gov (United States)

    Poppe, L.J.; Commeau, J.A.; Pense, G.M.

    1989-01-01

    Silver metal-membrane filters are commonly used as substrates in the preparation of oriented clay-mineral specimens for X-ray powder diffraction (XRD). The silver metal-membrane filters, however, present some problems after heat treatment if either the filters or the samples contain significant amounts of chlorine. At elevated temperature, the chloride ions react with the silver substrate to form crystalline compounds. These compounds change the mass-absorption coefficient of the sample, reducing peak intensities and areas and, therefore, complicating the semiquantitative estimation of clay minerals. A simple procedure that eliminates most of the chloride from a sample and the silver metal-membrane substrate is presented here.

  4. Numerical investigation of the seismic detectability of carbonate thin beds in the Boom Clay formation

    Science.gov (United States)

    Carcione, José M.; Gei, Davide

    2016-07-01

    The present study evaluates the capacity of the Boom Clay as a host rock for disposal purposes, more precisely its seismic characterization, which may assess its long-term performance to store radioactive wastes. Although the formation is relatively uniform and homogeneous, there are embedded thin layers of septaria (carbonates) that may affect the integrity of the Boom Clay. Therefore, it is essential to locate these geobodies. The seismic data to characterize the Boom Clay has been acquired at the Kruibeke test site. The inversion, which allowed us to obtain the anisotropy parameters and seismic velocities of the clay, is complemented with further information such as log and laboratory data. The attenuation properties have been estimated from equivalent formations (having similar composition and seismic velocities). The inversion yields quite consistent results although the symmetry of the medium is unusual but physically possible, since the anisotropy parameter ɛ is negative. According to a time-domain calculation of the energy velocity at four frequency bands up to 900 Hz, velocity increases with frequency, a behaviour described by the Zener model. Then, we use this model to describe anisotropy and anelasticity that are implemented into the equation of motion to compute synthetic seismograms in the space-time domain. The technique is based on memory variables and the Fourier pseudospectral method. We have computed reflection coefficients of the septaria thin layer. At normal incidence, the P-wave coefficient vanishes at specific thicknesses of the layer and there is no conversion to the S wave. For example, calculations at 600 Hz show that for thicknesses of 1 m the septarium can be detected more easily since the amplitudes are higher (nearly 0.8). Converted PS waves have a high amplitude at large offsets (between 30° and 80°) and can be useful to identify the target on this basis. Moreover, we have investigated the effect of septaria embedded in the Boom

  5. Formation of magnetic minerals at hydrocarbon-generation conditions

    OpenAIRE

    Abubakar, R.; Muxworthy, A. R.; Sephton, M.A.; Southern, P.; Watson, J. S.; Fraser, A.J.; Almeida, T.P.

    2015-01-01

    In this paper, we report the pyrolysis and formation of magnetic minerals in three source rock samples from the Wessex Basin in Dorset, southern England. The experimental conditions in the laboratory recreated the catagenesis environment of oil source rocks. Magnetic analysis of both the heated and the unheated samples at room temperature and at very low-temperatures (5 K), coupled with transmission electron-microscopy imaging and X-ray analysis, revealed the formation of nanometre-sized (...

  6. Effect of potassium on fixation of ammonium by clay minerals in different soil layers

    OpenAIRE

    , Agelda Ajazi; Liri Miho; Aida Bani; , Ardian Maçi

    2013-01-01

    In intensive agriculture systems, efficient nutrient use is necessary for high crop yields as well as for sustainable environment management. Fixation of NH4+ and K+ by soil clays affect N and K availability to plants. Latest studies indicates that non-exchangeable NH4+, may affect crop productivity and soil N dynamics more than previously thought. An incubation study with K2SO4 and NH4NO3 was conducted to evaluate NH4+ and K+ fixation in two southern Albanian soils. Soils contained significa...

  7. The Boom Clay geochemistry: Natural evidence

    International Nuclear Information System (INIS)

    In Belgium, the Boom Clay is studied as the reference formation for geological disposal of high-level radioactive waste and spent fuel. As the Boom Clay is considered as the main barrier for radionuclide migration/retention, a thorough characterisation of the clay and its pore water was done. This facilitates better understanding of the long-term geological processes and the distribution of the trace elements and radionuclides. From a mineralogical/geochemical point of view, the Boom Clay is considered as a rather homogeneous sediment, vertically as well as laterally. It is composed of detrital minerals, organic matter and fossils. Minerals are mainly clay minerals, quartz and feldspars. Minor amounts of pyrite and carbonates are also present. Small variations in mineralogical/geochemical composition are related to granulometrical variations. The radiochemical study indicates that the Boom Clay is in a state of secular radioactive equilibrium, meaning that the Boom Clay has not been disturbed for a very long time. Pore water sampling is done in situ from various piezometers, or by the squeezing or leaching of clay cores in the laboratory. These three pore water sampling techniques have been compared and evaluated. Boom Clay pore water is a NaHCO3 solution of 15 mM, containing 115 mg·l-1 of dissolved natural organic carbon. Some slight variations in pore water composition have been observed and can be explained by principles of chemical equilibrium. (author)

  8. Seismic stratigraphy and clay mineral distribution in shallow-marine siliciclastic deposits, central Mississippi sound, North-central Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Harper, G.G.; Manley, F.H.; Staheli, A.C.

    1983-03-01

    Three north-south high-resolution (7 kHz) seismic profiles and 16 20-foot cores taken at shot-point locations in central Mississippi Sound were utilized to determine: (1) any meaningful seismic reflector configurations in the subsurface; (2) the clay species dispersal pattern and its relation to transport systems that move sediment into the depositional basin; (3) any change in clay mineral species that has occurred through time with respect to deposition of 5 to 6 m (16 to 20 ft) of sediment. Interpretation of shallow seismic events (20 m (66 ft)) and clay mineral analysis indicates that extrinsic factors largely determined the clay mineral species and geologic history of Pleistocene and Holocene sedimentation in central Mississippi Sound. Trend surface maps, residual maps, profiles of the smectite (montmorillonite) to kaolinite ratios, and seismic profiles illustrate that: (1) Mississippi Sound has been influenced by transgressions and regressions associated with proglacial and interglacial stages; (2) a toplap seismic reflection configuration forms the probable Pleistocene-Holocene boundary; (3) at least one ancient barrier island is located inside the Holocene barrier system; (4) there is a late date for sea level reaching its present location (2500 years B.P.); (5) the influence of the Mississippi River system on sedimentation is soon after inundation of Mississippi Sound; (6) the longshore currents and flood tides supplied sediment rich in kaolinite to the study area; (7) the drainage systems emptying into the study area have local influence on clay mineral distribution; and (8) the dredging of ship channels affects the clay-mineral distribution within the sediments immediately below the sediment-water interface in central Mississippi Sound.

  9. Colloids formation versus complexation in radionuclides natural organic matter interaction studies: the case of Boom clay

    International Nuclear Information System (INIS)

    Full text of publication follows: Complexation of radionuclides (RN) by Natural Organic Matter (NOM) present in the host rock may pose a negative impact on the safety of a radioactive waste repository. This is because the formed complexes may increase the solubility, decrease the sorption, and thus enhance the mobility of RN. For Boom Clay, the reference host formation in Belgium for methodological research, and the one with probably the most abundant NOM content among the studied sites in the world, such a negative impact has not been demonstrated. This paper illustrates that Boom Clay NOM plays only a negligible role in RN complexation, based on data produced by the EC project TRANCOM-II. Classic approaches use a conditional stability constant (CSC) to measure the extent of interaction between RN and NOM. Such approaches borrow the theories from aquatic chemistry and model NOM as a complexing ligand. At neutral to alkaline pH, the condition relevant for most of disposal sites, side reactions such as hydrolysis and carbonate complexation interfere with the formation of RN-NOM complexes so that a CSC is highly conditional. Most of the published CSC values are very large implying high stabilities of formed RN-NOM complexes. A large value of a CSC predicts an increase in solubility and, if the formed RN-NOM complex is not sorbed, a decrease in sorption. Such predictions should be tested, before applied in safety assessments, by solubility and sorption experiments under relevant disposal conditions. Solubilities of laboratory prepared, amorphous tetravalent uranium and thorium phases were determined under geochemical conditions of Boom Clay with varying concentrations of NOM, mainly humic acid. Experimental results showed that Boom Clay NOM did not have an observable impact on the solubility of U(IV) and Th. For both actinides, however, NOM facilitated the formation of U/Th bearing colloids resulting in an apparent increase of U(IV) and Th concentration 3 orders of

  10. Characterization of clay minerals and organic matter in shales: Application to high-level nuclear waste isolation

    International Nuclear Information System (INIS)

    The objective of the Sedimentary Rock Program at the Oak Ridge National Laboratory is to conduct investigations to assess the potential for shale to serve as a host medium for the isolation of high-level nuclear wastes. The emphasis on shale is a result of screening major sedimentary rock types (shale, sandstone, carbonate , anhydrite, and chalk) for a variety of attributes that affect the performance of repositories. The retardation of radionuclides was recognized as one of the potentially favorable features of shale. Because shale contains both clay minerals and organic matter, phases that may provide significant sorption of radioelement, the characterization of these phases is essential. In addition, the organic matter in shale has been identified as a critical area for study because of its potential to play either a favorable (reductant) or deleterious (organic ligands) role in the performance of a repository sited in shale. 36 refs., 36 figs., 10 tabs

  11. Experimental Study of the Selective Adsorption of Heavy Metals onto Clay Minerals

    Institute of Scientific and Technical Information of China (English)

    何宏平; 郭九皋; 等

    2000-01-01

    The interaction between minerals and heavy metals has been a hot object of study in environmental science,mineralogy and soil science,Through the selective adsorption experiment of Ca-montomorillonite,illite and kaolinite to Cu2+,Pb2+,Zn2+,Cd2+,and Cr3+ ions at certain conditions,it could be concluded that Cr3+ is most effectively sorbed by all the three minerals.Also,it can be found that Pb2+ shows a strong affinity for illite and kaolinite while cu2+ for montmorillonite .Based on the adsorption experiment at varying pH of solution,it can be found that the amount of heavy etals sorbed by minerals increases with increasing pH of the solution.

  12. Clay mineral continental amplifier for marine carbon sequestration in a greenhouse ocean

    OpenAIRE

    Kennedy, Martin J.; Wagner, Thomas

    2011-01-01

    The majority of carbon sequestration at the Earth’s surface occurs in marine continental margin settings within fine-grained sediments whose mineral properties are a function of continental climatic conditions. We report very high mineral surface area (MSA) values of 300 and 570 m2 g in Late Cretaceous black shales from Ocean Drilling Program site 959 of the Deep Ivorian Basin that vary on subcentennial time scales corresponding with abrupt increases from approximately 3 to approximately 18% ...

  13. Clay minerals in primitive meteorites and interplanetary dust 2. Smectites and micas

    Science.gov (United States)

    Keller, L. P.; Zolensky, M. E.

    1991-01-01

    The classification is briefly summarized of stony meteorites and cosmic dust, and the mineralogy and chemistry is described of serpentine group minerals. The occurrence of smectites and micas in extraterrestrial materials is examined. The characterization of fine grained minerals in meteorites and IDPs relies heavily on electron beam instruments, especially the transmission electron microscope (TEM). Typically, phyllosilicates are identified by a combination of high resolution imaging of basal spacings, electron diffraction, and chemical analysis. Smectites can be difficult to differentiate from micas because the smectites lose their interlayer water and the interlayer partly collapse in the high vacuum of the TEM.

  14. In vivo ectopic bone formation by devitalized mineralized stem cell carriers produced under mineralizing culture condition.

    Science.gov (United States)

    Chai, Yoke Chin; Geris, Liesbet; Bolander, Johanna; Pyka, Grzegorz; Van Bael, Simon; Luyten, Frank P; Schrooten, Jan

    2014-12-01

    Functionalization of tissue engineering scaffolds with in vitro-generated bone-like extracellular matrix (ECM) represents an effective biomimetic approach to promote osteogenic differentiation of stem cells in vitro. However, the bone-forming capacity of these constructs (seeded with or without cells) is so far not apparent. In this study, we aimed at developing a mineralizing culture condition to biofunctionalize three-dimensional (3D) porous scaffolds with highly mineralized ECM in order to produce devitalized, osteoinductive mineralized carriers for human periosteal-derived progenitors (hPDCs). For this, three medium formulations [i.e., growth medium only (BM1), with ascorbic acid (BM2), and with ascorbic acid and dexamethasone (BM3)] supplemented with calcium (Ca(2+)) and phosphate (PO4 (3-)) ions simultaneously as mineralizing source were investigated. The results showed that, besides the significant impacts on enhancing cell proliferation (the highest in BM3 condition), the formulated mineralizing media differentially regulated the osteochondro-related gene markers in a medium-dependent manner (e.g., significant upregulation of BMP2, bone sialoprotein, osteocalcin, and Wnt5a in BM2 condition). This has resulted in distinguished cell populations that were identifiable by specific gene signatures as demonstrated by the principle component analysis. Through devitalization, mineralized carriers with apatite crystal structures unique to each medium condition (by X-ray diffraction and SEM analysis) were obtained. Quantitatively, BM3 condition produced carriers with the highest mineral and collagen contents as well as human-specific VEGF proteins, followed by BM2 and BM1 conditions. Encouragingly, all mineralized carriers (after reseeded with hPDCs) induced bone formation after 8 weeks of subcutaneous implantation in nude mice models, with BM2-carriers inducing the highest bone volume, and the lowest in the BM3 condition (as quantitated by nano-computed tomography

  15. Mineral potential of clays that cover the gypsum deposits in Araripina-PE region; Potencial mineral das argilas que recobrem as jazidas de gipsita na regiao de Araripina-PE

    Energy Technology Data Exchange (ETDEWEB)

    Lira, B.B.; Anjos, I.F. dos, E-mail: belarminolira@ct.ufpb.br [Universidade Federal da Paraiba (CT/UFPB), PB (Brazil); Rego, S.A.B.C. [Universidade Federal de Pernambuco (PGEM/DEMEC/UFPE), PE (Brazil)

    2011-07-01

    In the present work the applicability of the clays that cover the deposits of Gypsum Plaster in the region of Araripina - PE for use as the ceramic pigments and for bricks production in the red ceramic industry was analyzed. The clay minerals contained the illite, kaolinite and smectite, with high proportion of the last one. The possibility of industrial application of this mineral clay is considerable; however, the mining industries that mine and process the gypsum in the region do not take the clays into account as the potential mineral. In general, industries use the clay minerals in manufacturing processes or as key raw materials, or as the alternatives for some kinds of the chemical processing industries. This paper aims to highlight the potential of materials that cover the deposits of gypsum in reference. The material sampled from different deposit layers was characterized and the physical treatment of ore was applied. The results showed that the material analyzed can be used in various kinds of industry, such as the production of natural ceramic pigments. (author)

  16. Geochemical simulation of the evolution of granitic rocks and clay minerals submitted to a temperature increase in the vicinity of a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    The alteration of a granitic rock around a repository for spent nuclear fuel has been simulated considering the effect of an increase of temperature due to this kind of induced geothermal system. The results of the simulation have been interpreted in terms of mass transfer and volumic consequences. The alteration proceeds by dissolution of minerals (with an increase of the volumes of fissures and cracks) and precipitation of secondary miminerals as calcite and clay minerals particularly (with a decrease of the porosity). The increase of the temperature from 10 degrees C to about 100 degrees C will favour the alteration of the granitic rock around the repository by the solution filling the porosity. The rock is characterized by a very low fissure porosity and a consequent very low water velocity. This too, favours intense water rock interactions and production of secondary clays and the total possible mass transfer will decrease the porosity. A combination of these thermodynamic mass balance calculations with a kinetic approach of mineral dissolutions gives a first attempt to calibrate the modelling in the time scale: the decrease of porosity can be roughly estimated between 2 and 20% for 100,000 years. The particular problem of Na-bentonites behaviour in the proximate vicinity of the repository has been studied too. One must distinguish between two types of clay-water interactions: -within the rock around the repository, Na-bentonites should evolute with illitization in slighltly open system with low clay/water ratios, -within the repository itself, the clay reacts in a closed system for a long time with high clay/water ratios and a self-buffering effect should maintain the bentonite type. This chemical buffering effect is a positive point for the use of this clay as chemical barrier. (Author)

  17. Study of dolomite dissolution at various temperatures - Evidence for the formation of nanocrystalline secondary phases at dolomite surface and influence on dolomite interactions with other minerals

    Science.gov (United States)

    Debure, M.; Andreazza, P.; Grangeon, S.; Lerouge, C.; Montes-Hernandez, G.; MADE, B.; Tournassat, C.

    2015-12-01

    In most clay-rock geological formation studied for the storage of nuclear waste, pore water compositions are expected to be at equilibrium with carbonate minerals, which are always included in predictive models for pore water composition calculations [1]. Among the carbonates known to be present, dolomite may be problematic in the pore water composition calculation because its solubility spans a large range of values as a function of its crystallinity in thermodynamic databases. In addition, the composition of dolomite minerals observed in clay-rock formations such as Callovian-Oxfordian or Opalinus clay formation differs from this of a pure dolomite: the Ca/Mg stoichiometry is not ideal, and the minerals contain minor amounts of Fe and traces of many other elements [2]. To understand the influence of secondary phases precipitation during dolomite dissolution on pore water chemistry, the dissolution of monocrystals of dolomite were investigated at 25 °C and at 80 °C in a pH range 3 to 8 for various time periods (30 minutes to 21 days) in sealed PTFE reactors. Solution analyses evidenced a stoichiometric release of Ca and Mg in solution during dolomite dissolution. Scanning Electron Microscopy (SEM), Raman and X-Ray Diffraction (XRD) analyses did not evidence secondary Mg-bearing minerals precipitation, but revealed the formation of Fe-bearing particles on the dolomite surface. Morphological characterizations performed with Small-angle X-ray scattering (SAXS) evidenced that the precipitation occurs along a specific crystallographic plane of the dolomite monocrystal. Thus, the precipitated nanoparticles clustered on specific surface sites, and are made of Fe-rich phases poorly crystallized (carbonates, oxides and hydroxides). [1] Tournassat et al. 2015. Ch. 3: Chemical Conditions in Clay-Rocks. Natural and Engineered Clay Barriers, Elsevier. [2] Lerouge et al. 2011. Geochim. et Cosmoch. Acta, 2011, 75, 2633-2663.

  18. REE Provenance and U-Th Distribution on Poly-Mineralized Lithofacies, Um Bogma Formation, Allouga environs, West Central Sinai, Egypt

    International Nuclear Information System (INIS)

    The Allouga environs, West Central Sinai, are bounded by lat. 28 degree 58/ - 29 degree 03/ N and long. 33 degree 21/ and 33 degree 26/ E, covering about 100 km2. The environs are covered by late Proterozoic basement rocks overlain non conformably by Paleozoic rock succession. The Paleozoic succession attains about 450 m, comprising seven stratigraphic formations. The Um Bogma Formation, Also referred to as the middle carbonate series, attains 61 m thickness and hosts most of the polymetallic mineralization associated with Paleozoic rocks. It was deposited in shallow, warm, well agitated and oxidized transgressed marine environment. Owing to its importance, it is classified into three members: a) lower members comprising siltstone, clay stone and sandy dolomite; b) middle member comprising marly dolostone and c) upper member comprising sandy dolostone, clay stone and siltstone. The REE and trace elements investigations of the shale/siltstone/clay stone lithofacies (Um Bogma Formation), indicate that it mainly comprises graywacke provenance with small amount of litharenites. Also, the data indicates the derivation of the terrigenous material from granite-gneiss and siliceous sources characteristics of sedimentary basins developed near or around active continental margin. The Cu- mineralization occurs in all members of Umm Bog ma Formation as disseminations and encrustation of green and blue colored Cu-minerals dominated by highly oxidized minerals such as silicates, carbonates, phosphates, sulphates and chlorides. This mineral assemblage reflects the wide range of ph conditions of the mineralizing fluids. The U-Th distribution in the shale/siltstone/clay stone lithofaciesis as follows: The marly shales have U content average (261 ppm) and Th content average (7.7 ppm), black and variegated shales have U content average (56.2 ppm) and Th content average (20 ppm), The ferrgenous siltstone have U content average (38 ppm) and Th content average (17.8 ppm), the black

  19. Clay minerals assemblage in the Neogene fluvial succession of the Pishin Belt, Pakistan

    DEFF Research Database (Denmark)

    Kasi, Aimal Khan; Kassi, Akhtar Muhammad; Friis, Henrik;

    2014-01-01

    The Neogene siliciclastic succession of the Pishin Belt comprises the newly proposed Middle to Upper Miocene Dasht Murgha group, Miocene-Pliocene Malthanai formation and Pleistocene Bostan Formation. Sandstones of the succession have been classified as lithic arenites and their detrital modes ind...

  20. Mineral formation on metallic copper in a 'Future repository site environment': Textural considerations based on natural analogs

    International Nuclear Information System (INIS)

    Copper mineral formation in the Swedish 'repository site environment' is discussed. Special attention is given to ore mineral textures (=the spatial relation among minerals), with examples given from nature. It is concluded: By analogy with observations from natural occurrences, an initial coating of Cu-oxide on the canister surface (because of entrapped air during construction) will probably not hinder a later sulphidation process. Early formation of Cu-sulphides on the canister surface may be accompanied by formation of CuFe-sulphides. The latter phase(s) may form through replacement of the Cu-sulphides or, alternatively, by means of reaction between dissolved copper and fine-grained iron sulphide (pyrite) in the surrounding bentonite. Should for some reason the bentonite barrier fail and the conditions become strongly oxidizing, we can expect crustifications and rhythmic growths of Cu(II)-phases, like malachite (Cu2(OH)2CO3). A presence of Fe2 in the clay minerals making up the bentonite might prove to have an adverse effect on the canister stability, since, in this case, the bentonite might be expected to act as a sink for dissolved copper. The mode of mineral growth along the copper - bentonite interface remains an open question

  1. Radiation-induced defects in clay minerals, markers of the mobility of the uranium in solution in the unconformity-type uranium deposits

    International Nuclear Information System (INIS)

    This study presents the works driven on three groups of clay minerals (kaolins, illite, sudoite (di-tri-octahedral chlorites)) characteristics of the alteration halos surrounding unconformity-type uranium deposits, in order to reveal uranium paleo-circulations in the intra-cratonic meso-Proterozoic basins (1,2 - 1,6 Ga). Thanks to Electron Paramagnetic Resonance Spectroscopy (EPR), we were able to highlight the persistence of structural defects in kaolin-group minerals contemporaneous of the basin diagenesis, and demonstrate the existence of relatively stable defects in illites and sudoites contemporaneous of the uranium deposits setting. Thus, the main defect in illite (Ai centre) and the main defect in sudoite (As centre) are characterized by their g components such as, respectively, gt = 2,003 et g// = 2,051 for illite and gt = 2,008 et g// = 2,051 for sudoite. As the main defect in kaolins (kaolinite/dickite), the main defects in illite and sudoite are perpendicularly oriented according to the (ab) plane, on the tetrahedral Si-O bound. However, their thermal stabilities seem different. The observation of samples from different zones (background, anomal or mineralized) of the Athabasca basin (Canada) allowed to identify a parallel evolution between actual defects concentration measured in the different clay minerals and the proximity of the mineralisation zones. Consequently, clays minerals can be considered as potential plotters of zones where uranium-rich solutions have circulated. (author)

  2. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study.

    Science.gov (United States)

    Ghadiri, M; Chrzanowski, W; Rohanizadeh, R

    2014-11-01

    Different materials in form of sponge, hydrogel and film have been developed and formulated for treating and dressing burn wounds. In this study, the potential of Laponite, a gel forming clay, in combination with an antimicrobial agent (mafenide), as a wound dressing material was tested in vitro. Laponite/mafenide (Lap/Maf) hydrogel was formulated in three different ratios of Lap/Maf 1:1, 1:2, 1:3. Laponite/mafenide/alginate (Lap/Maf/Alg) film was also formulated by combining Lap/Maf gel (1:1) with alginate. Intercalation rate of mafenide into the layers of Laponite nanoparticles and physico-chemical properties, including wound dressing characteristics of materials were studied using various analytical methods. Furthermore, the degradation of materials and the release profile of mafenide were investigated in simulated wound exudates fluid and antibacterial effectiveness of the eluted mafenide was tested on a range of bacterial species. The cytotoxicity of materials was also evaluated in skin fibroblast culture. The results showed that mafenide molecules were intercalated between the nano-sized layers of Laponite. The eluted mafenide showed active antibacterial effects against all three tested bacteria. All intercalated mafenide released from Lap/Maf 1:1 and 1:2 gel formulations and nearly 80% release from 1:3 formulation during test period. No significant difference was observed in release profile of mafenide between Lap/Maf/Alg film and Lap/Maf formulations. Wound dressing tests on Lap/Maf/Alg film showed it is a breathable dressing and has capacity to absorb wound exudates. The study showed that prepared Lap/Maf composite has the potential to be used as an antibiotic eluting gel or film for wound healing application. Additionally, Laponite has shown benefits in wound healing processes by releasing Mg(2+) ions and thereby reducing the cytotoxic effect of mafenide on fibroblast cells. PMID:25027303

  3. Evaluation of radiological safety assessment of a repository in a clay rock formation

    International Nuclear Information System (INIS)

    This report presents a comprehensive description of the post-closure radiological safety assessment of a repository for the spent fuel arisings resulting from the Spanish nuclear program excavated in a clay host rock formation. In this report three scenarios have been analysed in detail. The first scenario represents the normal in detail. The first scenario represents the normal evolution of the repository (Reference Scenario); and includes a set of variants to investigate the relative importance of the various repository components and examine the sensitivity of the performance to parameters variations. Two altered scenarios have also been considered: deep well construction and poor sealing of the repository. This document contains a detailed description of the repository system, the methodology adopted for the scenarios generation, the process modelling approach and the results of the consequences analysis. (Author)

  4. Fibroblast-Like Synoviocytes Induce Calcium Mineral Formation and Deposition

    Directory of Open Access Journals (Sweden)

    Yubo Sun

    2014-01-01

    Full Text Available Calcium crystals are present in the synovial fluid of 65%–100% patients with osteoarthritis (OA and 20%–39% patients with rheumatoid arthritis (RA. This study sought to investigate the role of fibroblast-like synoviocytes (FLSs in calcium mineral formation. We found that numerous genes classified in the biomineral formation process, including bone gamma-carboxyglutamate (gla protein/osteocalcin, runt-related transcription factor 2, ankylosis progressive homolog, and parathyroid hormone-like hormone, were differentially expressed in the OA and RA FLSs. Calcium deposits were detected in FLSs cultured in regular medium in the presence of ATP and FLSs cultured in chondrogenesis medium in the absence of ATP. More calcium minerals were deposited in the cultures of OA FLSs than in the cultures of RA FLSs. Examination of the micromass stained with nonaqueous alcoholic eosin indicated the presence of birefringent crystals. Phosphocitrate inhibited the OA FLSs-mediated calcium mineral deposition. These findings together suggest that OA FLSs are not passive bystanders but are active players in the pathological calcification process occurring in OA and that potential calcification stimuli for OA FLSs-mediated calcium deposition include ATP and certain unidentified differentiation-inducing factor(s. The OA FLSs-mediated pathological calcification process is a valid target for the development of disease-modifying drug for OA therapy.

  5. Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars

    Science.gov (United States)

    Ehlmann, B. L.; Bish, D. L.; Ruff, S. W.; Mustard, J. F.

    2012-10-01

    We used a suite of techniques, including those emulating compositional data sets obtained from Mars orbit and obtainable at the Mars surface, to examine aqueous alteration of basaltic rocks from Iceland as a mineralogic and geochemical analog for Noachian environments on Mars. A sample suite was collected for laboratory measurement of (1) whole-rock visible/near-infrared (VNIR) reflectance and thermal infrared (TIR) emission spectra; (2) VNIR and TIR reflectance spectra of particle-size separates derived from the bulk rock and from materials extracted from fractures/vesicles; (3) X-ray diffraction (XRD) patterns for determination of quantitative modal mineralogy; (4) major element chemistry using flux fusion of whole-rock powders; and (5) electron microprobe analyses of minerals in thin sections. Conclusions about aqueous alteration can be influenced by technique. For these basalts, whole-rock chemical data showed scant evidence for chemical fractionation, but TIR, VNIR, and XRD measurements identified distinctive assemblages of hydrous silicate minerals, differing by sample. XRD provided the most complete and accurate quantitative determination of sample mineralogy. However, VNIR spectroscopy was the technique most useful for determining composition of low-abundance smectite clays, and TIR spectroscopy was the most useful for recognizing hydrated silicates in thin surface coatings. High spatial resolution mineralogical and chemical data sets were useful for understanding the texture and distribution of alteration products and variations in fluid chemistry. No single approach provides a complete assessment of the environment of alteration, demonstrating the importance of employing multiple, synergistic mineralogical and geochemical techniques and instruments in exploration of rock strata from aqueous paleoenvironments on Mars.

  6. Biogeochemical processes in a clay formation in situ experiment: Part A - Overview, experimental design and water data of an experiment in the Opalinus Clay at the Mont Terri Underground Research Laboratory, Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Leupin, O.X. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland); Mettler, S. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Solexperts Ltd., Mettlenbachstrasse 25, 8617 Moenchaltorf (Switzerland); Gaucher, E.C. [BRGM, 3 avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Maeder, U. [University of Bern, Institute of Geological Sciences, Baltzerstrasse 3, CH-3012 Bern (Switzerland); De Canniere, P. [SCK.CEN, Waste and Disposal Project, Boeretang 200, 2400 Mol (Belgium); Vinsot, A. [ANDRA, Laboratoire de Recherche Souterrain de Meuse/Haute-Marne, RD960 BP9, 55290 Bure (France); Gaebler, H.E. [BGR, Stilleweg 2, 30655 Hannover (Germany); Kunimaro, T. [JAEA, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kiho, K. [CRIEPI, 1646 Abiko, Abiko-city Chiba 270-1194 (Japan); Eichinger, L. [Hydroisotop, 85301 Schweitenkirchen (Germany)

    2011-06-15

    Highlights: > The composition was affected by the complex interplay of diffusion, mineral and surface reactions. > The {sup 13}C signals for carbon species showed significant variations which could only be partly explained. > The main cations remained remarkably constant during the experiment. > This underlines the strong buffering via cation exchange and carbonate dissolution/precipitation. - Abstract: An in situ test in the Opalinus Clay formation, termed porewater chemistry (PC) experiment, was carried out for a period of 5 years. It was based on the concept of diffusive equilibration whereby a traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed-off borehole. The main original focus was to obtain reliable data on the pH/pCO{sub 2} conditions of the porewater, but because of unexpected microbiologically-induced redox reactions, the objective was extended to elucidate the biogeochemical processes occurring in the borehole and to understand their impact on pH/pCO{sub 2} and porewater chemistry in the low permeability clay formation. The behaviour of the conservative tracers {sup 2}H and Br{sup -} could be explained by diffusive dilution in the clay and moreover the results showed that diffusive equilibration between the borehole water and the formation occurred within about 3 year's time. However, the composition and pH/pCO{sub 2} conditions differed considerably from those of the in situ porewater. Thus, pH was lower and pCO{sub 2} was higher than indicated by complementary laboratory investigations. The noted differences are explained by microbiologically-induced redox reactions occurring in the borehole and in the interfacial wall area which were caused by an organic source released from the equipment material. The degradation of this source was accompanied by sulfate reduction and - to a lesser extent - by methane generation, which induced a high rate of acetogenic reactions

  7. Effects of Organic Anions on Phosphate Adsorption and Desorption from Variable—Charge Clay Minerals and Soil

    Institute of Scientific and Technical Information of China (English)

    HEZHEN-LI; YUANKE-NENG; 等

    1992-01-01

    Effects of citrate and tartrate on phosphate adsorption and desorption from kaolinite,goethite,amorphous Al-oxide and Ultisol were studied.P adsorption was significantly decreased as the concentration of the organic anions increased from 10-5 to 10-1 M.At 0.1 M and pH 7.0,tartrate decreased P adsorption by 27.6%-50.6% and citrate by 37.9-80.4%,depending on the kinds of adsorbent.Little Al and/or Fe were detected in the equilibrium solutions,even at the highest concentration of the organic anions.Effects of the organic anions on phosphate adsorption follow essentially the competitive adsorption mechanism.The selectivity coefficients for competitive adsorption can be used to compare the effectiveness of different organic anions in reducing P adsorption under given gonditions. Phosphate desorption was increased by 3 to 100 times in the presence of 0.001 M citrate or tartrate compared to that in 0.02 M KCl solution alone.However,for all the soil and clay minerals studied the amount of P desorbed by citrate or tartrate was generally lower than or close to that of isotopically exchangeable P.The effect of organic anions on phosphate desorption arises primarily from ligand exchange.

  8. Comparative 40Ar/39Ar and K-Ar dating of illite-type clay minerals: A tentative explanation for age identities and differences

    Science.gov (United States)

    Clauer, Norbert; Zwingmann, Horst; Liewig, Nicole; Wendling, Raymond

    2012-10-01

    The 40K/40Ar (K-Ar) and 40Ar/39Ar dating methods are applied here to the same, very small, micrometric illite-type particles that crystallized under low-temperature (samples with a total of fifteen size fractions from advantages, such as the plateaus obtained by incremental step heating of the various size fractions, even if not translatable straight as ages of the illite populations; they allow identification of two generations of authigenic illite that formed at about 200 and 175 Ma, and one detrital generation. However, 40Ar/39Ar dating of clay minerals remains challenging as technical factors, such as the non-standardized encapsulation, may have potential unexpected effects. Both dating methods have their limitations: (1) K-Ar dating requires relatively large samples (ca. 10-20 mg) incurring potential sample homogeneity problems, with two aliquots required for K and Ar analysis for an age determination, also inducing a higher analytical uncertainty; (2) an identified drawback of 40Ar/39Ar dating is Ar recoil and therefore potential loss that occurs during neutronic creation of 39Ar from 39K, mostly in the finer mineral particles. If all the recoiled 39Ar is redistributed into adjacent grains/minerals, the final 40Ar/39Ar age of the analyzed size fraction remains theoretically identical, but it is not systematic in clay-type material. The finest grain sizes (e.g., convenient and straightforward use supported by a standardized and well-controlled technical approach. The present comparison of the two Ar-dating methods as applied to clay material shows that neither method is presently outdated, and that they are even of reciprocal use. Both methods have distinct application fields in clay geochronology and complementary application fields in clay crystallography.

  9. Mars, clays and the origins of life

    Science.gov (United States)

    Hartman, Hyman

    1989-01-01

    To detect life in the Martian soil, tests were designed to look for respiration and photosynthesis. Both tests (labeled release, LR, and pyrolytic release, PR) for life in the Martian soils were positive. However, when the measurement for organic molecules in the soil of Mars was made, none were found. The interpretation given is that the inorganic constituents of the soil of Mars were responsible for these observations. The inorganic analysis of the soil was best fitted by a mixture of minerals: 60 to 80 percent clay, iron oxide, quartz, and soluble salts such as halite (NaCl). The minerals most successful in simulating the PR and LR experiments are iron-rich clays. There is a theory that considers clays as the first organisms capable of replication, mutation, and catalysis, and hence of evolving. Clays are formed when liquid water causes the weathering of rocks. The distribution of ions such as aluminum, magnesium, and iron play the role of bases in the DNA. The information was stored in the distribution of ions in the octahedral and tetrahedral molecules, but that they could, like RNA and DNA, replicate. When the clays replicated, each sheet of clay would be a template for a new sheet. The ion substitutions in one clay sheet would give rise to a complementary or similar pattern on the clay synthesized on its surface. It was theorized that it was on the surface of replicating iron-rich clays that carbon dioxide would be fixed in the light into organic acids such as formic or oxalic acid. If Mars had liquid water during a warm period in its past, clay formation would have been abundant. These clays would have replicated and evolved until the liquid water was removed due to cooling of Mars. It is entirely possible that the Viking mission detected life on Mars, but it was clay life that awaits the return of water to continue its evolution into life based on organic molecules.

  10. Evolution of multi-mineral formation evaluation using LWD data in complex carbonates offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, Paolo; Borovskaya, Irina [Schlumberger, Houston, TX (United States)

    2012-07-01

    Petrophysical Formation Evaluation using Logging While Drilling (LWD) measurements is a new requisite when drilling in carbonates reservoirs offshore Brazil. These reservoirs are difficult to characterize due to an unusual mixture of the minerals constituting the matrix and affecting rock texture. As wells are getting deeper and more expensive, an early identification of the drilled targets potential is necessary for valuable decisions. Brazil operators have been especially demanding towards service providers, pushing for development of suitable services able to positively identify and quantify not only the presence of hydrocarbons but also their flowing capability. In addition to the standard gamma ray / resistivity / porosity and density measurements, three new measurements have proven to be critical to evaluate complex carbonate formations: Nuclear Magnetic Resonance (NMR), Spectroscopy and Capture Cross-Section (sigma). Under appropriate logging conditions, NMR data provides lithology independent porosity, bound and free fluids fractions, reservoir texture and permeability. Capture Spectroscopy allows assessment of mineral composition in terms of calcite, dolomite, quartz and clay fractions, and in addition highlights presence of other heavier minerals. Finally, sigma allows performing a volumetric formation evaluation without requiring custom optimization of the classical exponents used in all forms of resistivity saturation equations. All these new measurements are inherently statistical and if provided by wireline after drilling the well they may result in significant usage of rig time. When acquired simultaneously while drilling they have three very clear advantages: 1) no extra rig time, 2) improved statistics due to long formation exposure (drilling these carbonates is a slow process and rate of penetration (ROP) rarely exceeds 10 m/hr), 3) less invasion effect and better hole condition. This paper describes the development of two LWD tools performing the

  11. Adsorption of dissolved aluminum on sapphire-c and kaolinite: implications for points of zero charge of clay minerals.

    Science.gov (United States)

    Lützenkirchen, Johannes; Abdelmonem, Ahmed; Weerasooriya, Rohan; Heberling, Frank; Metz, Volker; Marsac, Remi

    2014-01-01

    We have studied the impact of dissolved aluminum on interfacial properties of two aluminum bearing minerals, corundum and kaolinite. The effect of intentionally adding dissolved aluminum on electrokinetic potential of basal plane surfaces of sapphire was studied by streaming potential measurements as a function of pH and was complemented by a second harmonic generation (SHG) study at pH 6. The electrokinetic data show a similar trend as the SHG data, suggesting that the SHG electric field correlates to zeta-potential. A comparable study was carried out on kaolinite particles. In this case electrophoretic mobility was measured as a function of pH. In both systems the addition of dissolved aluminum caused significant changes in the charging behavior. The isoelectric point consistently shifted to higher pH values, the extent of the shift depending on the amount of aluminum present or added. The experimental results imply that published isoelectric points of clay minerals may have been affected by this phenomenon. The presence of dissolved aluminum in experimental studies may be caused by particular pre-treatment methods (such as washing in acids and subsequent adsorption of dissolved aluminum) or even simply by starting a series of measurements from extreme pH (causing dissolution), and subsequently varying the pH in the very same batch. This results in interactions of dissolved aluminum with the target surface. A possible interpretation of the experimental results could be that at low aluminum concentrations adatoms of aluminum (we will refer to adsorbed mineral constituents as adatoms) can form at the sapphire basal plane, which can be rather easily removed. Simultaneously, once the surface has been exposed to sufficiently high aluminum concentration, a visible change of the surface is seen by AFM which is attributed to a surface precipitate that cannot be removed under the conditions employed in the current study. In conclusion, whenever pre-treatment or the

  12. Formation of secondary minerals in a lysimeter approach - A mineral-microbe interaction

    Science.gov (United States)

    Schäffner, F.; Merten, D.; De Giudici, G.; Beyer, A.; Akob, D. M.; Ricci, P. C.; Küsel, K.; Büchel, G.

    2012-04-01

    Heavy metal contamination of large areas due to uranium mining operations poses a serious long-term environmental problem. In the Ronneburg district (eastern Thuringia, Germany), leaching of low grade uranium bearing ores (uranium content enrichment of heavy metals, especially Cd, Ni, Co, Cu and Zn due to a residual contamination even after remediation efforts. To reveal the processes of secondary mineral precipitation in the field a laboratory lysimeter approach was set up under in situ-like conditions. Homogenized soil from the field site and pure quartz sand were used as substrates. In general, in situ measurements of redox potentials in the substrates showed highly oxidizing conditions (200-750 mV). Water was supplied to the lysimeter from below via a mariottés bottle containing contaminated groundwater from the field. Evaporation processes were allowed, providing a continuous flow of water. This led to precipitation of epsomite and probably aplowite on the top layer of substrate, similar to what is observed in field investigations. After 4 weeks, the first iron and manganese bearing secondary minerals became visible. Soil water samples were used to monitor the behaviour of metals within the lysimeter. Saturation indices (SI) for different secondary minerals were calculated with PHREEQC. The SI of goethite showed oversaturation with respect to the soil solution. SEM-EDX analyses and IR spectroscopy confirmed the formation of goethite. Geochemical data revealed that goethite formation was mainly dominated by Eh/pH processes and that heavy metals, e.g. Zn and U, could be enriched in this phase. Although Eh/pH data does not support formation of manganese minerals, Mn(II)-oxidizing bacteria (MOB) could be isolated from field soil samples, supporting the fact that microorganisms may influence this natural attenuation process. Laser ablation ICP-MS data reveal accumulation of manganese in MOB biomass on Mn(II)-containing agar plates. Furthermore, it was possible to

  13. Advances in interaction mechanism of water (gas) on clay minerals in China

    Institute of Scientific and Technical Information of China (English)

    He Manchao; Sun Xiaoming; Zhao Jian

    2014-01-01

    Dealing with large-scale deformations in soft-rock tunnels is a very important issue in soft-rock tunnel engineering. The mechanism of this large-scale deformation is closely related to the physical and chem-ical properties of soft rock, interaction between soft rock and water, and interaction between soft rock and gas contained in soft rock. In order to gain a better predictive understanding of the governing prin-ciples associated with this phenomenon, we used experimental and theoretical methods to study the effects of point defect on physical and chemical properties of soft rock and mechanism of interaction between water (gas) and soft rock. Firstly, we calculated the impurity formation energies and transition energy levels of defects by using the first-principle calculation, the results showed the microscopic mech-anism of defects substitution in kaolinite and effects of defects on the structure of kaolinite. Moreover, comparing the experimental and theoretical results, we found the mechanism of interaction between water and soft rock. The results show that water is one of the most important factors which can induce various kinds of geological disasters. At last, the interaction between soft rock and surrounding gas as CO2, CH4 and CO is disused, the influence of surrounding gas on soft rock should not be ignored.

  14. Discontinuity networks in mud stones: an apparent contradiction for boom clay at Mol, opalinus clay at Mont Terri, Callovo-Oxfordian silty clay at Bure

    Energy Technology Data Exchange (ETDEWEB)

    Arnould, M. [Centre de Geologie de l' Ingenieur, 75 - Paris (France); Mazurek, M. [Bern Univ., Rock-Water Interaction, Institute of Geological Sciences (Switzerland); Vandenberghe, N. [Katholieke Universiteit (KU), Lab. voor stratigrafie Leuven (Belgium)

    2005-07-01

    The Rupelian Boom Clay at Mol, Belgium, the lower Aalenian Opalinus Clay at Mont Terri Switzerland and the Callovo-Oxfordian silty clay at Bure, France, are currently studied in the framework of deep geological radioactive waste confinement. These three mud-stones are calcareous to variable degrees. They vary from plastic clay at Mol to hard rock at Bure. All three have similar mineralogical constituents, especially with regards to the clay minerals and include mixed layers of illite and montmorillonite. Remarkably, in outcrop sections of massive clay formations and mud-stone in general, it is very common to observe a network of discontinuities resembling the jointing in hard rock. As such jointing clearly would influence underground works it is imperative to examine whether or not the three mud-rock formations under discussion have such a discontinuity network in all their mass. (authors)

  15. CLAYFORM: a FORTRAN 77 computer program apportioning the constituents in the chemical analysis of a clay or other silicate mineral into a structural formula

    Science.gov (United States)

    Bodine, M.W., Jr.

    1987-01-01

    The FORTRAN 77 computer program CLAYFORM apportions the constituents of a conventional chemical analysis of a silicate mineral into a user-selected structure formula. If requested, such as for a clay mineral or other phyllosilicate, the program distributes the structural formula components into appropriate default or user-specified structural sites (tetrahedral, octahedral, interlayer, hydroxyl, and molecular water sites), and for phyllosilicates calculates the layer (tetrahedral, octahedral, and interlayer) charge distribution. The program also creates data files of entered analyses for subsequent reuse. ?? 1987.

  16. Synergy between polyaniline and OMt clay mineral in Langmuir-Blodgett films for the simultaneous detection of traces of metal ions.

    Science.gov (United States)

    de Barros, Anerise; Ferreira, Mariselma; Constantino, Carlos José Leopoldo; Bortoleto, José Roberto Ribeiro; Ferreira, Marystela

    2015-04-01

    We report on Langmuir-Blodgett (LB) films made with emeraldine salt polyaniline (PAni-ES) and organophilic montmorillonite clay mineral (OMt), where synergy between the components was reached to yield an enhanced performance in detecting trace levels of cadmium (Cd(2+)), lead (Pb(2+)) and copper (Cu(2+)). Detection was carried out using square wave anodic stripping (SWAS) voltammetry with indium tin oxide (ITO) electrodes modified with LB films of PAni-ES/OMt nanocomposite, whose data were compared to those obtained with electrodes coated with neat PAni-ES and neat OMt LB films. The enhanced performance in the nanocomposite may be attributed to the stabilizing and ordering effect promoted by OMt in PAni-ES Langmuir films, which then led to more homogeneous LB films. According to X-ray diffraction data, the stacking of OMt layers was preserved in the LB films and therefore the PAni-ES chains did not cause clay mineral exfoliation. Instead, OMt affected the polaronic state of PAni-ES as indicated in UV-vis, Raman and FTIR spectra, also consistent with the changes observed for the Langmuir films. Taken together these results do indicate that semiconducting polymers and clay minerals may be combined for enhancing the electrical properties of nanostructures for sensing and related applications.

  17. Pathways of clay mineral transport in the coastal zone of the Brazilian continental shelf from Ceará to the mouth of the Amazon River

    Science.gov (United States)

    de Morais, J. O.; Tintelnot, M.; Irion, G.; Souza Pinheiro, L.

    2006-03-01

    The transport pathways of fine sediments (fraction coagulation of individual clay mineral groups. By contrast, our experiments with river bank samples show that selective coagulation does not occur in Amazon River sediments. A more appropriate explanation for observed variations in clay mineral composition off the Amazon mouth seems to be, similarly to that for the shelf between Ceará and the Amazon mouth, a mixing of Amazon sediments with suspended material of the North Brazil Current. This interpretation is supported by data on clay mineral composition east and south of the Amazon mouth, showing more affinity to sediments of the North Brazil Current than to the suspended load of the Amazon River. Additionally, relatively low sedimentation rates and low concentrations of fine-grained sediments on the shelf suggest that high riverine input by the Amazon River does not overprint the sediments of the North Brazil Current in this region. The strong North Brazil Current shunts the Amazon suspended load in a north-westerly direction along the north-eastern coast of South America. Hence, stronger sedimentation of Amazon sediments would occur only west of the river mouth.

  18. Pre-treatment of Used-Cooking Oil as Feed Stocks of Biodiesel Production by Using Activated Carbon and Clay Minerals

    Directory of Open Access Journals (Sweden)

    Rudy Syah Putra

    2014-02-01

    Full Text Available Many low-cost feedstock i.e. used-cooking oil (UCO for the production of biodiesel fuel (BDF has contained a large amount of water and high proportion of free fatty acids (FFAs. Therefore, a pre-treatment process to reduce the water content (<0.1 wt.% and FFAs (<2.0 wt.% were necessary in order to avoid an undesirable side reactions, such as saponification, which could lead to serious problem of product separation and low fatty acid methyl ester (FAME yield. . In this study, a pre-treatment process of used cooking oil as a feedstock for the production of BDF by using various adsorbents such as Activated Carbon (AC and various clay minerals, for example Smectite (S, Bentonite (B, Kaolinite (K, and Powdered Earthenware (PE were evaluated. The oil obtained from pre-treatment was compared with oil without pre-treatment process. In this study, we reported a basic difference in material ability to the oil, depending on the adsorption condition with respect to the physico-chemical parameters, e.g. refractive index (R, density (ρ, FFAs, and water content (W. The results showed that the water content and FFAs in the oil has decreased when using AC as an adsorbent compared with clay minerals. However, the refractive index of oil has similar with the oil without pre-treatment process as well; meanwhile, the density of oil has increased after the pre-treatment process by using clay minerals.

  19. Formation and occurrence of biogenic iron-rich minerals

    Science.gov (United States)

    Fortin, Danielle; Langley, Sean

    2005-09-01

    Iron cycling in the Earth's crust depends on redox reactions, which often trigger the precipitation and dissolution of Fe-rich minerals. Microbial activity is also an integral part of iron cycling, through carbon fixation, respiration and passive sorption reactions. Iron oxides formed in close association with bacteria (either as internal or external precipitates) are referred to as biogenic minerals. They form in several types of environments on Earth, from freshwater to marine systems, aquifers, soils and mining impacted systems. Biogenic iron oxides generally occur as nanocrystals and show a wide range of morphology and mineralogy. These minerals form as a result of the direct metabolic activity of bacteria or as a result of passive sorption and nucleation reactions. The metabolic activity of acidophilic and neutrophilic iron-oxidizing bacteria under oxic conditions promotes the oxidation of Fe(II) to Fe(III) and the precipitation of biogenic iron oxides as extracellular precipitates near or on the bacterial cells. Iron oxidation under anoxic conditions can also occur, as a result of the activity of nitrate-reducers and photoautotrophic bacteria using Fe(II) as an electron donor. Secondary Fe-oxide formation has been reported during the microbial reduction of iron oxides. Passive Fe sorption and nucleation onto bacterial cell walls represents another important mechanism leading to iron oxide formation. The surface reactivity of the bacterial surface under environmental pH conditions confers a net negative charge to the cell wall, which leads to the binding of soluble iron and eventually to the precipitation of iron oxides under saturation conditions. Extracellular polymers produced by bacteria can act as a template for iron sorption and Fe-oxide nucleation. Intracellular iron oxide formation has been observed in natural environments. Magnetotactic bacteria produce intracellular magnetosomes, occurring as chains of magnetite crystals within the cells, and an

  20. Temperature effect on sorption of cations onto clay minerals: complexation modeling and experimental measurements up to 150 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Tertre, E. [LMTG, UMR UPS-CNRS-IRD 5563, 14 av. E. Belin, 31400 Toulouse (France)]|[ANDRA, Parc de la Croix Blanche - 1/7 rue Jean Monnet, 92298 Chatenay-Malabry (France)]|[EDF R and D, 77818 Moret sur Loing (France); Berger, G.; Castet, S.; Loubet, M. [LMTG, UMR UPS-CNRS-IRD 5563, 14 av. E. Belin, 31400 Toulouse (France); Giffaut, E. [ANDRA, Parc de la Croix Blanche - 1/7 rue Jean Monnet, 92298 Chatenay-Malabry (France); Simoni, E. [Universite Paris XI, Institut de Physique Nucleaire, Groupe de Radiochimie, Bat. 100, 91406 Orsay (France); Catalette, H. [EDF R and D, 77818 Moret sur Loing (France)

    2005-07-01

    clay minerals is not temperature dependant whereas the surface charges increase weakly when temperature rises from 25 to 60 deg. C [2]. A surface complexation model (DLM) integrating the temperature parameter was performed to explain our sorption data. This model takes into account the site densities and their associated pK{sub a} obtained by our surface acid/base model [2]. [1] Experimental sorption of Ni{sup 2+}, Cs{sup +} and Ln{sup 3+} onto a montmorillonite up to 150 deg. C. E. Tertre, G. Berger, S. Castet, M. Loubet and E. Giffaut (submitted). [2] Acid/base surface chemistry of kaolinite and montmorillonite at 25 and 60 deg. C. Experimental measurements and modeling by CHESS{sup R}. E. Tertre, S. Castet, G. Berger, M. Loubet and E. Giffaut (in preparation). (authors)

  1. Zinc-rich clays in supergene non-sulfide zinc deposits

    Science.gov (United States)

    Choulet, F.; Buatier, M.; Barbanson, L.; Guégan, R.; Ennaciri, A.

    2016-04-01

    The nature and the origin of zinc clays are poorly understood. With the example of the Bou Arhous Zn-Pb ore deposit in the Moroccan High Atlas, this study presents new data for the mineralogical and chemical characterization of barren and zinc clays associated with non-sulfide zinc ores. In the field, white to ocher granular clays are associated with willemite (Zn2SiO4), while red clays fill karst-related cavities cutting across the non-sulfide ore bodies. Red clays (kaolinite, chlorite, illite, and smectite) present evidence of stratification that reflects internal sedimentation processes during the karst evolution. White clays contain 7-Å clay mineral/smectite irregular interstratified minerals with less than 20 % of smectite layers. Willemite is partially dissolved and is surrounded by authigenic zinc clay minerals. Together with XRD results, WDS analyses on newly formed clay aggregates suggest that this interstratified mineral is composed of fraipontite and sauconite. CEC measurements support that zinc is only located within the octahedral sheets. These new results support the following process: (i) dissolution of willemite, leading to release of Si and Zn, (ii) interaction between Zn-Si-rich solutions and residual-detrital clays, and (iii) dissolution of kaolinite and formation of interstratified zinc clay minerals that grew over detrital micas.

  2. Geological isolation of radioactive waste in clay formations: fractures and faults as possible pathways for radionuclide migration

    International Nuclear Information System (INIS)

    Long-term isolation of radioactive waste can be provided by a combination of natural and man-made barriers. Geological formations of different types have been proposed as suitable natural barriers for radioactive waste isolation. Argillaceous formations can have very favourable characteristics such as: low permeability, high sorption capacity, high plasticity. The retention properties and the low intrinsic permeability can guarantee waste isolation as long as the rock is homogeneous and integer. The presence of undetected fractures, or fractures formed after waste emplacement, can seriously compromise the efficiency of the barrier. In general terms clay formations are expected to respond in a plastic way to external stresses, thus fault and fracture formation should be a rare phenomenon in such media. This plastic behaviour seems supported by mathematical models applied to both conceptual and specific cases. Nevertheless, faults and fractures have been observed in clay outcrops, in quarries and in relatively deep tunnels. In some quarries, fissures surrounded by oxidation zones 1 or 2 cm thick have been seen. The mechanisms of fault and fracture formation in clays must be investigated and the possibility that they can act as pathways of enhanced water and radionuclide migration must be evaluated. (Auth.)

  3. Mineral composition and heavy metal contamination of sediments originating from radium rich formation water.

    Science.gov (United States)

    Bzowski, Zbigniew; Michalik, Bogusław

    2015-03-01

    Radium rich formation water is often associated with fossil fuels as crude oil, natural gas and hard coal. As a result of fossil fuels exploitation high amount of such water is released into environment. In spite of the high radium content such waters create a serious radiation risk neither to humans nor biota directly. First and foremost due to very high mineralization they are not drinkable at all. But after discharge chemical and physical conditions are substantially changed and sediments which additionally concentrated radium are arising. Due to features of technological processes such phenomenon is very intensive in underground coal mining where huge volume of such water must be pumped into surface in order to keep underground galleries dry. Slightly different situation occurs in oil rigs, but finally also huge volume of so called process water is pumped into environment. Regardless their origin arising sediments often contain activity concentration of radium isotopes exceeding the clearance levels set for naturally occurring radioactive materials (NORM) (Council Directive, 2013). The analysis of metals and minerals content showed that besides radioactivity such sediments contain high amount of metals geochemically similar to radium as barium, strontium and lead. Correlation analysis proved that main mechanism leading to sediment creation is co-precipitation radium with these metals as a sulfate. The absorption on clay minerals is negligible even when barium is not present in significant quantities. Owing to very low solubility of sulfates radium accumulated in this way should not migrate into environment in the neighborhood of a site where such sediment were deposited. PMID:25434264

  4. Clay minerals of Pliocene deposits and their potential use for the purification of polluted wastewater in the Sohag area, Egypt

    NARCIS (Netherlands)

    Y. Refaey; B. Jansen; A.H. El-Shater; A.A. El-Haddad; K. Kalbitz

    2015-01-01

    In our study we investigated the clay fraction composition of Pliocene clay deposits in the Sohag area, Egypt. Our goal was to obtain insights into the origin of the deposits, and to assess their potential for use in inexpensive wastewater purification. The rationale for the latter was that in Egypt

  5. The Changing Lithosphere: formation of minerals and dissapearance of rocks

    Science.gov (United States)

    Vignola, Teresa; Floriano, Michele A.

    2014-05-01

    Earth Science teaching/learning is based on the idea that lithosphere is subject to changes that continuously modify its aspect. In order to demonstrate one of the causes of these changes, simple laboratory experiments have been used for first year high school students allowing simulating the formation of minerals by precipitation from a saturated solution and their solubility due to chemical reaction with acid substances. In the first stage, solubility, saturated and unsaturated solution concepts have been clarified by using sugar candies thatdissolveat different times by putting them in water containing increasing amounts of added sugar. Afterwards, by inspection of data tables, students have verified that different substances have different solubilities at the same temperature. At this point the solubility CuSO4. 5 H2O was considered and students prepared saturated aqueous solutions by adding 31.6 g of the salt in 100 ml of water. On further addition of salt for a total of 40 g, students have verified the presence of an undissolvedresidue that dissolved on heating. The obtained solution was transferred to a crystallization dish. Subsequent cooling and solvent evaporation produced a supersaturated solution where the precipitation process started allowing the formation, in 5-6 days, of CuSO4. 5 H2O bluecrystals. One of the minerals that can form by precipitation from a saturated solution is calcite that can originate from precipitation of calcium carbonate saturated solutions or from deposition of marine organisms inorganic residues containing calcium carbonate in their shells. However, when a mineral is formed, it will not remain unchanged forever. In order to show that some minerals and carbonaterocks, in addition to erosion phenomena, may also be subject to chemical attacks by atmospheric agents leading to their dissolution. Several rock samples were treated with an acid solution, and the bubbles forming in some of the samples demonstrated that even rocks could

  6. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution].

    Science.gov (United States)

    Liu, Juan-Juan; Liang, Dong-Li; Wu, Xiao-Long; Qu, Guang-Zhou; Qian, Xun

    2014-01-01

    The adsorption of Cu (II) on kaolinite and montmorillonite was investigated through batch adsorption experiment. Several adsorption models were employed to describe the adsorption of Cu (II) on the two clay minerals in single Cu (II) and Cu(II)-Cr (VI) binary solutions, and the impact of solution with various pH values on the adsorption of Cu (II) on the two target mineral clays was investigated in order to explain the environmental chemical behavior of heavy metals in soil and to provide theoretical basis in remediation of multi-element contaminated soil. The results indicated that the adsorption process of Cu (II) on kaolinite and montmorillonite in both single and binary solutions was fast at the beginning and then slowed down. Adsorption equilibrium was observed within 120 min. In both single and binary solutions, pseudo-second-order model (R2 > 0.983) showed the highest agreement with the adsorption of Cu (II) on the two mineral clays, followed by the intra-particle diffusion model and pseudo-first-order model. Both Intra-particle diffusion model and Boyd model illustrated that the film diffusion process was the rate-limiting step, which mainly occurred at the edge and surface of mineral clays. Copper adsorption on kaolinite was well fitted with the Freundlich equation (R2 > 0.971), which could be attributed to the heterogeneity of kaolinite surface with adsorption sites that have different energies of adsorption. Langmuir equation was best fitted with the isotherm for montmorillonite (R2 > 0.983), which indicated that the adsorption was on a single molecular layer or chemisorptions. In both single and binary solutions, the adsorption of Cu (II ) on the two clay minerals first increased and then decreased with the rising of pH values. The maximum adsorption amount was found at pH = 5.0, and was in the order of Qmon. > Qkao. and Q(Single-Cu) > Q(Cu-Cr binary). Cr (VI) in the solution reduced the adsorption of Cu (II), and the minimal influence of Cr (VI) on Cu

  7. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution].

    Science.gov (United States)

    Liu, Juan-Juan; Liang, Dong-Li; Wu, Xiao-Long; Qu, Guang-Zhou; Qian, Xun

    2014-01-01

    The adsorption of Cu (II) on kaolinite and montmorillonite was investigated through batch adsorption experiment. Several adsorption models were employed to describe the adsorption of Cu (II) on the two clay minerals in single Cu (II) and Cu(II)-Cr (VI) binary solutions, and the impact of solution with various pH values on the adsorption of Cu (II) on the two target mineral clays was investigated in order to explain the environmental chemical behavior of heavy metals in soil and to provide theoretical basis in remediation of multi-element contaminated soil. The results indicated that the adsorption process of Cu (II) on kaolinite and montmorillonite in both single and binary solutions was fast at the beginning and then slowed down. Adsorption equilibrium was observed within 120 min. In both single and binary solutions, pseudo-second-order model (R2 > 0.983) showed the highest agreement with the adsorption of Cu (II) on the two mineral clays, followed by the intra-particle diffusion model and pseudo-first-order model. Both Intra-particle diffusion model and Boyd model illustrated that the film diffusion process was the rate-limiting step, which mainly occurred at the edge and surface of mineral clays. Copper adsorption on kaolinite was well fitted with the Freundlich equation (R2 > 0.971), which could be attributed to the heterogeneity of kaolinite surface with adsorption sites that have different energies of adsorption. Langmuir equation was best fitted with the isotherm for montmorillonite (R2 > 0.983), which indicated that the adsorption was on a single molecular layer or chemisorptions. In both single and binary solutions, the adsorption of Cu (II ) on the two clay minerals first increased and then decreased with the rising of pH values. The maximum adsorption amount was found at pH = 5.0, and was in the order of Qmon. > Qkao. and Q(Single-Cu) > Q(Cu-Cr binary). Cr (VI) in the solution reduced the adsorption of Cu (II), and the minimal influence of Cr (VI) on Cu

  8. Platform-induced clay-mineral fractionation along a northern Tethyan basin-platform transect: implications for the interpretation of Early Cretaceous climate change (Late Hauterivian-Early Aptian)

    OpenAIRE

    Godet, Alexis; Bodin, Stéphane; Adatte, Thierry; Föllmi, Karl B.

    2009-01-01

    High-resolution clay-mineral analyses were performed on upper Hauterivian to lower Aptian sediments along a platform-to-basin transect through the northern Tethyan margin from the Neuchâtel area (Switzerland), to the Vocontian Trough (France) in order to investigate links between climate change, carbonate platform evolution, and fractionation patterns in clay minerals during their transport. During the Hauterivian, the northern Tethyan carbonate platform developed in a heterozoan mode, and t...

  9. A new avian fauna from the early-middle Eocene Lillebælt Clay Formation of Denmark

    DEFF Research Database (Denmark)

    Lindow, Bent Erik Kramer

    Climate Optimum, a period of elevated temperatures resulting from rapid greenhouse warming. Comparison of the new bird fauna with the recently revised fauna from the older (54 mya) Fur Formation of Denmark, represents a unique opportunity to investigate the effect of the prehistoric greenhouse warming......A number of hitherto undescribed fossil bird remains have been recovered from the Lillebælt Clay Formation of central Denmark, which is early-middle Eocene in age (~50 to 43 mya). The core of the material consists of fossils acquired through the Danish ‘Danekræ' fossil treasure trove legislation....... Almost two-thirds of the fossils are isolated skulls preserved three-dimensionally in clay ironstone concretions; bird fossils of this age and degree of preservation are extremely rare in an international context. A preliminary investigation has revealed the presence of at least one odontopterygid...

  10. Biodegradation and adsorption of C1- and C2-phenanthrenes and C1- and C2-dibenzothiophenes in the presence of clay minerals: effect on forensic diagnostic ratios.

    Science.gov (United States)

    Ugochukwu, Uzochukwu C; Head, Ian M; Manning, David A C

    2014-07-01

    The impact of modified montmorillonites on adsorption and biodegradation of crude oil C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. Consequently, the effect on C1-dibenzothiophenes/C1-phenanthrenes, C2-dibenzothiophenes/C2-phenanthrenes, 2+3-methyldibenzothiophene/4-methyldibenzothiophene and 1-methyldibenzothiophene/4-methyldibenzothiophene ratios commonly used as diagnostic ratios for oil forensic studies was evaluated. The clay mineral samples were treated to produce acid activated montmorillonite, organomontmorillonite and homoionic montmorillonite which were used in this study. The different clay minerals (modified and unmodified) showed varied degrees of biodegradation and adsorption of the C1-phenanthrenes, C1-dibenzothiophenes, C2-phenanthrenes and C2-dibenzothiophenes. The study indicated that as opposed to biodegradation, adsorption has no effect on the diagnostic ratios. Among the diagnostic ratios reviewed, only C2-dibenzothiophenes/C2-phenanthrenes ratio was neither affected by adsorption nor biodegradation making this ratio very useful in forensic studies of oil spills and oil-oil correlation.

  11. Impact of Long-Term Alfalfa Cropping on Soil Potassium Content and Clay Minerals in a Semi-Arid Loess Soil in China

    Institute of Scientific and Technical Information of China (English)

    LI De-Cheng; B. VELDE; LI Feng-Min; ZHANG Gan-Lin; ZHAO Ming-Song; HUANG Lai-Ming

    2011-01-01

    Alfalfa cropping has been considered an efficient method of increasing soil fertility.Usually nitrogen increase in root nodules is considered to be the major beneficial effect.A 21-year time series (five sampling periods) of alfalfa cultivation plots on a loess soil,initially containing illite and chlorite,in Lanzhou of northwestern China was selected to investigate the relationships among alfalfa cropping,soil potassium (K) content and soil clay minerals.The results indicated that soil K significantly accumulated after cropping,with a peak value at about 15 years,and decreased afterwards.The accumulated K was associated with the K increase in the well-crystallized illite,which was not extracted by the traditional laboratory K extraction methods in assessing bioavailability.The steep decline in soil K content after 15-year cropping was in accord with the observed fertility loss in the alfalfa soil.Plant biomass productivity peaked at near 9 years of culture,whereas soil K and clay minerals continued to increase until cropping for 15 years.This suggested that K increased in the topsoil came from the deep root zone.Thus alfalfa continued to store K in clays even after peak production occurred.Nitrogen did not follow these trends,showing a general decline compared with the native prairie soils that had not been cropped.Therefore,the traditional alfalfa cropping can increase K content in the topsoil.

  12. Authigenic carbonate mineral formation in a latest Pleistocene palaeolake, Greece

    Science.gov (United States)

    Karageorgis, A. P.; Kanellopoulos, T. D.; Mavromatis, V.; Anagnostou, C. L.; Koutsopoulou, E.; Schmidt, M.; Pavlopoulos, K.; Tripsanas, E. K.; Hallberg, R. O.

    2012-12-01

    The Pagassitikos Gulf in Greece, is a semi-enclosed bay with maximum depth 102 m. According to the present-day bathymetric configuration and the sea level during the latest Pleistocene, the gulf would have been isolated from the open sea, forming a palaeolake since ~32 cal. ka B.P.. Initial visual inspection of sediment core B-4 (length, 258 cm), recovered from the deepest sector of the Pagassitikos Gulf, revealed evidence of a totally different depositional environment in the lowest part of the core: this contained light grey-coloured sediments, contrasting strongly with the overlain olive grey muds of the upper part. Multi-proxy analyses (mineralogy, geochemistry and scanning electron microscopy) showed the predominance of carbonate minerals (aragonite, dolomite and calcite) together with gypsum in the lowest part of the core. Additional evidence (δ18O and δ13C isotopes, and AMS 14C datings) suggest that carbonate mineral deposition can be attributed to autochthonous precipitation that took place in a saline palaeolake during the last glacial-early deglacial period. High δ18O values recorded in the lowest part of the core were associated with hypersaline and evaporative depositional environment. The most plausible explanation for the formation of the observed carbonate minerals directs to dolomite precipitation from hypersaline evaporating water bodies at low precipitation rates. Under varying weather conditions the precipitation of aragonite is favoured. Alternatively, high evaporation rates and gypsum formation, favouring an increase in Mg/Ca ratio, is proposed as a possible mechanism supporting authigenic dolomite precipitation. The lowest core sample to be AMS 14C dated provided an age of 19.53 cal. ka B.P. The palaeolake was presumably reconnected to the open sea at ~13.2 cal. ka B.P. during the last sea-level rise, marking the commencement of marine sedimentation characterised by the predominance of terrigenous aluminosilicates and fairly homogeneous

  13. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    Science.gov (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders.

  14. Provenance and distribution of clay minerals in the sediments of the western continental shelf and slope of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.; Rao, B.R.

    Prabhu for scanning clay slides with X-ray diffractometry. We thank the three anonymous reviewers for their critical comments which improved the quality of the manuscript. REFERENCES Anonymous (1976) Survey of the proposed submarine pipeline from...

  15. Colorimetric Humidity and Solvent Recognition Based on a Cation-Exchange Clay Mineral Incorporating Nickel(II)-Chelate Complexes.

    Science.gov (United States)

    Hosokawa, Hitoshi; Mochida, Tomoyuki

    2015-12-01

    Solvatochromic nickel(II) complexes with diketonato and diamine ligands were incorporated into a saponite clay by ion exchange, and their colorimetric humidity- and solvent-recognition properties were investigated. These powders exhibit color change from red to blue-green depending on humidity, and the detection range can be controlled by modifying the metal complex. The humidity response takes advantage of the humidity-dependent water content in clay and the coordination of water molecules to the metal complex in equilibrium. The addition of organic solvents to the powders causes a color change to occur, varying from red to blue-green depending on the donor number of the solvent, thereby enabling solvent recognition. In the clay, the affinity of less sterically hindered complexes to water or solvent molecules is decreased compared with that in solution because the cationic complexes interact with the anionic layers in the clay. Incorporating diethylene glycol into the materials produced thermochromic powders. PMID:26542108

  16. Application of clay minerals from Cayo Guan, Cuba, as sorbents of heavy metals and ceramic raw materials; Aplicaciones de los minerales arcillosos de Cayo Guan, Cuba, como adsorbentes de metales pesados y materia prima ceramica

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, D.; Barba, F.; Callejas, P.; Recio, P.

    2012-11-01

    It has been studied by Analysis Heating Microscope Optical the behaviour of some kaolinitic clays from a reservoir of Cayo Guan rich in iron oxides and low silica content proving to be a refractory materials whose softening appears after 1500 degree centigrade. It has obtained the workability diagram of the different clay minerals calculating the plasticity by the method of Casagrande spoon; only one of the samples is in the area suitable for extrusion. Vitrification diagrams report that the capacity of water absorption is <0.6 % when the temperature of 1400 degree centigrade is achieved. We have designed a program to calculate compositions of porcelain stoneware prepared from these modified clays adding low-cost raw materials that facilitate the formation of glassy phase ((potassium feldspar and glass cullet) and/or increase the silica (sand and diatomaceous earth used as filters in the brewing industry). With one of these compositions, prepared in the laboratory (60 % of clay, 30 % feldspar and 10 % of diatomaceous earth), calcined at 1250 degree centigrade with a heating rate of 15 degree centigrade/min, the results were: water absorption 0.8 %, and linear shrinkage 21 % without any deformation observed. These clays have been treated with acid to eliminate its high iron content and study its application as an sorbent of heavy metals as Cd{sup 2}+, Cr{sup 3}+. The results of the immobilization of these elements have been compared with those obtained with thermally activated vermiculite at 800 degree centigrade, showing that the treated samples show sorption of both cadmium and chromium below the vermiculite, but the non-treated ones are suitable to remove chromium; this is because these clays do not contain in its composition exchangeable ions (Ca{sup {sub 2}} +, Mg{sup 2} +, Na{sup +}, K{sup +}), and even if they are chemically activated only the presence of Fe ions is which produces form bindings (Cr{sub x}.Fe{sub 1}-x) (OH){sub 3} which favor Cr sorption

  17. Mineral dust aerosols promote the formation of toxic nitropolycyclic aromatic compounds.

    Science.gov (United States)

    Kameda, Takayuki; Azumi, Eri; Fukushima, Aki; Tang, Ning; Matsuki, Atsushi; Kamiya, Yuta; Toriba, Akira; Hayakawa, Kazuichi

    2016-01-01

    Atmospheric nitrated polycyclic aromatic hydrocarbons (NPAHs), which have been shown to have adverse health effects such as carcinogenicity, are formed in part through nitration reactions of their parent polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. However, little is known about heterogeneous nitration rates of PAHs by gaseous NO2 on natural mineral substrates, such as desert dust aerosols. Herein by employing kinetic experiments using a flow reactor and surface analysis by Fourier transform infrared spectroscopy with pyridine adsorption, we demonstrate that the reaction is accelerated on acidic surfaces of mineral dust, particularly on those of clay minerals. In support of this finding, we show that levels of ambient particle-associated NPAHs in Beijing, China, significantly increased during heavy dust storms. These results suggest that mineral dust surface reactions are an unrecognized source of toxic organic chemicals in the atmosphere and that they enhance the toxicity of mineral dust aerosols in urban environments. PMID:27075250

  18. Laminar Mesoporous Structure of Modified Montmorillonite Clays and Its Formation Mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; CHEN Aiping; LI Chunzhong; LUO Meifang; XU Zhenliang

    2012-01-01

    Zr-pillared clays were prepared by heating and ultrasonic methods in intercalation process.The resultants were characterized by XRD,N2 adsorption-desorption,SEM,and TG/DTA analysis.Ultrasonic technology accelerated the pillaring process effectively and obtained better ordered structure than by heating method.The specific surface area and pore volume of the Zr-pillared clays increased by about 13 and 3 times respectively.Rare earth metal (Ce) was introduced into Zr-pillared clays by co-intercalation and dipping method.The specific surface area was increased by co-intercalation approach,but it was decreased dramatically by dipping method.Thermal stability of Ce modified samples prepared by co-intercalation method was enhanced in comparison with Zr-pillared clays.Modification mechanism and "corrugation-like" structural mode of intercalation process was proposed basing on the double XRD peaks in small-angle range of pillared clays,which was related to the deformation of silicate layer.

  19. Characteristics of Clay Minerals in the Northern South China Sea and Its Implications for Evolution of East Asian Monsoon since Miocene

    Institute of Scientific and Technical Information of China (English)

    Wan Shiming; Li Anchun; Xu Kehui; Yin Xueming

    2008-01-01

    Clay mineral assemblages, crystallinity, chemistry, and micromorphology of clay particles in sediments from ODP Site 1146 in the northern South China Sea (SCS) were analyzed, and used to trace sediment sources and obtain proxy records of the past changes in the East Asian monsoon climate since the Miocene, based on a multi-approach, including X-ray diffraction (XRD) and scanning electron microscopy combined with energy dispersive X-ray spectrometry (SEM-EDS). Clay minerals consist mainly of illite and smectite, with associated chlorite and kaolinite. The illite at ODP Site 1146 has very well-to-well crystallinity, and smectite has moderate-to-poor crystallinity. In SEM the smectite particles at ODP Site 1146 often appear cauliflower-like, a typical micromorphology of volcanic smecites. The smectite at ODP Site 1146 is relatively rich in Si element, but poor in Fe, very similar to the smectite from the West Philippine Sea. In contrast, the chemical composition of illite at ODP Site 1146 has no obvious differences from those of the Loess plateau, Yellow River, Yangtze River, and Pearl River. A further study on sediment source indicates that smectite originates mainly from Luzon, kaolinite from the Pearl River, and illite and chlorite from the Pearl River, Taiwan and/or the Yangtze River. The clay mineral assemblages at ODP Site 1146 were not only controlled by continental eathering regimes surrounding the SCS, but also by the changing strength of the transport processes. The ratios of (illite+chlorite)/smectite at ODP Site 1146 were adopted as proxies for the East Asian monsoon evolution. Relatively higher ratios reflect strongly intensified winter monsoon relative to summer monsoon, in contrast, lower ratios indicate a strengthened summer monsoon relative to winter monsoon. The consistent variation of this clay proxy from those of Loess plateau, eolian deposition in the North Pacific, planktonic, benthic foraminifera, and black carbon in the SCS since 20 Ma shows

  20. Controls of Ca/Mg/Fe activity ratios in pore water chemistry models of the Callovian-Oxfordian clay formation

    Energy Technology Data Exchange (ETDEWEB)

    Lerouge, C.; Grangeon, S.; Wille, G.; Flehoc, C.; Gailhanou, H.; Gaucher, E.C.; Tournassat, C. [BRGM av. Claude Guillemin BP6009 45060 Orleans cedex 2 (France); Vinsot, A. [ANDRA Meuse/Haute-Marne Underground research Laboratory (URL), RD 960, 55290 Bure (France); Made, B.; Altmann, S. [ANDRA - Parc de la Croix Blanche, 1-7 rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)

    2013-07-01

    In the pore water chemistry model of the Callovian-Oxfordian clay formation, the divalent cations Ca, Mg, and Fe are controlled by equilibrium reactions with pure carbonates: calcite for Ca, dolomite for Mg, and siderite for Fe. Results of a petrological study and computing of the Ca/Mg and Ca/Fe activity ratios based on natural pore water chemistry provide evidence that equilibrium with pure calcite and pure dolomite is a reasonable assumption for undisturbed pore waters; on the other hand, siderite cannot be considered at equilibrium with pore waters at the formation scale. (authors)

  1. Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions.

    Science.gov (United States)

    Shalkevich, Andrey; Stradner, Anna; Bhat, Suresh Kumar; Muller, François; Schurtenberger, Peter

    2007-03-27

    We have systematically investigated the phase diagram of clay particles in water to understand the relation between the local and macroscopic properties and the structures of clay suspensions. We focused, in particular, on sodium Cloisite (CNa) particles at concentrations typically used in nanocomposites (concentrations from 1 to 4 wt %) and at an extended range of ionic strengths (10(-5) to 10(-2) M NaCl). The suspensions have been characterized using rheology and a combination of scattering techniques (neutrons, X-rays, and light). We demonstrate the existence of a liquid cluster phase at low clay and intermediate salt concentrations and provide new insight into the nature of the solid-like dispersions at low and high ionic strengths.

  2. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: A combined solution chemistry and X-ray powder diffraction study

    International Nuclear Information System (INIS)

    Sequential extraction procedures (SEPs) are commonly used to determine speciation of trace metals in soils and sediments. However, the non-selectivity of reagents for targeted phases has remained a lingering concern. Furthermore, potentially reactive phases such as phyllosilicate clay minerals often contain trace metals in structural sites, and their reactivity has not been quantified. Accordingly, the objective of this study is to analyze the behavior of trace metal-bearing clay minerals exposed to the revised BCR 3-step plus aqua regia SEP. Mineral quantification based on stoichiometric analysis and quantitative powder X-ray diffraction (XRD) documents progressive dissolution of chlorite (CCa-2 ripidolite) and two varieties of smectite (SapCa-2 saponite and SWa-1 nontronite) during steps 1-3 of the BCR procedure. In total, 8 (± 1) % of ripidolite, 19 (± 1) % of saponite, and 19 (± 3) % of nontronite (% mineral mass) dissolved during extractions assumed by many researchers to release trace metals from exchange sites, carbonates, hydroxides, sulfides and organic matter. For all three reference clays, release of Ni into solution is correlated with clay dissolution. Hydrolysis of relatively weak Mg-O bonds (362 kJ/mol) during all stages, reduction of Fe(III) during hydroxylamine hydrochloride extraction and oxidation of Fe(II) during hydrogen peroxide extraction are the main reasons for clay mineral dissolution. These findings underscore the need for precise mineral quantification when using SEPs to understand the origin/partitioning of trace metals with solid phases

  3. Stepwise effects of the BCR sequential chemical extraction procedure on dissolution and metal release from common ferromagnesian clay minerals: A combined solution chemistry and X-ray powder diffraction study

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.C. [Geology Department, Middlebury College, Middlebury, Vermont 05753 (United States)], E-mail: pryan@middlebury.edu; Hillier, S. [Macaulay Institute, Aberdeen, AB15 8QH UK (United Kingdom); Wall, A.J. [Department of Geosciences, Penn State University, University Park, Pennsylvania, 16802 (United States)

    2008-12-15

    Sequential extraction procedures (SEPs) are commonly used to determine speciation of trace metals in soils and sediments. However, the non-selectivity of reagents for targeted phases has remained a lingering concern. Furthermore, potentially reactive phases such as phyllosilicate clay minerals often contain trace metals in structural sites, and their reactivity has not been quantified. Accordingly, the objective of this study is to analyze the behavior of trace metal-bearing clay minerals exposed to the revised BCR 3-step plus aqua regia SEP. Mineral quantification based on stoichiometric analysis and quantitative powder X-ray diffraction (XRD) documents progressive dissolution of chlorite (CCa-2 ripidolite) and two varieties of smectite (SapCa-2 saponite and SWa-1 nontronite) during steps 1-3 of the BCR procedure. In total, 8 ({+-} 1) % of ripidolite, 19 ({+-} 1) % of saponite, and 19 ({+-} 3) % of nontronite (% mineral mass) dissolved during extractions assumed by many researchers to release trace metals from exchange sites, carbonates, hydroxides, sulfides and organic matter. For all three reference clays, release of Ni into solution is correlated with clay dissolution. Hydrolysis of relatively weak Mg-O bonds (362 kJ/mol) during all stages, reduction of Fe(III) during hydroxylamine hydrochloride extraction and oxidation of Fe(II) during hydrogen peroxide extraction are the main reasons for clay mineral dissolution. These findings underscore the need for precise mineral quantification when using SEPs to understand the origin/partitioning of trace metals with solid phases.

  4. Evaluation of first-row transition metal oxides supported on clay minerals for catalytic growth of carbon nanostructures

    International Nuclear Information System (INIS)

    In the present work we employed various transition metals (Cr, Mn, Fe, Co, Ni, Cu and Zn) loaded on different smectite clays (laponite and montmorillonite) as catalysts in synthesis of carbon nanostructures (mainly nanotubes) and we report the effect of the nature of the catalytic centers and type of aluminosilicate layers in the morphology, quality and structure on the final products. Owing to their unique swelling, ion-exchange and intercalation properties smectite clays were easily, uniformly and reproducibly loaded with metal cations. Different homoionic forms of montmorillonite and laponite were prepared containing first-row transition metals and the synthesis of carbon nanostructures was carried out at 700 deg. C using an acetylene/nitrogen mixture. A variety of analytical techniques (XRD, Raman, SEM, TEM and thermal analysis) were used to fully characterize the final materials. Iron-, cobalt-, nickel- and manganese-exchanged clays showed to be effective catalysts for the production of carbon nanotubes, while acetylene decomposition over copper-exchanged clays resulted to the creation of carbon spheres. The resulting hybrid systems are particularly attractive for polymer reinforcing applications since the combined action of clay-carbon nanotubes in polymer matrixes can provide outstanding properties to the resulting composite materials

  5. Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions

    OpenAIRE

    Shalkevich, Andrey; Stradner, Anna; Bhat, Suresh Kumar; MULLER, François; Schurtenberger, Peter

    2008-01-01

    We have systematically investigated the phase diagram of clay particles in water to understand the relation between the local and macroscopic properties and the structures of clay suspensions. We focused, in particular, on sodium Cloisite (CNa) particles at concentrations typically used in nanocomposites (concentrations from 1 to 4 wt %) and at an extended range of ionic strengths (10⁻⁵ to 10⁻² M NaCl). The suspensions have been characterized using rheology and a combination of scattering tec...

  6. TEM observation of bacteria-induced plagioclase dissolution and secondary mineral formation

    Science.gov (United States)

    Tamura, T.; Kyono, A.; Nishimiya, Y.

    2015-12-01

    Silicate minerals are the most common minerals in the earth's crust. Bacteria are also distributed throughout the earth's surface environment. The silicate minerals are known to be dissolved by organic acids and polysaccharides known as bacteria metabolites. The metabolic activity of bacteria therefore plays an important role in the interaction between dissolution of the silicate minerals and formation of secondary minerals. However, little is known about the secondary mineral formation process associated with the bacterial metabolism. To clarify the bacterial effect on the mineral dissolution and the secondary mineral formation, we closely investigated the effect of bacterial activity on surface texture modification and chemical composition changes of plagioclase which is the most abundant silicate mineral in the earth's crust. The bacteria were isolated from soil and then added in a suitable medium with several plagioclase fragments (Ab100% and An100%). It was incubated for 10 days. Al and Si concentrations in the medium were measured by ICP-AES to monitor the dissolution of the plagioclase. Secondary mineral formation during the incubation was observed by TEM, EDS and SAED methods. The authors will give the experiment results and discuss the effect of bacterial activity on the plagioclase dissolution and the secondary mineral formation in detail.

  7. System for detecting interfaces between mineral seams and the surrounding earth formations

    International Nuclear Information System (INIS)

    The present invention contemplates a system for detecting an interface between a mineral seam and the surrounding earth formation utilizing a radiation source and a radiation receiver mounted on a miner having a positionable cutter assembly. As the miner is moved into the coal seam, a first distance is continuously sensed between one surface formed in the mineral seam by the miner cutter assembly and the surrounding earth formation and the miner cutter assembly is positioned in response to the sensed first distance. As the miner is withdrawn from the coal seam, a second distance is continuously sensed between one surface formed in the mineral seam by the miner cutter assembly and the surrounding earth formation and the miner cutter assembly is positioned in response to the sensed second distance. A substantial portion of the space between the wall formed in the mineral seam by the miner cutter assembly and the radiation source and radiation receiver is substantially filled with a material having a density greater than the density of air to direct a substantial portion of the radiation through the mineral seam

  8. Stress state variations among the clay and limestone formations of the molasse basin of Northern Switzerland

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Full text of publication follows: The design of geological repositories for radioactive waste responds to the requirements of technical feasibility and long-term safety in the context of a specific geological setting. An important aspect of the geological setting is the primary stress field. To a large extent the stress state controls repository induced effects such as the excavation damage zone and the associated potential changes in the waste isolation properties of the host rock. Therefore the measurement of the stress state receives some attention where the site selection for geological repositories focuses onto relatively weak host rocks such as clay-stones and marly shales that tend to develop a significant excavation damage zone. Measurements of the minimum stress magnitudes in a recently drilled geothermal well in the Molasse Basin of northern Switzerland have yielded a stress profile reaching from 592 m to 1455 m depth. It straddles several rock units and includes the top of the crystalline basement. The sedimentary sequence consists of Marine limestones, shales and marls unconformably covered by Tertiary rocks of the Molasse. In other parts of the basin the evaporitic rocks of the Triassic Muschelkalk formation at the base of the sedimentary layer served as a regional detachment and enabled thin skinned thrusting and the formation of the Jura Fold and Thrust Belt in the Late Miocene. The stress measurements have been performed in the open hole by Mini-frac tests. The method uses a double packer system to isolate a one meter long interval of the borehole that is then pressurized at high injection rates up to the breakdown of the formation. Repeated pressurization of the interval allows to determine the stress that acts on the newly created fracture. The total injected volume during such a test is in the range of a few litres and the size of the fracture that extends from the borehole normal to the minimum

  9. Studies on Tagged Clay Migration Due to Water Movement

    International Nuclear Information System (INIS)

    55Fe-tagged clay minerals, produced by hydrothermal synthesis, serve to clarify the question whether clay migration or clay formation in situ is the predominating mechanism in the Bt-development of Parabraunerde (sol brun lessive, grey brown podsolic, hapludalf, dernopodsol). They further indicate the possibilities of clay transportation caused by water percolation. Suitable experimental approaches, such as thin-layer chromatography and autoradiography, translocation tests in columns filled with monotypical textural fractions or with undisturbed soil profiles, and synchronous hydrothermal treatment of 55Fe-con raining material from different horizons of Parabraunerde, to reveal the specific readiness of the different profile zones for 55Fe-clay production, are described. The possibilities of clay percolation are discussed. (author)

  10. Stratigraphy and formation of clays, sulfates, and hydrated silica within a depression in Coprates Catena, Mars

    Science.gov (United States)

    Weitz, Catherine M.; Bishop, Janice L.

    2016-05-01

    We investigate the morphology, mineralogy, and stratigraphy of light-toned layered deposits within a trough of Coprates Catena, centered at -15°N, 300°E. One of the deposits in the eastern portion of the trough contains numerous hydrated minerals, including Al-phyllosilicates, Fe/Mg-phyllosilicates, hydrated silica, hydrated sulfates, jarosite and acid alteration products characterized by a spectral doublet between 2.2 and 2.3 µm, and weakly hydrated materials. The Al-phyllosilicates are observed both stratigraphically above and below the Fe/Mg-phyllosilicate unit, which is a rare and perhaps unique association on Mars. Most of the western light-toned layered deposit underlies a terraced fan. This deposit contains hydrated materials, including Al-phyllosilicates and Fe/Mg-phyllosilicates. Dip measurements indicate that both the eastern and western deposits dip toward the center of the trough, indicating that they postdate formation of the trough and are consequently Late Hesperian or younger in age. Volcanic ash, most likely erupted during formation of the pit crater in the eastern portion of the trough, seems to best explain our observations for several of the units. Valleys sourced from water along the plateau may have flowed into the trough and altered the sediments, with changing aqueous chemistries over time resulting in the diverse range of mineralogies now observed in the eastern light-toned deposit. Our results reveal a complex sedimentary and aqueous history within the Coprates Catena trough, indicating that localized habitable conditions were possible relatively late in Martian history at a time when colder, drier conditions likely dominated the majority of the planet.

  11. Clay mineral distribution in the continental shelf sediments from Krishna to Ganges river mouth, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rao, V.P.

    Ninety six sediment samples (less than 2 mu m fractions) of the eastern continental shelf of India between Ganges in the north and Krishna in the south have been studiEd. by X-ray diffraction. On the basis of nature and abundance of different clay...

  12. Late-Quaternary variations in clay minerals along the SW continental margin of India: Evidence of climatic variations

    Digital Repository Service at National Institute of Oceanography (India)

    Chauhan, O.S.; Sukhija, B.S.; Gujar, A.R.; Nagabhushanam, P.; Paropkari, A.L.

    Down-core variations in illite, chlorite, smectite and kaolinite (the major clays) in two sup(14)C-dated cores collected along the SW continental margin of India show that illite and chlorite have enhanced abundance during 20-17, 12.5, 11-9.5, and 5...

  13. Structure, dynamics, and function of the hammerhead ribozyme in bulk water and at a clay mineral surface from replica exchange molecular dynamics.

    Science.gov (United States)

    Swadling, Jacob B; Wright, David W; Suter, James L; Coveney, Peter V

    2015-03-01

    Compared with proteins, the relationship between structure, dynamics, and function of RNA enzymes (known as ribozymes) is far less well understood, despite the fact that ribozymes are found in many organisms and are often conceived as "molecular fossils" of the first self-replicating molecules to have arisen on Earth. To investigate how ribozymal function is governed by structure and dynamics, we study the full hammerhead ribozyme in bulk water and in an aqueous clay mineral environment by computer simulation using replica-exchange molecular dynamics. Through extensive sampling of the major conformational states of the hammerhead ribozyme, we are able to show that the hammerhead manifests a free-energy landscape reminiscent of that which is well known in proteins, exhibiting a "funnel" topology that guides the ribozyme into its globally most stable conformation. The active-site geometry is found to be closely correlated to the tertiary structure of the ribozyme, thereby reconciling conflicts between previously proposed mechanisms for the self-scission of the hammerhead. The conformational analysis also accounts for the differences reported experimentally in the catalytic activity of the hammerhead ribozyme, which is reduced when interacting with clay minerals as compared with bulk water.

  14. Organic Control of Dioctahedral and Trioctahedral Clay Formation in an Alkaline Soil System in the Pantanal Wetland of Nhecolândia, Brazil

    Science.gov (United States)

    Meunier, Jean-François; Martins-Silva, Elisângela R.; Furian, Sonia

    2016-01-01

    Recent studies have focused on the formation of authigenic clays in an alkaline soil system surrounding lakes of the Nhecolândia region, Pantanal wetland. The presence of trioctahedral Mg-smectites (stevensite and saponite types), which requires low Al and Fe contents in the soil solution for its formation, contrasts with the neoformation of dioctahedral Fe-mica (glauconite, and Fe-illite), which instead requires solutions relatively enriched in Al and Fe. This study aims to understand the conditions of co-existence of both, Mg-smectite and Fe-mica a common clay association in former or modern alkaline soil systems and sediments. The study was carried out along an alkaline soil catena representative of the region. The soil organization revealed that Mg-smectite occur in top soil close to the lake, whereas Fe-mica dominate in the clay fraction of deeper greenish horizons a few meters apart. We propose here that this spatial distribution is controlled by the lateral transfer of Fe and Al with organic ligands. Alkaline organic rich solutions (DOC up to 738 mg L-1) collected in the watertable were centrifuged and filtered through membranes of decreasing pore size (0.45 μm, 0.2 μm, 30 KDa, 10 KDa, 3 KDa) to separate colloidal and dissolved fractions. Fe, Al, Si, Mg and K were analysed for each fraction. Although the filtration had no influence on Si and K contents, almost 90% of Fe (up to 2.3 mg L-1) and Al (up to 7 mg L-1) are retained at the first cutoff threshold of 0.45μm. The treatment of the same solutions by oxygen peroxide before filtration shows that a large proportion of Fe and Al were bonded to organic colloids in alkaline soil solution at the immediate lake border, allowing Mg-smectite precipitation. The fast mineralization of the organic matter a few meters apart from the lake favors the release of Fe and Al necessary for Fe-mica neoformation. In comparison with chemical and mineralogical characteristics of alkaline environments described in the

  15. What do we really know about the role of microorganisms in iron sulfide mineral formation?

    Science.gov (United States)

    Picard, Aude; Gartman, Amy; Girguis, Peter

    2016-06-01

    Iron sulfide mineralization in low-temperature systems is a result of biotic and abiotic processes, though the delineation between these two modes of formation is not always straightforward. Here we review the role of microorganisms in the precipitation of extracellular iron sulfide minerals. We summarize the evidence that links sulfur-metabolizing microorganisms and sulfide minerals in nature and we present a critical overview of laboratory-based studies of the nucleation and growth of iron sulfide minerals in microbial cultures. We discuss whether biologically derived minerals are distinguishable from abiotic minerals, possessing attributes that are uniquely diagnostic of biomineralization. These inquiries have revealed the need for additional thorough, mechanistic and high-resolution studies to understand microbially mediated formation of a variety of sulfide minerals across a range of natural environments.

  16. In situ clay formation : evaluation of a proposed new technology for stable containment barriers.

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, Kathryn L. (University of Illinois at Chicago, Chicago, IL); DiGiovanni, Anthony Albert; Fredrich, Joanne T.

    2004-03-01

    Containment of chemical wastes in near-surface and repository environments is accomplished by designing engineered barriers to fluid flow. Containment barrier technologies such as clay liners, soil/bentonite slurry walls, soil/plastic walls, artificially grouted sediments and soils, and colloidal gelling materials are intended to stop fluid transport and prevent plume migration. However, despite their effectiveness in the short-term, all of these barriers exhibit geochemical or geomechanical instability over the long-term resulting in degradation of the barrier and its ability to contain waste. No technologically practical or economically affordable technologies or methods exist at present for accomplishing total remediation, contaminant removal, or destruction-degradation in situ. A new type of containment barrier with a potentially broad range of environmental stability and longevity could result in significant cost-savings. This report documents a research program designed to establish the viability of a proposed new type of containment barrier derived from in situ precipitation of clays in the pore space of contaminated soils or sediments. The concept builds upon technologies that exist for colloidal or gel stabilization. Clays have the advantages of being geologically compatible with the near-surface environment and naturally sorptive for a range of contaminants, and further, the precipitation of clays could result in reduced permeability and hydraulic conductivity, and increased mechanical stability through cementation of soil particles. While limited success was achieved under certain controlled laboratory conditions, the results did not warrant continuation to the field stage for multiple reasons, and the research program was thus concluded with Phase 2.

  17. Comment on "Evaluation of X-ray diffraction methods for determining the crystal growth mechanisms of clay minerals in mudstones, shales and slates," by L. N. Warr and D. R. Peacor

    Science.gov (United States)

    Eberl, D.D.; Srodon, J.; Drits, V.A.

    2003-01-01

    A recent paper by Warr and Peacor (2002) suggested that our use of the Bertaut-Warren-Averbach technique (MudMaster computer program) for studying changes in crystallite thickness distributions (CTDs) of clay minerals during diagenesis and very low-grade metamorphism is not reliable because it is dependent on many variables which can not be fully controlled. Furthermore, the authors implied that the measured shapes of CTDs cannot be used with confidence to deduce crystal growth mechanisms and histories for clays, based on our CTD simulation approach (using the Galoper computer program). We disagree with both points, and show that the techniques are powerful, reliable and useful for studying clay mineral alteration in rocks. ?? 2003 Schweiz. Mineral. Petrogr. Ges.

  18. Pyrite formation and mineral transformation pathways upon sulfidation of ferric hydroxides depend on mineral type and sulfide concentration

    NARCIS (Netherlands)

    Peiffer, Stefan; Behrends, Thilo; Hellige, Katrin; Larese-Casanova, Philip; Wan, Moli; Pollok, Kilian

    2015-01-01

    The reaction of ferric (hydr)oxides with dissolved sulfide does not lead to the instantaneous production of thermodynamically stable products but can induce a variety of mineral transformations including the formation of metastable intermediates. The importance of the various transformation pathways

  19. Role of clay as catalyst in Friedel–Craft alkylation

    Indian Academy of Sciences (India)

    Tanushree Choudhury; Nirendra M Misra

    2011-10-01

    Solid acids have become increasingly important for many liquid-phase industrial reactions these days. Montmorillonite clays (2:1 clay mineral) have been used as efficient solid acid catalysts for a number of organic and liquid phase reactions and offer several advantages over classic acids. Tailor made catalysts can be prepared from clays by suitably adjusting their acidity and surface area by acid activation. In the present work, preparation, characterization and performance of Pt (II) clays, Cu (II) clays, acid clay, and sol–gel hybrids of Cu (II) clays as solid catalysts in a test Friedel–Craft alkylation reaction of benzyl chloride with toluene using differential scanning calorimeter (DSC) are reported. Product formation has been analysed by FTIR spectroscopy. The main objective of this work is to show how clay as a solid catalyst affects reaction rates and activation energies. Acidity and dispersion of solid catalysts are twomain factors which govern a catalysis reaction. Kinetic parameter analysis and XRD studies confirm that acid Pt (II) clay and Pt (II) clay dispersed by natural dispersants aremore effective catalysts. In contrast to the reactions using AlCl3, the experimental conditions are non-polluting and the final work up does not require any aqueous treatment.

  20. Electron Microscopic Observation of Clays of Calcareous and Noncalcareous Soils in Bangladesh

    OpenAIRE

    ALAM, Md. Lutfe; KAKOI, Teruzane; MIYAUCHI, Nobufumi; SHINAGAWA, Akio; カコイ, テルザネ; ミヤウチ, ノブフミ; シナガワ, アキオ

    1993-01-01

    Electron microscopic observation of calcareous and noncalcareous floodplain soils of Bangladesh were carried out by TEM and SEM. Morphological changes in relation to clay formation and weathering process were investigated. Unweathered, partially weathered and weathered micaceous minerals accompanying with poorly crystallized kaolinite and halloysite and other primary minerals were observed in silt and coarse clay of both calcareous and noncalcareous soil. Smectite and vermiculite which are...

  1. Detection of Soluble and Fixed NH4+ in Clay Minerals by DTA and IR Reflectance Spectroscopy : A Potential Tool for Planetary Surface Exploration

    Science.gov (United States)

    Janice, Bishop; Banin, A.; Mancinelli, R. L.; Klovstad, M. R.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    Nitrogen is an essential element for life. It is the only element among the six major biogenic elements, C, O, S, O, P, H, whose presence in the Martian soil has not been positively and directly established. We describe here a study assessing the ability to detect NH4 in soils by two methods: differential thermal analysis (DTA) and infrared (IR) reflectance spectroscopy. Four standard clay minerals (kaolinite, montmorillonite, illite and attapulgite) and an altered tephra sample from Mauna Kea were treated with NH4 in this study. Samples of the NH4-treated and leached clays were analyzed by DTA and infrared (IR) reflectance spectroscopy to quantify the delectability of soluble and sorbed/fixed NH4. An exotherm at 270-280 C was clearly detected in the DTA curves of NH4-treated (non-leached) samples. This feature is assigned to the thermal decomposition reaction of NH4. Spectral bands observed at 1.56, 2.05, 2.12, 3.06, 3.3, 3.5, 5.7 and 7.0 microns in the reflectance spectra of NH4-treated and leached samples are assigned to the sorbed/fixed ammonium in the clays. The montmorillonite has shown the most intense absorbance due to fixed ammonium among the leached samples in this study, as a result of its high cation sorption capacity. It is concluded that the presence of sorbed or fixed NH4 in clays may be detected by infrared (IR) reflectance or emission spectroscopy. Distinction between soluble and sorbed NH4 may be achieved through the presence or absence of several spectral features assigned to the sorbed NH4 moietyi and, specifically, by use of the 4.2 micrometer feature assigned to solution NH4. Thermal analyses furnish supporting evidence of ammonia in our study through detection of N released at temperatures of 270-330 C. Based on these results it is estimated that IR spectra measured from a rover should be able to detect ammonia if present above 20 mg NH4/g sample in the surface layers. Orbital IR spectra and thermal analyses measured on a rover may be able to

  2. CO2 + N2O mixture gas hydrate formation kinetics and effect of soil minerals on mixture-gas hydrate formation process

    Science.gov (United States)

    Enkh-Amgalan, T.; Kyung, D.; Lee, W.

    2012-12-01

    CO2 mitigation is one of the most pressing global scientific topics in last 30 years. Nitrous oxide (N2O) is one of the main greenhouse gases (GHGs) defined by the Kyoto Protocol and its global warming potential (GWP) of one metric ton is equivalent to 310 metric tons of CO2. They have similar physical and chemical properties and therefore, mixture-gas (50% CO2 + 50% N2O) hydrate formation process was studied experimentally and computationally. There were no significant research to reduce N20 gas and we tried to make hydrate to mitigate N20 and CO2 in same time. Mixture gas hydrate formation periods were approximately two times faster than pure N2O hydrate formation kinetic in general. The fastest induction time of mixture-gas hydrate formation observed in Illite and Quartz among various soil mineral suspensions. It was also observed that hydrate formation kinetic was faster with clay mineral suspensions such as Nontronite, Sphalerite and Montmorillonite. Temperature and pressure change were not significant on hydrate formation kinetic; however, induction time can be significantly affected by various chemical species forming under the different suspension pHs. The distribution of chemical species in each mineral suspension was estimated by a chemical equilibrium model, PHREEQC, and used for the identification of hydrate formation characteristics in the suspensions. With the experimental limitations, a study on the molecular scale modeling has a great importance for the prediction of phase behavior of the gas hydrates. We have also performed molecular dynamics computer simulations on N2O and CO2 hydrate structures to estimate the residual free energy of two-phase (hydrate cage and guest molecule) at three different temperature ranges of 260K, 273K, and 280K. The calculation result implies that N2O hydrates are thermodynamically stable at real-world gas hydrate existing condition within given temperature and pressure. This phenomenon proves that mixture-gas could be

  3. Hydraulic characterization of the boom clay formation from the HADES underground laboratory in Mol: evolution and assessment of the piezometric techniques

    International Nuclear Information System (INIS)

    The network of piezometers installed in the Boom clay formation from the HADES Underground laboratory (-223 m) at Mol is an invaluable tool for the measurement and physical understanding of the groundwater flow towards a non closes deep repository system in an argillaceous formation. The hydraulic testing, test interpretation and groundwater sampling methodologies in a plastic clay (19 - 26 % H2O) at medium depth are presented. The results obtained from in situ tests (metric to local scale, 1 to 30 m) and from laboratory experiments on vertical and horizontal clay plugs (centimetric scale, 3 - 7 cm) have put into evidence the anisotropy of the Boom clay. The horizontal hydraulic conductivity is approximately 2.4 times higher than the vertical one. Laboratory and in situ results are discussed. Their comparison gives coherent hydraulic and transport parameters supporting the model used to describe quantitatively the migration of radionuclides through the clay. Meanwhile, concerning the hydraulic conductivity, a large discrepancy still subsists with the regional model (kilometric scale, 40 km x 80 km) which is presently being revisited (i.a. boundary conditions and refinement of the mesh, from 5 to 0.5 km) and with the regional observations often too scarce (water level measurements in the sandy aquifers surrounding the Boom clay formation). (authors). 8 refs., 2 figs., 1 tab

  4. Performance assessment of geological isolation systems for radioactive waste. Disposal in clay formations

    International Nuclear Information System (INIS)

    In the framework of the PAGIS project of the CEC Research Programme on radioactive waste, performance assessment studies have been undertaken on the geological disposal of vitrified high-level waste in clay layers at a reference site at Mol (B) and a variant site at Harwell (UK). The calculations performed for the reference site shown that most radionuclides decay to negligible levels within the first meters of the clay barrier. The maximum dose rates arising from the geological disposal of HLW, as evaluated by the deterministic approach are about 10-11 Sv/y for river pathways. If the sinking of a water well into the 150 m deep aquifer layer in the vicinity of the repository is considered together with a climatic change, the maximum calculated dose rate rises to a value of 3.10-7 Sv/y. The calculated maxima arise between 1 million and 15 million years after disposal. The maximum dose rates evaluated by stochastic calculations are about one order of magnitude higher due to the considerable uncertainties in the model parameters. In the case of the Boom clay the estimated consequences of a fault scenario are of the same order of magnitude as the results obtained for the normal evolution scenario. The maximum risk is estimated from stochastic calculations to be about 4.10-8 per year. For the variant site the case of the normal evolution scenario has been evaluated. The maximum dose rates calculated deterministically are about 1.10-6 Sv/y for river pathways and 6.10-5 Sv/y for a water well pathways; these doses would occur after about 1 million years. This document is one of a set of 5 reports covering a relevant project of the European Community on a nuclear safety subject having very wide interest. The five volumes are: the summary (EUR 11775-EN), the clay (EUR 11776-EN), the granite (EUR 11777-FR), the salt (EUR 11778-EN) and the sub-seabed (EUR 11779-EN)

  5. Uranium mineralization in the Mesoproterozoic Banganapalle formation near Nagayapalle, Cuddapah Basin, Andhra Pradesh

    International Nuclear Information System (INIS)

    Cuddapah Basin is the hub of uranium exploration for years together in India. Initial efforts were for quartz-pebble-conglomerate type mineralization. However, the emphasis later shifted towards dolostone-hosted mineralization and finally to unconformity-associated uranium mineralization. The recent finding of uranium mineralization associated with the Banganapalle Formation near Nagayapalle is the outcome of continuous exploration input in the Cuddapah Basin over years. Uranium mineralization (up to 0.278% U3O8) associated with the Mesoproterozoic Banganapalle Formation near Nagayapalle is represented by pitchblende and autunite. Pitchblende occurs as tiny grains in the intergranular spaces and along grain boundaries; and also at places replaces pyrite and covellite grains. The geological set-up indicates that the geodomain is favourable for uranium mineralization. (author)

  6. Formation of calcium phosphate mineral materialcontrolled by microemulsion

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to prepare calcium phosphate-based material with nano-structure and bioactivity, natural lecithin and n-tetradecane were used as the amphipile and the oil phase respectively, along with the water phase, to form a microemulsion template. Phosphate mineralization was induced and controlled by the microemulsion. The products, characterized by scanning electronic microscopy, infrared spectroscopy and X-ray diffraction analysis, are composed of lecithin and hydroxyapatite, and possess the nano-structure of sticks, balls and three-dimensional nets connected by tubes. These results show that the microemulsion can be used to control calcium phosphate mineralization for the preparation of biomimetic mineral materials with various nano-structures.

  7. Clay catalysis of oligonucleotide formation: kinetics of the reaction of the 5'-phosphorimidazolides of nucleotides with the non-basic heterocycles uracil and hypoxanthine

    Science.gov (United States)

    Kawamura, K.; Ferris, J. P.

    1999-01-01

    The montmorillonite clay catalyzed condensation of activated monocleotides to oligomers of RNA is a possible first step in the formation of the proposed RNA world. The rate constants for the condensation of the phosphorimidazolide of adenosine were measured previously and these studies have been extended to the phosphorimidazolides of inosine and uridine in the present work to determine of substitution of neutral heterocycles for the basic adenine ring changes the reaction rate or regioselectivity. The oligomerization reactions of the 5'-phosphoromidazolides of uridine (ImpU) and inosine (ImpI) on montmorillonite yield oligo(U)s and oligo(I)s as long as heptamers. The rate constants for oligonucleotide formation were determined by measuring the rates of formation of the oligomers by HPLC. Both the apparent rate constants in the reaction mixture and the rate constants on the clay surface were calculated using the partition coefficients of the oligomers between the aqueous and clay phases. The rate constants for trimer formation are much greater than those dimer synthesis but there was little difference in the rate constants for the formation of trimers and higher oligomers. The overall rates of oligomerization of the phosphorimidazolides of purine and pyrimidine nucleosides in the presence of montmorillonite clay are the same suggesting that RNA formed on the primitive Earth could have contained a variety of heterocyclic bases. The rate constants for oligomerization of pyrimidine nucleotides on the clay surface are significantly higher than those of purine nucleotides since the pyrimidine nucleotides bind less strongly to the clay than do the purine nucleotides. The differences in the binding is probably due to Van der Waals interactions between the purine bases and the clay surface. Differences in the basicity of the heterocyclic ring in the nucleotide have little effect on the oligomerization process.

  8. Distribution And Mineralogy Of The Clay Deposits In Saudi Arabia

    OpenAIRE

    Al Mohandis, Ahmed A. [احمد عبد القادر المهندس

    1993-01-01

    The main goal of this paper is to characterize the mineral clay deposits in Saudi Arabia; especially their mineral composition, deposit size, geological setting and possible uses. Different published reports and papers on clay deposits of Saudi Arabia have been reviewed. Three major clay deposits have been studied by XRD, DTA and chemical analyses. Saudi clay deposits consist generally of kaolinite as a major mineral, and small amounts other clay minerals, such as montmorillonite and illite. ...

  9. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay.

    Science.gov (United States)

    Romero, Alejandro; Ares, Irma; Ramos, Eva; Castellano, Víctor; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2016-04-15

    Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption. PMID:27153755

  10. Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: Protective effect of illite mineral clay.

    Science.gov (United States)

    Romero, Alejandro; Ares, Irma; Ramos, Eva; Castellano, Víctor; Martínez, Marta; Martínez-Larrañaga, María-Rosa; Anadón, Arturo; Martínez, María-Aránzazu

    2016-04-15

    Aflatoxin B1 (AFB1), fumonisin B1 (FB1), ochratoxin A (OTA) and T-2 toxin (T2) are mycotoxins that commonly contaminate the food chain and cause various toxicological effects. Their global occurrence is regarded as an important risk factor for human and animal health. In this study, the results demonstrate that, in human Caco-2 cells, AFB1, FB1, OTA and T2 origin cytotoxic effects, determining cell viability through MTT assay and LDH leakage, and decrease trans-epithelial electrical resistance (TEER). The decrease in barrier properties is concomitant with a reduction in the expression levels of the tight junction constituents claudin-3, claudin-4 and occludin. The protective effect of mineral clays (diosmectite, montmorillonite and illite) on alterations in cell viability and epithelial barrier function induced by the mycotoxins was also evaluated. Illite was the best clay to prevent the mycotoxin effects. Illite plus mycotoxin co-treatment completely abolished AFB1 and FB1-induced cytotoxicity. Also, the decreases in the gene expression of claudins and the reduction of TEER induced by mycotoxins were reversed by the illite plus mycotoxin co-treatment. In conclusion, these results demonstrated that mycotoxins AFB1, FB1, T2 and OTA disrupt the intestinal barrier permeability by a mechanism involving reduction of claudin isoform expressions, and illite counteracts this disruption.

  11. Clays in prebiological chemistry

    Science.gov (United States)

    Rao, M.; Oro, J.; Odom, D. G.

    1980-01-01

    The ways in which clays have been utilized in studies of prebiological chemistry are reviewed, and an assessment is given of the possible role of clays in prebiological systems. The adsorption of organic molecules on clays has been demonstrated, as has the synthesis of bioorganic monomers in the presence of clays. For instance, amino acids, purines and pyrimidines have been obtained from carbon monoxide and nitric acid in the presence of clays at relatively high temperatures (250-325 C). The oligomerization of biochemical monomers, mediated by clays, has also been shown to result in the formation of polymer molecules basic to life. Clays have also been found to affect the condensation of mononucleotides to oligonucleotides.

  12. Late Quaternary clay minerals off Middle Vietnam in the western South China Sea: Implications for source analysis and East Asian monsoon evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High-resolution clay mineral records combined with oxygen isotopic stratigraphy over the past 450 ka during late Quaternary from Core MD05-2901 off Middle Vietnam in the western South China Sea are reported to reconstruct a history of East Asian monsoon evolution.Variations in Illite,chlorite,and kaolinite contents indicate a strong glacial-interglacial cyclicity,while changes in smectite content present a higher frequency cyclicity.The provenance analysis indicates a mixture of individual clay minerals from various sources surrounding the South China Sea.Smectite derived mainly from the Sunda shelf and its major source area of the Indonesian islands.Illite and chlorite originated mainly from the Mekong and Red rivers.Kaolinite was provided mainly by the Pearl River.Spectral analysis of the kaolinite/(illite+chlorite) ratio displays a strong eccentricity period of 100 ka,implying the ice sheet-forced winter monsoon evolution; whereas higher frequency changes in the smectite content show an ice sheet-forced obliquity period of 41 ka,and precession periods of 23 and 19 ka and a semi-precession period of 13 ka as well,implying the tropical-forced summer monsoon evolution.The winter monsoon evolution is generally in coherence with the glacial-interglacial cyclicity,with intensified winter monsoon winds during glacials and weakened winter monsoon winds during interglacials; whereas the summer monsoon evolution provides an almost linear response to the summer insolation of low latitude in the Northern Hemisphere,with strengthened summer monsoon during higher insolation and weakened summer monsoon during lower insolation.The result suggests that the high-latitude ice sheet and low-latitude tropical factor could drive the late Quaternary evolution of East Asian winter and summer monsoons,respectively,implying their diplex and self-contained forcing mechanism.

  13. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals.

    Science.gov (United States)

    Zhao, Lixia; Bian, Jingna; Zhang, Yahui; Zhu, Lingyan; Liu, Zhengtao

    2014-11-01

    The sorption of four perfluoroalkyl acids (PFAAs) [perfluorooctane sulfonate (PFOS), perfluorohexane sulfonate (PFHxS), perfluorooctanoic acid (PFOA) and perfluorohexanoic acid (PFHxA)] on three typical minerals [montmorillonite (MM), kaolinite (KL) and hematite (HM)] was studied. The sorption of PFOS and PFHxS was much stronger than PFOA and PFHxA. The sorption of each PFAA on the minerals followed an order of HM>KL>MM, even though MM was positively while KL and HM were negatively charged, implying that the sorption is driven by some other interactions besides electrostatic attraction. The sorption decreased with an increase in pH and a decrease in ionic strength of the solution, and their impacts on PFOS were much stronger than other three PFAAs. Surface complexing and hydrogen-bonding could make great contributions to the sorption of PFOS on the minerals. The results are important for understanding the transport and fate of PFAAs in sediment and ground water.

  14. Mechanisms of erosion in miocene clays from the Tudela formation (Bardenas Reales, Navarra, Spain)

    International Nuclear Information System (INIS)

    In Bardenas Reales area (located in the central-western part of the Ebro Depression) several erosion rates have been measured along the last years. The mean annual erosion rates are of 32 Tm/Ha/yr. Due to semiarid conditions, precipitation is irregularly distributed along the year with maximums on spring and autumn when the great erosion is produced. There are intensity and quality thresholds below which erosion does not take place. In Bardenas Reales some erosion processes act (mud slides and armoured mud balls among others). Mud slides are mobilised on spring when the sediment have reached its plastic limit and could slide due to heavy rains. Armored mud balls are produced by the enhancement of popcorn cracks that individualize clays cores which are rounded by water. The same kind of strong precipitation that mobilised mud slides is the responsible of armoured mud balls destruction because the conditions to its maintenance are very limited. (Author) 9 refs.

  15. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    Science.gov (United States)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  16. Mineral-organic formations in Berezitovy deposit (the Amur region, Russia)

    Science.gov (United States)

    Vakh, E. A.; Vakh, A. S.; Petukhov, V. I.; Nikulina, T. V.; Tarasenko, I. A.

    2016-03-01

    The article examines the structure and composition of mineral-organic formations within the hypergenesis zone of Berezitovy deposit (the Amur region). The detailed study has shown that these recent formations are represented by algae identified as Trentepohlia jolithus (Linnaeus) Wallroth. The process of macro and micro element accumulation in these formations is likely to have a complex sediment-chemogenic-organogenic nature and results from the flow of the suspended and dissolved substances formed within the hypergenesis zone of sulphide ores. It is also assumed that some elements accumulated in the formations were previously absorbed by algae from the mineralized water environment.

  17. Infrared spectroscopic studies of the effect of elevated temperature on the association of pyroglutamic acid with clay and other minerals

    Science.gov (United States)

    Macklin, J. W.; White, D. H.

    1985-01-01

    Fourier transform i.r. measurements of L-pyroglutamic acid dispersed in a matrix of a clay, silica or alumina have been obtained at various temperatures between 25 and 220 degrees C. The i.r. spectrum of L-pyroglutamic acid varies in a manner dependent upon the matrix material and shows considerable change as the temperature of the mixtures is increased. The differences in the spectrum at elevated temperatures are explained in terms of a chemical reaction between hydroxyl groups in the matrix and the carboxylic acid. The i.r. spectra of trimethylsilyl derivatives of L-pyroglutamic acid and aluminum pyroglutamate were also measured to assist the understanding of spectra and interpretation of the spectral changes dependent upon increasing temperature.

  18. Macro-and Micro- Properties of Two Natural Marine Clays in China

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-jing; PENG Li-cai; ZHU He-hua; LIN Yi-xi; HUANG Liang-ji

    2009-01-01

    In this paper,macro- and micro- properties of natural marine clay in two different and representative regions of China are investigated in detail.In addition to in-situ tests,soil samples are collected by use of Shelby tubes for laboratory examination in Shanghai and Zhuhai respectively,two coastal cities in China.In the laboratory tests,macro-properties such as consolidation characteristics and undrained shear strength are measured.Moreover,X-ray diffraction test,scanning electron microscope test,and mercury intrusion test are carried out for the investigation of their micro-properties including clay minerals and microstructure.The study shows that:(1) both clays are Holocene series formations,classified as either normal or underconsolidated soils.The initial gradient of the stress-strain curves shows their increase with increasing consolidation pressure;however,the Shanghai and the Zhuhai clays are both structural soils with the latter shown to be more structured than the former.As a result,the Zhuhai clay shows strain softening behavior at low confining pressures,but strain hardening at high pressures.In contrast,the Shanghai clay mainly manifests strain-hardening.(2) An activity ranges from 0.75 to 1.30 for the Shanghai marine clay and from 0.5 to 0.85 for the Zhuhai marine clay.The main clay mineral is illite in the Shanghai clay and kaolinite in the Zhuhai clay.The Zhuhai clay is mainly characterized by a flocculated structure,while the typical Shanghai clay shows a dispersed structure.The porous structure of the Shanghai clay is characterized mainly by large and medium-sized pores,while the Zhuhai clay porous structure is mainly featreed by small and medium-sized pores.The differences in their macro- and micro- properties can he attributed to different sedimentation environments.

  19. Amplification of plasmid DNA bound on soil colloidal particles and clay minerals by the polymerase chain reaction

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polymerase chain reaction (PCR) was used to amplify a 600-base pair (bp) sequence of plasmid pGEX-2T DNA bound on soil colloidal particles from Brown soil (Alfisol) and Red soil (Ultisol), and three different minerals (goethite, kaolinite, montmorillonite). DNA bound on soil colloids, kaolinite, and montmorillonite was not amplified when the complexes were used directly but amplification occurred when the soil colloid or kaolinite-DNA complex was diluted, 10- and 20-fold. The montmorillonite-DNA complex required at least 100-fold dilution before amplification could be detected. DNA bound on goethite was amplified irrespective of whether the complex was used directly, or diluted 10- and 20-fold. The amplification of mineral-bound plasmid DNA by PCR is, therefore, markedly influenced by the type and concentration of minerals used. This information is of fundamental importance to soil molecular microbial ecology with particular reference to monitoring the fate of genetically engineered microorganisms and their recombinant DNA in soil environments.

  20. Raw material of the Corumbatai formation at the region of ceramic pole of Santa Gertrudes - Sao Paulo, Brazil, with natural characteristics for fabrication of expanded clay

    International Nuclear Information System (INIS)

    This paper refers to the study of the bases material of the Corumbatai Formation (Parana Basin) from a clay mine, which presents limits for its use in ceramic tiles in dry grinding process due to its hardness and, especially, the high content of organic matter in relation to the clay overlaid. The characterization of the raw material and the product was accomplished by organic carbon analysis, X-ray diffraction, optical microscopy and test-firing. Firing conditions were determined to get expanded clay, using fast firing static kiln and a continuous roller kiln, both from laboratory equipment, getting samples with variable density up to the limit of expansion, with density that can reach values lower than 0,5g.cm-3 because of the formation of closed pores and an external vitreous foil which provide a high mechanical resistance to the particles. (author)

  1. Fe(II) Sorption On Pyrophyllite: Effect Of Structural Fe(III) (impurity) In Pyrophyllite On Nature Of Layered Double Hydroxide (LDH) Secondary Mineral Formation

    Energy Technology Data Exchange (ETDEWEB)

    Starcher, Autumn N.; Li, Wei; Kukkadapu, Ravi K.; Elzinga, E. J.; Sparks, Donald L.

    2016-06-18

    Fe(II)-Al(III)-LDH (layered double hydroxide) phases have been shown to form from reactions of aqueous Fe(II) with Fe-free Al-bearing minerals (phyllosilicate/clays and Al-oxides). To our knowledge, the effect of small amounts of structural Fe(III) impurities in “neutral” clays on such reactions, however, were not studied. In this study to understand the role of structural Fe(III) impurity in clays, laboratory batch studies with pyrophyllite (10 g/L), an Al-bearing phyllosilicate, containing small amounts of structural Fe(III) impurities and 0.8 mM and 3 mM Fe(II) (both natural and enriched in 57Fe) were carried out at pH 7.5 under anaerobic conditions (4% H2 – 96% N2 atmosphere). Samples were taken up to 4 weeks for analysis by Fe-X-ray absorption spectroscopy and 57Fe Mössbauer spectroscopy. In addition to the precipitation of Fe(II)-Al(III)-LDH phases as observed in earlier studies with pure minerals (no Fe(III) impurities in the minerals), the analyses indicated formation of small amounts of Fe(III) containing solid(s), most probably hybrid a Fe(II)-Al(III)/Fe(III)-LDH phase. The mechanism of Fe(II) oxidation was not apparent but most likely was due to interfacial electron transfer from the sorbed Fe(II) to the structural Fe(III) and/or surface-sorption-induced electron-transfer from the sorbed Fe(II) to the clay lattice. Increase in the Fe(II)/Al ratio of the LDH with reaction time further indicated the complex nature of the samples. This research provides evidence for the formation of both Fe(II)-Al(III)-LDH and Fe(II)-Fe(III)/Al(III)-LDH-like phases during reactions of Fe(II) in systems that mimic the natural environments. Better understanding Fe phase formation in complex laboratory studies will improve models of natural redox systems.

  2. Natural isotope tracing of hydric transfers in a very low porosity clay-stone formation: the argilites of Tournemire (France)

    International Nuclear Information System (INIS)

    Since 1988, the experimental site of the French Institute for Protection and Nuclear Safety (IPSN) situated in a tunnel near Toumemire (Aveyron, France), is studied in order to develop techniques and methods for the characterization of water behaviour in a clay-stone formation with very low water content and very low permeability. Isotope geochemistry was used to define the fluid transfer modalities. After the development or the improvement of sampling techniques, the measurement of the stable isotope contents (oxygen-18, deuterium, carbon-13) and radioactive isotope contents (tritium, carbon-14, chlorine-36) of fluids (pore water, fracture water) and solids (calcite fracture fillings) allowed to distinguish several origins and behaviours of water in the massif. The stable isotope distribution of pore water could be due to a diffusion driven mixing between argilite formation water and water from karsts, over and underlying the argilite formation. In this hypothesis, the time needed to establish the distribution profile should be longer than 5 million years. The role of the fractures seems complex, with indications of local paleo-transfers from the matrix to the fracture, and indications of transfers from the karstic aquifer. (author)

  3. Proceedings of the NEA Clay Club Workshop on Clay characterisation from nanoscopic to microscopic resolution

    International Nuclear Information System (INIS)

    A wide spectrum of argillaceous media are being considered in Nuclear Energy Agency (NEA) member countries as potential host rocks for the final, safe disposal of radioactive waste, and/or as major constituent of repository systems in which wastes will be emplaced. In this context, the NEA established the Working Group on the 'Characterisation, the Understanding and the Performance of Argillaceous Rocks as Repository Host Formations' in 1990, informally known as the 'Clay Club'. The Clay Club examines various argillaceous rocks that are being considered for the underground disposal of radioactive waste, ranging from soft clays to indurated shales. Very generally speaking, these clay rocks are composed of fine-grained minerals showing pore sizes from < 2 nm (micropores) up to > 50 nm (macro-pores). The water flow, solute transport and mechanical properties are largely determined by this microstructure, the spatial arrangement of the minerals and the chemical pore water composition. Examples include anion accessible ('geochemical') porosity and macroscopic membrane effects (chemical osmosis, hyper-filtration), geomechanical properties and the characteristics of two-phase flow properties (relevant for gas transport). At the current level of knowledge, there is a strong need to improve the nanoscale description of the phenomena observed at a more macroscopic scale. However, based on the scale of individual clay-minerals and pore sizes, for most of the imaging techniques this resolution is a clear challenge. The workshop, hosted by the Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT) in the Akademiehotel Karlsruhe (Germany) from 6 to 8 September 2011, was intended to give, inter alia, a discussion platform on: - The current state-of-the-art of different spectro-microscopic methods - New developments addressing the above mentioned knowledge gaps in clays. - The perception of the interplay between geometry

  4. Geotechnical properties of Karwar marine clay

    Digital Repository Service at National Institute of Oceanography (India)

    Bhat, S.T.; Nayak, B.U.; Naik, R.L.

    Karwar marine clay possesses high plasticity characteristics with natural water content higher than the liquid limit. Liquidity index was as high as 1.7. Predominant clay mineral was kaolinite. Undrained shear strength showed an increasing trend...

  5. Preservation of carbohydrates through sulfurization in a Jurassic euxinic shelf sea: Examination of the Blackstone Band TOC-cycle in the Kimmeridge Clay Formation, UK

    NARCIS (Netherlands)

    Dongen, B.E. van; Schouten, S.; Sinninghe Damsté, J.S.

    2006-01-01

    A complete total organic carbon (TOC) cycle in the Upper Jurassic Kimmeridge Clay Formation (KCF) comprising the extremely TOC-rich (34%) Blackstone Band was studied to investigate the controlling factors on TOC accumulation. Compared with the under- and overlying strata, TOC in the Blackstone Band

  6. Early diagenesis and clay mineral adsorption as driving factors of metal pollution in sediments: the case of Aveiro Lagoon (Portugal).

    Science.gov (United States)

    Martins, Maria Virgínia Alves; Mane, Miguel Ângelo; Frontalini, Fabrizio; Santos, José Francisco; da Silva, Frederico Sobrinho; Terroso, Denise; Miranda, Paulo; Figueira, Rubens; Laut, Lazaro Luiz Mattos; Bernardes, Cristina; Filho, João Graciano Mendonça; Coccioni, Rodolfo; Dias, João M Alveirinho; Rocha, Fernando

    2015-07-01

    This work aims to define the factors driving the accumulation of metals in the sediment of the lagoon of Aveiro (Portugal). The role of initial diagenetic processes in controlling trace metal retention in surface sediment is traced by mineralogy, magnetic susceptibility and geochemical analyses. Although several studies have focused on the metal distribution in this polihaline and anthropized coastal lagoon, most of them have been solely focused on the total metal concentrations. This study instead represents the first attempt to evaluate in a vast area of the Aveiro Lagoon the role of biogeochemical processes in metal availability and distribution in three extracted phases: exchangeable cations adsorbed by clay and elements co-precipitated with carbonates (S1), organic matter (S2) and amorphous Mn hydroxides (S3). According to the sediment guideline values, the sediment is polluted by, for instance, As and Hg in the inner area of the Murtosa Channel, Pb in the Espinheiro Channel, Aveiro City canals and Aveiro Harbour, and Zn in the northern area of the Ovar Channel. These sites are located near the source areas of pollutants and have the highest total available concentrations in each extracted phase. The total available concentrations of all toxic metals are however associated, firstly, with the production of amorphous Mn hydroxides in most of the areas and, secondly, with adsorption by organic compounds. The interplay of the different processes implies that not all of the sites near pollution sources have polluted surface sediment. The accumulation of metals depends on not only the pollution source but also the changing in the redox state of the sediments that may cause alterations in the sediment retention or releasing of redox-sensitive metals. Results of this work suggest that the biogeochemical processes may play a significant role in the increase of the pollutants in the sediment of the Aveiro Lagoon.

  7. Formation and Detection of Clay Network Structure in Poly(propylene)/Layered Silicate Nanocomposites

    NARCIS (Netherlands)

    Abranyi, Agnes; Szazdi, Laszlo; Pukanszky Jr., Bela; Vancso, G. Julius; Pukanszky, Bela

    2006-01-01

    The study of the structure and the rheological properties of poly(propylene) (PP)/montmorillonite (MMT)/maleinated PP (MAPP) composites strongly suggests that a silicate network may form under certain conditions. Network formation could not be proven unambiguously with the usual techniques, i.e., wi

  8. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    Science.gov (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  9. Mineral formation on metallic copper in a `future repository site environment`

    Energy Technology Data Exchange (ETDEWEB)

    Amcoff, Oe.; Holenyi, K.

    1996-04-01

    Since reducing conditions are expected much effort has been concentrated on Cu-sulfides and CuFe-sulfides. However, oxidizing conditions are also discussed. A list of copper minerals are included. It is concluded that mineral formation and mineral transitions on the copper canister surface will be governed by kinetics and metastabilities rather than by stability relations. The sulfides formed are less likely to form a passivating layer, and the rate of sulfide growth will probably be governed by the rate of transport of reacting species to the canister surface. A series of tests are recommended, in an environment resembling the initial repository site conditions. 82 refs, 8 figs.

  10. Substantial iron sequestration during green-clay authigenesis in modern deep-sea sediments

    Science.gov (United States)

    Baldermann, A.; Warr, L. N.; Letofsky-Papst, I.; Mavromatis, V.

    2015-11-01

    In much of the global ocean, iron is a limiting nutrient for marine productivity. The formation of pyrite has been considered the most important sink of reactive iron in modern, organic-rich sediments. However, clay mineral transformations can also lead to long-term sequestration of iron during late diagenesis and in hydrothermal settings. Here we present evidence for substantial iron sequestration during the early diagenetic formation of ferruginous clay minerals, also called green-clay authigenesis, in the deep-sea environment of the Ivory Coast-Ghana Marginal Ridge. Using high-resolution electron microscopic methods and sequential sediment extraction techniques, we demonstrate that iron uptake by green-clay authigenesis can amount to 76 +/- 127 μmol Fe cm-2 kyr-1, which is on average six times higher than that of pyrite in suboxic subsurface sediments 5 m below the sea floor or shallower. Even at depths of 15 m below the sea floor or greater, rates of iron burial by green clay and pyrite are almost equal at ~80 μmol Fe cm-2 kyr-1. We conclude that green-clay formation significantly reduces the pore water inventory of dissolved iron in modern and ancient pelagic sediments, which challenges the long-standing conceptual view that clay mineral diagenesis is of little importance in current biogeochemical models of the marine iron cycle.

  11. Pore Characteristics and Methane Adsorption of Clay Minerals in Shale Gas Reservoir%页岩气储层粘土矿物孔隙特征及其甲烷吸附作用

    Institute of Scientific and Technical Information of China (English)

    王茂桢; 柳少波; 任拥军; 田华

    2015-01-01

    The clay minerals are the main constituent minerals of the shale.It’s closely related with the occurrence and enrichment of shale gas.Because of its special crystal structure,clay minerals formed different types of pores between the crystal layers,in the internal mineral and between the mineral particles.The pore size, morphology and the specific surface area determine the methane adsorption capacity of the clay minerals.This paper reviews the occurrence of methane adsorption and various influence factors,such as pore structure,the water and organic matter in the pore.Different types of clay minerals are different in pore development and morphology.The round and slit micropores are most frequently found in smectite clay,which has the biggest total surface area and methane adsorption capacity.The mesoporous and macroporous are most developed in illite and kaolinite with the methane adsorption capacity belowing montmorillonite.Water and organic matters present in the pore of the clay minerals will also affect the methane adsorption capacity.Generally believed that water molecules will occupy the surface of pore,and resulting in a decrease of methane adsorption capacity of clay minerals.However,the specific effects of the soluble organic matter to the methane adsorption capacity of clay minerals are not clear yet.Finally, this paper indicates some of the issues to be explored in depth according to the needs of shale gas exploration.%粘土矿物是页岩的主要组成矿物,与页岩气的赋存和富集密切相关。粘土矿物因其特殊的晶体结构,在晶层之间、矿物内部以及矿物颗粒之间形成了不同类型的孔隙,这些孔隙的大小、形貌和比表面积决定着粘土矿物的甲烷吸附能力。为此,本文综述了粘土矿物的孔隙结构以及孔隙中的水和有机质对甲烷吸附性的影响,指出不同类型的粘土矿物孔隙发育与形貌特征存在差异,蒙脱石中多发育圆形、狭缝状的

  12. Coupled transport phenomena in a clay from a Callovo-Oxfordian formation; Phenomenes de transport couples dans les argiles du Callovo-Oxfordien

    Energy Technology Data Exchange (ETDEWEB)

    Paszkuta, M

    2005-06-15

    Low permeability materials containing clay play an important role in practical life and natural environment. Indeed, the ability of clay soils to act as semi permeable membranes, that inhibit the passage of electrolytes, is of great interest. The major objective of this thesis is to evaluate the transport properties of natural clays and in particular coupled transports when a pressure gradient, an electrical field, a concentration gradient and a temperature gradient interact. The material is a compact argillite extracted in East France from a Callovo-Oxfordian formation which was supplied to us by ANDRA. NaCl was used as the main solute. Two series of experiments were performed to measure permeability, diffusion, conductivity, the electro-osmotic coefficient and the Soret coefficient. (author)

  13. Chemical durability of vitrified high-level waste and spent fuel under simulated repository conditions of a Boom Clay formation

    International Nuclear Information System (INIS)

    The Belgian programme is considering both the closed and open fuel cycle options. In the closed cycle, HLW glasses from the former Eurochemic reprocessing plant and from the French R7T7 plants are studied. R and D is focused on the interaction with the Boom Clay disposal host and potential near field environments. In surface laboratory testing we developed new set-ups to investigate various coupled processes: (1) combined glass leaching/Si diffusion in clay, (2) diffusion/sorption/precipitation of Si in clay, (3) effect of the presaturation of clay with Si, and (4) the mobile concentrations of e.g. Np, Tc, Se in clay slurries after leaching from glass. In the CORALUS in situ test, we installed four tubes in the underground laboratory (SCK-CEN site), and retrieved two of them after an interaction time of ∼1 year (90 deg. C) and ∼3 years (30 deg C). The R and D on the geological disposal of spent fuel in Boom Clay is focused on two major issues: (1) study the effect of α-activity on the dissolution of α-doped UO2 (simulating spent fuel ages between 150 and 90000 years), and (2) study the influence of Boom Clay and potential backfill materials (apatite, cement, sand) on the α-doped UO2 dissolution rate. Different experimental set-ups have been elaborated. Flowthrough tests in clay water and static tests in clay slurries were carried out in reducing conditions. We report the main results obtained on both HLW glass and doped UO2. Both HLW glass and UO2 show a similar evolution of the dissolution behaviour with time in the clay containing media. After an initial relatively fast dissolution characterized by sorption onto the clay, a much lower dissolution rate is observed. For both waste forms this results in expected lifetimes during geological disposal of 105 years or more. (author)

  14. Impact of medicated feed along with clay mineral supplementation on Escherichia coli resistance to antimicrobial agents in pigs after weaning in field conditions.

    Science.gov (United States)

    Jahanbakhsh, Seyedehameneh; Kabore, Kiswendsida Paul; Fravalo, Philippe; Letellier, Ann; Fairbrother, John Morris

    2015-10-01

    The aim of this study was to examine changes in antimicrobial resistance (AMR) phenotype and virulence and AMR gene profiles in Escherichia coli from pigs receiving in-feed antimicrobial medication following weaning and the effect of feed supplementation with a clay mineral, clinoptilolite, on this dynamic. Eighty E. coli strains isolated from fecal samples of pigs receiving a diet containing chlortetracycline and penicillin, with or without 2% clinoptilolite, were examined for antimicrobial resistance to 15 antimicrobial agents. Overall, an increased resistance to 10 antimicrobials was observed with time. Supplementation with clinoptilolite was associated with an early increase but later decrease in blaCMY-2, in isolates, as shown by DNA probe. Concurrently, a later increase in the frequency of blaCMY-2 and the virulence genes iucD and tsh was observed in the control pig isolates, being significantly greater than in the supplemented pigs at day 28. Our results suggest that, in the long term, supplementation with clinoptilolite could decrease the prevalence of E. coli carrying certain antimicrobial resistance and virulence genes.

  15. Study of alteration in the mechanical properties in hybrid nanocomposite of polypropylene/sisal fibers/mineral clay irradiated with gamma rays

    International Nuclear Information System (INIS)

    A new material class formed with reinforced filler, hybrid of organic and inorganic materials provides the technological development of materials with modified properties. And among great numbers of properties that can be modified by presence of hybrid filler to stand out the tension resistance. Polymer shows behavior of tensions and deformation that are not related of simple form. The answer of this material at mechanicals solicitations depends of structural factors and externals variables. As structural factors can be, for example, molecular weight, ramifications and crosslink. As external variables can be, for example, temperature, time or velocity of deformation, kind of solicitation and others. This work was possible to verify as nanostructures materials behavior, mechanically, after were submitted gamma radiation. This work utilized as polymeric matrix, recycled polypropylene, and as hybrid filler, a mixture of montimorillonite mineral clay with natural sisal fibers. It is known that form to magnify the tensile resistance is increase the number of crosslink of principal chain for gamma radiation. After irradiation the polypropylene was crosslinked structures that are result recombination of radicals formed during process of irradiation. It.s known that radicals formed occur preferentially in the amorphous region of polymer. Considering that polymeric matrix polypropylene, without addition fillers suffer strong structural influence when irradiated, was possible verify change in the extension, tensile strength and also maxim tensile in rupture, when this matrix was incorporated with fillers hybrids. (author)

  16. Therm odynamics of Diagenetic Fluid and Fluid/Mineral Reactions in the Eogene Xingouzui Formation,Oil Field T,Jianghan Basin

    Institute of Scientific and Technical Information of China (English)

    倪师军; 罗扬棣; 等

    1994-01-01

    This study focuses on the thermodynamics of diagenetic fluid from the Eogene Xingouzui Forma-tion which represents the most important reservoir in Field Oil T in the Jianghan Basin.The meas-ured homegenizagion temperatures(110-139℃)of fluid inclusions in diagenetic minerals fall within the range of 67-155℃ at the middle diagenetic stage .The pressure of diagenetic fluid is estimated at 10.2-56 Mpa .The activity of ions in the fluid shows a tendency of Ca2+>Mg2+>Na+>K+>Fe3+>Fe2+ for cations, and HCO3->SO22->F->Cl->CO22- for anions. For the gaseous facies, there is a tendency of CO2>CO>H2S>CH4>H2. According to the thermodynamic calculations,the pH and Eh of the fluid are 5.86-6.47 and -0.73-0.64V, respectively. As a result of the interaction between such a diagenetic fluid and minerals in the sedi-ments,feldspars were dissolved or alterated by other minerals. The clay mineral kaolinite was instable and hence was replaced by illite and chloritoid.

  17. Clay resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Maljers, D.; Gessel, S.F. van; Gruijters, S.H.L.L.

    2007-01-01

    Clay is a common lithology in the Dutch shallow subsurface. It is used in earth constructions such as dikes, and as raw material for the fabrication of bricks, roof tiles etc. We present a new national assessment of Dutch clay resources, as part of a project that provides mineral-occurrence informat

  18. Clay resources in the Netherlands

    NARCIS (Netherlands)

    Meulen, M.J. van der; Maljers, D.; Gessel, S.F. van; Gruijters, S.H.L.L.

    2007-01-01

    Clay is a common lithology in the Dutch shallow subsurface. It is used in earth constructions such as dikes, and as raw material for the fabricationof bricks, roof tiles etc. We present a new national assessment of Dutch clay resources, as part of a project that provides mineral-occurrenceinformatio

  19. Feasibility studies for a radioactive waste repository in a deep clay formation

    International Nuclear Information System (INIS)

    This report assesses the feasibility of deep geological disposal of long-lived, heat-emitting radioactive wastes produced from the Italian nuclear power programme. Disposal is envisaged in argillaceous formations of medium plasticity at depths between 200 and 3000 metres. Thermal and geotechnical data, together with information on cost and feasibility of construction techniques are used to devise two conceptual designs (repository or deep borehole disposal) for a facility to contain all the high-level wastes arising from a 10 GWe power programme. Alternative designs and their merits are discussed and assessed. The two reference designs are used to construct a simple model of long-term performance and safety of the proposed disposal system. Recommendations are made for further work required to develop these concepts into an operational facility. It should be borne in mind that since no definite area or site has yet been identified for a disposal facility, all considerations are purely generic. Consequently data on rock properties and geological environment represent average values or best estimates for those likely to be encountered in the regions currently being considered as suitable for deep diposal purposes, and several broad assumptions have had to be made. However, the designs presented could be adapted without difficulty on a site-specific basis when the results of further research become available

  20. Clay Houses

    Science.gov (United States)

    Pedro, Cathy

    2011-01-01

    In this article, the author describes a project designed for fourth-graders that involves making clay relief sculptures of houses. Knowing the clay houses will become a family heirloom makes this lesson even more worth the time. It takes three classes to plan and form the clay, and another two to underglaze and glaze the final products.

  1. Importância das espécies minerais no potássio total da fração argila de solos do Triângulo Mineiro Importance of mineral species in total potassium content of clay fraction in soils of the Triângulo Mineiro, Minas Gerais State, Brazil

    Directory of Open Access Journals (Sweden)

    V. F. Melo

    2003-10-01

    arenito da Formação Uberaba, migmatito/micaxisto do Grupo Araxá e basalto da Formação Serra Geral.Few studies relate the K reserve in soils developed in a humid tropic climate with the minerals found in the clay fraction. Nineteen soils were collected for this purpose in the Triângulo Mineiro region, Minas Gerais State, Brazil, developed from different parent materials and different weathering degrees. Due to the greater occurrence, a larger number of samples of the Bauru Group was collected, comprising all the geological formations found in the region. The total K content in soil and the sand, silt, and clay fractions were determined after the digestion of the soil samples by HF, HNO3 and H2SO4. To quantify the contribution of each mineral species to the total K content, Na-saturated clay samples were submitted by a sequential and selective mineral extraction procedure, following the order: amorphous Al and Fe oxides; crystalline Fe oxides; kaolinite and gibbsite; mica and other 2:1 minerals and; feldspar and resistant minerals. The clay mineralogy composition reflects the high weathering and leaching degree in soils of the Triângulo Mineiro, with low contents of amorphous minerals, a predominant proportion of kaolinite and the presence of other secondary resistant minerals. In spite of this mineral composition, the clay fraction presented the highest total K content, mainly in the most weathered soils. Due to the high proportion of kaolinite in the clay fraction, this mineral was an important source of non-exchangeable K forms. On the other hand, the contribution of amorphous Fe and Al oxides and crystalline Fe oxides to the total K content of the clay fraction was negligible. In general, easily weathered primary minerals (mica and feldspar contributed largely to the total K of the clay fraction, principally to the youngest soils developed from the Uberaba (sandstone and Serra Geral (basalt Formations, and the Araxá Group (migmatite/micaschist.

  2. Stratigraphy of the Kapalga Formation north of Pine Creek and its relationship to base metal mineralization

    International Nuclear Information System (INIS)

    The lithology, stratigraphy and mineralization of the Kapalga Formation (South Alligator Group) is described from the Margaret Syncline in the Pine Creek area of the Northern Territory of Australia. An interdigitation of carbonaceous siltstones and mudstones, chert, ashstones and tuffaceous chert, greywacke, siltstone, mudstone and minor banded iron formation (b.i.f.) characterises the Formation. These rocks define a vertical facies transition between low energy sediments of the underlying Koolpin Formation, and high energy sediments of the overlying Burrell Creek Formation. This transition is interlayered with numerous ashstone-tuffaceous chert horizons which were deposited during the waning stage of Gerowie Tuff sedimentation. The boundary between the Kapalga Formation of the South Alligator Group and the Burrell Creek Formation of the Finniss River Group is strictly conformable in this part of the Pine Creek 'Geosyncline'. Relict devitrified shards have been recognised in the Gerowie Tuff in the Margaret Syncline and these observations along with whole-rock chemical analyses conclusively support claims by previous investigators that these rocks are volcanic derivatives. Base metal mineralization at Iron Blow and Mt. Bonnie occurs as massive, stratiform, sulphide-silicate-carbonate lodes. The deposits are at the same stratigraphic level towards the base of the Kapalga Formation and minor stratification parallel with bedding has been observed. These features, and the association of the lodes with mud-flow breccias, lead to the conclusion that the lodes are syngenetic in origin. Thermochemical consideration of the sulphide assemblages together with the temporal relationship between the mineralization and Gerowie Tuff point to diagenetic devitrification of the underlying tuffaceous rocks as the source of the mineralization. Recent publications of experimental data from reaction of seawater and volcanic glass provide information which supports this thesis, and

  3. Hybrid Finite-Discrete Element Simulation of the EDZ Formation and Mechanical Sealing Process Around a Microtunnel in Opalinus Clay

    Science.gov (United States)

    Lisjak, Andrea; Tatone, Bryan S. A.; Mahabadi, Omid K.; Grasselli, Giovanni; Marschall, Paul; Lanyon, George W.; Vaissière, Rémi de la; Shao, Hua; Leung, Helen; Nussbaum, Christophe

    2016-05-01

    The analysis and prediction of the rock mass disturbance around underground excavations are critical components of the performance and safety assessment of deep geological repositories for nuclear waste. In the short term, an excavation damaged zone (EDZ) tends to develop due to the redistribution of stresses around the underground openings. The EDZ is associated with an increase in hydraulic conductivity of several orders of magnitude. In argillaceous rocks, sealing mechanisms ultimately lead to a partial reduction in the effective hydraulic conductivity of the EDZ with time. The goal of this study is to strengthen the understanding of the phenomena involved in the EDZ formation and sealing in Opalinus Clay, an indurated claystone currently being assessed as a host rock for a geological repository in Switzerland. To achieve this goal, hybrid finite-discrete element method (FDEM) simulations are performed. With its explicit consideration of fracturing processes, FDEM modeling is applied to the HG-A experiment, an in situ test carried out at the Mont Terri underground rock laboratory to investigate the hydro-mechanical response of a backfilled and sealed microtunnel. A quantitative simulation of the EDZ formation process around the microtunnel is first carried out, and the numerical results are compared with field observations. Then, the re-compression of the EDZ under the effect of a purely mechanical loading, capturing the increase of swelling pressure from the backfill onto the rock, is considered. The simulation results highlight distinctive rock failure kinematics due to the bedded structure of the rock mass. Also, fracture termination is simulated at the intersection with a pre-existing discontinuity, representing a fault plane oblique to the bedding orientation. Simulation of the EDZ re-compression indicates an overall reduction of the total fracture area as a function of the applied pressure, with locations of ineffective sealing associated with self

  4. Pb-Zn mineralization of Ali ou Daoud area (Central High Atlas, Morocco: characterisation of deposit and relationship with the clay assemblages

    Directory of Open Access Journals (Sweden)

    Daoudi, L.

    2008-12-01

    Full Text Available Zn-Pb-Fe ores in the Ali ou Daoud deposit (Central High Atlas are found as stratiform levels and as karst fillings in carbonate platforms facies of Bajocian age. Tectonic structures (e.g., synsedimentary faults played a relevant role in the ore emplacement. The dolomitic ore-related host-rock levels are characterized by the presence of kaolinite enrichment in clay levels in amounts directly related to the proportion of the clay minerals. The latter is evidenced by correlation between kaolinite and sulphide contents, suggesting that the installation of kaolinite and mineralisations would result from the same hydrothermal fluid.[Français] Dans les séries sédimentaires carbonatées d’Ali ou Daoud (Haut Atlas Central, les minéralisations à Zn, Pb et Fe en amas stratiformes forment les faciès de remplissage des karsts d’une plateforme carbonatée bajocienne. Le contrôle structural joue un rôle capital dans la localisation du gîte en bordure de plateforme sur des failles synsédimentaires. Dans les niveaux dolomitiques encaissants des minéralisations, les assemblages argileux sont caractérisés par la présence de kaolinite dont la teneur varie parallèlement avec celle du minerai. Ceci suggère que la mise en place de la kaolinite et des minéralisations résulterait du même fluide hydrothermal. [Español] En las series sedimentarias carbonatadas de Ali ou Daoud (Alto Atlas Central, las mineralizaciones de Zn, Pb y Fe aparecen en niveles estratiformes como facies de reemplazamiento de los karsts de una plataforma carbonatada Bajociense. El control estructural desempeña un papel crucial en la localización del yacimiento a lo largo de la plataforma sobre fallas sinsedimentarias. En los niveles dolomíticos que incluyen las mineralizaciones, las asociaciones arcillosas se caracterizan por la presencia de caolinita, cuyo contenido varía paralelamente al de la mineralización. Esto sugiere que la creación de caolinita y de la

  5. The key role of micromorphology in studies of the genesis of clay minerals and their associations in soils and its relevance to advances in the philosophy of soil science

    OpenAIRE

    CHURCHMAN, Gordon Jock

    2013-01-01

    Micromorphological observations from 3 different published works have been studied to aid understanding of aggregation and of colloids, both unique to soils. Saprolites in Hong Kong included ‘veins’ of different thicknesses and colours. Optical mineralogy identified them as infill from the neogenesis of clays in rock fractures. The common thicker infills resulted from weathering. Dark infill contained comminuted primary minerals whereas thin pale infill originated hydrothe...

  6. Adsorption of Three Phthalic Acid Esters on Different Clay Minerals%三种邻苯二甲酸酯在不同黏土矿物上的吸附

    Institute of Scientific and Technical Information of China (English)

    吴艳华; 周东美; 高娟; 司友斌

    2015-01-01

    Phthalic acid esters(PAEs)are widely used as plasticizers and are easily released into the environment, posing potential harms to human. Clay minerals are an important component of soil. After PAEs enter soils, the clay minerals would inevitably affect the transformation and fates of PAEs. Here we examined PAEs adsorption on clay minerals using two montmorillonite clays(FZ-10, SMF)and one kaolinite clay(Kao)as adsorbents that were saturated with K ions(K-FZ-10,K-SMF and K-Kao). Results showed that the adsorption of PAEs by clay minerals were in the following order:dimethyl phthalate(DMP)K-SMF>K-Kao. Both type and surface area of clay minerals contributed to the adsorption ability. Temperature rise reduced the adsorptions of three PAEs on K-FZ-10, K-SMF and K-Kao, indicating that the adsorption was exothermic and spontaneous. This study revealed that the type of clays, hydrophobicityof PAEs and temperature were three important factors affecting the adsorption of PAEs on clay minerals. The adsorption of PAEs onto soil could be used to predict the transportation in soil to some extent.%邻苯二甲酸酯类(PAEs)作为一类常见的增塑剂可以通过多种途径进入土壤,并在土壤中富集。黏土矿物是土壤的一个重要组分,对有机污染物的迁移有重要的作用。通过考察三种PAEs,即邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)和邻苯二甲酸正丁酯(DnBP)在改性之后的K+饱和黏土矿物(K-FZ-10,K-SMF和K-Kao)上的吸附行为,分析了黏土矿物类型、PAEs种类以及温度对吸附的影响。试验结果能较好地用Freundlich方程进行拟合,结果表明:PAEs的疏水性越强,固相-水分配系数(K d)越大, PAEs越容易被黏土矿物吸附;三种PAEs在黏土矿物上的吸附量均呈现DMPK-SMF>K-Kao,其与黏土矿物的表面积呈正相关。不同温度(4、10