WorldWideScience

Sample records for clathrates

  1. Clathrate hydrates in nature.

    Science.gov (United States)

    Hester, Keith C; Brewer, Peter G

    2009-01-01

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO2. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves.

  2. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  3. Alloys of clathrate allotropes for rechargeable batteries

    Science.gov (United States)

    Chan, Candace K; Miller, Michael A; Chan, Kwai S

    2014-12-09

    The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

  4. Methane clathrates in the Solar System

    CERN Document Server

    Mousis, Olivier; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-01-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.

  5. Earth Abundant Element Type I Clathrate Phases

    Directory of Open Access Journals (Sweden)

    Susan M. Kauzlarich

    2016-08-01

    Full Text Available Earth abundant element clathrate phases are of interest for a number of applications ranging from photovoltaics to thermoelectrics. Silicon-containing type I clathrate is a framework structure with the stoichiometry A8-xSi46 (A = guest atom such as alkali metal that can be tuned by alloying and doping with other elements. The type I clathrate framework can be described as being composed of two types of polyhedral cages made up of tetrahedrally coordinated Si: pentagonal dodecahedra with 20 atoms and tetrakaidecahedra with 24 atoms in the ratio of 2:6. The cation sites, A, are found in the center of each polyhedral cage. This review focuses on the newest discoveries in the group 13-silicon type I clathrate family: A8E8Si38 (A = alkali metal; E = Al, Ga and their properties. Possible approaches to new phases based on earth abundant elements and their potential applications will be discussed.

  6. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  7. Clathrate compounds and method of manufacturing

    Science.gov (United States)

    Nolas, George S.; Witanachchi, Sarath; Mukherjee, Pritish

    2009-05-19

    The present invention comprises new materials, material structures, and processes of fabrication of such that may be used in technologies involving the conversion of light to electricity and/or heat to electricity, and in optoelectronics technologies. The present invention provide for the fabrication of a clathrate compound comprising a type II clathrate lattice with atoms of silicon and germanium as a main framework forming lattice spacings within the framework, wherein the clathrate lattice follows the general formula Si.sub.136-yGe.sub.y, where y indicates the number of Ge atoms present in the main framework and 136-y indicates the number of Si atoms present in the main framework, and wherein y>0.

  8. In situ synthesis studies of silicon clathrates

    Science.gov (United States)

    Hutchins, Peter Thomas

    Solid state clathrates have shown considerable potential as a new class of materials over the past 30 years. Experimental and theoretical studies have shown that precise tuning and synthetic control of these materials, may lead to desirable properties. Very little is known about the mechanism of formation of the clathrates and so the desire to have accurate synthetic control was, until now, unrealistic. This thesis address the problem using in situ synchrotron x-ray techniques. In this study, experiments were designed to utilise time-resolved in situ diffraction techniques and high temperature 23Na NMR, in efforts to understand the mechanism of formation for this class of expanded framework materials. A complex high vacuum capillary synthesis cell was designed for loading under inert conditions and operation under high vacuum at station 6.2 of the SRS Daresbury. The cell was designed to operate in conjunction with a custom made furnace capable of temperatures in excess of 1000 C, as well as a vacuum system capable of 10"5 bar. The clathrate system was studied in situ, using rapid data collection to elucidate the mechanism of formation. The data were analysed using Rietveld methods and showed a structural link between the monoclinic, C2/c, Zintl precursors and the cubic, Pm3n, clathrate I phase. The phases were found to be linked by relation of the sodium planes in the silicide and the sodium atoms resident at cages centres in the clathrate system. This evidence suggests the guest species is instrumental in formation of the clathrate structure by templating the formation of the cages in the structure. Solid state 23Na NMR was utilised to complete specially design experiments, similar to those complete in situ using synchrotron x-ray techniques. The experiments showed increased spherical symmetry of the alkali metal sites and suggested increased mobility of the guest atoms during heating. In addition, cyclic heating experiments using in situ diffraction showed

  9. Volatile inventories in clathrate hydrates formed in the primordial nebula

    CERN Document Server

    Mousis, O; Picaud, S; Cordier, D

    2010-01-01

    Examination of ambient thermodynamic conditions suggest that clathrate hydrates could exist in the martian permafrost, on the surface and in the interior of Titan, as well as in other icy satellites. Clathrate hydrates probably formed in a significant fraction of planetesimals in the solar system. Thus, these crystalline solids may have been accreted in comets, in the forming giant planets and in their surrounding satellite systems. In this work, we use a statistical thermodynamic model to investigate the composition of clathrate hydrates that may have formed in the primordial nebula. In our approach, we consider the formation sequence of the different ices occurring during the cooling of the nebula, a reasonable idealization of the process by which volatiles are trapped in planetesimals. We then determine the fractional occupancies of guests in each clathrate hydrate formed at given temperature. The major ingredient of our model is the description of the guest-clathrate hydrate interaction by a spherically a...

  10. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  11. Stability and metastability of bromine clathrate polymorphs.

    Science.gov (United States)

    Nguyen, Andrew H; Molinero, Valeria

    2013-05-23

    Clathrate hydrates are crystals in which water forms a network of fully hydrogen-bonded polyhedral cages that contain small guests. Clathrate hydrates occur mostly in two cubic crystal polymorphs, sI and sII. Bromine is one of two guests that yield a hydrate with the tetragonal structure (TS), the topological dual of the Frank-Kasper σ phase. There has been a long-standing disagreement on whether bromine hydrate also forms metastable sI and sII crystals. To date there are no data on the thermodynamic range of stability (e.g., the melting temperatures) of the metastable polymorphs. Here we use molecular dynamics simulations with the coarse-grained model of water mW to (i) investigate the thermodynamic stability of the empty and guest-filled the sI, sII, TS, and HS-I hydrate polymorphs, (ii) develop a coarse-grained model of bromine compatible with mW water, and (iii) evaluate the stability of the bromine hydrate polymorphs. The mW model predicts the same relative energy of the empty clathrate polymorphs and the same phase diagram as a function of water-guest interaction than the fully atomistic TIP4P water model. There is a narrow region in water-guest parameter space for which TS is marginally more stable than sI or sII. We parametrize a coarse-grained model of bromine compatible with mW water and use it to determine the order of stability of the bromine hydrate polymorphs. The melting temperatures of the bromine hydrate polymorphs predicted by the coarse-grained model are 281 ± 1 K for TS, 279 ± 1 K for sII, and 276 ± 1 K for sI. The closeness of the melting temperatures supports the plausibility of formation of metastable sII and sI bromine hydrates.

  12. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    Science.gov (United States)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  13. Practical reactor production of {sup 41}Ar from argon clathrate

    Energy Technology Data Exchange (ETDEWEB)

    Mercer, J.R. E-mail: jmercer@pharmacy.ualberta.ca; Duke, M.J.M.; McQuarrie, S.A

    2000-06-01

    The radionuclide {sup 41}Ar has many ideal properties as a gas flow tracer. However, the modest cross-section of {sup 40}Ar for thermal neutron activation makes preparation of suitable activities of {sup 41}Ar technically difficult particularly for low flux reactors. Argon can however be trapped in a molecular complex called a clathrate that can then be irradiated. We prepared argon clathrate and explored its irradiation and stability characteristics. Argon clathrate can be used to provide gigabecquerel quantities of {sup 41}Ar even with low power reactors.

  14. Equilibrium composition between liquid and clathrate reservoirs on Titan

    CERN Document Server

    Mousis, Olivier; Lunine, Jonathan I; Sotin, Christophe

    2015-01-01

    Hundreds of lakes and a few seas of liquid hydrocarbons have been observed by the Cassini spacecraft to cover the polar regions of Titan. A significant fraction of these lakes or seas could possibly be interconnected with subsurface liquid reservoirs of alkanes. In this paper, we investigate the interplay that would happen between a reservoir of liquid hydrocarbons located in Titan's subsurface and a hypothetical clathrate reservoir that progressively forms if the liquid mixture diffuses throughout a preexisting porous icy layer. To do so, we use a statistical-thermodynamic model in order to compute the composition of the clathrate reservoir that forms as a result of the progressive entrapping of the liquid mixture. This study shows that clathrate formation strongly fractionates the molecules between the liquid and the solid phases. Depending on whether the structure I or structure II clathrate forms, the present model predicts that the liquid reservoirs would be mainly composed of either propane or ethane, r...

  15. Regimes of Decomposition of Clathrate in Natural Strata Purged by Methane

    Science.gov (United States)

    Khasanov, M.; Shagapov, V.

    2016-06-01

    The process of decomposition of a methane clathrate in a finite-length stratum initially saturated with methane clathrate and methane, which is purged by warm methane, is studied. The influence of the initial parameters of the stratum and purging conditions on the evolution of methane clathrate temperature and saturation is examined. The existence of solutions is demonstrated, which predict methane clathrate decomposition both on the frontal surface and in the volume zone.

  16. Kinetics of Methane Clathrate Formation in the Presolar Nebula

    Science.gov (United States)

    Vu, Tuan; Choukroun, Mathieu

    2016-10-01

    Clathrate hydrates are a distinct form of water ice wherein the crystal lattice of the host water molecules forms symmetric, polyhedral cages that trap volatile guest species under appropriate pressures and temperatures. These materials are an abundant source of hydrocarbons on Earth, and have been expected to be present on a number of icy celestial bodies, including Mars, Europa, Titan, and Enceladus. Clathrates are also thought to be one of the most likely traps for volatiles during the condensation of the protostellar nebulae. Prior to the Voyager mission, the prevailing expectation was that the elemental composition of the giant planets would reflect the composition of the solar nebula and therefore be similar to solar abundances. However, spacecraft observations by Voyager, Galileo, and Cassini-Huygens, as well as ground-based observations, have revealed unexpected elemental enrichment, relative to solar abundances, of C, N, S, As, P, and noble gases in the giant planets and in comets. One of the contending explanations is the retention of these volatiles as clathrate hydrates, which may have enabled their capture early in the history of the Solar System.While the formation and stability of clathrates have been addressed theoretically and, to some extent, experimentally at relatively high pressures (10-7-10-3 bar), there is a scarcity of experimental undertaking on the kinetics of clathrate formation and their stability at the low pressures relevant to the early outer solar nebula (~10-11 bar). This study seeks to elucidate the clathrate formation kinetics under nebula-relevant conditions via a series of optical Raman experiments on ice/gas mixtures over a range of pressures and temperatures. Our work on the methane gas/ice system shows that clathrate formation occurs on a rather fast timescale (typically within minutes at 223-253 K and 30-50 bar CH4). In addition, the rate of enclathration increases with pressures and temperatures, and the activation energy

  17. Nanostructured clathrate phonon glasses: beyond the rattling concept.

    Science.gov (United States)

    He, Yuping; Galli, Giulia

    2014-05-14

    Using first-principles calculations, we investigated the thermoelectric properties of a newly synthesized Si-based ternary clathrate K8Al8Si38, composed of ∼1 nm hollow cages with a metal atom inside. This compound contains solely Earth abundant elements. We found that, similar to other nanostructured type I clathrates, this system is a semiconductor and has a low thermal conductivity (∼1 W/mK). It was long believed that the mere presence of rattling centers was responsible for the low lattice thermal conductivity of type I clathrates. We found instead that the cage structural disorder induced by atomic substitution plays a crucial role in determining the conductivity of these materials, in addition to the dynamics of the guest atoms. Our calculations showed that the latter is substantially affected by the charge transfer between the metal and the cages. Our results provide design rules for the search of new types of promising nanocage structured thermoelectric materials.

  18. New silica clathrate minerals that are isostructural with natural gas hydrates.

    Science.gov (United States)

    Momma, Koichi; Ikeda, Takuji; Nishikubo, Katsumi; Takahashi, Naoki; Honma, Chibune; Takada, Masayuki; Furukawa, Yoshihiro; Nagase, Toshiro; Kudoh, Yasuhiro

    2011-02-15

    Silica clathrate compounds (clathrasils) and clathrate hydrates are structurally analogous because both materials have framework structures with cage-like voids occupied by guest species. The following three structural types of clathrate hydrates are recognized in nature: cubic structure I (sI); cubic structure II (sII); and hexagonal structure H (sH). In contrast, only one naturally occurring silica clathrate mineral, melanophlogite (sI-type framework), has been found to date. Here, we report the discovery of two new silica clathrate minerals that are isostructural with sII and sH hydrates and contain hydrocarbon gases. Geological and mineralogical observations show that these silica clathrate minerals are traces of low-temperature hydrothermal systems at convergent plate margins, which are the sources of thermogenic natural gas hydrates. Given the widespread occurrence of submarine hydrocarbon seeps, silica clathrate minerals are likely to be found in a wide range of marine sediments.

  19. Complex admixtures of clathrate hydrates in a water desalination method

    Science.gov (United States)

    Simmons, Blake A.; Bradshaw, Robert W.; Dedrick, Daniel E.; Anderson, David W.

    2009-07-14

    Disclosed is a method that achieves water desalination by utilizing and optimizing clathrate hydrate phenomena. Clathrate hydrates are crystalline compounds of gas and water that desalinate water by excluding salt molecules during crystallization. Contacting a hydrate forming gaseous species with water will spontaneously form hydrates at specific temperatures and pressures through the extraction of water molecules from the bulk phase followed by crystallite nucleation. Subsequent dissociation of pure hydrates yields fresh water and, if operated correctly, allows the hydrate-forming gas to be efficiently recycled into the process stream.

  20. Desalination utilizing clathrate hydrates (LDRD final report).

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Blake Alexander; Bradshaw, Robert W.; Dedrick, Daniel E.; Cygan, Randall Timothy (Sandia National Laboratories, Albuquerque, NM); Greathouse, Jeffery A. (Sandia National Laboratories, Albuquerque, NM); Majzoub, Eric H. (University of Missouri, Columbia, MO)

    2008-01-01

    Advances are reported in several aspects of clathrate hydrate desalination fundamentals necessary to develop an economical means to produce municipal quantities of potable water from seawater or brackish feedstock. These aspects include the following, (1) advances in defining the most promising systems design based on new types of hydrate guest molecules, (2) selection of optimal multi-phase reactors and separation arrangements, and, (3) applicability of an inert heat exchange fluid to moderate hydrate growth, control the morphology of the solid hydrate material formed, and facilitate separation of hydrate solids from concentrated brine. The rate of R141b hydrate formation was determined and found to depend only on the degree of supercooling. The rate of R141b hydrate formation in the presence of a heat exchange fluid depended on the degree of supercooling according to the same rate equation as pure R141b with secondary dependence on salinity. Experiments demonstrated that a perfluorocarbon heat exchange fluid assisted separation of R141b hydrates from brine. Preliminary experiments using the guest species, difluoromethane, showed that hydrate formation rates were substantial at temperatures up to at least 12 C and demonstrated partial separation of water from brine. We present a detailed molecular picture of the structure and dynamics of R141b guest molecules within water cages, obtained from ab initio calculations, molecular dynamics simulations, and Raman spectroscopy. Density functional theory calculations were used to provide an energetic and molecular orbital description of R141b stability in both large and small cages in a structure II hydrate. Additionally, the hydrate of an isomer, 1,2-dichloro-1-fluoroethane, does not form at ambient conditions because of extensive overlap of electron density between guest and host. Classical molecular dynamics simulations and laboratory trials support the results for the isomer hydrate. Molecular dynamics simulations

  1. Tropospheric impact of methane emissions from clathrates in the Arctic Region

    OpenAIRE

    Bhattacharyya, S.; Cameron-Smith, P; D. Bergmann; M. Reagan; Elliott, S.; Moridis, G.

    2012-01-01

    A highly potent greenhouse gas, methane, is locked in the solid phase as ice-like deposits containing a mixture of water and gas (mostly methane) called clathrates in both ocean sediments and underneath permafrost regions. Clathrates are stable under high pressures and low temperatures. In a warming climate, increases in ocean temperatures could lead to dissociation of the clathrates and release methane into the ocean and subsequently the atmosphere. This is of part...

  2. Thermopower enhancement by encapsulating cerium in clathrate cages.

    Science.gov (United States)

    Prokofiev, A; Sidorenko, A; Hradil, K; Ikeda, M; Svagera, R; Waas, M; Winkler, H; Neumaier, K; Paschen, S

    2013-12-01

    The increasing worldwide energy consumption calls for the design of more efficient energy systems. Thermoelectrics could be used to convert waste heat back to useful electric energy if only more efficient materials were available. The ideal thermoelectric material combines high electrical conductivity and thermopower with low thermal conductivity. In this regard, the intermetallic type-I clathrates show promise with their exceedingly low lattice thermal conductivities. Here we report the successful incorporation of cerium as a guest atom into the clathrate crystal structure. In many simpler intermetallic compounds, this rare earth element is known to lead, through the Kondo interaction, to strong correlation phenomena including the occurrence of giant thermopowers at low temperatures. Indeed, we observe a 50% enhancement of the thermopower compared with a rare-earth-free reference material. Importantly, this enhancement occurs at high temperatures and we suggest that a rattling-enhanced Kondo interaction underlies this effect.

  3. Gas storage in "dry water" and "dry gel" clathrates.

    Science.gov (United States)

    Carter, Benjamin O; Wang, Weixing; Adams, Dave J; Cooper, Andrew I

    2010-03-02

    "Dry water" (DW) is a free-flowing powder prepared by mixing water, hydrophobic silica particles, and air at high speeds. We demonstrated recently that DW can be used to dramatically enhance methane uptake rates in methane gas hydrate (MGH). Here, we expand on our initial work, demonstrating that DW can be used to increase the kinetics of formation of gas clathrates for gases other than methane, such as CO(2) and Kr. We also show that the stability of the system toward coalescence can be increased via the inclusion of a gelling agent to form a "dry gel", thus dramatically improving the recyclability of the material. For example, the addition of gellan gum allows effective reuse over at least eight clathration cycles without the need for reblending. DW and its "dry gel" modification may represent a potential platform for recyclable gas storage or gas separation on a practicable time scale in a static, unmixed system.

  4. Silicon clathrates for lithium ion batteries: A perspective

    Science.gov (United States)

    Warrier, Pramod; Koh, Carolyn A.

    2016-12-01

    Development of novel energy storage techniques is essential for the development of sustainable energy resources. Li-ion batteries have the highest rated energy density among rechargeable batteries and have attracted a lot of attention for energy storage in the last 15-20 years. However, significant advancements are required in anode materials before Li-ion batteries become viable for a wide variety of applications, including in renewable energy storage, grid storage, and electric vehicles. While graphite is the current standard anode material in commercial Li-ion batteries, it is Si that exhibits the highest specific energy density among all materials considered for this purpose. Si, however, suffers from significant volume expansion/contraction and the formation of a thick solid-electrolyte interface layer. To resolve these issues, Si clathrates are being considered for anode materials. Clathrates are inclusion compounds and contain cages in which Li could be captured. While Si clathrates offer promising advantages due to their caged structure which enables negligible volume change upon Li insertion, there remains scientific challenges and knowledge gaps to be overcome before these materials can be utilized for Li-ion battery applications, i.e., understanding lithiation/de-lithiation mechanisms, optimizing guest concentrations, as well as safe and economic synthesis routes.

  5. Vibrational spectroscopic and quantum theoretical study of host-guest interactions in clathrates: I. Hofmann type clathrates

    Directory of Open Access Journals (Sweden)

    VLADIMIR M. PETRUSEVSKI

    2000-06-01

    Full Text Available Hofmann type clatharates are host-guest compounds with the general formula M(NH32M'(CN4·2G, in which M(NH32M'(CN4 is the host lattice and G is benzene, the guest molecule. In previous studies, host-guest interactions have been investigated by analyzing the RT and LNT vibrational (infrared, far infrared and Raman spectra of these clathrates. All the observed changes in the vibrational spectra of these clathrates are referred to a host-guest interaction originating from weak hydrogen bonding between the ammonia hydrogen atoms from the host lattice and the p electron cloud of the guest (benzene molecules. In order to obtain an insight into the relative importance of the local crystalline field vs. the anharmonicity effects on the spectroscopic properties of the guest species upon enclathration, as well as to explain the observed band shifts and splittings, several quantum theoretical approaches are proposed.

  6. Phase Behaviour and Structural Aspects of Ternary Clathrate Hydrate Systems. The Role of Additives

    NARCIS (Netherlands)

    Mooijer-Van den Heuvel, M.M.

    2004-01-01

    In this study an experimental and modelling approach is applied to obtain fundamental insight into the phase behaviour of ternary systems, in which clathrate hydrates are formed. Proper interpretation of the phase behaviour requires knowledge on the clathrate hydrate structure in these systems, whic

  7. Paraffin molecule mobility in channel clathrates of urea on spectroscopic NMR relaxation data

    CERN Document Server

    Kriger, Y G; Chekhova, G N

    2001-01-01

    The temperature dependences of the protons spin-lattice relaxation time (T sub I) in the channel clathrates of urea with paraffins are measured. The data on the T sub I are interpreted within the frames of the model of the paraffins molecules and their fragments orientation in the clathrate channels. The dynamics peculiarities are connected with the disproportion effects of these compounds

  8. Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring

    Directory of Open Access Journals (Sweden)

    Stefan Arzbacher

    2016-08-01

    Full Text Available Clathrate hydrates are inclusion compounds in which guest molecules are trapped in a host lattice formed by water molecules. They are considered an interesting option for future energy supply and storage technologies. In the current paper, time lapse 3D micro computed tomographic (µCT imaging with ice and tetrahydrofuran (THF clathrate hydrate particles is carried out in conjunction with an accurate temperature control and pressure monitoring. µCT imaging reveals similar behavior of the ice and the THF clathrate hydrate at low temperatures while at higher temperatures (3 K below the melting point, significant differences can be observed. Strong indications for micropores are found in the ice as well as the THF clathrate hydrate. They are stable in the ice while unstable in the clathrate hydrate at temperatures slightly below the melting point. Significant transformations in surface and bulk structure can be observed within the full temperature range investigated in both the ice and the THF clathrate hydrate. Additionally, our results point towards an uptake of molecular nitrogen in the THF clathrate hydrate at ambient pressures and temperatures from 230 K to 271 K.

  9. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system

    Science.gov (United States)

    Lunine, J. I.; Stevenson, D. J.

    1985-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  10. Silicon clathrates and carbon analogs: high pressure synthesis, structure, and superconductivity.

    Science.gov (United States)

    Yamanaka, Shoji

    2010-02-28

    Compounds with cage-like structures of elemental silicon and carbon are comparatively reviewed. Barium containing silicon clathrate compounds isomorphous with type I gas hydrates were prepared using high pressure and high temperature (HPHT) conditions, and found to become superconductors. The application of HPHT conditions to Zintl binary silicides have produced a number of silicon-rich cage-like structures including new clathrate structures; most of them are superconductors. Carbon analogs of silicon clathrates can be prepared by 3D polymerization of C(60) under HPHT conditions, which are new allotropes of carbon with expanded framework structures. The crystal chemistry and characteristic properties of some related compounds are also reviewed.

  11. Geochemistry of clathrate-derived methane in Arctic Ocean waters

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2010-03-15

    Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH{sub 4} removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers.

  12. Martian methane and stability of clathrates in the crust of Mars

    Science.gov (United States)

    Gloesener, E.; Karatekin, Ö.; Dehant, V.

    2013-09-01

    In recent years, methane was detected in the Martian atmosphere [4, 5, 6, 7, 9]. However, its origin is still unknown at present time and several mechanisms have been suggested to explain its presence on the red planet such as volcanic activity, contribution from meteorites and comets, photolysis of water in presence of carbon monoxide, hydrogeochemical processes or biological activity [1, 2]. Whatever the process of methane formation, past or present CH4 can be stored in clathrates. These chemical compounds formed by water and gas are stable in the Martian crust and could serve as methane reservoirs. A change in temperature or pressure can lead to the dissociation of clathrates and thus the release of the trapped gas. The stability zone of clathrates approach the Martian surface with increasing latitude. Seasonal and interannual thermal oscillations could therfore destabilize clathrates at high latitude and cause the release of methane.

  13. Revisiting the thermodynamic modelling of type I gas-hydroquinone clathrates.

    Science.gov (United States)

    Conde, M M; Torré, J P; Miqueu, C

    2016-04-21

    Under specific pressure and temperature conditions, certain gaseous species can be engaged in a host lattice of hydroquinone molecules, forming a supramolecular entity called a gas hydroquinone clathrate. This study is devoted to the thermodynamic modelling of type I hydroquinone clathrates. The gases considered in this work are argon, krypton, xenon, methane, nitrogen, oxygen and hydrogen sulphide. The basic van der Waals and Platteeuw model, which is, for example, not able to predict well the phase equilibrium properties of such clathrates at high temperature, is modified and extended by considering first the solubility of the guest in solid HQ and then the mutual interactions between the gaseous molecules inside the clathrate structure (i.e. guest-guest interactions). Other improvements of the basic theory, such as the choice of the reference state, are proposed, and a unique set of thermodynamic parameters valid for all the studied guests are finally calculated. Very good agreement is obtained between the model predictions and the experimental data available in the literature. Our results clearly demonstrate that the highest level of theory is necessary to describe well both the triphasic equilibrium line (where the HQ clathrate, the native hydroquinone HQα and the gas coexist), the occupancy of the guest in the clathrate, and the intercalation enthalpy.

  14. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  15. First-Principles Study of Electronic Structure of Type I Hybrid Carbon-Silicon Clathrates

    Science.gov (United States)

    Chan, Kwai S.; Peng, Xihong

    2016-08-01

    A new class of type I hybrid carbon-silicon clathrates has been designed using computational methods by substituting some of the Si atoms in the silicon clathrate framework with carbon atoms. In this work, the electronic structure of hybrid carbon-silicon clathrates with and without alkaline or alkaline-earth metal guest atoms has been computed within the density functional theory framework. The theoretical calculations indicate that a small number of carbon substitutions in the Si46 framework slightly reduces the density of states (DOS) near the band edge and narrows the bandgap of carbon-silicon clathrates. Weak hybridization of the conduction band occurs when alkaline metal (Li, Na, K) atoms are inserted into the structure, while strong hybridization of the conduction band occurs when alkaline-earth metal (Mg, Ca, Ba) atoms are inserted into the hybrid structure. Empty C y Si46- y clathrates within the composition range of 2 ≤ y ≤ 15 can be tuned to exhibit indirect bandgaps of 1.5 eV or less, and may be considered as potential electronic materials.

  16. Monte Carlo calculations of the free energy of binary sII hydrogen clathrate hydrates for identifying efficient promoter molecules.

    Science.gov (United States)

    Atamas, Alexander A; Cuppen, Herma M; Koudriachova, Marina V; de Leeuw, Simon W

    2013-01-31

    The thermodynamics of binary sII hydrogen clathrates with secondary guest molecules is studied with Monte Carlo simulations. The small cages of the sII unit cell are occupied by one H(2) guest molecule. Different promoter molecules entrapped in the large cages are considered. Simulations are conducted at a pressure of 1000 atm in a temperature range of 233-293 K. To determine the stabilizing effect of different promoter molecules on the clathrate, the Gibbs free energy of fully and partially occupied sII hydrogen clathrates are calculated. Our aim is to predict what would be an efficient promoter molecule using properties such as size, dipole moment, and hydrogen bonding capability. The gas clathrate configurational and free energies are compared. The entropy makes a considerable contribution to the free energy and should be taken into account in determining stability conditions of binary sII hydrogen clathrates.

  17. Hydration of Krypton and Consideration of Clathrate Models of Hydrophobic Effects from the Perspective of Quasi-Chemical Theory

    CERN Document Server

    Ashbaugh, H S; Pratt, L R; Rempe, S B; Ashbaugh, Henry S.; Pratt, Lawrence R.; Rempe, Susan B.

    2002-01-01

    AIMD results on a liquid krypton-water system are compared to recent XAFS results for the radial hydration structure for a Kr atom in liquid water solution. The comparisons with the liquid solution results are satisfactory and significantly different from the radial distributions extracted from the data on the solid clathrate hydrate phase. The calculations also produce the coordination number distribution that can be examined for metastable coordination structures suggesting possibilities for clathrate-like organization; none are seen in these results. Clathrate pictures of hydrophobic hydration are discussed, as is the quasi-chemical theory that should provide a basis for clathrate pictures. Outer shell contributions are discussed and accurately estimated; they are positive and larger than the positive experimental hydration free energy of Kr(aq), implying that inner shell contributions must be negative. Clathrate-like inner shell coordination structures extracted from the simulation of the liquid, and then...

  18. Single-Crystal Investigations on Quaternary Clathrates Ba8Cu5Si x Ge41- x ( x = 6, 18, 41)

    Science.gov (United States)

    Yan, X.; Grytsiv, A.; Giester, G.; Bauer, E.; Rogl, P.; Paschen, S.

    2011-05-01

    Type I clathrates have been considered as promising thermoelectric materials due to their special structural characteristics: the "rattling" guest atoms in the larger of the two cages of the clathrate I structure are frequently held responsible for the low lattice thermal conductivity. By single-crystal x-ray diffraction, we investigated the quaternary clathrates Ba8Cu5Si x Ge41- x ( x = 6, 18, 41). Rietveld refinements confirmed that the clathrates in this system crystallize with cubic primitive symmetry, in the type I clathrate structure, and that no phase transitions occur in the temperature range investigated (100 K to 300 K). We derive the concentration dependencies of the Debye temperature, the Einstein temperatures, the static disorder parameters, and the size of the two cages and argue that these dependencies underpin the previously assumed different bonding character of the Ba guest atoms in the larger and smaller cages. The linear thermal expansion coefficients for the samples are derived.

  19. Van't Hoff law for temperature dependent Langmuir constants in clathrate hydrate nanocavities

    CERN Document Server

    Lakhlifi, Azzedine

    2015-01-01

    This work gives a van't Hoff law expression of Langmuir constants of different species for determining their occupancy in the nanocavities of clathrate hydrates. The van't Hoff law's parameters are derived from a fit with Langmuir constants calculated using a pairwise site-site interaction potential to model the anisotropic potential environment in the cavities, as a function of temperature. The parameters can be used for calculating clathrates compositions. Results are given for nineteen gas species trapped in the small and large cavities of structure types I and II [1]. The accuracy of this approach is based on a comparison with available experimental data for ethane and cyclo- propane clathrate hydrates. The numerical method applied in this work, was recently validated from a comparison with the spherical cell method based on analytical considerations [1

  20. Clathration of Volatiles in the Solar Nebula and Implications for the Origin of Titan's atmosphere

    CERN Document Server

    Mousis, Olivier; Thomas, Caroline; Pasek, Matthew; Marboeuf, Ulysse; Alibert, Yann; Ballenegger, Vincent; Cordier, Daniel; Ellinger, Yves; Pauzat, Francoise; Picaud, Sylvain

    2008-01-01

    We describe a scenario of Titan's formation matching the constraints imposed by its current atmospheric composition. Assuming that the abundances of all elements, including oxygen, are solar in the outer nebula, we show that the icy planetesimals were agglomerated in the feeding zone of Saturn from a mixture of clathrates with multiple guest species, so-called stochiometric hydrates such as ammonia hydrate, and pure condensates. We also use a statistical thermodynamic approach to constrain the composition of multiple guest clathrates formed in the solar nebula. We then infer that krypton and xenon, that are expected to condense in the 20-30 K temperature range in the solar nebula, are trapped in clathrates at higher temperatures than 50 K. Once formed, these ices either were accreted by Saturn or remained embedded in its surrounding subnebula until they found their way into the regular satellites growing around Saturn. In order to explain the carbon monoxide and primordial argon deficiencies of Titan's atmosp...

  1. Clathrate Structure Determination by Combining Crystal Structure Prediction with Computational and Experimental (129) Xe NMR Spectroscopy.

    Science.gov (United States)

    Selent, Marcin; Nyman, Jonas; Roukala, Juho; Ilczyszyn, Marek; Oilunkaniemi, Raija; Bygrave, Peter J; Laitinen, Risto; Jokisaari, Jukka; Day, Graeme M; Lantto, Perttu

    2017-01-23

    An approach is presented for the structure determination of clathrates using NMR spectroscopy of enclathrated xenon to select from a set of predicted crystal structures. Crystal structure prediction methods have been used to generate an ensemble of putative structures of o- and m-fluorophenol, whose previously unknown clathrate structures have been studied by (129) Xe NMR spectroscopy. The high sensitivity of the (129) Xe chemical shift tensor to the chemical environment and shape of the crystalline cavity makes it ideal as a probe for porous materials. The experimental powder NMR spectra can be used to directly confirm or reject hypothetical crystal structures generated by computational prediction, whose chemical shift tensors have been simulated using density functional theory. For each fluorophenol isomer one predicted crystal structure was found, whose measured and computed chemical shift tensors agree within experimental and computational error margins and these are thus proposed as the true fluorophenol xenon clathrate structures.

  2. Thermodynamic Properties of Hydrogen + Tetra-n-Butyl Ammonium Bromide Semi-Clathrate Hydrate

    Directory of Open Access Journals (Sweden)

    Shunsuke Hashimoto

    2010-01-01

    Full Text Available Thermodynamic stability and hydrogen occupancy on the hydrogen + tetra-n-butyl ammonium bromide semi-clathrate hydrate were investigated by means of Raman spectroscopic and phase equilibrium measurements under the three-phase equilibrium condition. The structure of mixed gas hydrates changes from tetragonal to another structure around 95 MPa and 292 K depending on surrounding hydrogen fugacity. The occupied amount of hydrogen in the semi-clathrate hydrate increases significantly associated with the structural transition. Tetra-n-butyl ammonium bromide semi-clathrate hydrates can absorb hydrogen molecules by a pressure-swing without destroying the hydrogen bonds of hydrate cages at 15 MPa or over.

  3. Martian methane and link with clathrates in the crust of Mars

    Science.gov (United States)

    Gloesener, Elodie; Karatekin, Ozgur; Dehant, Veronique

    2013-04-01

    The recent detection of methane in the Martian atmosphere (Krasnopolsky et al., 2004; Formisano et al., 2004; Geminale et al., 2008; Mumma et al., 2009; Fonti and Marzo, 2010) generated a large interest among the scientific community in particular because the source of this gas is still unknown and because it is a potential biomarker. Methane, observed at a level of 10 parts per billion and per volume, has a non-uniform distribution involving a photochemical lifetime of 200 days (Lefevre and Forget, 2009), smaller than the 300 years calculated by photochemical models. In addition, there is a correlation between the mixing ratio of water vapor and methane (Geminale et al., 2008). In order to explain this phenomenon, the existence of metastable clathrates decomposing in the atmosphere and releasing CH4 has been suggested (Chassefière, 2009). Clathrates are chemical compounds formed by the inclusion of gas molecules in the cavities of a water molecules network and are stable at high pressure and low temperature. In addition to the biological origin, often invoked to explain most of the methane on Earth, the Martian methane may also have been produced by hydrogeochemical or volcanic processes or may be the last traces of an amount brought by a meteoritic impact a few hundred or thousands years (Atreya et al., 2007). Methane could also come from the exposure to ultraviolet of meteorites falling continuously on the surface of Mars (Keppler et al., 2012). Although the process is very likely to occur on Mars, it does not produce all the expected amount of methane currently measured. Moreover, conditions in the Martian crust are favorable to the stability of methane clathrates. So CH4 emissions observed may also be due to the dissociation of the clathrates due to a change in temperature, pressure or composition. Current conditions of Mars do not allow them to be stable on the surface but they can remain stable in the crust if they were formed below a certain depth

  4. Kinetics of formation and dissociation of sII hydrogen clathrate hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, A.R.C. [Delft Univ. of Technology, Delft (Netherlands). Dept. of Physical Chemistry and Molecular Thermodynamics; Peters, C. [Delft Univ. of Technology, Delft (Netherlands). Dept. of Physical Chemistry and Molecular Thermodynamics]|[Delft Univ. of Technology, Delft (Netherlands). Dept. of Process and Energy Laboratory for Process Equipment; Zevenbergen, J. [TNO Defense, Security and Safety, Rijswijk (Netherlands)

    2008-07-01

    The potential for storing hydrogen in its molecular form in clathrate hydrates was investigated in order to explore the possibility of using these solids as a safe hydrogen storing method for the transportation sector. This paper presented experimental data on the kinetics of hydrogen clathrate hydrate formation, with particular reference to the formation and decomposition of the hydrate in a pressure range from 5.5 to 15.0 MPa. Experiments were performed for a binary system using hydrogen (H{sub 2}) and tetrahydrofuran (THF), which forms structures sII clathrate hydrate. Pressure was shown to have a strong influence on induction time, the rate of hydrate formation, the number of moles consumed and the temperature at which the gas hydrates are formed. The time required for the hydrate to be formed was lower for high pressures, and the temperature needed for the first crystals to appear was higher. The rate of hydrate formation was also higher when the driving forces increased. The number of moles of hydrogen entrapped in the solid phase increased as the experimental pressure increased, indicating that higher pressures are preferable for the formation of hydrogen clathrate hydrate. For a finite period of time, more hydrate was formed when the pressure was high. The results of this study may be useful in determining the viability of hydrogen clathrate hydrates as a storage medium in the transportation sector. The entrapment of hydrogen in clathrate hydrates may provide a clean and environmentally sound alternative to metal hydrides. In addition, it is a reversible process that avoids the need for a chemical reaction for hydrogen uptake and release. 8 refs., 2 tabs., 8 figs.

  5. Guest-Host Interaction Study in Clathrate Hydrates Using Lattice Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    Maofeng Jing; Shunle Dong

    2005-01-01

    Lattice dynamics simulation of several gas hydrates (helium, argon, and methane) with different occupancy rates has been performed using TIP3P potential model. Results show that the coupling between the guest and host is not simple as depicted by the conventional viewpoints. For clathrate hydrate enclosing small guest, the small cages are dominantly responsible for the thermodynamic stability of clathrate hydrates. And the spectrum of methane hydrate is studied compared with argon hydrate,then as a result, shrink effect from positive hydrogen shell is proposed.

  6. A NOVEL SUPRAMOLECULAR CLATHRATE OF RODLIKE p-BUTOXYBENZYLIDENE-p'-DODECOXYANILINE TRAPPED WITHIN POLYORGANOSILOXANE PORE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A novel supramolecular polysiloxane clathrate, POS/C, has been prepared by in-situ encapsulating rodlike p-butoxybenzylidene-p'-dodecoxyaniline (BBDA), one kind of Schiff base liquid crystal molecule, within the pore of polyorganosiloxane (POS) which is prepared by hydrosilylation coupling reaction of polyvinylsilsesquioxane (Vi-T) with tetramethyldisiloxane (H-MM). Investigation by polarized light microscopy (PLM), differential scanning calorimetry (DSC), infrared spectroscopy (IR), atomic force microscopy(AFM) and molecular simulation gives a preliminary support to the existence of the title supramolecular clathrate.

  7. A new method for screening potential sII and sH hydrogen clathrate hydrate promoters with model potentials.

    Science.gov (United States)

    Frankcombe, Terry J; Kroes, Geert-Jan

    2011-08-01

    A new predictive computational method for classifying clathrate hydrate promoter molecules is presented, based on the interaction energies between potential promoters and the water networks of sII and sH clathrates. The motivation for this work is identifying promoters for storing hydrogen compactly in clathrate hydrates. As a first step towards achieving this goal, we have developed a general method aimed at distinguishing between molecules that form sII clathrate hydrates and molecules that can-together with a weakly interacting help gas-form sH clathrate hydrates. The new computational method calculates differences in estimated formation energies of the sII and the sH clathrate hydrate. Model interaction potentials have been used, including the electrostatic interactions with newly calculated partial charges for all the considered potential promoter molecules. The methodology can discriminate between the clathrate structure types (sII or sH) formed by each potential promoter with good selectivity, i.e., better than achieved with a simple van der Waals diameter criterion.

  8. Cryolava flow destabilization of crustal methane clathrate hydrate on Titan

    Science.gov (United States)

    Davies, Ashley Gerard; Sotin, Christophe; Choukroun, Mathieu; Matson, Dennis L.; Johnson, Torrence V.

    2016-08-01

    To date, there has been no conclusive observation of ongoing endogenous volcanic activity on Saturn's moon Titan. However, with time, Titan's atmospheric methane is lost and must be replenished. We have modeled one possible mechanism for the replenishment of Titan's methane loss. Cryolavas can supply enough heat to release large amounts of methane from methane clathrate hydrates (MCH). The volume of methane released is controlled by the flow thickness and its areal extent. The depth of the destabilisation layer is typically ≈30% of the thickness of the lava flow (≈3 m for a 10-m thick flow). For this flow example, a maximum of 372 kg of methane is released per m2 of flow area. Such an event would release methane for nearly a year. One or two events per year covering ∼20 km2 would be sufficient to resupply atmospheric methane. A much larger effusive event covering an area of ≈9000 km2 with flows 200 m thick would release enough methane to sustain current methane concentrations for 10,000 years. The minimum size of "cryo-flows" sufficient to maintain the current atmospheric methane is small enough that their detection with current instruments (e.g., Cassini) could be challenging. We do not suggest that Titan's original atmosphere was generated by this mechanism. It is unlikely that small-scale surface MCH destabilisation is solely responsible for long-term (> a few Myr) sustenance of Titan's atmospheric methane, but rather we present it as a possible contributor to Titan's past and current atmospheric methane.

  9. The strength and rheology of methane clathrate hydrate

    Science.gov (United States)

    Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.

    2003-01-01

    Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.

  10. Formation and function of vacancies in Si/Ge Clathrates: The importance of broken symmetries

    Science.gov (United States)

    Bhattacharya, Amrita; Carbogno, Christian; Scheffler, Matthias; Dr. Matthias Scheffler Team, Prof.

    2015-03-01

    One promising material class for improved thermoelectrics are the clathrates, i.e., semiconducting host lattices encapsulating guest atom. Even in simple clathrates, such as, Si46 and Ge46, the introduction of guests can result in important but not yet understood effects: In Si hosts, the addition of K (or Ba) results in defect-free K8Si46 (Ba8Si46) phases. In spite of their structural and electronic similitude, Ge hosts behave fundamentally different upon filling, where, the spontaneously formed framework vacancies completely (or partially) balance the electron donated by K (or Ba) guests leading to K8Ge44(orBa8Ge43) clathrates. In this work, we use density-functional theory, carefully validating the exchange correlation functional, to compute the formation energies of vacancies and vacancy complexes in Si- and Ge-hosts as function of the filling of guests. By taking into account of the structural disorder, geometric relaxations, and vibrational entropies, we verify the experimentally found vacancy concentration and the thermodynamic stabilities of these compounds. We can trace back the contrasting behaviour of Si/Ge clathrates upon filling to a curious, charged vacancy induced break in symmetry that occurs in Si but not in Ge hosts.

  11. A molecular dynamics study of guest-host hydrogen bonding in alcohol clathrate hydrates.

    Science.gov (United States)

    Hiratsuka, Masaki; Ohmura, Ryo; Sum, Amadeu K; Alavi, Saman; Yasuoka, Kenji

    2015-05-21

    Clathrate hydrates are typically stabilized by suitably sized hydrophobic guest molecules. However, it has been experimentally reported that isomers of amyl-alcohol C5H11OH can be enclosed into the 5(12)6(4) cages in structure II (sII) clathrate hydrates, even though the effective radii of the molecules are larger than the van der Waals radii of the cages. To reveal the mechanism of the anomalous enclathration of hydrophilic molecules, we performed ab initio and classical molecular dynamics simulations (MD) and analyzed the structure and dynamics of a guest-host hydrogen bond for sII 3-methyl-1-butanol and structure H (sH) 2-methyl-2-butanol clathrate hydrates. The simulations clearly showed the formation of guest-host hydrogen bonds and the incorporation of the O-H group of 3-methyl-1-butanol guest molecules into the framework of the sII 5(12)6(4) cages, with the remaining hydrophobic part of the amyl-alcohol molecule well accommodated into the cages. The calculated vibrational spectra of alcohol O-H bonds showed large frequency shifts due to the strong guest-host hydrogen bonding. The 2-methyl-2-butanol guests form strong hydrogen bonds with the cage water molecules in the sH clathrate, but are not incorporated into the water framework. By comparing the structures of the alcohols in the hydrate phases, the effect of the location of O-H groups in the butyl chain of the guest molecules on the crystalline structure of the clathrate hydrates is indicated.

  12. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate.

    Science.gov (United States)

    Falenty, Andrzej; Hansen, Thomas C; Kuhs, Werner F

    2014-12-11

    Gas hydrates are ice-like solids, in which guest molecules or atoms are trapped inside cages formed within a crystalline host framework (clathrate) of hydrogen-bonded water molecules. They are naturally present in large quantities on the deep ocean floor and as permafrost, can form in and block gas pipelines, and are thought to occur widely on Earth and beyond. A natural point of reference for this large and ubiquitous family of inclusion compounds is the empty hydrate lattice, which is usually regarded as experimentally inaccessible because the guest species stabilize the host framework. However, it has been suggested that sufficiently small guests may be removed to leave behind metastable empty clathrates, and guest-free Si- and Ge-clathrates have indeed been obtained. Here we show that this strategy can also be applied to water-based clathrates: five days of continuous vacuum pumping on small particles of neon hydrate (of structure sII) removes all guests, allowing us to determine the crystal structure, thermal expansivity and limit of metastability of the empty hydrate. It is the seventeenth experimentally established crystalline ice phase, ice XVI according to the current ice nomenclature, has a density of 0.81 grams per cubic centimetre (making it the least dense of all known crystalline water phases) and is expected to be the stable low-temperature phase of water at negative pressures (that is, under tension). We find that the empty hydrate structure exhibits negative thermal expansion below about 55 kelvin, and that it is mechanically more stable and has at low temperatures larger lattice constants than the filled hydrate. These observations attest to the importance of kinetic effects and host-guest interactions in clathrate hydrates, with further characterization of the empty hydrate expected to improve our understanding of the structure, properties and behaviour of these unique materials.

  13. The HD molecule in small and medium cages of clathrate hydrates: Quantum dynamics studied by neutron scattering measurements and computation

    Energy Technology Data Exchange (ETDEWEB)

    Colognesi, Daniele; Celli, Milva; Ulivi, Lorenzo, E-mail: lorenzo.ulivi@isc.cnr.it [Consiglio Nazionale delle Ricerche, Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); Powers, Anna; Xu, Minzhong [Department of Chemistry, New York University, New York, New York 10003 (United States); Bačić, Zlatko, E-mail: zlatko.bacic@nyu.edu [Department of Chemistry, New York University, New York, New York 10003 (United States); NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062 (China)

    2014-10-07

    We report inelastic neutron scattering (INS) measurements on molecular hydrogen deuteride (HD) trapped in binary cubic (sII) and hexagonal (sH) clathrate hydrates, performed at low temperature using two different neutron spectrometers in order to probe both energy and momentum transfer. The INS spectra of binary clathrate samples exhibit a rich structure containing sharp bands arising from both the rotational transitions and the rattling modes of the guest molecule. For the clathrates with sII structure, there is a very good agreement with the rigorous fully quantum simulations which account for the subtle effects of the anisotropy, angular and radial, of the host cage on the HD microscopic dynamics. The sH clathrate sample presents a much greater challenge, due to the uncertainties regarding the crystal structure, which is known only for similar crystals with different promoter, but nor for HD (or H{sub 2}) plus methyl tert-butyl ether (MTBE-d12)

  14. Growth mechanism of a gas clathrate hydrate from a dilute aqueous gas solution: a molecular dynamics simulation of a three-phase system.

    Science.gov (United States)

    Nada, Hiroki

    2006-08-24

    A molecular dynamics simulation of a three-phase system including a gas clathrate, liquid water, and a gas was carried out at 298 K and high pressure in order to investigate the growth mechanism of the clathrate from a dilute aqueous gas solution. The simulation indicated that the clathrate grew on interfaces between the clathrate and the liquid water, after transfer of the gas molecules from the gas phase to the interfaces. The results suggest a two-step process for growth: first, gas molecules are arranged at cage sites, and second, H(2)O molecules are ordered near the gas molecules. The results also suggest that only the H(2)O molecules, which are surrounded or sandwiched by the gas molecules, form the stable polygons that constitute the cages of the clathrate. In addition, the growth of the clathrate from a concentrated aqueous gas solution was also simulated, and the results suggested a growth mechanism in which many H(2)O and gas molecules correctively form the structure of the clathrate. The clathrate grown from the concentrated solution contained some empty cages, whereas the formation of empty cages was not observed during the growth from the dilute solution. The results obtained by both simulations are compared with the results of an experimental study, and the growth mechanism of the clathrate in a real system is discussed.

  15. A statistical method for evaluation of the experimental phase equilibrium data of simple clathrate hydrates

    DEFF Research Database (Denmark)

    Eslamimanesh, Ali; Gharagheizi, Farhad; Mohammadi, Amir H.;

    2012-01-01

    that the applied correlation for calculation/estimation of the phase behavior of simple clathrate hydrate systems is statistically valid and correct, 5 hydrate dissociation data are found to be probable doubtful ones and 10 data points are out of applicability domain of the applied correlation......., and the residuals of a selected correlation results lead to define the probable outliers. This method not only contributes to outliers diagnostics but also identifies the range of applicability of the applied model and quality of the existing experimental data. The available correlation in the literature......We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot...

  16. Organic free radicals in clathrate hydrates investigated by muon spin spectroscopy.

    Science.gov (United States)

    Percival, Paul W; Mozafari, Mina; Brodovitch, Jean-Claude; Chandrasena, Lalangi

    2014-02-20

    Very little is known about the behavior of free H atoms and small organic radicals inside clathrate hydrate structures despite the relevance of such species to combustion of hydrocarbon hydrates. Muonium is an H atom analog, essentially a light isotope of hydrogen, and can be used to probe the chemistry of H atoms and transient free radicals. We demonstrate the first application of muon spin spectroscopy to characterize radicals in clathrate hydrates. Atomic muonium was detected in hydrates of cyclopentane and tetrahydrofuran, and muoniated free radicals were detected in the hydrates of cyclopentene and 2,5-dihydrofuran, indicating rapid addition of muonium to the organic guest. Muon avoided level-crossing spectra of the radicals in hydrates are markedly different to those of the same radicals in pure organic liquids at the same temperature, and this can be explained by limited mobility of the enclathrated radicals, leading to anisotropy in the hyperfine interactions.

  17. NMR Evidence of Cage-to-Cage Diffusion of H2 in H2-Clathrates

    Science.gov (United States)

    Senadheera, Lasitha; Conradi, Mark

    2008-03-01

    H2 and heavy-ice at P>1 kbar and T ˜250 K form H2-D2O clathrate; four and one H2 may occupy each large (L) and small (S) cage, respectively. In H2-THF-H2O clathrate, H2 occupies singly and only S cages. Previous electronic-structure calculations estimate the barriers for H2 passage though hexagonal and pentagonal faces of cages as ˜6 and ˜25 kcal/mol, respectively. Our H2 NMR linewidth data reflect random crystal fields from frozen cage-wall D2O orientations. We find dramatic reductions in linewidth starting at 120 K (175 K) for H2-D2O (H2-TDF-D2O) indicating time-averaging of the crystal fields. Assuming Arrhenius behavior, our data imply energies for escape from L (S) cages of about ˜4 (˜6) kcal/mol. For L cages, the agreement with the calculated (cages were treated as rigid) barrier is reasonable. For H2 in S cages, in H2-TDF-D2O, the extreme disagreement with theory points to another mechanism of time-averaging, reorientations of the cage-wall D2O molecules, as suggested by previous work in TDH-H2O clathrate. Our limited NMR spectra at high T ˜145 K in H2-D2O show evidence of distinct resonances from diffusionally mobile and immobile H2 molecules, as expected.

  18. Volcanic Destabilisation of Methane Clathrate Hydrate on Titan: the Mechanism for Resupplying Atmospheric CH4?

    Science.gov (United States)

    Davies, Ashley; Sotin, C.; Choukroun, M.; Matson, D. L.; Johnson, T. V.

    2013-10-01

    Titan may have an upper crust rich in methane clathrates which would have formed early in Titan’s history [1-3]. The abundance of atmospheric methane, which has a limited lifetime, and the presence of 40Ar require replenishment over time. Volcanic processes may release these gases from Titan’s interior, although, so far, no conclusive evidence of an ongoing volcanic event has been observed: no “smoking gun” has been seen. Still, some process has recently supplied a considerable amount of methane to Titan’s atmosphere. We have investigated the emplacement of “cryolavas” of varying composition to quantify thermal exchange and lava solidification processes to model thermal wave penetration into a methane-rich substrate (see [4]), and to determine event detectability. Clathrate destabilisation releases methane and other trapped gases, such as argon. A 10-m-thick cryolava covering 100 km2 raises 3 x 108 m3 of substrate methane clathrates to destabilization temperature in ~108 s. With a density of 920 kg/m3, and ≈13% of the mass being methane, 4 x 1010 kg of methane is released. This is an impressive amount, but it would take 5 million similar events to yield the current mass of atmospheric methane. However, meeting Titan’s current global methane replenishment rate is feasible through the thermal interaction between cryolavas and methane clathrate deposits, but only (1) after the flow has solidified; (2) if cracks form, connecting surface to substrate; and (3) the cracks form while the temperature of the clathrates is greater than the destabilisation temperature. The relatively small scale of this activity may be hard to detect. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Choukroun, M. and Sotin, C. (2012) GRL, 39, L04201. [2] Tobie, G. et al. (2006) Nature, 440, 61-64. [3] Lunine, J. et al. (2009) Origin and Evolution of Titan, in Titan From Cassini-Huygens, ed. R. Brown et al

  19. Thermodynamic modeling of phase equilibria of semi-clathrate hydrates of CO2, CH4, or N2+tetra-n-butylammonium bromide aqueous solution

    DEFF Research Database (Denmark)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique

    2012-01-01

    Prediction of phase equilibria of semi-clathrate hydrates has been very rarely investigated in the literature. In this work, a thermodynamic model is proposed for representation/prediction of phase equilibria of semi-clathrate hydrates of the CO2, CH4, or N2+tetra-n-butylammonium bromide (TBAB...

  20. A new phase diagram of water under negative pressure: The rise of the lowest-density clathrate s-III.

    Science.gov (United States)

    Huang, Yingying; Zhu, Chongqin; Wang, Lu; Cao, Xiaoxiao; Su, Yan; Jiang, Xue; Meng, Sheng; Zhao, Jijun; Zeng, Xiao Cheng

    2016-02-01

    Ice and ice clathrate are not only omnipresent across polar regions of Earth or under terrestrial oceans but also ubiquitous in the solar system such as on comets, asteroids, or icy moons of the giant planets. Depending on the surrounding environment (temperature and pressure), ice alone exhibits an exceptionally rich and complicated phase diagram with 17 known crystalline polymorphs. Water molecules also form clathrate compounds with inclusion of guest molecules, such as cubic structure I (s-I), cubic structure II (s-II), hexagonal structure H (s-H), tetragonal structure T (s-T), and tetragonal structure K (s-K). Recently, guest-free clathrate structure II (s-II), also known as ice XVI located in the negative-pressure region of the phase diagram of water, is synthesized in the laboratory and motivates scientists to reexamine other ice clathrates with low density. Using extensive Monte Carlo packing algorithm and dispersion-corrected density functional theory optimization, we predict a crystalline clathrate of cubic structure III (s-III) composed of two large icosihexahedral cavities (8(6)6(8)4(12)) and six small decahedral cavities (8(2)4(8)) per unit cell, which is dynamically stable by itself and can be fully stabilized by encapsulating an appropriate guest molecule in the large cavity. A new phase diagram of water ice with TIP4P/2005 (four-point transferable intermolecular potential/2005) model potential is constructed by considering a variety of candidate phases. The guest-free s-III clathrate with ultralow density overtakes s-II and s-H phases and emerges as the most stable ice polymorph in the pressure region below -5834 bar at 0 K and below -3411 bar at 300 K.

  1. Water proton configurations in structures I, II, and H clathrate hydrate unit cells.

    Science.gov (United States)

    Takeuchi, Fumihito; Hiratsuka, Masaki; Ohmura, Ryo; Alavi, Saman; Sum, Amadeu K; Yasuoka, Kenji

    2013-03-28

    Position and orientation of water protons need to be specified when the molecular simulation studies are performed for clathrate hydrates. Positions of oxygen atoms in water are experimentally determined by X-ray diffraction analysis of clathrate hydrate structures, but positions of water hydrogen atoms in the lattice are disordered. This study reports a determination of the water proton coordinates in unit cell of structure I (sI), II (sII), and H (sH) clathrate hydrates that satisfy the ice rules, have the lowest potential energy configuration for the protons, and give a net zero dipole moment. Possible proton coordinates in the unit cell were chosen by analyzing the symmetry of protons on the hexagonal or pentagonal faces in the hydrate cages and generating all possible proton distributions which satisfy the ice rules. We found that in the sI and sII unit cells, proton distributions with small net dipole moments have fairly narrow potential energy spreads of about 1 kJ∕mol. The total Coulomb potential on a test unit charge placed in the cage center for the minimum energy∕minimum dipole unit cell configurations was calculated. In the sI small cages, the Coulomb potential energy spread in each class of cage is less than 0.1 kJ∕mol, while the potential energy spread increases to values up to 6 kJ∕mol in sH and 15 kJ∕mol in the sII cages. The guest environments inside the cages can therefore be substantially different in the sII case. Cartesian coordinates for oxygen and hydrogen atoms in the sI, sII, and sH unit cells are reported for reference.

  2. Phase diagrams for clathrate hydrates of methane, ethane, and propane from first-principles thermodynamics.

    Science.gov (United States)

    Cao, Xiaoxiao; Huang, Yingying; Li, Wenbo; Zheng, Zhaoyang; Jiang, Xue; Su, Yan; Zhao, Jijun; Liu, Changling

    2016-01-28

    Natural gas hydrates are inclusion compounds composed of major light hydrocarbon gaseous molecules (CH4, C2H6, and C3H8) and a water clathrate framework. Understanding the phase stability and formation conditions of natural gas hydrates is crucial for their future exploitation and applications and requires an accurate description of intermolecular interactions. Previous ab initio calculations on gas hydrates were mainly limited by the cluster models, whereas the phase diagram and equilibrium conditions of hydrate formation were usually investigated using the thermodynamic models or empirical molecular simulations. For the first time, we construct the chemical potential phase diagrams of type II clathrate hydrates encapsulated with methane/ethane/propane guest molecules using first-principles thermodynamics. We find that the partially occupied structures (136H2O·1CH4, 136H2O·16CH4, 136H2O·20CH4, 136H2O·1C2H6, and 136H2O·1C3H8) and fully occupied structures (136H2O·24CH4, 136H2O·8C2H6, and 136H2O·8C3H8) are thermodynamically favorable under given pressure-temperature (p-T) conditions. The theoretically predicted equilibrium pressures for pure CH4, C2H6 and C3H8 hydrates at the phase transition point are consistent with the experimental data. These results provide valuable guidance for establishing the relationship between the accurate description of intermolecular noncovalent interactions and the p-T equilibrium conditions of clathrate hydrates and other molecular crystals.

  3. Lattice dynamics study of low energy guest-host coupling in clathrate hydrate

    Institute of Scientific and Technical Information of China (English)

    Yang Yue-Hai; Dong Shun-Le; Wang Lin

    2008-01-01

    Our lattice dynamics simulation of Xe-hydrate with four-site TIP4P oxygen-shell model can accurately reproduce each peak position in the inelastic incoherent neutron scattering spectrum at the acoustic band (below 15 meV) and yield correct relative intensity.Based on the results,the uncertain profile at ~6 meV is assigned to anharmonic guest modes coupled strongly to small cages.Blue shift is proposed in phonon dispersion sheet in the case of anticrossing and found to be an evident signal for guest-host coupling that explains the anomalous thermal conductivity of clathrate hydrate.

  4. Thermodynamic promotion of carbon dioxide-clathrate hydrate formation by tetrahydrofuran, cyclopentane and their mixtures

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2013-01-01

    Gas clathrate hydrate dissociation pressures are reported for mixtures of carbon dioxide, water and thermodynamic promoters forming structure II hydrates.Hydrate (H)-aqueous liquid (Lw)-vapour (V) equilibrium pressures for the ternary system composed of water, tetrahydrofuran (THF), and carbon....... It is shown that upon adding THF to the pure aqueous phase to form a 4mass percent solution, the equilibrium pressure of the formed hydrates may be lowered compared to the ternary system of water, cyclopentane and carbon dioxide. © 2013 Elsevier Ltd....

  5. Clathrate structure-type recognition: Application to hydrate nucleation and crystallisation.

    Science.gov (United States)

    Lauricella, Marco; Meloni, Simone; Liang, Shuai; English, Niall J; Kusalik, Peter G; Ciccotti, Giovanni

    2015-06-28

    For clathrate-hydrate polymorphic structure-type (sI versus sII), geometric recognition criteria have been developed and validated. These are applied to the study of the rich interplay and development of both sI and sII motifs in a variety of hydrate-nucleation events for methane and H2S hydrate studied by direct and enhanced-sampling molecular dynamics (MD) simulations. In the case of nucleation of methane hydrate from enhanced-sampling simulation, we notice that already at the transition state, ∼80% of the enclathrated CH4 molecules are contained in a well-structured (sII) clathrate-like crystallite. For direct MD simulation of nucleation of H2S hydrate, some sI/sII polymorphic diversity was encountered, and it was found that a realistic dissipation of the nucleation energy (in view of non-equilibrium relaxation to either microcanonical (NVE) or isothermal-isobaric (NPT) distributions) is important to determine the relative propensity to form sI versus sII motifs.

  6. Clathrate formation in the systems Sr-Cu-Ge and {Ba,Sr}-Cu-Ge

    Science.gov (United States)

    Zeiringer, I.; Moser, R.; Kneidinger, F.; Podloucky, R.; Royanian, E.; Grytsiv, A.; Bauer, E.; Giester, G.; Falmbigl, M.; Rogl, P.

    2014-09-01

    In the ternary system Sr-Cu-Ge, a novel clathrate type-I phase was detected, Sr8CuxGe46-x (5.2≤xtemperature interval. Sr8Cu5.3Ge40.7 decomposes eutectoidally on cooling at 730±3 °C into (Ge), SrGe2 and τ1-SrCu2-xGe2+x. Phase equilibria at 700 °C have been established for the Ge rich part and are characterized by the appearance of only one ternary compound, τ1-SrCu2-xGe2+x, which crystallizes with the ThCr2Si2 structure type and forms a homogeneity range up to x=0.4 (a=0.42850(4), c=1.0370(1) nm). Additionally, the extent of the clathrate type-I solid solution Ba8-ySryCuxGe46-x (0≤y≤~5.6; 5.2≤x≤5.4, from as cast alloys) has been studied at various temperatures. The clathrate type-I crystal structure (space group Pm3barn) has been proven by X-ray single crystal diffraction on two single crystals with the composition (from refinement): Sr8Cu5.36Ge40.64 (a=1.06368(2) nm at 300 K) and Ba4.86Sr3.14Cu5.36Ge40.64 (a=1.06748(2) nm at 300 K) measured at 300, 200 and 100 K. From the temperature dependence of the lattice parameters and the atomic displacement parameters, thermal expansion coefficients, Debye- and Einstein-temperatures and the speed of sound have been determined. From heat capacity measurements of Sr8Cu5.3Ge40.7 at low temperatures the Sommerfeld coefficient (γ=24 mJ/mol K2) and the Debye temperature (ΘDLT=273 K) have been extracted. From a detailed analysis of these data at higher temperatures, Einstein branches of the phonon dispersion relation have been derived and compared to those obtained from the atomic displacement parameters. Electrical resistivity measurements of Sr8Cu5.3Ge40.7 reveal a rather metallic behavior in the low temperature range (<300 K). Density function theory calculations provide densities of states, electronic resistivity and Seebeck coefficient as well as the vibrational spectrum and specific heat.

  7. Stable Occupancy of Hydrogen Molecules in H2 Clathrate Hydrates and H2 + THF Clathrate Hydrates Determined by Ab Initio Calculations

    Directory of Open Access Journals (Sweden)

    Prasad Yedlapalli

    2010-01-01

    Full Text Available Structure II clathrate hydrates of pure hydrogen and binary hydrates of THF+H2 are studied using ab initio calculations to determine the stable occupancies of small cavities. Ab initio calculations are carried out for a double cavity consisting of one dodecahedron (small cavity and one hexakaidecahedron (large cavity. These two cavities are attached to each other as in sII hydrates to form a double cavity. One or two H2 molecules are placed in the small cavity and one THF (or 4H2 molecules molecule is placed in the large cavity. We have determined the binding energies of the double cavities at the MP2 level using various basis sets (3-21G, 3-21G(2p, 3-21++G(2p, 6-31G, 6-31G(2p, and 6-31++G(2p. Different basis sets yield different stable occupancies of the small cavity. The results from the highest basis set (6-31++G(2p with zero point energy corrections indicate that the single occupancy is slightly more favorable than the double occupancy in both the cases of pure H2 hydrates and THF + H2 double hydrates.

  8. Synthesis of hydrogen-carbon clathrate material and hydrogen evolution therefrom at moderate temperatures and pressures

    Science.gov (United States)

    Lueking, Angela; Narayanan, Deepa

    2011-03-08

    A process for making a hydrogenated carbon material is provided which includes forming a mixture of a carbon source, particularly a carbonaceous material, and a hydrogen source. The mixture is reacted under reaction conditions such that hydrogen is generated and/or released from the hydrogen source, an amorphous diamond-like carbon is formed, and at least a portion of the generated and/or released hydrogen associates with the amorphous diamond-like carbon, thereby forming a hydrogenated carbon material. A hydrogenated carbon material including a hydrogen carbon clathrate is characterized by evolution of molecular hydrogen at room temperature at atmospheric pressure in particular embodiments of methods and compositions according to the present invention.

  9. Properties of CO2 clathrate hydrates formed in the presence of MgSO4 solutions with implications for icy moons

    Science.gov (United States)

    Safi, E.; Thompson, S. P.; Evans, A.; Day, S. J.; Murray, C. A.; Parker, J. E.; Baker, A. R.; Oliveira, J. M.; van Loon, J. Th.

    2017-04-01

    Context. There is evidence to suggest that clathrate hydrates have a significant effect on the surface geology of icy bodies in the solar system. However the aqueous environments believed to be present on these bodies are likely to be saline rather than pure water. Laboratory work to underpin the properties of clathrate hydrates in such environments is generally lacking. Aims: We aim to fill this gap by carrying out a laboratory investigation of the physical properties of CO2 clathrate hydrates produced in weak aqueous solutions of MgSO4. Methods: We use in situ synchrotron X-ray powder diffraction to investigate clathrate hydrates formed at high CO2 pressure in ice that has formed from aqueous solutions of MgSO4 with varying concentrations. We measure the thermal expansion, density and dissociation properties of the clathrates under temperature conditions similar to those on icy solar system bodies. Results: We find that the sulphate solution inhibits the formation of clathrates by lowering their dissociation temperatures. Hysteresis is found in the thermal expansion coefficients as the clathrates are cooled and heated; we attribute this to the presence of the salt in solution. We find the density derived from X-ray powder diffraction measurements is temperature and pressure dependent. When comparing the density of the CO2 clathrates to that of the solution in which they were formed, we conclude that they should sink in the oceans in which they form. We also find that the polymorph of ice present at low temperatures is Ih rather than the expected Ic, which we tentatively attribute to the presence of the MgSO4. Conclusions: We (1) conclude that the density of the clathrates has implications for their behaviour in satellite oceans as their sinking and floating capabilities are temperature and pressure dependent; (2) conclude that the presence of MgSO4 inhibits the formation of clathrates and in some cases may even affect their structure and (3) report the dominance

  10. Experimental investigation and planetary implications of the stability of clathrate hydrates in aqueous solution at icy satellite conditions

    Science.gov (United States)

    Dunham, M.; Choukroun, M.; Barmatz, M.; Hodyss, R. P.; Smythe, W. D.

    2012-12-01

    Clathrate hydrates consist of hydrogen-bonded water molecules forming cages in which gas molecules are trapped individually. They are among the favored volatile reservoirs in solar system bodies, and are expected to play an important role in many processes: accretion of volatiles in planetesimals, outgassing on Titan, Enceladus, and comets. Their insulating thermal properties and high mechanical strength also bear important implications for understanding the evolution of icy satellites like Europa. However, the conditions allowing for their formation and/or their dissociation and the release of volatiles to the atmosphere (Titan) or the plumes (Enceladus) are still poorly understood. This is mainly because of a lack of knowledge on the stability of mixed clathrate hydrates in presence of anti-freeze agents such as ammonia. We have developed a high-pressure cryogenic calorimeter to address this deficiency in the literature. This liquid nitrogen - cooled Setaram BT2.15 calorimeter is located at the JPL Ice Physics Laboratory. The temperature range achievable with this instrument is 77-473 K. This calorimeter uses Calvet elements (3D arrays of thermocouples) to measure the heat flow required to follow a predefined heating rate within a sample and a reference cell with a resolution of 0.1 μW. A gas handling system has been designed and fabricated in house to reach pressures up to 100 bars, corresponding to several km depth in icy satellites. The thermodynamic properties of CO2 and CH4 clathrates with ammonia are under investigation, and the results will be used to constrain a statistical thermodynamic model of clathrates for applications to planetary environments. Preliminary results will be shown at the meeting. This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Support from the Minnesota Space Grant Consortium, the NASA Outer Planets Research program, and government sponsorship are gratefully

  11. Cross-nucleation between clathrate hydrate polymorphs: assessing the role of stability, growth rate, and structure matching.

    Science.gov (United States)

    Nguyen, Andrew H; Molinero, Valeria

    2014-02-28

    Cross-nucleation is a phenomenon where a new crystal nucleates and grows upon the surface of a different polymorph. Previous studies indicate that faster growth rate of the new crystal is a necessary but not sufficient condition for cross-nucleation. The thermodynamic stability of the different polymorphs can also affect cross-nucleation by modulating the rates of crystal growth. The interplay between thermodynamic stability of the polymorphs involved, the growth rate of the crystals, and the need for creation of an interfacial transition layer that seamlessly connects the two structures has not yet been fully elucidated. Predicting cross-nucleation is particularly challenging for clathrate hydrates, for which there are sometimes several polymorphs with similar stability and for which growth rates are not known. In this work, we use molecular dynamics simulations to investigate which factor (stability, growth rate, or formation of interfacial transition layer) controls cross-nucleation between the four known Frank-Kasper clathrate hydrate polymorphs: sI, sII, TS, and HS-I. We investigate the growth and cross-nucleation of these four hydrates filled with a set of guest molecules that produce different order of stabilities for the four crystal structures. We determine that the growth rate of sII clathrate is the fastest, followed by TS, HS-I, and sI. We find that cross-nucleation into or from sII clathrates is preceded by the formation of an interfacial transition layer at the seed crystal/liquid interface because sII does not share a crystal plane with sI, HS-I, or TS. Cross-nucleation between the latter three can occur seamlessly and is determined only by their growth rates. Our results indicate that nucleation of an interfacial transition layer between non-matching polymorphs can control cross-nucleation or lack thereof under conditions of small driving force. Under conditions of sufficient supercooling clathrate hydrate polymorphs cross-nucleate into the fastest

  12. In situ apparatus for the study of clathrate hydrates relevant to solar system bodies using synchrotron X-ray diffraction and Raman spectroscopy

    CERN Document Server

    Day, Sarah J; Evans, Aneurin; Parker, Julia E

    2015-01-01

    Clathrate hydrates are believed to play a significant role in various solar system environments, e.g. comets, and the surfaces and interiors of icy satellites, however the structural factors governing their formation and dissociation are poorly understood. We demonstrate the use of a high pressure gas cell, combined with variable temperature cooling and time-resolved data collection, to the in situ study of clathrate hydrates under conditions relevant to solar system environments. Clathrates formed and processed within the cell are monitored in situ using synchrotron X-ray powder diffraction and Raman spectroscopy. X-ray diffraction allows the formation of clathrate hydrates to be observed as CO2 gas is applied to ice formed within the cell. Complete conversion is obtained by annealing at temperatures just below the ice melting point. A subsequent rise in the quantity of clathrate is observed as the cell is thermally cycled. Four regions between 100-5000cm-1 are present in the Raman spectra that carry feature...

  13. Clathrate Sequestration: State-of-the-Art Review and New Technical Approaches

    Directory of Open Access Journals (Sweden)

    Annick Nago

    2011-01-01

    Full Text Available This paper focuses on reviewing the currently available solutions for natural gas production from methane hydrate deposits using CO2 sequestration. Methane hydrates are ice-like materials, which form at low temperature and high pressure and are located in permafrost areas and oceanic environments. They represent a huge hydrocarbon resource, which could supply the entire world for centuries. Fossil-fuel-based energy is still a major source of carbon dioxide emissions which contribute greatly to the issue of global warming and climate change. Geological sequestration of carbon dioxide appears as the safest and most stable way to reduce such emissions for it involves the trapping of CO2 into hydrocarbon reservoirs and aquifers. Indeed, CO2 can also be sequestered as hydrates while helping dissociate the in situ methane hydrates. The studies presented here investigate the molecular exchange between CO2 and CH4 that occurs when methane hydrates are exposed to CO2, thus generating the release of natural gas and the trapping of carbon dioxide as gas clathrate. These projects include laboratory studies on the synthesis, thermodynamics, phase equilibrium, kinetics, cage occupancy, and the methane recovery potential of the mixed CO2–CH4 hydrate. An experimental and numerical evaluation of the effect of porous media on the gas exchange is described. Finally, a few field studies on the potential of this new gas hydrate recovery technique are presented.

  14. Sn-based type-Ⅷ single-crystal clathrates with a large figure of merit

    Institute of Scientific and Technical Information of China (English)

    Deng Shu-Kang; Li De-Cong; Shen Lan-Xian; Hao Rui-Ting; T. Takabatake

    2012-01-01

    Single-crystal samples of type-Ⅷ BasGa16-xCuxSn30 (x =0,0.03,0.06,0.15) clathrates were prepared using the Sn-flux method.At room temperature the carrier density,n,is 3.5-5 × 1019 cm-3 for all the samples,the carrier mobility,μH,increases to more than twice that of BasGa16Sn30 for all the Cu doping samples,and consequently the electrical conductivity is enhanced distinctly from 1.90 × 104 S/m to 4.40 × 104 S/m,with the Cu composition increasing from x =0 to x =0.15.The Seebeck coefficient,α,decreases slightly with the increases in Cu composition.The k values are about 0.72 W/mK at 300 K and are almost invariant with temperature up to 500 K for the samples with x =0 and x =0.03.The lattice thermal conductivity,kL,decreases from 0.59 W/mK for x =0 to 0.50 W/mK for x =0.03 at 300 K.The figure of merit for x =0.03 reaches 1.35 at 540 K.

  15. Weak interactions between water and clathrate-forming gases at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Thurmer, Konrad; Yuan, Chunqing; Kimmel, Gregory A.; Kay, Bruce D.; Smith, R. Scott

    2015-11-01

    Using scanning probe microscopy and temperature programed desorption we examined the interaction between water and two common clathrate-forming gases, methane and isobutane, at low temperature and low pressure. Water co-deposited with up to 10-1 mbar methane or 10-5 mbar isobutane at 140 K onto a Pt(111) substrate yielded pure crystalline ice, i.e., the exposure to up to ~107 gas molecules for each deposited water molecule did not have any detectable effect on the growing films. Exposing metastable, less than 2 molecular layers thick, water films to 10-5 mbar methane does not alter their morphology, suggesting that the presence of the Pt(111) surface is not a strong driver for hydrate formation. This weak water-gas interaction at low pressures is supported by our thermal desorption measurements from amorphous solid water and crystalline ice where 1 ML of methane desorbs near ~43 K and isobutane desorbs near ~100 K. Similar desorption temperatures were observed for desorption from amorphous solid water.

  16. Synthesis and high temperature thermoelectric transport properties of Si-based type-I clathrates

    Institute of Scientific and Technical Information of China (English)

    Deng Shu-Kang; Tang Xin-Feng; Tang Run-Sheng

    2009-01-01

    N-type Si-based type-I clathrates with different Ga content were synthesized by combining the solid-state reaction method,melting method and spark plasma sintering(SPS)method.The effects of Ga composition on high temperature thermoelectric transport properties were investigated.The results show that at room temperature,the carrier concentration decreases,while the carrier mobility increases slightly with increasing Ga content.The Seebeck coefficient increases with increasing Ga content.Among all the samples,Ba7.93Ga17.13Si28.72exhibits higher Seebeck coefficient than the others and reaches -135 μV·K-1 at 1000 K.The sample prepared by this method exhibits very high electrical conductivity,and reaches 1.95×105 S·m-1 for Ba8.01Ga16.61Si28.93 at room temperature.The thermal conductivity of all samples is almost temperature independent in the temperature range of 300-1000 K,indicating the behaviour of a typical metal.The maximum ZT value of 0.75 is obtained at 1000 K for the compound Ba7.93Ga17.13Si28.72.

  17. Encapsulation of saline solution by tetrahydrofuran clathrate hydrates and inclusion migration by recrystallization.

    Science.gov (United States)

    Nagashima, Kazushige; Orihashi, Suguru; Yamamoto, Yoshitaka; Takahashi, Masayoshi

    2005-05-26

    Encapsulation of saline solution as an impurity in tetrahydrofuran clathrate hydrates grown in a stoichiometric solution with 3 wt % NaCl and the release of a saline solution during melting along with inclusion migration by hydrate recrystallization during annealing are studied using a directional growth apparatus in combination with a Mach-Zender interferometer. Interferometric observation revealed that the salt concentration increased locally in the solution near the growth interface. The time evolution of salt concentration in the solution was in accordance with the numerical results obtained from the diffusion equation for salt, assuming perfect rejection of salt by the hydrate. However, after the interfacial pattern developed into a serrated pattern (periodical array of trough and crest), the salt concentration in the solution ceased to increase, deviating from the theoretical value. This indicates that the saline solution was encapsulated by the growth hydrate. On the other hand, upon melting of the slowly grown hydrate, the salt concentration near the interface was observed to be locally high at the location of the trough during growth, whereas it was dilute at the location of the growth crest. Furthermore, when the hydrate was annealed under an applied temperature gradient, the inclusions (encapsulated saline solution) in the hydrate migrated toward the bulk solution and were finally expelled by hydrate recrystallization. The migration speed of the inclusions increased with a larger temperature gradient. By melting the sample over a sufficiently long anneal time, the melt was determined to be completely desalinated.

  18. Constraints on sea to air emissions from methane clathrates in the vicinity of Svalbard

    Science.gov (United States)

    Pisso, Ignacio; Vadakkepuliyambatta, Sunil; Platt, Stephen Matthew; Eckhardt, Sabine; Allen, Grant; Pitt, Joseph; Silyakova, Anna; Hermansen, Ove; Schmidbauer, Norbert; Mienert, Jurgen; Myhre, Cathrine Lund; Stohl, Andreas

    2016-04-01

    Methane stored in the seabed in the form of clathrates has the potential to be released into the atmosphere due to ongoing ocean warming. The Methane Emissions from Arctic Ocean to Atmosphere (MOCA, http://moca.nilu.no/) proje sct conducted measurement campaigns in the vicinity of Svalbard during the summers of 2014 and 2015 in collaboration with the Centre for Arctic Gas Hydrate, Environment and Climate (CAGE, https://cage.uit.no/) and the MAMM (https://arcticmethane.wordpress.com) project . The extensive set of measurements includes air (BAe 146) and ship (RV Helmer Hansen) borne methane concentrations, complemented with the nearby monitoring site at Zeppelin mountain. In order to assess the atmospheric impact of emissions from seabed methane hydrates, we characterised the local and long range atmospheric transport during the aircraft campaign and different scenarios for the emission sources. We present a range of upper bounds for the CH4 emissions during the campaign period as well as the methodologies used to obtain them. The methodologies include a box model, Lagrangian transport and elementary inverse modelling. We emphasise the analysis of the aircraft data. We discuss in detail the different methodologies used for determining the upper flux bounds as well as its uncertainties and limitations. The additional information provided by the ship and station observations will be briefly mentioned.

  19. High-pressure synthesis and properties of the Eu-substituted Ba{sub 8−x}Eu{sub x}Si{sub 46} clathrates

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lihua; Song, Bensheng [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Sun, Bing; Ma, Hongan [National Key Lab of Superhard Materials, Jilin University, Changchun 130012 (China); Ma, Xingqiao [Department of Physics, University of Science and Technology Beijing, Beijing 100083 (China); Li, Yang, E-mail: ylibp@hotmail.com [Department of Engineering Science and Materials, University of Puerto Rico at Mayaguez, Mayaguez, PR 00681-9044 (United States)

    2016-03-15

    There has been considerable interest in rare-earth doped silicon clathrate compounds in order to understand the relation between the 4f electron moment and superconductivity. The Eu-doped silicon clathrates Ba{sub 8−x}Eu{sub x}Si{sub 46} (x=0, 0.5 and 1) were synthesized by using high-temperature and high-pressure. Structure characterization and magnetic measurement show Eu atoms enter clathrate lattice to occupy Ba positions. X-ray powder diffraction data indicate that the cubic lattice parameter a decreases with Eu doping. The magnetic measurements for all samples were studied. The incorporation of magnetic Eu{sup 2+} into the lattice suppresses the superconductivity completely and induces the Curie-paramagnetic behavior at high temperature. The influences of Eu{sup 2+} magnetic moment on the properties of samples were discussed.

  20. The effect of stirring on the heterogeneous nucleation of water and of clathrates of tetrahydrofuran/water mixtures

    Directory of Open Access Journals (Sweden)

    P.W. Wilson

    2016-03-01

    Full Text Available The statistics of liquid-to-crystal nucleation are measured for both water and for clathrate-forming mixtures of tetrahydrofuran (THF and water using an automatic lag time apparatus (ALTA. We measure the nucleation temperature using this apparatus in which a single sample is repeatedly cooled, nucleated and thawed. The effect of stirring on nucleation has been evaluated numerically and is discussed. We find that stirring of the solution makes no difference to the nucleation temperature of a given solution in a given tube.

  1. Breaking the Tetra-Coordinated Framework Rule: New Clathrate Ba8M24P28+δ ( M =Cu/Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Dolyniuk, Juli-Anna [Department of Chemistry, The University of California, Davis, One Shields Avenue Davis CA 95616 USA; Zaikina, Julia V. [Department of Chemistry, The University of California, Davis, One Shields Avenue Davis CA 95616 USA; Kaseman, Derrick C. [Department of Materials Science and Engineering, The University of California, Davis, One Shields Avenue Davis CA 95616 USA; Sen, Sabyasachi [Department of Materials Science and Engineering, The University of California, Davis, One Shields Avenue Davis CA 95616 USA; Kovnir, Kirill [Department of Chemistry, The University of California, Davis, One Shields Avenue Davis CA 95616 USA

    2017-01-18

    A new clathrate type has been discovered in the Ba/Cu/Zn/P system. The crystal structure of the Ba8M24P28+δ (M=Cu/Zn) clathrate is composed of the pentagonal dodecahedra common to clathrates along with a unique 22-vertex polyhedron with two hexagonal faces capped by additional partially occupied phosphorus sites. This is the first example of a clathrate compound where the framework atoms are not in tetrahedral or trigonal-pyramidal coordination. In Ba8M24P28+δ a majority of the framework atoms are five- and six-coordinated, a feature more common to electron-rich intermetallics. The crystal structure of this new clathrate was determined by a combination of X-ray and neutron diffraction and was confirmed with solid-state 31P NMR spectroscopy. Based on chemical bonding analysis, the driving force for the formation of this new clathrate is the excess of electrons generated by a high concentration of Zn atoms in the framework. The rattling of guest atoms in the large cages results in a very low thermal conductivity, a unique feature of the clathrate family of compounds.

  2. Thermoelectric material including a multiple transition metal-doped type I clathrate crystal structure

    Science.gov (United States)

    Yang, Jihui; Shi, Xun; Bai, Shengqiang; Zhang, Wenqing; Chen, Lidong; Yang, Jiong

    2012-01-17

    A thermoelectric material includes a multiple transition metal-doped type I clathrate crystal structure having the formula A.sub.8TM.sub.y.sub.1.sup.1TM.sub.y.sub.2.sup.2 . . . TM.sub.y.sub.n.sup.nM.sub.zX.sub.46-y.sub.1.sub.-y.sub.2.sub.- . . . -y.sub.n.sub.-z. In the formula, A is selected from the group consisting of barium, strontium, and europium; X is selected from the group consisting of silicon, germanium, and tin; M is selected from the group consisting of aluminum, gallium, and indium; TM.sup.1, TM.sup.2, and TM.sup.n are independently selected from the group consisting of 3d, 4d, and 5d transition metals; and y.sub.1, y.sub.2, y.sub.n and Z are actual compositions of TM.sup.1, TM.sup.2, TM.sup.n, and M, respectively. The actual compositions are based upon nominal compositions derived from the following equation: z=8q.sub.A-|.DELTA.q.sub.1|y.sub.1-|.DELTA.q.sub.2|y.sub.2- . . . -|.DELTA.q.sub.n|y.sub.n, wherein q.sub.A is a charge state of A, and wherein .DELTA.q.sub.1, .DELTA.q.sub.2, .DELTA.q.sub.n are, respectively, the nominal charge state of the first, second, and n-th TM.

  3. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates.

    Science.gov (United States)

    Cendagorta, Joseph R; Powers, Anna; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E

    2016-11-30

    Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H2 and D2 diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H2 and D2 as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H2 and D2 diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are strongly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the quantum rate compared to the classical rate, whereas at lower temperatures tunneling outcompetes the ZPE and as a result the quantum rate is greater than the classical rate.

  4. Competing quantum effects in the free energy profiles and diffusion rates of hydrogen and deuterium molecules through clathrate hydrates

    CERN Document Server

    Cendagorta, Joseph R; Hele, Timothy J H; Marsalek, Ondrej; Bačić, Zlatko; Tuckerman, Mark E

    2016-01-01

    Clathrate hydrates hold considerable promise as safe and economical materials for hydrogen storage. Here we present a quantum mechanical study of H$_2$ and D$_2$ diffusion through a hexagonal face shared by two large cages of clathrate hydrates over a wide range of temperatures. Path integral molecular dynamics simulations are used to compute the free-energy profiles for the diffusion of H$_2$ and D$_2$ as a function of temperature. Ring polymer molecular dynamics rate theory, incorporating both exact quantum statistics and approximate quantum dynamical effects, is utilized in the calculations of the H$_2$ and D$_2$ diffusion rates in a broad temperature interval. We find that the shape of the quantum free-energy profiles and their height relative to the classical free energy barriers at a given temperature, as well as the rate of diffusion, are profoundly affected by competing quantum effects: above 25 K, zero-point energy (ZPE) perpendicular to the reaction path for diffusion between cavities decreases the ...

  5. Thermoelectric Performance of Yb-Doped Ba8Ni0.1Zn0.54Ga13.8Ge31.56 Type-I Clathrate Synthesized by High-Pressure Technique

    Science.gov (United States)

    Chen, Chen; Zhang, Long; Dong, Jianying; Xu, Bo

    2016-10-01

    Type I clathrates are a promising thermoelectric (TE) material for waste heat recovery applications. However, the TE figure-of-merit of type I clathrates still needs further improvement. In this study, Yb-doped Ba8-x Yb x Ni0.1Zn0.54 Ga13.8Ge31.56 (0 ≤ x ≤ 0.5) type I clathrates were synthesized using a high-pressure technique. Energy dispersive spectrometry confirmed successful Yb doping. An increased Yb doping level reduces electrical resistivity and suppresses lattice thermal conductivity while keeping the Seebeck coefficient almost unchanged. TE figure-of-merit of Ba7.7Yb0.3Ni0.1Zn0.54Ga13.8Ge31.56 type I clathrate was improved by 15% (0.91) at the highest measured temperature (900 K) compared with a Yb-free sample.

  6. Observations of CO{sub 2} clathrate hydrate formation and dissolution under deep-ocean disposal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Warzinski, R.P.; Cugini, A.V. [Department of Energy, Pittsburgh, PA (United States); Holder, G.D. [Univ. of Pittsburgh, Pittsburgh, PA (United States)

    1995-11-01

    Disposal of anthropogenic emissions of CO{sub 2} may be required to mitigate rises in atmospheric levels of this greenhouse gas if other measures are ineffective and the worst global warming scenarios begin to occur. Long-term storage of large quantities of CO{sub 2} has been proposed, but the feasibility of large land and ocean disposal options remains to be established. Determining the fate of liquid CO{sub 2} injected into the ocean at depths greater than 500 m is complicated by uncertainties associated with the physical behavior of CO{sub 2} under these conditions, in particular the possible formation of the ice-like CO{sub 2} clathrate hydrate. Resolving this issue is key to establishing the technical feasibility of this option. Experimental and theoretical work in this area is reported.

  7. Quadrupole order in clathrate compound Pr{sub 3}Pd{sub 20}Si{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Akatsu, M; Tsuduku, S; Nemoto, Y; Goto, T; Ano, G; Kobayashi, H [Graduate School of Science and Technology, Niigata University, Niigata 950-2181 (Japan); Ishii, I [Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Mitsumoto, K [Center for Transdisciplinary Research, Niigata University, Niigata 950-2181 (Japan); Takeda, N [Faculty of Engineering, Niigata University, Niigata 950-2181 (Japan); Doenni, A; Kitazawa, H, E-mail: akatsu@phys.sc.niigata-u.ac.j [National Institute for Materials Science, Tsukuba 305-0044 (Japan)

    2010-01-15

    In order to investigate ordered phases revealed at low temperatures in clathrate compound Pr{sub 3}Pd{sub 20}Si{sub 6}, we have performed ultrasonic measurements using a single crystal in magnetic fields at low temperatures. Temperature dependence of elastic constant C{sub 11} and C{sub L[11-bar{sub 0}]} = (C{sub 11} + C{sub 12} + 2C{sub 44})/2 shows the anomalies at about 150 mK in zero field. Magnetic phase diagrams are determined by measuring C{sub 11} in H || [001] and C{sub L[l1-bar{sub 0}]} in H || [111]. The magnetic phase diagrams along the three principal axes indicate a closed loop and a strong magnetic anisotropy. This result suggests that antiferroquadrupole ordering appears at low temperatures in Pr{sub 3}Pd{sub 20}Si{sub 6}.

  8. Effect of guest-host interaction on Raman spectrum of a CO2 clathrate hydrate single crystal

    Science.gov (United States)

    Ikeda, Tomoko; Mae, Shinji; Uchida, Tsutomu

    1998-01-01

    The polarized Raman spectra of an artificial CO2 clathrate hydrate single crystal have been measured in order to examine the crystal-orientation dependence of the Raman spectra. Since the crystal had crystallographic facets, the orientation of the crystal was determined by using the Miller indices of the facets. When the angle θ between the polarization plane of the incident laser beam and the direction of one of the axes of the single crystal varied, it was observed that the intensities of the peaks, which were caused by the Fermi resonance of the symmetric stretching mode and the overtone of the bending mode of CO2, and the O-H symmetric stretching vibration mode, varied with θ. Since the tetrakaidecahedron cage in the CO2 clathrate hydrate is distorted along the axis, the variations of the scattering intensities of the CO2 have been calculated by using a simple model that assumes that the CO2 rotates on the {100} plane in the tetrakaidecahedron cage. The results obtained from the experiments are consistent with the calculations made by using this model. It has been concluded that the anisotropy of the peak intensities of the CO2 show the influence of the cage geometry on the motion of the guest molecule. The anisotropy of the O-H symmetric stretching vibration mode was interpreted with a five-body structure model. As the calculation with the model was consistent with the result obtained from the experiment, it was found that the anisotropy of the peak intensity of the O-H symmetric stretching vibration mode was related to the arrangement of the water molecules. We consider that the result indicates the influence of the motion of the guest molecule on the surrounding hydrogen-bonded network.

  9. Methods of thermoelectric enhancement in silicon-germanium alloy type I clathrates and in nanostructured lead chalcogenides

    Science.gov (United States)

    Martin, Joshua

    The rapid increase in thermoelectric (TE) materials R&D is a consequence of the growing need to increase energy efficiency and independence through waste heat recovery. TE materials enable the direct solid-state conversion of heat into electricity, with little maintenance, noise, or cost. In addition, these compact devices can be incorporated into existing technologies to increase the overall operating efficiency. High efficiency TE materials would enable the practical solid-state conversion of thermal to electrical energy. Optimizing the interdependent physical parameters to achieve acceptable efficiencies requires materials exhibiting a unique combination of properties. This research reports two methods of thermoelectric enhancement: lattice strain effects in silicon-germanium alloy type I clathrates and the nanostructured enhancement of lead chalcogenides. The synthesis and chemical, structural, and transport properties characterization of Ba8Ga16SixGe30-x type I clathrates with similar Ga-to-group IV element ratios but with increasing Si substitution (4 materials were then further optimized by adjusting the Ga-to-group IV element ratios. Recent progress in a number of higher efficiency TE materials can be attributed to nanoscale enhancement. Many of these materials demonstrate increased Seebeck coefficient and decreased thermal conductivity due to the phenomenological properties of nanometer length scales. To satisfy the demands of bulk industrial applications requires additional synthesis techniques to incorporate nanostructure directly within a bulk matrix. This research investigates, for the first time, dense dimensional nanocomposites prepared by densifying nanocrystals synthesized employing a solution-phase reaction. Furthermore, the carrier concentration of the PbTe nanocomposites can be adjusted by directly doping the nanocrystals, necessary for power factor optimization. These materials were fully characterized using a low temperature TE transport

  10. Synthesis and Structural Characterization of the New Clathrates K8Cd4Ge42, Rb8Cd4Ge42, and Cs8Cd4Ge42

    Directory of Open Access Journals (Sweden)

    Marion C. Schäfer

    2016-03-01

    Full Text Available This paper presents results from our exploratory work in the systems K-Cd-Ge, Rb-Cd-Ge, and Cs-Cd-Ge, which yielded the novel type-I clathrates with refined compositions K8Cd3.77(7Ge42.23, Rb8Cd3.65(7Ge42.35, and Cs7.80(1Cd3.65(6Ge42.35. The three compounds represent rare examples of clathrates of germanium with the alkali metals, where a d10 element substitutes a group 14 element. The three structures, established by single-crystal X-ray diffraction, indicate that the framework-building Ge atoms are randomly substituted by Cd atoms on only one of the three possible crystallographic sites. This and several other details of the crystal chemistry are elaborated.

  11. Influence of sintering temperature on the thermoelectric properties of Ba8Ga16Si30 clathrate treated by spark plasma sintering

    Institute of Scientific and Technical Information of China (English)

    Li-hua Liu; Feng Li; Ning Chen; Hong-mei Qiu; Guo-hui Cao; Yang Li

    2015-01-01

    A series of Ba8Ga16Si30 clathrate samples were prepared by arc melting, ball milling, acid washing, and spark plasma sintering (SPS). X-ray diffraction analysis revealed that the lattice of the Ba8Ga16Si30 samples expanded as the SPS temperature was increased from 400 to 750°C. Lattice contraction recurred when the SPS temperature was further increased in the range of 750–1000°C. This phenomenon can be explained by the variation of Ga content in the lattice. The thermoelectric figure of the merit ZT value of clathrates increased with the increase in SPS temperature and reached a maximum when the sample was subjected to SPS at 800°C. A further increase in SPS temperature did not contribute to the improvement of ZT. The variation of the lattice parameter a vs. SPS temperature T was similar to the variation ob-served in the ZT–T curve.

  12. Thermoelectric Properties of Au- Containing Type-I Clathrates Ba8AuxGa16-3xGe30+2x

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zuxin [Optimal Inc., Plymouth, Michigan 48170, USA; Cho, Jung Young [Optimal Inc., Plymouth, Michigan 48170, USA; Tessema, Misle M. [Optimal Inc., Plymouth, Michigan 48170, USA; Salvador, James R. [General Motors, Global Research and Development; Waldo, Richard A. [General Motors, Global Research and Development; Yang, Jihui [University of Washington; Wang, Hsin [ORNL; Cai, Wei [ORNL; Kirkham, Melanie J [ORNL; Yang, Jiong [Chinese Academy of Sciences (CAS); Zhang, Wenqing [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS)

    2014-01-01

    Type I clathrates, with compositions based on Ba8Ga16Ge30, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S2/ where is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution with a thermoelectric figure of merit ZT ~ 0.63 at temperature T = 740 K for the composition Ba8Au5.47Ge39.96. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  13. Influence of Sn-substitution on the thermoelectric properties of the clathrate type-I, Ba8Zn(x)Ge(46-x-y)Sn(y).

    Science.gov (United States)

    Falmbigl, Matthias; Grytsiv, Andriy; Rogl, Peter; Yan, Xinlin; Royanian, Esmaeil; Bauer, Ernst

    2013-02-28

    A systematic investigation is presented on the influence of Sn-substitution in the clathrate-I compound Ba(8)Zn(x)Ge(46-x-y)Sn(y), particularly for the crystal structure and thermoelectric properties including electrical resistivity, Seebeck coefficient, and thermal conductivity. Two series of samples were prepared to explore the changes for different Sn-contents, (y), and to define the optimum Zn-content, (x), for Ba(8)Zn(x)Ge(46-x-y)Sn(y). Sn-incorporation leads to a linear expansion of the unit cell parameters. Sn-atoms occupy the 6d and 24k positions of the clathrate type-I structure (SG Pm3n, standardized setting). Whereas the electrical resistivity and the Seebeck coefficient modify only slightly compared to Ba(8)Zn(x)Ge(46-x), the thermal conductivity is significantly decreased by the Sn-atoms incorporated into the clathrate-I framework. Furthermore the charge carrier mobility is larger and the effective mass (m* = 1.7 m(e)) is much smaller than those of the ternary compound Ba(8)Zn(x)Ge(46-x). The maximum thermoelectric figure of merit is improved by 80% and reaches ZT = 0.82 at 850 K for Ba(8)Zn(7.66)Ge(36.55)Sn(1.79).

  14. Bulk and surface structure and high-temperature thermoelectric properties of inverse clathrate-III in the Si-P-Te system.

    Science.gov (United States)

    Zaikina, Julia V; Mori, Takao; Kovnir, Kirill; Teschner, Detre; Senyshyn, Anatoliy; Schwarz, Ulrich; Grin, Yuri; Shevelkov, Andrei V

    2010-11-01

    The creation of thermoelectric materials for waste heat recovery and direct solar energy conversion is a challenge that forces the development of compounds that combine appreciable thermoelectric figure-of-merit with high thermal and chemical stability. Here we propose a new candidate for high-temperature thermoelectric materials, the type-III Si(172-x)P(x)Te(y) cationic clathrate, in which the framework is composed of partially ordered silicon and phosphorus atoms, whereas tellurium atoms occupy guest positions. We show that the utmost stability of this clathrate (up to 1500 K) in air is ensured by the formation of a nanosized layer of phosphorus-doped silica on the surface, which prevents further oxidation and degradation. As-cast (non-optimized) Si-P-Te clathrates display rather high values of the thermoelectric figure-of-merit (ZT=0.24-0.36) in the temperature range of 700-1100 K. These ZT values are comparable to the best values achieved for the properly doped transition-metal-oxide materials. The methods of the thermoelectric efficiency optimization are discussed.

  15. Type-I clathrate Ba8Ni(x)Si(46-x): phase relations, crystal chemistry and thermoelectric properties.

    Science.gov (United States)

    Falmbigl, M; Chen, M X; Grytsiv, A; Rogl, P; Royanian, E; Michor, H; Bauer, E; Podloucky, R; Giester, G

    2012-08-07

    The phase relations, crystal structure and thermoelectric properties of the type-I solid solution Ba(8)Ni(x)Si(46-x) were investigated. Based on X-ray diffraction, differential thermal analysis and electron probe microanalysis data, a partial phase diagram was constructed for the Si-rich part of ternary system Ba-Ni-Si at 800 °C. The solubility range of Ni in the clathrate-I phase at 800 °C was determined (2.9 ≤x≤ 3.8) and thermoelectric properties, namely electrical resistivity, Seebeck-coefficient and thermal conductivity, were measured in the temperature range from 300 to 850 K. A shift of the thermoelectric properties from a predominantly metallic to a more semiconducting behavior was observed for an increasing Ni-content. Density functional calculations revealed a significant decrease of the gap width in the density of states induced by the incorporation of Ni. Electrical resistivity and Seebeck coefficients for Ba(8)Ni(x)Si(46-x) with 3.3 ≤x≤ 3.8 have been modeled within the rigid band approximation.

  16. Structural, elastic, and electronic properties of sodium atoms encapsulated type-I silicon-clathrate compound under high pressure

    Institute of Scientific and Technical Information of China (English)

    张伟; 陈青云; 曾召益; 蔡灵仓

    2015-01-01

    We calculated the structural, elastic, and electronic properties of alkali metal Na atoms doped type-I silicon–clathrate compound (Na8Si46) under pressure using first-principles methods. The obtained dependencies of bond lengths and bond angles on pressure show heterogeneous behaviors which may bring out a structural transition. By using the elastic stability criteria from the calculated elastic constants, we confirm that the Na8Si46 is elastically unstable under high pressure. Some of the mechanical and thermal quantities include bulk modulus, shear modulus ,Young’s modulus, Debye temperature, sound velocity, melting point, and hardness, which are also derived from the elastic constants. The calculated total and partial electron densities of states of Na8Si46 indicate a weak interaction between the encapsulated Na atoms and the silicon framework. Moreover, the effect of pressure on its electronic structure is also investigated, which suggests that pressure is not a good choice to enhance the thermoelectricity performance of Na8Si46.

  17. Theoretical and Experimental Study on Thermoelectric Properties of Ba8TM x Ga y Ge46- x- y (TM = Zn, Cu, Ag) Type I Clathrates

    Science.gov (United States)

    Leszczynski, Juliusz; Kolezynski, Andrzej; Juraszek, Jarosław; Wojciechowski, Krzysztof

    2016-10-01

    In the type I clathrates Ba8TM x Ga y Ge46- x- y (TM = group 10 to 12 elements) where some of the Ge framework atoms are substituted by Zn, Cu or Ag, the transition-metal elements prefer to occupy the 6 c site. Preliminary band-structure calculations showed that this substitution implies modification of the electronic bands in the vicinity of the energy gap. By appropriate tailoring of the band structure, improved thermoelectric properties can be obtained. More detailed full-potential linearized augmented plane wave (FP-LAPW) method calculations within density functional theory (DFT) were performed using the WIEN2k package for compositions where the transition element TM fully occupies the 6 c site. Additional analysis of the properties of the electron density topology within Bader's atoms-in-molecules approach was carried out to study the chemical bonding in intermetallic clathrates. To verify the theoretical predictions, polycrystalline samples of the type I clathrates Ba8TM x Ga y Ge46- x- y (TM = Zn, Cu, Ag) modified by transition-metal element substitution for Ge were obtained. The samples were characterized using powder x-ray diffraction analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy. The electrical conductivity, Seebeck coefficient, and thermal conductivity were measured in the temperature range from 320 K to 720 K. Several models were used to fit the experimental results for the electronic transport properties and to estimate the energy gap. Vacancies at the Ge site were considered responsible for deviations from the desired properties, and appropriate defect equations correlating the vacancies and TM concentration are presented. Finally, the results of DFT calculations are compared with the experiments, showing good agreement with theoretically predicted cell parameters and general observations of the transport properties.

  18. Atomic ordering and thermoelectric properties of the n-type clathrate Ba8Ni3.5Ge42.1square0.4.

    Science.gov (United States)

    Nguyen, L T K; Aydemir, U; Baitinger, M; Bauer, E; Borrmann, H; Burkhardt, U; Custers, J; Haghighirad, A; Höfler, R; Luther, K D; Ritter, F; Assmus, W; Grin, Yu; Paschen, S

    2010-01-28

    Single crystals of the type-I clathrate Ba(8)Ni(3.5)Ge(42.1)square(0.4) (space group Pm3n, no. 223, a = 10.798(2) A, l = 30 mm, slashed circle = 8 mm) were grown from the melt using the Bridgman technique. Their composition, determined by microprobe analysis, reveals a distinctly lower Ni content than previously reported for the lower limit (x = 5.4) of the homogeneity range of the clathrate-I phase Ba(8)Ni(x)Ge(46-x). From single crystal X-ray diffraction data we introduce a crystal structure model that takes point defects (vacancies) square in the Ge network into account. It reveals that both Ni and square accumulate at a single site (6c) and that, as a consequence, the Ge network distorts considerably. Ba(8)Ni(3.5)Ge(42.1)square(0.4) shows metal-like behaviour (drho/dT > 0) albeit with high resistivity at room temperature (rho(300 K) approximately 1 mOmega cm). Together with the low charge carrier concentration of 2.3 e(-)/unit cell at 300 K this is typical of a degenerate semiconductor. The lattice thermal conductivity is distinctly smaller than that of Ba(8)Ge(43)square(3), where the vacancies partially order, and smaller than those of Ba-Ni-Ge type-I clathrates without vacancies, suggesting that disordered vacancies efficiently scatter heat-transporting phonons. We provide evidence that the maximum value of the thermoelectric figure of merit reached in Ba(8)Ni(3.5)Ge(42.1)square(0.4), ZT(680 K) congruent with 0.21, can be further improved by adjusting the charge carrier concentration.

  19. Precursor routes to quaternary intermetallics: Synthesis, crystal structure, and physical properties of clathrate-II Cs8Na16Al24Si112

    Science.gov (United States)

    Wei, Kaya; Dong, Yongkwan; Nolas, George S.

    2016-05-01

    A new quaternary clathrate-II composition, Cs8Na16Al24Si112, was synthesized by kinetically controlled thermal decomposition (KCTD) employing both NaSi and NaAlSi as the precursors and CsCl as a reactive flux. The crystal structure and composition of Cs8Na16Al24Si112 were investigated using both Rietveld refinement and elemental analysis, and the temperature dependent transport properties were investigated. Our results indicate that KCTD with multiple precursors is an effective method for the synthesis of multinary inorganic phases that are not easily accessible by traditional solid-state synthesis or crystal growth techniques.

  20. Tuning the composition of guest molecules in clathrate hydrates: NMR identification and its significance to gas storage.

    Science.gov (United States)

    Seo, Yutaek; Lee, Jong-Won; Kumar, Rajnish; Moudrakovski, Igor L; Lee, Huen; Ripmeester, John A

    2009-08-03

    Gas hydrates represent an attractive way of storing large quantities of gas such as methane and carbon dioxide, although to date there has been little effort to optimize the storage capacity and to understand the trade-offs between storage conditions and storage capacity. In this work, we present estimates for gas storage based on the ideal structures, and show how these must be modified given the little data available on hydrate composition. We then examine the hypothesis based on solid-solution theory for clathrate hydrates as to how storage capacity may be improved for structure II hydrates, and test the hypothesis for a structure II hydrate of THF and methane, paying special attention to the synthetic approach used. Phase equilibrium data are used to map the region of stability of the double hydrate in P-T space as a function of the concentration of THF. In situ high-pressure NMR experiments were used to measure the kinetics of reaction between frozen THF solutions and methane gas, and (13)C MAS NMR experiments were used to measure the distribution of the guests over the cage sites. As known from previous work, at high concentrations of THF, methane only occupies the small cages in structure II hydrate, and in accordance with the hypothesis posed, we confirm that methane can be introduced into the large cage of structure II hydrate by lowering the concentration of THF to below 1.0 mol %. We note that in some preparations the cage occupancies appear to fluctuate with time and are not necessarily homogeneous over the sample. Although the tuning mechanism is generally valid, the composition and homogeneity of the product vary with the details of the synthetic procedure. The best results, those obtained from the gas-liquid reaction, are in good agreement with thermodynamic predictions; those obtained for the gas-solid reaction do not agree nearly as well.

  1. Clathrates Ba(8){Zn,Cd}(x)Si(46-x), x∼7: synthesis, crystal structure and thermoelectric properties.

    Science.gov (United States)

    Nasir, N; Grytsiv, A; Melnychenko-Koblyuk, N; Rogl, P; Bauer, E; Lackner, R; Royanian, E; Giester, G; Saccone, A

    2009-09-23

    Novel ternary type-I clathrate compounds Ba(8){Zn,Cd}(x)Si(46-x), x∼7 have been synthesized from the elements by melting and reacting in quartz ampoules. Structural investigations for both compounds, i.e. x-ray single-crystal data at 300, 200 and 100 K for Ba(8)Zn(7)Si(39) and Rietveld data for Ba(8)Cd(7)Si(39), confirm cubic primitive symmetry consistent with the space group type [Formula: see text] (a(Ba(8)Zn(7)Si(39)) = 1.043 72(1) nm; a(Ba(8)Cd(7)Si(39)) = 1.058 66(3) nm). Whereas for Ba(8)Zn(7)Si(39) site 16i is completely occupied by Si atoms, a random atom distribution with different Zn/Si ratio exists for the two sites, 6d (0.77Zn+0.23Si) and 24k (0.91Si+0.09Zn). No vacancies are encountered and all atom sites are fully occupied. This atom distribution is independent of temperature. Rietveld refinements for Ba(8)Cd(7)Si(39) show that the 6d site is fully occupied by Cd atoms, leaving only the 24k site for a random occupation (0.96Si+0.04Cd) consistent with the chemical formula Ba(8)Cd(7)Si(39). The temperature-dependent x-ray spectra for Ba(8)Zn(7)Si(39) define an Einstein mode, Θ(E,U33) = 80 K. Studies of transport properties show electrons as the majority charge carriers in the system. Although the Cd- and Zn-based samples are isoelectronic, a significantly different electronic transport points towards substantial differences in the electronic density of states in both cases.

  2. Lattice Dynamics Study of Phonon Instability and Thermal Properties of Type-I Clathrate K8Si46 under High Pressure

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2016-07-01

    Full Text Available For a further understanding of the phase transitions mechanism in type-I silicon clathrates K8Si46, ab initio self-consistent electronic calculations combined with linear-response method have been performed to investigate the vibrational properties of alkali metal K atoms encapsulated type-I silicon-clathrate under pressure within the framework of density functional perturbation theory. Our lattice dynamics simulation results showed that the pressure induced phase transition of K8Si46 was believed to be driven by the phonon instability of the calthrate lattice. Analysis of the evolution of the partial phonon density of state with pressure, a legible dynamic picture for both guest K atoms and host lattice, was given. In addition, based on phonon calculations and combined with quasi-harmonic approximation, the specific heat of K8Si46 was derived, which agreed very well with experimental results. Also, other important thermal properties including the thermal expansion coefficients and Grüneisen parameters of K8Si46 under different temperature and pressure were also predicted.

  3. Tridymite-like host clathrate [K(H2O)n][CuZn(CN)4]: crystal structure, guest molecular motion and properties.

    Science.gov (United States)

    Dan, Hiroki; Nishikiori, Shin-ichi; Yamamuro, Osamu

    2011-02-07

    A new clathrate [K(H(2)O)(n)][CuZn(CN)(4)] has been synthesized and its host structure has been determined by the single-crystal X-ray diffraction method. It has a [CuZn(CN)(4)](-) tridymite-like 3D framework host, formed with tetrahedral Cu(I) and Zn(II) ions and cyanide bridges and includes water molecules as guests, together with K(+). This tridymite-like structure is the first structural variation of the [CuZn(CN)(4)](-) 3D framework, whose only known structure has been a cristobalite-like structure. The new host shows properties never seen in the previous cristobalite-like structure host. It absorbs and desorbs water as a guest and the water content (n) varies between 1.2 and 11.2 at room temperature, by adjusting the conditions where the clathrate is placed. The desorption of the water causes deformation of the host structure and this deformation is recovered by the absorption of water. The water can be replaced with methanol and acetonitrile by their absorption instead of water. Solid-state (2)H-NMR spectra revealed the molecular motion of the water, methanol and acetonitrile guests in a temperature range between 123 K and 300 K.

  4. Enhanced Selectivity of the Separation of CO2 from N2 during Crystallization of Semi-Clathrates from Quaternary Ammonium Solutions

    Directory of Open Access Journals (Sweden)

    Herri J.-M.

    2014-09-01

    Full Text Available CO2 mitigation is crucial environmental problem and a societal challenge for this century. CO2 capture and sequestration is a route to solve a part of the problem, especially for the industries in which the gases to be treated are well localized. CO2 capture by using hydrate is a process in which the cost of the separation is due to compression of gases to reach the gas hydrate formation conditions. Under pressure, the water and gas forms a solid that encapsulates preferentially CO2. The gas hydrate formation requires high pressures and low temperatures, which explains the use of thermodynamic promoters to decrease the operative pressure. Quaternary ammoniums salts represent an interesting family of components because of their thermodynamic effect, but also because they can generate crystals that are easily handled. In this work, we have made experiments concerning the equilibrium of (CO2, N2 in presence of Tetra-n-Butyl Ammonium Bromide (TBAB which form a semi-clathrate hydrate. We propose equilibrium data (pressure, temperature in presence of TBAB at different concentrations and we compare them to the literature. We have also measured the composition of the hydrate phase in equilibrium with the gas phase at different CO2 concentrations. We observe that the selectivity of the separation is dramatically increased in comparison to the selectivity of the pure water gas clathrate hydrate. We observe also a benefice on the operative pressure which can be dropped down to the atmospheric pressure.

  5. CO2 capture using semi-clathrates of quaternary ammonium salt: structure change induced by CO2 and N2 enclathration.

    Science.gov (United States)

    Chazallon, Bertrand; Ziskind, Michael; Carpentier, Yvain; Focsa, Cristian

    2014-11-26

    Semi-clathrates of tetrabutylammonium bromide (TBAB) are investigated for their potential application in the CO2 capture context based on hydrate technology. The three-phase lines of semi-clathrates of CO2-TBAB-H2O and N2-TBAB-H2O are established simultaneously with their structure using in situ Raman scattering performed at high pressure. The preferred crystal phase obtained at ambient pressure from solutions of 5 and 40 wt % TBAB initial concentrations is shown to change upon enclathration of CO2 or N2, or by applying a higher pressure on the system. Deep in the stability field, metastable hydrate phases are occurring at the onset of the formation and correspond to the ones expected under ambient pressure conditions. Depending on the pressure, they progressively transformed into the most stable ones when approaching equilibrium and dissociation points. Besides, it is shown that a 5 wt % TBAB original solution forms preferentially a mixed structure of both type B and type A at low gas pressure with CO2 as the guest gas. A new structure is spectroscopically characterized at pressures higher than ∼2 MPa CO2. Type A is demonstrated to be stable at 5 wt % initial TBAB concentration with N2 as the guest molecule and pressure between 8 and 12 MPa. These structural data address new insights on the relationship between the hydrophilic-anion and hydrophobic-cation intercalation with a guest gas producing hydrophobic interaction in a distorted water lattice.

  6. Synthesis and Characterization of Novel Copper(II 2D Coordination Polymers from a Fluorinated Flexible Ligand with Remarkable Clathration Ability

    Directory of Open Access Journals (Sweden)

    Kayoko Kasai

    2011-11-01

    Full Text Available Two-dimensional (2D grid coordination polymers were prepared by the reaction of 1,4-bis(4-pyridylmethyltetrafluorobenzene (bpf with Cu(NO32 in the presence of aromatic compounds. Crystal structures of {[Cu(bpf2(NO32]·(biphenyl2}n (1, {[Cu(bpf2(NO32]·(m-C6H4(OMe22}n (2, {[Cu(bpf2(NO32]·PhtBu}n (3 and {[Cu(bpf2(NO3(H2O]NO3·(bpf0.5}n (4 were determined. The grid networks were held together by C–H···O and C–H···F hydrogen bonds via the NO3− anions and the tetrafluorophenylene rings of bpf, respectively. Biphenyl, m-dimethoxybenzene, t-butylbenzene, and bpf molecules were clathrated in cyclic cavities of the grid networks through arene-perfluoroarene interactions. These coordination networks have remarkable clathration ability for aromatic compounds.

  7. Lithium-ion induced conformational change of 5,17-bis(9-fluorenyl)-25,26,27,28-tetrapropoxy calix[4]arene resulting in an egg-shaped dimeric clathrate

    DEFF Research Database (Denmark)

    Faldt, A.; Krebs, Frederik C; Jørgensen, Mikkel

    2000-01-01

    Synthesis and structural investigation of a 5,17-bis(9-fluorenyl)-25,26,27,28-tetrapropoxy calix[4]arene and its lithium complex salt that forms a dimeric clathrate with a molecule of solvent inside a cavity. At least three different interactions were identified as being responsible...

  8. Stability and Occurrence of the Molecule-Containing SiO2 Clathrate Melanophlogite: Metastable Crystallization from a Colloid or Gel?

    Science.gov (United States)

    Geiger, C. A.; Dachs, E.

    2008-12-01

    The mineral melanophlogite is the only known natural SiO2 clathrate. It has been found in a number of localities worldwide in different low-temperature geologic environments. Melanophlogite's thermodynamic stability is not known. Low-temperature hydrothermal laboratory experiments indicate that structure-directing agents and colloid formation are needed for crystallization. The formation of silica-rich colloids/gels and following crystal growth can be observed in glass-ampoule synthesis experiments. In order to better address these issues, the heat capacities of two different molecule-containing melanophlogites of approximate composition 46SiO2·1.80CH4·3.54N2·1.02CO2 from Mt. Hamilton, CA and 46SiO2·3.59CH4·3.10N2·1.31CO2 from Racalmuto, Sicily, along with a heated (molecule-free) sample of composition SiO2, were studied between 5 and 300 K using heat- pulse microcalorimetry. The molecule-free sample was obtained by heating a natural Racalmuto sample at 1173 K for 24 hr. It has a slightly larger low-temperature heat capacity and standard third-law entropy compared to other low-density SiO2 polymorphs such as various zeosils. The standard third-law entropy of the molecule-free sample is S° = 2216.3 J/(mol·K) for 46SiO2 and the natural Mt. Hamilton and Racalmuto samples give S° = 2805.7 J/(mol·K) and S° = 2956.8 J/(mol· K), respectively. The entropy and Gibbs free energy for molecule-free melanophlogite relative to quartz at 298 K are Δ Strans = 6.7 J/(mol·K) and Δ Gtrans = 7.5 kJ/mol, respectively and, thus, it does not have a thermodynamic field of stability in the SiO2 system. The difference in Cp values between molecule-containing and molecule-free melanophlogite is characterized by an increase in Cp from 0 K to approximately 70 K and then reaches a roughly constant value at 70 K cristobalite and chalcedony, suggest that melanophlogite crystallizes metastabily from gels. The occurrence of melanophlogite, and the lack of other SiO2clathrates

  9. Fully quantal calculation of H2 translation-rotation states in (H2)4@5(12)6(4) clathrate sII inclusion compounds.

    Science.gov (United States)

    Felker, Peter M

    2013-05-01

    The quantal translation-rotation (TR) states of the (p-H2)4@5(12)6(4) and (o-D2)4@5(12)6(4) hydrate clathrate sII inclusion compounds have been computed by nuclear-orbital/configuration-interaction methods. The model of these compounds in a rigid, high-symmetry 5(12)6(4) cage is treated in detail. The low-energy TR level structures of both isotopomers within this model are found to consist of states that can be readily described in terms of a small number of single-H2 and double-H2 excitation modes. The use of the high-symmetry results to facilitate the calculation and interpretation of (p-H2)4 and (o-D2)4 TR states in low-symmetry physically realizable 5(12)6(4) cages is also reported.

  10. Neutron scattering study of phonon dynamics on type-I Clathrate Ba{sub 8}Ga{sub 16}Ge{sub 30}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C H [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Yoshizawa, H [Institute for Solid State Physics, University of Tokyo, 106-1 Shirakata, Tokai, Ibaraki 319-1106 (Japan); Avila, M A [Hiroshima University, Higashi-Hiroshima, 739-8530 Hiroshima (Japan); Hase, I [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Kihou, K [National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568 (Japan); Takabatake, T [Hiroshima University, Higashi-Hiroshima, 739-8530 Hiroshima (Japan)

    2007-12-15

    Phonon dynamics of type-I clathrates Ba{sub 8}Ga{sub 16}Ge{sub 30} has been studied at room temperature by inelastic neutron scattering for energy less than 9 meV. Optical phonons associated with large vibrations of Ba atoms filled in large tetrakaidecahedral cages are observed around E = 4.5 meV. Analysis based on a Born-Von Karman force model shows that the longitudinal force constants between the Ba atoms and the oversized cages has a relatively small value of 0.011 {approx} 0.014 mdyn194. The results indicate that the Ba atoms are very loosely bound to the surrounding oversized cages that consist of Ga and Ge atoms.

  11. A note on the evaluation of the guest-gas uptake into a clathrate hydrate being formed in a semibatch- or batch-type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yasuhiko H.; Komae, Naoya [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2008-05-15

    This paper deals with the principle of determining the rate of guest-gas uptake into a clathrate hydrate being formed in a semibatch-type isobaric reactor or a batch-type closed reactor on the basis of experimental data for the guest-gas supply into the reactor or the pressure change inside the reactor. The specific issue considered here is the possible necessity of taking into account the effect of the change in the total volume of the condensed (liquid + hydrate) phases inside the reactor during each hydrate-forming operation. General schemes for evaluating this effect in semibatch and batch operations are formulated and applied to some specific hydrate-forming operations to evaluate the effect on estimating the guest-gas uptake into the hydrate. (author)

  12. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    Science.gov (United States)

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides.

  13. 水合物溶液分离技术研究进展%Progress in aqueous solution concentration by forming clathrate hydrate

    Institute of Scientific and Technical Information of China (English)

    李士凤; 谭哲; 申延明; 刘东斌; 樊丽辉; 白净

    2014-01-01

    水合物法溶液分离是一种新兴的分离技术。本文概述了水合物溶液分离技术的基本原理,指出水合物溶液分离技术的优缺点。重点回顾了水合物溶液分离技术在海水淡化、废水处理、果汁浓缩、生化分离等过程中的研究进展:尽管水合物海水淡化已经有工业化的报道,但是水合物生成压力较高,分离过程能耗较大,阻碍了该技术的推广应用;水合物法废水处理仅局限于制浆废水回收方面;水合物果汁浓缩以及生化分离方面的研究表明水合物法对于高附加值产品分离十分有效。分析表明,水合物溶液分离技术在上述应用过程中存在水合物生成压力大、水合物结晶夹带浓缩液等问题,指出未来水合物溶液分离技术的研究方向为寻找更加有效的水合物生成气体以及在高附加值产品分离回收过程中的应用。%The hydrate-based solution separation is a novel separation technology. This paper summarized the basic principle of aqueous concentration by forming hydrate,the benefits and drawbacks of hydrate technology. This paper emphasized the progress of seawater desalination, wastewater treatment,juice concentration,and biochemical separation by forming clathrate hydrate. Although forming hydrate desalination has been industrialized,the high and energy consumption of hydrate formation pressure limited its applications. The research on waste water treatment was only limited to pulping waste water recovery. Juice concentration and biochemical separation by forming hydrate were proven to be effective in recovery products with high added-value. The problems of high pressure of hydrate formation and hydrate crystal entrained concentrated solution by forming clathrate hydrate were also discussed. Future research directions of aqueous solution concentration by forming hydrate were proposed.

  14. Effect of Transition Metal Substitution on the Structure and Properties of a Clathrate-Like Compound Eu7Cu44As23

    Directory of Open Access Journals (Sweden)

    Igor V. Plokhikh

    2016-07-01

    Full Text Available A series of substitutional solid solutions—Eu7Cu44−xTxAs23 (T = Fe, Co, Ni—based on a recently discovered clathrate-like compound (Eu7Cu44As23 were synthesized from the elements at 800 °C. Almost up to 50% of Cu can be substituted by Ni, resulting in a linear decrease of the cubic unit cell parameter from a = 16.6707(1 Å for the ternary compound to a = 16.3719(1 Å for the sample with the nominal composition Eu7Cu24Ni20As23. In contrast, Co and Fe can only substitute less than 20% of Cu. Crystal structures of six samples of different composition were refined from powder diffraction data. Despite very small differences in scattering powers of Cu, Ni, Co, and Fe, we were able to propose a reasonable model of dopant distribution over copper sites based on the trends in interatomic distances as well as on Mössbauer spectra for the iron-substituted compound Eu7Cu36Fe8As23. Ni doping increases the Curie temperature to 25 K with respect to the parent compound, which is ferromagnetically ordered below 17.5 K, whereas Fe doping suppresses the ferromagnetic ordering in the Eu sublattice.

  15. Clathrate Hydrates of Isopentane + Carbon Dioxide and Isopentane + Methane: Experimental Measurements of Dissociation Conditions Hydrates (clathrates d’isopentane + dioxyde de carbone et d’isopentane + méthane : Déterminations expérimentales des conditions de dissociation

    Directory of Open Access Journals (Sweden)

    Mohammadi A.H.

    2010-11-01

    Full Text Available In this work, experimental dissociation data for clathrate hydrates of isopentane + carbon dioxide and isopentane + methane are reported in the temperature ranges of (273.5-282.4 and (275.5-285.7 K, respectively. The experimental data were generated using an isochoric pressure-search method. The reliability of this method is examined by generating new dissociation data for clathrate hydrates of isopentane + methane and comparing them with the experimental data reported in the literature. The acceptable agreement demonstrates the reliability of the experimental method used in this work. The experimental data for all measured systems are finally compared with the corresponding experimental data in the absence of isopentane reported in the literature to identify its promotion effects. Des données expérimentales de dissociation d’hydrates d’isopentane + dioxyde de carbone et d’isopentane + méthane sont respectivement présentées ici dans les gammes de température (273.5-282.4 et (275.5-285.7 K. Ces valeurs expérimentales ont été générées en utilisant une méthode isochore de recherche d’une discontinuité de pression. La fiabilité de cette méthode est examinée grâce à la production de données nouvelles pour la dissociation des hydrates de méthane + isopentane et à leur comparaison à des données expérimentales disponibles dans la littérature. L’accord tout à fait acceptable permet de garantir la fiabilité de la méthode expérimentale utilisée. Les valeurs expérimentales de tous les systèmes mesurés sont finalement comparées aux données expérimentales correspondantes de la littérature, obtenues toutefois en l’absence d’isopentane, et ce afin de quantifier ses effets promoteurs de formation d’hydrates.

  16. Fully quantal calculation of H{sub 2} translation-rotation states in the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound

    Energy Technology Data Exchange (ETDEWEB)

    Felker, Peter M., E-mail: felker@chem.ucla.edu [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 (United States)

    2014-11-14

    The quantal translation-rotation (TR) states of the (p-H{sub 2}){sub 2}@5{sup 12}6{sup 4} clathrate hydrate inclusion compound have been computed. The ten-dimensional problem (in the rigid-cage and rigid-H{sub 2} approximation) is solved by first approximating the H{sub 2} moieties as spherically symmetric and solving for their 6D translational eigenstates. These are then combined with H{sub 2} free rotational states in a product basis that is used to diagonalize the full TR hamiltonian. The computed low-energy eigenstates have translational components that are essentially identical to the 6D translational eigenstates and rotational components that are 99.9% composed of rotationally unexcited H{sub 2} moieties. In other words, TR coupling is minimal for the low-energy states of the species. The low-energy level structure is found to be substantially more congested than that of the more tightly packed (p-H{sub 2}){sub 4}@5{sup 12}6{sup 4} clathrate species. The level structure is also shown to be understandable in terms of a model of (H{sub 2}){sub 2} as a semirigid diatomic species consisting of two spherically symmetric H{sub 2} pseudo-atoms.

  17. Thermoelectric properties of Au-containing type-I clathrates Ba{sub 8}Au{sub x}Ga{sub 16−3x}Ge{sub 30+2x}

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zuxin; Cho, Jung Young; Tessema, Misle M. [Optimal Inc., Plymouth, MI 48170 (United States); Salvador, James R., E-mail: james.salvador@gm.com [Chemical and Materials Systems Laboratory, General Motors Global R and D, Warren, MI 48090 (United States); Waldo, Richard A. [Chemical and Materials Systems Laboratory, General Motors Global R and D, Warren, MI 48090 (United States); Yang, Jihui [Department of Materials, University of Washington (United States); Wang, Hsin; Cai, W.; Kirkham, M.J. [Materials Science and Technology Division, Oak Ridge National Laboratory (United States); Yang, Jiong; Zhang, Wenqing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai (China)

    2014-02-25

    Highlights: • Ba{sub 8}Au{sub x}Ga{sub 16−3x}Ge{sub 30+2x} were prepared, and the solubility limit of Au is x = 5.4. • Glass like thermal conduction at low temperature was found for p-type materials. • Higher DOS effective masses carriers were found in higher Au content samples. • Au was found to preferentially substitute at the 6c Wyckoff site. • ZT = 0.6 at 750 K was found for Ba{sub 8}Au{sub x}Ga{sub 16−3x}Ge{sub 30+2x} (x = 1, 5, and 5.33). -- Abstract: Type I clathrates, with compositions based on Ba{sub 8}Ga{sub 16}Ge{sub 30}, are a class of promising thermoelectric materials due to their intrinsically low thermal conductivity. It has been demonstrated previously that the thermoelectric performance can be improved by transition metal substitution of the framework atoms. In this study, the effects of Au substitution for Ga/Ge on thermal and electrical transport properties of type I clathrate compounds have been investigated. Polycrystalline samples with a large range of Au content have been synthesized using conventional solid state techniques with the actual compositions of resulting materials approximately following Zintl-Klemm rules. The charge carrier type changes from electrons (n) to holes (p) as the Au content increases. The Seebeck coefficient (S) and power factor (S{sup 2}/ρ where ρ is the electrical resistivity) were improved by Au substitution and the resulting overall thermoelectric properties were enhanced by Au substitution as compared to polycrystalline Ba{sub 8}Ga{sub 16}Ge{sub 30}. The thermoelectric figure of merit ZT attains a value of 0.63 at 740 K for the composition Ba{sub 8}Au{sub 5.47}Ge{sub 39.96}, a value that is somewhat lower than those reported previously. The results presented herein show that Au-containing type I clathrates are promising p-type thermoelectric materials for high temperature applications.

  18. New type of phase transformation in gas hydrate forming system at high pressures. Some experimental and computational investigations of clathrate hydrates formed in the SF6-H2O system.

    Science.gov (United States)

    Aladko, E Ya; Ancharov, A I; Goryainov, S V; Kurnosov, A V; Larionov, E G; Likhacheva, A Yu; Manakov, A Yu; Potemkin, V A; Sheromov, M A; Teplykh, A E; Voronin, V I; Zhurko, F V

    2006-10-26

    In this work, we present a new, previously unknown type of structure transformation in the high-pressure gas hydrates, which is related to the existence of two different isostructural phases of the sulfur hexafluoride clathrate hydrates. Each of these phases has its own stability field on the phase diagram. The difference between these hydrates consists of partial filling of small D cages by SF(6) molecules in the high-pressure phase; at 900 MPa, about half of small cages are occupied. Our calculations indicate that the increase of population of small cavities is improbable, therefore, at any pressure value, a part of the cavities remains vacant and the packing density is relatively low. This fact allowed us to suppose the existence of the upper pressure limit of hydrate formation in this system; the experimental results obtained confirm this assumption.

  19. Hydrated coefficient of clathrates and its applications in determination of aqueous inclusions with multivolatile components%气水化合物的水合常数及其在水溶液包裹体多组分挥发分测定中的应用

    Institute of Scientific and Technical Information of China (English)

    刘斌; 徐金明

    2007-01-01

    During the microthermometric measurement (cooling) of aqueous inclusions with multivolatile components, solid crystals of gas clathrates often occur with snow-flower- or soft-ice appearances. The structural formula of these solids is M · nH2O (where n ≥5.67 ). Many hydrocarbons, related compounds and their binary or multi-component mixtures may generate gas clathrates. This phenomenum is of fundamental importance to the study of inclusions with hydrocarbon aqueous solutions, because this is related to the determination of inclusion parameters and the computation of thermodynamic parameters.In the nature most aqueous inclusions contain not merely one volatile component but multi-volatile components. Therefore, the measurement of aqueous inclusions with multivolatile components is of universal significance and great importance. There have been many studies and available formula or figures about the computation of thermodynamic parameters for aqueous inclusions with one volatile component. Nevertheless, there are few studies concerning with multivolatile components and it is very difficult to computate thermodynamic parameters for aqueous inclusions with these components.In this paper, hydrated coefficient K is introduced. Ki is the ratio of molar fraction of component i in the gas phase to that in the gas clathrate, or Ki = yi/xi. Because K is a function of temperatures and pressures, it can be used to evaluate the temperature-pressure conditions on the phase behavior with multivolatile components.Based on the regression analysis of available experimental data, the authors have developed computational expression of hydrated coefficients in relation to temperature and pressure for most hydrocarbons and other volatile components, which is helpful to conveniently compute thermodynamic parameters on stability state for clathrates with volatile components. As aqueous inclusions with multivolatile components are common in the nature, by the use of final melting

  20. Synthesis and structures of type-I clathrates: Rb6Na2Ge44.89(1), Cs6Na2Zn4Ge42 and Cs6.40(1)Na1.60(1)Ga8Ge38

    Science.gov (United States)

    Zhang, Hui; Mu, Gang; Huang, Fuqiang; Xie, Xiaoming

    2016-10-01

    Type-I clathrates of Rb6Na2Ge44.89(1), Cs6Na2Zn4Ge42 and Cs6.40(1)Na1.60(1)Ga8Ge38 were synthesized via solid-state reaction. Rb6Na2Ge44.89(1), Cs6Na2Zn4Ge42 and Cs6.40(1)Na1.60(1)Ga8Ge38 were found to crystalize in the cubic space group of Pm 3 ̅ n with lattice parameters of a=10.72755(5) Å, a=10.79501(8) Å and a=10.79726(5) Å, respectively. Theoretical calculations indicated semiconducting features for the calculation models of Rb6Na2Ge44, Cs6Na2Zn4Ge42 and Cs6Na2Ga8Ge38 with band gaps of 0.002 eV, 0.297 eV and 0.221 eV, respectively.

  1. High-pressure synthesis and structural characterization of the type II clathrate compound Na(30.5)Si(136) encapsulating two sodium atoms in the same silicon polyhedral cages.

    Science.gov (United States)

    Yamanaka, Shoji; Komatsu, Masaya; Tanaka, Masashi; Sawa, Hiroshi; Inumaru, Kei

    2014-05-28

    Single crystals of sodium containing silicon clathrate compounds Na8Si46 (type I) and NaxSi136 (type II) were prepared from the mixtures of NaSi and Si under high-pressure and high-temperature conditions of 5 GPa at 600-1000 °C. The type II crystals were obtained at relatively low-temperature conditions of 700-800 °C, which were found to have a Na excess composition Na30.5Si136 in comparison with the compounds NaxSi136 (x ≤ 24) obtained by a thermal decomposition of NaSi under vacuum. The single crystal study revealed that the Na excess type II compound crystallizes in space group Fd3̅m with a lattice parameter of a = 14.796(1) Å, slightly larger than that of the ambient phase (Na24Si136), and the large silicon hexakaidecahedral cages (@Si28) are occupied by two sodium atoms disordered in the two 32e sites around the center of the @Si28 cages. At temperatures primitive cell with space group P213, and the Na atoms in the @Si28 cages are aligned as Na2 pairs. The temperature dependence of the magnetic susceptibility of Na30.5Si136 suggests that the two Na ions (2 Na(+)) in the cage are changed to a Na2 molecule. The Na atoms of Na30.5Si136 can be deintercalated from the cages topochemically by evacuation at elevated temperatures. The single crystal study of the deintercalated phases NaxSi136 (x = 25.5 and 5.5) revealed that only excess Na atoms have disordered arrangements.

  2. Effect of Guest Atom Composition on the Structural and Vibrational Properties of the Type II Clathrate-Based Materials AxSi136, AxGe136 and AxSn136 (A = Na, K, Rb, Cs; 0 ≤ x ≤ 24

    Directory of Open Access Journals (Sweden)

    Dong Xue

    2016-08-01

    Full Text Available Type II clathrates are interesting due to their potential thermoelectric applications. Powdered X-ray diffraction (XRD data and density functional calculations for NaxSi136 found a lattice contraction as x increases for 0 < x < 8 and an expansion as x increases for x > 8. This is explained by XRD data that shows that as x increases, the Si28 cages are filled first for x < 8 and the Si20 cages are then filled for x > 8. Motivated by this work, here we report the results of first-principles calculations of the structural and vibrational properties of the Type II clathrate compounds AxSi136, AxGe136, and AxSn136. We present results for the variation of the lattice constants, bulk moduli, and other structural parameters with x. These are contrasted for the Si, Ge, and Sn compounds and for guests A = Na, K, Rb, and Cs. We also present calculated results of phonon dispersion relations for Na4Si136, Na4Ge136, and Na4Sn136 and we compare these for the three materials. Finally, we present calculated results for the elastic constants in NaxSi136, NaxGe136, and NaxSn136 for x = 4 and 8. These are compared for the three hosts, as well as for the two compositions.

  3. Analysis and Comparison of the Fatty Acid Methyl Esters in the Urea Clathrate and Its Filtrate by GC-MS%GC-MS 法分析比较尿素包合物及其滤液中各种脂肪酸甲酯的质量分数

    Institute of Scientific and Technical Information of China (English)

    李添宝; 吴越

    2014-01-01

    采用尿素包合法对混合脂肪酸甲酯进行分离,利用 GC-MS-QP2010气质联用仪,通过面积归一化法分别测出尿素包合物及其滤液中各种脂肪酸甲酯的质量分数,得出:在尿素包合物中主要是饱和脂肪酸甲酯、油酸甲酯及少量的多价不饱和脂肪酸甲酯,而滤液中不饱和脂肪酸甲酯由原来的83.77%提高到99.7%.%Mixed fatty acid methyl esters were separated by urea adduct method.The contents of fatty acid methyl esters in the urea clathrate and its filtrate were measured by GC-MS-QP2010 gas chromatograph-mass spec-trometer with area normalization method respectively.The result showed that fatty acid methyl esters in the urea clathrate are mainly saturated fatty acid methyl esters and methyl oleate, and a small amount of multivalent unsatu-rated fatty acid methyl esters, but the content of unsaturated fatty acid methyl esters in the filtrate is raised from 83.77%to 99 .7%.

  4. Performance of local correlation methods for halogen bonding: The case of Br{sub 2}–(H{sub 2}O){sub n},n = 4,5 clusters and Br{sub 2}@5{sup 12}6{sup 2} clathrate cage

    Energy Technology Data Exchange (ETDEWEB)

    Batista-Romero, Fidel A.; Bernal-Uruchurtu, Margarita I.; Hernández-Lamoneda, Ramón, E-mail: ramon@uaem.mx [Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca, Morelos 62209 (Mexico); Pajón-Suárez, Pedro [Instituto Superior de Tecnologías y Ciencias Aplicadas (InSTEC), Habana 6163 (Cuba)

    2015-09-07

    The performance of local correlation methods is examined for the interactions present in clusters of bromine with water where the combined effect of hydrogen bonding (HB), halogen bonding (XB), and hydrogen-halogen (HX) interactions lead to many interesting properties. Local methods reproduce all the subtleties involved such as many-body effects and dispersion contributions provided that specific methodological steps are followed. Additionally, they predict optimized geometries that are nearly free of basis set superposition error that lead to improved estimates of spectroscopic properties. Taking advantage of the local correlation energy partitioning scheme, we compare the different interaction environments present in small clusters and those inside the 5{sup 12}6{sup 2} clathrate cage. This analysis allows a clear identification of the reasons supporting the use of local methods for large systems where non-covalent interactions play a key role.

  5. Tuning Thermoelectric Properties of Type I Clathrate K 8–x Ba x Al 8+x Si 38–x through Barium Substitution

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Fan; Kauzlarich, Susan M.

    2016-05-10

    The thermal stability and thermoelectric properties of type I clathrate K8Al8Si38 up to 873 K are reported. K8Al8Si38 possesses a high absolute Seebeck coefficient value and high electrical resistivity in the temperature range of 323 to 873 K, which is consistent with previously reported low temperature thermoelectric properties. Samples with Ba partial substitution at the K guest atom sites were synthesized from metal hydride precursors. The samples with the nominal chemical formula of K8–xBaxAl8+xSi38–x (x = 1, 1.5, 2) possess type I clathrate structure (cubic, Pm3n), confirmed by X-ray diffraction. The guest atom site occupancies and thermal motions were investigated with Rietveld refinement of synchrotron powder X-ray diffraction. Transport properties of Ba-containing samples were characterized from 2 to 300 K. The K–Ba alloy phases showed low thermal conductivity and improved electrical conductivity compared to K8Al8Si38. Electrical resistivity and Seebeck coefficients were measured over the temperature range of 323 to 873 K. Thermal conductivity from 323 to 873 K was estimated from the Wiedemann–Franz relation and lattice thermal conductivity extrapolation from 300 to 873 K. K8–xBaxAl8+xSi38–x (x = 1, 1.5) synthesized with Al deficiency showed enhanced electrical conductivity, and the absolute Seebeck coefficients decrease with the increased carrier concentration. When x = 2, the Al content increases toward the electron balanced composition, and the electrical resistivity increases with the decreasing charge carrier concentration. Overall, K6.5Ba1.5Al9Si37 achieves an enhanced zT of 0.4 at 873 K.

  6. Clathrate formation and dissociation in vapor/water/ice/hydrate systems in SBA-15, sol-gel and CPG porous media, as probed by NMR relaxation, novel protocol NMR cryoporometry, neutron scattering and ab initio quantum-mechanical molecular dynamics simulation.

    Science.gov (United States)

    Webber, J Beau W; Anderson, Ross; Strange, John H; Tohidi, Bahman

    2007-05-01

    The Gibbs-Thomson effect modifies the pressure and temperature at which clathrates occur, hence altering the depth at which they occur in the seabed. Nuclear magnetic resonance (NMR) measurements as a function of temperature are being conducted for water/ice/hydrate systems in a range of pore geometries, including templated SBA-15 silicas, controlled pore glasses and sol-gel silicas. Rotator-phase plastic ice is shown to be present in confined geometry, and bulk tetrahydrofuran hydrate is also shown to probably have a rotator phase. A novel NMR cryoporometry protocol, which probes both melting and freezing events while avoiding the usual problem of supercooling for the freezing event, has been developed. This enables a detailed probing of the system for a given pore size and geometry and the exploration of differences between hydrate formation and dissociation processes inside pores. These process differences have an important effect on the environment, as they impact on the ability of a marine hydrate system to re-form once warmed above a critical temperature. Ab initio quantum-mechanical molecular dynamics calculations are also being employed to probe the dynamics of liquids in pores at nanometric dimensions.

  7. Preparation of Anti-mosquito Silk Fabric via Grafting β-cyclodextrin to Clathrate Natural Mosquito Repellent%利用接枝β-环糊精包合天然驱蚊剂制备防蚊真丝织物

    Institute of Scientific and Technical Information of China (English)

    刘建华; 许宏聪; 沈林; 陈瑞玉; 李超; 余志成

    2012-01-01

    采用1,2,3,4-丁烷四羧酸(BTCA)在催化剂次亚磷酸钠(SHP)的作用下将β-环糊精(β-CD)接枝到真丝纤维上,然后浸渍加入具有驱蚊功效的薰衣草精油使其包合在β-CD空腔中,制备出具有驱蚊功效的真丝织物.设计单因素试验优化β-CD接枝真丝织物的工艺参数,当BTCA和β-CD的质量浓度分别为100 g/L,SHP的质量浓度为60 g/L,170℃下焙烘3min或180℃下焙烘2 min,真丝织物的接枝增重率可达18.4%,红外光谱分析表明β-CD已成功接枝至真丝织物上,且可耐15次以上的水洗.接枝β-CD的真丝织物能够赋予薰衣草精油缓释的效果,且放置8d后对按蚊仍可保持75%以上的驱避率.此方法制备的防蚊真丝织物效果持久可重复使用,且具有对人体无毒害、环保的特点.%p-cyclodextrin (p-CD) was grafted onto silk fabric by using 1,2,3,4-butane tetracarboxylic acid (BTCA) un-der the catalysis of sodium hypophosphite (SHP),which enabled lavender essential oil,a natural mosquito repellent,to be clathrated into the cavity of β-CD for development of silk fabric with mosquito repellence.Single factor tests were designed to optimize technological parameters for grafting β-CD onto silk fabric.The results showed that the fabric weight gain rate could reach 18.4% when grafting was conducted with 100 g/Lβ-CD,100 g/L BTCA and 60 g/L SHP under 170℃for 3 min or 180℃for 2 min.Infrared spectrometric analysis demonstrated that β-CD had been grafted onto silk fabric successfully and could resist washing over 15 times.The β-CD grafted silk fabric endowed lavender essential oil a slow-release effect,which maintained an over 75% mosquito repellence rate after 8 days.The mosquito-repellence silk fabric prepared by this method not only had a long effective duration and many times of repeated use,but also had the characteristics of being safe to human body and being friendly to environment.

  8. Low barriers for hydrogen diffusion in sII clathrate.

    Science.gov (United States)

    Trinh, Thuat T; Waage, Magnus H; van Erp, Titus S; Kjelstrup, Signe

    2015-06-01

    The transport of gas molecules in hydrates is presently poorly understood. In sII structured hydrates with hydrogen guests there is, for instance, a mismatch between experimental and computed values for diffusion constants. We provide an explanation for the experimentally observed diffusion rates, using DFT-based molecular dynamics simulations at 100 K. By considering the effect of cage occupancy, as well as the flexibility of the water lattice, we show that barriers for hydrogen diffusing between cages, can approach values as low as 5 kJ mol(-1), which is very close to experimental values.

  9. Interaction Study of Guest with Host in Clathrate Hydrate

    Institute of Scientific and Technical Information of China (English)

    Lin Wang; Shunle Dong

    2007-01-01

    Lattice dynamical simulations of noble gas hydrate structures I and II have been performed. Potential energies were investigated to study the influence of guest species on the stability of the hydrate structure. Results show that when the diameter of inclusion molecules is between 3 A and 4.2 A, such as Ar and Kr, the critical role of the 512 cage in the stabilization of hydrates becomes effective. For Xe hydrates SI and SII, with the help of lattice dynamical calculations, the modes attributions are identified directly. We proposed the resonant effect of the fingerprint frequency at about 7 meV and 10 meV which arise from the coupling of Xe molecules in the 512 cage with the host lattice.

  10. Clathrate type complexation of cephalosporin antibiotics : function, design and application

    NARCIS (Netherlands)

    Kemperman, Gerardus Johannes

    2001-01-01

    This thesis deals with selective complexation of the Ø-lactam antibiotics Cephalexin, Cephradine, Cefaclor and Cefadroxil. These life-saving antibiotics belong to the class of the cephalosporins and are already on the market for approximately 25 years. An important driving force behind innovations o

  11. Opportunities and limitations of hydrogen storage in zeolitic clathrates

    NARCIS (Netherlands)

    Van den Berg, A.W.C.

    2006-01-01

    The feasibility of using zeolites, and more specifically the clathrasil subgroup, for hydrogen storage has been investigated by comparing their H2 loading rate and storage capacity to the technically required values. The uptake rate and capacity are determined by means of computational modelling for

  12. Towards a green hydrate inhibitor: imaging antifreeze proteins on clathrates.

    Directory of Open Access Journals (Sweden)

    Raimond Gordienko

    Full Text Available The formation of hydrate plugs in oil and gas pipelines is a serious industrial problem and recently there has been an increased interest in the use of alternative hydrate inhibitors as substitutes for thermodynamic inhibitors like methanol. We show here that antifreeze proteins (AFPs possess the ability to modify structure II (sII tetrahydrofuran (THF hydrate crystal morphologies by adhering to the hydrate surface and inhibiting growth in a similar fashion to the kinetic inhibitor poly-N-vinylpyrrolidone (PVP. The effects of AFPs on the formation and growth rate of high-pressure sII gas mix hydrate demonstrated that AFPs are superior hydrate inhibitors compared to PVP. These results indicate that AFPs may be suitable for the study of new inhibitor systems and represent an important step towards the development of biologically-based hydrate inhibitors.

  13. Clathrates and beyond: Low-density allotropy in crystalline silicon

    Science.gov (United States)

    Beekman, Matt; Wei, Kaya; Nolas, George S.

    2016-12-01

    In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoretical and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.

  14. Temperature dependence of polyhedral cage volumes in clathrate hydrates

    Science.gov (United States)

    Chakoumakos, B.C.; Rawn, C.J.; Rondinone, A.J.; Stern, L.A.; Circone, S.; Kirby, S.H.; Ishii, Y.; Jones, C.Y.; Toby, B.H.

    2003-01-01

    The polyhedral cage volumes of structure I (sI) (carbon dioxide, methane, trimethylene oxide) and structure II (sII) (methane-ethane, propane, tetrahydrofuran, trimethylene oxide) hydrates are computed from atomic positions determined from neutron powder-diffraction data. The ideal structural formulas for sI and sII are, respectively, S2L6 ?? 46H2O and S16L???8 ?? 136H2O, where S denotes a polyhedral cage with 20 vertices, L a 24-cage, and L??? a 28-cage. The space-filling polyhedral cages are defined by the oxygen atoms of the hydrogen-bonded network of water molecules. Collectively, the mean cage volume ratio is 1.91 : 1.43 : 1 for the 28-cage : 24-cage : 20-cage, which correspond to equivalent sphere radii of 4.18, 3.79, and 3.37 A??, respectively. At 100 K, mean polyhedral volumes are 303.8, 227.8, and 158.8 A??3 for the 28-cage, 24-cage, and 20-cage, respectively. In general, the 20-cage volume for a sII is larger than that of a sI, although trimethylene oxide is an exception. The temperature dependence of the cage volumes reveals differences between apparently similar cages with similar occupants. In the case of trimethylene oxide hydrate, which forms both sI and sII, the 20-cages common to both structures contract quite differently. From 220 K, the sII 20-cage exhibits a smooth monotonic reduction in size, whereas the sI 20-cage initially expands upon cooling to 160 K, then contracts more rapidly to 10 K, and overall the sI 20-cage is larger than the sII 20-cage. The volumes of the large cages in both structures contract monotonically with decreasing temperature. These differences reflect reoriented motion of the trimethyelene oxide molecule in the 24-cage of sI, consistent with previous spectroscopic and calorimetric studies. For the 20-cages in methane hydrate (sI) and a mixed methane-ethane hydrate (sII), both containing methane as the guest molecule, the temperature dependence of the 20-cage volume in sII is much less than that in sI, but sII is overall larger in volume.

  15. Superconductive "sodalite"-like clathrate calcium hydride at high pressures

    CERN Document Server

    Wang, Hui; Tanaka, Kaori; Iitaka, Toshiaki; Ma, Yanming

    2012-01-01

    Hydrogen-rich compounds hold promise as high-temperature superconductors under high pressures. Recent theoretical hydride structures on achieving high-pressure superconductivity are composed mainly of H2 fragments. Through a systematic investigation of Ca hydrides with different hydrogen contents using particle-swam optimization structural search, we show that in the stoichiometry CaH6 a body-centred cubic structure with hydrogen that forms unusual "sodalite" cages containing enclathrated Ca stabilizes above pressure 150 GPa. The stability of this structure is derived from the acceptance by two H2 of electrons donated by Ca forming a "H4" unit as the building block in the construction of the 3-dimensional sodalite cage. This unique structure has a partial occupation of the degenerated orbitals at the zone centre. The resultant dynamic Jahn-Teller effect helps to enhance electron-phonon coupling and leads to superconductivity of CaH6. A superconducting critical temperature (Tc) of 220-235 K at 150 GPa obtained...

  16. The Occurrence and Geological Implications of Carbon Dioxide Clathrate Hydrate on Mars.

    Science.gov (United States)

    1979-05-01

    apparatus used consisted of a vacuum line, a temperature controlled reaction chamber, a CO2 gas storage bulb, a transfer bulb, and a mercury manometer observed...L ’ N - apparatus used consisted of a chamber that could be maintained at 213 K for extended time periods, a CO2 storage bulb, and a mercury manometer capable...by a mercury manometer . The use of teflon stopcocks and O-ring joints with clamps allowed the line to be used for low pressure and high pressure work

  17. Phase equilibrium and dissociation enthalpy for semi-clathrate hydrate of CO2+TBAB

    OpenAIRE

    2008-01-01

    The present work investigates equilibrium conditions and dissociation enthalpy of hydrates formed from CO2-TBAB(tetra-n-butylammonium bromide)-water mixtures. Differential Thermal Analysis (DTA) was used for Hydrate-Liquid-Vapour (H-L-V) equilibrium condition determination in a TBAB concentration range from 4.43 to 9.01 wt% and in a CO2 pressure range from 0.3 to 2.5 MPa. The results showed that the presence of TBAB allowed decreasing the formation pressure of CO2 hydrate by approximately ...

  18. Identification of a mechanism of transformation of clathrate hydrate structures I to II or H.

    Science.gov (United States)

    Yoshioki, Shuzo

    2012-07-01

    Binary mixed-gas hydrates including methane and other guest gases demonstrate a structural transition between the sI and sII phases. Under increasing pressure pure methane hydrate exhibits a phase transition first from sI to sII and then to sH. But the mechanism of the transformation from sI to sII or sH has not yet been identified. Recently, molecular dynamics simulations of methane hydrates suggest there may exist uncommon 15-hedral cages (5¹²6³), linking the sI and sII cages. In addition, xenon hydrate involving 15-hedral cages has been synthesized and named an hsI hydrate. Based on the hsI cages, we propose a mechanism for the transition of sI to sII or sH at atomic level resolution. The sI hydrate is first transformed to hsI, and hsI is further transformed to sII. Upon compression, hsI is transformed to sH owing to depletion of atomic layers. The mechanism of transformation speculated here calls for experimental verification.

  19. Facilitating guest transport in clathrate hydrates by tuning guest-host interactions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, Igor L.; Udachin, Konstantin A.; Ratcliffe, Christopher I. [National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6 (Canada); Alavi, Saman; Ripmeester, John A., E-mail: John.Ripmeester@nrc-cnrc.gc.ca [National Research Council of Canada, 100 Sussex Dr., Ottawa, Ontario K1A 0R6 (Canada); Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3 (Canada)

    2015-02-21

    The understanding and eventual control of guest molecule transport in gas hydrates is of central importance for the efficient synthesis and processing of these materials for applications in the storage, separation, and sequestration of gases and natural gas production. Previously, some links have been established between dynamics of the host water molecules and guest-host hydrogen bonding interactions, but direct observation of transport in the form of cage-to-cage guest diffusion is still lacking. Recent calculations have suggested that pairs of different guest molecules in neighboring cages can affect guest-host hydrogen bonding and, therefore, defect injection and water lattice motions. We have chosen two sets of hydrate guest pairs, tetrahydrofuran (THF)-CO{sub 2} and isobutane-CO{sub 2}, that are predicted to enhance or to diminish guest–host hydrogen bonding interactions as compared to those in pure CO{sub 2} hydrate and we have studied guest dynamics in each using {sup 13}C nuclear magnetic resonance (NMR) methods. In addition, we have obtained the crystal structure of the THF-CO{sub 2} sII hydrate using the combined single crystal X-ray diffraction and {sup 13}C NMR powder pattern data and have performed molecular dynamics-simulation of the CO{sub 2} dynamics. The NMR powder line shape studies confirm the enhanced and delayed dynamics for the THF and isobutane containing hydrates, respectively, as compared to those in the CO{sub 2} hydrate. In addition, from line shape studies and 2D exchange spectroscopy NMR, we observe cage-to-cage exchange of CO{sub 2} molecules in the THF-CO{sub 2} hydrate, but not in the other hydrates studied. We conclude that the relatively rapid intercage guest dynamics are the result of synergistic guest A–host water–guest B interactions, thus allowing tuning of the guest transport properties in the hydrates by choice of the appropriate guest molecules. Our experimental value for inter-cage hopping is slower by a factor of 10{sup 6} than a published calculated value.

  20. Molecular storage of ozone in a clathrate hydrate: an attempt at preserving ozone at high concentrations.

    Directory of Open Access Journals (Sweden)

    Takahiro Nakajima

    Full Text Available This paper reports an experimental study of the formation of a mixed O(3+ O(2+ CO(2 hydrate and its frozen storage under atmospheric pressure, which aimed to establish a hydrate-based technology for preserving ozone (O(3, a chemically unstable substance, for various industrial, medical and consumer uses. By improving the experimental technique that we recently devised for forming an O(3+ O(2+ CO(2 hydrate, we succeeded in significantly increasing the fraction of ozone contained in the hydrate. For a hydrate formed at a system pressure of 3.0 MPa, the mass fraction of ozone was initially about 0.9%; and even after a 20-day storage at -25°C and atmospheric pressure, it was still about 0.6%. These results support the prospect of establishing an economical, safe, and easy-to-handle ozone-preservation technology of practical use.

  1. Tetrahydrofuran-promoted clathrate hydrate phase equilibria of CO{sub 2} in aqueous electrolyte solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, K.M.; Roman, V.R. [Delft Univ. of Technology, Delft (Netherlands). Physical Chemistry and Molecular Thermodynamics; Witkamp, G.J.; Peters, C.J. [Delft Univ. of Technology, Delft, (Netherlands). Laboratory of Process Equipment, Mechanical, Maritime and Materials Engineering

    2008-07-01

    The phase behavior of a system consisting of carbon dioxide (CO{sub 2}) hydrates is of significant importance for many industrial and natural processes. Carbon dioxide and water are part of natural gas streams and they are also found in oil reservoirs during enhanced oil recovery. Formation of hydrate in these cases may cause problems during production and processing. Alternatively, carbon dioxide hydrate formation may be desirable since it can facilitate separation processes, freezing and refrigeration processes and sequestration of CO{sub 2}. The need for phase equilibrium data of systems, particularly electrolyte solutions containing CO{sub 2} are therefore needed. This paper presented a study that attempted to measure the hydrate equilibrium condition for quaternary system consisting of CO{sub 2}, tetrahydrofuran (THF), an electrolyte and water. The purpose of the study was to examine the competing effect of tetrahydrofuran and an electrolyte on the phase behavior of CO{sub 2} hydrates when both were simultaneously present in a system at hydrate forming condition and to compare the effect of different salts inhibition on tetrahydrofuran-promoted CO{sub 2} hydrate. Six different electrolytes were utilized, including sodium chloride, calcium chloride, magnesium chloride, potassium bromide, sodium fluoride and sodium bromide. It was concluded that the inhibiting effect among the cations increased with increasing charge of the cation and its radius. It was also found that the inhibiting effect of the anions decreased with a decrease on their ion radius. 12 refs., 4 figs.

  2. Sponge Effect on Coal Mine Methane Separation Based on Clathrate Hydrate Method

    Institute of Scientific and Technical Information of China (English)

    ZHANG Baoyong; CHENG Yuanping; WU Qiang

    2011-01-01

    The findings were presented from laboratory investigations on the hydrate formation and dissociation processes employed to recover methane from coal mine gas.The separation process of coal mine methane(CMM) was carried out at 273.15K under 4.00 MPa.The key process variables of gas formation rate,gas volume stored in hydrate and separation concentration were closely investigated in twelve THF-SDS-sponge-gas systems to verify the sponge effect in these hydrate-based separation processes.The gas volume stored in hydrate is calculated based on the measured gas pressure.The CH4 mole fraction in hydrate phase is measured by gas chromatography to confirm the separation efficiency.Through close examination of the overall results,it was clearly verified that sponges with volumes of 40,60 and 80 cm 3 significantly increase gas hydrate formation rate and the gas volume stored in hydrate,and have little effect on the CH4 mole fraction in hydrate phase.The present study provides references for the application of the kinetic effect of porous sponge media in hydrate-based technology.This will contribute to CMM utilization and to benefit for local and global environment.

  3. Calculations of NMR properties for sI and sII clathrate hydrates of methane, ethane and propane.

    Science.gov (United States)

    Siuda, Paweł; Sadlej, Joanna

    2014-12-01

    Calculations of NMR parameters (the absolute shielding constants and the spin-spin coupling constants) for 5(12), 5(12)6(2) and 5(12)6(4) cages enclathrating CH4, C2H6 and C3H8 molecules are presented. The DFT/B3LYP/HuzIII-su3 level of theory was employed. The (13)C shielding constants of guest molecules are close to available experimental data. In two cases (the ethane in 5(12) and the propane in 5(12)6(2) cages) the (13)C shielding constants are reported for the first time. Inversion of the methyl/methylene (13)C and (1)H shielding constants order is found for propane in the 5(12)6(2) cage. Topological criteria are used to interpret the changes of values of NMR parameters of water molecules and they establish a connection between single cages and bulk crystal.

  4. Scanning electron microscopy investigations of laboratory-grown gas clathrate hydrates formed from melting ice, and comparison to natural hydrates

    Science.gov (United States)

    Stern, L.A.; Kirby, S.H.; Circone, S.; Durham, W.B.

    2004-01-01

    Scanning electron microscopy (SEM) was used to investigate grain texture and pore structure development within various compositions of pure sI and sII gas hydrates synthesized in the laboratory, as well as in natural samples retrieved from marine (Gulf of Mexico) and permafrost (NW Canada) settings. Several samples of methane hydrate were also quenched after various extents of partial reaction for assessment of mid-synthesis textural progression. All laboratory-synthesized hydrates were grown under relatively high-temperature and high-pressure conditions from rounded ice grains with geometrically simple pore shapes, yet all resulting samples displayed extensive recrystallization with complex pore geometry. Growth fronts of mesoporous methane hydrate advancing into dense ice reactant were prevalent in those samples quenched after limited reaction below and at the ice point. As temperatures transgress the ice point, grain surfaces continue to develop a discrete "rind" of hydrate, typically 5 to 30 ??m thick. The cores then commonly melt, with rind microfracturing allowing migration of the melt to adjacent grain boundaries where it also forms hydrate. As the reaction continues under progressively warmer conditions, the hydrate product anneals to form dense and relatively pore-free regions of hydrate grains, in which grain size is typically several tens of micrometers. The prevalence of hollow, spheroidal shells of hydrate, coupled with extensive redistribution of reactant and product phases throughout reaction, implies that a diffusion-controlled shrinking-core model is an inappropriate description of sustained hydrate growth from melting ice. Completion of reaction at peak synthesis conditions then produces exceptional faceting and euhedral crystal growth along exposed pore walls. Further recrystallization or regrowth can then accompany even short-term exposure of synthetic hydrates to natural ocean-floor conditions, such that the final textures may closely mimic those observed in natural samples of marine origin. Of particular note, both the mesoporous and highly faceted textures seen at different stages during synthetic hydrate growth were notably absent from all examined hydrates recovered from a natural marine-environment setting.

  5. Phase Behaviour, Thermodynamics and Kinetics of Clathrate Hydrate Systems of Carbon Dioxide in Presence of Tetrahydrofuran and Electrolytes

    NARCIS (Netherlands)

    Mohamad Sabil, K. Bin

    2009-01-01

    In view of the possibilities for new development of carbon dioxide hydrate processes, this study focused on experimental measurements to obtain fundamental insight into the phase behaviour and the kinetic of formation of carbon dioxide hydrate forming systems. These data are essential for the develo

  6. Study of clathrate hydrates via equilibrium molecular-dynamics simulation employing polarisable and non-polarisable, rigid and flexible water models

    Science.gov (United States)

    Burnham, Christian J.; English, Niall J.

    2016-04-01

    Equilibrium molecular-dynamics (MD) simulations have been performed on metastable sI and sII polymorphs of empty hydrate lattices, in addition to liquid water and ice Ih. The non-polarisable TIP4P-2005, simple point charge model (SPC), and polarisable Thole-type models (TTM): TTM2, TTM3, and TTM4 water models were used in order to survey the differences between models and to see what differences can be expected when polarisability is incorporated. Rigid and flexible variants were used of each model to gauge the effects of flexibility. Power spectra are calculated and compared to density-of-states spectra inferred from inelastic neutron scattering (INS) measurements. Thermodynamic properties were also calculated, as well as molecular-dipole distributions. It was concluded that TTM models offer optimal fidelity vis-à-vis INS spectra, together with thermodynamic properties, with the flexible TTM2 model offering optimal placement of vibrational modes.

  7. Communication: Librational dynamics in water, sI and sII clathrate hydrates, and ice Ih: Molecular-dynamics insights.

    Science.gov (United States)

    Burnham, Christian J; English, Niall J

    2016-02-01

    Equilibrium molecular-dynamics simulations have been performed for liquid water, and on metastable sI and sII polymorphs of empty hydrate lattices, in addition to ice Ih, in order to study the dynamical properties of librational motion (rotation oscillation) depicted by protons in water molecules. In particular, hydrate lattices were found to display prominent "bifurcated" features, or peaks, at circa 70 and 80-95 meV (or ∼560 and 640-760 cm(-1), respectively), also displayed by ice, in essentially quantitative agreement with experimental neutron-scattering data. However, observed differences in dispersion between these librational modes between these two structures (both hydrate polymorphs vis-à-vis ice), owing primarily to density effects, have been decomposed into contributions arising from angular-velocity dynamics about axes in the local molecular frame of water molecules, with in-plane "wagging" and "twisting" rationalising one mode at ∼70 meV, and out-of-plane motion for the higher-frequency band. This was confirmed explicitly by a type of de facto normal-mode analysis, in which only immediate layers of water molecules about the one under consideration were allowed to move. In contrast, liquid water displayed no marked preference for such local in- or out-of-plane modes characterising librational motion, owing to the marked absence of rigid, pentamers or hexamers therein.

  8. Hydrogen-bond vibrational and energetic dynamical properties in sI and sII clathrate hydrates and in ice Ih: Molecular dynamics insights.

    Science.gov (United States)

    Chakraborty, Somendra Nath; English, Niall J

    2015-10-21

    Equilibrium molecular dynamics (MD) simulations have been performed on cubic (sI and sII) polymorphs of methane hydrate, and hexagonal ice (ice Ih), to study the dynamical properties of hydrogen-bond vibrations and hydrogen-bond self-energy. It was found that hydrogen-bond energies are greatest in magnitude in sI hydrates, followed by sII, and their energies are least in magnitude in ice Ih. This is consistent with recent MD-based findings on thermal conductivities for these various materials [N. J. English and J. S. Tse, Phys. Rev. Lett. 103, 015901 (2009)], in which the lower thermal conductivity of sI methane hydrate was rationalised in terms of more strained hydrogen-bond arrangements. Further, modes for vibration and energy-transfer via hydrogen bonds in sI hydrate were found to occur at higher frequencies vis-à-vis ice Ih and sII hydrate in both the water-librational and OH⋯H regions because of the more strained nature of hydrogen bonds therein.

  9. 7,11,15,28-Tetrakis[(2-formylphenoxymethyl]-1,21,23,25-tetramethylresorcin[4]arene cavitand ethyl acetate clathrate at 173 K

    Directory of Open Access Journals (Sweden)

    Michael G. Mc Kay

    2009-04-01

    Full Text Available The title compound, C68H56O16, was synthesized as a novel synthetic intermediate towards deeper and more elaborate resorcin[4]arene cavitands. The structure is the first reported example of a resorcin[4]arene cavitand bearing aromatic aldehyde functional groups at the extra-annular rim of the molecule. The 2-formylphenoxy residues are found to assume two different orientations above the molecular cavity. One half of the resorcin[4]arene cavitand molecule appears in the asymmetric unit; the complete resorcin[4]arene cavitand structure was generated across a mirror plane. In addition, a highly disordered ethyl acetate solvent molecule is present within the molecular cavity.

  10. Kinetics of methane-ethane gas replacement in clathrate-hydrates studied by time-resolved neutron diffraction and Raman spectroscopy.

    Science.gov (United States)

    Murshed, M Mangir; Schmidt, Burkhard C; Kuhs, Werner F

    2010-01-14

    The kinetics of CH(4)-C(2)H(6) replacement in gas hydrates has been studied by in situ neutron diffraction and Raman spectroscopy. Deuterated ethane structure type I (C(2)H(6) sI) hydrates were transformed in a closed volume into methane-ethane mixed structure type II (CH(4)-C(2)H(6) sII) hydrates at 5 MPa and various temperatures in the vicinity of 0 degrees C while followed by time-resolved neutron powder diffraction on D20 at ILL, Grenoble. The role of available surface area of the sI starting material on the formation kinetics of sII hydrates was studied. Ex situ Raman spectroscopic investigations were carried out to crosscheck the gas composition and the distribution of the gas species over the cages as a function of structure type and compared to the in situ neutron results. Raman micromapping on single hydrate grains showed compositional and structural gradients between the surface and core of the transformed hydrates. Moreover, the observed methane-ethane ratio is very far from the one expected for a formation from a constantly equilibrated gas phase. The results also prove that gas replacement in CH(4)-C(2)H(6) hydrates is a regrowth process involving the nucleation of new crystallites commencing at the surface of the parent C(2)H(6) sI hydrate with a progressively shrinking core of unreacted material. The time-resolved neutron diffraction results clearly indicate an increasing diffusion limitation of the exchange process. This diffusion limitation leads to a progressive slowing down of the exchange reaction and is likely to be responsible for the incomplete exchange of the gases.

  11. 基于β-环糊精包合作用的防蚊真丝织物研制%Preparation of mosquito repellence silk fabric based on the clathration of β-cyclodextrin

    Institute of Scientific and Technical Information of China (English)

    许宏聪; 陈瑞玉; 沈林; 李超; 刘建华; 余志成

    2012-01-01

    The P-CD was grafted onto silk fabric with BTCA as cross-linking agent and SHP as catalytic agent, then was treated with citronella essential oil to make mosquito repellent fabric. Determine the optimum grafting process of P-CD through orthogonal experiment as: mass concentration of BTCA is 110 g/L, mass concentration of p-CD is 70 g/L, and mass concentration of SHP is 40 g/L, and curing temperature is 170 °C for 3 min, and weight gain rate of real silk fabric under this process could reach 16.04 %. SEM test indicates that: P-CD had grafted onto silk fabric successfully; after that, K/S value of P-CD grafted silk fabric dyed with cationic dyeing is increased significantly, while K/S value of acid dyes and reactive dyes are significantly lowered. After placing grafted silk fabric dyed with citronella essential oil for once week, the repellent rate of the silk fabric against culex pipiens pallens could still stay higher than 75 %.%以丁烷四羧酸(BTCA)为交联剂,次亚磷酸钠(SHP)为催化剂,将β-环糊精(β-CD)接枝到真丝织物上,再经天然香茅草提取物整理,赋予真丝织物驱蚊效果.通过正交试验确定β-CD最佳接枝工艺为:BTCA质量浓度110g/L、β-CD质量浓度70 g/L、SHP质量浓度4g/L、焙烘条件170℃、3min,此工艺下真丝织物增重率可达16.04%.扫面电镜(SEM)测试表明:β-CD己成功接枝到真丝织物上;β-CD接枝后真丝织物阳离子染料染色的K/S明显提高,而酸性染料和活性染料染色的K/S值明显下降.经香茅草提取物整理的接枝真丝织物,放置一周后,对淡色库蚊驱避率仍可保持在75%以上.

  12. SLOW-RELEASING PRESERVATION EFFECT OF β-CD-OPP CLATHRATE COMPOUNDS ON CITRUS FRUITS%β-环糊精邻苯基苯酚包合物对瓯柑缓释保鲜研究

    Institute of Scientific and Technical Information of China (English)

    夏更寿; 郭圣荣

    2012-01-01

    The experiment was carried out on the preservation of fresh citrus fruits using the slow-releasing cyclodextrin- inclusion complexes of o-phenylphenol. The preservative effects were evaluated through three aspects of mould-proof, slow-releasing preservation and residue amount. The results revealed that the slow-releasing preservatives of 5%o β-CD- OPP showed the best storage quality, which could significantly reduce the degradation of total soluble solids and the titratable acid of citrus fruits. After treated with 5%o of β-CD-OPP showed the lowest rotting rate of citrus fruits was only 3.04% after 25 days, significantly lower than 90% or more of the control; the decay incidence and weight loss were only 4.26% and 3.48% and those of the control were 21.38% and 100.00% , respectively. Determined from the reserved fruits of 90 days, the OPP residues were just 4.20mg/kg, belowed the safety standards at home and abroad (10mg/kg). It could be indicated that the β-CD-OPP is a safe preservative, not only alleviate the fruit decomposed rate, but also minimize the loss of water and nutrients effectively and have lower opp residues.%利用不同浓度β-环糊精固载邻苯基苯酚(β-CD—OPP)对瓯柑进行保鲜,通过防霉、缓释保鲜及在果浆中的残留量3个方面对该保鲜剂效果进行评价。结果显示:5%的β-CD-OPP溶液作为缓释保鲜剂最为有效,该浓度可有效降低瓯柑可溶性固形物的降解和可滴定酸的减少。经5%的β-CD-OPP溶液处理25d后瓯柑病果率仅为3.04%,极显著低于空白对照的90%以上;贮藏90d后的果实失重率和腐烂率仅为4.26%和3.48%,而对照为21.38%和100.00%;贮藏90d后果浆中OPP的残留量仅为4.20mg/kg,低于国内外安全标准(10mg/kg)。表明该保鲜剂既可有效地降低腐烂率、减少水分和营养的损失,且药物残留量低,食用安全放心。

  13. Hydrogen storage

    NARCIS (Netherlands)

    Peters, C.J.; Sloan, E.D.

    2005-01-01

    The invention relates to the storage of hydrogen. The invention relates especially to storing hydrogen in a clathrate hydrate. The clathrate hydrate according to the present invention originates from a composition, which comprises water and hydrogen, as well as a promotor compound. The promotor comp

  14. Non-solar noble gas abundances in the atmosphere of Jupiter

    Science.gov (United States)

    Lunine, Jonathan I.; Stevenson, David J.

    1986-01-01

    The thermodynamic stability of clathrate hydrate is calculated to predict the formation conditions corresponding to a range of solar system parameters. The calculations were performed using the statistical mechanical theory developed by van der Waals and Platteeuw (1959) and existing experimental data concerning clathrate hydrate and its components. Dissociation pressures and partition functions (Langmuir constants) are predicted at low pressure for CO clathrate (hydrate) using the properties of chemicals similar to CO. It is argued that nonsolar but well constrained noble gas abundances may be measurable by the Galileo spacecraft in the Jovian atmosphere if the observed carbon enhancement is due to bombardment of the atmosphere by clathrate-bearing planetesimals sometime after planetary formation. The noble gas abundances of the Jovian satellite Titan are predicted, assuming that most of the methane in Titan is accreted as clathrate. It is suggested that under thermodynamically appropriate conditions, complete clathration of water ice could have occurred in high-pressure nebulas around giant planets, but probably not in the outer solar nebula. The stability of clathrate in other pressure ranges is also discussed.

  15. Method for solid state crystal growth

    Science.gov (United States)

    Nolas, George S.; Beekman, Matthew K.

    2013-04-09

    A novel method for high quality crystal growth of intermetallic clathrates is presented. The synthesis of high quality pure phase crystals has been complicated by the simultaneous formation of both clathrate type-I and clathrate type-II structures. It was found that selective, phase pure, single-crystal growth of type-I and type-II clathrates can be achieved by maintaining sufficient partial pressure of a chemical constituent during slow, controlled deprivation of the chemical constituent from the primary reactant. The chemical constituent is slowly removed from the primary reactant by the reaction of the chemical constituent vapor with a secondary reactant, spatially separated from the primary reactant, in a closed volume under uniaxial pressure and heat to form the single phase pure crystals.

  16. Possible evidence for a methane source in Enceladus' internal ocean

    Science.gov (United States)

    Bouquet, Alexis; Mousis, Olivier; Waite, Jack H.; Picaud, Sylvain

    2014-11-01

    We investigated the possible formation of clathrate hydrates (hereafter clathrates) in Enceladus' putative internal ocean. We modeled this ocean as a terrestrial subglacial lake, with an initial composition matching the one of the plumes as determined by the Cassini-INMS mass spectrometer. We used a statistical thermodynamic model based on the description of the guest-clathrate interaction by a spherically averaged Kihara potential with a nominal set of potential parameters. We investigated the behavior of five detected volatile species prone to be trapped into clathrates: CO2, CO, CH4, N2 and H2S. Noble gases (Ar, Kr, Xe) were also considered in order to compare predictions with future measurements. Our calculations considered an ocean extending from 35 to 50 km under the ice layer, at a temperature value of 0°C. We found that the conditions for the formation of clathrates are met in the ocean. The exact structure of these clathrates (structure I or II) is not firmly determined as species known to form both are present.We found that CH4 is very efficiently trapped into clathrate phase and its proportion among dissolved species always falls below plume levels. Additional tests considering different mixtures with more CH4 do not solve this question as the efficiency of the trapping always bring CH4 levels below the expected value. This points to an subsequent dissociation of clathrates or to an additional methane source in the ocean. The fate of the clathrates depends on their density: they can either ascend to the top of the ocean, possibly reaching a region of lower pressure where they dissociate, or sink to the bottom. We found that pressure above a 20km depth would allow for dissociation. The density of the clathrates depends on which structure is formed, but we determined that a proportion of partially-filled clathrate would ascend in all cases. To establish the link with a methane source, a study of the timescale of entrapping and transfer is needed

  17. Intermolecular Interactions at high pressure

    DEFF Research Database (Denmark)

    Eikeland, Espen Zink

    2016-01-01

    In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together with their st......In this project high-pressure single crystal X-ray diffraction has been combined with quantitative energy calculations to probe the energy landscape of three hydroquinone clathrates enclosing different guest molecules. The simplicity of the hydroquinone clathrate structures together....... High-pressure crystallography is the perfect method for studying intermolecular interactions, by forcing the molecules closer together. In all three studied hydroquinone clathrates, new pressure induced phase transitions have been discovered using a mixture of pentane and isopentane as the pressure...... transmitting medium. Through careful structural analysis combined with theoretical calculations, the structures of all the new high-pressure phases identified herein were determined. In the hydroquinone - methanol and hydroquinone - acetonitrile clathrate structures the phase transitions break the host...

  18. Study on preparation of anti-mosquito fabric by β-cyclodextrin grafting silk and clathrating schizonepeta mosquito repelling agent%β-环糊精接枝真丝包合荆芥天然驱蚊剂制备防蚊织物

    Institute of Scientific and Technical Information of China (English)

    王晓芳; 陶尧定; 吴岚; 张亚萍; 李晓莉; 余志成

    2016-01-01

    为了制备安全环保、长效防蚊真丝织物,选用将β-环糊精接枝至真丝织物上,然后包合天然荆芥精油乳液的方法.优化的接枝工艺为:β-环糊精80 g/L,交联剂BTCA 90 g/L,催化剂SHP 40 g/L,二浸二轧,轧余率100%,在85℃条件下预烘3 min后,再在170℃条件下焙烘3 min.制备的防蚊真丝双绉、真丝乔其对蚊子的驱避率分别为87.65%、81.96%.经20次水洗后,对蚊子的驱避率分别仍可达到60.03%、57.10%.制备的天然环保防蚊真丝织物具有良好的防蚊效果和耐洗性.

  19. Phase behavior in the system tetrahydrofuran-water-ammonia from calorimetry and Raman spectroscopy

    Science.gov (United States)

    Munoz-Iglesias, Victoria; Vu, Tuan; Choukroun, Mathieu; Hodyss, Robert; Smythe, William; Sotin, Christophe

    2016-10-01

    From geochemical models and Cassini-Huygens mission data it can be postulated that the icy crust of Titan is composed by water ice, clathrate hydrates and ammonia hydrates. When the shell evolves thermically, the first minerals in dissociating are the ammonia hydrates. Ammonia is a powerful antifreeze, promoting the drop of the equilibrium curves of both water ice and clathrates to values as low as 170 K and 203 K respectively. Calorimetry, using a Setaram BT 2.15 Calvet calorimeter, has allowed to identify the different phases formed in the system THF-H2O-NH3 when the molar ratio H2O:THF is 1:X 17, which corresponds with the THF-clathrate stoichiometric ratio, and at NH3 concentrations up to 30 wt%. When X 17, the H2O is in excess; the formation of ammonia hydrates, water ice and THF-clathrate is observed. Since under this condition, all available THF is trapped in the clathrate, no THF-NH3 phase is observed. In all the scenarios, the release of NH3 (from the melting of THF-NH3 solid or ammonia hydrates) promotes partial dissociation of THF clathrates, which start at much lower temperature the equilibrium dissociation of the clathrates. This research is supported by an appointment to the NASA Postdoctoral Program at the Jet Propulsion Laboratory, California Institute of Technology, administered by Universities Space Research Association (USRA) through a contract with NASA. Support from the NASA Outer Planets Research program and government sponsorship acknowledged.

  20. Study of biogas storage; Biogas no chozo ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, I.; Kimura, T.; Umeda, H. [Meiji University, Tokyo (Japan)

    1997-11-25

    Study was made on the storage method of a methane component in biogas mainly composed of CO2 and methane gases. Methane clathrate as molecular complex is one kind of clathrate compounds. Eight methane gas molecules are absorbed into 46 water molecules, or methane gas of 216 l is absorbed into water of 1 l, resulting in considerable compact methane storage. Although methane clathrate is usually stable only under a condition of low temperature and high pressure, its formation equilibrium shifts toward a low pressure/high temperature side by adding additives such as amine, ether and ketone. Acetone can shift formation pressure from 30 to 10atm at 1degC, and formation temperature from 1 to 10degC at 30atm. Although methane liquefaction is also an efficient storage method, it requires liquefaction temperature and pressure of -83degC and 45.6atm, respectively. The distance between methane molecules in clathrate lattice can be more shortened than that in high- pressure charged gas, suggesting higher storage efficiency. The study result showed that the handling of methane clathrate is possible around room temperature and pressure. 7 refs., 5 figs.

  1. The fate of ethane in Titan's hydrocarbon lakes and seas

    CERN Document Server

    Mousis, Olivier; Hayes, Alexander G; Hofgartner, Jason D

    2015-01-01

    Ethane is expected to be the dominant photochemical product on Titan's surface and, in the absence of a process that sequesters it from exposed surface reservoirs, a major constituent of its lakes and seas. Absorption of Cassini's 2.2 cm radar by Ligeia Mare however suggests that this north polar sea is dominated by methane. In order to explain this apparent ethane deficiency, we explore the possibility that Ligeia Mare is the visible part of an alkanofer that interacted with an underlying clathrate layer and investigate the influence of this interaction on an assumed initial ethane-methane mixture in the liquid phase. We find that progressive liquid entrapment in clathrate allows the surface liquid reservoir to become methane-dominated for any initial ethane mole fraction below 0.75. If interactions between alkanofers and clathrates are common on Titan, this should lead to the emergence of many methane-dominated seas or lakes.

  2. Phase equilibria of carbon dioxide and methane gas-hydrates predicted with the modified analytical S-L-V equation of state

    Directory of Open Access Journals (Sweden)

    Span Roland

    2012-04-01

    Full Text Available Gas-hydrates (clathrates are non-stoichiometric crystallized solutions of gas molecules in the metastable water lattice. Two or more components are associated without ordinary chemical union but through complete enclosure of gas molecules in a framework of water molecules linked together by hydrogen bonds. The clathrates are important in the following applications: the pipeline blockage in natural gas industry, potential energy source in the form of natural hydrates present in ocean bottom, and the CO2 separation and storage. In this study, we have modified an analytical solid-liquid-vapor equation of state (EoS [A. Yokozeki, Fluid Phase Equil. 222–223 (2004] to improve its ability for modeling the phase equilibria of clathrates. The EoS can predict the formation conditions for CO2- and CH4-hydrates. It will be used as an initial estimate for a more complicated hydrate model based on the fundamental EoSs for fluid phases.

  3. Polyorganosiloxane-europium (Ⅲ) host-guest inclusion system and its energy transfer luminescence

    Institute of Scientific and Technical Information of China (English)

    许辉; 郑敏; 曹明; 谢萍; 白凤莲; 张榕本

    1999-01-01

    The Eu(Ⅲ) ion, as a luminescent probe, is incorporated into a novel nanotube-contained polyorganosiloxane (POS), which is obtained by coupling of ladderlike polyvinylsilsesquioxane (Vi-T) with tetramethyldisiloxane (H-MM) via hydrosilylation, to form POS-Eu(Ⅲ) composite. The results from fluorescent study demonstrate that the composite is actually a host-guest clathrate which includes the Eu(Ⅲ) ions in the tubelike cavity of POS and moreover, the supramolecular clathrate exhibits an obvious energy transfer process which converts the UV light absorbed by POS into the visible light generated from the Eu(Ⅲ) luminescence. Molecular simulation also gives support to the formation of such a clathrate and thus results in energy transfer process.

  4. Composition and method for hydrogen storage

    Science.gov (United States)

    Mao, Wendy L. (Inventor); Mao, Ho-Kwang (Inventor)

    2004-01-01

    A method for hydrogen storage includes providing water and hydrogen gas to a containment volume, reducing the temperature of the water and hydrogen gas to form a hydrogen clathrate at a first cryogenic temperature and a first pressure and maintaining the hydrogen clathrate at second cryogenic temperature within a temperature range of up to 250 K to effect hydrogen storage. The low-pressure hydrogen hydrate includes H.sub.2 O molecules, H.sub.2 molecules and a unit cell including polyhedron cages of hydrogen-bonded frameworks of the H.sub.2 O molecules built around the H.sub.2 molecules.

  5. Liquid Water Structure from Anomalous Density under Ambient Condition

    Institute of Scientific and Technical Information of China (English)

    SUN Qiang; ZHENG Hai-Fei

    2006-01-01

    @@ From discussion of the structure of liquid water, we deduce that water under ambient condition is mainly composed of ice Ih-like molecular clusters and clathrate-like molecular clusters. The water molecular clusters remain in a state of chemical equilibrium (reversible clustering reactions). This structural model can be demonstrated by quantitative study on anomalous density with increasing temperature at ambient pressure.

  6. A ∼32–70 K FORMATION TEMPERATURE RANGE FOR THE ICE GRAINS AGGLOMERATED BY COMET 67 P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Lectez, S.; Simon, J.-M.; Salazar, J. M. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne Franche Comté, Dijon (France); Mousis, O. [Aix Marseille Université, CNRS, Laboratoire d’Astrophysique de Marseille (LAM), UMR 7326, F-13388 Marseille (France); Picaud, S. [Institut UTINAM, UMR 6213, CNRS-Université de Bourgogne Franche Comté, Besançon (France); Altwegg, K.; Rubin, M., E-mail: jmsimon@u-bourgogne.fr [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2015-05-20

    Grand Canonical Monte Carlo simulations are used to reproduce the N{sub 2}/CO ratio ranging between 1.7 × 10{sup −3} and 1.6 × 10{sup −2} observed in situ in the Jupiter-family comet 67 P/Churyumov–Gerasimenko (67 P) by the ROSINA mass spectrometer on board the Rosetta spacecraft. By assuming that this body has been agglomerated from clathrates in the protosolar nebula (PSN), simulations are developed using elaborated interatomic potentials for investigating the temperature dependence of the trapping within a multiple-guest clathrate formed from a gas mixture of CO and N{sub 2} in proportions corresponding to those expected for the PSN. By assuming that 67 P agglomerated from clathrates, our calculations suggest the cometary grains must have been formed at temperatures ranging between ∼31.8 and 69.9 K in the PSN to match the N{sub 2}/CO ratio measured by the ROSINA mass spectrometer. The presence of clathrates in Jupiter-family comets could then explain the potential N{sub 2} depletion (factor of up to ∼87 compared to the protosolar value) measured in 67 P.

  7. On the abundances of noble and biologically relevant gases in Lake Vostok, Antarctica

    CERN Document Server

    Mousis, Olivier; Picaud, Sylvain; Pasek, Matthew; Chassefière, Eric

    2013-01-01

    Motivated by the possibility of comparing theoretical predictions of Lake Vostok's composition with future in situ measurements, we investigate the composition of clathrates that are expected to form in this environment from the air supplied to the lake by melting ice. In order to establish the best possible correlation between the lake water composition with that of air clathrates formed in situ, we use a statistical thermodynamic model based on the description of the guest-clathrate interaction by a spherically averaged Kihara potential with a nominal set of potential parameters. We determine the fugacities of the different volatiles present in the lake by defining a "pseudo" pure substance dissolved in water owning the average properties of the mixture and by using the Redlich-Kwong equation of state to mimic its thermodynamic behavior. Irrespective of the clathrate structure considered in our model, we find that xenon and krypton are strongly impoverished in the lake water (a ratio in the 0.04--0.1 range ...

  8. Sulfurization of Iron in the Dynamic Solar Nebula and Implications for Planetary Compositions

    CERN Document Server

    Ciesla, Fred J

    2015-01-01

    One explanation for the enhanced ratio of volatiles to hydrogen in Jupiter's atmosphere compared to a a gas of solar composition is that the planet accreted volatile-bearing clathrates during its formation. Models, however, suggest that S would be over abundant if clathrates were the primary carrier of Jupiter's volatiles. This led to the suggestion that S was depleted in the outer nebula due to the formation troilite (FeS). Here, this depletion is quantitatively explored by modeling the coupled dynamical and chemical evolution of Fe grains in the solar nebula. It is found that disks that undergo rapid radial expansion from an initially compact state may allow sufficient production of FeS and carry H$_{2}$S-depleted gas outward where ices would form, providing the conditions needed for S-depleted clathrates to form. However, this expansion would also carry FeS grains to this region, which could also be incorporated into planetesimals. Thus for clathrates to be a viable source of volatiles, models must account...

  9. Phase equilibrium modeling of gas hydrate systems for CO2 capture

    DEFF Research Database (Denmark)

    Herslund, Peter Jørgensen; Thomsen, Kaj; Abildskov, Jens

    2012-01-01

    Two thermodynamic models capable of describing dissociation pressures of mixed gas clathrate hydrates formed from ternary mixtures of CO2, N2 and liquid water, are presented. Both of the models utilize the Cubic-Plus-Association (CPA) equation of state (EOS) for the thermodynamic description of t...

  10. β-Cyclodextrin inclusion complex: preparation, characterization, and its aspirin release in vitro

    Science.gov (United States)

    Zhou, Hui-Yun; Jiang, Ling-Juan; Zhang, Yan-Ping; Li, Jun-Bo

    2012-09-01

    In this work, the optimal clathration condition was investigated for the preparation of aspirin-β-cyclodextrin (Asp-β-CD) inclusion complex using design of experiment (DOE) methodology. A 3-level, 3-factor Box-Behnken design with a total of 17 experimental runs was used. The Asp-β-CD inclusion complex was prepared by saturated solution method. The influence on the embedding rate was investigated, including molar ratio of β-CD to Asp, clathration temperature and clathration time, and the optimum values of such three test variables were found to be 0.82, 49°C and 2.0 h, respectively. The embedding rate could be up to 61.19%. The formation of the bonding between -COOH group of Asp and O-H group of β-CD might play an important role in the process of clathration according to FT-IR spectra. Release kinetics of Asp from inclusion complex was studied for the evaluation of drug release mechanism and diffusion coefficients. The results showed that the drug release from matrix occurred through Fickian diffusion mechanism. The cumulative release of Asp reached only 40% over 24 h, so the inclusion complex could potentially be applied as a long-acting delivery system.

  11. astrophysical significance

    Directory of Open Access Journals (Sweden)

    Dartois E.

    2014-02-01

    Full Text Available Clathrate hydrates, ice inclusion compounds, are of major importance for the Earth’s permafrost regions and may control the stability of gases in many astrophysical bodies such as the planets, comets and possibly interstellar grains. Their physical behavior may provide a trapping mechanism to modify the absolute and relative composition of icy bodies that could be the source of late-time injection of gaseous species in planetary atmospheres or hot cores. In this study, we provide and discuss laboratory-recorded infrared signatures of clathrate hydrates in the near to mid-infrared and the implications for space-based astrophysical tele-detection in order to constrain their possible presence.

  12. Low-density silicon allotropes for photovoltaic applications

    Science.gov (United States)

    Amsler, Maximilian; Botti, Silvana; Marques, Miguel A. L.; Lenosky, Thomas J.; Goedecker, Stefan

    2015-07-01

    Silicon materials play a key role in many technologically relevant fields, ranging from the electronic to the photovoltaic industry. A systematic search for silicon allotropes was performed by employing a modified ab initio minima hopping crystal structure prediction method. The algorithm was optimized to specifically investigate the hitherto barely explored low-density regime of the silicon phase diagram by imitating the guest-host concept of clathrate compounds. In total, 44 metastable phases are presented, of which 11 exhibit direct or quasidirect band gaps in the range of ≈1.0-1.8 eV, close to the optimal Shockley-Queisser limit of ≈1.4 eV, with a stronger overlap of the absorption spectra with the solar spectrum compared to conventional diamond silicon. Due to the structural resemblance to known clathrate compounds it is expected that the predicted phases can be synthesized.

  13. Structure of water + acetonitrile solutions from acoustic and positron annihilation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jerie, Kazimierz [Institute of Experimental Physics, University of WrocIaw, WrocIaw (Poland); Baranowski, Andrzej [Institute of Experimental Physics, University of WrocIaw, WrocIaw (Poland); Koziol, Stan [Waters Corp., 34 Maple St., Milford, MA 01757 (United States); Glinski, Jacek [Faculty of Chemistry, University of WrocIaw, WrocIaw (Poland)]. E-mail: glin@wchuwr.chem.uni.wroc.pl; Burakowski, Andrzej [Faculty of Chemistry, University of WrocIaw, WrocIaw (Poland)

    2005-03-14

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH{sub 3}CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. A new method of calculating the 'ideal' positronium lifetimes is proposed, based on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The results are almost identical with those obtained from molar volumes using the concept of Levay et al. On the other hand, the same calculations performed using the 'bubble' model of annihilation yield very different results. It seems that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  14. Structure of Aqueous Solutions of Acetonitrile Investigated by Acoustic and Positron Annihilation Measurements

    Science.gov (United States)

    Jerie, K.; Baranowski, A.; Koziol, S.; Burakowski, A.

    2005-05-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. The concept of Levay et al. of calculating the "ideal positronium lifetimes is applied, basing on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The same calculations performed using the Tao model of annihilation yield very different results. It can be concluded that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  15. Structure of water + acetonitrile solutions from acoustic and positron annihilation measurements

    Science.gov (United States)

    Jerie, Kazimierz; Baranowski, Andrzej; Koziol, Stan; Gliński, Jacek; Burakowski, Andrzej

    2005-03-01

    We report the results of acoustic and positron annihilation measurements in aqueous solutions of acetonitrile (CH 3CN). Hydrophobicity of the solute is discussed, as well as the possibility of describing the title system in terms of hydrophobic solvation. A new method of calculating the "ideal" positronium lifetimes is proposed, based on the mean volume of cavities (holes) in liquid structure available for positronium pseudoatom. The results are almost identical with those obtained from molar volumes using the concept of Levay et al. On the other hand, the same calculations performed using the "bubble" model of annihilation yield very different results. It seems that either acetonitrile forms with water clathrate-like hydrates of untypical architecture, or it is too weak hydrophobic agent to form clathrate-like hydrates at all. The former interpretation seems to be more probable.

  16. Accelerated nucleation of tetrahydrofuran (THF) hydrate in presence of ZIF-61

    Institute of Scientific and Technical Information of China (English)

    Yanhong Wang; Xuemei Lang; Shuanshi Fan

    2012-01-01

    Clathrate hydrate can be used in energy gas storage and transportation,CO2 capture and cool storage etc.However,these technologies are difficult to be used due to the low formation rate and long induction time of hydrate formation.In this paper,ZIF-61 (zeolite imidazolate framework,ZIF) was first used in hydrate formation to stimulate hydrate nucleation.As an additive of clathrate hydrate,ZIF-61 promoted obviously the acceleration of tetrahydrofuran (THF) hydrate nucleation.It shortened the induction time of THF hydrate formation from 2-5 h to 0.3-1 h mainly due to the template function of ZIF-61 by which the nucleation of THF hydrate has been promoted.

  17. [Raman spectroscopic investigation of hydrogen storage in nitrogen gas hydrates].

    Science.gov (United States)

    Meng, Qing-guo; Liu, Chang-ling; Ye, Yu-guang; Li, Cheng-feng

    2012-08-01

    Recently, hydrogen storage using clathrate hydrate as a medium has become a hotspot of hydrogen storage research In the present paper, the laser Raman spectroscopy was used to study the hydrogen storage in nitrogen hydrate. The synthetic nitrogen hydrate was reacted with hydrogen gas under relatively mild conditions (e.g., 15 MPa, -18 degrees C). The Raman spectra of the reaction products show that the hydrogen molecules have enclathrated the cavities of the nitrogen hydrate, with multiple hydrogen cage occupancies in the clathrate cavities. The reaction time is an important factor affecting the hydrogen storage in nitrogen hydrate. The experimental results suggest that nitrogen hydrates are expected to be an effective media for hydrogen storage.

  18. Formation of porous gas hydrates

    CERN Document Server

    Salamatin, Andrey N

    2015-01-01

    Gas hydrates grown at gas-ice interfaces are examined by electron microscopy and found to have a submicron porous texture. Permeability of the intervening hydrate layers provides the connection between the two counterparts (gas and water molecules) of the clathration reaction and makes further hydrate formation possible. The study is focused on phenomenological description of principal stages and rate-limiting processes that control the kinetics of the porous gas hydrate crystal growth from ice powders. Although the detailed physical mechanisms involved in the porous hydrate formation still are not fully understood, the initial stage of hydrate film spreading over the ice surface should be distinguished from the subsequent stage which is presumably limited by the clathration reaction at the ice-hydrate interface and develops after the ice grain coating is finished. The model reveals a time dependence of the reaction degree essentially different from that when the rate-limiting step of the hydrate formation at...

  19. Incommensurate short-range multipolar order parameter of phase II in Ce3Pd20Si6

    OpenAIRE

    Portnichenko, P. Y.; Paschen, S.; Prokofiev, A.; Vojta, M.; Cameron, A. S.; Mignot, J.-M.; Ivanov, A.; Inosov, D. S.

    2016-01-01

    The clathrate compound Ce3Pd20Si6 is a heavy-fermion metal that exhibits magnetically hidden order at low temperatures. Reputedly, this exotic type of magnetic ground state, known as "phase II", could be associated with the ordering of Ce 4f quadrupolar moments. In contrast to conventional (dipolar) order, it has vanishing Bragg intensity in zero magnetic field and, as a result, has escaped direct observation by neutron scattering until now. Here we report the observation of diffuse magnetic ...

  20. Thinking Like a Wildcatter: Prospecting for Methane in Arabia Terra, Mars

    Science.gov (United States)

    Allen, C. C.; Oehler, D. Z.

    2005-01-01

    Methane has been detected in the martian atmosphere at a concentration of approximately 10 ppb. The lifetime of such methane against decomposition by solar radiation is approximately 300 years, strongly suggesting that methane is currently being released to the atmosphere. By analogy to Earth, possible methane sources on Mars include active volcanism, hot springs, frozen methane clathrates, thermally-matured sedimentary organic matter, and extant microbial metabolism. The discovery of any one of these sources would revolutionize our understanding of Mars.

  1. Destabilization kinetics of polyvinylpyrrolidone-iodine in a field of low frequency impacts

    Science.gov (United States)

    Fadeev, G. N.; Ermolaeva, V. I.; Boldyrev, V. S.; Sinkevich, V. V.

    2016-09-01

    Experimental results on the destabilization kinetics of compounds with chelate structure (polyvinylpyrrolidone-iodine) in the field of the impact of low-frequency vibrations (from 2 to 45 Hz) are presented. The optimum frequencies at which the process rate is greatest are found for different impact modes. Based on the experimental data, conclusions are drawn as to the effect the energy of low-frequency impacts has on the studied clathrate and chelate structures.

  2. Atmospheric Impact of Large Methane Emissions and the Gulf Oil Spill

    Science.gov (United States)

    Bhattacharyya, S.; Cameron-Smith, P. J.; Bergmann, D. J.

    2010-12-01

    A vast quantity of a highly potent greenhouse gas, methane, is locked in the solid phase as methane clathrates in ocean sediments and underneath permafrost regions. Clathrates are ice-like deposits containing a mixture of water and gas (mostly methane) which are stable under high pressure and low temperatures. Current estimates are about 1600 - 2000 GtC present in oceans and about 400GtC in Arctic permafrost (Archer et al. 2009). This is about 4000 times that of current annual emissions. In a warming climate, increase in ocean temperatures could rapidly destabilize the geothermal gradient which in turn could lead to dissociation of the clathrates and release of methane into the ocean and subsequently into the atmosphere as well. This could result in a number of effects including strong greenhouse heating, increased surface ozone, reduced stratospheric ozone, and intensification of the Arctic ozone hole. Many of the effects in the chemistry of the atmosphere are non-linear. In this paper, we present a parametric study of the effect of large scale methane release to the atmosphere. To that end we use the CESM (Community Earth System Model) version 1 with fully active coupled atmosphere-ocean-land model together with super-fast atmospheric chemistry module to simulate the response to increasing CH4 by 2, 3, 10 and 100 times that of the present day. We have also conducted a parametric study of the possible impact of gaseous emissions from the oil spill in the Gulf of Mexico, which is a proxy for future clathrate releases. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  3. Fuel traps: mapping stability via water association.

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, Susan L.; Clawson, Jacalyn S.; Greathouse, Jeffery A.; Alam, Todd M; Leung, Kevin; Varma, Sameer; Sabo, Dubravko; Martin, Marcus Gary; Cygan, Randall Timothy

    2007-03-01

    Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.

  4. Early Mars volcanic sulfur storage in the cryosphere and formation of transient SO2-rich atmospheres during the Hesperian

    CERN Document Server

    Schmidt, F; Tian, F; Dartois, E; Herri, J -M; Mousis, O

    2016-01-01

    In a previous paper (Chassefi\\`ere et al., Icarus 223, 878-891, 2013), we have shown that most volcanic sulfur released to early Mars atmosphere could have been trapped in the cryosphere under the form of CO2-SO2 clathrates. Huge amounts of sulfur, up to the equivalent of a ~1 bar atmosphere of SO2, would have been stored in the Noachian cryosphere, then massively released to the atmosphere during Hesperian due to rapidly decreasing CO2 pressure. It would have resulted in the formation of the large sulfate deposits observed mainly in Hesperian terrains, whereas no or little sulfates are found at the Noachian. In the present paper, we first clarify some aspects of our previous work. We discuss the possibility of a smaller cooling effect of sulfur particles, or even of a net warming effect. We point out the fact that CO2-SO2 clathrates formed through a progressive enrichment of a preexisting reservoir of CO2 clathrates and discuss processes potentially involved in the slow formation of a SO2-rich upper cryosphe...

  5. LOW TEMPERATURE X-RAY DIFFRACTION STUDIES OF NATURAL GAS HYDRATE SAMPLES FROM THE GULF OF MEXICO

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, Claudia J [ORNL; Sassen, Roger [Texas A& M University; Ulrich, Shannon M [ORNL; Phelps, Tommy Joe [ORNL; Chakoumakos, Bryan C [ORNL; Payzant, E Andrew [ORNL

    2008-01-01

    Clathrate hydrates of methane and other small alkanes occur widespread terrestrially in marine sediments of the continental margins and in permafrost sediments of the arctic. Quantitative study of natural clathrate hydrates is hampered by the difficulty in obtaining pristine samples, particularly from submarine environments. Bringing samples of clathrate hydrate from the seafloor at depths without compromising their integrity is not trivial. Most physical property measurements are based on studies of laboratory-synthesized samples. Here we report X-ray powder diffraction measurements of a natural gas hydrate sample from the Green Canyon, Gulf of Mexico. The first data were collected in 2002 and revealed ice and structure II gas hydrate. In the subsequent time the sample has been stored in liquid nitrogen. More recent X-ray powder diffraction data have been collected as functions of temperature and time. This new data indicates that the larger sample is heterogeneous in ice content and shows that the amount of sII hydrate decreases with increasing temperature and time as expected. However, the dissociation rate is higher at lower temperatures and earlier in the experiment.

  6. Marine methane cycle simulations for the period of early global warming

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, S.; Maltrud, M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2011-01-02

    Geochemical environments, fates, and effects are modeled for methane released into seawater by the decomposition of climate-sensitive clathrates. A contemporary global background cycle is first constructed, within the framework of the Parallel Ocean Program. Input from organics in the upper thermocline is related to oxygen levels, and microbial consumption is parameterized from available rate measurements. Seepage into bottom layers is then superimposed, representing typical seabed fluid flow. The resulting CH{sub 4} distribution is validated against surface saturation ratios, vertical sections, and slope plume studies. Injections of clathrate-derived methane are explored by distributing a small number of point sources around the Arctic continental shelf, where stocks are extensive and susceptible to instability during the first few decades of global warming. Isolated bottom cells are assigned dissolved gas fluxes from porous-media simulation. Given the present bulk removal pattern, methane does not penetrate far from emission sites. Accumulated effects, however, spread to the regional scale following the modeled current system. Both hypoxification and acidification are documented. Sensitivity studies illustrate a potential for material restrictions to broaden the perturbations, since methanotrophic consumers require nutrients and trace metals. When such factors are considered, methane buildup within the Arctic basin is enhanced. However, freshened polar surface waters act as a barrier to atmospheric transfer, diverting products into the deep return flow. Uncertainties in the logic and calculations are enumerated including those inherent in high-latitude clathrate abundance, buoyant effluent rise through the column, representation of the general circulation, and bacterial growth kinetics.

  7. Geodetic data support trapping of ethane in Titan's polar crust

    Science.gov (United States)

    Sotin, Christophe; Rambaux, Nicolas

    2016-04-01

    Titan's surface is characterized by polar depressions that strongly influence interpretations of the gravity data. This study investigates several geodynamical models that can explain these depressions. For each model, the values of the three moments of inertia are computed numerically by discretizing the interior in spherical coordinates. The study shows that a Pratt model where the polar subsurface is made of ethane clathrates can explain the polar depression, the abrupt jump in altitude at about 60 degrees latitude, and the values of the degree 2 gravity coefficients. This model, proposed by Choukroun and Sotin [1], is based on the stability of ethane clathrate hydrates relative to methane clathrate hydrates. In addition to fitting the geodetic data, it explains the absence of ethane in Titan's atmosphere although ethane is the main product of the photolysis of methane. Other geophysical models based on latitudinal variations in the tidal heating production or in the heat flux at the base of the icy crust do not provide such a good match to the gravity and topographic observations. The ethane-clathrate model predicts that all the ethane produced by photolysis of methane at the present rate during the last billion years could be stored in the polar subsurface. It is consistent with the age of Titan's surface and that of Titan's atmospheric methane inferred from geological and geochemical observations by the Cassini/Huygens mission. The present study also emphasizes the role of mass anomalies on the interpretation of the degree 2 gravity coefficients. It shows that for Titan, a slow rotator, the values of the two equatorial moments of inertia (MoI) are largely affected by the polar depressions whereas the value of polar MoI is not. Therefore, as pointed out by previous calculations [2], calculating the moment of inertia (MoI) factor from the value of J2 could lead to major errors. This is not the case for our preferred Titan's model for which the negative polar

  8. Seasonal evolution of Titan's polar caps: interaction between atmospheric and subsurface processes

    Science.gov (United States)

    Sotin, C.

    2012-12-01

    Titan is the only satellite of the solar system with a dense atmosphere. It is also the only object, besides Earth, with stable liquid bodies at its surface. The (P,T) conditions at Titan's surface suggest that methane and ethane are liquid. Ethane has been detected in the lakes [1] whereas the signature of liquid methane is hidden by that of atmospheric methane which is the second most abundant atmospheric component. Methane is irreversibly transformed into ethane by photolysis. Titan's atmosphere contains very little ethane, which suggests that it is present in the surface (lakes) or/and the subsurface. Lakes are mostly located in the polar areas with many more lakes on the North Pole than on the South Pole. Ethane clouds above the North Pole have been identified during the winter when the atmospheric circulation leads to the formation of downwellings at the North Pole. Remote sensing instruments onboard the Cassini spacecraft have recently witnessed the formation of the South Polar vortex after the equinox in August 2009. Ethane rain may now happen over the South Pole. Laboratory experiments show that ethane and methane can react with ice to form clathrates that are denser and more stable than pure ice. Laboratory experiments also suggest that ethane clathrates are more stable than methane clathrates. The atmosphere can be replenished in methane through the substitution of methane by ethane that rains and percolates into the subsurface [2]. Because ethane clathrates are denser than methane clathrates, such a process would lead to significant subsidence on geological time scales. It may explain why Titan's flattening is larger than that due to spin rate only [2]. The amount of ethane required to explain Titan's shape is in agreement with the a global resurfacing event that would have occurred between a few hundreds of Myrs and 1 Gyr as suggested by the density of impact craters [3] and the age of the atmospheric methane [4]. The Cassini observations and results

  9. Martian and Ionian Analogs of Permafrost-Volcano Interactions in Alaskan Permafrost

    Science.gov (United States)

    Kargel, J. S.; Beget, J. E.; Skinner, J. A.; Wessels, R.

    2005-12-01

    Volcanic landforms in Alaskan lowland permafrost exhibit several unique morphological attributes, as described in a companion AGU abstract (Beget et al.). These features include (1) giant maar sizes (in Bering Land Bridge National Preserve) an order of magnitude larger than common in non-permafrost terrains, (2) composite volcanic forms produced by repeated maar-forming explosions (the novel Ingakslugwat-type volcano in Yukon Delta), and (3) super-inflated lava flows with marginal thermokarst pits (Lost Jim flow, Imuruk Lake Volcanic Field, Bering Land Bridge area). We have identified on Mars, in areas not indicating glaciation, several landforms and on Io an active volcanic process that might be analogs of these in Alaska. On Mars, within and near Elysium (Galaxias Fossae and Hrad Vallis region) multiple crater-like depressions occur with other volcanic features. Their characteristics suggest that the depressions are maars. The composite structures suggest similarities to Ingakslugwat volcanoes. Possible analogs of giant oversize maars also have been identified on Mars. In addition to surface gravitational differences between Earth and Mars, it seems likely that volatile composition is a key aspect controlling the explosivity and sizes of maars on both planets. In Alaska, we suspect that volcanic interactions with methane clathrate hydrate-rich permafrost tends to yield larger maar sizes than with ice-rich permafrost or ground water. This working hypothesis fits well with observations that the giant maars formed during the climatically coldest periods (Beget et al., 2005, this conference). During those periods, permafrost was thick, strong, and unpunctured by lakes and rivers, and so it could have trapped clathrate-forming gases. During interglacials, thinner permafrost and the widespread occurrence of thaw lakes and surface streams may cause the permafrost to be ineffective in confining ascending gases, and so clathrates were absent or not abundant, and volcanic

  10. Neutron conversion and cascaded cooling in paramagnetic systems for a high-flux source of very cold neutrons

    Science.gov (United States)

    Zimmer, Oliver

    2016-03-01

    A new neutron-cooling mechanism is proposed with potential benefits for novel intense sources of very cold neutrons with wavelengths >2 nm, and for enhancing the production of ultracold neutrons. It employs inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic energy is removed from the neutron stepwise in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. The stationary neutron transport equation is analyzed for an infinite, homogeneous medium with Maxwellian neutron sources, using inelastic scattering cross sections derived in an appendix. Nonmagnetic inelastic scattering processes are neglected. The solution therefore still underestimates very cold neutron densities that should be achievable in a real medium. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated O2-clathrate hydrate. Other possibilities are dry O2-4He van der Waals clusters and O2 intercalated in fcc-C60. For conversion of cold to ultracold neutrons, where an incident neutron imparts only a single energy quantum to the medium, the paramagnetic scattering in the clathrate system is found to be stronger, by more than an order of magnitude, than the single-phonon emission in superfluid helium, when evaluated for an incident neutron spectrum with the optimum temperature for the respective medium. Moreover, the multistep paramagnetic cooling cascade leads to further strong enhancements of very cold neutron densities, e.g., by a factor 14 (57) for an initial neutron temperature of 30 K (100 K ), for the moderator held at about 1.3 K . Due to a favorable Bragg cutoff of the O2 clathrate, the cascade-cooling can take effect in a moderator with linear extensions smaller than a meter.

  11. Early Mars serpentinization-derived CH4 reservoirs, H2-induced warming and paleopressure evolution

    Science.gov (United States)

    Chassefière, E.; Lasue, J.; Langlais, B.; Quesnel, Y.

    2016-11-01

    CH4 has been observed on Mars both by remote sensing and in situ during the past 15 yr. It could have been produced by early Mars serpentinization processes that could also explain the observed Martian remanent magnetic field. Assuming a cold early Mars, a cryosphere could trap such CH4 as clathrates in stable form at depth. The maximum storage capacity of such a clathrate cryosphere has been recently estimated to be 2 × 1019 to 2 × 1020 moles of methane. We estimate how large amounts of serpentinization-derived CH4 stored in the cryosphere have been released into the atmosphere during the Noachian and the early Hesperian. Due to rapid clathrate dissociation and photochemical conversion of CH4 to H2, these episodes of massive CH4 release may have resulted in transient H2-rich atmospheres, at typical levels of 10-20% in a background 1-2 bar CO2 atmosphere. The collision-induced heating effect of H2 present in such an atmosphere has been shown to raise the surface temperature above the water freezing point. We show how local and rapid destabilization of the cryosphere can be induced by large events (such as the Hellas Basin or Tharsis bulge formation) and lead to such releases. Our results show that the early Mars cryosphere had a sufficient CH4 storage capacity to have maintained H2-rich transient atmospheres during a total time period up to several million years or tens of million years, having potentially contributed to the formation of valley networks during the Noachian/early Hesperian.

  12. Cadence and cause of lake-forming climates on Mars

    Science.gov (United States)

    Kite, Edwin; Goldblatt, Colin; Gao, Peter; Mayer, David; Sneed, Jonathan

    2016-10-01

    Paleolakes on Mars record a sustained hydrologic cycle, but soils upstream record a largely dry past, so lake-forming climates were intermittent. The cadence of lakes on Mars is constrained by relatively young (~3 Ga) deltas and alluvial fans. Deposit build-up required lakes to persist for >2 Kyr (assuming dilute flow), but the watersheds' little-weathered soils indicate a swift return to dry conditions. The lake-forming climates' duty cycle and trigger mechanism remain unknown. Here we show that these data are inconsistent with many previously-proposed triggers for lake-forming climates, but consistent with a novel CH4-burst mechanism. Assuming runoff was sourced from snowmelt, SO2- and impact-triggered warming are too brief, and H2-enabled warming too persistent, to match data. However, chaotic transitions in mean obliquity are a potential trigger with suitable cadence. Mean-obliquity transitions drive latitudinal shifts in temperature and ice loading that destabilize CH4 clathrate. For achievable hydrate stability zone occupancy fractions, CH4 builds up to levels whose direct radiative forcing is comparable to a quadrupling of CO2 (20 W/m2), and sufficient to modulate lake-forming climates. Sub-lake CH4 destabilization provides positive feedback. Photolysis of CH4 curtails individual lake-forming climates to 105-106 yr duration, and depletion of CH4-clathrate limits lake-forming climates to 1-3 in number, consistent with intermittency data. We further propose that Mars' first atmospheric collapse could drive ice sheets from highlands to poles, destabilizing sub-ice clathrate and triggering the formation of the ~4 Ga-old valley networks. Our results show how a warmer early Mars can undergo intermittent orbitally-triggered excursions to a warm, wet climate state.

  13. Novel silicon phases and nanostructures for solar energy conversion

    Science.gov (United States)

    Wippermann, Stefan; He, Yuping; Vörös, Márton; Galli, Giulia

    2016-12-01

    Silicon exhibits a large variety of different bulk phases, allotropes, and composite structures, such as, e.g., clathrates or nanostructures, at both higher and lower densities compared with diamond-like Si-I. New Si structures continue to be discovered. These novel forms of Si offer exciting prospects to create Si based materials, which are non-toxic and earth-abundant, with properties tailored precisely towards specific applications. We illustrate how such novel Si based materials either in the bulk or as nanostructures may be used to significantly improve the efficiency of solar energy conversion devices.

  14. I8As21Ge25

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available Single crystals of octaiodine henacosarsenic pentacosagermanium were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the statistically occupied clathrand atoms (As,Ge46 form bonds in a distorted tetrahedral coordination and their arrangement can define two polyhedra of different sizes; one is an (As,Ge20 pentagonal dodecahedron, and the other is an (As,Ge24 tetrakaidecahedron. The guest atom (iodine resides inside these polyhedra with site symmetry m3 (Wyckoff position 2a and overline{4}2m (Wyckoff position 6d, respectively.

  15. Implications of internal processes in the interpretation of Titan's volatile inventory measured by Cassini-Huygens

    Science.gov (United States)

    Tobie, Gabriel; Gautier, D.; Hersant, F.; Lunine, J. I.

    2010-04-01

    Based on a series of data collected by Cassini-Huygens, we constrain the composition of the primordial bricks that formed Titan and quantify the chemical exchanges that occurred on Titan between the interior and the atmosphere since its accretion. Assuming that the bricks that formed Titan had a composition close to that of Enceladus and that of the planetesimals in the feeding zone of Saturn, we show that accretional melting generate an CH4-CO2-H2S - dominated atmosphere of more than 10 bars in equilibrium with a water ocean. The partial atmospheric pressure of ammonia remains low (ammonia into nitrogen is possible just after accretion but requires the water ocean remains in contact with the atmosphere during at least 10-50 millions of years. We show that most of the gas species, except N2 and 36Ar, released during accretion are likely to be re-incorporated in the interior during the post-accretional cooling phase, owing to efficient clathration at the water/ocean interface. During this process, xenon is predicted to be almost entirely removed from the primitive atmosphere and to be stored in the form of clathrate hydrate in the interior. The composition of gases released during the rest of the evolution is determined by the stability of each gas species relative to the clathrate phase and is expected to be dominated by CH4 and CO2, and to contain small amounts of argon and CO. It can be anticipated from our analysis that flows and deposits of CO2-rich materials would be associated to cryovolcanic events. Although the detection of 40Ar clearly support that interaction with the silicate phase has occurred during Titan's history, it is still unclear if significant chemical exchanges has occurred with the rocky core. Only detection of 38Ar and of the other noble gas isotopes by a future mission will permit to determine how the silicate phase has contributed to the volatile budget of Titan. Isotopic ratios in the surface materials (H2O, CO2 ice, organic matters, gas

  16. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    DEFF Research Database (Denmark)

    Kurten, T.; Zhou, L.; Makkonen, R.;

    2011-01-01

    The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller...... contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4) levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations...

  17. Thermodynamic Stability of Structure H Hydrates Based on the Molecular Properties of Large Guest Molecules

    Directory of Open Access Journals (Sweden)

    Ryo Ohmura

    2012-02-01

    Full Text Available This paper report analyses of thermodynamic stability of structure-H clathrate hydrates formed with methane and large guest molecules in terms of their gas phase molecular sizes and molar masses for the selection of a large guest molecule providing better hydrate stability. We investigated the correlation among the gas phase molecular sizes, the molar masses of large molecule guest substances, and the equilibrium pressures. The results suggest that there exists a molecular-size value for the best stability. Also, at a given molecule size, better stability may be available when the large molecule guest substance has a larger molar mass.

  18. Nanomaterials under high-pressure.

    Science.gov (United States)

    San-Miguel, Alfonso

    2006-10-01

    The use of high-pressure for the study and elaboration of homogeneous nanostructures is critically reviewed. Size effects, the interaction between nanostructures and guest species or the interaction of the nanosystem with the pressure transmitting medium are emphasized. Phase diagrams and the possibilities opened by the combination of pressure and temperature for the elaboration of new nanomaterials is underlined through the examination of three different systems: nanocrystals, nano-cage materials which include fullerites and group-14 clathrates, and single wall nanotubes. This tutorial review is addressed to scientist seeking an introduction or a panoramic view of the study of nanomaterials under high-pressure.

  19. A two component model for thermal emission from organic grains in Comet Halley

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1988-01-01

    Observations of Comet Halley in the near infrared reveal a triple-peaked emission feature near 3.4 micrometer, characteristic of C-H stretching in hydrocarbons. A variety of plausible cometary materials exhibit these features, including the organic residue of irradiated candidate cometary ices (such as the residue of irradiated methane ice clathrate, and polycyclic aromatic hydrocarbons. Indeed, any molecule containing -CH3 and -CH2 alkanes will emit at 3.4 micrometer under suitable conditions. Therefore tentative identifications must rest on additional evidence, including a plausible account of the origins of the organic material, a plausible model for the infrared emission of this material, and a demonstration that this conjunction of material and model not only matches the 3 to 4 micrometer spectrum, but also does not yield additional emission features where none is observed. In the case of the residue of irradiated low occupancy methane ice clathrate, it is argued that the lab synthesis of the organic residue well simulates the radiation processing experienced by Comet Halley.

  20. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin

    Science.gov (United States)

    Dettmer, Adam; Ball, Raymond; Boving, Thomas B.; Khan, Naima A.; Schaub, Tanner; Sudasinghe, Nilusha; Fernandez, Carlos A.; Carroll, Kenneth C.

    2017-01-01

    Recalcitrant organic groundwater contaminants, such as 1,4-dioxane, may require strong oxidants for complete mineralization. However, their efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay and reactivity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous-phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed. However, HPβCD proved to be sufficiently recalcitrant, because it was only partially degraded in the presence of O3. The formation of a HPβCD:O3 clathrate complex was observed, which stabilized decay of O3. The presence of HPβCD increased the O3 half-life linearly with increasing HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions. Observed O3 release from HPβCD and indigo oxidation confirmed that the formation of the inclusion complex is reversible. This proof-of-concept study demonstrates that HPβCD can complex O3 while preserving its reactivity. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3 treatment of groundwater contaminated with recalcitrant compounds.

  1. Stabilization and prolonged reactivity of aqueous-phase ozone with cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Dettmer, Adam; Ball, Raymond; Boving, Thomas B.; Khan, Naima A.; Schaub, Tanner; Sudasinghe, Nilusha; Fernandez, Carlos A.; Carroll, Kenneth C.

    2017-01-02

    Recalcitrant organic groundwater contaminants, such as 1,4-dioxane, may require strong oxidants for complete mineralization. However, their efficacy for in-situ chemical oxidation (ISCO) is limited by oxidant decay and reactivity. Hydroxypropyl-β-cyclodextrin (HPβCD) was examined for its ability to stabilize aqueous-phase ozone (O3) and prolong oxidation potential through inclusion complex formation. Partial transformation of HPβCD by O3 was observed. However, HPβCD proved to be sufficiently recalcitrant, because it was only partially degraded in the presence of O3. The formation of a HPβCD:O3 clathrate complex was observed, which stabilized decay of O3. The presence of HPβCD increased the O3 half-life linearly with increasing HPβCD:O3 molar ratio. The O3 half-life in solutions increased by as much as 40-fold relative to HPβCD-free O3 solutions. Observed O3 release from HPβCD and indigo oxidation confirmed that the formation of the inclusion complex is reversible. This proof-of-concept study demonstrates that HPβCD can complex O3 while preserving its reactivity. These results suggest that the use of clathrate stabilizers, such as HPβCD, can support the development of a facilitated-transport enabled ISCO for the O3treatment of groundwater contaminated with recalcitrant compounds.

  2. Feasibility of Large-Scale Ocean CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Peter Brewer

    2008-08-31

    Scientific knowledge of natural clathrate hydrates has grown enormously over the past decade, with spectacular new findings of large exposures of complex hydrates on the sea floor, the development of new tools for examining the solid phase in situ, significant progress in modeling natural hydrate systems, and the discovery of exotic hydrates associated with sea floor venting of liquid CO{sub 2}. Major unresolved questions remain about the role of hydrates in response to climate change today, and correlations between the hydrate reservoir of Earth and the stable isotopic evidence of massive hydrate dissociation in the geologic past. The examination of hydrates as a possible energy resource is proceeding apace for the subpermafrost accumulations in the Arctic, but serious questions remain about the viability of marine hydrates as an economic resource. New and energetic explorations by nations such as India and China are quickly uncovering large hydrate findings on their continental shelves. In this report we detail research carried out in the period October 1, 2007 through September 30, 2008. The primary body of work is contained in a formal publication attached as Appendix 1 to this report. In brief we have surveyed the recent literature with respect to the natural occurrence of clathrate hydrates (with a special emphasis on methane hydrates), the tools used to investigate them and their potential as a new source of natural gas for energy production.

  3. Gas Hydrate Research Database and Web Dissemination Channel

    Energy Technology Data Exchange (ETDEWEB)

    Micheal Frenkel; Kenneth Kroenlein; V Diky; R.D. Chirico; A. Kazakow; C.D. Muzny; M. Frenkel

    2009-09-30

    To facilitate advances in application of technologies pertaining to gas hydrates, a United States database containing experimentally-derived information about those materials was developed. The Clathrate Hydrate Physical Property Database (NIST Standard Reference Database {number_sign} 156) was developed by the TRC Group at NIST in Boulder, Colorado paralleling a highly-successful database of thermodynamic properties of molecular pure compounds and their mixtures and in association with an international effort on the part of CODATA to aid in international data sharing. Development and population of this database relied on the development of three components of information-processing infrastructure: (1) guided data capture (GDC) software designed to convert data and metadata into a well-organized, electronic format, (2) a relational data storage facility to accommodate all types of numerical and metadata within the scope of the project, and (3) a gas hydrate markup language (GHML) developed to standardize data communications between 'data producers' and 'data users'. Having developed the appropriate data storage and communication technologies, a web-based interface for both the new Clathrate Hydrate Physical Property Database, as well as Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program was developed and deployed at http://gashydrates.nist.gov.

  4. Origin of molecular oxygen in Comet 67P/Churyumov-Gerasimenko

    CERN Document Server

    Mousis, O; Brugger, B; Ozgurel, O; Pauzat, F; Ellinger, Y; Maggiolo, R; Wurz, P; Vernazza, P; Lunine, J I; Luspay-Kuti, A; Mandt, K E; Altwegg, K; Bieler, A; Markovits, A; Rubin, M

    2016-01-01

    Molecular oxygen has been detected in the coma of comet 67P/Churyumov-Gerasimenko with abundances in the 1-10% range by the ROSINA-DFMS instrument on board the Rosetta spacecraft. Here we find that the radiolysis of icy grains in low-density environments such as the presolar cloud may induce the production of large amounts of molecular oxygen. We also show that molecular oxygen can be efficiently trapped in clathrates formed in the protosolar nebula, and that its incorporation as crystalline ice is highly implausible because this would imply much larger abundances of Ar and N2 than those observed in the coma. Assuming that radiolysis has been the only O2 production mechanism at work, we conclude that the formation of comet 67P/Churyumov-Gerasimenko is possible in a dense and early protosolar nebula in the framework of two extreme scenarios: (1) agglomeration from pristine amorphous icy grains/particles formed in ISM and (2) agglomeration from clathrates that formed during the disk's cooling. The former scenar...

  5. Novel dimeric β-helical model of an ice nucleation protein with bridged active sites

    Directory of Open Access Journals (Sweden)

    Walker Virginia K

    2011-09-01

    Full Text Available Abstract Background Ice nucleation proteins (INPs allow water to freeze at high subzero temperatures. Due to their large size (>120 kDa, membrane association, and tendency to aggregate, an experimentally-determined tertiary structure of an INP has yet to be reported. How they function at the molecular level therefore remains unknown. Results Here we have predicted a novel β-helical fold for the INP produced by the bacterium Pseudomonas borealis. The protein uses internal serine and glutamine ladders for stabilization and is predicted to dimerize via the burying of a solvent-exposed tyrosine ladder to make an intimate hydrophobic contact along the dimerization interface. The manner in which PbINP dimerizes also allows for its multimerization, which could explain the aggregation-dependence of INP activity. Both sides of the PbINP structure have tandem arrays of amino acids that can organize waters into the ice-like clathrate structures seen on antifreeze proteins. Conclusions Dimerization dramatically increases the 'ice-active' surface area of the protein by doubling its width, increasing its length, and presenting identical ice-forming surfaces on both sides of the protein. We suggest that this allows sufficient anchored clathrate waters to align on the INP surface to nucleate freezing. As PbINP is highly similar to all known bacterial INPs, we predict its fold and mechanism of action will apply to these other INPs.

  6. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  7. Duration and rapid shutdown of Mars lake-forming climates explained by methane bursts

    CERN Document Server

    Kite, Edwin S; Gao, Peter; Mayer, David P

    2016-01-01

    Build-up of relatively young ($$3 Kyr (assuming dilute flow), but the watersheds' little-weathered soils indicate a climate history that was $>$99% dry. The lake-forming climates' trigger mechanism remains unknown. Here we show that these intermittency constraints, while inconsistent with many previously-proposed triggers for lake-forming climates, are consistent with a novel CH$_4$-burst mechanism. Chaotic transitions in mean obliquity drive latitudinal shifts in temperature and ice loading that destabilize CH$_4$ clathrate. For past clathrate hydrate stability zone occupancy fractions $>\\sim$0.2, we show that CH$_4$($\\pm$C$_2$H$_6$) builds up to levels whose radiative forcing ($>$15 W/m$^2$, plus feedbacks) is sufficient to modulate lake-forming climates. Such occupancy fractions are consistent with CH$_4$+C$_2$H$_6$ production by $>$3 Ga water-rock reactions. Sub-lake CH$_4$ destabilization provides positive feedback. UV-limited CH$_4$ photolysis curtails individual lake-forming climates to $<$10$^6$ yr...

  8. The D/H ratio in methane in Titan : origin and history

    Science.gov (United States)

    Mousis, O.; Gautier, D.; Coustenis, A.

    2001-11-01

    We propose a new interpretation of the D/H ratio in the atmospheric CH4 in Titan inferred from ground-based observations by Orton (1992) and from ISO/SWS 1997 observations by Coustenis et al. (2001). Our analysis assumes that planetesimals which formed Titan were produced in the feeding zone of Saturn, prior to the completion of the planet and the formation of its subnebula (Mousis et al. 2001a). We follow the scenario described by Mousis et al. (2001b) where planetesimals located in the feeding zone of Saturn contained methane originating from deuterium enriched ices infalling from the presolar cloud onto the nebula disk. These ices vaporized, subsequently exchanged their deuterium with hydrogen in the nebula, and finally formed clathrates hydrates of CH4. Relics of these planetesimals were embedded in the subnebula of Saturn and subsequently formed Titan. We argue that the present atmospheric methane, which is continuously photodissociated, is replenished by a kind of cryovolcanism from a reservoir located in the interior of Titan. The plausibility of this statement is reinforced by the recent laboratory work of Loveday et al. (2001) who have shown that methane clathrates hydrates are stable up to a pressure of 10 GPa. These authors suggest that a thick layer of clathrate hydrate of methane is located just below the water ice crust described by models of interiors (Grasset et al. 2000). Retrieving, through a turbulent model of the solar nebula, the whole story of D/H in CH4 from its initial interstellar value down to that measured in Titan's atmosphere today, permits us to estimate that the value of D/H in the presolar cloud was not higher than about 300 ppm. According to our analytical model of nebula derived from the one of Dubrulle (1993), the value of D/H in CH4 in comets of Oort should be only slightly higher than that in Titan. Measuring D/H in CH4 in these objects is thus a key test of the validity of our scenario. References : Coustenis, A., et al., 2001

  9. Is Titan's shape explained by its meteorology and carbon cycle?

    Science.gov (United States)

    Choukroun, M.; Sotin, C.

    2012-04-01

    Titan, Saturn's largest satellite, is unique in the Solar System: it is the only satellite bearing a dense atmosphere and it is the only place besides Earth with stable liquid bodies at its surface. In addition complex organics are produced in its atmosphere by the photolysis of methane, the second most abundant atmospheric molecule that irreversibly produces ethane and other more complex carbon bearing molecules. The Cassini/Huygens mission has revealed that the difference between its equatorial and polar radii is several hundred meters larger than that expected from its spin rate, and that it is in hydrostatic equilibrium. Global circulation models predict a large meridional circulation with upwelling at the summer hemisphere and downwelling at the winter pole where ethane can condense and fall at the surface. Lakes and Mare have been observed at the poles only (Stofan et al., Nature, 2007). Ethane has been spectroscopically identified in one of the lakes (Brown et al., Nature, 2008). The present study investigates the subsidence associated with ethane rain at the poles. As suggested by laboratory experiments, ethane flows very easily in a porous crust made of either pure water ice or methane clathrates. Loading of the lithosphere by liquid hydrocarbons induces a tendency of the polar terrains to subside relative to the lower latitudes terrains. In addition, laboratory experiments suggest that ethane substitutes to methane in a methane clathrate crust. The present study estimates the kinetics of this transformation. It suggests that such a transformation would occur on timescales much smaller than geological timescales. To explain a value of 270 m of the subsidence as determined by the radar instrument onboard the Cassini spacecraft (Zebker et al., Science, 2009), our study predicts that the percolation of ethane liquid in the polar crust should have operated during the last 300 - 1,200 Myr. This number is in agreement with the isotopic age of the atmospheric

  10. Martian zeolites as a source of atmospheric methane

    CERN Document Server

    Mousis, Olivier; Bellat, Jean-Pierre; Schmidt, Frédéric; Bouley, Sylvain; Chassefière, Eric; Sautter, Violaine; Quesnel, Yoann; Picaud, Sylvain; Lectez, Sébastien

    2016-01-01

    The origin of the martian methane is still poorly understood. A plausible explanation is that methane could have been produced either by hydrothermal alteration of basaltic crust or by serpentinization of ultramafic rocks producing hydrogen and reducing crustal carbon into methane. Once formed, methane storage on Mars is commonly associated with the presence of hidden clathrate reservoirs. Here, we alternatively suggest that chabazite and clinoptilolite, which belong to the family of zeolites, may form a plausible storage reservoir of methane in the martian subsurface. Because of the existence of many volcanic terrains, zeolites are expected to be widespread on Mars and their Global Equivalent Layer may range up to more than $\\sim$1 km, according to the most optimistic estimates. If the martian methane present in chabazite and clinoptilolite is directly sourced from an abiotic source in the subsurface, the destabilization of a localized layer of a few millimeters per year may be sufficient to explain the curr...

  11. I8Sb10Ge36

    Directory of Open Access Journals (Sweden)

    Mohammed Kars

    2010-06-01

    Full Text Available Single crystals of the title compound, octaiodide decaantimonate hexatriacontagermanide, were grown by chemical transport reactions. The structure is isotypic with the analogous clathrates-I. In this structure, the (Ge,Sb46 framework consists of statistically occupied Ge and Sb sites that atoms form bonds in a distorted tetrahedral arrangement. They form polyhedra that are covalently bonded to each other by shared faces. There are two polyhedra of different sizes, viz. a (Ge,Sb20 dodecahedron and a (Ge,Sb24 tetracosahedron in a 1:3 ratio. The guest atom (iodine resides inside these polyhedra with symmetry m3 (Wyckoff position 2a and overline{4}2m (Wyckoff position 2d, respectively.

  12. Novel inclusion compounds with urea/thiourea/selenourea-anion host lattices

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ The chemistry of inclusion compounds has a long history and is nowadays a subject of wide-ranging and intense study. With the awarding of the 1987 Nobel Prize in Chemistry to Donald J. Cram, Jean-Marie Lehn and Charles J. Pedersen for their fundamental work on "host-guest" or "supramolecular" systems, inclusion chemistry has come to the fore front in contemporary researches. Increasing varieties of novel inclusion compounds and new host molecules have been synthesized recently. The term "crystal engineering" was coined by Schmidt to describe the rational design and control of molecular packing arrangements in the solid state, and the structural study of clathrates has contributed substantially to our understanding of the problem. Generalizations concerning the preferred structural motifs generated by hydrogen bonding and weaker non-covalent interactions between specific functional groups or molecular fragments have led to the realization of some impressive predictions about the construction of supramolecular networks.

  13. (CH4)-C-14 Measurements in Greenland Ice: Investigating Last Glacial Termination CH4 Sources

    DEFF Research Database (Denmark)

    Petrenko, V. V.; Smith, A. M.; Brook, E. J.;

    2009-01-01

    The cause of a large increase of atmospheric methane concentration during the Younger Dryas-Preboreal abrupt climatic transition (similar to 11,600 years ago) has been the subject of much debate. The carbon-14 (C-14) content of methane ((CH4)-C-14) should distinguish between wetland and clathrate...... contributions to this increase. We present measurements of (CH4)-C-14 in glacial ice, targeting this transition, performed by using ice samples obtained from an ablation site in west Greenland. Measured (CH4)-C-14 values were higher than predicted under any scenario. Sample (CH4)-C-14 appears to be elevated...... by direct cosmogenic C-14 production in ice. C-14 of CO was measured to better understand this process and correct the sample (CH4)-C-14. Corrected results suggest that wetland sources were likely responsible for the majority of the Younger Dryas-Preboreal CH4 rise....

  14. Classification of Valleytronics in Thermoelectricity

    Science.gov (United States)

    Norouzzadeh, Payam; Vashaee, Daryoosh

    2016-03-01

    The theory of valleytronics as a material design tool for engineering both thermal and electrical transport properties is presented. It is shown that the interplay among the valleytronics parameters such as the degeneracy of the band, intervalley transitions, effective mass, scattering exponent, and the Fermi energy may deteriorate or ameliorate any or all of the main thermoelectric properties. A flowchart classifying the different paths through which the valleytronics can influence the thermoelectric figure-of-merit ZT is derived and discussed in detail. To exemplify the application of the flowchart, valleytronics in four different semiconductors, Mg2Si, Si0.8Ge0.2, AlxGa1-xAs and clathrate Si46-VIII were studied, which showed different trends. Therefore, a degenerate multivalley bandstructure, which is typically anticipated for a good thermoelectric material, cannot be a general design rule for ZT enhancement and a detailed transport study is required to engineer the optimum bandstructure.

  15. Initial estimation of hydrate formation temperature of sweet natural gases based on new empirical correlation

    Institute of Scientific and Technical Information of China (English)

    Mohammad Mahdi Ghiasi

    2012-01-01

    Production,processing and transportation of natural gases can be significantly affected by clathrate hydrates.Knowing the gas analysis is crucial to predict the right conditions for hydrate formation.Nevertheless,Katz gas gravity method can be used for initial estimation of hydrate formation temperature (HFT) under the circumstances of indeterminate gas composition.So far several correlations have been proposed for gas gravity method,in which the most accurate and reliable one has belonged to Bahadori and Vuthaluru.The main objective of this study is to present a simple and yet accurate correlation for fast prediction of sweet natural gases HFT based on the fit to Katz gravity chart.By reviewing the error analysis results,one can discover that the new proposed correlation has the best estimation capability among the widely accepted existing correlations within the investigated range.

  16. STUDY FOR NATURAL GAS HYDRATE CONVERSED FROM ICE

    Institute of Scientific and Technical Information of China (English)

    WANG Shengjie; SHEN Jiandong; HAO Miaoli; LIU Furong

    2003-01-01

    Natural gas hydrates are crystalline clathrate compounds composed of water and gases of small molecular diameters that can be used for storage and transport of natural gas as a novel method. In the paper a series of experiments of aspects and kinetics for hydrate formed from natural gas and ice were carried out on the industrial small scale production apparatus. The experimental results show that formation conditions of hydrate conversed from ice are independent of induction time, and bigger degrees of supersaturation and supercooling improved the driving force and advanced the hydrate formation.Superpressure is also favorable for ice particle conversion to hydrate. In addition, it was found there have an optimal reaction time during hydrate formation.

  17. 3种熊果苷的研究进展%Progress in development of three kinds of arbutin product

    Institute of Scientific and Technical Information of China (English)

    刘彩云; 吴培诚; 梁高卫; 罗欣茹; 周丹曼

    2015-01-01

    The preparation method,mechanism of whitening action,as well as the application status and the product stability of three kinds of arbutin were summarized and compared. The new product types and new technologies such as liposomes,microemulsions and clathrates were put forward for providing orientation for development of new applications in the future.%重点综述了α-熊果苷、β-熊果苷和脱氧熊果苷的制备方法、美白机制及应用现状和稳定性,并对它们进行了比较,提出新剂型和新技术如脂质体、微乳、包合物的开发为3种熊果苷提供了新的应用方向。

  18. (2,3,5,10,12,13,15,20-Octaphenylporphinatocopper(II 1,1,2,2-tetrachloroethane solvate

    Directory of Open Access Journals (Sweden)

    Babu Varghese

    2008-02-01

    Full Text Available The title complex, [Cu(C68H44N4]·C2H2Cl4, exhibits nearly square-planar geometry around the CuII centre and the macrocyclic ring is almost planar. The porphyrin molecule has an approximate non-crystallographic inversion centre (Ci, and a non-crystallographic twofold rotation axis (C2 within the CuII–porphyrin ring plane. Further, it has non-crystallographic twofold rotation axis and mirror plane (Cs symmetry perpendicular to the molecular plane. The molecular packing of the complexes and the solvent molecules shows weak intermolecular C—H...π, C—H...Cl and C—H...N interactions, forming a clathrate-like structure.

  19. Geologically recent small-scale surface features in Meridiani Planum and Gale Crater, Mars

    Science.gov (United States)

    Horne, David

    2014-05-01

    Enigmatic small scale (run-off may occur occasionally under present conditions in low, near-equatorial latitudes on Mars; short-lived (even for just a few minutes) meltwater emission and flow at the surface could erode gutters before evaporating. The decomposition of buried pockets of methane clathrates, which theoretical considerations suggest might be present and stable even in equatorial regions, could give rise to both methane venting (leveed fissures) and transient surface water (gutters). Another possibility is the decomposition, due to local changes in thermal conditions, of hydrated magnesium sulphates in the bedrock, releasing liquid water. Whatever their explanation, these features hint at previously unrecognized, young martian surface processes which may even be active at the present day; in this context, the apparent downslope extension of a discrete dark dust streak on Burns Cliff (inside Endurance Crater), during Opportunity's approach to that locality, is particularly thought-provoking.

  20. New Evidence of the Existence of Associative Elements of Water (Clusters

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2016-06-01

    Full Text Available In this review it is reported about new data on the structure of water cyclic associates (clusters with general formula (Н2Оn and their charged ionic clusters [(Н2Оn]+ and [(Н2Оn]- by means of computer modelling and spectroscopy methods as 1Н-NMR, IR-spectroscopy, DNES, EXAFS-spectroscopy, X-Ray and neurons diffraction. The computer calculation of polyhedral nanoclusters (Н2Оn, where n = 3–20 are carried out. Based on this data the main structural mathematical models describing water structure (quasicrystalline, continious, fractal, fractal-clathrate have been examined and some important physical characteristics were obtained.

  1. Glycine Betaine Recognition through Cation−π Interactions in Crystal Structures of Glycine Betaine Complexes with C-Ethyl-pyrogallol[4]arene and C-Ethyl-resorcin[4]arene as Receptors

    Directory of Open Access Journals (Sweden)

    Ikuhide Fujisawa

    2013-04-01

    Full Text Available The glycine betaine (betaine, interacts with several types of proteins with diverse structures in vivo, and in the contact regions, the aromatic rings of protein residues are frequently found beside the trimethylammonium group of betaine, implying the importance of the cation−π interactions in recognition of this molecule. The crystal structures determined by X-ray crystallography of the complexes of betaine and C-ethyl-pyrogallol[4]arene (pyrogallol cyclic tetramer: PCT and betaine and C-ethyl-resorcin[4]arene (resorcinol cyclic tetramer: RCT mimic the conformations of betaine and protein complexes and show that the clathrate conformations are retained by the cation−π interactions. The difference of the conformation feature of betaine in the Protein Data Bank and in the Cambridge Structural Database was found by chance during the research and analyzed with the torsion angles.

  2. In situ measurement of gas-solid interactions in astrophysical dust & planetary analogues

    Science.gov (United States)

    Thompson, S. P.; Parker, J. E.; Day, S. J.; Evans, A.; Tang, C. C.

    2012-02-01

    Facilities for studying gas-solid interactions on beamline I11 at the Diamond Light Source are described. Sample evolution in low and high gas pressure capillary cells (1 × 10-7 to 100 bar) with non-contact cooling and heating (80 to 1273 K) can be monitored structurally (X-rays) and spectroscopically (Raman). First results on the dehydration of MgSO4.7H2O, the formation of CO2 clathrate hydrate and the reaction of amorphous CaSiO3 grains with CO2 gas to form CaCO3 are presented to demonstrate the application of these cells to laboratory investigations involving the processing of cosmic dust simulants and planetary materials analogues.

  3. Communication: Stiffening of dilute alcohol and alkane mixtures with water

    Science.gov (United States)

    Ashbaugh, Henry S.; Wesley Barnett, J.; Saltzman, Alexander; Langrehr, Mae E.; Houser, Hayden

    2016-11-01

    We probe the anomalous compressibilities of dilute mixtures of alcohols and alkane gases in water using molecular simulations. The response to increasing solute concentration depends sensitively on temperature, with the compressibility decreasing upon solute addition at low temperatures and increasing at elevated temperatures. The thermodynamic origin of stiffening is directly tied to the solute's partial compressibility, which is negative at low temperatures and rises above water's compressibility with increasing temperature. Hydration shell waters concurrently tilt towards clathrate-like structures at low temperatures that fade with heating. Kirkwood-Buff theory traces the solute's partial compressibility to changes in the solute-water association volume upon heating and incongruous packing of waters at the boundary between the more structured hydration shell and bulk water.

  4. Cooling neutrons using non-dispersive magnetic excitations

    CERN Document Server

    Zimmer, Oliver

    2014-01-01

    A new method is proposed for cooling neutrons by inelastic magnetic scattering in weakly absorbing, cold paramagnetic systems. Kinetic neutron energy is removed in constant decrements determined by the Zeeman energy of paramagnetic atoms or ions in an external magnetic field, or by zero-field level splittings in magnetic molecules. Analytical solutions of the stationary neutron transport equation are given using inelastic neutron scattering cross sections derived in an appendix. They neglect any inelastic process except the paramagnetic scattering and hence still underestimate very-cold neutron densities. Molecular oxygen with its triplet ground state appears particularly promising, notably as a host in fully deuterated oxygen-clathrate hydrate, or more exotically, in dry oxygen-He4 van der Waals clusters. At a neutron temperature about 6 K, for which neutron conversion to ultra-cold neutrons by single-phonon emission in pure superfluid He4 works best, conversion rates due to paramagnetic scattering in the cl...

  5. Chaotic obliquity and the nature of the Martian climate

    Science.gov (United States)

    Jakosky, Bruce M.; Henderson, Bradley G.; Mellon, Michael T.

    1995-01-01

    Recent calculations of the Martian obliquity suggests that it varies chaotically on timescales longer than about 10(exp 7) years and varies between about 0 and 60 deg. We examine the seasonal water behavior at obliquities between 40 and 60 deg. Up to several tens of centimeters of water may sublime from the polar caps each year, and possibly move to the equator, where it is more stable. The CO2 frost and CO2-H2O clathrate hydrate are stable in thepolar deposits below a few tens of meters depth, so that the polar cap could contain a significant CO2 reservoir. If CO2 is present, it could be left over from the early history of Mars; also, it could be released into the atmosphere during periods of high obliquity, causing occasional periods of more-clement climate.

  6. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    Science.gov (United States)

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  7. Evaluation of solid-state forms present in tablets by Raman spectroscopy.

    Science.gov (United States)

    Taylor, L S; Langkilde, F W

    2000-10-01

    In this study the potential of Fourier transform (FT)-Raman spectroscopy as a method to probe the solid-state form of active substances present in tablets and capsules is explored. Raman spectra were obtained from intact tablets and capsules containing enalapril maleate, prednisolone, form I and form II polymorphs of ranitidine, anhydrous and monohydrate theophylline, and warfarin sodium clathrate. Spectra were also collected from the corresponding drug substances. These studies show that it is possible to detect the active ingredients in the intact dosage form, even where the substance comprises tablet. Moreover, it is shown that, in some cases, Raman spectroscopy can also be used to investigate the solid-state form of a drug present in the dosage form and even to determine if a mixture of forms are present.

  8. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  9. Review of Solid State Hydrogen Storage Methods Adopting Different Kinds of Novel Materials

    Directory of Open Access Journals (Sweden)

    Renju Zacharia

    2015-01-01

    Full Text Available Overview of advances in the technology of solid state hydrogen storage methods applying different kinds of novel materials is provided. Metallic and intermetallic hydrides, complex chemical hydride, nanostructured carbon materials, metal-doped carbon nanotubes, metal-organic frameworks (MOFs, metal-doped metal organic frameworks, covalent organic frameworks (COFs, and clathrates solid state hydrogen storage techniques are discussed. The studies on their hydrogen storage properties are in progress towards positive direction. Nevertheless, it is believed that these novel materials will offer far-reaching solutions to the onboard hydrogen storage problems in near future. The review begins with the deficiencies of current energy economy and discusses the various aspects of implementation of hydrogen energy based economy.

  10. Intermolecular hydrogen transfer between guest species in small and large cages of methane + propane mixed gas hydrates.

    Science.gov (United States)

    Sugahara, Takeshi; Kobayashi, Yusuke; Tani, Atsushi; Inoue, Tatsuya; Ohgaki, Kazunari

    2012-03-15

    To investigate the molecular interaction between guest species inside of the small and large cages of methane + propane mixed gas hydrates, thermal stabilities of the methyl radical (possibly induced in small cages) and the normal propyl and isopropyl radicals (induced in large cages) were investigated by means of electron spin resonance measurements. The increase of the total amount of the normal propyl and isopropyl radicals reveals that the methyl radical in the small cage withdraws one hydrogen atom from the propane molecule enclathrated in the adjacent large cage of the structure-II hydrate. A guest species in a hydrate cage has the ability to interact closely with the other one in the adjacent cages. The clathrate hydrate may be utilized as a possible nanoscale reaction field.

  11. Thermal Stability, Sorption Properties and Morphology of Films of Dipeptide and Tripeptide Based on L-Glycine

    Directory of Open Access Journals (Sweden)

    Marat A. Ziganshin

    2015-12-01

    Full Text Available The effect of the number of amino acid residues in L-glycyl-L-glycine and L-glycyl-L-glycyl-L-glycine on thermal stability of powders, the sorption properties and surface morphology of thin films has been found. Dipeptide forms the film coated with disk-shaped nano-objects on the hydrophilic substrate, while tripeptide self-organizes to the film coated with nano-crystals on the hydrophobic substrate. Replacement of substrates (hydrophilic↔hydrophobic leads to the formation of smooth films of studied oligopeptides. Powders of oligopeptides do not form stable clathrates with water and organic compounds at room temperature. But their thin films are capable to bind organic or water vapors with high thermodynamic activity. Surprising difference in sorption selectivity of dipeptide and tripeptide has been observed. L-G

  12. Elastic modulus of LaFe{sub 4}Sb{sub 12}

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, I. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)], E-mail: ishii@hiroshima-u.ac.jp; Higaki, H.; Morita, S. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Mori, I.; Sugawara, H. [Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, Morioka 020-8551 (Japan); Suzuki, T. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2008-04-01

    In filled skutterudite compounds and clathrate compounds, guest atoms, which are accommodated in polyhedral cages, exhibit an anharmonic oscillation so-called the rattling motion. The rattling motion is suggested by inelastic neutron scattering experiments in filled skutterudite compound LaFe{sub 4}Sb{sub 12}. To investigate an influence of rattling motion of La atoms to the lattice system, we have measured temperature dependence of elastic modulus C{sub 44} on a LaFe{sub 4}Sb{sub 12} single-crystalline sample in the T range between 4.2 and 150 K for ultrasonic frequencies from 30 to 220 MHz. We found ultrasonic frequency dependence in C{sub 44}, suggesting the rattling motion of La atoms between 30 and 80 K. We obtained a relaxation time 3.1x10{sup -11}s and an excitation energy {approx}300K of the rattling motion.

  13. Pseudogap and anharmonic phonon behavior in Ba8Ga16Ge30: An NMR study

    Science.gov (United States)

    Sirusi, Ali A.; Ross, Joseph H.

    2016-08-01

    We have performed 69Ga, 71Ga, and 137Ba NMR on Ba8Ga16Ge30, a clathrate semiconductor which has been of considerable interest due to its large figure of merit for thermoelectric applications. In measurements from 4 K to 450 K, we used measurements on the two Ga nuclei to separate the magnetic and electric quadrupole hyperfine contributions and thereby gain information about the metallic and phonon behavior. The results show the presence of a pseudogap in the Ga electronic states within the conduction band, superposed upon a large Ba contribution to the conduction band. Meanwhile the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors. These results provide evidence for enhanced anharmonicity of the propagative phonon modes over a wide range, providing experimental evidence for enhanced phonon-phonon scattering as a mechanism for the reduced thermal conductivity.

  14. Volatile Transport inside Super-Earths by Entrapment in the Water Ice Matrix

    CERN Document Server

    Levi, Amit; Podolak, Morris

    2013-01-01

    Whether volatiles can be entrapped in a background matrix composing planetary envelopes and be dragged via convection to the surface is a key question in understanding atmospheric fluxes, cycles and composition. In this paper we consider super-Earths with an extensive water mantle (i.e. water planets), and the possibility of entrapment of methane in their extensive water ice envelopes. We adopt the theory developed by van der Waals & Platteeuw (1959) for modelling solid solutions, often used for modelling clathrate hydrates, and modify it in order to estimate the thermodynamic stability field of a new phase, called methane filled ice Ih. We find that in comparison to water ice VII the filled ice Ih structure may be stable not only at the high pressures but also at the high temperatures expected at the core-water mantle transition boundary of water planets.

  15. Inter-cage dynamics in structure I, II, and H fluoromethane hydrates as studied by NMR and molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, Alondra Torres [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada); Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Separation Technology Group, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Kroon, Maaike C. [Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Separation Technology Group, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); Peters, Cor J. [Eindhoven University of Technology, Department of Chemical Engineering and Chemistry, Separation Technology Group, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); The Petroleum Institute, Chemical Engineering Department, P. O. Box 2533, Abu Dhabi (United Arab Emirates); Moudrakovski, Igor L.; Ratcliffe, Christopher I.; Ripmeester, John A., E-mail: John.Ripmeester@nrc-cnrc.gc.ca [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada); Alavi, Saman [Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Ontario, K1A 0R6 (Canada); Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5 (Canada)

    2014-06-07

    Prospective industrial applications of clathrate hydrates as materials for gas separation require further knowledge of cavity distortion, cavity selectivity, and defects induction by guest-host interactions. The results presented in this contribution show that under certain temperature conditions the guest combination of CH{sub 3}F and a large polar molecule induces defects on the clathrate hydrate framework that allow intercage guest dynamics. {sup 13}C NMR chemical shifts of a CH{sub 3}F/CH{sub 4}/TBME sH hydrate and a temperature analysis of the {sup 2}H NMR powder lineshapes of a CD{sub 3}F/THF sII and CD{sub 3}F/TBME sH hydrate, displayed evidence that the populations of CH{sub 4} and CH{sub 3}F in the D and D{sup ′} cages were in a state of rapid exchange. A hydrogen bonding analysis using molecular dynamics simulations on the TBME/CH{sub 3}F and TBME/CH{sub 4} sH hydrates showed that the presence of CH{sub 3}F enhances the hydrogen bonding probability of the TBME molecule with the water molecules of the cavity. Similar results were obtained for THF/CH{sub 3}F and THF/CH{sub 4} sII hydrates. The enhanced hydrogen bond formation leads to the formation of defects in the water hydrogen bonding lattice and this can enhance the migration of CH{sub 3}F molecules between adjacent small cages.

  16. Using Jupiter's Volatile Inventory to Trace the History Of Ices During Planet Formation

    Science.gov (United States)

    Ciesla, F.

    2014-12-01

    The Galileo probe's measurement of a uniform enrichment of Jupiter's atmosphere in volatiles, including noble gases, relative to a gas of solar composition has proven to be a challenge to models of planet formation. This uniform enrichment requires that Jupiter accreted planetesimals with solar ratios in all elements, except for hydrogen and helium. Given the very low temperatures needed to achieve such compositions if all elements behaved chemically as pure substances, efforts have focused on understanding how extremely volatile elements could be physically incorporated into ices and organics at low temperatures. Two primary methods for incorporation of these volatiles have emerged: formation of clathrate hydrates and trapping of gases during the formation of amorphous ice. These modes for incorporating volatiles make different predictions about the amount of water that would be contained within Jupiter, an issue that will be addressed by the Juno Mission. Either mode for incorporating volatiles will reveal details about the dynamical behavior of ices during planet formation and the environments in which planetary materials were formed. For example, Ciesla (2014) showed that amorphous ice formation, and thus trapping of volatiles in this manner, can occur as water molecules are photodesorbed and freeze-out again on grain surfaces, thus requiring high UV flux environments at the birth of the solar system or significant vertical lofting of grains in the disk by turbulence. I will review the conditions that are required for amorphous trapping and clathrate hydrate formation to have occurred in the solar nebula and discuss the implications for the compositions of the other giant planets and cometary bodies, as well as the relation of these materials to the sources of volatiles on terrestrial planets.

  17. Arguments for a Comprehensive Laboratory Research Subprogram on Hydrocarbon Gas Hydrates and Hydrate-Sediment Aggregates in the 2005-2010 DOE Methane Hydrate R & D Program

    Science.gov (United States)

    Kirby, S. H.

    2005-12-01

    Field observations of natural hydrocarbon clathrate hydrates, including responses to drilling perturbations of hydrates, well logging and analysis of drill core, and field geophysics are, combined with theoretical modeling, justifiably key activities of the authorized 2005-2010 DOE Methane Hydrate Program. It is argued in this presentation that sustained fundamental laboratory research amplifies, extends and verifies results obtained from field and modeling investigations and does so in a cost-effective way. Recent developments of hydrocarbon clathrate hydrate and sediment aggregate synthesis methods, applications of in-situ optical cell, Raman, NMR, x-ray tomography and neutron diffraction techniques, and cryogenic x-ray and SEM methods re-enforce the importance of such lab investigations. Moreover, there are large data gaps for hydrocarbon-hydrate and hydrate-sediment-aggregate properties. We give three examples: 1) All natural hydrocarbon hydrates in sediment core have been altered to varying degrees by their transit, storage, depressurization, and subsequent lab investigations, as are well-log observations during drilling operations. Interpretation of drill core properties and structure and well logs are also typically not unique. Emulations of the pressure-temperature-deformation-time histories of synthetic samples offer a productive way of gaining insight into how natural samples and logging measurements may be compositionally and texturally altered during sampling and handling. 2) Rock physics models indicate that the effects of hydrates on sediment properties depend on the manner in which hydrates articulate with the sediment matrix (their conformation). Most of these models have not been verified by direct testing using hydrocarbon hydrates with conformation checked by optical cell observations or cryogenic SEM. Such tests are needed and technically feasible. 3) Modeling the effects of exchanges of heat, multiphase fluid fluxes, and deformation involve

  18. A hydrothermal origin for isotopically anomalous cap dolostone cements from south China.

    Science.gov (United States)

    Bristow, Thomas F; Bonifacie, Magali; Derkowski, Arkadiusz; Eiler, John M; Grotzinger, John P

    2011-06-01

    The release of methane into the atmosphere through destabilization of clathrates is a positive feedback mechanism capable of amplifying global warming trends that may have operated several times in the geological past. Such methane release is a hypothesized cause or amplifier for one of the most drastic global warming events in Earth history, the end of the Marinoan 'snowball Earth' ice age, ∼635 Myr ago. A key piece of evidence supporting this hypothesis is the occurrence of exceptionally depleted carbon isotope signatures (δ(13)C(PDB) down to -48‰; ref. 8) in post-glacial cap dolostones (that is, dolostone overlying glacial deposits) from south China; these signatures have been interpreted as products of methane oxidation at the time of deposition. Here we show, on the basis of carbonate clumped isotope thermometry, (87)Sr/(86)Sr isotope ratios, trace element content and clay mineral evidence, that carbonates bearing the (13)C-depleted signatures crystallized more than 1.6 Myr after deposition of the cap dolostone. Our results indicate that highly (13)C-depleted carbonate cements grew from hydrothermal fluids and suggest that their carbon isotope signatures are a consequence of thermogenic methane oxidation at depth. This finding not only negates carbon isotope evidence for methane release during Marinoan deglaciation in south China, but also eliminates the only known occurrence of a Precambrian sedimentary carbonate with highly (13)C-depleted signatures related to methane oxidation in a seep environment. We propose that the capacity to form highly (13)C-depleted seep carbonates, through biogenic anaeorobic oxidation of methane using sulphate, was limited in the Precambrian period by low sulphate concentrations in sea water. As a consequence, although clathrate destabilization may or may not have had a role in the exit from the 'snowball' state, it would not have left extreme carbon isotope signals in cap dolostones.

  19. Revealing Surface Waters on an Antifreeze Protein by Fusion Protein Crystallography Combined with Molecular Dynamic Simulations.

    Science.gov (United States)

    Sun, Tianjun; Gauthier, Sherry Y; Campbell, Robert L; Davies, Peter L

    2015-10-01

    Antifreeze proteins (AFPs) adsorb to ice through an extensive, flat, relatively hydrophobic surface. It has been suggested that this ice-binding site (IBS) organizes surface waters into an ice-like clathrate arrangement that matches and fuses to the quasi-liquid layer on the ice surface. On cooling, these waters join the ice lattice and freeze the AFP to its ligand. Evidence for the generality of this binding mechanism is limited because AFPs tend to crystallize with their IBS as a preferred protein-protein contact surface, which displaces some bound waters. Type III AFP is a 7 kDa globular protein with an IBS made up two adjacent surfaces. In the crystal structure of the most active isoform (QAE1), the part of the IBS that docks to the primary prism plane of ice is partially exposed to solvent and has clathrate waters present that match this plane of ice. The adjacent IBS, which matches the pyramidal plane of ice, is involved in protein-protein crystal contacts with few surface waters. Here we have changed the protein-protein contacts in the ice-binding region by crystallizing a fusion of QAE1 to maltose-binding protein. In this 1.9 Å structure, the IBS that fits the pyramidal plane of ice is exposed to solvent. By combining crystallography data with MD simulations, the surface waters on both sides of the IBS were revealed and match well with the target ice planes. The waters on the pyramidal plane IBS were loosely constrained, which might explain why other isoforms of type III AFP that lack the prism plane IBS are less active than QAE1. The AFP fusion crystallization method can potentially be used to force the exposure to solvent of the IBS on other AFPs to reveal the locations of key surface waters.

  20. Accurate and efficient quantum chemistry calculations for noncovalent interactions in many-body systems: the XSAPT family of methods.

    Science.gov (United States)

    Lao, Ka Un; Herbert, John M

    2015-01-15

    We present an overview of "XSAPT", a family of quantum chemistry methods for noncovalent interactions. These methods combine an efficient, iterative, monomer-based approach to computing many-body polarization interactions with a two-body version of symmetry-adapted perturbation theory (SAPT). The result is an efficient method for computing accurate intermolecular interaction energies in large noncovalent assemblies such as molecular and ionic clusters, molecular crystals, clathrates, or protein-ligand complexes. As in traditional SAPT, the XSAPT energy is decomposable into physically meaningful components. Dispersion interactions are problematic in traditional low-order SAPT, and two new approaches are introduced here in an attempt to improve this situation: (1) third-generation empirical atom-atom dispersion potentials, and (2) an empirically scaled version of second-order SAPT dispersion. Comparison to high-level ab initio benchmarks for dimers, water clusters, halide-water clusters, a methane clathrate hydrate, and a DNA intercalation complex illustrate both the accuracy of XSAPT-based methods as well as their limitations. The computational cost of XSAPT scales as O(N(3))-O(N(5)) with respect to monomer size, N, depending upon the particular version that is employed, but the accuracy is typically superior to alternative ab initio methods with similar scaling. Moreover, the monomer-based nature of XSAPT calculations makes them trivially parallelizable, such that wall times scale linearly with respect to the number of monomer units. XSAPT-based methods thus open the door to both qualitative and quantitative studies of noncovalent interactions in clusters, biomolecules, and condensed-phase systems.

  1. A PROTOSOLAR NEBULA ORIGIN FOR THE ICES AGGLOMERATED BY COMET 67P/CHURYUMOV–GERASIMENKO

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, O.; Vernazza, P. [Aix Marseille Université, CNRS, LAM (Laboratoire d’Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Lunine, J. I. [Center For Radiophysics And Space Research, Space Sciences Building Cornell University, Ithaca, NY 14853 (United States); Luspay-Kuti, A.; Hässig, M.; Waite, J. H. [Department of Space Research, Southwest Research Institute, 6220 Culebra Road, San Antonio, TX 78228 (United States); Guillot, T. [Laboratoire J.-L. Lagrange, Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, BP 4229, F-06304 Nice (France); Marty, B. [CRPG-CNRS, Nancy-Université, 15 rue Notre Dame des Pauvres, F-54501 Vandoeuvre-lès-Nancy (France); Ali-Dib, M. [Université de Franche-Comté, Institut UTINAM, CNRS/INSU, UMR 6213, Besançon Cedex (France); Wurz, P.; Altwegg, K.; Bieler, A.; Rubin, M., E-mail: olivier.mousis@lam.fr [Physikalisches Institut, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2016-03-10

    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula (PSN) is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the PSN. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the PSN. On the basis of existing laboratory and modeling data, we find that the N{sub 2}/CO and Ar/CO ratios measured in the coma of the Jupiter-family comet 67P/Churyumov–Gerasimenko by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis instrument on board the European Space Agency’s Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N{sub 2}/CO and Ar/CO ratios in 67P/Churyumov–Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the idea that the building blocks of outer solar system bodies have been formed from clathrates and possibly from pure crystalline ices. Moreover, because 67P/Churyumov–Gerasimenko is impoverished in Ar and N{sub 2}, the volatile enrichments observed in Jupiter’s atmosphere cannot be explained solely via the accretion of building blocks with similar compositions and require an additional delivery source. A potential source may be the accretion of gas from the nebula that has been progressively enriched in heavy elements due to photoevaporation.

  2. Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. C. [Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble (France); Falenty, A.; Kuhs, W. F. [GZG, Abt. Kristallographie, Universität Göttingen, Goldschmidtstrasse 1, 37077 Göttingen (Germany)

    2016-02-07

    The lattice constants of hydrogenated and deuterated CH{sub 4}-, CO{sub 2}-, Xe- (clathrate structure type I) and N{sub 2}-hydrates (clathrate structure type II) from 10 K up to the stability limit were established in neutron- and synchrotron diffraction experiments and were used to derive the related thermal expansivities. The following results emerge from this analysis: (1) The differences of expansivities of structure type I and II hydrates are fairly small. (2) Despite the larger guest-size of CO{sub 2} as compared to methane, CO{sub 2}-hydrate has the smaller lattice constants at low temperatures, which is ascribed to the larger attractive guest-host interaction of the CO{sub 2}-water system. (3) The expansivity of CO{sub 2}-hydrate is larger than for CH{sub 4}-hydrate which leads to larger lattice constants for the former at temperatures above ∼150 K; this is likely due to the higher motional degrees of freedom of the CO{sub 2} guest molecules. (4) The cage occupancies of Xe- and CO{sub 2}-hydrates affect significantly the lattice constants. (5) Similar to ice Ih, the deuterated compounds have generally slightly larger lattice constants which can be ascribed to the somewhat weaker H-bonding. (6) Compared to ice Ih, the high temperature expansivities are about 50% larger; in contrast to ice Ih and the empty hydrate, there is no negative thermal expansion at low temperature. (7) A comparison of the experimental results with lattice dynamical work, with models based on an Einstein oscillator model, and results from inelastic neutron scattering suggest that the contribution of the guest atoms’ vibrational energy to thermal expansion is important, most prominently for CO{sub 2}- and Xe-hydrates.

  3. Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties

    Science.gov (United States)

    Clennell, M.B.; Hovland, M.; Booth, J.S.; Henry, P.; Winters, W.J.

    1999-01-01

    The stability of submarine gas hydrates is largely dictated by pressure and temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of deep marine sediments may also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our conceptual model presumes that gas hydrate behaves in a way analogous to ice in a freezing soil. Hydrate growth is inhibited within fine-grained sediments by a combination of reduced pore water activity in the vicinity of hydrophilic mineral surfaces, and the excess internal energy of small crystals confined in pores. The excess energy can be thought of as a "capillary pressure" in the hydrate crystal, related to the pore size distribution and the state of stress in the sediment framework. The base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature (nearer to the seabed) than would be calculated from bulk thermodynamic equilibrium. Capillary effects or a build up of salt in the system can expand the phase boundary between hydrate and free gas into a divariant field extending over a finite depth range dictated by total methane content and pore-size distribution. Hysteresis between the temperatures of crystallization and dissociation of the clathrate is also predicted. Growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, and lenses in muds; cements in sands) can largely be explained by capillary effects, but kinetics of nucleation and growth are also important. The formation of concentrated gas hydrates in a partially closed system with respect to material transport, or where gas can flush through the system, may lead to water depletion in the host sediment. This "freeze-drying" may be detectable through physical changes to the sediment (low water content and overconsolidation) and/or chemical anomalies in the pore waters and metastable

  4. Inhibitory Effects of 6 Macroalgae Extracts on Skeletonema costatum and Isolation of Allelochemicals%六种大型藻浸提液对中肋骨条藻的抑制及活性成分分离

    Institute of Scientific and Technical Information of China (English)

    别聪聪; 李锋民; 李媛媛; 赵雅菡; 王震宇

    2011-01-01

    为比较大型藻抑制赤潮藻的能力,研究了孔石莼、羊栖菜、长浒苔、马尾藻、蜈蚣藻和裙带菜的干粉末海水浸提液对中肋骨条藻的化感抑制作用并从长浒苔中分离出具有强抑制作用的组分.分析6种大型藻浸提液对中肋骨条藻的生长抑制率(Inhibitory rate,IR%)和120 h的半效应浓度(Effect concentration,EC50,120h)发现,孔石莼、羊柄菜、长浒苔、马尾藻和蜈蚣藻的浸提液在浓度达到2.4 g/L时可在实验周期内使中肋骨条藻全部致死,抑制率达到100%,全部致死所需时间分别为96、120、96、144和144 h,当浓度达到4.8 g/L时,6种大型藻均可全部杀死中肋骨条藻,6种大型藻对中肋骨条藻的EC50、120h分别为1.0、1.0、1.1、1.4、1.5和4.7 g/L.从长浒苔浸提液中分离的乙酸乙酯萃取组分具有强抑藻效果,受试条件下,其EC50值为0.08 mg/L.乙酸乙酯相气相色谱-质谱分析表明,组分至少包含14种物质,其中9-十八炔和邻苯二甲酸二异丁酯是含量最大的2种物质,各物质的抑藻活性尚需进一步研究.长浒苔具有很强的抑藻效果,具有应用于赤潮藻控制的潜力,研究结果为分离鉴定抑制中肋骨条藻的化感物质奠定了基础.%For the purpose of finding macroalgae of high allelopathic potency* the allelopathic inhibitory effect of seawater extracts of dry powder of Ulva pertusa, Sargassum fusiforme, Enteromorpha clathrat , Sargassum pathen, Grateloupia filicina and Undaria pinnatifida on the red tide microalgae Skele-tonema costatum were investigated. When the concentration of the macroalgae dry powder reached 2. 4 g/ L, Ulva pertusa, Sargassum fusi forme, Enteromorpha clathrat ^Sargassum pathen and Grateloupia filicina could totally inhibit the growth of Skeletonema costatum, and the lethal time were 96, 120, 96, 144 and 144 h, respectively. And the EC50,120h of these six macroalgae were 1. 0 g/L for Enteromorpha clath-rat and Ulva pertusa, 1. 1

  5. Structure and dynamics of cold water super-Earths: the case of occluded CH{sub 4} and its outgassing

    Energy Technology Data Exchange (ETDEWEB)

    Levi, A.; Podolak, M. [Department of Geophysics and Planetary Science, Tel Aviv University, Tel Aviv 69978 (Israel); Sasselov, D., E-mail: amitlevi.planetphys@gmail.com [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2014-09-10

    In this work, we study the transport of methane in the external water envelopes surrounding water-rich super-Earths. We investigate the influence of methane on the thermodynamics and mechanics of the water mantle. We find that including methane in the water matrix introduces a new phase (filled ice), resulting in hotter planetary interiors. This effect renders the super-ionic and reticulating phases accessible to the lower ice mantle of relatively low-mass planets (∼5 M{sub E} ) lacking a H/He atmosphere. We model the thermal and structural profile of the planetary crust and discuss five possible crustal regimes which depend on the surface temperature and heat flux. We demonstrate that the planetary crust can be conductive throughout or partly confined to the dissociation curve of methane clathrate hydrate. The formation of methane clathrate in the subsurface is shown to inhibit the formation of a subterranean ocean. This effect results in increased stresses on the lithosphere, making modes of ice plate tectonics possible. The dynamic character of the tectonic plates is analyzed and the ability of this tectonic mode to cool the planet is estimated. The icy tectonic plates are found to be faster than those on a silicate super-Earth. A mid-layer of low viscosity is found to exist between the lithosphere and the lower mantle. Its existence results in a large difference between ice mantle overturn timescales and resurfacing timescales. Resurfacing timescales are found to be 1 Ma for fast plates and 100 Ma for sluggish plates, depending on the viscosity profile and ice mass fraction. Melting beneath spreading centers is required in order to account for the planetary radiogenic heating. The melt fraction is quantified for the various tectonic solutions explored, ranging from a few percent for the fast and thin plates to total melting of the upwelled material for the thick and sluggish plates. Ice mantle dynamics is found to be important for assessing the composition of

  6. Cage-forming compounds in the Ba-Rh-Ge system: from thermoelectrics to superconductivity.

    Science.gov (United States)

    Falmbigl, M; Kneidinger, F; Chen, M; Grytsiv, A; Michor, H; Royanian, E; Bauer, E; Effenberger, H; Podloucky, R; Rogl, P

    2013-01-18

    Phase relations and solidification behavior in the Ge-rich part of the phase diagram have been determined in two isothermal sections at 700 and 750 °C and in a liquidus projection. A reaction scheme has been derived in the form of a Schulz-Scheil diagram. Phase equilibria are characterized by three ternary compounds: τ(1)-BaRhGe(3) (BaNiSn(3)-type) and two novel phases, τ(2)-Ba(3)Rh(4)Ge(16) and τ(3)-Ba(5)Rh(15)Ge(36-x), both forming in peritectic reactions. The crystal structures of τ(2) and τ(3) have been elucidated from single-crystal X-ray intensity data and were found to crystallize in unique structure types: Ba(3)Rh(4)Ge(16) is tetragonal (I4/mmm, a = 0.65643(2) nm, c = 2.20367(8) nm, and R(F) = 0.0273), whereas atoms in Ba(5)Rh(15)Ge(36-x) (x = 0.25) arrange in a large orthorhombic unit cell (Fddd, a = 0.84570(2) nm, b = 1.4725(2) nm, c = 6.644(3) nm, and R(F) = 0.034). The body-centered-cubic superstructure of binary Ba(8)Ge(43)□(3) was observed to extend at 800 °C to Ba(8)Rh(0.6)Ge(43)□(2.4), while the clathrate type I phase, κ(I)-Ba(8)Rh(x)Ge(46-x-y)□(y), reveals a maximum solubility of x = 1.2 Rh atoms in the structure at a vacancy level of y = 2.0. The cubic lattice parameter increases with increasing Rh content. Clathrate I decomposes eutectoidally at 740 °C: κ(I) ⇔ (Ge) + κ(IX) + τ(2). A very small solubility range is observed at 750 °C for the clathrate IX, κ(IX)-Ba(6)Rh(x)Ge(25-x) (x ∼ 0.16). Density functional theory calculations have been performed to derive the enthalpies of formation and densities of states for various compositions Ba(8)Rh(x)Ge(46-x) (x = 0-6). The physical properties have been investigated for the phases κ(I), τ(1), τ(2), and τ(3), documenting a change from thermoelectric (κ(I)) to superconducting behavior (τ(2)). The electrical resistivity of κ(I)-Ba(8)Rh(1.2)Ge(42.8)□(2.0) increases almost linearly with the temperature from room temperature to 730 K, and the Seebeck coefficient is negative

  7. MAMM (Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling) progress report

    Science.gov (United States)

    Nisbet, E. G.; Pyle, J. A.

    2012-12-01

    MAMM consortium (led by JA Pyle, Univ. Cambridge, with partners from Univ. East Anglia; Univ. Manchester; Royal Holloway, Univ. of London; NERC Centre for Ecology and Hydrology). The UK MAMM project (Methane and other greenhouse gases in the Arctic - Measurements, process studies and Modelling) is designed to improve quantitative knowledge of Arctic methane and other greenhouse gases from various sources (e.g. wetlands, natural gas, clathrates), to determine magnitudes and spatial distributions, and to develop process understanding (e.g. dependence of fluxes on temperature). In Arctic Finland, Sweden, Norway and Spitsbergen, intensive low-level aircraft campaigns (flights in spring, summer, autumn 2012 and 2013, with the UK FAAM BAe146 aircraft) are designed to measure concentrations of CH4 and other gases across the Arctic by time and location, with in situ sampling for δ13CCH4 at selected sites on land (Zeppelin, Pallas, Alert) and Keeling-plot diel determination of wetland source signatures. High altitude flights sampled stratosphere-troposphere exchange in the Arctic to assess the impact of the polar vortex on methane isotope budgets. Methane column profiles are measured by combining ground based eddy covariance and chamber measurements with aircraft measurements, using a landscape-scale box model approach and flying up and downwind of source regions. Airborne remote sensing is being used to retrieve CH4 columns for comparison with in-situ profiles and testing of hyperspectral retrieval methods from satellite platforms. Longer-term time series measurements are also being established in Kjølnes, northern Norway, for a range of greenhouse and related species via continuous or flask/bag sampling. Modelling studies are in progress to assess the overall Arctic influence on the global methane budget, including detailed back-trajectory analysis of the measurements, especially the isotopic data, to identify sources of methane by location, type (e.g. gasfield, wetland

  8. Lanthanide(III) complexation with an amide derived pyridinophane.

    Science.gov (United States)

    Castro, Goretti; Bastida, Rufina; Macías, Alejandro; Pérez-Lourido, Paulo; Platas-Iglesias, Carlos; Valencia, Laura

    2015-02-16

    Herein we report a detailed investigation of the solid state and solution structures of lanthanide(III) complexes with the 18-membered pyridinophane ligand containing acetamide pendant arms TPPTAM (TPPTAM = 2,2',2″-(3,7,11-triaza-1,5,9(2,6)-tripyridinacyclododecaphane-3,7,11-triyl)triacetamide). The ligand crystallizes in the form of a clathrated hydrate, where the clathrated water molecule establishes hydrogen-bonding interactions with the amide NH groups and two N atoms of the macrocycle. The X-ray structures of 13 different Ln(3+) complexes obtained as the nitrate salts (Ln(3+) = La(3+)-Yb(3+), except Pm(3+)) have been determined. Additionally, the X-ray structure of the La(3+) complex obtained as the triflate salt was also obtained. In all cases the ligand provides 9-fold coordination to the Ln(3+) ion, ten coordination being completed by an oxygen atom of a coordinated water molecule or a nitrate or triflate anion. The bond distances of the metal coordination environment show a quadratic change along the lanthanide series, as expected for isostructural series of Ln(3+) complexes. Luminescence lifetime measurements obtained from solutions of the Eu(3+) and Tb(3+) complexes in H2O and D2O point to the presence of a water molecule coordinated to the metal ion in aqueous solutions. The analysis of the Ln(3+)-induced paramagnetic shifts indicates that the complexes are ten-coordinated throughout the lanthanide series from Ce(3+) to Yb(3+), and that the solution structure is very similar to the structures observed in the solid state. The complexes of the light Ln(3+) ions are fluxional due to a fast Δ(λλλλλλ) ↔ Λ(δδδδδδ) interconversion that involves the inversion of the macrocyclic ligand and the rotation of the acetamide pendant arms. The complexes of the small Ln(3+) ions are considerably more rigid, the activation free energy determined from VT (1)H NMR for the Lu(3+) complex being ΔG(⧧)298 = 72.4 ± 5.1 kJ mol(-1).

  9. Synergetic effect of host-guest chemistry and spin crossover in 3D Hofmann-like metal-organic frameworks [Fe(bpac)M(CN)4] (M=Pt, Pd, Ni).

    Science.gov (United States)

    Bartual-Murgui, Carlos; Salmon, Lionel; Akou, Amal; Ortega-Villar, Norma A; Shepherd, Helena J; Muñoz, M Carmen; Molnár, Gábor; Real, José Antonio; Bousseksou, Azzedine

    2012-01-09

    The synthesis and characterization of a series of three-dimensional (3D) Hofmann-like clathrate porous metal-organic framework (MOF) materials [Fe(bpac)M(CN)(4)] (M=Pt, Pd, and Ni; bpac=bis(4-pyridyl)acetylene) that exhibit spin-crossover behavior is reported. The rigid bpac ligand is longer than the previously used azopyridine and pyrazine and has been selected with the aim to improve both the spin-crossover properties and the porosity of the corresponding porous coordination polymers (PCPs). The 3D network is composed of successive {Fe[M(CN)(4)]}(n) planar layers bridged by the bis-monodentate bpac ligand linked in the apical positions of the iron center. The large void between the layers, which represents 41.7% of the unit cell, can accommodate solvent molecules or free bpac ligand. Different synthetic strategies were used to obtain a range of spin-crossover behaviors with hysteresis loops around room temperature; the samples were characterized by magnetic susceptibility, calorimetric, Mössbauer, and Raman measurements. The complete physical study reveals a clear relationship between the quantity of included bpac molecules and the completeness of the spin transition, thereby underlining the key role of the π-π stacking interactions operating between the host and guest bpac molecules within the network. Although the inclusion of the bpac molecules tends to increase the amount of active iron centers, no variation of the transition temperature was measured. We have also investigated the ability of the network to accommodate the inclusion of molecules other than water and bpac and studied the synergy between the host-guest interaction and the spin-crossover behavior. In fact, the clathration of various aromatic molecules revealed specific modifications of the transition temperature. Finally, the transition temperature and the completeness of the transition are related to the nature of the metal associated with the iron center (Ni, Pt, or Pd) and also to the

  10. Effect of administration of water enriched in O2 by injection or electrolysis on transcutaneous oxygen pressure in anesthetized pigs

    Directory of Open Access Journals (Sweden)

    Charton A

    2014-08-01

    the three groups, but when compared to the control group, the values remained significantly higher in animals that received the water enriched in O2 by electrolysis. Conclusions: In this protocol, water enriched in O2 by electrolysis lessened the decline of peripheral tissue oxygenation. This observation is compatible with the claim that the electrolytic process generates water clathrates which trap O2 and facilitate O2 diffusion along pressure gradients. Potential applications of O2-enriched water include an alternate method of oxygen supply. Keywords: transcutaneous oxygen partial pressure determination, tissue oxygenation, oxygenated water, water clathrate 

  11. Heat utilization (2); Netsuriyo (2)

    Energy Technology Data Exchange (ETDEWEB)

    Akizawa, Jun [Tokyo University of Agriculture and Tecnology, Tokyo (Japan)

    1999-01-31

    (102) The application of the carbon dioxide separation and collection system using CPC to the thermal power plant. (103) The effect of the scattered light on collection of heat of solar pond. (104) The development of the Basin- multiple-effect compound type solar heat distiller. (Production and performance test of the small plant.) (105) On the plan of the new-model solar heat engine. (106) The performance prediction of solar power system using Stirling engine. (Part 2 The case in which the divided condenser was used.) (107) The trial manufacture of the sun cooker. It was announced and was made of 6 from various regions in this session on the heat utilization. On the multiple-effect compound type solar heat distiller, the comment that the feasibility could be expected from the simple structure was made. And, the question on system operation of allocation of the distillation quantity, etc. was actively made. On 2 of plan of the new-model solar heat engine and trial manufacture of the sun cooker, it was not possible that the publicator came for the aged to Okinawa, and instead, it became an announcement by tape and OHP blown in self. Though it was the form which there was no in the convention, it could be heard of that it is major field. It was thought, because there was some an announcement on the Stirling engine in the this session, place be able to. And, photograph and experimental result of the prototype are also included for the announcement of the sun cooker and want to desire the opportunities which hear the direct announcement. It wants to be thankful for hardship Mr.Naito the Science and Technology Agency National Aerospace Laboratory that it carried tape and OHP and assisted the announcement. The biomass. (108) The measurement approach of the environment resuscitation acceleration effect. (109) The basic research on the biogas storage by the clathration. The behavior of the carbon dioxide in the clathrate generation. (111) The solar thermal application

  12. High-pressure experiments on the stability of methane hydrates in the H2O-NH3-CH4 system with applications to Titan's cryovolcanism.

    Science.gov (United States)

    Choukroun, M.; Le Menn, E.; Grasset, O.

    2007-08-01

    The current methane abundance in Titan's thick atmosphere cannot be explained without the existence of replenishment processes. Indeed, the intense photochemistry taking place in the atmosphere would destroy the 2-5% CH4 amounts measured by the GCMS onboard the Huygens probe [1] within 10-100 Myr [e.g. 2]. Among the several hypotheses that could explain this replenishment, release of methane during cryovolcanic events seems highly likely. The VIMS [3] and Radar instruments [4] onboard the Cassini spacecraft have brought substantial evidence for cryovolcanic features on Titan's surface. A numerical model has shown the possibility to release CH4 by dissociating methane clathrate hydrates at depth, due to interaction of a clathrate layer with warm ice intrusions [5]. However, the effect of volatile compounds, dissolved (e.g. N2) or in solution (e.g. NH3), would most certainly play a major role in cryovolcanic processes. High-pressure low-temperature experimental investigations on the effect of ammonia on methane hydrates' dissociation are conducted within an optical sapphire-anvil cell. Preliminary results have been previously presented, which lead to contradictory interpretations so far [6,7]. As further experiments are being performed, the reliability of the experimental measurements and the reasons for observing discrepancies in the results can be adressed with more and more confidence. This poster will discuss the experimental issues encountered in the H2O-NH3-CH4 system, up-todate experimental results, as well as their implications for Titan's cryovolcanism. References: [1] Niemann HB et al., Nature 438, 779-784 (2005). [2] Yung YL et al., Astrophys. J. Suppl., 55, 465-506 (1984). [3] Sotin C et al., Nature 435, 786-789 (2005). [4] Lopes RMC et al., Icarus 186, 395-412 (2007). [5] Tobie G et al., Nature 440 (2), 61-64 (2006). [6] Choukroun M et al., 37th Lunar and Planet. Sci. Conf. Abstract #1640 (2006). [7] Choukroun M et al., 38th Lunar and Planet. Sci. Conf

  13. A hydrated ion model of [UO2] 2 + in water: Structure, dynamics, and spectroscopy from classical molecular dynamics

    Science.gov (United States)

    Pérez-Conesa, Sergio; Torrico, Francisco; Martínez, José M.; Pappalardo, Rafael R.; Sánchez Marcos, Enrique

    2016-12-01

    A new ab initio interaction potential based on the hydrated ion concept has been developed to obtain the structure, energetics, and dynamics of the hydration of uranyl in aqueous solution. It is the first force field that explicitly parameterizes the interaction of the uranyl hydrate with bulk water molecules to accurately define the second-shell behavior. The [UO2(H2O)5 ] 2 + presents a first hydration shell U-O average distance of 2.46 Å and a second hydration shell peak at 4.61 Å corresponding to 22 molecules using a coordination number definition based on a multisite solute cavity. The second shell solvent molecules have longer mean residence times than those corresponding to the divalent monatomic cations. The axial regions are relatively de-populated, lacking direct hydrogen bonding to apical oxygens. Angle-solved radial distribution functions as well as the spatial distribution functions show a strong anisotropy in the ion hydration. The [UO2(H2O)5 ] 2 + solvent structure may be regarded as a combination of a conventional second hydration shell in the equatorial and bridge regions, and a clathrate-like low density region in the axial region. Translational diffusion coefficient, hydration enthalpy, power spectra of the main vibrational modes, and the EXAFS spectrum simulated from molecular dynamics trajectories agree fairly well with the experiment.

  14. Phononic Structure Engineering: the Realization of Einstein Rattling in Calcium Cobaltate for the Suppression of Thermal Conductivity.

    Science.gov (United States)

    Tian, Ruoming; Kearley, Gordon J; Yu, Dehong; Ling, Chris D; Pham, Anh; Embs, Jan P; Shoko, Elvis; Li, Sean

    2016-01-01

    Phonons in condensed matter materials transmit energy through atomic lattices as coherent vibrational waves. Like electronic and photonic properties, an improved understanding of phononic properties is essential for the development of functional materials, including thermoelectric materials. Recently, an Einstein rattling mode was found in thermoelectric material Na0.8CoO2, due to the large displacement of Na between the [CoO2] layers. In this work, we have realized a different type of rattler in another thermoelectric material Ca3Co4O9 by chemical doping, which possesses the same [CoO2] layer as Na0.8CoO2. It remarkably suppressed the thermal conductivity while enhancing its electrical conductivity. This new type of rattler was investigated by inelastic neutron scattering experiments in conjunction with ab-initio molecular dynamics simulations. We found that the large mass of dopant rather than the large displacement is responsible for such rattling in present study, which is fundamentally different from skutterudites, clathrates as well as Na analogue. We have also tentatively studied the phonon band structure of this material by DFT lattice dynamics simulation, showing the relative contribution to phonons in the distinct layers of Ca3Co4O9.

  15. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology

    Science.gov (United States)

    Bland, Michael; Carol A. Raymond,; Paul Schenk,; Roger R. Fu,; Thomas Kneisl,; Jan Hendrick Pasckert,; Harold Hiesinger,; Frank Preusker,; Ryan S. Park,; Simone Marchi,; Scott King,; Julie C. Castillo-Rogez,; Christopher T. Russell,

    2016-01-01

    Before NASA’s Dawn mission, the dwarf planet Ceres was widely believed to contain a substantial ice-rich layer below its rocky surface. The existence of such a layer has significant implications for Ceres’s formation, evolution, and astrobiological potential. Ceres is warmer than icy worlds in the outer Solar System and, if its shallow subsurface is ice-rich, large impact craters are expected to be erased by viscous flow on short geologic timescales. Here we use digital terrain models derived from Dawn Framing Camera images to show that most of Ceres’s largest craters are several kilometres deep, and are therefore inconsistent with the existence of an ice-rich subsurface. We further show from numerical simulations that the absence of viscous relaxation over billion-year timescales implies a subsurface viscosity that is at least one thousand times greater than that of pure water ice. We conclude that Ceres’s shallow subsurface is no more than 30% to 40% ice by volume, with a mixture of rock, salts and/or clathrates accounting for the other 60% to 70%. However, several anomalously shallow craters are consistent with limited viscous relaxation and may indicate spatial variations in subsurface ice content.

  16. Thermal and structural study on the lattice compound 1,4-diammoniumbutane bis(theophyllinate)

    Energy Technology Data Exchange (ETDEWEB)

    Ban, Margit; Madarasz, Janos; Bombicz, Petra; Pokol, Gyoergy; Gal, Sandor

    2004-10-01

    Crystalline title compound (1) prepared from aqueous solution of theophylline and 1,4-diaminobutane has been structurally and thermally characterized. Both the two-step TG decomposition curve and elemental analysis of the hexagonal crystals show that it consists of theophylline and 1,4-diaminobutane in 2:1 molar ratio. Actually, presence of one type of both theophyllinate anions and 1,4-diammoniumbutane dication have been indicated by FTIR spectroscopy. The molecular structure of lattice compound (1) has been determined by single crystal X-ray diffraction, where the hydrogen positions have been obtained from differential Fourier maps. It has confirmed that the crystal is really built up from these ionic constituents bound together with an extensive net of hydrogen bonds. The coupled TG-FTIR analysis of the evolved gases has revealed that the diamine is released as a whole molecule in the first decomposition step. Clathrate 1 and the proton migration in it might serve as a structural model of solid aminophylline whose crystal structure is still unknown.

  17. High-resolution carbon isotope records of the Toarcian Oceanic Anoxic Event (Early Jurassic) from North America and implications for the global drivers of the Toarcian carbon cycle

    Science.gov (United States)

    Them, T. R.; Gill, B. C.; Caruthers, A. H.; Gröcke, D. R.; Tulsky, E. T.; Martindale, R. C.; Poulton, T. P.; Smith, P. L.

    2017-02-01

    The Mesozoic Era experienced several instances of abrupt environmental change that are associated with instabilities in the climate, reorganizations of the global carbon cycle, and elevated extinction rates. Often during these perturbations, oxygen-deficient conditions developed in the oceans resulting in the widespread deposition of organic-rich sediments - these events are referred to as Oceanic Anoxic Events or OAEs. Such events have been linked to massive injections of greenhouse gases into the ocean-atmosphere system by transient episodes of voluminous volcanism and the destabilization of methane clathrates within marine environments. Nevertheless, uncertainty surrounds the specific environmental drivers and feedbacks that occurred during the OAEs that caused perturbations in the carbon cycle; this is particularly true of the Early Jurassic Toarcian OAE (∼183.1 Ma). Here, we present biostratigraphically constrained carbon isotope data from western North America (Alberta and British Columbia, Canada) to better assess the global extent of the carbon cycle perturbations. We identify the large negative carbon isotope excursion associated with the OAE along with high-frequency oscillations and steps within the onset of this excursion. We propose that these high-frequency carbon isotope excursions reflect changes to the global carbon cycle and also that they are related to the production and release of greenhouse gases from terrestrial environments on astronomical timescales. Furthermore, increased terrestrial methanogenesis should be considered an important climatic feedback during Ocean Anoxic Events and other similar events in Earth history after the proliferation of land plants.

  18. Low temperature X-ray diffraction studies of natural gas hydrate samples from the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rawn, C.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Materials Science and Technology Div.; Sassen, R. [Texas A and M Univ., College Station, TX (United States). Geochemical and Environmental Research Group; Ulrich, S.M.; Phelps, T.J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Biosciences Div.; Chakoumakos, B.C. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Neutron Scattering Science Div.; Payzant, E.A. [Oak Ridge National Laboratory, Oak Ridge, TN (United States). Center for Nanophase Materials Science

    2008-07-01

    Quantitative studies of natural clathrate hydrates are hampered by the difficulties associated with obtaining pristine samples for the sea floor without comprising their integrity. This paper discussed X-ray power diffraction studies conducted to measure natural gas hydrate samples obtained from the Green Canyon in the Gulf of Mexico. Data on the hydrate deposits were initially collected in 2002. The X-ray diffraction data were collected in order to examine the structure 2 (s2) gas hydrates as functions of temperature and time. A diffractometer with a theta-theta goniometer modified with a helium closed cycle refrigerator and temperature controller was used. Aragonite, quartz and halite phases were determined in the decomposed sample. Refined phase fractions for both the ice and the s2 hydrate were obtained as a function of temperature. Results of the study demonstrated that the amount of hydrates decreased with increasing temperatures and amounts of time. Large pieces of the hydrate showed heterogenous ice content. Dissociation rates were higher at lower temperatures. It was concluded that unusual trends observed for the smaller lattice parameter of the hydrates resulted from the formation of ice layers that acted as barriers to the released gases and caused increased isostatic pressures around the hydrate core. 9 refs., 6 figs.

  19. Disordered and ordered C{sub {bold 28}} solids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Galli, G. [Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), Ecublens, 1015 Lausanne (Switzerland); Wilkins, J.W. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States); Canning, A. [CRAY Research, PSE, EPFL, 1015Lausanne (Switzerland)

    1998-02-01

    Using tight-binding molecular dynamics, we have performed computer experiments to mimic the gas phase growth of a disordered solid composed of C{sub 28} fullerenes. The growth has been simulated by repeated low energy collisions of molecules coming from random directions. The resulting solid is composed of undamaged C{sub 28} cages, with most fullerenes being three- and four-fold coordinated, similar to C atoms in amorphous materials. The system contains a high percentage of distorted sp{sup 2} C sites and only a small proportion of sp{sup 3} sites. These results help clarify the structure of disordered films obtained experimentally by small fullerene deposition on surfaces. Furthermore, we have compared the properties of the disordered C{sub 28} solid (a-C{sub 28}) with those of ordered C{sub 28} solids. We have found that the energy of a-C{sub 28} is close to that of hyperdiamond (0.1 eV/atom higher) and differs by a few meV from that of other ordered structures, such as 2D-hypergraphite, hexagonal and clathrate solids. This indicates that in condensed phases C{sub 28} molecules can act as carbon superatoms, while showing more bonding flexibility than C atoms; in particular the capability of acting as six-fold coordinated building blocks of hexagonal solids, which are as stable as a-C{sub 28}. {copyright} {ital 1998 American Institute of Physics.}

  20. Differences in physical chemistry and dissolution rate of solid particle aerosols from solution pressurised inhalers.

    Science.gov (United States)

    Buttini, Francesca; Miozzi, Michele; Balducci, Anna Giulia; Royall, Paul G; Brambilla, Gaetano; Colombo, Paolo; Bettini, Ruggero; Forbes, Ben

    2014-04-25

    Solution composition alters the dynamics of beclomethasone diproprionate (BDP) particle formation from droplets emitted by pressurised metered dose inhalers (pMDIs). The hypothesis that differences in inhaler solutions result in different solid particle physical chemistry was tested using a suite of complementary calorimetric techniques. The atomisation of BDP-ethanol solutions from commercial HFA-pMDI produced aerodynamically-equivalent solid particle aerosols. However, differences in particle physico-chemistry (morphology and solvate/clathrate formation) were detected by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and supported by hot stage microscopy (HSM). Increasing the ethanol content of the formulation from 8 to 12% (w/w), which retards the evaporation of propellant and slows the increase in droplet surface viscosity, enhanced the likelihood of particles drying with a smooth surface. The dissolution rate of BDP from the 12% (w/w) ethanol formulation-derived particles (63% dissolved over 120 min) was reduced compared to the 8% (w/w) ethanol formulation-derived particles (86% dissolved over 120 min). The addition of 0.01% (w/w) formoterol fumarate or 1.3% (w/w) glycerol to the inhaler solution modified the particles and reduced the BDP dissolution rate further to 34% and 16% dissolved in 120 min, respectively. These data provide evidence that therapeutic aerosols from apparently similar inhaler products, including those with similar aerodynamic performance, may behave non-equivalently after deposition in the lungs.

  1. NEW INSIGHTS ON SATURN'S FORMATION FROM ITS NITROGEN ISOTOPIC COMPOSITION

    Energy Technology Data Exchange (ETDEWEB)

    Mousis, Olivier; Lunine, Jonathan I. [Center for Radiophysics and Space Research, Space Sciences Building, Cornell University, Ithaca, NY 14853 (United States); Fletcher, Leigh N. [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU (United Kingdom); Mandt, Kathleen E. [Southwest Research Institute, San Antonio, TX 78228 (United States); Ali-Dib, Mohamad [Université de Franche-Comté, Institut UTINAM, CNRS/INSU, UMR 6213, Observatoire des Sciences de l' Univers de Besançon (France); Gautier, Daniel [LESIA, Observatoire de Paris, CNRS, UPMC, Univ. Paris-Diderot, F-92195 Meudon Cedex (France); Atreya, Sushil, E-mail: olivier.mousis@obs-besancon.fr [Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143 (United States)

    2014-12-01

    The recent derivation of a lower limit for the {sup 14}N/{sup 15}N ratio in Saturn's ammonia, which is found to be consistent with the Jovian value, prompted us to revise models of Saturn's formation using as constraints the supersolar abundances of heavy elements measured in its atmosphere. Here we find that it is possible to account for both Saturn's chemical and isotopic compositions if one assumes the formation of its building blocks at ∼45 K in the protosolar nebula, provided that the O abundance was ∼2.6 times protosolar in its feeding zone. To do so, we used a statistical thermodynamic model to investigate the composition of the clathrate phase that formed during the cooling of the protosolar nebula and from which the building blocks of Saturn were agglomerated. We find that Saturn's O/H is at least ∼34.9 times protosolar and that the corresponding mass of heavy elements (∼43.1 M {sub ⊕}) is within the range predicted by semi-convective interior models.

  2. A study of hydrate formation and dissociation from high water cut emulsions and the impact on emulsion inversion

    Energy Technology Data Exchange (ETDEWEB)

    Greaves, D.P.; Boxall, J.A.; Mulligan, J.; Dendy Sloan, E.; Koh, C.A. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering, Center for Hydrate Research

    2008-07-01

    The challenges facing the petroleum industry regarding clathrate hydrate formation were discussed, with particular reference to the costly and dangerous pipeline blocking plugs that form upon hydrate accumulation and agglomeration. Although a variety of inhibitors are used to prevent hydrate plug formation, they are not designed for high water content production. As oil and gas are produced from less profitable or older wells, there is a greater probability of higher water cuts. Therefore, this study focused on methane hydrate formation and dissociation from these high water content (greater than 60 per cent volume) emulsions of water-in-oil (W/O) and oil-in-water (O/W). At high water cuts, the system can quickly agglomerate with hydrate formation, while dissociation can lead to a significant change in the emulsion type. Although inhibition can be costly at high water cuts, it must be considered because of the risk of immediate agglomeration and plug formation with hydrates. In this study, the hydrate formation and dissociation from W/O emulsions destabilized the emulsion, with the final emulsion formulation favouring a water continuous state following re-emulsification. After dissociation, the W/O emulsion formed a multiple o/W/O emulsion or inverted at even higher water cuts, forming an O/W emulsion with 68 per cent water volume. In contrast, hydrate formation and dissociation from O/W emulsions with more than 71 per cent water volume stablized the O/W emulsion. 24 refs., 13 figs.

  3. [Experimental study on chemotherapy of acute glanders].

    Science.gov (United States)

    Iliukhin, V I; Rotov, K A; Senina, T V; Snatenkov, E A; Tikhonov, S N; Plekhanova, N G; Kulikova, A S; Shubnikova, E V; Korol', E V; Nekhezina, M O

    2012-01-01

    Glanders is a zoonotic infection inducing acute forms of the disease (pneumonia, sepsis) in humans and animals under certain conditions, which even with the use of modern chemotherapy have unfavourable prognosis. Insufficient of efficacy of antibiotics with in vitro low MIC for planktonic bacterial suspension of Burkholderia mallei in chemotherapy of acute forms of glanders was due to the capacity of the pathogen for intracellular survival and formation of biofilms. Under such conditions the susceptibility of B. mallei to antibiotics lowered by several orders of magnitude. Chemotherapy of the glanders acute forms in animals usually provided only an increase of the lifespan, while among the survivors there was recorded a high relapse rate. More favourable outcomes were observed with the use of in vitro effective antibiotics in the form of clathrate compounds or especially liposomal forms. In the experiments with golden hamsters the survival rate reached 100% in 1000 Dlm infection even with the treatment onset by meropenem liposomal form 48 hours after the infection. Chemotherapeutics in the liposomal form significantly lowered resistance of B. mallei in both the experiments with a suspension of planktonic organisms and the use of bacteria interned in eukaryotic cells (Tetrahymena pyriformis).

  4. Subsurface characterization of 67P/Churyumov-Gerasimenko's Abydos site

    CERN Document Server

    Brugger, B; Morse, A; Marboeuf, U; Jorda, L; Guilbert-Lepoutre, A; Andrews, D; Barber, S; Lamy, P; Luspay-Kuti, A; Mandt, K; Morgan, G; Sheridan, S; Vernazza, P; Wright, I P

    2016-01-01

    On November 12, 2014, the ESA/Rosetta descent module Philae landed on the Abydos site of comet 67P/Churyumov-Gerasimenko. Aboard this module, the Ptolemy mass spectrometer measured a CO/CO2 ratio of 0.07 +/- 0.04 which differs substantially from the value obtained in the coma by the Rosetta/ROSINA instrument, suggesting a heterogeneity in the comet nucleus. To understand this difference, we investigated the physico-chemical properties of the Abydos subsurface leading to CO/CO2 ratios close to that observed by Ptolemy at the surface of this region. We used a comet nucleus model that takes into account different water ice phase changes (amorphous ice, crystalline ice and clathrates), as well as diffusion of molecules throughout the pores of the matrix. The input parameters of the model were optimized for the Abydos site and the ROSINA CO/CO2 measured ratio is assumed to correspond to the bulk value in the nucleus. We find that all considered structures of water ice are able to reproduce the Ptolemy observation ...

  5. Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal–Organic Framework

    KAUST Repository

    Savage, Mathew

    2016-07-27

    The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH4) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH4 and 488 v/v at 77 K and 20 bar for H2. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH4 and H2 molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H2 and CH4 molecules within MFM-300(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH4 molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH4/water clathrates, the CH4 store of nature.

  6. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk

    CERN Document Server

    Zhang, Ke; Bergin, Edwin A

    2015-01-01

    Water and simple organic molecular ices dominate the mass of solid materials available for planetesimal and planet formation beyond the water snow line. Here we analyze ALMA long baseline 2.9, 1.3 and 0.87 mm continuum images of the young star HL Tau, and suggest that the emission dips observed are due to rapid pebble growth around the condensation fronts of abundant volatile species. Specifically, we show that the prominent innermost dip at 13 AU is spatially resolved in the 0.87 mm image, and its center radius is coincident with the expected mid-plane condensation front of water ice. In addition, two other prominent dips, at distances of 32 and 63 AU, cover the mid-plane condensation fronts of pure ammonia or ammonia hydrates and clathrate hydrates (especially with CO and N$_2$) formed from amorphous water ice. The spectral index map of HL Tau between 1.3 and 0.87 mm shows that the flux ratios inside the dips are statistically larger than those of nearby regions in the disk. This variation can be explained ...

  7. EVIDENCE OF FAST PEBBLE GROWTH NEAR CONDENSATION FRONTS IN THE HL TAU PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ke [Division of Physics, Mathematics and Astronomy, MC 249-17, California Institute of Technology, Pasadena, CA 91125 (United States); Blake, Geoffrey A. [Division of Geological and Planetary Sciences, MC 150-21, California Institute of Technology, Pasadena, CA 91125 (United States); Bergin, Edwin A., E-mail: kzhang@astro.caltech.edu [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, Michigan 48109 (United States)

    2015-06-10

    Water and simple organic molecular ices dominate the mass of solid materials available for planetesimal and planet formation beyond the water snow line. Here we analyze ALMA long baseline 2.9, 1.3 and 0.87 mm continuum images of the young star HL Tau, and suggest that the emission dips observed are due to rapid pebble growth around the condensation fronts of abundant volatile species. Specifically, we show that the prominent innermost dip at 13 AU is spatially resolved in the 0.87 mm image, and its center radius is coincident with the expected mid-plane condensation front of water ice. In addition, two other prominent dips, at distances of 32 and 63 AU, cover the mid-plane condensation fronts of pure ammonia or ammonia hydrates and clathrate hydrates (especially with CO and N{sub 2}) formed from amorphous water ice. The spectral index map of HL Tau between 1.3 and 0.87 mm shows that the flux ratios inside the dips are statistically larger than those of nearby regions in the disk. This variation can be explained by a model with two dust populations, where most of the solid mass resides in a component that has grown to decimeter size scales inside the dips. Such growth is in accord with recent numerical simulations of volatile condensation, dust coagulation, and settling.

  8. Martian zeolites as a source of atmospheric methane

    Science.gov (United States)

    Mousis, Olivier; Simon, Jean-Marc; Bellat, Jean-Pierre; Schmidt, Frédéric; Bouley, Sylvain; Chassefière, Eric; Sautter, Violaine; Quesnel, Yoann; Picaud, Sylvain; Lectez, Sébastien

    2016-11-01

    The origin of the martian methane is still poorly understood. A plausible explanation is that methane could have been produced either by hydrothermal alteration of basaltic crust or by serpentinization of ultramafic rocks producing hydrogen and reducing crustal carbon into methane. Once formed, methane storage on Mars is commonly associated with the presence of hidden clathrate reservoirs. Here, we alternatively suggest that chabazite and clinoptilolite, which belong to the family of zeolites, may form a plausible storage reservoir of methane in the martian subsurface. Because of the existence of many volcanic terrains, zeolites are expected to be widespread on Mars and their Global Equivalent Layer may range up to more than ∼1 km, according to the most optimistic estimates. If the martian methane present in chabazite and clinoptilolite is directly sourced from an abiotic source in the subsurface, the destabilization of a localized layer of a few millimeters per year may be sufficient to explain the current observations. The sporadic release of methane from these zeolites requires that they also remained isolated from the atmosphere during its evolution. The methane release over the ages could be due to several mechanisms such as impacts, seismic activity or erosion. If the methane outgassing from excavated chabazite and/or clinoptilolite prevails on Mars, then the presence of these zeolites around Gale Crater could explain the variation of methane level observed by Mars Science Laboratory.

  9. The influence of porosity and structural parameters on different kinds of gas hydrate dissociation.

    Science.gov (United States)

    Misyura, S Y

    2016-07-22

    Methane hydrate dissociation at negative temperatures was studied experimentally for different artificial and natural samples, differing by macro- and micro-structural parameters. Four characteristic dissociation types are discussed in the paper. The internal kinetics of artificial granule gas hydrates and clathrate hydrates in coal is dependent on the porosity, defectiveness and gas filtration rate. The density of pores distribution in the crust of formed ice decreases by the several orders of magnitude and this change significantly the rate of decay. Existing models for describing dissociation at negative temperatures do not take into account the structural parameters of samples. The dissociation is regulated by internal physical processes that must be considered in the simulation. Non-isothermal dissociation with constant external heat flux was simulated numerically. The dissociation is simulated with consideration of heat and mass transfer, kinetics of phase transformation and gas filtering through a porous medium of granules for the negative temperatures. It is shown that the gas hydrate dissociation in the presence of mainly microporous structures is fundamentally different from the disintegration of gas hydrates containing meso and macropores.

  10. NIST Gas Hydrate Research Database and Web Dissemination Channel.

    Science.gov (United States)

    Kroenlein, K; Muzny, C D; Kazakov, A; Diky, V V; Chirico, R D; Frenkel, M; Sloan, E D

    2010-01-01

    To facilitate advances in application of technologies pertaining to gas hydrates, a freely available data resource containing experimentally derived information about those materials was developed. This work was performed by the Thermodynamic Research Center (TRC) paralleling a highly successful database of thermodynamic and transport properties of molecular pure compounds and their mixtures. Population of the gas-hydrates database required development of guided data capture (GDC) software designed to convert experimental data and metadata into a well organized electronic format, as well as a relational database schema to accommodate all types of numerical and metadata within the scope of the project. To guarantee utility for the broad gas hydrate research community, TRC worked closely with the Committee on Data for Science and Technology (CODATA) task group for Data on Natural Gas Hydrates, an international data sharing effort, in developing a gas hydrate markup language (GHML). The fruits of these efforts are disseminated through the NIST Sandard Reference Data Program [1] as the Clathrate Hydrate Physical Property Database (SRD #156). A web-based interface for this database, as well as scientific results from the Mallik 2002 Gas Hydrate Production Research Well Program [2], is deployed at http://gashydrates.nist.gov.

  11. Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal-Organic Framework.

    Science.gov (United States)

    Savage, Mathew; da Silva, Ivan; Johnson, Mark; Carter, Joseph H; Newby, Ruth; Suyetin, Mikhail; Besley, Elena; Manuel, Pascal; Rudić, Svemir; Fitch, Andrew N; Murray, Claire; David, William I F; Yang, Sihai; Schröder, Martin

    2016-07-27

    The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH4) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH4 and 488 v/v at 77 K and 20 bar for H2. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH4 and H2 molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H2 and CH4 molecules within MFM-300(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH4 molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH4/water clathrates, the CH4 store of nature.

  12. New utilization and recall of carbon dioxide in domestic and foreign countries; Saikin no naigai ni okeru tansan gas no riyo to kaishu

    Energy Technology Data Exchange (ETDEWEB)

    Hanada, M.

    1994-09-01

    This paper summarizes the utilization technologies and recovery of carbon dioxide. Carbon dioxide is manufactured from such inorganic materials as carbonates and cokes, and such organic materials as hydrocarbons and alcohols. Carbon dioxide used in refreshing beverages is manufactured by sulfuric acid decomposition of sodium bicarbonate or limestone, pyrolysis of carbonates, natural gushing, and alcohol fermentation. Sodium carbonate is obtained by using the Solvay process that uses NaCl, NH3 and CaCO3 as the raw materials, but CO2 from hydrocarbons is utilized recently. The sugar industry uses slaked lime and CO2 in cleaning raw sugar concentrates. Grain size, shape, and grain size distribution of the precipitated calcium carbonate light obtained from reaction of slaked lime and CO2 are affected by reaction temperatures and concentrations. This precipitated calcium carbonate light is used in rubber filling, paper manufacturing, and plastics. South Africa and other countries manufacture gypsum for cement by using limestone and sulfuric acid as the raw materials. The annual dispersion of CO2 from fossil fuel consumption amounts to 5.2 billion tons. Discussed as its reducing measures include fixation by sea algae, adsorption, absorption and clathration by zeolite and monoethanol amine. 8 refs., 2 figs., 6 tabs.

  13. Thermoelectric transport in rare-earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Ulrike

    2007-07-01

    This work focuses on the thermoelectric transport in rare-earth compounds. The measurements of the thermal conductivity, thermopower, and Nernst coefficient are supplemented by investigations of other quantities as magnetic susceptibility and specific heat. Chapter 2 provides an introduction to the relevant physical concepts. Section 1 of that chapter summarizes the characteristic properties of rare-earth systems; section 2 gives an overview on thermoelectric transport processes in magnetic fields. The applied experimental techniques as well as the new experimental setup are described in detail in Chapter 3. The experimental results are presented in Chapter 4-6, of which each concentrates on a different subject. In Chapter 4, various Eu clathrates and the skutterudite-like Ce{sub 3}Rh{sub 4}Sn{sub 13} are presented, which have been investigated as potential thermoelectric materials for applications. Chapter 5 focusses on the study of the energy scales in the heavy-fermion series Lu{sub 1-x}Yb{sub x}Rh{sub 2}Si{sub 2} and Ce{sub x}La{sub 1-x}Ni{sub 2}Ge{sub 2} by means of thermopower investigations. Chapter 6 is dedicated to the thermoelectric transport properties of the correlated semimetal CeNiSn with special emphasis on the Nernst coefficient of this compound. (orig.)

  14. Pits formation from volatile outgassing on 67P/Churyumov-Gerasimenko

    CERN Document Server

    Mousis, O; Brugger, B; Jorda, L; Kargel, J S; Bouquet, A; Auger, A -T; Lamy, P; Vernazza, P; Thomas, N; Sierks, H

    2015-01-01

    We investigate the thermal evolution of comet 67P/Churyumov-Gerasimenko's subsurface in the Seth_01 region, where active pits have been observed by the ESA/Rosetta mission. Our simulations show that clathrate destabilization and amorphous ice crystallization can occur at depths corresponding to those of the observed pits in a timescale shorter than 67P/Churyumov-Gerasimenko's lifetime in the comet's activity zone in the inner solar system. Sublimation of crystalline ice down to such depths is possible only in the absence of a dust mantle, which requires the presence of dust grains in the matrix small enough to be dragged out by gas from the pores. Our results are consistent with both pits formation via sinkholes or subsequent to outbursts, the dominant process depending on the status of the subsurface porosity. A sealed dust mantle would favor episodic and disruptive outgassing as a result of an increasing gas pressure in the pores, while a high porosity should allow the formation of large voids in the subsur...

  15. Dynamics of polar aromatic molecules confined in a nanocavity of δ-phase of syndiotactic polystyrene as studied by dielectric spectroscopy

    Science.gov (United States)

    Kobayashi, Hideo; Urakawa, Osamu; Kaneko, Fumitoshi; Inoue, Tadashi

    2016-11-01

    Rotational dynamics was examined in detail for four polar aromatic molecules, benzonitrile (BN), p-methylbenzonitrile (p-MBN), o-methylbenzonitrile (o-MBN), and m-methylbenzonitrile (m-MBN), accommodated in a nano-cavity regularly arranged inside the crystalline region (δ-form) of syndiotactic polystyrene (sPS) by means of dielectric relaxation measurements. Except for m-MBN, for which the co-crystalline structure was monoclinic δ-intercalate and no dielectric relaxation process arising from the crystalline region appeared, other three polar guests in the monoclinic δ-clathrate form exhibited the specific dielectric relaxation process. The relaxation times of o-MBN, BN, and p-MBN at room temperature were ranged from 10-7 s to 10-1 s, and in the order of o-MBN < BN < p-MBN. From the analysis of dielectric intensity data as functions of temperature, new insights about the stable and quasi-stable states of the guest molecules inside the cavity were obtained based on the two site model.

  16. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Science.gov (United States)

    Vlasic, Thomas M.; Servio, Phillip; Rey, Alejandro D.

    2016-08-01

    This work uses density functional theory (DFT) to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane), at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS) for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu) were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  17. Modeling the Jovian subnebula: II - Composition of regular satellites ices

    CERN Document Server

    Mousis, O; Mousis, Olivier; Alibert, Yann

    2005-01-01

    We use the evolutionary turbulent model of Jupiter's subnebula described by Alibert et al. (2005a) to constrain the composition of ices incorporated in its regular icy satellites. We consider CO2, CO, CH4, N2, NH3, H2S, Ar, Kr, and Xe as the major volatile species existing in the gas-phase of the solar nebula. All these volatile species, except CO2 which crystallized as a pure condensate, are assumed to be trapped by H2O to form hydrates or clathrate hydrates in the solar nebula. Once condensed, these ices were incorporated into the growing planetesimals produced in the feeding zone of proto-Jupiter. Some of these solids then flowed from the solar nebula to the subnebula, and may have been accreted by the forming Jovian regular satellites. We show that ices embedded in solids entering at early epochs into the Jovian subdisk were all vaporized. This leads us to consider two different scenarios of regular icy satellites formation in order to estimate the composition of the ices they contain. In the first scenar...

  18. RESEARCH ON COUPLED RELATIONSHIP BETWEEN HYDRATION NUMBER WITH RAMAN SPECTRUM

    Institute of Scientific and Technical Information of China (English)

    LEI Huaiyan; LIU Zhihong; FAN Shuanshi; XU Maoquan; GUAN Baocong

    2003-01-01

    As we know, there are three structures-sⅠ, sⅡ, and sH, with hydrocarbonate gas hydrate.Because of those special structures characteristics and potentail large fossil energy resource, gas hydrate play an important role in natural carbonate cycle system. In this paper, CH4, CO2, C3H8, and CH4 +CO2 system have been experimental performed in order to model hydrate formation and discomposition and to obtain hydrate stability conditions of tempreature and pressure. The results from laboratory using Raman spectra show that Raman spectrascopy is a effective tool to identify hydrate structure. Raman spectra of clathrate hydrate guest molecules are presented for two structure (sⅠ and sⅡ) in the following systems: CH4, CO2, C3 H8. Relatively occupancy of CH4 in the large and small cavities of sⅠ were determined by deconvoluting the v1 symmetric bands, resulting in hydration numbers of 6.04±0.03. The freqyuency of the v1 bands for CH4 in structures Ⅰ and Ⅱ differ statistically. The large cavities were measured to be almost fully occupied by CH4 and CO2, whereas only a small fraction of the small cavities are occupied by CH4. No CO2 was found in the small cavities.

  19. Structurability: a collective measure of the structural differences in vodkas.

    Science.gov (United States)

    Hu, Naiping; Wu, Dan; Cross, Kelly; Burikov, Sergey; Dolenko, Tatiana; Patsaeva, Svetlana; Schaefer, Dale W

    2010-06-23

    Although vodka is a reasonably pure mixture of alcohol and water, beverage drinks typically show differences in appeal among brands. The question immediately arises as to the molecular basis, if any, of vodka taste perception. This study shows that commercial vodkas differ measurably from ethanol-water solutions. Specifically, differences in hydrogen-bonding strength among vodkas are observed by (1)H NMR, FT-IR, and Raman spectroscopy. Component analysis of the FT-IR and Raman data reveals a water-rich hydrate of composition E x (5.3 +/- 0.1)H(2)O prevalent in both vodka and water-ethanol solutions. This composition is close to that of a clathrate-hydrate observed at low temperature, implying a cage-like morphology. A structurability parameter (SP) is defined by the concentration of the E x (5.3 +/- 0.1)H(2)O hydrate compared to pure ethanol-water at the same alcohol content. SP thus measures the deviation of vodka from "clean" ethanol-water solutions. SP quantifies the effect of a variety of trace compounds present in vodka. It is argued that the hydrate structure E x (5.3 +/- 0.1)H(2)O and its content are related to the perception of vodka.

  20. Structure and energetic characteristics of methane hydrates. From single cage to triple cage: A DFT-D study

    Science.gov (United States)

    Giricheva, N. I.; Ischenko, A. A.; Yusupov, V. I.; Bagratashvili, V. N.; Girichev, G. V.

    2017-03-01

    Electronic, geometrical, vibrational and energetic characteristics of the ice I TDT fragment consisted of dodecahedron H2O[512] (D) fused with two tetrakaidecahedrons H2O[51262] (T) and of the TDT cluster with three encapsulated CH4 molecules (3CH4·TDT) were calculated using a DFT/B97-D/6-311++G(2d,2p) approach. Binding energies, hydrogen bonding energies, energies of encapsulation of methane molecules into small D- and large T-cages of the TDT fragment, energies of frontier orbitals, the translational and librational frequencies, as well as the intramolecular vibrations of methane within the cages of different sizes were studied. Similar characteristics of isolated D- and T-cages and clathrates CH4·D and CH4·T were studied as function of compression/expansion of their oxygen skeletons using DFT/B97-D, LC-B3LYP, B3LYP-D2 methods.

  1. High-Energy Density and Superhard Nitrogen-Rich B-N Compounds

    Science.gov (United States)

    Li, Yinwei; Hao, Jian; Liu, Hanyu; Lu, Siyu; Tse, John S.

    2015-09-01

    The pressure-induced transformation of diatomic nitrogen into nonmolecular polymeric phases may produce potentially useful high-energy-density materials. We combine first-principles calculations with structure searching to predict a new class of nitrogen-rich boron nitrides with a stoichiometry of B3N5 that are stable or metastable relative to solid N2 and h -BN at ambient pressure. The most stable phase at ambient pressure has a layered structure (h -B3N5 ) containing hexagonal B3N3 layers sandwiched with intercalated freely rotating N2 molecules. At 15 GPa, a three-dimensional C 2 2 21 structure with single N-N bonds becomes the most stable. This pressure is much lower than that required for triple-to-single bond transformation in pure solid nitrogen (110 GPa). More importantly, C 2 2 21-B3N5 is metastable, and can be recovered under ambient conditions. Its energy density of ˜3.44 kJ /g makes it a potential high-energy-density material. In addition, stress-strain calculations estimate a Vicker's hardness of ˜4 4 GPa . Structure searching reveals a new clathrate sodalitelike BN structure that is metastable under ambient conditions.

  2. A protosolar nebula origin for the ices agglomerated by Comet 67P/Churyumov-Gerasimenko

    CERN Document Server

    Mousis, O; Luspay-Kuti, A; Guillot, T; Marty, B; Ali-Dib, M; Wurz, P; Altwegg, K; Bieler, A; Hässig, M; Rubin, M; Vernazza, P; Waite, J H

    2016-01-01

    The nature of the icy material accreted by comets during their formation in the outer regions of the protosolar nebula is a major open question in planetary science. Some scenarios of comet formation predict that these bodies agglomerated from crystalline ices condensed in the protosolar nebula. Concurrently, alternative scenarios suggest that comets accreted amorphous ice originating from the interstellar cloud or from the very distant regions of the protosolar nebula. On the basis of existing laboratory and modeling data, we find that the N$_2$/CO and Ar/CO ratios measured in the coma of the Jupiter family comet 67P/Churyumov-Gerasimenko by the ROSINA instrument aboard the European Space Agency's Rosetta spacecraft match those predicted for gases trapped in clathrates. If these measurements are representative of the bulk N$_2$/CO and Ar/CO ratios in 67P/Churyumov-Gerasimenko, it implies that the ices accreted by the comet formed in the nebula and do not originate from the interstellar medium, supporting the...

  3. Achievement report for fiscal 1998. Research and development of new technologies for storing farm products utilizing low-temperature energy (2nd fiscal year); 1998 nendo seika hokokusho. Teion energy wo riyoshita nosanbutsu no shinki chozo gijutsu no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The aim of the work was to create new industrial technologies utilizing low-temperature energy satisfying local needs through developing new technologies, including air conditioning technologies high in reliability and excellent in energy efficiency. The objectives of the effort were to elucidate the behavior of moisture in the atmosphere below the freezing point and to develop farm product preserving technologies, to develop highly efficient energy conversion technologies for use in the low-temperature zone, latent heat storing cold heat technologies, and system evaluation. Constructed in connection with the last-said system evaluation were three technologies, which were a below-zero high-humidity air conditioning technology based on the outcome of agricultural verification of farm product storage, energy-efficient low-temperature storage of farm products which was a combination of a low-temperature oriented energy-efficient energy conversion technology and a clathrate hydrate-aided cold heat storing technology, and a technology applicable to business in the low-temperature processing field accessorial to the said technologies. They were compared with the conventional technologies, and then it was found that the most energy-efficient system, as endorsed by a 40-50% reduction it caused in electricity rate, was a combination of a low-temperature storage, frozen food storage, hydrate cold heat storage tank, recovery facility for farm waste incineration-produced waste heat, and a pulse tube freezer. (NEDO)

  4. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.

    2016-01-01

    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.

  5. Phylogeny of the paleotropical fern genus Lepisorus (Polypodiaceae, Polypodiopsida) inferred from four chloroplast DNA regions.

    Science.gov (United States)

    Wang, Li; Qi, Xin-ping; Xiang, Qiao-ping; Heinrichs, Jochen; Schneider, Harald; Zhang, Xian-chun

    2010-01-01

    Phylogenetic relationships within the paleotropical genus Lepisorus (Polypodiaceae) were investigated using plastid DNA sequences from four regions: rbcL, rps4 and rps4-trnS IGS, trnL intron plus trnL-F IGS, rbcL-atpB IGS. Over 4000 nucleotides were sequenced for 77 specimens belonging to 54 species. Each cpDNA region was analyzed separately and combined into a single dataset. All phylogenetic analyses, maximum parsimony, maximum likelihood and Bayesian Inference of phylogeny, revealed the paraphyly of Lepisorus with the monotypic Drymotaenium miyoshianum and of the paleotropical genus Belvisia nested within the Lepisorus clade. Nine well-supported major clades were found. The phylogenetic results provided new evidence for the sectional classification of Lepisorus. The evolution of three morphological characters, clathrateness of rhizome scales, margin of rhizome scales and defoliated leaves, and the evolution of the karyotype, were reconstructed to identify lineage specific phenotypic character states or combination of characters. Unique character combinations, rather than synapomorphies, were found to be of systematic value in sectional delimitation. The variation of chromosome numbers is largely due to a single aneuploidy event instead of a stepwise reduction during the evolutionary history of this genus.

  6. DEVELOPMENT OF ATOM-ECONOMICAL CATALYTIC PATHWAYS FOR CONVERSIONS OF SYNGAS TO ENERGY LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    MAHAJAN,D.; WEGRZYN,J.E.; LEE,T.; GUREVICH,M.

    1999-03-01

    The subject of catalytic syngas conversions to fuels and chemicals is well studied (1--3). But globally, the recent focus is on development of technologies that offer an economical route to desired products (4). Economical transport of natural gas from remote locations and within clathrate hydrates is of continuing interest at Brookhaven National Laboratory (BNL). Under this project, a Liquid Phase Low Temperature (LPLT) concept is being applied to attain highly efficient transformations of natural-gas derived syngas to specific products. Furthermore, a more precise term ``Atom Economy'' has been recently introduced by Trost to describe development of highly efficient homogeneously catalyzed synthesis of organic molecules (5). Taken from reference 5, the term ``Atom Economy'' is defined as maximizing the number of atoms of all raw materials that end up in the product with any other reactant required on in catalytic amount. For application to methane transformations that may involve one or more steps, atom economy of each of these steps is critical. The authors, therefore, consider atom-economy synonymous with overall energy efficiency of a process. This paper describes potential liquid products from catalytic syngas conversions, i.e. gas to liquids (GTL) technologies and process considerations that are necessary for economical transport of natural gas. As such, the present study defines an atom-economical standard to directly compare competing GTL technologies.

  7. Elastic properties of Eu{sub 8}Ga{sub 16}Ge{sub 30}

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Isao [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)]. E-mail: ishii@hiroshima-u.ac.jp; Higaki, Haruhiro [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Morita, Shinya [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Avila, Marcos A. [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Takabatake, Toshiro [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan); Suzuki, Takashi [Department of Quantum Matter, ADSM, Hiroshima University, Higashi-Hiroshima 739-8530 (Japan)

    2007-03-15

    The clathrate compound Eu{sub 8}Ga{sub 16}Ge{sub 30} with the type-I cubic structure is expected to show rattling motion of Eu atom which is an anomalous off-center oscillation. To investigate an influence of rattling motion to the lattice system of Eu{sub 8}Ga{sub 16}Ge{sub 30}, we have measured temperature T dependence of elastic modulus (C{sub 11}-C{sub 12})/2 and ultrasonic attenuation {alpha} of a single-crystalline sample in the T range between 4.2 and 150K for ultrasonic frequencies from 20 to 150MHz. We found ultrasonic frequency dependence in both (C{sub 11}-C{sub 12})/2 and {alpha}, suggesting rattling motion of Eu atoms between 50 and 100K. We obtained a relaxation time 6.0x10{sup -11}s and an excitation energy 420K of rattling motion with {gamma}{sub 3} symmetry.

  8. Alternative process schemes for coal conversion. Progress report No. 4, September 1, 1979-March 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sansone, M.J.

    1980-04-01

    This progress report is divided into two parts. In Part A, the results of the first three progress reports which dealt with the separation of H/sub 2//CH/sub 4/ and H/sub 2//CH/sub 4//CO mixtures resulting from coal gasification processes are briefly summarized. The separation calculations were performed for ideal, cryogenic, clathrate (gas-hydrate), and absorption/stripping separation processes. The cryogenic separation indicates the least energy requirement. Work on this phase of the program has been concluded. An experimental coal gasification program is being undertaken. In Part B, a review smmary of existing and developing coal gasificaton processes is presented. The relative merits of gasifier type, heating method, operating mode, process conditions, and gasifying medium are considered. This is followed by a qualitative appraisal of several selected coal gasification processes based upon the above considerations. It is intended that this report will help focus attention on those areas in which significant process improvements can be realized. The report concludes with a series of recommendations for future work.

  9. Transient Climate Effects of Large Impacts on Titan

    Science.gov (United States)

    Zahnle, Kevin J.; Korycansky, Donald; Nixon, Conor A.

    2013-01-01

    Titan's thick atmosphere and volatile-rich surface cause it to respond to big impacts in a somewhat Earth-like manner. Here we construct a simple globally-averaged model that tracks the flow of energy through the environment in the weeks, years, and millenia after a big comet strikes Titan. The model Titan is endowed with 1.4 bars of N2 and 0.07 bars of CH4, methane lakes, a water ice crust, and enough methane underground to saturate the regolith to the surface. We find that a nominal Menrva impact is big enough to raise the surface temperature by approx. 80 K and to double the amount of methane in the atmosphere. The extra methane drizzles out of the atmosphere over hundreds of years. An upper-limit Menrva is just big enough to raise the surface to water's melting point. The putative Hotei impact (a possible 800-1200 km diameter basin, Soderblom et al., 2009) is big enough to raise the surface temperature to 350-400 K. Water rain must fall and global meltwaters might range between 50 m to more than a kilometer deep, depending on the details. Global meltwater oceans do not last more than a few decades or centuries at most, but are interesting to consider given Titan's organic wealth. Significant near-surface clathrate formation is possible as Titan cools but faces major kinetic barriers.

  10. Influence of the Mixing State of tert- Butyl Alcohol-water Mixtures on the Conformation of Bovine Serum Albumin

    Institute of Scientific and Technical Information of China (English)

    MA,Lin; WANG,Xu; XU,Li; HE,Wei-Ren; WEI,Zhi-Qiang; LIN,Rui-Sen

    2008-01-01

    The hydrodynamic radii of bovine serum albumin (BSA) in TBA-water mixtures were determined by dynamic light scattering measurements and utilized to investigate the conformational change of BSA in TBA-water mixtures, together with the analysis of the fluorescence spectra and UV-vis absorption spectra of BSA. Meanwhile, static light scattering measurements were used to probe the mixing state of the binary mixtures of TBA-water and the ternary mixtures of BSA-TBA-water and its influence on the conformation of the protein. A close relationship between the mixing state of TBA-water mixtures and the conformation of BSA was observed. The mixing state of TBA-water mixture at a low concentration was characterized by the clathrate hydrate of TBA caged by water molecules and it was found that hydrophobic binding of TBA to nonpolar groups of BSA in general destabilized the native structure of the protein, however, addition of a small amount of TBA attenuated the hydrophobic interactions among nonpolar groups of the protein and promoted a more ordered conformation. The results clearly showed that clustering of TBA at a high concentration reduced the effectiveness on destabilization of the compact conformation of proteins.

  11. Structure and Dynamics of Cold Water Super-Earths: The Case of Occluded CH4 and its Outgassing

    CERN Document Server

    Levi, Amit; Podolak, Morris

    2014-01-01

    We study the transport of methane in the external water envelopes surrounding water-rich super-Earths and estimate its outgassing into the atmosphere. We investigate the influence of methane on the thermodynamics and mechanics of the water mantle. We find that including methane in the water matrix introduces a new phase (filled ice) resulting in hotter planetary interiors. This effect renders the super-ionic and reticulating phases accessible to relatively low mass planets lacking a H/He atmosphere. We model the thermal and structural profile of the planetary crust and discuss five possible crustal regimes. The formation of methane clathrate in the subsurface is shown to inhibit the formation of a subterranean ocean. This effect results in increased stresses on the lithosphere making modes of ice plate tectonics possible. The dynamics of the tectonic plates are analysed. We derive overturn and resurfacing time scales as well as the melt fraction underneath spreading centers. Ice mantle dynamics is found to be...

  12. NEUTRON SCATTERING AND LATTICE DYNAMICAL STUDIES OF THE HIGH-PRESSURE PHASE ICE (II)

    Institute of Scientific and Technical Information of China (English)

    董顺乐; 王燕

    2001-01-01

    Lattice dynamical calculations have been carried out for ice II based on the force field constructed for ice Ih. In order to fully understand ice II inelastic neutron scattering spectra, the decomposed phonon density of states was shown mode by mode. Calculated results have shown that the hydrogen bond force constant between the six-molecule rings is significantly weaker, 75eV/nm2, compared with the force constant, 220eV/nm2, within the rings. Inelastic neutron scattering spectra of clathrate hydrate H2O+He are almost the same as ice II. This means that the absorption of He atoms cannot affect the bond strengths of the ice II host lattice. Based on the force field model for ice II, the van der Waals interactions between water molecules and helium atoms are considered. The results obtained are consistent with experimental data. Lattice dynamical calculations have been carried out for ice II using seven rigid pairwise potentials.It was found that MCY makes the stretching and bending interactions in ice II too weak and makes the O-O bond length too long (~5%), thus its lattice densities are obviously lower than other potential lattices or experimental values.

  13. Hydration dynamics of the collagen triple helix by NMR.

    Science.gov (United States)

    Melacini, G; Bonvin, A M; Goodman, M; Boelens, R; Kaptein, R

    2000-07-28

    The hydration of the collagen-like Ac-(Gly-Pro-Hyp)(6)-NH(2) triple-helical peptide in solution was investigated using an integrated set of high-resolution NMR hydration experiments, including different recently developed exchange-network editing methods. This approach was designed to explore the hydration dynamics in the proximity of labile groups, such as the hydroxyproline hydroxyl group, and revealed that the first shell of hydration in collagen-like triple helices is kinetically labile with upper limits for water molecule residence times in the nanosecond to sub-nanosecond range. This result is consistent with a "hopping" hydration model in which solvent molecules are exchanged in and out of solvation sites at a rate that is not directly correlated to the degree of site localization. The hopping model thus reconciles the dynamic view of hydration revealed by NMR with the previously suggested partially ordered semi-clathrate-like cylinder of hydration. In addition, the nanosecond to sub-nanosecond upper limits for water molecule residence times imply that hydration-dehydration events are not likely to be the rate-limiting step for triple helix self-recognition, complementing previous investigations on water dynamics in collagen fibers. This study has also revealed labile proton features expected to facilitate the characterization of the structure and folding of triple helices in collagen peptides.

  14. A novel, tunable manganese coordination system based on a flexible "spacer" unit: noncovalent templation effects.

    Science.gov (United States)

    Tabellion, F M; Seidel, S R; Arif, A M; Stang, P J

    2001-12-05

    The reaction of bis(hexafluoroacetylacetonato)manganese(II) trihydrate (2), an approximately 90 degrees corner unit, with flexible linking unit 4,4'-trimethylenedipyridine (1) allows for the potential formation of three different types of solid-state coordination species: infinite helical polymers, closed dimeric systems, and infinite one-dimensional polymers. While the un-templated starting material is known to give a coordination helix, the other two possible species can be realized through the selective use of a variety of simple, organic guests: toluene (3), diphenylmethane (4), cis-stilbene (5), 1,3-diphenylpropane (6), benzyl alcohol (7), nitrobenzene (8), and cyanobenzene (9). When solutions of 1 and 2 are crystallized in the presence of all of these clathrates, the dimeric macrocycles result in all cases, except for that of 6, in which a syndiotactic, wedge-shaped polymer forms. Employing a linker that is less rigid than is typically used in crystal engineering, such as 1, enables the nucleophilic donor subunit to be more than just a simple "spacer", instead making it an essential, tunable component in the overall crystal lattice. In so doing, a great deal of molecular "information" is lost, but this is compensated for by an in-depth investigation into the weaker host-guest and/or guest-guest interactions, such as nonclassical hydrogen bonding and an assortment of hydrophobic interactions, present in the various systems.

  15. Fluid Inclusions in the Gold-Bearing Quartz Veins at Um Rus Area, Eastern Desert, Egypt

    Institute of Scientific and Technical Information of China (English)

    MOHAMED EL TOKHI; ABDALLA EL MUSLEM

    2002-01-01

    Fluid inclusions in the gold-bearing quartz veins at the Um Rus area are of three types: H2O, H2O-CO2 and CO2 inclusions. H2O inclusions are the most abundant, they include two phases which exhibit low and high homogenization temperatures ranging from 150 to200℃ and 175 to 250℃, respectively. The salinity of aqueous inclusions, based on ice melting, varies between 6.1 and 8 equiv. wt% NaCl. On the other hand, H2O-CO2 fluid inclusions include three phases. Their total homogenization temperatures range from 270 to 325℃,and their salinity, based on clathrate melting, ranges between 0.8 and 3.8 equiv. wt % NaCl.CO2 fluid inclusions homogenize to a liquid phase and exhibit a low density range from 0.52 to0.66 g/cm3. The partial mixing of H2O-CO2 and salt H2O-NaCl fluid inclusions is the main source of fluids from which the other types of inclusions were derived. The gold-bearing quartz veins are believed to be of medium temperature hydrothermal convective origin.

  16. Decades-scale degradation of commercial, side-chain, fluorotelomer-based polymers in soils and water.

    Science.gov (United States)

    Washington, John W; Jenkins, Thomas M; Rankin, Keegan; Naile, Jonathan E

    2015-01-20

    Fluorotelomer-based polymers (FTPs) are the primary product of the fluorotelomer industry. Here we report on a 376-day study of the degradability of two commercial acrylate-linked FTPs in four saturated soils and in water. Using an exhaustive serial extraction, we report GC/MS and LC/MS/MS results for 50 species including fluorotelomer alcohols and acids, and perfluorocarboxylates. Modeling of seven sampling rounds, each consisting of ≥5 replicate microcosm treatments, for one commercial FTP in one soil yielded half-life estimates of 65–112 years and, when the other commercial FTP and soils were evaluated, the estimated half-lives ranged from 33 to 112 years. Experimental controls, consisting of commercial FTP in water, degraded roughly at the same rate as in soil. A follow-up experiment, with commercial FTP in pH 10 water, degraded roughly 10-fold faster than the circum-neutral control suggesting that commercial FTPs can undergo OH–-mediated hydrolysis. 8:2Fluorotelomer alcohol generated from FTP degradation in soil was more stable than without FTP present suggesting a clathrate guest–host association with the FTP. To our knowledge, these are the only degradability-test results for commercial FTPs that have been generated using exhaustive extraction procedures. They unambiguously show that commercial FTPs, the primary product of the fluorotelomer industry, are a source of fluorotelomer and perfluorinated compounds to the environment.

  17. Seasonal and spatial variation in species diversity, abundance, and element accumulation capacities of macroalgae in mangrove forests of Zhanjiang, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yubin; LI Yuan; SHI Fei; SUN Xingli; LIN Guanghui

    2014-01-01

    The objective of this study was to investigate whether there was distinctive seasonal and zonal variation in the species diversity, biomass, and element accumulation capacities of macroalgae in two major intertidal mangrove stand types (Avicennia marina assemblage andSonneratia apetala assemblage) in the Zhanjiang region of southern China. Over a year, 31 species in 15 genera were identified in both mangrove assem-blages, of which the dominant species wereCladophoropsis zollingeriand Enteromorpha clathrat.Macroal-gal species were significantly most abundant in spring (p<0.05), followed by summer, winter, and autumn. Variation in the zonal distribution of macroalgal species was conspicuous in both intertidal mangrove as-semblages, with the greatest abundance in the middle zone, and the least in the front zone. Patterns in the seasonal and zonal variation in macroalgal biomass in theS. apetalaassemblage were similar to those of macroalgal species diversity in both mangrove assemblages. The seasonal patterns in tissue concentrations of 15 analyzed elements were not uniform among the macroalgaeC. zollingeri,E. clathrata, andGracilaria salicornia in theA. marina assemblage. All three species exhibited variation in their responses to ambient concentrations of different elements, implying their differential ability to absorb and selectively accumulate certain elements.

  18. Quantum simulations of the hydrogen molecule on ammonia clusters

    Science.gov (United States)

    Mella, Massimo; Curotto, E.

    2013-09-01

    Mixed ammonia-hydrogen molecule clusters [H2-(NH3)n] have been studied with the aim of exploring the quantitative importance of the H2 quantum motion in defining their structure and energetics. Minimum energy structures have been obtained employing genetic algorithm-based optimization methods in conjunction with accurate pair potentials for NH3-NH3 and H2-NH3. These include both a full 5D potential and a spherically averaged reduced surface mimicking the presence of a para-H2. All the putative global minima for n ⩾ 7 are characterized by H2 being adsorbed onto a rhomboidal ammonia tetramer motif formed by two double donor and two double acceptor ammonia molecules. In a few cases, the choice of specific rhombus seems to be directed by the vicinity of an ammonia ad-molecule. Diffusion Monte Carlo simulations on a subset of the species obtained highlighted important quantum effects in defining the H2 surface distribution, often resulting in populating rhomboidal sites different from the global minimum one, and showing a compelling correlation between local geometrical features and the relative stability of surface H2. Clathrate-like species have also been studied and suggested to be metastable over a broad range of conditions if formed.

  19. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle

    Science.gov (United States)

    Brewer, Peter G.; Orr, Franklin M., Jr.; Friederich, Gernot; Kvenvolden, Keith A.; Orange, Daniel L.; McFarlane, James; Kirkwood, William

    1997-05-01

    We have observed the process of formation of clathrate hydrates of methane in experiments conducted on the remotely operated vehicle (ROV) Ventana in the deep waters of Monterey Bay. A tank of methane gas, acrylic tubes containing seawater, and seawater plus various types of sediment were carried down on Ventana to a depth of 910 m where methane gas was injected at the base of the acrylic tubes by bubble stream. Prior calculations had shown that the local hydrographic conditions gave an upper limit of 525 m for the P-T boundary defining methane hydrate formation or dissociation at this site, and thus our experiment took place well within the stability range for this reaction to occur. Hydrate formation in free seawater occurred within minutes as a buoyant mass of translucent hydrate formed at the gas-water interface. In a coarse sand matrix the filling of the pore spaces with hydrate turned the sand column into a solidified block, which gas pressure soon lifted and ruptured. In a fine-grained black mud the gas flow carved out flow channels, the walls of which became coated and then filled with hydrate in larger discrete masses. Our experiment shows that hydrate formation is rapid in natural seawater, that sediment type strongly influences the patterns of hydrate formation, and that the use of ROV technologies permits the synthesis of large amounts of hydrate material in natural systems under a variety of conditions so that fundamental research on the stability and growth of these substances is possible.

  20. DFT-based inhibitor and promoter selection criteria for pentagonal dodecahedron methane hydrate cage

    Indian Academy of Sciences (India)

    Snehanshu Pal; T K Kundu

    2013-09-01

    Density functional theory (DFT)-based simulations have been performed to provide electronic structure property correlation based reasoning for conceptualizing the effect of encapsulated methane molecule on the formation of methane hydrate cages, the role of methanol and ethylene glycol as inhibitor and the role of tetra-hydro-furan (THF) and cyclopentane as promoter of methane hydrate. Geometry optimization of 512 cage, 51262 cage and 51264 cage with and without encapsulated methane and the cluster of 512 cage with ethylene glycol, methanol, cyclopentane have been performed by density functional theory using B97X-D/6-31++G(d,p) method. Methane hydrate formation inhibition by methanol and ethylene glycol as well as methane hydrate stabilization by cyclopentane and tetrahydrofuran are critically analysed based on the interaction energy, free energy change, dipole moment and infrared frequency calculation. Calculation of free energy change for formation of methane hydrate with/without reagents at various temperature and pressure using optimized structure is reported here. It is observed that hydrogen bond between water molecules of clathrate 512 cages become stronger in the presence of cyclopentane and tetrahydrofuran but weaker/broken in the presence of ethylene glycol and methanol. Simulated results correspond well with experimental findings and can be useful for designing new inhibitor and promoter molecules for gas hydrate formation.

  1. Survey of solar thermal energy storage subsystems for thermal/electric applications

    Energy Technology Data Exchange (ETDEWEB)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3) 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.

  2. Hydration of amino acids: FTIR spectra and molecular dynamics studies.

    Science.gov (United States)

    Panuszko, Aneta; Adamczak, Beata; Czub, Jacek; Gojło, Emilia; Stangret, Janusz

    2015-11-01

    The hydration of selected amino acids, alanine, glycine, proline, valine, isoleucine and phenylalanine, has been studied in aqueous solutions by means of FTIR spectra of HDO isotopically diluted in H2O. The difference spectra procedure and the chemometric method have been applied to remove the contribution of bulk water and thus to separate the spectra of solute-affected HDO. To support interpretation of obtained spectral results, molecular dynamics simulations of amino acids were performed. The structural-energetic characteristic of these solute-affected water molecules shows that, on average, water affected by amino acids forms stronger and shorter H-bonds than those in pure water. Differences in the influence of amino acids on water structure have been noticed. The effect of the hydrophobic side chain of an amino acid on the solvent interactions seems to be enhanced because of the specific cooperative coupling of water strong H-bond chain, connecting the carboxyl and amino groups, with the clathrate-like H-bond network surrounding the hydrocarbon side chain. The parameter derived from the spectral data, which corresponds to the contributions of the population of weak hydrogen bonds of water molecules which have been substituted by the stronger ones in the hydration sphere of amino acids, correlated well with the amino acid hydrophobicity indexes.

  3. Titan and habitable planets around M-dwarfs.

    Science.gov (United States)

    Lunine, Jonathan I

    2010-01-01

    The Cassini-Huygens mission discovered an active "hydrologic cycle" on Saturn's giant moon Titan, in which methane takes the place of water. Shrouded by a dense nitrogen-methane atmosphere, Titan's surface is blanketed in the equatorial regions by dunes composed of solid organics, sculpted by wind and fluvial erosion, and dotted at the poles with lakes and seas of liquid methane and ethane. The underlying crust is almost certainly water ice, possibly in the form of gas hydrates (clathrate hydrates) dominated by methane as the included species. The processes that work the surface of Titan resemble in their overall balance no other moon in the solar system; instead, they are most like that of the Earth. The presence of methane in place of water, however, means that in any particular planetary system, a body like Titan will always be outside the orbit of an Earth-type planet. Around M-dwarfs, planets with a Titan-like climate will sit at 1 AU--a far more stable environment than the approximately 0.1 AU where Earth-like planets sit. However, an observable Titan-like exoplanet might have to be much larger than Titan itself to be observable, increasing the ratio of heat contributed to the surface atmosphere system from internal (geologic) processes versus photons from the parent star.

  4. Modeling the methane hydrate formation in an aqueous film submitted to steady cooling

    Energy Technology Data Exchange (ETDEWEB)

    Avendano-Gomez, J.R. [ESIQIE, Laboratorio de Ingenieria Quimica Ambiental, Mexico (Mexico). Inst. Politecnico Nacional; Garcia-Sanchez, F. [Laboratorio de Termodinamica, Mexico (Mexico). Inst. Mexicano del Petroleo; Gurrola, D.V. [UPIBI, Laboratorio de Diseno de Plantas, Mexico (Mexico). Inst. Politecnico Nacional

    2008-07-01

    Gas hydrates, or clathrate hydrates, are ice-like compounds that results from the kinetic process of crystallization of an aqueous solution supersaturated with a dissolved gas. This paper presented a model that took into account two factors involved in the hydrate crystallization, notably the stochastic nature of crystallization that causes sub-cooling and the heat resulting from the exothermic enthalpy of hydrate formation. The purpose of this study was to model the thermal evolution inside a hydrate forming system which was submitted to an imposed steady cooling. The study system was a cylindrical thin film of aqueous solution at 19 Mpa. The study involved using methane as the hydrate forming molecule. It was assumed that methane was homogeneously dissolved in the aqueous phase. Ethane hydrate was formed through a kinetic process of nucleation and crystallization. In order to predict the onset time of nucleation, the induction time needed to be considered. This paper discussed the probability of nucleation as well as the estimation of the rate of nucleation. It also presented the mathematical model and boundary conditions. These included assumptions and derivation of the model; boundary conditions; initial conditions; and numerical solution of the model equation. It was concluded that the heat source must be considered when investigating crystallization effects. 34 refs., 2 tabs., 2 figs.

  5. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate

    Science.gov (United States)

    Hamdan, Leila J.; Wickland, Kimberly P.

    2016-01-01

    Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions from many natural sources are sensitive to climate, and positive feedbacks from climate change and cultural eutrophication may promote increased emissions to the atmosphere. These natural sources include aquatic environments such as wetlands, freshwater lakes, streams and rivers, and estuarine, coastal, and marine systems. Furthermore, there are significant marine sediment stores of methane in the form of clathrates that are vulnerable to mobilization and release to the atmosphere from climate feedbacks, and subsurface thermogenic gas which in exceptional cases may be released following accidents and disasters (North Sea blowout and Deepwater Horizon Spill respectively). Understanding of natural sources, key processes, and controls on emission is continually evolving as new measurement and modeling capabilities develop, and different sources and processes are revealed. This special issue of Limnology and Oceanography gathers together diverse studies on methane production, consumption, and emissions from freshwater, estuarine, and marine systems, and provides a broad view of the current science on methane dynamics of aquatic ecosystems. Here, we provide a general overview of aquatic methane sources, their contribution to the global methane budget, and key uncertainties. We then briefly summarize the contributions to and highlights of this special issue.

  6. VIS-NIR Spectrophotometric Study of the Saturnian icy Satellites by Cassini-VIMS

    Science.gov (United States)

    Filacchione, G.; Capaccioni, F.; Tosi, F.; Coradini, A.; Cerroni, P.; Adriani, A.; McCord, T. B.; Baines, K. H.; Bellucci, G.; Brown, R. H.; Bibring, J.; Buratti, B. J.; Clark, R. N.; Combes, M.; Cruikshank, D. P.; Formisano, V.; Jaumann, R.; Langevin, Y. G.; Matson, D. L.; Mennella, V.; Nelson, R. M.; Nicholson, P. D.; Sicardy, B.; Sotin, C.

    2007-12-01

    After the first three years of the nominal mission aboard the Cassini probe the VIMS (Visual and Infrared Mapping Spectrometer) experiment has collected more than one thousand useful full-disk observations of both regular (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus, Phoebe) and minor (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso) icy moons of Saturn. These data, acquired from a variety of distances and inclinations from the equatorial plane, with different phase angles and hemispheric coverage, are analyzed by using several spectroscopic indicators (I/F continuum level, slopes, bands strengths) in order to identify analogies and differences in the compositional units of satellites and derive the phase curves at different longitudes; many observations acquired close to zero phase angle allow us to measure the opposition surge effect on several satellites. Concerning the composition we have derived the distribution of the water ice abundance and grain size from the almost pure icy surfaces of Enceladus and Calypso to the organic rich Hyperion, Iapetus and Phoebe. We report about the differences observed in the CO2 band position which is shifted at shorter wavelengths on Hyperion respect to Phoebe and Iapetus; this effect is probably related to a different distribution of clathrates on these icy surfaces. This research was completed thanks to the support of the Italian Space Agency (ASI).

  7. Atomistic modeling of structure II gas hydrate mechanics: Compressibility and equations of state

    Directory of Open Access Journals (Sweden)

    Thomas M. Vlasic

    2016-08-01

    Full Text Available This work uses density functional theory (DFT to investigate the poorly characterized structure II gas hydrates, for various guests (empty, propane, butane, ethane-methane, propane-methane, at the atomistic scale to determine key structure and mechanical properties such as equilibrium lattice volume and bulk modulus. Several equations of state (EOS for solids (Murnaghan, Birch-Murnaghan, Vinet, Liu were fitted to energy-volume curves resulting from structure optimization simulations. These EOS, which can be used to characterize the compressional behaviour of gas hydrates, were evaluated in terms of their robustness. The three-parameter Vinet EOS was found to perform just as well if not better than the four-parameter Liu EOS, over the pressure range in this study. As expected, the Murnaghan EOS proved to be the least robust. Furthermore, the equilibrium lattice volumes were found to increase with guest size, with double-guest hydrates showing a larger increase than single-guest hydrates, which has significant implications for the widely used van der Waals and Platteeuw thermodynamic model for gas hydrates. Also, hydrogen bonds prove to be the most likely factor contributing to the resistance of gas hydrates to compression; bulk modulus was found to increase linearly with hydrogen bond density, resulting in a relationship that could be used predictively to determine the bulk modulus of various structure II gas hydrates. Taken together, these results fill a long existing gap in the material chemical physics of these important clathrates.

  8. Interactions of methanol, ethanol, and 1-propanol with polar and nonpolar species in water at cryogenic temperatures.

    Science.gov (United States)

    Souda, Ryutaro

    2017-01-18

    Methanol is known as a strong inhibitor of hydrate formation, but clathrate hydrates of ethanol and 1-propanol can be formed in the presence of help gases. To elucidate the hydrophilic and hydrophobic effects of alcohols, their interactions with simple solute species are investigated in glassy, liquid, and crystalline water using temperature-programmed desorption and time-of-flight secondary ion mass spectrometry. Nonpolar solute species embedded underneath amorphous solid water films are released during crystallization, but they tend to withstand water crystallization under the coexistence of methanol additives. The CO2 additives are released after crystallization along with methanol desorption. These results suggest strongly that nonpolar species that are hydrated (i.e., caged) associatively with methanol can withstand water crystallization. In contrast, ethanol and 1-propanol additives weakly affect the dehydration of nonpolar species during water crystallization, suggesting that the former tend to be caged separately from the latter. The hydrophilic vs. hydrophobic behavior of alcohols, which differs according to the aliphatic group length, also manifests itself in the different abilities of surface segregation of alcohols and their effects on the water crystallization kinetics.

  9. Gas Hydrates as a CH4 Source and a CO2 Sink: New Approaches Based on Fundamental Research

    Science.gov (United States)

    Schicks, J. M.; Spangenberg, E.; Erzinger, J.

    2007-12-01

    The huge amount of methane, stored in the gas hydrate reservoirs of the world suggests that natural gas hydrates may be used in the future as a source of energy. A first production test was performed during the Mallik 2002 Gas Hydrate Production Research Well Program, showing that the thermal stimulation of natural gas hydrates successfully results in methane production (Dallimore et al. 2005). However, regarding the energy balance, the most efficient method for methane production from hydrates still needs to be developed. From another point of view, the sequestration of CO2 in form of gas hydrates in (marine) sediments is an interesting idea. A combination of methane production from natural gas hydrates on the one hand and CO2 - sequestration on the other hand seems to be an obvious and ideal solution. Different studies on possible methods - e.g. the exchange of CH4 with CO2 in gas hydrates (Lee et al, 2003, Graue and Kvamme, 2006) - have been published recently and demonstrated that this could be a possible way, in principle. Our own investigations on the exchange of CH4 with gaseous CO2 showed that this reaction is much too slow and inefficient to be a reasonable approach. The exchange of only 20 percent CH4 with CO2 could be detected in stable structure I hydrate crystals after 120 hours. In addition, multicomponent hydrates containing higher hydrocarbons beside methane tend to be more stable than pure methane hydrates (Schicks et al, 2006). Therefore, the application of an additional and controlled method for CH4 -hydrate destabilization seems to be necessary and might lead to an efficient release of CH4 from and CO2 inclusion into hydrates. In any case, the question of process optimization still remains. In this contribution the chances and challenges of a combination of these two processes based on experimental data will be examined. Different kinds of experiments have been performed on natural marine and permafrost gas hydrates and synthesized clathrate

  10. Inferred gas hydrate and permafrost stability history models linked to climate change in the Beaufort-Mackenzie Basin, Arctic Canada

    Directory of Open Access Journals (Sweden)

    J. Majorowicz

    2012-03-01

    Full Text Available Atmospheric methane from episodic gas hydrate (GH destabilization, the "clathrate gun" hypothesis, is proposed to affect past climates, possibly since the Phanerozoic began or earlier. In the terrestrial Beaufort-Mackenzie Basin (BMB, GHs occur commonly below thick ice-bearing permafrost (IBP, but they are rare within it. Two end-member GH models, where gas is either trapped conventionally (Case 1 or where it is trapped dynamically by GH formation (Case 2, were simulated using profile (1-D models and a 14 Myr ground surface temperature (GST history based on marine isotopic data, adjusted to the study setting, constrained by deep heat flow, sedimentary succession conductivity, and observed IBP and Type I GH contacts in Mallik wells. Models consider latent heat effects throughout the IBP and GH intervals. Case 1 GHs formed at ~0.9 km depth only ~1 Myr ago by in situ transformation of conventionally trapped natural gas. Case 2 GHs begin to form at ~290–300 m ~6 Myr ago in the absence of lithological migration barriers. During glacial intervals Case 2 GH layers expand both downward and upward as the permafrost grows downward through and intercalated with GHs. The distinctive model results suggest that most BMB GHs resemble Case 1 models, based on the observed distinct and separate occurrences of GHs and IBP and the lack of observed GH intercalations in IBP. Case 2 GHs formed >255 m, below a persistent ice-filled permafrost layer that is as effective a seal to upward methane migration as are Case 1 lithological seals. All models respond to GST variations, but in a delayed and muted manner such that GH layers continue to grow even as the GST begins to increase. The models show that the GH stability zone history is buffered strongly by IBP during the interglacials. Thick IBP and GHs could have persisted since ~1.0 Myr ago and ~4.0 Myr ago for Cases 1 and 2, respectively. Offshore BMB IBP and GHs formed terrestrially during Pleistocene sea level low

  11. Methane and nitrous oxide in the ice core record.

    Science.gov (United States)

    Wolff, Eric; Spahni, Renato

    2007-07-15

    Polar ice cores contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the ice and so far limited interpretation. In the recent past, the ice cores provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650,000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial-interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard-Oeschger warmings of the last glacial period, methane rose by around half its glacial-interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650,000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard-Oeschger and glacial-interglacial periodicity, but the pattern is less clear.

  12. Sequestering carbon dioxide in industrial polymers: Building materials for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Molton, P.M.; Nelson, D.A.

    1993-06-01

    This study was undertaken to determine the possibility of developing beneficial uses for carbon dioxide as a key component for a large-volume building product. Such a use may provide an alternative to storing the gas in oceanic sinks or clathrates as a way to slow the rate of global warming. The authors investigated the concept that carbon dioxide might be used with other chemicals to make carbon-dioxide-based polymers which would be lightweight, strong, and economical alternatives to some types of wood and silica-based building materials. As a construction-grade material, carbon dioxide would be fixed in a solid, useful form where it would not contribute to global warming. With the probable imposition of a fuel carbon tax in industrialized countries, this alternative would allow beneficial use of the carbon dioxide and could remove it from the tax basis if legislation were structured appropriately. Hence, there would be an economic driver towards the use of carbon-dioxide-based polymers which would enhance their future applications. Information was obtained through literature searches and personal contacts on carbon dioxide polymers which showed that the concept (1) is technically feasible, (2) is economically defensible, and (3) has an existing industrial infrastructure which could logically develop it. The technology exists for production of building materials which are strong enough for use by industry and which contain up to 90% by weight of carbon dioxide, both chemically and physically bound. A significant side-benefit of using this material would be that it is self-extinguishing in case of fire. This report is the first stage in the investigation. Further work being proposed will provide details on costs, specific applications and volumes, and potential impacts of this technology.

  13. An integrated biomarker, isotopic and palaeoenvironmental study through the Late Permian event at Lusitaniadalen, Spitsbergen

    Science.gov (United States)

    Nabbefeld, Birgit; Grice, Kliti; Twitchett, Richard J.; Summons, Roger E.; Hays, Lindsay; Böttcher, Michael E.; Asif, Muhammad

    2010-03-01

    The largest extinction of the Phanerozoic occurred near the Permian/Triassic (P/Tr) boundary some 252 Ma ago. Several scenarios and drivers have been proposed for this event. Here we report for the first time an integrated study comprising sedimentological data, biomarker distributions/abundances and selected stable carbon and hydrogen isotopes along with bulk isotopes (δ 34S pyrite, δ 13C carb, δ 13C org) for a Late Permian section from Lusitaniadalen, Spitsbergen, Norway. Sedimentological and geochemical data support a marine transgression and collapse of the marine ecosystem in the Late Permian. Strong evidence for waxing and waning of photic zone euxinia throughout the Late Permian is provided by Chlorobiaceae-derived biomarkers (including δ 13C data) and δ 34S pyrite, implying multiple phases of H 2S outgassing and potentially several pulses of extinction. A rapid decrease in abundance of various land-plant biomarkers prior to the marine collapse event indicates a dramatic decline of land-plants during the Late Permian and/or increasing distance from palaeoshoreline as a consequence of sea level rise. Changes in δD of selected biomarkers also suggest a change in source of organic matter (OM) or sea level rise. We also found biomarker and isotopic evidence for a phytoplanktonic bloom triggered by eutrophication as a consequence of the marine collapse. Compound specific isotope analyses (CSIA) of algal and land-plant-derived biomarkers, as well as δ 13C of carbonate and bulk OM provide strong evidence for synchronous changes in δ 13C of marine and atmospheric CO 2, attributed to a 13C-depleted source. The source could be associated with isotopically depleted methane released from the melting of gas clathrates and/or from respired OM, due to collapse of the marine ecosystem.

  14. The Imprint of Exoplanet Formation History on Observable Present-day Spectra of Hot Jupiters

    Science.gov (United States)

    Mordasini, C.; van Boekel, R.; Mollière, P.; Henning, Th.; Benneke, Björn

    2016-11-01

    The composition of a planet’s atmosphere is determined by its formation, evolution, and present-day insolation. A planet’s spectrum therefore may hold clues on its origins. We present a “chain” of models, linking the formation of a planet to its observable present-day spectrum. The chain links include (1) the planet’s formation and migration, (2) its long-term thermodynamic evolution, (3) a variety of disk chemistry models, (4) a non-gray atmospheric model, and (5) a radiometric model to obtain simulated spectroscopic observations with James Webb Space Telescope and ARIEL. In our standard chemistry model the inner disk is depleted in refractory carbon as in the Solar System and in white dwarfs polluted by extrasolar planetesimals. Our main findings are: (1) envelope enrichment by planetesimal impacts during formation dominates the final planetary atmospheric composition of hot Jupiters. We investigate two, under this finding, prototypical formation pathways: a formation inside or outside the water iceline, called “dry” and “wet” planets, respectively. (2) Both the “dry” and “wet” planets are oxygen-rich (C/O planet’s C/O ratio is planet has typical C/O values between 0.1 and 0.5 depending mainly on the clathrate formation efficiency. Only non-standard disk chemistries without carbon depletion lead to carbon-rich C/O ratios >1 for the “dry” planet. (3) While we consistently find C/O ratios <1, they still vary significantly. To link a formation history to a specific C/O, a better understanding of the disk chemistry is thus needed.

  15. 沉积盆地中的流体包裹体:理论基础、图解与分析方法%Fluid inclusions in sedimentary basins:Theoretical basis, diagrams, analytical techniques

    Institute of Scientific and Technical Information of China (English)

    Jean DUBESSY

    2004-01-01

    This paper is focused on the methods to study fluid inclusions in order to get the relevant information. First, the H2 Osalts systems are described and special attention is made upon the determination of the composition from microthermometric data and using new analytical techniques. Application to the study of fluid mixing is exemplified. The different diagrams of H2O-( gas)-salts systems with special attention of the CO2-CH4 system are presented. The complexity of the H2 O-( gas)-salts systems at low temperature, due to the presence of clathrates, is described. The use of micro-Raman spectrometry is specially focused for methanebearing aqueous fluids. The identification of the immiscibility process based on phase diagrams analysis is detailed.%本文主要介绍如何利用流体包裹体来获得合理的数据.首先对H2O-体系进行总结,着重介绍利用显微测温法和其他新的分析技术来确定流体的组成,并举例说明流体混合在流体包裹体研究中的应用.介绍了H2O-(气)-盐体系特别是CO2-CH4体系的图解,探讨了在低温下由于笼合物的形成H2O-(气)-盐体系的复杂相变.重点介绍显微激光拉曼光谱仪在含甲烷水溶液流体中的应用,并根据相图详细讨论了如何确定流体的不混溶.

  16. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode

    Science.gov (United States)

    de Garidel-Thoron, Thibault; Beaufort, Luc; Bassinot, Franck; Henry, Pierre

    2004-01-01

    Past atmospheric methane-concentration oscillations recorded in polar ice cores vary together with rapid global climatic changes during the last glacial episode. In the “clathrate gun hypothesis,” massive releases of deep-sea methane from marine gas-hydrate dissociation led to these well known, global, abrupt warmings in the past. If evidence for such releases in the water column exists, however, the mechanism and eventual transfer to the atmosphere has not yet been documented clearly. Here we describe a high-resolution marine-sediment record of stable carbon isotopic changes from the Papua Gulf, off Papua New Guinea, which exhibits two extremely depleted excursions (down to -9‰) at ≈39,000 and ≈55,000 years. Morphological, isotopic, and trace metal evidence dismisses authigenic calcite as the main source of depleted carbon. Massive methane release associated with deep-sea gas-hydrate dissociation is the most likely cause for such large depletions of δ13C. The absence of a δ13C gradient in the water column during these events implies that the methane rose through the entire water column, reaching the sea–air interface and thus the atmosphere. Foraminiferal δ18O composition suggests that the rise of the methane in the water column created an upwelling flow. These inferred emission events suggest that during the last glacial episode, this process was likely widespread, including tropical regions. Thus, the release of methane from the ocean floor into the atmosphere cannot be dismissed as a strong positive feedback in climate dynamics processes. PMID:15197255

  17. Integrative taxonomy and molecular phylogeny of genus Aplysina (Demospongiae: Verongida from Mexican Pacific.

    Directory of Open Access Journals (Sweden)

    José Antonio Cruz-Barraza

    Full Text Available Integrative taxonomy provides a major approximation to species delimitation based on integration of different perspectives (e.g. morphology, biochemistry and DNA sequences. The aim of this study was to assess the relationships and boundaries among Eastern Pacific Aplysina species using morphological, biochemical and molecular data. For this, a collection of sponges of the genus Aplysina from the Mexican Pacific was studied on the basis of their morphological, chemical (chitin composition, and molecular markers (mitochondrial COI and nuclear ribosomal rDNA: ITS1-5.8-ITS2. Three morphological species were identified, two of which are new to science. A. clathrata sp. nov. is a yellow to yellow-reddish or -brownish sponge, characterized by external clathrate-like morphology; A. revillagigedi sp. nov. is a lemon yellow to green, cushion-shaped sometimes lobate sponge, characterized by conspicuous oscules, which are slightly elevated and usually linearly distributed on rims; and A. gerardogreeni a known species distributed along the Mexican Pacific coast. Chitin was identified as the main structural component within skeletons of the three species using FTIR, confirming that it is shared among Verongida sponges. Morphological differences were confirmed by DNA sequences from nuclear ITS1-5.8-ITS2. Mitochondrial COI sequences showed extremely low but diagnostic variability for Aplysina revillagigedi sp. nov., thus our results corroborate that COI has limited power for DNA-barcoding of sponges and should be complemented with other markers (e.g. rDNA. Phylogenetic analyses of Aplysina sequences from the Eastern Pacific and Caribbean, resolved two allopatric and reciprocally monophyletic groups for each region. Eastern Pacific species were grouped in general accordance with the taxonomic hypothesis based on morphological characters. An identification key of Eastern Pacific Aplysina species is presented. Our results constitute one of the first approximations

  18. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars

    Science.gov (United States)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2015-04-01

    We model the transport of gas through the martian subsurface in order to quantify the timescales of release of a trace gas with a source at depth using a Fickian model of diffusion through a putative martian regolith column. The model is then applied to the case of methane to determine if diffusive transport of gas can explain previous observations of methane in the martian atmosphere. We investigate which parameters in the model have the greatest effect on transport timescales and show that the calculated diffusivity is very sensitive to the pressure profile of the subsurface, but relatively insensitive to the temperature profile, though diffusive transport may be affected by other temperature dependent properties of the subsurface such as the local vapour pressure. Uncertainties in the structure and physical conditions of the martian subsurface also introduce uncertainties in the timescales calculated. It was found that methane may take several hundred thousand Mars-years to diffuse from a source at depth. Purely diffusive transport cannot explain transient release that varies on timescales of less than one martian year from sources such as serpentinization or methanogenic organisms at depths of more than 2 km. However, diffusion of gas released by the destabilisation of methane clathrate hydrates close to the surface, for example caused by transient mass wasting events or erosion, could produce a rapidly varying flux of methane into the atmosphere of more than 10-3 kg m-2 s-1 over a duration of less than half a martian year, consistent with observations of martian methane variability. Seismic events, magmatic intrusions or impacts could also potentially produce similar patterns of release, but are far more complex to simulate.

  19. Basins and the South Polar Terrain of Enceladus: Hotspots vs. Coldspots, and More Evidence for Crustal Spreading and Convergence

    Science.gov (United States)

    McKinnon, William B.; Schenk, P. M.

    2009-09-01

    Stereo-derived topographic mapping of 50% of Enceladus reveals at least 6 large-scale, ovoid depressions (basins) 90-175 km across and 800-to-1500 m deep and uncorrelated with geologic boundaries (Schenk and McKinnon, GRL, in press). Their shape and scale are inconsistent with impact, geoid deflection, or with dynamically supported topography. Isostatic thinning of Enceladus’ ice shell associated with upwellings (and tidally-driven ice melting) can plausibly account for the basins. Thinning implies upwarping of the base of the shell of 10-20 km beneath the depressions, depending on total shell thickness; loss of near-surface porosity due to enhanced heat flow may also contribute to basin lows. Alternatively, the basins may overly cold, inactive, and hence denser ice, but thermal isostasy alone requires thermal expansion more consistent with clathrate hydrate than water ice. In contrast to the basins, the south polar depression (SPD) is larger ( 350 wide) and shallower ( 0.4-to-0.8 km deep) and correlates with the area of tectonic deformation and active resurfacing. The SPD also differs in that the floor is relatively flat (i.e., conforms roughly to the global triaxial shape, or geoid) with broad, gently sloping flanks. The relative flatness across the SPD suggests that it is in or near isostatic equilibrium, and underlain by denser material, supporting the polar sea hypothesis of Collins and Goodman [2007]. Near flatness is also predicted by a crustal spreading origin for the "tiger stripes” [e.g., Barr, 2008]; the extraordinary, high CIRS heat flows imply half-spreading rates in excess of 10 cm/yr, a very young surface age ( 250,000 yr), and a rather thin lithosphere (hence modest thermal topography). Topographic rises in places along the outer margin of the SPD correlate with parallel ridges and deformation along the edge of the resurfaced terrain, consistent with a compressional, imbricate thrust origin for these ridges, driven by the spreading.

  20. NASA Tech Briefs, February 2004

    Science.gov (United States)

    2004-01-01

    Topics include: Simulation Testing of Embedded Flight Software; Improved Indentation Test for Measuring Nonlinear Elasticity; Ultraviolet-Absorption Spectroscopic Biofilm Monitor; Electronic Tongue for Quantitation of Contaminants in Water; Radar for Measuring Soil Moisture Under Vegetation; Modular Wireless Data-Acquisition and Control System; Microwave System for Detecting Ice on Aircraft; Routing Algorithm Exploits Spatial Relations; Two-Finger EKG Method of Detecting Evasive Responses; Updated System-Availability and Resource-Allocation Program; Routines for Computing Pressure Drops in Venturis; Software for Fault-Tolerant Matrix Multiplication; Reproducible Growth of High-Quality Cubic-SiC Layers; Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites; Liquid-Crystal Thermosets, a New Generation of High-Performance Liquid-Crystal Polymers; Formulations for Stronger Solid Oxide Fuel-Cell Electrolytes; Simulation of Hazards and Poses for a Rocker-Bogie Rover; Autonomous Formation Flight; Expandable Purge Chambers Would Protect Cryogenic Fittings; Wavy-Planform Helicopter Blades Make Less Noise; Miniature Robotic Spacecraft for Inspecting Other Spacecraft; Miniature Ring-Shaped Peristaltic Pump; Compact Plasma Accelerator; Improved Electrohydraulic Linear Actuators; A Software Architecture for Semiautonomous Robot Control; Fabrication of Channels for Nanobiotechnological Devices; Improved Thin, Flexible Heat Pipes; Miniature Radioisotope Thermoelectric Power Cubes; Permanent Sequestration of Emitted Gases in the Form of Clathrate Hydrates; Electrochemical, H2O2-Boosted Catalytic Oxidation System; Electrokinetic In Situ Treatment of Metal-Contaminated Soil; Pumping Liquid Oxygen by Use of Pulsed Magnetic Fields; Magnetocaloric Pumping of Liquid Oxygen; Tailoring Ion-Thruster Grid Apertures for Greater Efficiency; and Lidar for Guidance of a Spacecraft or Exploratory Robot.

  1. Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.

    Science.gov (United States)

    Erba, E.

    2005-12-01

    The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic

  2. Micromechanical measurements of the effect of surfactants on cyclopentane hydrate shell properties.

    Science.gov (United States)

    Brown, Erika P; Koh, Carolyn A

    2016-01-01

    Investigating the effect of surfactants on clathrate hydrate growth and morphology, especially particle shell strength and cohesion force, is critical to advancing new strategies to mitigate hydrate plug formation. In this study, dodecylbenzenesulfonic acid and polysorbate 80 surfactants were included during the growth of cyclopentane hydrates at several concentrations above and below the critical micelle concentration. A novel micromechanical method was applied to determine the force required to puncture the hydrate shell using a glass cantilever (with and without surfactants), with annealing times ranging from immediately after the hydrate nucleated to 90 minutes after formation. It was shown that the puncture force was decreased by the addition of both surfactants up to a maximum of 79%. Over the entire range of annealing times (0-90 minutes), the thickness of the hydrate shell was also measured. However, there was no clear change in shell thickness with the addition of surfactants. The growth rate of the hydrate shell was found to vary less than 15% with the addition of surfactants. The cohesive force between two hydrate particles was measured for each surfactant and found to be reduced by 28% to 78%. Interfacial tension measurements were also performed. Based on these results, microscopic changes to the hydrate shell morphology (due to the presence of surfactants) were proposed to cause the decrease in the force required to break the hydrate shell, since no macroscopic morphology changes were observed. Understanding the hydrate shell strength can be critical to reducing the capillary bridge interaction between hydrate particles or controlling the release of unconverted water from the interior of the hydrate particle, which can cause rapid hydrate conversion.

  3. One-Hundred-km-Scale Basins on Enceladus: Evidence for an Active Ice Shell

    Science.gov (United States)

    Schenk, Paul M.; McKinnon, William B.

    2009-01-01

    Stereo-derived topographic mapping of 50% of Enceladus reveals at least 6 large-scale, ovoid depressions (basins) 90-175 km across and 800-to-1500 m deep and uncorrelated with geologic boundaries. Their shape and scale are inconsistent with impact, geoid deflection, or with dynamically supported topography. Isostatic thinning of Enceladus ice shell associated with upwellings (and tidally-driven ice melting) can plausibly account for the basins. Thinning implies upwarping of the base of the shell of 10-20 km beneath the depressions, depending on total shell thickness; loss of near-surface porosity due to enhanced heat flow may also contribute to basin lows. Alternatively, the basins may overly cold, inactive, and hence denser ice, but thermal isostasy alone requires thermal expansion more consistent with clathrate hydrate than water ice. In contrast to the basins, the south polar depression (SPD) is larger (350 wide) and shallower (0.4-to-0.8 km deep) and correlates with the area of tectonic deformation and active resurfacing. The SPD also differs in that the floor is relatively flat (i.e., conforms roughly to the global triaxial shape, or geoid) with broad, gently sloping flanks. The relative flatness across the SPD suggests that it is in or near isostatic equilibrium, and underlain by denser material, supporting the polar sea hypothesis of Collins and Goodman. Near flatness is also predicted by a crustal spreading origin for the "tiger stripes (McKinnon and Barr 2007, Barr 2008); the extraordinary, high CIRS heat flows imply half-spreading rates in excess of 10 cm/yr, a very young surface age (250,000 yr), and a rather thin lithosphere (hence modest thermal topography). Topographic rises in places along the outer margin of the SPD correlate with parallel ridges and deformation along the edge of the resurfaced terrain, consistent with a compressional, imbricate thrust origin for these ridges, driven by the spreading.

  4. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging

    Science.gov (United States)

    Wang, Binbin; Socolofsky, Scott A.; Breier, John A.; Seewald, Jeffrey S.

    2016-04-01

    This paper reports the results of quantitative imaging using a stereoscopic, high-speed camera system at two natural gas seep sites in the northern Gulf of Mexico during the Gulf Integrated Spill Research G07 cruise in July 2014. The cruise was conducted on the E/V Nautilus using the ROV Hercules for in situ observation of the seeps as surrogates for the behavior of hydrocarbon bubbles in subsea blowouts. The seeps originated between 890 and 1190 m depth in Mississippi Canyon block 118 and Green Canyon block 600. The imaging system provided qualitative assessment of bubble behavior (e.g., breakup and coalescence) and verified the formation of clathrate hydrate skins on all bubbles above 1.3 m altitude. Quantitative image analysis yielded the bubble size distributions, rise velocity, total gas flux, and void fraction, with most measurements conducted from the seafloor to an altitude of 200 m. Bubble size distributions fit well to lognormal distributions, with median bubble sizes between 3 and 4.5 mm. Measurements of rise velocity fluctuated between two ranges: fast-rising bubbles following helical-type trajectories and bubbles rising about 40% slower following a zig-zag pattern. Rise speed was uncorrelated with hydrate formation, and bubbles following both speeds were observed at both sites. Ship-mounted multibeam sonar provided the flare rise heights, which corresponded closely with the boundary of the hydrate stability zone for the measured gas compositions. The evolution of bubble size with height agreed well with mass transfer rates predicted by equations for dirty bubbles.

  5. High-resolution structures of collagen-like peptides [(Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4]: implications for triple-helix hydration and Hyp(X) puckering.

    Science.gov (United States)

    Okuyama, Kenji; Hongo, Chizuru; Wu, Guanghan; Mizuno, Kazunori; Noguchi, Keiichi; Ebisuzaki, Shutoku; Tanaka, Yuji; Nishino, Norikazu; Bächinger, Hans Peter

    2009-05-01

    Structures of (Pro-Pro-Gly)4-Xaa-Yaa-Gly-(Pro-Pro-Gly)4 (ppg9-XYG) where (Xaa, Yaa)=(Pro, Hyp), (Hyp, Pro) or (Hyp, Hyp) were analyzed at high resolution using synchrotron radiation. Molecular and crystal structures of these peptides are very similar to those of the (Pro-Pro-Gly)9 peptide. The results obtained in this study, together with those obtained from related compounds, indicated the puckering propensity of the Hyp in the X position: (1) Hyp(X) residues involved in the Hyp(X):Pro(Y) stacking pairs prefer the down-puckering conformation, as in ppg9-OPG, and ppg9-OOG; (2) Hyp(X) residues involved in the Hyp(X):Hyp(Y) stacking pairs prefer the up-puckering conformation if there is no specific reason to adopt the down-puckering conformation. Water molecules in these peptide crystals are classified into two groups, the 1st and 2nd hydration waters. Water molecules in the 1st hydration group have direct hydrogen bonds with peptide oxygen atoms, whereas those in the 2nd hydration group do not. Compared with globular proteins, the number of water molecules in the 2nd hydration shell of the ppg9-XYG peptides is very large, likely due to the unique rod-like molecular structure of collagen model peptides. In the collagen helix, the amino acid residues in the X and Y positions must protrude outside of the triple helix, which forces even the hydrophobic side chains, such as Pro, to be exposed to the surrounding water molecules. Therefore, most of the waters in the 2nd hydration shell are covering hydrophobic Pro side chains by forming clathrate structures.

  6. Hydrothermal phlogopite and anhydrite from the SH2 well, Sabatini volcanic district, Latium, Italy: fluid inclusions and mineral chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Belkin, H.E.; Cavarretta, G.; De Vivo, B.; Tecce, F.

    The SH2 well (2498.7 m) was drilled vertically in 1982-1983 as an exploratory hole to assess the geothermal potential of the area north of Bracciano Lake, Latium, Italy, located in the Sabatini volcanic district. Microthermometry of primary and secondary two-phase and multiphase liquid-rich inclusions in anhydrite yields pressure-corrected temperatures of homogenization (trapping temperatures) that range from 144 to 304/sup 0/C and that are generally coincident with measured in-hole temperatures. The fluids have a variable salinity from 0.5 to 14.0 wt% NaCl equivalent and also contain Ca/sup 2 +/ at least. Rare liquid CO/sub 2/-bearing aqueous inclusions have been verified by laser Raman spectroscopy. Also, rare liquid hydrocarbons(.) have been observed. Clathrates have been observed upon freezing, and crushing studies reveal noncondensable gas at P > 1 atm in some inclusions. Microthermometry of primary two-phase inclusions yields pressure-corrected temperatures of homogenization (trapping temperatures) that range from 178 to 298/sup 0/C and are also generally coincident with in-hole measured temperatures. Freezing studies show a variable fluid salinity (0.2-7.8 wt% NaCl equiv.); the fluid contains Ca/sup 2 +/ at least. If one assumes that the current hydrologic regime existed during anhydrite and phlogopite formation, the pressure of formation ranged from 148 to 220 bars for phlogopite and 120 to 220 bars for anhydrite. The variation of fluid-inclusion salinities, the phlogopite zoning, and the chemical variation of the anhydrite and phlogopite suggest that different fluids and/or episodic conditions were operative in this geothermal system.

  7. 超声法制备苯甲酸钠微胶囊的工艺研究%Research on Processing Technology of Sodium Benzoate Microcapsules by Ultrasound

    Institute of Scientific and Technical Information of China (English)

    章斌; 刘志聪; 侯小桢; 赖宣; 许淼鑫; 王士超

    2014-01-01

    以β-环糊精为壁材,以包埋率为指标,采用单因素试验和Box-Behnken 中心组合设计试验对超声法制备苯甲酸钠微胶囊的工艺进行优化。试验结果表明:超声法制备苯甲酸钠包合物的最佳工艺条件为芯/壁材比1∶7.17,超声包埋时间29.9 min,超声包埋功率180 W,此条件下的实际包埋率为80.5%,与模型预测值之间具有较好的拟合性。%Takeβ-cyclodextrin as wall material and embedding rate of sodium benzoate as main index, the single factor experiment and Box-Behnken response surface methodology for optimization of sodi-um benzoate microcapsules by ultrasound method is explored.The results show that the optimum process conditions for preparation of sodium benzoate clathrate by ultrasound method are as follows:the core/wall material ratio of 1∶7.17,the ultrasonic embedding time of 29.9 min,the ultrasonic embedding power of 180 W,the embedding rate can reach 80.5%,and the regression model is con-sistent with the predicted results.

  8. To other worlds via the laboratory (Invited)

    Science.gov (United States)

    Lorenz, R. D.

    2009-12-01

    Planetary science is fun, largely by virtue of the wide range of disciplines and techniques it embraces. Progress relies not only on spacecraft observation and models, but also on laboratory work to provide reference data with which to interpret observations and to provide quantitative constraints on model parameters. An important distinction should be drawn between two classes of investigation. The most familiar, pursued by those who make laboratory studies the focus of their careers, is the construction of well-controlled experiments, typically to determine the functional dependence of some desired physical property upon one or two controlled parameters such as temperature, pressure or concentration. Another class of experiment is more exploratory - to 'see what happens'. This exercise often reveals that models may be based on entirely false assumptions. In some cases laboratory results also have value as persuasive tools in providing graphic support for unfamiliar properties or processes - the iconic image of 'flaming ice' makes the exotic notion of methane clathrate immediately accessible. This talk will review the role of laboratory work in planetary science and especially the outer solar system. A few of the author's personal forays into laboratory measurements will be discussed in the talk; These include the physical properties of dessicated icy loess in the US Army Permafrost tunnel in Alaska (as a Mars analog), the use of a domestic microwave oven to measure radar absorptivity (in particular of ammonia-rich water ice) and the generation of waves - and ice - on the surface of a liquid by wind with fluid and air parameters appropriate to Mars and Titan rather than Earth using the MARSWIT wind tunnel at NASA Ames.

  9. Eldor investigations of radiation processes. Annual progress report, 1977--1978

    Energy Technology Data Exchange (ETDEWEB)

    Kispert, L.D.

    1978-01-01

    Research is reported devoted to examining the role of the host matrix as a function of temperature in determining the type and yield of radicals produced by X-irradiation of a crystalline or glass material using electron-electron double resonance (ELDOR), electron-nuclear double resonance (ENDOR), electron spin resonance (ESR), and heavy atom substitution techniques. After many years of research on the effects of radiation on crystalline materials, it is still difficult to predict from the thermal history, nature of radiation, crystal structure or form of the parent molecule what radical species will be stable at any given temperature. However, an examination of the ELDOR spectra of an irradiated substance results in a partial or complete measure of the relaxation mechanisms which, in turn, are related to the host matrix itself. The host matrix can be charged slightly by using the heavy atom substitution technique, by using different methods of crystallization, and by including radical precursors in clathrates, permitting a study of the relation among host matrix variation, radical yield, and relaxation parameters. ESR investigations carried out on single crystals of irradiated fluoro, chloro, and bromo derivatives of acetamide and acetic acid have shown that a large matrix effect is present which is dependent upon the leaving group size, crystal structure and degree of crystallization. ELDOR measurements between 5/sup 0/K and 370/sup 0/K have shown a large variation in ELDOR intensity dependent on intramolecular motion, quadrupole coupling, p-orbital anisotropy, spin diffusion and tunnelling rotation. Forbidden esr lines overlapped by intense esr lines, esr lines too broad to detect, ENDOR transitions and radical cluster have been studied by ELDOR.

  10. Thermodynamic stability and crystallization behavior of molecular complexes with TEP host

    Science.gov (United States)

    Fijiwara, Atsushi; Kitamura, Mitsutaka

    2013-06-01

    In the crystallization of molecular complex (co-crystal, clathrate complex), polymorphism in regard to the host structure frequently appears. Previously, we studied the release process of the biocide, CMI (5-chloro-2-methyl-4-isothiazolin-3-one) from the molecular complex with TEP (1,1,2,2-tetrakis(4-hydroxyphenyl)ethane) (TEP·2CMI) in methanol-water mixed solvents. It was clear that the release process of the biocide (CMI) is composed of the transformation from the TEP·2CMI crystal to a more stable molecular complex crystal with solvent. In this work, the crystallization was performed in the methanol solutions including TEP and CMI at constant temperature (298 K and 308 K). It appeared that two kinds of TEP molecular complexes (TEP·2CMI and TEP·2MeOH) crystallize competitively. The crystallization zone of each molecular complex was shown in the map using the coordinates of initial concentrations of TEP and CMI. In the boundary zone both molecular complexes appeared and the transformation from TEP·2CMI to TEP·2MeOH was observed, indicating that the stable form is TEP·2MeOH. Without the boundary zone the corresponding stable form crystallized in each zone. The value of the initial concentration ratio of CMI/TEP for the selective crystallization of TEP·2CMI was higher at 298 K (1.54) than that (1.36) at 308 K. The equilibrium concentrations of TEP and CMI in the presence of two molecular complexes were expressed using the dissociation constants of the molecular complexes and it was indicated that the dissociation of TEP·2CMI highly increases with temperature

  11. Lithiation-induced zinc clustering of Zn3, Zn12, and Zn18 units in Zintl-like Ca~30Li3+xZn60-x (x=0.44-1.38)

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Qisheng [Ames Laboratory

    2014-11-14

    Zinc clusters are not common for binary intermetallics with relatively low zinc content, but this work shows that zinc clustering can be triggered by lithiation, as exemplified by Ca~30Li3+xZn60-x, P6/mmm, Z = 1, which can be directly converted from CaZn2. Two end members of the solid solution (x = 0.44 and 1.38) were established and structurally characterized by single-crystal X-ray diffraction analyses: Ca30Li3.44(6)Zn59.56(6), a = 15.4651(9) Å, c = 9.3898(3) Å; Ca30.45(2)Li4.38(6)Zn58.62(6), a = 15.524(3) Å, c = 9.413(2) Å. The structures of Ca~30Li3+xZn60-x feature a condensed anionic network of Zn3 triangles, lithium-centered Zn12 icosahedra, and arachno-(Zn,Li)18 tubular clusters that are surrounded respectively by Ca14, Ca20, and Ca30 polyhedra. These polyhedra share faces and form a clathrate-like cationic framework. The specific occupation of lithium in the structure is consistent with theoretical “coloring” analyses. Analysis by the linear muffin-tin orbital (LMTO) method within the atomic sphere approximation reveals that Ca~30Li3+xZn60-x is a metallic, Zintl-like phase with an open-shell electronic structure. The contribution of Ca–Zn polar covalent interactions is about 41%.

  12. Optical-cell evidence for superheated ice under gas-hydrate-forming conditions

    Science.gov (United States)

    Stern, L.A.; Hogenboom, D.L.; Durham, W.B.; Kirby, S.H.; Chou, I.-Ming

    1998-01-01

    We previously reported indirect but compelling evidence that fine-grained H2O ice under elevated CH4 gas pressure can persist to temperatures well above its ordinary melting point while slowly reacting to form methane clathrate hydrate. This phenomenon has now been visually verified by duplicating these experiments in an optical cell while observing the very slow hydrate-forming process as the reactants were warmed from 250 to 290 K at methane pressures of 23 to 30 MPa. Limited hydrate growth occurred rapidly after initial exposure of the methane gas to the ice grains at temperatures well within the ice subsolidus region. No evidence for continued growth of the hydrate phase was observed until samples were warmed above the equilibrium H2O melting curve. With continued heating, no bulk melting of the ice grains or free liquid water was detected anywhere within the optical cell until hydrate dissociation conditions were reached (292 K at 30 MPa), even though full conversion of the ice grains to hydrate requires 6-8 h at temperatures approaching 290 K. In a separate experimental sequence, unreacted portions of H2O ice grains that had persisted to temperatures above their ordinary melting point were successfully induced to melt, without dissociating the coexisting hydrate in the sample tube, by reducing the pressure overstep of the equilibrium phase boundary and thereby reducing the rate of hydrate growth at the ice-hydrate interface. Results from similar tests using CO2 as the hydrate-forming species demonstrated that this superheating effect is not unique to the CH4-H2O system.

  13. Deep-ocean field test of methane hydrate formation from a remotely operated vehicle

    Science.gov (United States)

    Brewer, P.G.; Orr, F.M.; Friederich, G.; Kvenvolden, K.A.; Orange, D.L.; McFarlane, J.; Kirkwood, W.

    1997-01-01

    We have observed the process of formation of clathrate hydrates of methane in experiments conducted on the remotely operated vehicle (ROY) Ventana in the deep waters of Monterey Bay. A tank of methane gas, acrylic tubes containing seawater, and seawater plus various types of sediment were carried down on Ventana to a depth of 910 m where methane gas was injected at the base of the acrylic tubes by bubble stream. Prior calculations had shown that the local hydrographic conditions gave an upper limit of 525 m for the P-T boundary defining methane hydrate formation or dissociation at this site, and thus our experiment took place well within the stability range for this reaction to occur. Hydrate formation in free sea-water occurred within minutes as a buoyant mass of translucent hydrate formed at the gas-water interface. In a coarse sand matrix the Filling of the pore spaces with hydrate turned the sand column into a solidified block, which gas pressure soon lifted and ruptured. In a fine-grained black mud the gas flow carved out flow channels, the walls of which became coated and then filled with hydrate in larger discrete masses. Our experiment shows that hydrate formation is rapid in natural seawater, that sediment type strongly influences the patterns of hydrate formation, and that the use of ROV technologies permits the synthesis of large amounts of hydrate material in natural systems under a variety of conditions so that fundamental research on the stability and growth of these substances is possible.

  14. RECENT ADVANCES IN HYDRATE-BASED TECHNOLOGIES FOR NATURAL GAS STORAGE--A REVIEW

    Institute of Scientific and Technical Information of China (English)

    Yasuhiko H. Mori

    2003-01-01

    Interest in the possibility of storing and transporting natural gas in the form of clathrate hydrates has been increasing in recent years, particularly in some gas-importing and exporting countries.The technologies necessary for realizing this possibility may be classified into those relevant to the four serial processes (a) the formation of a hydrate, (b) the processing (dewatering, pelletizing, etc. ) of the formed hydrate, (c) the storage and transportation of the processed hydrate, and (d) the regasification (dissociation) of the hydrate. The technological development of any of these processes is still at an early stage. For hydrate formation, for example, various rival operations have been proposed. However,many of them have never been subjected to actual tests for practical use. More efforts are required for examining the different hydrate-formation technologies and for rating them by comparison. The general design of the processing of the formed hydrate inevitably depends on both the hydrate-formation process and the storage/transportation process, hence it has a wide variability. The major uncertainty in the storage-process design lies in the as-yet unclarified utility of the "self-preservation" effect of the naturalgas hydrates. The process design as well as the relevant cost evaluation should strongly depend on whether the hydrates are well preserved at atmospheric pressure in large-scale storage facilities. The regasification process has been studied less extensively than the former processes. The state of the art of the technological development in each of the serial processes is reviewed, placing emphasis on the hydrate formation process.

  15. Europa's Crust and Ocean: Origin, Composition, and the Prospects for Life

    Science.gov (United States)

    Kargel, J.S.; Kaye, J.Z.; Head, J. W.; Marion, G.M.; Sassen, R.; Crowley, J.K.; Ballesteros, O.P.; Grant, S.A.; Hogenboom, D.L.

    2000-01-01

    We have considered a wide array of scenarios for Europa's chemical evolution in an attempt to explain the presence of ice and hydrated materials on its surface and to understand the physical and chemical nature of any ocean that may lie below. We postulate that, following formation of the jovian system, the europan evolutionary sequence has as its major links: (a) initial carbonaceous chondrite rock, (b) global primordial aqueous differentiation and formation of an impure primordial hydrous crust, (c) brine evolution and intracrustal differentiation, (d) degassing of Europa's mantle and gas venting, (e) hydrothermal processes, and (f) chemical surface alteration. Our models were developed in the context of constraints provided by Galileo imaging, near infrared reflectance spectroscopy, and gravity and magnetometer data. Low-temperature aqueous differentiation from a carbonaceous CI or CM chondrite precursor, without further chemical processing, would result in a crust/ocean enriched in magnesium sulfate and sodium sulfate, consistent with Galileo spectroscopy. Within the bounds of this simple model, a wide range of possible layered structures may result; the final state depends on the details of intracrustal differentiation. Devolatilization of the rocky mantle and hydrothermal brine reactions could have produced very different ocean/crust compositions, e.g., an ocean/crust of sodium carbonate or sulfuric acid, or a crust containing abundant clathrate hydrates. Realistic chemical-physical evolution scenarios differ greatly in detailed predictions, but they generally call for a highly impure and chemically layered crust. Some of these models could lead also to lateral chemical heterogeneities by diapiric upwellings and/or cryovolcanism. We describe some plausible geological consequences of the physical-chemical structures predicted from these scenarios. These predicted consequences and observed aspects of Europa's geology may serve as a basis for further analys is

  16. Development and validation of X-ray diffraction method for quantitative determination of crystallinity in warfarin sodium products.

    Science.gov (United States)

    Siddiqui, Akhtar; Rahman, Ziyaur; Korang-Yeboah, Maxwell; Khan, Mansoor A

    2015-09-30

    The objective of this study was to develop and validate XRPD analytical method for the estimation of percent crystalline warfarin sodium present in drug products. Warfarin sodium (WS) is a clathrate containing Isopropyl alcohol entrapped in the crystalline structure. Four types of WS-excipient mixtures were prepared and used to make four formulations: M1 containing lactose monohydrate (WS: excipient 1:9), M2 containing anhydrous lactose (WS: excipient 1:9), M3 containing lactose monohydrate (WS: excipient 1:21.5), M4 containing lactose anhydrous (WS: excipient 1:21.5). Thoroughly mixed powders were packed in the XRD sample holders and diffractogram were collected. Diffractogram in the 7-9 2θ were found to be distinctive as the peak intensity grows with increasing percent crystalline WS. This peak region was, therefore, used to validate the XRPD method. Validation parameters were evaluated for accuracy, precision, linearity, limit of detection (LOD), and limit of quantitation (LOQ). LOD and LOQ for M1, M2, M3, and M4 were 3.04, 3.17, 4.17, 4.49% and 9.21, 9.62, 12.65, 13.30%, respectively. The method was found to be linear with R(2)>0.99. With changing scan speed, X-ray power output, and type of sample holder, the method was found to be robust. Prediction of the % crystalline content of the WS sample with known crystallinity showed close agreement between actual and predicted value. In summary, XRPD method was validated, which can be used as a quantitative method for the estimation of % crystalline WS present in a drug product.

  17. Carbon Dioxide Photodissociation on Iapetus

    Science.gov (United States)

    Palmer, Eric; Brown, R. H.

    2009-09-01

    Carbon dioxide has been detected on Iapetus (Buratti et al., 2005) and is correlated with the dark material, mostly at mid-latitudes on the leading face of Iapetus (Palmer and Brown, in preparation). The average absorption feature of CO2 in the dark region is 24.7%; if it were a thin veneer of CO2 ice, it would be 14 um thick. Estimating the surface area of dark material and extrapolating gives a total CO2 budget of 8 x 107 kg on the surface of Iapetus. Volatile studies indicate that the surface of Iapetus is too hot to have CO2 ice remain on the surface for more than a few hundred years (Palmer and Brown, 2008). It has been suggested that complexing of volatiles, such as in clathrates, fluid or gas inclusions, or adsorption, would increase the stability on the Jovian and Saturnian satellites, increasing their residence times (McCord; et al., 1998; Hibbitts et al., 2001, 2002, 2007). While complexing would increase carbon dioxide's thermal stability, the resident time of CO2 on Iapetus would remain short due to the effect of UV radiation. We calculated the photodissociation rate for CO2 and found that the entire budget of CO2 on Iapetus would be destroyed in less than one Earth year. If we assume a steady-state system on Iapetus (photodissociation equal to photo-generation) approx. 108 kg will be destroyed and produced every Earth year. Unless the complexing mechanism provides some shielding from UV radiation while still allowing the detection of the 4.26-micron CO2 band, then a source of CO2 is required. We suggest that the source of CO2 is photolytic production from water ice and carbonaceous material.

  18. Frost on Utopia Planitia

    Science.gov (United States)

    1977-01-01

    This Viking Lander 2 picture from Utopia Planitia shows the first clear indication of frost accumulation on the Martian surface seen by lander cameras. The picture, looking due north, was obtained with a blue filter at 12:59 p.m. local lander time, Sept. 13, 1977. The season is late winter. Frost appears as a white accumulation around the bottom of rocks, in a trench dug by the lander sampler arm, and in scattered patches on the darker surface. The shadow of the lander, including the camera (center) and the meteorology boom (left), appears in foreground. As the sun moves, the shadow is moving from left to right, exposing areas covered by frost and previously protected from the sun by the lander shadow. (Another image taken one-half hour later suggests the frost patches have become smaller.) Apparently frost, formed during the Martian night, at least partially disappears during the warmer daytime. The composition of the frost, whether carbon dioxide or water or a mixture of the two (CO2 clathrate), is not known. Measurements from the meteorology instrument indicate minimum nighttime temperatures of 160 Kelvin (-171 Fahrenheit). At the time the image was taken, the temperature had risen to 175 Kelvin (-144 Fahrenheit). The atmospheric pressure was 8.835 millibars. This combination of pressure and temperature are inconsistent with carbon dioxide frost formation, but plausible near-surface mechanisms might have resulted in conditions favorable for CO2 frost formation. Viking orbiter thermal mapping and water vapor instruments indicate temperatures might have been slightly lower than measured by the lander, suggesting that the frost is more likely CO2 than H20. A remote, but possible, explanation is that the material is an extremely bright dust deposit. Color images to be taken will be able to discount this interpretation. The mechanism for frost deposition is unknown. Possibilities include formation directly on the surface, precipitation as snow, or material blown to

  19. Abundance, viability and diversity of the indigenous microbial populations at different depths of the NEEM Greenland ice core

    Directory of Open Access Journals (Sweden)

    Vanya Miteva

    2015-02-01

    Full Text Available The 2537-m-deep North Greenland Eemian Ice Drilling (NEEM core provided a first-time opportunity to perform extensive microbiological analyses on selected, recently drilled ice core samples representing different depths, ages, ice structures, deposition climates and ionic compositions. Here, we applied cultivation, small subunit (SSU rRNA gene clone library construction and Illumina next-generation sequencing (NGS targeting the V4–V5 region, to examine the microbial abundance, viability and diversity in five decontaminated NEEM samples from selected depths (101.2, 633.05, 643.5, 1729.75 and 2051.5 m deposited 300–80 000 years ago. These comparisons of the indigenous glacial microbial populations in the ice samples detected significant spatial and temporal variations. Major findings include: (a different phylogenetic diversity of isolates, dominated by Actinobacteria and fungi, compared to the culture-independent diversity, in which Proteobacteria and Firmicutes were more frequent; (b cultivation of a novel alphaproteobacterium; (c dominance of Cyanobacteria among the SSU rRNA gene clones from the 1729.75-m ice; (d identification of Archaea by NGS that are rarely detected in glacial ice; (e detection of one or two dominant but different genera among the NGS sequences from each sample; (f finding dominance of Planococcaceae over Bacillaceae among Firmicutes in the brittle and the 2051.5-m ice. The overall beta diversity between the studied ice core samples examined at the phylum/class level for each approach showed that the population structure of the brittle ice was significantly different from the two deep clathrated ice samples and the shallow ice core.

  20. Application of atomic Hirshfeld surface analysis to intermetallic systems: is Mn in cubic CeMnNi4 a thermoelectric rattler atom?

    Science.gov (United States)

    Jørgensen, Mads R V; Skovsen, Iben; Clausen, Henrik F; Mi, Jian-Li; Christensen, Mogens; Nishibori, Eiji; Spackman, Mark A; Iversen, Bo B

    2012-02-06

    The Mn atom in the cubic polymorph of CeMnNi(4) appears to be located in an oversized cage-like structure, and anomalously large atomic displacement parameters (ADPs) for the Mn atom indicate that it is a potential "rattler" atom. Here, multitemperature synchrotron powder X-ray diffraction data measured between 110 and 900 K are used to estimate ADPs for the Mn "guest" atom and the "host" structure atoms in cubic CeMnNi(4). The ADPs are subsequently fitted with Debye and Einstein models, giving Θ(D) = 301(2) K for the "host" structure and Θ(E) = 165(2) K for the Mn atom. This is higher than typical Einstein temperatures for rattlers in thermoelectric skutterudites and clathrates (Θ(E) = 50-80 K), indicating that the Mn atom in cubic CeMnNi(4) is more strongly bonded. In order to probe the chemical interactions of the potential Mn rattler atom, atomic Hirshfeld surface (AHS) analysis is carried out and compared with AHS analysis of well-established guest atom rattlers in archetypical skutterudites, MCoSb(3). Surprisingly, the skutterudite rattlers have more deformed AHSs than the Mn atom in cubic CeMnNi(4). This is related to the highly ionic nature of the skutterudite rattlers, which is not taken into account in the neutral spherical atom approach of the AHS. Additionally, visualization of void spaces in the two materials using the procrystal electron density shows that while the Mn atom is tightly fitting in the CeMnNi(4) structure then the La atom in the skutterudite is truly situated in an oversized cage of the host structure. Overall, we conclude that the Mn atom in cubic CeMnNi(4) cannot be coined a rattler.

  1. Fluid Evolution During Mineralization of Atashkuh Fluorite-Barite (±Sulfide Deposit, South of Delijan

    Directory of Open Access Journals (Sweden)

    Seyed Javad Moghaddasi

    2016-07-01

    the Atashkuh deposit. Fluid inclusions are of several types: (1 two-phase, liquid-vapor (LV, two- phase aqueous with hydrohalite (LVHH, multiphase (SH, H2O-CO2 with clathrate (C1 and without clathrate (C2 were recognized and analyzed. The first ice melting temperature (Te of fluorite, barite and quartz two-phase aqueous (LV inclusions varies between -22°C and -25°C, representing a H2O ± NaCl ± KCl multiphase solution (Van den Kerkhof and Hein, 2001. The last ice melting temperatures of three samples (Tmice vary between -4.9°C to -9.7°C, -3.2°C to -7.2°C and -2°C to -4.8°C which indicate salinities of 7.7-13.6, 5.2-10.7 and 3.2-7.5 wt% NaCl equivalent for fluorite, barite and quartz. The final homogenization temperatures (Thtotal of these inclusions vary between 90 and 205 °C for fluorite, 130 to 270 °C for barite and 110 to 193 °C for quartz. The CO2 melting temperatures (TmCO2 of fluorite and quartz C1 inclusions show ranges of -57.1 to -58.5 °C which suggest the presence of CH4 and/or N2 impurities (Burruss, 1981. The clathrate melting temperature (Tmclath varies between 4.8 and 8.5 °C representing a salinity of 5.3 to 9.2 and 3 to 6.7 wt% NaCl equivalent for fluorite and quartz. The CO2 homogenization temperature (ThCO2 in these inclusions is 7.4 to 18.8 °C for fluorite and 13.4 to 27.5 °C for quartz. The homogenization temperature (Thtotal for these inclusions is 170-210 °C for fluorite and 195-280 °C for quartz. References Burruss, R.C., 1981. Analysis of phase equilibria in C–O–H–S fluid inclusions. Mineralogical Association of Canada Short Course, 6(3: 39-74. Ghorbani, M., 2013. The economic geology of Iran, mineral deposits and natural resources. Springer Netherlands, 569 pp. Thiele, O., Alavi, M., Assefi, R., Hushmand-zadeh, A., Seyed-Emami, K. and Zahedi, M., 1968. Explanatory text of the Golpaygan quadrangle map, scale 1:250,000. Geological Survey of Iran. Geological quadrangle E7, 24 pp. Van den Kerkhof, A.M. and Hein, U.F., 2001

  2. New constraints on the deep oxygen abundance in Uranus and Neptune

    Science.gov (United States)

    Cavalié, Thibault; Venot, Olivia; Selsis, Franck; Hersant, Franck; Hartogh, Paul

    2016-10-01

    One of the great mysteries in the Solar System is how Giant Planets formed. Two main formation scenarios coexist: disk gravitational instability and core accretion. These scenarios differ not only in the time required to form planets, but also in the final composition of the planets' interiors. In this sense, heavy element abundances are key constraints and they depend on how the ices of the planetesimal that formed the cores of these planets condensed (e.g., amorphous or crystalline).Measuring the deep oxygen abundance can help differentiating the condensation processes of the planetesimal ices. Indeed, clathration needs a larger amount of water than the amorphous ice scenario. While Galileo probably failed to measure the Jovian deep oxygen abundance, Juno should shed light on this long lasting question. Measuring Saturn's deep oxygen is a goal of the entry probe that will be proposed to ESA (Mousis et al. 2016). Regarding the Ice Giants, there is no such mission planned in the near future to measure their deep oxygen abundance and it is very challenging to probe remotely below the water cloud in these planets with microwaves. Another way to constrain the deep oxygen abundance consists in using thermochemical modeling to link upper tropospheric disequilibrium species to the deep oxygen.In this paper, we apply a thermochemical and diffusion model to the ice giant tropospheres to constrain their deep oxygen abundance from CO observations. Because the results depend on the thermal structure, on the strength of tropospheric mixing, and to a lesser extent on the deep carbon abundance, we have explored a 4D parameter space (temperature, tropospheric mixing, deep oxygen and carbon abundance) for each planet to fit their upper tropospheric composition. For instance, we have computed a series of classical thermal profiles based on dry/wet adiabats and new profiles that account for the mean molecular weight gradient at the water condensation layer (following the

  3. Permeability Reduction in Passively Degassing Seawater-dominated Volcanic-hydrothermal systems: Processes and Perils on Raoul Island, Kermadecs (NZ)

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.

    2014-12-01

    The 2006 eruption from Raoul Island occurred apparently in response to local tectonic swarm activity, but without any precursory indication of volcanic unrest within the hydrothermal system on the island. The eruption released some 200 T of SO2, implicating the involvement of a deep magmatic vapor input into the system during/prior to the event. In the absence of any recognized juvenile material in the eruption products, previous explanations for this eruptive event focused on this vapor being a driving force for the eruption. In 2004, at least 80 T/d of CO2 was escaping from the hydrothermal system, but mainly through areas that did not correspond to the 2006 eruption vents. The lack of a pre-eruptive hydrothermal system response related to the seismic event in 2006 can be explained by the presence of a hydrothermal mineralogic seal in the vent area of the volcano. Evidence for the existence of such a seal was found in eruption deposits in the form of massive fracture fillings of aragonite, calcite and anhydrite. Fluid inclusion homogenization temperatures in these phases range from ca. 140 °C to 220 °C which, for pure water indicate boiling point depths of between 40 and 230 m assuming a cold hydrostatic pressure constraint. Elevated pressures behind this seal are consistent with the occurrence of CO2 clathrates in some inclusion fluids, indicating CO2 concentrations approaching 1 molal in the parent fluids. Reactive transport modeling of magmatic volatile inputs into what is effectively a seawater-dominated hydrothermal system provide valuable insights into seal formation. Carbonate mineral phases ultimately come to saturation along this flow path, but we suggest that focused deposition of the observed massive carbonate seal is facilitated by near-surface boiling of these CO2-enriched altered seawaters, leading to large degrees of supersaturation which are required for the formation of aragonite. As the seal grew and permeability declined, pore pressures

  4. 盐湖丰产元素与Zintl化合物(续完)%The Correlation of Abundant Elements and Zintl Phases

    Institute of Scientific and Technical Information of China (English)

    贾永忠; 景燕; 马军; 岳都元; Claude Belin; Monique Tillard

    2011-01-01

    Zintl化合物是以Edward Zintl命名的化合物,是一类由电正性的碱金属或碱土金属与电负性的13族或14族元素形成的特殊金属间化合物.其价键模式可以是离子键、金属键和共价键共存,其中的准金属可以共价键的形式形成各种形式的离子簇,因而其结构复杂多样.这类化合物的部分阴离子簇不仅具有稳定的笼状、层状和链状结构,并且具有特殊的光、电、磁等性能,使得在半导体、催化、电极材料等方面都有应用的前景和发展潜力.介绍了几个特殊Zintl化合物体系,盐湖丰产元素在Zinfi化合物中的作用,指出了含有盐湖丰产元素的Zintl化合物的应用前景和方向.%The term Zintl phase has been coined in honour of Edward Zintl,a German chemist. Zintl phases are formed by combinations of moderately electronegative post-transition elements, such as main group 13 and 14 elements with electropositive alkaline or alkaline-earth metals. In these combinations, owing to electron transfers ( total or partial) from the electropositive to the electronegative elements, anionic frameworks are formed in solid state that range from isolated anionic clusters, rings. cages and 1,2 or 3-D extended structures of which clathrates are among the most remarkable.The authors discuss the correlation of salt lake resources and Zintl phases. The potential applications of Zintl phases in salt lake resources are briefly discussed. This strategy for the synthesis of solid state compounds, which comprised light elements of salt lake resources, main group 13 and 14 elements and transition metal, have unique magnetic, electronic, thermoelectric, colossal magnetoresistance and ferromagnetic properties.

  5. Effects of 3 Kinds of Hydrophilic Polymers on Ketoprofen/Cyclodextrin Complex Solubilization%3种亲水性聚合物对酮洛芬/环糊精包合物增溶作用的影响

    Institute of Scientific and Technical Information of China (English)

    许伟

    2012-01-01

    OBJECTIVE: To investigate the effect of hydrophilic polymers on the solubility of drug in ketoprofen/cyclodextrin complex. METHODS: Different kinds of polymers including 0.1% PVP K30, 0.1% HPMC, 0.1% PEG 6000, were added into the ketoprofen/cyclodextrin system respectively or not, and phase solubility method was adapted to calculate the dissolution and the apparent stability constants (Ka) under 25 ℃. RESULTS: In 4 kinds of system, PEG 6000 increased the solubility of ketoprofen significantly, which was from 172.9 mmol·L-1 to 308.9 mmol·L-1, and the Ka increased from 0.042 to 0.940. CONCLUSION: Hydrophilic polymer PEG 6000 is shown to increase the clathration effect of cyclodextrin on drugs.%目的:研究聚合物对酮洛芬/环糊精包合物中药物溶解度的影响.方法:在酮洛芬/羟丙-β-环糊精体系中不加聚合物以及分别添加浓度均为0.1%的聚乙烯吡咯烷酮(K30)、羟丙基甲基纤维素(HPMC)、聚乙二醇(6000)3种高分子水溶性聚合物的情况下,于25℃下采用相溶解度法,考察药物在4种体系中的溶解度和表观稳定常数(Ks).结果:4种体系中,以加入聚乙二醇(6000)后酮洛芬的溶解度增加最明显,从172.9 mmol·L-1增加到308.9mmol·L-1,Ks从0.042增大到0.940.结论:亲水性聚合物聚乙二醇(6000)能够增强药物与环糊精的包合作用.

  6. Origin and character of gaseous hydrocarbons in the hydrate and non-hydrate charged sediments on the Norway - Svalbard margins

    Energy Technology Data Exchange (ETDEWEB)

    Vaular, Espen Nesheim

    2011-05-15

    Gas incubated in clathrate water-structures, stabilizes the hydrogen bonded substance termed gas hydrate. In the marine environment vast amount of carbon is stored as gas hydrates within the temperature and pressure zone these ice-like structures are stable. Natural gas hydrate mapping and characterization is important basic research that brings about critical knowledge concerning various topics. Natural gas hydrates is a vital part of the carbon cycle, it is a potential energy resource (and thereby a potential climate agent) and it is a potential geo-hazard. One of the goals the GANS initiative aimed at exploring, was the hydrate bearing sediment of the Norway -Svalbard margins, to investigate the character and expansion of natural gas hydrates. Part of the investigation was to define how the gas in the hydrated sediment was produced and where it came from. As a result this thesis addresses the matter of light hydrocarbon characterization and origin in two Norwegian hydrate deposits. On cruises to Vestnesa on the Svalbard margin and to Nyegga in the mid-Norwegian margin, samples of hydrate charged and non-hydrate charged sediments were obtained and analyzed. Through compositional and isotopic analyses the origin of the hydrate bound gas in the fluid escape feature G11 at Nyegga was determined. The hydrate incubated methane is microbial produced as well as parts of the hydrate bound ethane. The compositional analysis in both the Nyegga area and at the Vestnesa Ridge points at thermogenic contributions in the sediment interstitials and pore water. The two hydrate bearing margins show large differences in hydrocarbon content and microbial activity in the pockmarks investigated. The gravity cores from the penetrated pockmark at Vestnesa showed low hydrocarbon content and thus suggest ceased or periodic venting. The fluid flow escape features at Nyegga show large variety of flux rates based on ROV monitoring and headspace analysis of the sediment and pore water. The

  7. Nuclear Quantum Effects in Ice Phases and Water from First Principles Calculations

    Science.gov (United States)

    Pamuk, Betul

    Despite the simplicity of the molecule, condensed phases of water show many physical anomalies, some of which are still unexplained to date. This thesis focuses on one striking anomaly that has been largely neglected and never explained. When hydrogen (1H) is replaced by deuterium (2 D), zero point fluctuations of the heavy isotope causes ice to expand, whereas in normal isotope effect, heavy isotope causes volume contraction. Furthermore, in a normal isotope effect, the shift in volume should decrease with increasing temperature, while, in ice, the volume shift increases with increasing temperature and persists up to the melting temperature and also exists in liquid water. In this dissertation, nuclear quantum effects on structural and cohesive properties of different ice polymorphs are investigated. We show that the anomalous isotope effect is well described by first principles density functional theory with van der Waals (vdW-DF) functionals within the quasi-harmonic approximation. Our theoretical modeling explains how the competition between the intra- and inter-molecular bonding of ice leads to an anomalous isotope effect in the volume and bulk modulus of ice. In addition, we predict a normal isotope effect when 16O is replaced by 18O, which is experimentally confirmed. Furthermore, the transition from proton disordered hexagonal phase, ice Ih to proton ordered hexagonal phase, ice XI occurs with a temperature difference between 1H and 2D of 6K, in good agreement with experimental value of 4K. We explain, for first time for that this temperature difference is entirely due to the zero point energy. In the second half of this thesis, we expand our study to the other ice phases: ice Ic, ice IX, ice II, ice VIII, clathrate hydrates, and low and high density amorphous ices. We employ the methodology that we have developed to investigate the isotope effect in structures with different configurations. We show that there is a transition from anomalous isotope effect

  8. The late Precambrian greening of the Earth.

    Science.gov (United States)

    Knauth, L Paul; Kennedy, Martin J

    2009-08-01

    Many aspects of the carbon cycle can be assessed from temporal changes in the (13)C/(12)C ratio of oceanic bicarbonate. (13)C/(12)C can temporarily rise when large amounts of (13)C-depleted photosynthetic organic matter are buried at enhanced rates, and can decrease if phytomass is rapidly oxidized or if low (13)C is rapidly released from methane clathrates. Assuming that variations of the marine (13)C/(12)C ratio are directly recorded in carbonate rocks, thousands of carbon isotope analyses of late Precambrian examples have been published to correlate these otherwise undatable strata and to document perturbations to the carbon cycle just before the great expansion of metazoan life. Low (13)C/(12)C in some Neoproterozoic carbonates is considered evidence of carbon cycle perturbations unique to the Precambrian. These include complete oxidation of all organic matter in the ocean and complete productivity collapse such that low-(13)C/(12)C hydrothermal CO(2) becomes the main input of carbon. Here we compile all published oxygen and carbon isotope data for Neoproterozoic marine carbonates, and consider them in terms of processes known to alter the isotopic composition during transformation of the initial precipitate into limestone/dolostone. We show that the combined oxygen and carbon isotope systematics are identical to those of well-understood Phanerozoic examples that lithified in coastal pore fluids, receiving a large groundwater influx of photosynthetic carbon from terrestrial phytomass. Rather than being perturbations to the carbon cycle, widely reported decreases in (13)C/(12)C in Neoproterozoic carbonates are more easily interpreted in the same way as is done for Phanerozoic examples. This influx of terrestrial carbon is not apparent in carbonates older than approximately 850 Myr, so we infer an explosion of photosynthesizing communities on late Precambrian land surfaces. As a result, biotically enhanced weathering generated carbon-bearing soils on a large

  9. Organic synthesis in the outer Solar System: Recent laboratory simulations for Titan, the Jovian planets, Triton and comets

    Science.gov (United States)

    Sagan, C.; Thompson, W. R.; Khare, B. N.; Chyba, C. F.

    1991-01-01

    We tabulate the most abundant gases and their radiation yields, for two experimental pressures: 0.24 mb, more relevant to upper atmosphere excitation, and 17 mb, more relevant to tropospheric, cosmic ray excitation. The yields computed in the 0.24 mb experiment combined with measured electronic fluxes and a simple, eddy diffusion model of Titan's atmosphere predict abundances of detected molecules in agreement with those found by Voyager and for heavier products, in somewhat better agreement with observation than photochemical absolute reaction rate kinetics models. All Voyager organics are accounted for and no detectable products are found that Voyager did not detect. A striking increase of products with multiple bonds is found with decreasing pressure. Hydrocarbon abundances decline slowly with increasing carbon number. Additionally, we list preliminary estimates for the yield of the heteropolymer, which seems to be produced in a quantity comparable (in moles of C+N consumed) to the total amount of gaseous product. The production rate required to sustain Titan's haze against sedimentation also indicates yields of this order. As can be seen from the table, over 10(exp 9) years substantial amounts of these products can accumulate on the surface -- ranging from cm thickness for the (C+N equals 4) species to a meter or more for HCN and C2H2; we also expect a meter or more of tholins. Similar analyses have been or are being done for the Jovian planets and Triton. Charged particle irradiation of hydrocarbon clathrates or mixed hydrocarbon/water ices produces a range of organic products, reddening and darkening of the ices and characteristic infrared spectra. From such spectra, the predicted emission by fine particles in cometary comae well-matches the observed 3.4 micron emission spectra of Comet Halley and other recent comets. Heliocentric evolution of organic emission features in comets is predicted. Organic products of such ice irradiation may account for colors and

  10. Titan: Callisto With Weather?

    Science.gov (United States)

    Moore, J. M.; Pappalardo, R. T.

    2008-12-01

    , Titan might have accreted relatively cold. Without being in a forced resonance, Titan's interior may have never undergone significant tidal heating. Analogous to Callisto's tenuous CO2 atmosphere, believed to be generated by sublimation of interior ices, interior clathrated methane within Titan may slowly diffuse outward from the cold interior, rather than the atmosphere being replenished by cryovolcanism. The hypothesis that Titan is "Callisto with weather" -- with geological processes that are principally exogenic -- can be tested through geophysical and thermal modeling, and by modeling the evolution of landscapes that are shaped by exogenic processes alone.

  11. Synthesis and characterization of electron donor-acceptor platinum(II) complexes composed of N,N-diphenylpyridineamine and triphenylamine ligands.

    Science.gov (United States)

    Dai, Zhi; Metta-Magaña, Alejandro J; Nuñez, Jose E

    2014-07-21

    AgNO3 clathrate. X-ray quality crystals were grown from a solution of hexanes/CH2Cl2 and from diffusion of hexanes into a CH2Cl2 solution of the complex, providing a solvent-free crystal and a solvate of CH2Cl2, respectively.

  12. Scientific Advancements and Technological Developments of High P-T Neutron Diffraction at LANSCE, Los Alamos

    Science.gov (United States)

    Zhao, Y.; Daemen, L. L.; Zhang, J.

    2003-12-01

    In-situ high P-T neutron diffraction experiments provide unique opportunities to study the crystal structure, hydrogen bonding, magnetism, and thermal parameters of light elements (eg. H, Li, B) and heavy elements (eg. Ta, U, Pu,), that are virtually impossible to determine with x-ray diffraction techniques. For example, thermoelasticity and Debye-Waller factor as function of pressure and temperature can be derived using in-situ high P-T neutron diffraction techniques. These applications can also be extended to a much broader spectrum of scientific problems. For instance, puzzles in Earth science such as the carbon cycle and the role of hydrous minerals for water exchange between lithosphere and biosphere can be directly addressed. Moreover, by introducing in-situ shear, texture of metals and minerals accompanied with phase transitions at high P-T conditions can also be studied by high P-T neutron diffraction. We have successfully conducted high P-T neutron diffraction experiments at LANSCE and achieved simultaneous high pressures and temperatures of 10 GPa and 1500 K. With an average 3-6 hours of data collection, the diffraction data are of sufficiently high quality for the determination of structural parameters and thermal vibrations. We have studied hydrous mineral (MgOD), perovskite (K.15,Na.85)MgF3, clathrate hydrates (CH4-, CO2-, and H2-), metals (Mo, Al, Zr), and amorphous materials (carbon black, BMG). The aim of our research is to accurately map bond lengths, bond angles, neighboring atomic environments, and phase stability in P-T-X space. Studies based on high-pressure neutron diffraction are important for multi-disciplinary science and we welcome researchers from all fields to use this advanced technique. We have developed a 500-ton toroidal press, TAP-98, to conduct simultaneous high P-T neutron diffraction experiments inside of HIPPO (High-Pressure and Preferred-Orientation diffractometer). We have also developed a large gem-crystal anvil cell, ZAP-01

  13. P- V- T properties of fluids in the system H 2O ± CO 2 ± NaCl: New graphical presentations and implications for fluid inclusion studies

    Science.gov (United States)

    Brown, Philip E.; Lamb, William M.

    1989-06-01

    Understanding the role of fluids in geologic processes requires a knowledge of the P- V- T properties of fluids over a wide range of conditions. Comparisons of several published equations of state with available experimental data for fluids composed of H 2O and CO 2 lead to the conclusion that the hard-sphere modified Redlich-Kwong equation of state of Kerrick and Jacobs (1981) most accurately predicts the P- V- T properties in this binary system. To model the volumetric properties in the H 2OCO 2NaCl system a formulation is presented involving a linear (ideal) interpolation between a pure-CO 2 isochore predicted by the equation of state of Kerrick. and Jacobs (1981) and an H 2O-NaCl isochore predicted by an empirical equation derived from the regression of available P- V- T data for the H 2O-NaCl system. This formulation is applicable over a wide range of temperatures (>350°C) and pressures (2-10 kbars) and is especially suitable for high pressures and low-to-moderate temperatures (fluid densities ≥ 1.0 cm 3). Determination of the appropriate isochore for an H 2OCO 2NaCl fluid inclusion requires (1) the relative salinity (NaCl/H 2O + NaCl), (2) bulk density of the combined gas and liquid CO 2 phases, and (3) volume percent estimate of the aqueous p the total homogenization temperature. The commonly encountered problem of estimating the volume percents of phases in inclusions may be avoided in some applications, and several new P- X(CO 2) diagrams have been constructed and contoured with (a) the solvi in the mixed volatile system and (b) the measured density of the CO 2 phase. The effects of H 2OCO 2 clathrates during microthermometric observations in the laboratory are evaluated and in most instances can be minimized or avoided. Application of these results to fluid inclusion studies have led to improved determinations of (1) pressures and temperatures of fluid entrapment in a variety of geologic settings and (2) pressures and temperatures of

  14. Constraining the cause of the end-Guadalupian extinction with coupled records of carbon and calcium isotopes

    Science.gov (United States)

    Jost, Adam B.; Mundil, Roland; He, Bin; Brown, Shaun T.; Altiner, Demir; Sun, Yadong; DePaolo, Donald J.; Payne, Jonathan L.

    2014-06-01

    A negative δC13 excursion in carbonate sediments near the Guadalupian/Lopingian (Middle/Late Permian) boundary has been interpreted to have resulted from a large carbon cycle disturbance during the end-Guadalupian extinction event (ca. 260 Ma). However, the carbon isotope data alone are insufficient to uniquely determine the type and magnitude of perturbation to the global carbon cycle. Calcium isotopes can be used to further constrain the cause of a carbon isotope excursion because the carbon and calcium cycles are coupled via CaCO3 burial. In this study, we present coupled carbon and calcium isotope records from three Guadalupian-Lopingian (G/L) sections in China (Penglaitan and Chaotian) and Turkey (Köserelik Tepe). The δC13 and δCa44/40 records differ among our studied sections and do not co-vary in the same manner. No section shows δC13 and δCa44/40 changes consistent with massive, rapid volcanic CO2 emissions or methane clathrate destabilization. Additionally, many sections with large (>3‰) changes in δC13 exhibit δO18 evidence for diagenetic alteration. Only one section exhibits a large excursion in the δCa44/40 of limestone but the absence of a similar excursion in the δCa44/40 of conodont apatite suggests that the limestone excursion reflects a mineralogical control rather than a perturbation to the global calcium cycle. Hence, we interpret the large isotopic changes observed in some sections to have resulted from local burial conditions or diagenetic effects, rather than from a large carbon and calcium cycle disturbance. Perturbations to the global carbon and calcium cycles across the G/L transition were much less intense than the disturbances that occurred across the subsequent Permian-Triassic boundary. This finding is consistent with the much smaller magnitude of the end-Guadalupian extinction relative to the end-Permian.

  15. Study on gas hydrate as a new energy resource in the 21th century

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Byeong-Jae; Kwak Young-Hoon; Kim, Won-Sik [Korea Institute of Geology Mining and Materials, Taejon (KR)] (and others)

    1999-12-01

    Natural gas hydrate, a special type of clathrate hydrates, is a metastable solid compound which mainly consists of methane and water, and generally called as gas hydrate. It is stable in the specific low-temperature/high-pressure conditions. Gas hydrates play an important role as major reservoir of methane on the earth. On the other hand, the formation and dissociation of gas hydrates could cause the plugging in pipeline, gas kick during production, atmospheric pollution and geohazard. To understand the formation and dissociation of the gas hydrate, the experimental equilibrium conditions of methane hydrate were measured in pure water, 3 wt.% NaCl and MgCl{sub 2} solutions. The equilibrium conditions of propane hydrates were also measured in pure water. The relationship between methane hydrate formation time and overpressure was also analyzed through the laboratory work. The geophysical surveys using air-gun system and multibeam echo sounder were implemented to develop exploration techniques and to evaluate the gas hydrate potential in the East Sea, Korea. General indicators of submarine gas hydrates on seismic data is commonly inferred from the BSR developed parallel to the see floor, amplitude blanking at the upper part of the BSR, and phase reversal and decrease of the interval velocity at BSR. The field data were processed using Geobit 2.9.5 developed by KIGAM to detect the gas hydrate indicators. The accurate velocity analysis was performed by XVA (X-window based Velocity Analysis). Processing results show that the strong reflector occurred parallel to the sea floor were shown at about 1800 ms two way travel time. The interval velocity decrease at this strong reflector and at the reflection phase reversal corresponding to the reflection at the sea floor. Gas hydrate stability field in the study area was determined using the data of measured hydrate equilibrium condition, hydrothermal gradient and geothermal gradient. The depth of BSR detected in the seismic

  16. Hydrogen-bonded porous coordination polymers: structural transformation, sorption properties, and particle size from kinetic studies.

    Science.gov (United States)

    Uemura, Kazuhiro; Saito, Kazuya; Kitagawa, Susumu; Kita, Hidetoshi

    2006-12-20

    Three new coordination polymers, [CoCl2(4-pmna)2]n (1), {[Co(NCS)2(4-pmna)2].2Me2CO}n (2 superset 2Me2CO), and {[Co(4-pmna)2(H2O)2](NO3)2.2CH3OH}n (3 superset 2H2O.2MeOH) (4-pmna = N-(pyridin-4-ylmethyl)nicotinamide), have been synthesized and characterized using single-crystal X-ray diffraction. The cobalt(II) atoms are bridged by 4-pmna ligands in all three compounds to form double-stranded one-dimensional "repeated rhomboid-type" chains with rectangular-shaped cavities. In 1, each chain slips and obstructs the neighboring cavities so that there are no guest-incorporated pores. Both 2 superset 2Me2CO and 3 superset 2H2O.2MeOH do not have such a staggered arrangement and have pores that can be filled with a guest molecule. Compound 3 superset 2H2O.2MeOH traps guest molecules with multiple hydrogen bonds and shows a reversible structural rearrangement during adsorption and desorption. The new crystalline compound, 3, is stabilized by forming hydrogen bonds with the amide moieties of the 4-pmna ligands and was characterized using infrared spectroscopy. The clathration enthalpy of the reaction 3 + 2H2O(l) + 2MeOH(l) 3 superset 2H2O.2MeOH (approximately 35 kJ/mol) was estimated from differential scanning calorimetry data by considering the vaporization enthalpies of H2O and MeOH. The desorption process of 3 superset 2H2O.2MeOH --> 3 follows a single zero-order reaction mechanism under isothermal conditions. The activation energy of ca. 100 kJ/mol was obtained by plotting the logarithm of the reaction time for the same reacted fraction versus the reciprocal of the temperature. Moreover, the distribution of the one-dimensional channels in 3 superset 2H2O.2MeOH was estimated using the observation that the reaction rate is directly proportional to the total sectional area.

  17. H{sub 2} storage in microporous materials: a comparison between zeolites and Mos

    Energy Technology Data Exchange (ETDEWEB)

    Ricchiardi, G.; Regli, L.; Vitillo, J. G.; Cocina, D.; Bordiga, S.; Lamberti, C.; Spoto, G.; Zecchina, A.; Bjorgen, M.; Lillerud, K. P.

    2005-07-01

    One of the main concerns about a hydrogen-based energy economy is the efficient storage and transport of this highly flammable gas. Many strategies have been followed or suggested in recent years to solve this problem. The most important ones are: 1) storage in metals and alloys; 2) storage in complex hydrides (alanates, borides); 3) storage by trapping in clathrates (ice and others); 4) storage in microporous materials (carbons, zeolitic materials, metal-organic frameworks, polymers). [1, 2] In this work we have focused our attention on microporous materials, where the crucial point is the strength of the interaction between the molecular hydrogen and the internal surfaces of micropores and/ or of cages of entrapping materials. It is known from fundamental studies that H2 strongly interacts with ions in the gas but that the presence of counterions decreases the interaction energy substantially. The most prominent class of microporous materials, which contains isolated and exposed cations, are zeolites and zeotypes: ideal systems to investigate the interaction of H2 with both dispersive and electrostatic forces [3]. So, even if they are not sufficiently light to represent the final solution to H2 storage, the availability of a large variety of frameworks and chemical compositions combined with low cost and superior mechanical and thermal stabilities increases the interest in these materials. In this work we have studied in detail, by means of volumetric and spectroscopic measurements, zeolites with CHA topology (as they are characterized by a strong acidity and by a big surface area). H-SSZ-13 zeolite, characterized by a low Al content (Si/Al = 11), has shown the best properties in hydrogen storage in respect to all the other zeolites and zeotypes with different compositions and topologies [4]. The results have been compared with those obtained for MOF-5 [5], a well known Metal-Organic Framework, indicated as a very good material for molecular hydrogen storage [6

  18. 柚皮素β-环糊精包合物对大鼠实验性脉络膜新生血管的抑制作用%Inhibition of naringenin complex with β-cyclodextrin on experimental choroidal neovascularization in rats

    Institute of Scientific and Technical Information of China (English)

    徐新荣; 于海涛; 杭丽; 邵雁; 丁淑华; 杨学文

    2015-01-01

    Background Choroidal neovascularization (CNV) leads to blindness in many fundus diseases.Study showed that naringenin suppresses CNV,but it presents with poor bioavailability because of its poor solubility in water.β-cyclodextrin (β-CD) can increase the water-solubility of drugs, however, whether the inhibitory effect of naringenin on CNV can be improved after clathrated with β-CD remains unclear.Objective This study was to compare the inhibitory effects of naringenin with naringenin/β-CD compounds on CNV in rats.Methods Naringenin/β-CD clathrate compounds were prepared with saturated solution,the solubility of naringenin in water was calculated based on standard curve.Thirty-two male Brown Norway rats were randomized into normal control group, model control group, naringenin group and naringenin/β-CD group.Laser-induced CNV models were created in the right eyes of rats from the model control group, naringenin group and naringenin/β-CD group.Naringenin and naringenin/β-CD clathrate compounds were intraperitoneally injected at a dose of 20 mg/kg in the rats of naringenin group and naringenin/β-CD group since the day after modeling, respectively, once per day for 4 weeks, and equal volume of DMSO was injected in the same way in the model control group.Fluorescein isothiocyanate dextran (FITC-D) was injected via rat hypoglossal vein for the preparation of flatmounts of choroid in the fourth week,and the areas of CNV were measured and compared among the groups.The retinal pigment epithelium (RPE)-choroid-sclera tissues were isolated from the rats, and the relative expression levels of vascular endothelial growth factor (VEGF) , cyclooxygenase-2 (COX-2),phosphatidylinositol-3-kinase (PI3K),p38mitogen-activated protein kinase (p38MAPK), matrix metalloproteinase (MMP)-2, MMP-9 mRNA and their proteins in RPE-choroid-sclera tissue were detected using real-time PCR and Western blot.Results The solubility of naringenin in water increased by 11.8 folds after

  19. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    Science.gov (United States)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides

  20. Compound Natural Gas Hydrate: A Natural System for Separation of Hydrate-Forming Gases

    Science.gov (United States)

    Max, M. D.; Osegovic, J. P.

    2007-12-01

    Natural processes that separate materials from a mixture may exert a major influence on the development of the atmospheres and surfaces of planets, moons, and other planetary bodies. Natural distillation and gravity separation, amongst others, are well known means of differentiating materials through liquid-gas partitioning. One of the least known attributes of clathrate (gas) hydrates is their potential effect on the evolution of planetary system oceans and atmospheres. Gas hydrates separate gases from mixtures of gases by concentrating preferred hydrate-forming materials (HFM) guests within the water-molecule cage structure of crystalline hydrate. Different HFMs have very different fields of stability. When multiple hydrate formers are present, a preference series based on their selective uptake exists. Compound hydrate, which is formed from two or more species of HFM, extract preferred HFM from a mixture in very different proportions to their relative percentages of the original mixture. These compound hydrates can have different formation and dissociation conditions depending on the evolution of the environment. That is, the phase boundary of the compound hydrate that is required for dissociation lies along a lower pressure - higher temperature course. Compound hydrates respond to variations in temperature, pressure, and HFM composition. On Earth, the primary naturally occurring hydrate of interest to global climate modeling is methane hydrate. Oceanic hydrate on Earth is the largest store of carbon in the biosphere that is immediately reactive to environmental change, and is capable of releasing large amounts of methane into the atmosphere over a short geological time span. Hydrate formation is essentially metastable and is very sensitive to environmental change and to gas flux. Where natural variations in temperature and pressure varies so that hydrate will form and dissociate in some cyclical manner, such as in oceans where sea level is capable of rising and

  1. Reactivity of Xe with ice at extreme P-T conditions

    Science.gov (United States)

    Sanloup, C.; Hochlaf, M.; Maynard-Casely, H.; Gregoryanz, E.; Mezouar, M.

    2010-12-01

    Water is an important component of terrestrial and giant planets so that any reactivity with Xe at depth would have strong consequences on our knowledge of planetary dynamics as it heavily relies on Xe isotopes geochemistry. The chemistry of ‘noble gas’ have seen fascinating experimental and theoretical advances during the last twenty years as highlighted by review papers (1,2). Noble gas chemistry proceeds essentially by photosynthesis of precursors in a low-temperature noble-gas matrix. The pressure variable has seldom been investigated as a mean to enforce Xe to bond other elements (3). Xe is among the gases that stabilize clathrate hydrates through van der Waals interactions. Xe hydrates are stable up to 2.5 GPa, before dissociating into Xe plus ice VII (4). However, the chemistry of water with solid Xe has been successfully explored by UV photolysis (5,6). Those findings plus our own results on the stability of Xe oxides in the terrestrial crust (7) let us envisage that the chemistry of Xe with oxygen at extreme conditions could be flourishing. We have thus explored the reactivity of Xe with water up to 80 GPa by using a laser-heated diamond-anvil cell combined with in situ x-ray diffraction measurements. Formation of a compound is indeed observed at conditions that could occur in the interiors of ice-rich giant planets Uranus and Neptune. To complement the x-ray diffraction data, ab initio calculations have been carried out to determine the molecular structure of the new found compound. These resuts hence add another example of noble gas sequestration in giant planets, as recently proposed for Ne (8). References: 1. W. Grochala, Chem. Soc. Rev. 1632, 36 (2007). 2. R. B. Gerber, Annu. Rev. Phys. Chem., 55, 55 (2004). 3. A. I. Katz and V. A. Apkarian, J. Phys. Chem., 94, 6671-6678 (1990). 4. C. Sanloup et al., PNAS 99, 25 (2002). 5. M. Pettersson et al., Eur. J. Inorg. Chem. 505, 729 (1999). 6. L. Khriachtchev et al., JACS 130, 6114 (2008). 7. C. Sanloup et

  2. Initialization of metabolism in prebiotic petroleum

    Science.gov (United States)

    Mekki-Berrada, Ali

    The theoretical and bibliographical work on the geochemical origin of life, which I present here, it works on the assumption that: "The class of more complex molecules of life that can have a geochemical and abiotic origin is the class of fatty acid with long aliphatic chain". This idea comes from the controversy over the abiotic oil industry, and the first measurements of abiotic oil at mid-ocean ridges (Charlou J.L. et al. 2002, Proskurowski G. et al. 2008). To go further and propose a comprehensive experimentation on the origin of life, I propose in this article the idea that the prebiotic soup or prebiotic petroleum would stem from the diagenesis of the gas clathrates/sediments mixture. Gas, H2S H2 N2 CH4 CO2, are produced at mid-ocean ridges, and at large-scale at the seafloor, by serpentinization. Sediments contain hydrogenophosphates as a source of phosphate and minerals to the surface catalysis. Extreme conditions experienced by some prokaryotes and pressures and temperatures of submarine oilfields of fossil petroleum are close. The hydrostatic pressure is around 1.5 kbar and the temperature is below 150 °C. This experiment I propose is quite feasible today since these conditions are used: In research and exploration of fossil petroleum; In the field of organic chemistry called "green chemistry" and where temperatures remain low and the pressure can reach 10 kbar; to study the biology of prokaryotes living in the fossil petroleum of industrial interest, these studies are quite comparable to experiment with prebiotic oil; Finally, this experiment can be based on research on abiotic CH4 on Mars and abiotic hydrocarbons on Titan. The next step in the theoretical research of the origin of life is the abiotic synthesis of liposomes. Abiotic synthesis liposomes just requires synthesis of glycerol and ethanolamine (or serine) esterifying the phosphate and fatty acid. The state of research on the abiotic synthesis of these molecules shows that synthesis of

  3. Investigation into the Formation and Adhesion of Cyclopentane Hydrates on Mechanically Robust Vapor-Deposited Polymeric Coatings.

    Science.gov (United States)

    Sojoudi, Hossein; Walsh, Matthew R; Gleason, Karen K; McKinley, Gareth H

    2015-06-09

    Blockage of pipelines by formation and accumulation of clathrate hydrates of natural gases (also called gas hydrates) can compromise project safety and economics in oil and gas operations, particularly at high pressures and low temperatures such as those found in subsea or arctic environments. Cyclopentane (CyC5) hydrate has attracted interest as a model system for studying natural gas hydrates, because CyC5, like typical natural gas hydrate formers, is almost fully immiscible in water; and thus CyC5 hydrate formation is governed not only by thermodynamic phase considerations but also kinetic factors such as the hydrocarbon/water interfacial area, as well as mass and heat transfer constraints, as for natural gas hydrates. We present a macroscale investigation of the formation and adhesion strength of CyC5 hydrate deposits on bilayer polymer coatings with a range of wettabilities. The polymeric bilayer coatings are developed using initiated chemical vapor deposition (iCVD) of a mechanically robust and densely cross-linked polymeric base layer (polydivinylbenzene or pDVB) that is capped with a covalently attached thin hydrate-phobic fluorine-rich top layer (poly(perfluorodecyl acrylate) or pPFDA). The CyC5 hydrates are formed from CyC5-in-water emulsions, and differential scanning calorimetry (DSC) is used to confirm the thermal dissociation properties of the solid hydrate deposits. We also investigate the adhesion of the CyC5 hydrate deposits on bare and bilayer polymer-coated silicon and steel substrates. Goniometric measurements with drops of CyC5-in-water emulsions on the coated steel substrates exhibit advancing contact angles of 148.3 ± 4.5° and receding contact angles of 142.5 ± 9.8°, indicating the strongly emulsion-repelling nature of the iCVD coatings. The adhesion strength of the CyC5 hydrate deposits is reduced from 220 ± 45 kPa on rough steel substrates to 20 ± 17 kPa on the polymer-coated steel substrates. The measured strength of CyC5 hydrate

  4. Martian Polar Caps: Folding, Faulting, Flowing Glaciers of Multiple Interbedded Ices

    Science.gov (United States)

    Kargel, J. S.

    2001-12-01

    The Martian south polar cap (permanent CO2 cap and polar layered deposits), exhibit abundant, varied, and widespread deformational phenomena. Folding and boudinage are very common. Strike-slip or normal faults are rarer. Common in the vicinity of major troughs and scarps are signs of convergent flow tectonics manifested as wrinkle-ridge-like surface folds, thrust faults, and viscous forebulges with thin-skinned extensional crevasses and wrinkle-ridge folds. Such flow convergence is predicted by theory. Boudinage and folding at the 300-m wavelength scale, indicating rheologically contrasting materials, is widely exposed at deep levels along erosional scarps. Independent morphologic evidence indicates south polar materials of contrasting volatility. Hence, the south polar cap appears to be a multiphase structure of interbedded ices. The north polar cap locally also exhibits flow indicators, though they are neither as common nor as varied as in the south. The large-scale quasi-spiral structure of the polar caps could be a manifestation of large-scale boudinage. According to this scenario, deep-level boudinage continuously originates under the glacial divide (the polar cap summit). Rod-like boudin structures are oriented transverse to flow and migrate outward with the large-scale flow field. Troughs develop over areas between major boudins. A dynamic competition, and possibly a rough balance, develops between the local flow field in the vicinity of a trough (which tends to close the trough by lateral closure and upwelling flow) and sublimation erosion (which tends to widen and deepen them). Over time, the troughs flow to the margins of the polar cap where they, along with other polar structures, are destroyed by sublimation. Major ice types contributing to rheological and volatility layering may include, in order of highest to lowest mechanical strength, CO2 clathrate hydrate, water ice containing inert/insoluble dust, pure water ice, water ice containing traces of

  5. Production and detection of carbon dioxide on Iapetus

    Science.gov (United States)

    Palmer, Eric E.; Brown, Robert H.

    2011-04-01

    Cassini VIMS detected carbon dioxide on the surface of Iapetus during its insertion orbit. We evaluated the CO 2 distribution on Iapetus and determined that it is concentrated almost exclusively on Iapetus' dark material. VIMS spectra show a 4.27-μm feature with an absorption depth of 24%, which, if it were in the form of free ice, requires a layer 31 nm thick. Extrapolating for all dark material on Iapetus, the total observable CO 2 would be 2.3 × 10 8 kg. Previous studies note that free CO 2 is unstable at 10 AU over geologic timescales. Carbon dioxide could, however, be stable if trapped or complexed, such as in inclusions or clathrates. While complexed CO 2 has a lower thermal volatility, loss due to photodissociation by UV radiation and gravitational escape would occur at a rate of 2.6 × 10 7 kg year -1. Thus, Iapetus' entire inventory of surface CO 2 could be lost within a few decades. The high loss/destruction rate of CO 2 requires an active source. We conducted experiments that generated CO 2 by UV radiation of simulated icy regolith under Iapetus-like conditions. The simulated regolith was created by flash-freezing degassed water, crushing it into sub-millimeter sized particles, and then mixing it with isotopically labeled amorphous carbon ( 13C) dust. These samples were placed in a vacuum chamber and cooled to temperatures between 50 K and 160 K. The samples were irradiated with UV light, and the products were measured using a mass spectrometer, from which we measured 13CO 2 production at a rate of 2.0 × 10 12 mol s -1. Extrapolating to Iapetus and adjusting for the solar UV intensity and Iapetus' surface area, we calculated that CO 2 production for the entire surface would be 1.1 × 10 7 kg year -1, which is only a factor of two less than the loss rate. As such, UV photochemical generation of CO 2 is a plausible source of the detected CO 2.

  6. Air fractionation in plate-like inclusions within the EPICA-DML deep ice core

    Science.gov (United States)

    Nedelcu, A.; Faria, S. H.; Kipfstuhl, S.; Schmidt, B.; Kuhs, W. F.

    2009-04-01

    than this, they suggest that the diffusion of chemical traces in the ice matrix may not be negligible, at least locally, on a timescale of few years. These results could be important for the interpretation of ice-core paleoclimate records. Muguruma, J., S. Mae and A. Higashi, 1966. Void formation by non-basal glide in ice single crystals, Philos. Mag., 13(123), 625-629. Mae, S., 1968. Void formation during non-basal glide in ice single crystals under tension, Philos. Mag., 18(151), 101-114. Gow, A. J., 1971. Relaxation of ice in deep drill cores from Antarctica, J. Glaciol., 76(11), 2533-2541. Nedelcu, A. F., S. H. Faria and W. F. Kuhs, in press. Raman spectra of plate-like inclusions in the EPICA-DML ice core. J. Glaciol., 55(189) Nakahara, J., Y. Shigesato, A. Higashi, T. Hondoh and C.C. Langway, 1988. Raman spectra of natural clathrates in deep ice cores, Philos. Mag. B, 57(3), 421-430. Ikeda, T., H. Fukazawa, S. Mae, L. Pepin, P. Duval, B. Champagnon, V. Y. Lipenkov and T. Hondoh, 1999. Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic ice, Geophys. Res. Lett., 26(1), 91-94. Ikeda-Fukazawa, T., T. Hondoh, T. Fukumura, H. Fukazawa and S. Mae, 2001. Variation in N2/O2 ratio of occluded air in Dome Fuji antarctic ice, J. Geophys. Res., 106(D16), 17799-17810. Ikeda-Fukazawa, T., K. Fukumizu, K. Kawamura, S. Aoki, T. Nakazawa and T. Hondoh, 2005. Effects of molecular diffusion on trapped gas composition in polar ice cores, Earth Planet.Sci.Lett.,229(3-4),183-192. Severinghaus, J. P., and M. O. Battle, 2006. Fractionation of gases in polar ice during bubble close-off: new constraints from firn air, Ne, Kr and Xe observations, Earth Planet. Sci. Lett., 244(1-2), 474-500.

  7. Timing and thermochemical constraints on multi-element mineralisation at the Nori/RA Cu-Mo-U prospect, Great Bear magmatic zone, Northwest Territories, Canada

    Science.gov (United States)

    Ootes, Luke; Goff, Steve; Jackson, Valerie A.; Gleeson, Sarah A.; Creaser, Robert A.; Samson, Iain M.; Evensen, Norman; Corriveau, Louise; Mumin, A. Hamid

    2010-08-01

    clathrates or CH4 was not observed or detected. Quartz grains only host secondary fluid inclusions, which fluoresce under ultraviolet light, indicating trapped hydrocarbons. We speculate that these resulted from Phanerozoic fluid circulation through the Proterozoic basement. The collective interpretation of the age, hydrothermal character and associated metals, high temperature and variable salinity suggests that the Nori/RA Cu-Mo-U mineralisation can be linked with the earliest stages of plutonism in the Great Bear magmatic zone. From a regional perspective, the mineralisation may pre-date the extensive multi-element mineralisation now recognised as part of the iron oxide copper-gold (IOCG) spectrum of deposits. As IOCG provinces generally contain a variety of mineralisation styles, we interpret this as the earliest phase of the extensive mineralising system.

  8. Thermal Conductive Heat Transfer and Partial Melting of Volatiles in Icy Moons, Asteroids, and Kuiper Belt Objects (Invited)

    Science.gov (United States)

    Kargel, J. S.; Furfaro, R.

    2013-12-01

    Thermal gradients within conductive layers of icy satellite and asteroids depend partly on heat flow, which is related to the secular decay of radioactive isotopes, to heat released by chemical phase changes, by conversion of gravitational potential energy to heat during differentiation, tidal energy dissipation, and to release of heat stored from prior periods. Thermal gradients are also dependent on the thermal conductivity of materials, which in turn depends on their composition, crystallinity, porosity, crystal fabric anisotropy, and details of their mixture with other materials. Small impurities can produce lattice defects and changes in polymerization, and thereby have a huge influence on thermal conductivity, as can cage-inclusion (clathrate) compounds. Heat flow and thermal gradients can be affected by fluid phase advection of mass and heat (in oceans or sublimating upper crusts), by refraction related to heterogeneities of thermal conductivity due to lateral variations and composition or porosity. Thermal profiles depend also on the surface temperature controlled by albedo and climate, surface relief, and latitude, orbital obliquity and surface insolation, solid state greenhouses, and endogenic heating of the surface. The thermal state of icy moon interiors and thermal gradients can be limited at depth by fluid phase advection of heat (e.g., percolating meteoric methane or gas emission), by the latent heat of phase transitions (melting, solid-state transitions, and sublimation), by solid-state convective or diapiric heat transfer, and by foundering. Rapid burial of thick volatile deposits can also affect thermal gradients. For geologically inactive or simple icy objects, most of these controls on heat flow and thermal gradients are irrelevant, but for many other icy objects they can be important, in some cases causing large lateral and depth variations in thermal gradients, large variations in heat flow, and dynamically evolving thermal states. Many of

  9. Global Assessment of Methane Gas Hydrates: Outreach for the public and policy makers

    Science.gov (United States)

    Beaudoin, Yannick

    2010-05-01

    The United Nations Environment Programme (UNEP), via its official collaborating center in Norway, GRID-Arendal, is in the process of implementing a Global Assessment of Methane Gas Hydrates. Global reservoirs of methane gas have long been the topic of scientific discussion both in the realm of environmental issues such as natural forces of climate change and as a potential energy resource for economic development. Of particular interest are the volumes of methane locked away in frozen molecules known as clathrates or hydrates. Our rapidly evolving scientific knowledge and technological development related to methane hydrates makes these formations increasingly prospective to economic development. In addition, global demand for energy continues, and will continue to outpace supply for the foreseeable future, resulting in pressure to expand development activities, with associated concerns about environmental and social impacts. Understanding the intricate links between methane hydrates and 1) natural and anthropogenic contributions to climate change, 2) their role in the carbon cycle (e.g. ocean chemistry) and 3) the environmental and socio-economic impacts of extraction, are key factors in making good decisions that promote sustainable development. As policy makers, environmental organizations and private sector interests seek to forward their respective agendas which tend to be weighted towards applied research, there is a clear and imminent need for a an authoritative source of accessible information on various topics related to methane gas hydrates. The 2008 United Nations Environment Programme Annual Report highlighted methane from the Arctic as an emerging challenge with respect to climate change and other environmental issues. Building upon this foundation, UNEP/GRID-Arendal, in conjunction with experts from national hydrates research groups from Canada, the US, Japan, Germany, Norway, India and Korea, aims to provide a multi-thematic overview of the key

  10. IN-SITU SAMPLING AND CHARACTERIZATION OF NATURALLY OCCURRING MARINE METHANE HYDRATE USING THE D/V JOIDES RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Frank R. Rack; Tim Francis; Peter Schultheiss; Philip E. Long; Barry M. Freifeld

    2005-04-01

    The primary activities accomplished during this quarter were continued efforts to develop plans for Phase 2 of this cooperative agreement based on the evolving operational planning for IODP Expedition 311, which will use the JOIDES Resolution to study marine methane hydrates along the Cascadia margin, offshore Vancouver Island. IODP Expedition 311 has been designed to further constrain the models for the formation of marine gas hydrate in subduction zone accretionary prisms. The objectives include characterizing the deep origin of the methane, its upward transport, its incorporation in gas hydrate, and its subsequent loss to the seafloor. The main attention of this expedition is on the widespread seafloor-parallel layer of dispersed gas hydrate located just above the base of the predicted stability field. In a gas hydrate formation model, methane is carried upward through regional sediment or small-scale fracture permeability, driven by the tectonic consolidation of the accretionary prism. The upward moving methane is incorporated into the gas hydrate clathrate as it enters the methane hydrate stability zone. Also important is the focusing of a portion of the upward methane flux into localized plumes or channels to form concentrations of near-seafloor gas hydrate. The amount of gas hydrate in local concentrations near the seafloor is especially important for understanding the response of marine gas hydrate to climate change. The expedition includes coring and downhole measurements at five sites across the Northern Cascadia accretionary prism. The sites will track the history of methane in an accretionary prism from (1) its production by mainly microbiological processes over a thick sediment vertical extent, (2) its upward transport through regional or locally focused fluid flow, (3) its incorporation in the regional hydrate layer above the BSR or in local concentrations at or near the seafloor, (4) methane loss from the hydrate by upward diffusion, and (5) methane

  11. Oceanic ecosystem dynamics during gigantic volcanic episodes: the Ontong Java and Manihiki Plateaus recorded by calcareous nannoplankton. (Invited)

    Science.gov (United States)

    Erba, E.

    2010-12-01

    Earth's volcanic activity introduces environmental stress that biota are forced to survive. There is a general consensus on the role of volcanogenic carbon dioxide increases, and implicit tectonic-igneous events, triggering major climate changes and profound variations in chemical, physical and trophic characteristics of the oceans through the Phanerozoic. Cretaceous geological records indicate conditions of excess atmCO2 (up to 2000-3000 ppm) derived from construction of Large Igneous Provinces (LIPs). In such “high CO2 world” and greenhouse conditions, the deep ocean became depleted of oxygen promoting the accumulation and burial of massive amounts of organic matter; such episodes are recognized as Oceanic Anoxic Events (OAEs) and their geological records merit careful examination of how the Earth system, and Life in particular, can overcome extreme experiments of global change. The Early Aptian (˜ 120 million years ago) OAE1a is a complex example of volcanicCO2-induced environmental stress. There is a general consensus on the causes of this case-history, namely excess CO2 derived from the construction of the Ontong Java-Manihiki LIP. Multi- and inter-disciplinary studies of the OAE1a have pointed out C, O, Os, Sr isotopic anomalies, a biocalcification crisis in pelagic and neritic settings, enhanced fertility and primary productivity, as well as ocean acidification. Available cyclochronology allows high-resolution dating of biotic and environmental fluctuations, providing the precision necessary for understanding the role of volcanogenic CO2 on nannoplankton biocalcification, adaptations, evolutionary innovation and/or extinctions. The reconstructed sequence of volcanogenic CO2 pulses, and perhaps some clathrate melting, triggered a climate change to supergreenhouse conditions, anoxia and ocean acidification. The demise of heavily calcified nannoconids and reduced calcite paleofluxes marks beginning of the pre-OAE1a calcification crisis. Ephemeral coccolith

  12. Apparent Km of mitochondria for oxygen computed from Vmax measured in permeabilized muscle fibers is lower in water enriched in oxygen by electrolysis than injection

    Directory of Open Access Journals (Sweden)

    Zoll J

    2015-07-01

    Full Text Available Joffrey Zoll,1 Jamal Bouitbir,1 Pascal Sirvent,2 Alexis Klein,3 Antoine Charton,1,4 Liliana Jimenez,3 François R Péronnet,5 Bernard Geny,1 Ruddy Richard61Physiology Department, Faculty of Medicine and EA3072, Université de Strasbourg, Strasbourg, 2Clermont Université, Université Blaise Pascal, EA 3533, Laboratoire des Adaptations Métaboliques à l’Exercice en Conditions Physiologiques et Pathologiques, Clermont-Ferrand, 3Danone Research, Centre Daniel Carasso, Palaiseau, 4Department of Anesthesia and Critical Care and EA3072, Hôpital de Hautepierre, Université de Strasbourg, France; 5Kinesiology Department, Université de Montréal, Montréal, QC, Canada; 6Department of Sport Medicine and Functional Explorations and INRA UMR 1019, Faculty of Medicine, Université d’Auvergne, Clermont-Ferrand, FranceBackground: It has been suggested that oxygen (O2 diffusion could be favored in water enriched in O2 by a new electrolytic process because of O2 trapping in water superstructures (clathrates, which could reduce the local pressure/content relationships for O2 and facilitate O2 diffusion along PO2 gradients.Materials and methods: Mitochondrial respiration was compared in situ in saponin-skinned fibers isolated from the soleus muscles of Wistar rats, in solution enriched in O2 by injection or the electrolytic process 1 at an O2 concentration decreasing from 240 µmol/L to 10 µmol/L (132 mmHg to 5 mmHg, with glutamate–malate or N, N, N', N'-tetramethyl-p-phenylenediamine dihydrochloride (TMPD–ascorbate (with antimycin A as substrates; and 2 at increasing adenosine diphosphate (ADP concentration with glutamate–malate as substrate.Results: As expected, maximal respiration decreased with O2 concentration and, when compared to glutamate–malate, the apparent Km O2 of mitochondria for O2 was significantly lower with TMPD–ascorbate with both waters. However, when compared to the water enriched in O2 by injection, the Km O2 was

  13. The science of the lunar poles

    Science.gov (United States)

    Lucey, P. G.

    2011-12-01

    It was the great geochemist Harold Urey who first called attention to peculiar conditions at the poles of the Moon where the very small inclination of the lunar spin axis with respect to the sun causes craters and other depressions to be permanently shaded from sunlight allowing very low temperatures. Urey suggested that the expected low temperature surfaces could cold trap and collect any vapors that might transiently pass through the lunar environment. Urey's notion has led to studies of the poles as a new research area in lunar science. The conditions and science of the poles are utterly unlike those of the familiar Moon of Neil Armstrong, and the study of the poles is similar to our understanding of the Moon itself at the dawn of the space age, with possibilities outweighing current understanding. Broadly, we can treat the poles as a dynamic system of input, transport, trapping, and loss. Volatile sources range from continuous, including solar wind, the Earth's polar fountain and micrometeorites, to episodic, including comets and wet asteroids, to nearly unique events including late lunar outgassing and passage through giant molecular clouds. The lunar exosphere transports volatiles to the poles, complicated by major perturbances to the atmosphere by volatile-rich sources. Trapping includes cold trapping, but also in situ creation of more refractory species such as organics, clathrates and water-bearing minerals, as well as sequester by regolith overturn or burial by larger impacts. Finally, volatiles are lost to space by ionization and sweeping. Spacecraft results have greatly added to the understanding of the polar system. Temperatures have been precisely measured by LRO, and thermal models now allow determination of temperature over the long evolution of the lunar orbit, and show very significant changes in temperature and temperature distribution with time and depth. Polar topography is revealed in detail by Selene and LRO laser altimeters while direct

  14. Natural Gas Hydrates as CH4 Source and CO2 Sink - What do SO2 Impurities do?

    Science.gov (United States)

    Beeskow-Strauch, B.; Schicks, J. M.; Spangenberg, E.; Erzinger, J.

    2009-04-01

    The large amounts of gas hydrates stored in natural reservoirs are thought to be a promising future energy source. The recently discussed idea of methane extraction from these formations, together with the subsequent storage of CO2 in form of gas hydrates is an elegant approach to bring forward. A number of experiments have been performed on lab scale showing the replacement of CH4 by CO2 and vice versa. For instance, Graue and Kvamme (2006) demonstrated with Magnetic Resonance Images of core plug experiments the possibility of CH4 extraction by using liquid CO2. Laser Raman investigations of Schicks et al. (2007) showed, on the other hand, the ineffectiveness and slowness of the CH4 exchange reaction with gaseous CO2. After 120 hours, only 20% CH4 were exchanged for CO2. Natural methane hydrates which include often higher hydrocarbons tend to be even more stable than pure methane hydrates (Schicks et al., 2006). Contrary to lab conditions, industrial emitted CO2 contains - despite much effort to clean it - traces of impurities. For instance, CO2 emitted from the state-of-the-art Vattenfall Oxyfuel pilot plant in Schwarze Pumpe should reach a quality of >99.7% CO2 but still contains small amounts of N2, Ar, O2, SOx and NOx (pers. comm. Dr. Rolland). Here we present a microscopic and laser Raman study in a p-T range of 1 to 4 MPa and 271 to 280K focussing on CO2 hydrate formation and CH4-exchange reaction in the presence of 1% SO2. The experiments have been performed in a small-scale cryocell. The Raman spectra show that CO2 and SO2 occupy both large and small cages of the hydrate lattice. SO2 occurs strongly enriched in the hydrate clathrate, compared to its concentration in the feed gas which causes a strong acidification of the liquid phase after hydrate dissociation. Our study reveals that the hydrate formation rate from impure CO2 is similar to that of pure CO2 hydrate but that the stability of the CO2-SO2-hydrate exceeds that of pure CO2 hydrate. The improved

  15. Interior of Titan: 2-Layer or 3-Layer and Does It Matter?

    Science.gov (United States)

    McKinnon, W. B.; Bland, M. T.

    2011-12-01

    Cassini gravity data for Titan is consistent with a hydrostatic interior and implies an incomplete separation of rock from ice. Simple 2-layer models of the interior have been proposed, in which Titan possesses a "core" and an "ice" layer. In the following, this ice layer should be understood to itself likely consist of higher and lower pressure phases of ice (and/or clathrate) separated by an internal ocean. This is not the "layering" in question in the title; here we address the gross structure of Titan, and what this might tell us about the accretion, evolution, and bombardment history of large icy satellites. Two-layer models face fundamental difficulties. If the "core" is a rock-ice mixture, its average density is ≈2500-2600 kg/m3 (to match Titan's moment-of-inertia [MOI]), and the silicate volume fraction implied may be too high to permit ice-mediated convection and efficient heat transport from the interior. Alternately, if the core is assumed to be a low-density carbonaceous rock, it must be iron deficient (non-solar) and hydrated. We have reexamined models of solar-composition rock for the outer solar system, and guided by high-pressure (multi-GPa) experiments, constructed an appropriate mineralogy based on up-to-date solar abundances (NCFMASNiSu system) and a maximum degree of hydroxylation and carbonation. In order of decreasing abundance, this rock model consists of iron-bearing antigorite, pyrrhotite, calcite, natrite, diaspore, and millerite, minerals stable at Titan core pressures and moderate temperatures. The STP density is 3,000 kg/m3, and is predominantly antigorite (74%) with appreciable sulfide (18%), but no iron metal or magnetite. No simple 2-layer model of Titan can be constructed with this rock that matches Titan's density and MOI. (And such rock as part of a rock-ice "core" guarantees that the rock volume fraction would exceed the critical value (~60%) where the viscosity of the mixture is controlled by a close-packed rock framework. Ice

  16. Study on the stability of anthocyanin in purple sweet potato beverage%紫甘薯饮料中花青素的稳定性研究

    Institute of Scientific and Technical Information of China (English)

    孙鹏尧; 周芳宁; 李喜层; 曹燕华; 袁素辉; 牟德华

    2014-01-01

    The spectrum characteristics of anthocyanins in purple sweet potato beverage with different pH was analyzed, besides, the effect of pH, temperature, Vc, sugar, and light on the stability of anthocyanin from purple sweet potato beverage were studied. The results showed that the anthocyanins had better stability at the pH of 2.2, 3.0, 4.0. The stability gradually decreased along with the pH increased. High temperature had obvious effect on the stability of purple sweet potato antho-cyanins and the higher the temperature was, the lower retention of anthocyanin had. Vc could accelerate the degradation of anthocyanins. Glucose and lactose had no effect on the stability of anthocyanins. Clathrate which formed of Fe3+and antho-cyan might reduce the stability of anthocyanins, however, other metal ions had no influence almost. The stability of antho-cyanins decreased under the light. Natural light had no obvious impact in a short period of time. Incandescent light and ul-traviolet lamp could speed up decomposition of anthocyanin.%研究了不同pH值紫甘薯饮料中花青素的色泽光谱特性以及pH值、温度、抗坏血酸、糖、光照等因素对紫甘薯饮料中花青素稳定性的影响。结果表明, pH值为2.2、3.0、4.0时花青素较稳定,随着pH值的升高,稳定性逐渐降低;高温处理对紫甘薯花青素的稳定性的影响较显著,温度越高,花青素的保留率越低;抗坏血酸的加入会加速花色苷的降解;葡萄糖和乳糖的加入对花色苷的稳定性无影响; Fe3+与花青素类物质形成络合物,降低了花青素的稳定性,其他的金属离子对花色苷的稳定性影响不大;光照使花青素稳定性降低,自然光在短时间内影响较小,花色苷在白炽灯和紫外灯照射下降解速度加快。

  17. The European Research Infrastructure IAGOS - From dedicated field studies to routine observations of the atmosphere by instrumented passenger aircraft

    Science.gov (United States)

    Petzold, Andreas; Volz-Thomas, Andreas; Gerbig, Christoph; Thouret, Valerie; Cammas, Jean-Pierre; Brenninkmeijer, Carl A. M.; Iagos Team

    2013-04-01

    The global distribution of trace species is controlled by a complex interplay between natural and anthropogenic sources and sinks, atmospheric short- to long-range transport, and in future by diverse, largely not yet quantified feedback mechanisms such as enhanced evaporation of water vapour in a warming climate or possibly the release of methane from melting marine clathrates. Improving global trace gas budgets and reducing the uncertainty of climate predictions crucially requires representative data from routine long-term observations as independent constraint for the evaluation and improvement of model parameterizations. IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) is a new European Research Infrastructure which operates a unique global observing system by deploying autonomous instruments aboard a fleet of passenger aircraft. IAGOS consists of two complementary building blocks: IAGOS-CORE deploys newly developed high-tech instrumentation for regular in-situ measurements of atmospheric chemical species (O3, CO, CO2, NOx, NOy, H2O, CH4), aerosols and cloud particles. Involved airlines ensure global operation of the network. In IAGOS-CARIBIC a cargo container is operated as a flying laboratory aboard one passenger aircraft. IAGOS aims at the provision of long-term, frequent, regular, accurate, and spatially resolved in-situ observations of the atmospheric chemical composition in the UTLS and the extra tropical troposphere and on vertical profiles of greenhouse gases, reactive trace gases and aerosols throughout the troposphere. It builds on almost 20 years of scientific and technological expertise gained in the research projects MOZAIC (Measurement of Ozone and Water Vapour on Airbus In-service Aircraft) and CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container). The European consortium includes research centres, universities, national weather services, airline operators and aviation

  18. How do the physical properties of ice influence the habitability of outer solar system satellites? (Invited)

    Science.gov (United States)

    Nimmo, F.

    2009-12-01

    A possible definition of a habitable environment is one that has liquid water, a range of suitable prebiotic compounds (however defined), and a source of energy. An ocean-bearing icy satellite can provide the first two quite easily, as well as giving protection from radiation. The third requirement is most readily provided by redox reactants, which may arise from hydrothermal activity, solar ultraviolet radiation, or impacts [1-4]. Reactants produced at the surface must thus be transported through the ice shell to the underlying liquid, while hydrothermal activity requires contact between hot silicates and the ocean. Large satellites, such as Ganymede, possessing denser ice phases beneath the ocean are thus less plausibly habitable. As far as ice properties are concerned, there are two key issues. The first is the ability of ice to insulate an underlying ocean, thus controlling its lifetime. This depends on whether the ice is convecting (which in turn depends on grain size, shell thickness, basal temperature etc. [5]), the extent to which the ice shell is tidally heated, and the thermal conductivity of the ice (clathrates are good insulators [6]). For instance, Enceladus is sufficiently small that its putative ocean is expected to freeze on timescales of tens of Myr [7], reducing its potential habitability. On the other hand, ice shells above ammonia-rich oceans are likely to have lower basal temperatures and thus freeze more slowly [8]. The second issue is the extent to which the ice allows communication between the surface and subsurface. Getting material from the surface to the ocean, or vice versa, is difficult because convecting ice typically has a thick, stagnant lid [9]. But there may be situations in which this stagnant lid does not occur, for instance if the ice has a low yield strength. Brittle failure might also allow communication between the ocean and the surface [9] (as appears to happen at Enceladus [10]), while melt production due to shear heating

  19. Determination of aspergillus flavus toxin M1 in milk by resonance light scattering%共振光散射法检测牛奶中黄曲霉毒素M1

    Institute of Scientific and Technical Information of China (English)

    黄明元; 刘倩楠; 李兰芳

    2013-01-01

    目的:建立一种基于大分子物质环糊精的共振散射光色谱差异测定牛奶中残余黄曲霉毒素M1的新型检测方法.方法:β-环糊精与黄曲霉毒素M1结合后,不同浓度黄曲霉毒素M1与环糊精形成的包合物存在不同强度的共振散射光光谱,用共振瑞利散射光对黄曲霉毒素M1进行检测.结果:在波长为335 nm处共振光散射增强强度与黄曲霉毒素M1的浓度呈线性关系.在pH =4.0~5.0时,包合物形成的最佳温度为60℃,静置时间为1h,方法的检出限为0.38 ng/ml;线性范围为0ng/nd~8.0 ng/ml,线性相关系数r=0.992回收率为85%~ 108%.结论:本方法可简便,快速地测定牛奶中的黄曲霉毒素M1,结果可靠.%objective:A new method for determination of residual aspergillus flavus toxin M1 in milk was established based on macromolecular material cyclodextrin and resonance light scattering spectrum difference.Methods:After combination of beta cyclodextrin and aspergillus flavus toxin M1,clathrate formed by different concentrations of aspergillus flavus toxin M1 and cyclodextrin showed resonance scattering light spectrum had various intensity,then resonance rayleigh scattering light was used to detect aspergillus flavus toxin M1.Results:At the wavelength of 335 nm,the intensity of resonance light scattering was linear with concentration of aspergillus flavus toxin M1.When the pH value was 4.0 ~ 5.0,the optimum temperature of inclusion formation was 60 ℃ and the standing time was 1 h.The detection limit of the method was 0.38 ng/ml,the linear range was 0 ng/ml ~ 8.0 ng/ml with correlation coefficient of r =0.992 and recovery of 85 % ~ 108%.Conclusion:The method is simple and fast in determining aspergillus flavus toxin M1 in milk,with reliable results.

  20. Study on the Technological Process of the Extraction and the β-Cyclodextrin Inclusion of the Volatile Oil ofLigusticum chuanxiong%川芎挥发油的提取及其β-环糊精包合物制备工艺研究

    Institute of Scientific and Technical Information of China (English)

    王艳艳; 王团结; 彭敏; 任红兵

    2012-01-01

    目的研究川芎挥发油提取及其β-环糊精包合物制备的最佳工艺.方法 采用L(34)正交试验对影响川芎挥发油的提取工艺的提取时间、药材粒度、加水量等条件进行了优化实验;以投料比、包合温度、包合时间为考察因素,以包合物收率为考察指标,优选最佳包合工艺,通过薄层层析对包合物进行鉴定.结果 确定最佳提取工艺条件为D2A2C3B3:即提取时间8h,药材为过10目筛的最粗粉,浸泡2h,加水量为10倍.环糊精包合的最佳工艺为B2C3A2D1,即包合温度50℃,搅拌3h,投料比为1∶10,搅拌速度为低速.结论 确定了川芎挥发油的最佳提取工艺,并优选出了其包合物的最佳包合工艺,经验证包合物与混合物有明显区别.%Objective To study the best technological process of the of β- cyclodextrin incluision with the volatile oil of Ligusticum chuanxiong. Methods Using orthogonal experiment to choose the most appropriate conditions.We considered the time of extraction,granularity of medicinal materials,the multiple of water,time of marinate in extraction technics.And we also considered the ratio of volatile oil to p-cyclodextrin,temperature, time of including.Then,we used orthogonal experiment analytical programmes to choose the most appropriate conditions for p-cyclodextrin inclusion of the volatile oil of Ligusticum chuanxiong. Results The optimal conditions were as follows: The extraction time was 8h, granularity of medicinal materials was coarse, the multiple of water was 10 times, time of marinate in extraction technics was 8h.The best including condition was B2C3A2D1:The including temperature was 5℃,agitating 3h at low speed, feed ratio was l:10.Conclusion We got the best extraction and including conditions, the clathrate and the compound show different feature by TLC.

  1. Zintl and intermetallic phases grown from calcium/lithium flux

    Science.gov (United States)

    Blankenship, Trevor

    , (Im-3, a = 9.6055(8)A) which contains C 34- units. A very similar phase, Ba12InC 18H4 (Im-3,a = 11.1415(8) A), was grown from the reaction of indium, carbon, and LiH in Ba/Li flux. This compound also includes C34- units. Preliminary Ca/Li flux reactions of aluminum with other main group elements have produced several new phases: a hydride clathrate Ca31Al2H25 in cubic Fd-3m (a=18.0835(15) A), Ca24Al2(C 1-xHx)N2H16 in tetragonal P42/nmc (a=15.9069(12) A, c=13.7323(10) A, and Ca 4Al2N5 in orthorhombic Pna21 (a = 11.2331(1) A, b=9.0768(8) A, c=6.0093(5) A.

  2. Organics on Titan : Carbon Rings and Carbon Cycles (Invited)

    Science.gov (United States)

    Lorenz, R. D.

    2010-12-01

    The photochemical conversion of methane into heavier organics which would cover Titan’s surface has been a principal motif of Titan science for the last 4 decades. Broadly, this picture has held up against Cassini observations, but organics on Titan turn out to have some surprising characteristics. First, the surface deposits of organics are segregated into at least two distinct major reservoirs - equatorial dune sands and polar seas. Second, the rich array of compounds detected as ions and molecules even 1000km above Titan’s surface has proven much more complex than expected, including two-ring anthracene and compounds with m/z>1000. Radar and near-IR mapping shows that Titan’s vast dunefields, covering >10% of Titan’s surface, contain ~0.3 million km^3 of material. This material is optically dark and has a low dielectric constant, consistent with organic particulates. Furthermore, the dunes are associated with a near-IR spectral signature attributed to aromatic compounds such as benzene, which has been sampled in surprising abundance in Titan’s upper atmosphere. The polar seas and lakes of ethane (and presumably at least some methane) may have a rather lower total volume than the dune sands, and indeed may contain little more, if any, methane than the atmosphere itself. The striking preponderance of liquid deposits in the north, notably the 500- and 1000-km Ligeia and Kraken, contrasts with the apparently shallow and shrinking Ontario Lacus in the south, and perhaps attests to volatile migration on astronomical (Croll-Milankovich) timescales as well as seasonal methane transport. Against this appealing picture, many questions remain. What is the detailed composition of the seas, and can chemistry in a nonpolar solvent yield compounds of astrobiological interest ? Are there ‘groundwater’ reservoirs of methane seething beneath the surface, perhaps venting to form otherwise improbable equatorial clouds? And what role, if any, do clathrates play today

  3. Fluid Inclusions of the Dongping gold Telluride Deposit in Hebei Province,China:Involvement of Mantle Fluid in Metallogenesis%河北省东坪碲化物金矿床流体包裹体研究:地幔流体与成矿关系

    Institute of Scientific and Technical Information of China (English)

    毛景文; 李荫清

    2001-01-01

    河北省东坪碲化物金矿床是我国迄今为止发现的一个比较典型的碲化物金矿床,矿化为含金石英大脉和含金钾长石脉,两者之间在空间上为过渡关系。为探讨成矿流体的来源,尤其是地幔流体参与成矿的程度,笔者从研究成矿流体入手,应用显微测温、激光拉曼光谱分析对矿区主矿脉进行了比较系统的流体包裹体均一温度、盐度、成分的测试,并测定了He-Ar同位素组成。结果显示,东坪碲化物金矿床中的流体包裹体主要为CO2-NaCl-H2O型和H2O-NaCl型,整体以CO2广泛发育为特征;矿区的成矿温度为250~400℃,集中于300~340℃;成矿压力为40~180 MPa,主要为60~100 MPa;流体成分主要为CO2和H2O,含少量H2S、N2、CH4、CO和C2H2;流体盐度w(NaCleq)为5%~7%;流体总密度为0.48~0.79 g/cm3;矿脉中石英的R/Ra比值高达0.3~5.2,明显高于地壳流体(0.001)。基于碲富集、高R/Ra比值、成矿流体富CO2,笔者认为矿床成矿作用与地幔活动有着密切的关系。%The Dongping deposit is a unique typical gold telluride deposit ever discovered in China.Gold mineralization occurs either as auriferous quartz veins or as fractured auriferous K-feldspar veins,which connect each other in strike.In this paper the homogenization temperatures and salinity of the fluid inclusions as well as their composition and He-Ar isotopic components were systematically measured based on samples from No.1 and No.70 Veins,the most important gold veins in the mine.The fluid inclusions in the Dongping mine can be divided into CO2 and H2O types,both characterized by enrichment in CO2.The fluid inclusion bubbls are 10~30 μm in diameter,mostly in the range of 10~20 μm.The first melting temperatures of CO2 range from -56.2 to -57.4℃,and their melting temperature of CO2-clathrates vary from +5.1 to +7.6℃.The homogenization temperatures of H2O-rich CO2 inclusions

  4. Global Methane Biogeochemistry

    Science.gov (United States)

    Reeburgh, W. S.

    2003-12-01

    impact of CH4 on climate. The Intergovernmental Panel on Climate Change (IPCC) has published periodic updates (see, e.g., IPCC, 2001).Substantial advances have resulted from research aimed at understanding the global CH4 mixing ratio increase. Time-series measurements of atmospheric CH4 have continued, new CH4 flux measurements in a range of environments have been reported, and data allowing use of the stable isotope (13C/12C, 2H/1H) composition of CH4 as an independent budget constraint have increased. The importance of microbial oxidation of CH4 has been recognized and modeled; the possible role of CH4 clathrate hydrates in the global budget has been clarified with the introduction of new technology. Studies of CH4 trapped in ice cores from the Greenland and Antarctic ice caps have continued, resulting in higher-resolution records and new interpretations of past conditions. There have been few recent changes in our understanding of the atmospheric chemistry of CH4, and since this is covered in Cicerone and Oremland (1988) it will not be covered here. The aim here is not to repeat information contained in the reviews mentioned above, but to present results that have appeared in the literature since their publication, to outline major questions, and to point to promising new approaches.

  5. PREFACE: Water Interfaces in Physics Chemistry and Biology: a multi-disciplinary approach

    Science.gov (United States)

    Bellissent-Funel, Marie-Claire; Dore, John

    2009-07-01

    based clathrates M Russina, E Kemner, M Celli, L Ulivi and F Mezei Marie-Claire Bellissent-Funel (marie-claire.bellissent-funel@cea.fr) John Dore (j.c.dore@kent.ac.uk)

  6. Highly efficient molecular simulation methods for evaluation of thermodynamic properties of crystalline phases

    Science.gov (United States)

    Moustafa, Sabry Gad Al-Hak Mohammad

    Molecular simulation (MS) methods (e.g. Monte Carlo (MC) and molecular dynamics (MD)) provide a reliable tool (especially at extreme conditions) to measure solid properties. However, measuring them accurately and efficiently (smallest uncertainty for a given time) using MS can be a big challenge especially with ab initio-type models. In addition, comparing with experimental results through extrapolating properties from finite size to the thermodynamic limit can be a critical obstacle. We first estimate the free energy (FE) of crystalline system of simple discontinuous potential, hard-spheres (HS), at its melting condition. Several approaches are explored to determine the most efficient route. The comparison study shows a considerable improvement in efficiency over the standard MS methods that are known for solid phases. In addition, we were able to accurately extrapolate to the thermodynamic limit using relatively small system sizes. Although the method is applied to HS model, it is readily extended to more complex hard-body potentials, such as hard tetrahedra. The harmonic approximation of the potential energy surface is usually an accurate model (especially at low temperature and large density) to describe many realistic solid phases. In addition, since the analysis is done numerically the method is relatively cheap. Here, we apply lattice dynamics (LD) techniques to get the FE of clathrate hydrates structures. Rigid-bonds model is assumed to describe water molecules; this, however, requires additional orientation degree-of-freedom in order to specify each molecule. However, we were able to efficiently avoid using those degrees of freedom through a mathematical transformation that only uses the atomic coordinates of water molecules. In addition, the proton-disorder nature of hydrate water networks adds extra complexity to the problem, especially when extrapolating to the thermodynamic limit is needed. The finite-size effects of the proton disorder contribution is

  7. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    Science.gov (United States)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of year, simulations were con-ducted at Ls 0, 90, 180 and 270. Two additional sim-ulations at Ls 225 and 315 were explored to better understand the unique meteorological setting cen-tered around Ls 270. Ls 270 was shown to be an anomalous season when air within and outside the crater was well mixed by strong, flushing, northerly flow and large amplitude breaking mountain waves: air

  8. Landslide on Valles Marineris: morphology and flow dynamics

    Science.gov (United States)

    Sato, H.; Kurita, K.; Baratoux, D.; Pinet, P.

    2008-09-01

    Introduction: Valles Marineris is known as a place of numerous and well preserved landslides on Mars. In comparison with terrestrial landslides, martian landslides are distinctive in their size and morphology. As a consequence of the topography of the canyon, the averaged drop height of these landslides is about 6.5 km and the averaged volume is about 102~4 km3[1], which is 2~3 orders of magnitude larger than terrestrial ones, at the exception of marine landslides[2]. As for the morphology, clear levees with longitudinal lineations are typical features of martian landslides, whereas surfaces of the terrestrial mass movements are dominated by a rather chaotic topography with, in some cases, the occurrence of transverse ridges. The characteristics of the deposits should reflect the dynamics of the emplacement and the subsurface material properties. In particular, there is a longstanding debate about the relation between the long run-out length and the existence of subsurface volatiles (water ice, clathrates, ground water) [1,3,4,5,6,7]. The motivation of our research is the fact that material properties are expected to be deduced from the morphology of the deposits and the knowledge of the flow dynamics. Then, the characteristics of subsurface materials partially collapsed as mass movements could be documented as a function of time, considering the age of each landslide. In this study, we focus on the longitudinal grooves which are found on the surface of landslide deposits at Valles Marineris (Fig.1). This pattern is a typical feature in the martian landslides[3], and extremely rarely observed in the terrestrial mass movements. The origin is not well clarified, but it seems strong relation with the flow style or physical property of transported materials. With the objective to determine the condition of formation of the lineations, the geometric characteristics (volume, surface, thickness, run-out length) of lineated and non-lineated landslides are compared. Then

  9. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    Science.gov (United States)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    forces by examining the impact their inclusion has on predictions of material properties. On the other hand, the experimental and theoretical study of Casimir forces also plays a vital role in the exploration of material behavior. vdW forces are related to the Casimir force but lack retardation effects. While the vdW bonding depends on additional effects (for example, the multipole contributions that reflect image-plane effects), the study of Casimir forces provides direct (and not indirect) measurements of the nature of interactions. Klimchitskaya et al note that to reconcile explicit measurements of the Casmir forces between semiconductor fragments within the Lifshitz description, it is relevant to question the Drude-like description of the contributions from free carriers and instead proceed with a formulation based only on optical observations of the permittivity. This optical response can be seen as a reflection of a more plasmon-like behavior. The authors suggest an experiment involving the study of the impact on the Casimir forces by a Mott transition in doped semiconductors. Such an experiment would permit explicit testing of the validity of the present model for Casimir forces and hence provide additional perspectives on the nature of dispersive interactions. There is an effort to store energy, e.g. H2 or CO2, inside a range of open cage-like structures, such as metal organics frameworks (MOF) or clathrates. The fact that the internal molecular adhesion is dominated by vdW forces suggests that the storage and retrieval costs could perhaps be lowered as compared to an approach that involves more traditional chemical compounds. Nijem et al have provided spectroscopic characterization of vdW interactions of both hydrogen molecules and CO in a specific MOF. The study includes a vdW-DF calculation of structure and a theoretical prediction of expected infrared activity. The potential applications to energy materials have motivated more theoretical characterizations