WorldWideScience

Sample records for classical relativistic electrodynamics

  1. Apparent Paradoxes in Classical Electrodynamics: Relativistic Transformation of Force

    Science.gov (United States)

    Kholmetskii, A. L.; Yarman, T.

    2007-01-01

    In this paper, we analyse a number of paradoxical teaching problems of classical electrodynamics, dealing with the relativistic transformation of force for complex macro systems, consisting of a number of subsystems with nonzero relative velocities such as electric circuits that change their shape in the course of time. (Contains 7 figures.)

  2. Fourier optics treatment of classical relativistic electrodynamics

    International Nuclear Information System (INIS)

    In this paper we couple Synchrotron Radiation (SR) theory with a branch of physical optics, namely laser beam optics. We show that the theory of laser beams is successful in characterizing radiation fields associated with any SR source. Both radiation beam generated by an ultra-relativistic electron in a magnetic device and laser beam are solutions of the wave equation based on paraxial approximation. It follows that they are similar in all aspects. In the space-frequency domain SR beams appear as laser beams whose transverse extents are large compared with the wavelength. In practical solutions (e.g. undulator, bending magnet sources), radiation beams exhibit a virtual ''waist'' where the wavefront is often plane. Remarkably, the field distribution of a SR beam across the waist turns out to be strictly related with the inverse Fourier transform of the far-field angle distribution. Then, we take advantage of standard Fourier Optics techniques and apply the Fresnel propagation formula to characterize the SR beam. Altogether, we show that it is possible to reconstruct the near-field distribution of the SR beam outside the magnetic setup from the knowledge of the far-field pattern. The general theory of SR in the near-zone developed in this paper is illustrated for the special cases of undulator radiation, edge radiation and transition undulator radiation. Using known analytical formulas for the far-field pattern and its inverse Fourier transform we find analytical expressions for near-field distributions in terms of far-field distributions. Finally, we compare these expressions with incorrect or incomplete literature. (orig.)

  3. Non-relativistic quantum electrodynamics

    International Nuclear Information System (INIS)

    The book presents a systematic account of non-relativistic quantum electrodynamics. The subject is discussed under the subject headings: classical equations of motion, canonical formalism, canonical quantization, symmetries and conservation laws, interaction of photons and atoms and lastly, path-dependent electrodynamics. (U.K.)

  4. The Lagrangian and Hamiltonian formalisms for the classical relativistic electrodynamics models revisited

    OpenAIRE

    Bogolubov, N.N.; Prykarpatsky, A. K.

    2009-01-01

    The work is devoted to studying some new classical electrodynamics models of interacting charged point particles and the aspects of the quantization via the Dirac procedure related to them. Based on the vacuum field theory no-geometry approach developed in [6,7,9], the Lagrangian and Hamiltonian reformulations of some alternative classical electrodynamics models are devised. The Dirac-type quantization procedure for the considered alternative electrodynamics models, based on the obtained cano...

  5. Relativistic Geometry and Quantum Electrodynamics

    CERN Document Server

    González-Martin, G R

    2000-01-01

    Excitations of a relativistic geometry are used to represent the theory of quantum electrodynamics. The connection excitations and the frame excitations reduce, respectively, to the electromagnetic field operator and electron field operator. Because of the inherent geometric algebraic structure these operators obey the standard commutation rules of QED. If we work with excitations, we need to use statistical theory when considering the evolution of microscopic subsystems. The use of classical statistics, in particular techniques of irreversible thermodynamics, determine that the probability of absorption or emission of a geometric excitation is a function of the classical energy density. Emission and absorption of geometric excitations imply discrete changes of certain physical variables, but with a probability determined by its wave energy density. Hence, this geometric theory, without contradicting the fundamental aspects of quantum physics, provides a geometric foundation for the theory.

  6. Inter-charge forces in relativistic classical electrodynamics: electromagnetic induction in different reference frames

    OpenAIRE

    Field, J H.

    2005-01-01

    The force due to electromagnetic induction on a test charge is calculated in different reference frames. The Faraday-Lenz Law and different formulae for the fields of a uniformly moving charge are used. The classical Heaviside formula for the electric field of a moving charge predicts that, for the particular spatial configuration considered, the inductive force vanishes in the frame in which the magnet is in motion and the test charge at rest. In contrast, consistent results, in different fr...

  7. Connecting Blackbody Radiation, Relativity, and Discrete Charge in Classical Electrodynamics

    OpenAIRE

    Boyer, Timothy H.

    2006-01-01

    It is suggested that an understanding of blackbody radiation within classical physics requires the presence of classical electromagnetic zero-point radiation, the restriction to relativistic (Coulomb) scattering systems, and the use of discrete charge. The contrasting scaling properties of nonrelativistic classical mechanics and classical electrodynamics are noted, and it is emphasized that the solutions of classical electrodynamics found in nature involve constants which connect together the...

  8. Elementary charges in classical electrodynamics

    OpenAIRE

    KAPU'{S}CIK, Edward

    1999-01-01

    In the framework of classical electrodynamics elementary particles are treated as capacitors. The electrostatic potentials satisfy equations of the Schrödinger type. An interesting "quantization condition" for elementary charges is derived.

  9. The relation between classical and quantum electrodynamics

    OpenAIRE

    Mario Bacelar Valente

    2012-01-01

    Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an ex...

  10. Quantum electrodynamics in a classical approximation, 1

    International Nuclear Information System (INIS)

    Quantum electrodynamics is formulated in a classical approximation. A quantum mechanical proper-time is employed as a useful parameter, which enables us to elucidate the relationship between quantum electrodynamics and classical electrodynamics. The classical motion of a charged particle is realized as an asymptotic limit of quantum electrodynamics. (author)

  11. To Foundations of Classical Electrodynamics

    OpenAIRE

    Bessonov, E. G.

    1997-01-01

    In the present work foundations of the law of the energy conservation and the introduction of particles in the classical electrodynamics are discussed. We pay attention to a logic error which takes place at an interpretation of the Poynting's theorem as the law of conservation of energy. It was shown that the laws of conservation of energy and momentum of the system of electromagnetic fields and charged particles does not follow from the equations of electrodynamics and the violation of these...

  12. Causality in Classical Electrodynamics

    Science.gov (United States)

    Savage, Craig

    2012-01-01

    Causality in electrodynamics is a subject of some confusion, especially regarding the application of Faraday's law and the Ampere-Maxwell law. This has led to the suggestion that we should not teach students that electric and magnetic fields can cause each other, but rather focus on charges and currents as the causal agents. In this paper I argue…

  13. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  14. Lagrangian formalism and retarded classical electrodynamics

    OpenAIRE

    Jan, Xavier; Llosa, Josep; Molina, Alfred

    1989-01-01

    Unlike the 1/c2 approximation, where classical electrodynamics is described by the Darwin Lagrangian, here there is no Lagrangian to describe retarded (resp., advanced) classical electrodynamics up to 1/c3 for two-point charges with different masses.

  15. Gauge Invariance in Classical Electrodynamics

    CERN Document Server

    Engelhardt, W

    2005-01-01

    The concept of gauge invariance in classical electrodynamics assumes tacitly that Maxwell's equations have unique solutions. By calculating the electromagnetic field of a moving particle both in Lorenz and in Coulomb gauge and directly from the field equations we obtain, however, contradicting solutions. We conclude that the tacit assumption of uniqueness is not justified. The reason for this failure is traced back to the inhomogeneous wave equations which connect the propagating fields and their sources at the same time.

  16. Particles and Events in Classical Off-Shell Electrodynamics

    CERN Document Server

    Land, M C

    1997-01-01

    Despite the many successes of the relativistic quantum theory developed by Horwitz, et. al., certain difficulties persist in the associated covariant classical mechanics. In this paper, we explore these difficulties through an examination of the classical Coulomb problem in the framework of off-shell electrodynamics. As the local gauge theory of a covariant quantum mechanics with evolution parameter $\\tau$, off-shell electrodynamics constitutes a dynamical theory of spacetime events, interacting through five $\\tau$-dependent pre-Maxwell potentials. We present a straightforward solution of the classical equations of motion, which is seen to be unsatisfactory, and reveals the essential difficulties in the formalism at the classical level. We then offer a new model of the particle current -- as a certain distribution of the event currents on the worldline -- which eliminates these difficulties and permits comparison of classical off-shell electrodynamics with the standard Maxwell theory. In this model, the ``fix...

  17. Connecting Blackbody Radiation, Relativity, and Discrete Charge in Classical Electrodynamics

    CERN Document Server

    Boyer, T H

    2006-01-01

    It is suggested that an understanding of blackbody radiation within classical physics requires the presence of classical electromagnetic zero-point radiation, the restriction to relativistic (Coulomb) scattering systems, and the use of discrete charge. The contrasting scaling properties of nonrelativistic classical mechanics and classical electrodynamics are noted, and it is emphasized that the solutions of classical electrodynamics found in nature involve constants which connect together the scales of length, time, and energy. Indeed, there are analogies between the electrostatic forces for groups of particles of discrete charge and the van der Waals forces in equilibrium thermal radiation. The differing Lorentz- or Galilean-transformation properties of the zero-point radiation spectrum and the Rayleigh-Jeans spectrum are noted in connection with their scaling properties. Also, the thermal effects of acceleration within classical electromagnetism are related to the existence of thermal equilibrium within a g...

  18. Advanced action in classical electrodynamics

    OpenAIRE

    Boozer, A. D.

    2008-01-01

    The time evolution of a charged point particle is governed by a second-order integro-differential equation that exhibits advanced effects, in which the particle responds to an external force before the force is applied. In this paper we give a simple physical argument that clarifies the origin and physical meaning of these advanced effects, and we compare ordinary electrodynamics with a toy model of electrodynamics in which advanced effects do not occur.

  19. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    RAJAGOPAL A K; GHOSE PARTHA

    2016-06-01

    Classical electrodynamics is reformulated in terms of wave functions in the classical phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference effects in classical mechanics. This is accomplished by transforming from a set of commutingobservables in one Hilbert space to another set of commuting observables in a larger Hilbert space. This is necessary to clarify the theoretical basis of the much recent work on quantum-like features exhibited by classical optics. Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  20. The Lagrangian and Hamiltonian analysis of some relativistic electrodynamics models and their quantization

    Directory of Open Access Journals (Sweden)

    N.N. Bogolubov (Jr.

    2009-01-01

    Full Text Available The work is devoted to the study of the Lagrangian and Hamiltonian properties of some relativistic electrodynamics models and is a continuation of our previous investigations. Based on the vacuum field theory approach, the Lagrangian and Hamiltonian reformulation of some classical electrodynamics models is devised. The Dirac type quantization procedure, based on the canonical Hamiltonian formulation, is developed. Within the approach proposed in the work a possibility of the combined description both of electrodynamics and gravity is analyzed.

  1. Recent developments in premetric classical electrodynamics

    CERN Document Server

    Hehl, F W; Obukhov, Yu N; Hehl, Friedrich W.; Itin, Yakov; Obukhov, Yuri N.

    2005-01-01

    Classical electrodynamics can be based on the conservation laws of electric charge and magnetic flux. Both laws are independent of the metric and the linear connection of spacetime. Within the framework of such a premetric electrodynamics -- provided a local and linear constitutive law of the vacuum is added -- the propagation of electromagnetic waves in the geometric-optics limit can be studied. The wave vectors of the wave fronts obey a quartic extended Fresnel equation. If one forbids birefringence in vacuum, the light cone emerges and Maxwell-Lorentz vacuum electrodynamics can be recovered. If minimal coupling of electrodynamics to gravity is assumed, then only the gravitational potential, i.e., the metric of spacetime, emerges in the constitutive law. We discuss recent results within this general framework.

  2. The chronicle of the classical electrodynamics

    International Nuclear Information System (INIS)

    In this Chronicle of the classical electrodynamics it is shown how this important branch of classical physics was developed since the mathematical formulation of the electromagnetism empiric laws carried by Maxwell, mainly the laws of Coulomb, Oersted, Ampere, Biot-Savart, Faraday, Henry and Lenz, up to the settlement of the radiation theory, scientific background for the technological development of the wireless telegraphy. Through this chronicle, it is also seen how Maxwell got one of the main results of the past century classical physics - the electromagnetic theory of light -, and how the experimental production of an electromagnetic wave by Hertz, unchained a collection of theoretical papers which explained many experimental results such as dispersion of light, thermical radiation, X-rays and its scattering through the matter. At last, it is still seen that the study of electrodynamics of moving bodies led to the relativity theory, presented by Einstein's famous paper about such subject. (Author)

  3. A neglected topic in relativistic electrodynamics: transformation of electromagnetic integrals

    OpenAIRE

    Jefimenko, Oleg D.

    2005-01-01

    Although relativistic electrodynamics is more than 100 year old, there is one neglected topic in its presentation and application: relativistic transformations of electromagnetic integrals. Whereas in theoretical and applied electrodynamics electric and magnetic fields are mainly expressed in terms of integrals over charge and current distributions, relativistic transformations are traditionally applied to point charges and elementary currents. The purpose of this paper is to show that relati...

  4. Applications of quantum and classical connections in modeling atomic, molecular and electrodynamic systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Applications of Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamical Systems is a reference on the new field of relativistic optics, examining topics related to relativistic interactions between very intense laser beams and particles. Based on 30 years of research, this unique book connects the properties of quantum equations to corresponding classical equations used to calculate the energetic values and the symmetry properties of atomic, molecular and electrodynamical systems. In addition, it examines applications for these methods, and for the calculation of

  5. Apparent Paradoxes in Classical Electrodynamics: A Fluid Medium in an Electromagnetic Field

    Science.gov (United States)

    Kholmetskii, A. L.; Yarman, T.

    2008-01-01

    In this paper we analyse a number of teaching paradoxes of classical electrodynamics, dealing with the relativistic transformation of energy and momentum for a fluid medium in an external electromagnetic field. In particular, we consider a moving parallel plate charged capacitor, where the electric attraction of its plates is balanced by the…

  6. Classical Electrodynamics A Tutorial on its Foundations

    CERN Document Server

    Hehl, F W; Rubilar, G F; Hehl, Friedrich W.; Obukhov, Yuri N.; Rubilar, Guillermo F.

    1999-01-01

    We will display the fundamental structure of classical electrodynamics. Starting from the axioms of (1) electric charge conservation, (2) the existence of a Lorentz force density, and (3) magnetic flux conservation, we will derive Maxwell's equations. They are expressed in terms of the field strengths $(E,{\\cal B})$, the excitations $({\\cal D},H)$, and the sources $(\\rho,j)$. This fundamental set of four microphysical equations has to be supplemented by somewhat less general constitutive assumptions in order to make it a fully determined system with a well-posed initial value problem. It is only at this stage that a distance concept (metric) is required for space-time. We will discuss one set of possible constitutive assumptions, namely ${\\cal D}\\sim E$ and $H\\sim {\\cal B}$. {\\em file erik8a.tex, 1999-07-27}

  7. In-Depth Development of Classical Electrodynamics

    Directory of Open Access Journals (Sweden)

    Keilman Y. N.

    2008-01-01

    Full Text Available There is hope that a properly developed Classical Electrodynamics (CED will be able to play a role in a unified field theory explaining electromagnetism, quantum phenomena, and gravitation. There is much work that has to be done in this direction. In this article we propose a move towards this aim by refining the basic principles of an improved CED. Attention is focused on the reinterpretation of the E-M potential. We use these basic principles to obtain solutions that explain the interactions between a constant electromagnetic field and a thin layer of material continuum; between a constant electromagnetic field and a spherical configuration of material continuum (for a charged elementary particle; between a transverse electromagnetic wave and a material continuum; between a longitudinal aether wave (dummy wave and a material continuum.

  8. Comparison between Weber’s electrodynamics and classical electrodynamics

    Indian Academy of Sciences (India)

    A K T Assis; H Torres Silva

    2000-09-01

    We present the main aspects of Weber’s electrodynamics and of Maxwell’s equations. We discuss Maxwell’s point of view related to Weber’s electrodynamics. We compare Weber’s force with Lorentz’s force. We analyse the relation between Weber’s law and Maxwell’s equations. Finally, we discuss some experiments performed and proposed with which we can distinguish Weber’s force from Lorentz’s one.

  9. Force exerted by a moving electric current on a stationary or co-moving charge: Maxwell’s theory versus relativistic electrodynamics

    International Nuclear Information System (INIS)

    The force exerted by a slowly moving current-carrying loop on a stationary or co-moving charge is derived within two distinct frameworks: Maxwell’s electrodynamics classically interpreted (operating in the Galilean space and time) and relativistic electrodynamics (operating in Minkowski space-time). A comparison between the ‘classical Maxwellian’ and relativistic solutions is presented, offering some intriguing insights that have been neglected in earlier discussions of the issue. (paper)

  10. Force exerted by a moving electric current on a stationary or co-moving charge: Maxwell’s theory versus relativistic electrodynamics

    Science.gov (United States)

    Redžić, Dragan V.

    2014-07-01

    The force exerted by a slowly moving current-carrying loop on a stationary or co-moving charge is derived within two distinct frameworks: Maxwell’s electrodynamics classically interpreted (operating in the Galilean space and time) and relativistic electrodynamics (operating in Minkowski space-time). A comparison between the ‘classical Maxwellian’ and relativistic solutions is presented, offering some intriguing insights that have been neglected in earlier discussions of the issue.

  11. On the non-interaction theorems in relativistic classical and quantum mechanics

    International Nuclear Information System (INIS)

    The non-interaction theorem of Currie-Jordan-Sudarshan in relativistic classical mechanics and the non-interaction Haag theorem in relativistic quantum field theory are stated. It is shown explicitly that the consequences of the latter can be avoided in quantum electrodynamics by dispensing the condition of taking the field variables as canonical variables. (Author)

  12. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  13. Relativistic Electrodynamics without Reference Frames. Clifford Algebra Formulation

    OpenAIRE

    Ivezic, Tomislav

    2002-01-01

    In the usual Clifford algebra formulation of electrodynamics the Faraday bivector field $F$ is expressed in terms of \\QTR{em}{the observer dependent} relative vectors $\\QTR{bf}{E}$ and $\\QTR{bf}{B.}$ In this paper we present \\QTR{em}{the observer independent}decomposition of $F$ by using the vectors (grade-1) of electric $E$ and magnetic $B$ fields and we develop the formulation of relativistic electrodynamics which is independent of the reference frame and of the chosen coordinatization. We ...

  14. Theory of quantum and classical connections in modeling atomic, molecular and electrodynamical systems

    CERN Document Server

    Popa, Alexandru

    2013-01-01

    Quantum and Classical Connections in Modeling Atomic, Molecular and Electrodynamic Systems is intended for scientists and graduate students interested in the foundations of quantum mechanics and applied scientists interested in accurate atomic and molecular models. This is a reference to those working in the new field of relativistic optics, in topics related to relativistic interactions between very intense laser beams and particles, and is based on 30 years of research. The novelty of this work consists of accurate connections between the properties of quantum equations and correspon

  15. A New Formulation for General Relativistic Force-Free Electrodynamics and Its Applications

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We formulate the general relativistic force-free electrodynamics in a new 3+1 language. In this formulation, when we have properly defined electric and magnetic fields, the covariant Maxwell equations could be cast in the traditional form with new vacuum con stitutive constraint equations. The fundamental equation governing a stationary, axisymmet ric force-free black hole magnetosphere is derived using this formulation which recasts the Grad-Shafranov equation in a simpler way. Compared to the classic 3+1 system of Thorne and MacDonald, the new system of 3+1 equations is more suitable for numerical use for it keeps the hyperbolic structure of the electrodynamics and avoids the singularity at the event horizon. This formulation could be readily extended to non-relativistic limit and find applications in flat spacetime. We investigate its application to disk wind, black hole magnetosphere and solar physics in both flat and curved spacetime.

  16. Relativistic and quantum electrodynamic effects in superheavy elements

    Science.gov (United States)

    Schwerdtfeger, Peter; Pašteka, Lukáš F.; Punnett, Andrew; Bowman, Patrick O.

    2015-12-01

    The current status of relativistic electronic structure theory for superheavy elements is reviewed. Recent developments in relativistic quantum theory have made it possible to obtain accurate electronic properties for the trans-actinide elements with the aim to predict their chemical and physical behaviour. The role of quantum electrodynamic effects beyond the no-virtual-pair approximation, which is usually neglected in relativistic molecular calculations, is discussed. Changes in periodic trends due to relativistic effects are outlined for the superheavy elements with nuclear charge Z = 111- 120. We also analyse the role of the negative energy states for the electronic stability of superheavy elements beyond the critical nuclear charge (Zcrit ≈ 170), where the 1s state enters the negative energy continuum at - 2mec2.

  17. Random electrodynamics : a classical foundation for key quantum concepts

    International Nuclear Information System (INIS)

    The model of random electrodynamics, in which electromagnetic particles are subjected, in a classical manner, to the forces of radiation damping and the fluctuating zero-point fields provides the framework in which the following results are obtained: (1) The precession dynamics of a long-lived, non-relativistic particle with a magnetic moment proportional to its spin, leads to a self-consistent determination of the spin value as one-half. (2) The internal dynamic underlying the intrinsic magnetic moment of a Dirac particle yields a classically visualizable picture of the spin-magnetic moment. (3) The Bose correlation among indistinguishable, non-interacting, spin-zero Particles arises from the coupling through the common- zero point fields and the radiation reaction fields when the particles are close together in both the r vector and the energy spaces. (4) The (exclusion principle-induced) correlation among identical, non-interacting magnetic particles with spin 1/2 is brought about by the coupling, (through the common fields of radiation reaction and the vacuum fluctuations), of the spins as well as the translational motions when the particles are close together in r vector and the energy spaces. (5) A dilute gas of free electrons has a Maxwellian distribution of velocities and the correct value of the djamagnetic moment in the presence of a magnetic field. Considerations on the centre of mass motion of a composite neutral particle lead to a simple resolution of the foundational paradoxes of statistical mechanics. (6) An approximate treatment of the hydrogen atom leads to a description of the evolution to the ground state at absolute zero and an estimation of the mass frequency and the line-width of the radiation emitted when an excited atom decays. (author)

  18. Classical electrodynamics from image charges to the photon mass and magnetic monopoles

    CERN Document Server

    Lacava, Francesco

    2016-01-01

    This book proposes intriguing arguments that will enable students to achieve a deeper understanding of electromagnetism, while also presenting a number of classical methods for solving difficult problems. Two chapters are devoted to relativistic electrodynamics, covering all aspects needed for a full comprehension of the nature of electric and magnetic fields and, subsequently, electrodynamics. Each of the two final chapters examines a selected experimental issue, introducing students to the work involved in actually proving a law or theory. Classical books on electricity and magnetism are mentioned in many references, helping to familiarize students with books that they will encounter in their further studies. Various problems are presented, together with their worked-out solutions. The book is based on notes from special lectures delivered by the author to students during the second year of a BSc course in Physics, but the subject matter may also be of interest to senior physicists, as many of the themes co...

  19. Classical approximations of relativistic quantum physics

    OpenAIRE

    Johnson, Glenn Eric

    2016-01-01

    A correspondence of classical to quantum physics studied by Schr\\"{o}\\-dinger and Ehrenfest applies without the necessity of technical conjecture that classical observables are associated with Hermitian Hilbert space operators. This correspondence provides appropriate nonrelativistic classical interpretations to realizations of relativistic quantum physics that are incompatible with the canonical formalism. Using this correspondence, Newtonian mechanics for a $1/r$ potential provides approxim...

  20. The relativistic rotation transformation and pulsar electrodynamics

    Science.gov (United States)

    Kichenassamy, S.; Krikorian, R. A.

    1994-08-01

    The substitution of the relativistic rotation transformation (RRT) of Trocheris and Takeno to the Galilean type one, establishing a nonlinear relation between speed v and angular velocity omega (upsilon = c tanh (omega/c)), not only sends to infinity the 'light cylinder' and modifies the characteristic parameters of pulsars within the corotating source model (Kichenassamy & Krikorian 1991), but also circumvents the change of type of the differential equations for the electromagnetic potential when a quasi-static constraint is assumed; on the other hand, the resulting equations for a force-free magnetosphere reduce to those of Mestel, at the nonrelativistic approximation, when RRT reduces to the usual 'instantaneous Lorentz transformation;' indeed, difficulties related to energy flow across the light cylinder become ipso facto meaningless.

  1. Observers and splitting structures in relativistic electrodynamics

    International Nuclear Information System (INIS)

    We introduce a relativistic splitting structure as a means to map fields and equations of electromagnetism from curved four-dimensional space–time to three-dimensional observer's space. We focus on a minimal set of mathematical structures that are directly motivated by the language of the physical theory. Space–time, world-lines, time translation, space platforms and time synchronization all find their mathematical counterparts. The splitting structure is defined without recourse to coordinates or frames. This is noteworthy since, in much of the prevalent literature, observers are identified with adapted coordinates and frames. Among the benefits of the approach is a concise and insightful classification of splitting structures that is juxtaposed to a classification of observers. The application of the framework to the Ehrenfest paradox and Schiff's ‘Question in General Relativity’ further illustrates the advantages of the framework, enabling a compact, yet profound analysis of the problems at hand. (paper)

  2. Quantum theory of an electromagnetic observer: Classically behaving macroscopic systems and the emergence of the classical world in quantum electrodynamics

    Science.gov (United States)

    Plimak, L. I.; Ivanov, Misha; Aiello, A.; Stenholm, S.

    2015-08-01

    Quantum electrodynamics under conditions of distinguishability of interacting matter entities, and of controlled actions and back-actions between them, is considered. Such "mesoscopic quantum electrodynamics" is shown to share its dynamical structure with the classical stochastic electrodynamics. In formal terms, we demonstrate that all general relations of the mesoscopic quantum electrodynamics may be recast in a form lacking Planck's constant. Mesoscopic quantum electrodynamics is therefore subject to "doing quantum electrodynamics while thinking classically," allowing one to substitute essentially classical considerations for quantum ones without any loss in generality. Implications of these results for the quantum measurement theory are discussed.

  3. Classical Electrodynamics in a Unified Theory

    CERN Document Server

    Ghose, Partha

    2016-01-01

    Some consequences of a fully classical unified theory of gravity and electromagnetism are worked out for the electromagnetic sector such as the occurrence of classical light beams with spin and orbital angular momenta that are topologically quantized in units of $q_e q_m=\\sigma$, independent of the beam size. Empirical fits require $\\sigma = \\hbar$. The theory also predicts a generalized coherency matrix whose consequences are testable.

  4. Symmetries and Couplings of Non-Relativistic Electrodynamics

    CERN Document Server

    Festuccia, Guido; Hartong, Jelle; Obers, Niels A

    2016-01-01

    We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell's equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a $U(1)$ current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galile...

  5. Quantum theory of an electromagnetic observer: classically behaving macroscopic systems and emergence of classical world in quantum electrodynamics

    OpenAIRE

    Plimak, L. I.; Ivanov, Misha; Aiello, A.; Stenholm, S.

    2015-01-01

    Quantum electrodynamics under conditions of distinguishability of interacting matter entities, and of controlled actions and back-actions between them, is considered. Such "mesoscopic quantum electrodynamics" is shown to share its dynamical structure with the classical stochastic electrodynamics. In formal terms, we demonstrate that all general relations of the mesoscopic quantum electrodynamics may be recast in a form lacking Planck's constant. Mesoscopic quantum electrodynamics is therefore...

  6. On refinement of certain laws of classical electrodynamics

    CERN Document Server

    Mende, F F

    2004-01-01

    The problems considered refer to the material equations of electric- and magnetoelectric induction. Some contradictions found in fundamental studies on classical electrodynamics have been explained. The notion magnetoelectric induction has been introduced, which permits symmetrical writing of the induction laws. It is shown that the results of the special theory of relativity can be obtained from these laws through the Galilean transformations. The permittivity and permeability of materials media are shown to be independent of frequency. The notions magnetoelectrokinetic and electromagnetopotential waves and kinetic capacity have been introduced. It is shown that along with the longitudinal Langmuir resonance, the transverse resonance is possible in nonmagnetized plasma, and both the resonances are degenerate. A new notion scalar-vector potential is introduced, which permits solution of all present-day problems of classical electrodynamics. The use of the scalar-vector potential makes the magnetic field notio...

  7. On refinement of certain laws of classical electrodynamics

    OpenAIRE

    Mende, F. F.

    2004-01-01

    The problems considered refer to the material equations of electric- and magnetoelectric induction. Some contradictions found in fundamental studies on classical electrodynamics have been explained. The notion magnetoelectric induction has been introduced, which permits symmetrical writing of the induction laws. It is shown that the results of the special theory of relativity can be obtained from these laws through the Galilean transformations. The permittivity and permeability of materials m...

  8. Universal Newton Time in Classical Electrodynamics Elements of Physical Interpretation

    CERN Document Server

    Kotelnikov, K A

    2000-01-01

    It is shown that the universal Newton time may be introduced in the classical electrodynamics. The statement results from an existence of the generalized symmetry of Maxwell equations with respect to Galilei transformations (physics/9701006). In the case of the extended Galilei transformations the postulate of invariance of the speed of light may be made compatible with the concept of the universal Newton time. Some physical consequences of the extended Galilei symmetry are considered.

  9. Classical and quantum electrodynamics and the B(3) field

    CERN Document Server

    Evans, Myron W

    2001-01-01

    It is well known that classical electrodynamics is riddled with internal inconsistencies springing from the fact that it is a linear, Abelian theory in which the potentials are unphysical. This volume offers a self-consistent hypothesis which removes some of these problems, as well as builds a framework on which linear and nonlinear optics are treated as a non-Abelian gauge field theory based on the emergence of the fundamental magnetizing field of radiation, the B(3) field. Contents: Interaction of Electromagnetic Radiation with One Fermion; The Field Equations of Classical O (3) b Electrodyn

  10. Relativistic Entanglement From Maxwell's Classical Equations

    Science.gov (United States)

    Carroll, John E.; Quarterman, Adrian H.

    2013-09-01

    With the help of light cone coordinates and light cone field representations of Maxwell's classical equations, quantum polarization entanglement is explained using the relativistic results of a companion paper that shows how conventional or reference waves can have an adjoint wave, travelling in phase with the reference wave, but in a proper relativistic frame that travels in the opposing direction to the proper frame of the reference wave. This subsequently allows waves, travelling in opposite directions, to have the same proper frame and consequently such waves can be regarded as relativistically local. The light cone coordinates offer a classical form of a quantum wave function and demonstrate a classical equivalent of a mixed quantum state.

  11. Stability of the hydrogen atom of classical electrodynamics

    CERN Document Server

    De Luca, J

    2004-01-01

    We study the stability of the circular orbits of the electromagnetic two-body problem of classical electrodynamics. We introduce the concept of resonant dissipation, i.e. a motion that radiates the center-of-mass energy while the interparticle distance performs bounded oscillations about a metastable orbit. The stability mechanism is established by the existence of a quartic resonant constant generated by the stiff eigenvalues of the linear stability problem. This constant bounds the particles together during the radiative recoil. The condition of resonant dissipation predicts angular momenta for the metastable orbits in reasonable agreement with the Bohr atom. The principal result is that the emission lines agree with the predictions of quantum electrodynamics (QED) with 1 percent average error even up to the $40^{th}$ line. Our angular momenta depend logarithmically on the mass of the heavy body, such that the deuterium and the muonium atoms have essentially the same angular momenta, in agreement with QED. ...

  12. Pair production in classical Stueckelberg-Horwitz-Piron electrodynamics

    CERN Document Server

    Land, Martin

    2016-01-01

    In this paper we calculate pair production from bremsstrahlung as a classical effect in Stueckelberg-Horwitz-Piron electrodynamics. In this framework, worldlines are traced out dynamically through the evolution of events $x^\\mu(\\tau)$ parameterized by a chronological time $\\tau$ that is independent of the spacetime coordinates. These events, defined in an unconstrained 8D phase space, interact through five $\\tau$-dependent gauge fields induced by the event evolution. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. In particular, the total mass-energy-momentum of particles and fields is conserved, but the mass-shell constraint is lifted from individual interacting events, so that the standard Feynman-Stueckelberg interpretation of pair creation/annihilation is implemented in classical mechanics.

  13. New Perspective on the Reciprocity Theorem of Classical Electrodynamics

    CERN Document Server

    Mansuripur, Masud; 10.1016/j.optcom.2010.09.077

    2012-01-01

    We provide a simple physical proof of the reciprocity theorem of classical electrodynamics in the general case of material media that contain linearly polarizable as well as linearly magnetizable substances. The excitation source is taken to be a point-dipole, either electric or magnetic, and the monitored field at the observation point can be electric or magnetic, regardless of the nature of the source dipole. The electric and magnetic susceptibility tensors of the material system may vary from point to point in space, but they cannot be functions of time. In the case of spatially non-dispersive media, the only other constraint on the local susceptibility tensors is that they be symmetric at each and every point. The proof is readily extended to media that exhibit spatial dispersion: For reciprocity to hold, the electric susceptibility tensor Chi_E_mn that relates the complex-valued magnitude of the electric dipole at location r_m to the strength of the electric field at r_n must be the transpose of Chi_E_nm...

  14. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  15. Relativistic like structure of classical thermodynamics

    Science.gov (United States)

    Quevedo, Hernando; Sánchez, Alberto; Vázquez, Alejandro

    2015-04-01

    We analyze in the context of geometrothermodynamics a Legendre invariant metric structure in the equilibrium space of an ideal gas. We introduce the concept of thermodynamic geodesic as a succession of points, each corresponding to a state of equilibrium, so that the resulting curve represents a quasi-static process. A rigorous geometric structure is derived in which the thermodynamic geodesics at a given point split the equilibrium space into two disconnected regions separated by adiabatic geodesics. This resembles the causal structure of special relativity, which we use to introduce the concept of adiabatic cone for thermodynamic systems. This result might be interpreted as an alternative indication of the inter-relationship between relativistic physics and classical thermodynamics.

  16. Quaternionic Formulation of Classical Electrodynamics and Theory of Functions of a Biquaternion Variable

    OpenAIRE

    "今枝, 国之助"; "イマエダ, クニノスケ"; Kuninosuke", "Imaeda

    1985-01-01

    "Quaternionic formulation of classical electrodynamics by using ""biq""(real part of a complex-quaternions) has been presented. Also, the solutions of Maxwell's equations have been given using regular functions of a biq variable."

  17. LOCAL CLASSICAL SOLUTIONS TO THE EQUATIONS OF RELATIVISTIC HYDRODYNAMICS

    Institute of Scientific and Technical Information of China (English)

    史一蓬

    2001-01-01

    In this paper, we prove that the convexity of the negative thermodynamical entropy of the equations of relativistic hydrodynamics for ideal gas keeps its invariance under the Lorentz transformation if and only if the local sound speed is less than the light speed in vacuum. Then a symmetric form for the equations of relativistic hydrodynamics is presented and the local classical solution is obtained. Based on this,we prove that the nonrelativistic limit of the local classical solution to the relativistic hydrodynamics equations for relativistic gas is the local classical solution of the Euler equations for polytropic gas.

  18. Transverse-longitudinal part of a vector potential in classical electrodynamics

    International Nuclear Information System (INIS)

    Existence of a physical (gauge-invariant) degree of freedom of the vector potential generating no electromagnetic fields is proved in classical electrodynamics within the Dirac generalized Hamiltonian dynamics. The gauge-invariant form of electrodynamics of charged particles is given within which the question of observing the obtained degree of freedom is discussed. It is shown that it caused an electric current in a superconducting ring put on the solenoid. 20 refs

  19. Quantum Electrodynamics Basis of Classical-Field High-Harmonic Generation Theory

    Institute of Scientific and Technical Information of China (English)

    王兵兵; 高靓辉; 傅盘铭; 郭东升; R. R. Freeman

    2001-01-01

    From the nonperturbative quantum electrodynamics theory, we derive the Landau-Dykhne formula which represents the quantum-mechanical formulation of the three-step model. These studies provide a basis for the classical-field approaches to high-order harmonic generation and justify some assumptions used in classical-field modelling.

  20. Restrictions imposed on relativistic two-body interactions by classical relativistic field theory

    International Nuclear Information System (INIS)

    We show that various relativistic potential models (all sharing exact relativistic two-body kinematics and a common nonrelativistic limit) can be distinguished by agreement or disagreement with relativistic corrections produced by classical field theory. We find that the only one of these models whose relativisic corrections duplicate those of classical field theory is the minimal Todorov equation. Conversely, we derive the Todorov equation from the semirelativistic dynamics of classical field theory, thus exposing the classical field-theoretic origins of its characteristic minimal potential structures and dependences on effective one-body variables

  1. Nonlinear theory of relativistic CRM with resonant electrodynamic systems

    International Nuclear Information System (INIS)

    Effects associated with the influence of nonsynchronous waves of resonators as well as ponderomotive forces, arising due to the longitudinal nonuniformity of the synchronous waves and of the focusing magnetostatic field, are studied for relativistic CRM with high-Q resonators. A nonlinear theory of a monotron based on the anomalous Doppler effect, in which a relativistic electron beam which is initially rectilinear excites the field in an open two-mirror resonator, is constructed. It is shown that the efficiency of such generators can reach 50%

  2. Fundamental laws of relativistic classical dynamics revisited

    International Nuclear Information System (INIS)

    By stating that a linear differential form, whose coefficients are the components of the momentum and the energy of a particle, has an antiderivative, the basic equations of the dynamics of points are obtained, in the relativistic case. From the point of view of optimization theory, a connection between our condition and the Bellman-Isaacs equation of dynamic programming is discussed, with a view to extending the theory to relativistic wave mechanics

  3. Breit and Quantum Electrodynamics Energy Contributions in Multielectron Atoms from the Relativistic Screened Hydrogenic Model

    Science.gov (United States)

    Di Rocco, Héctor O.; Lanzini, Fernando

    2016-04-01

    The correction to the Coulomb repulsion between two electrons due to the exchange of a transverse photon, referred to as the Breit interaction, as well as the main quantum electrodynamics contributions to the atomic energies (self-energy and vacuum polarization), are calculated using the recently formulated relativistic screened hydrogenic model. Comparison with the results of multiconfiguration Dirac-Hartree-Fock calculations and experimental X- ray energies is made.

  4. Simulation of the Hydrogen Ground State in Stochastic Electrodynamics-2: Inclusion of Relativistic Corrections

    Science.gov (United States)

    Nieuwenhuizen, Theodorus M.; Liska, Matthew T. P.

    2015-10-01

    In a recent paper the authors studied numerically the hydrogen ground state in stochastic electrodynamics (SED) within the the non-relativistic approximation. In quantum theory the leading non-relativistic corrections to the ground state energy dominate the Lamb shift related to the photon cloud that should cause the quantum-like behaviour of SED. The present work takes these corrections into account in the numerical modelling. It is found that they have little effect; the self-ionisation that occurs without them remains present. It is speculated that the point-charge approximation for the electron is the cause of the failure.

  5. Galilean symmetry of maxwell's equations in classical electrodynamics

    International Nuclear Information System (INIS)

    The study presented shows that the Galilean group, like the Lorentz group, is a group of exact symmetry of Maxwell's equation. The Galilean group differs in that, while the field transformations are linear and global in the relativistic case, they are nonlinear in the Galilean and, generally speaking, depend on the coordinates of the event through some weight functions

  6. Galilean symmetry of Maxwell's equations in classical electrodynamics

    Science.gov (United States)

    Kotel'Nikov, G. A.

    1985-08-01

    It is shown that the Galilean group, like the Lorentz group, is a group of exact symmetry of Maxwell's equation. The Galilean group differs in that, while the field transformations are linear and global in the relativistic case, they are nonlinear in the Galilean and, generally speaking, depend on the coordinates of the event through some weight functions.

  7. Relativistic wave equations of n-body systems of fermions and antifermions of various masses in quantum electrodynamics

    International Nuclear Information System (INIS)

    The variational method in a reformulated Hamiltonian formalism of quantum electrodynamics (QED) is used to derive relativistic wave equations for systems consisting of n fermions and antifermions of various masses. The derived interaction kernels of these equations include one-photon exchange interactions. The equations have the expected Schroedinger non-relativistic limit. Application to some exotic few lepton systems is discussed briefly. (author)

  8. A Concise Introduction to Colombeau Generalized Functions and Their Applications in Classical Electrodynamics

    Science.gov (United States)

    Gsponer, Andre

    2009-01-01

    The objective of this introduction to Colombeau algebras of generalized functions (in which distributions can be freely multiplied) is to explain in elementary terms the essential concepts necessary for their application to basic nonlinear problems in classical physics. Examples are given in hydrodynamics and electrodynamics. The problem of the…

  9. On the Foundational Equations of the Classical Theory of Electrodynamics

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    A close examination of the Maxwell-Lorentz theory of electrodynamics reveals that polarization and magnetization of material media need not be treated as local averages over small volumes - volumes that nevertheless contain a large number of electric and/or magnetic dipoles. Indeed, Maxwell's macroscopic equations are exact and self-consistent mathematical relations between electromagnetic fields and their sources, which consist of free charge, free current, polarization, and magnetization. When necessary, the discrete nature of the constituents of matter and the granularity of material media can be handled with the aid of special functions, such as Dirac's delta-function. The energy of the electromagnetic field and the exchange of this energy with material media are treated with a single postulate that establishes the Poynting vector S = ExH as the rate of flow of electromagnetic energy under all circumstances. Similarly, the linear and angular momentum densities of the fields are simple functions of the Poy...

  10. A Second-order Divergence-constrained Multidimensional Numerical Scheme for Relativistic Two-Fluid Electrodynamics

    CERN Document Server

    Amano, Takanobu

    2016-01-01

    A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell's equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell's equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small sca...

  11. Is the Meissner effect explicable in terms of classical electrodynamics

    International Nuclear Information System (INIS)

    The core radius r0 of a current-carrying superconducting cylinder in the intermediate state determined from experimental data disagrees with the theoretical value of r0 derived on the basis of the classical interpretation of the Meissner effect. Then the problem arises of whether this interpretation of the Meissner effect corresponds to reality. (Auth.)

  12. Classical electrodynamics in a space with spin noncommutativity of coordinates

    CERN Document Server

    Vasyuta, V M

    2016-01-01

    We propose a new relativistic Lorentz-invariant spin-noncommutative algebra. Using the Weyl ordering of noncommutative position operators, we build an analogue of the Moyal-Groenewald product for the proposed algebra. The Lagrange function of an electromagnetic field in the space with spin noncommutativity is constructed. In such a space electromagnetic field becomes non-abelian. A gauge transformation law of this field is also obtained. Exact nonlinear field equations of noncommutative electromagnetic field are derived from the least action principle. Within the perturbative approach we consider field of a point charge in a constant magnetic field and interaction of two plane waves. An exact solution of a plane wave propagation in a constant magnetic and electric fields is found.

  13. Quantum-to-Classical Transition in Cavity Quantum Electrodynamics (QED)

    CERN Document Server

    Fink, J M; Studer, P; Bishop, Lev S; Baur, M; Bianchetti, R; Bozyigit, D; Lang, C; Filipp, S; Leek, P J; Wallraff, A

    2010-01-01

    The quantum properties of electromagnetic, mechanical or any other type of harmonic oscillator can be revealed by investigating its strong coherent coupling to a single quantum two level system in an approach known as cavity QED. At temperatures much lower than the characteristic energy level spacing the observation of vacuum Rabi oscillations or mode splittings with one or a few quanta asserts the quantum nature of the system. Here, we study how the classical response of a quantum cavity QED system emerges when its thermal occupation -- or effective temperature -- is raised gradually over 5 orders of magnitude. In this way we explore in detail the continuous cross-over from a quantum response to a classical response in the spirit of Bohr's correspondence principle. We also demonstrate how to extract effective cavity field temperatures from both spectroscopic and time-resolved vacuum Rabi measurements.

  14. Losing energy in classical, relativistic and quantum mechanics

    NARCIS (Netherlands)

    Atkinson, David

    2007-01-01

    A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the total mass of all the balls is finite. Classical mechanics leads to the conclusion that momentum, but not necessarily energy, must be conserved. In relativistic mechanics, however, neit

  15. On the Relationship of Quantum Mechanics to Classical Electromagnetism and Classical Relativistic Mechanics

    OpenAIRE

    Field, J H.

    2004-01-01

    Some connections between quantum mechanics and classical physics are explored. The Planck-Einstein and De Broglie relations, the wavefunction and its probabilistic interpretation, the Canonical Commutation Relations and the Maxwell--Lorentz Equation may be understood in a simple way by comparing classical electromagnetism and the photonic description of light provided by classical relativistic kinematics. The method used may be described as `inverse correspondence' since quantum phenomena bec...

  16. A generalisation of classical electrodynamics for the prediction of scalar field effects

    OpenAIRE

    van Vlaenderen, Koen J.

    2003-01-01

    Within the framework of Classical Electrodynamics (CED) it is common practice to choose freely an arbitrary gauge condition with respect to a gauge transformation of the electromagnetic potentials. The Lorenz gauge condition allows for the derivation of the inhomogeneous potential wave equations (IPWE), but this also means that scalar derivatives of the electromagnetic potentials are considered to be \\emph{unphysical}. However, these scalar expressions might have the meaning of a new physical...

  17. The Force Law of Classical Electrodynamics: Lorentz versus Einstein and Laub

    OpenAIRE

    Mansuripur, Masud

    2013-01-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and materi...

  18. SIMLA: Simulating laser-particle interactions via classical and quantum electrodynamics

    OpenAIRE

    Green, D. G.; Harvey, C. N.

    2014-01-01

    We present the Fortran code SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. This can be done classically via the Landau-Lifshitz equation, or alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo type routines. Multiple laser fields can be included in the simulation and the propagation direction, beam shape (plane wave, focussed paraxi...

  19. The Charge-Magnet Paradoxes of Classical Electrodynamics

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    A number of charge-magnet paradoxes have been discussed in the literature, beginning with Shockley's famous 1967 paper, where he introduced the notion of hidden momentum in electromagnetic systems. We discuss all these paradoxes in a single, general context, showing that the conservation laws of linear and angular momenta can be satisfied without the need for hidden entities, provided that the Einstein-Laub laws of force and torque are used in place of the standard Lorentz law. Einstein and Laub published their paper in 1908, but the simplicity of the conventional Lorentz law overshadowed the subtle features of their formulation which, at first sight, appears somewhat complicated. However, that slight complication turns out to lead to subsequent advantages in light of Shockley's discovery of hidden momentum, which occurred more than a decade after Einstein had passed away. In this paper, we show how the Einstein-Laub formalism handles the underlying problems associated with certain paradoxes of classical elec...

  20. Classical and quantum mechanics of the relativistic particle

    International Nuclear Information System (INIS)

    It is shown that the standard actions of the relativistic point-like particle are adapted within the corresponding interpretation to describe particle and antiparticle at the same time. Special gauge in which this possibility realize naturally both in classical and in quantum theory is pointed out. A consistent procedure of canonical quantization of relativistic point-like particle without and with spin is considered. the operator formulation of the system in question is manifestly constructed. So built quantum mechanics proves to be equivalent for a spinless particle to Klein-Gordon theory and for spinning particle to Dirac theory. (author). 14 refs

  1. A new approach in classical electrodynamics to protect principle of causality

    Directory of Open Access Journals (Sweden)

    Biswaranjan Dikshit

    2014-03-01

    Full Text Available In classical electrodynamics, electromagnetic effects are calculated from solution of wave equation formed by combination of four Maxwell’s equations. However, along with retarded solution, this wave equation admits advanced solution in which case the effect happens before the cause. So, to preserve causality in natural events, the retarded solution is intentionally chosen and the advance part is just ignored. But, an equation or method cannot be called fundamental if it admits a wrong result (that violates principle of causality in addition to the correct result. Since it is the Maxwell’s form of equations that gives birth to this acausal advanced potential, we rewrite these equations in a different form using the recent theory of reaction at a distance (Biswaranjan Dikshit, Physics essays, 24(1, 4-9, 2011 so that the process of calculation does not generate any advanced effects. Thus, the long-standing causality problem in electrodynamics is solved.

  2. Classical and relativistic flux of energy conservation in astrophysical jets

    OpenAIRE

    Zaninetti, L.

    2016-01-01

    The conservation of the energy flux in turbulent jets which propagate in the intergalactic medium (IGM) allows deducing the law of motion in the classical and relativistic cases. Three types of IGM are considered: constant density, hyperbolic and inverse power law decrease of density. An analytical law for the evolution of the magnetic field along the radio-jets is deduced using a linear relation between the magnetic pressure and the rest density. Astrophysical applications are made to the ce...

  3. Radiation reaction and renormalization in classical electrodynamics of a point particle in any dimension

    International Nuclear Information System (INIS)

    The effective equations of motion for a point charged particle taking into account the radiation reaction are considered in various space-time dimensions. The divergences stemming from the pointness of the particle are studied and an effective renormalization procedure is proposed encompassing uniformly the cases of all even dimensions. It is shown that in any dimension the classical electrodynamics is a renormalizable theory if not multiplicatively beyond d=4. For the cases of three and six dimensions the covariant analogues of the Lorentz-Dirac equation are explicitly derived

  4. Radiation reaction and renormalization in classical electrodynamics of a point particle in any dimension

    Science.gov (United States)

    Kazinski, P. O.; Lyakhovich, S. L.; Sharapov, A. A.

    2002-07-01

    The effective equations of motion for a point charged particle taking into account the radiation reaction are considered in various space-time dimensions. The divergences stemming from the pointness of the particle are studied and an effective renormalization procedure is proposed encompassing uniformly the cases of all even dimensions. It is shown that in any dimension the classical electrodynamics is a renormalizable theory if not multiplicatively beyond d=4. For the cases of three and six dimensions the covariant analogues of the Lorentz-Dirac equation are explicitly derived.

  5. Radiation reaction and renormalization in classical electrodynamics of point particle in any dimension

    CERN Document Server

    Kazinski, P O; Sharapov, A A

    2002-01-01

    The effective equations of motion for a point charged particle taking account of radiation reaction are considered in various space-time dimensions. The divergencies steaming from the pointness of the particle are studied and the effective renormalization procedure is proposed encompassing uniformly the cases of all even dimensions. It is shown that in any dimension the classical electrodynamics is a renormalizable theory if not multiplicatively beyond d=4. For the cases of three and six dimensions the covariant analogs of the Lorentz-Dirac equation are explicitly derived.

  6. SIMLA: Simulating laser-particle interactions via classical and quantum electrodynamics

    CERN Document Server

    Green, D G

    2014-01-01

    We present the Fortran code SIMLA, which is designed for the study of charged particle dynamics in laser and other background fields. This can be done classically via the Landau-Lifshitz equation, or alternatively, via the simulation of photon emission events determined by strong-field quantum-electrodynamics amplitudes and implemented using Monte-Carlo type routines. Multiple laser fields can be included in the simulation and the propagation direction, beam shape (plane wave, focussed paraxial, constant crossed, or constant magnetic), and time envelope of each can be independently specified.

  7. Classical and relativistic flux of energy conservation in astrophysical jets

    CERN Document Server

    Zaninetti, L

    2016-01-01

    The conservation of the energy flux in turbulent jets which propagate in the intergalactic medium (IGM) allows deducing the law of motion in the classical and relativistic cases. Three types of IGM are considered: constant density, hyperbolic and inverse power law decrease of density. An analytical law for the evolution of the magnetic field along the radio-jets is deduced using a linear relation between the magnetic pressure and the rest density. Astrophysical applications are made to the centerline intensity of synchrotron emission in NGC315 and to the magnetic field of 3C273.

  8. Multiparty Quantum Secret Sharing of Classical Message using Cavity Quantum Electrodynamic System

    Institute of Scientific and Technical Information of China (English)

    HAN Lian-Fang; LIU Yi-Min; ZHANG Zhan-Jun

    2006-01-01

    @@ An experimental feasible scheme of multiparty secret sharing of classical messages is proposed, based on a cavity quantum electrodynamic system. The secret messages are imposed on atomic Bell states initially in the sender's possession by local unitary operations. By swapping quantum entanglement of atomic Bell states, the secret messages are split into several parts and each part is distributed to a separate party. In this case, any subset of the entire party group can not read out the secret message but the entirety via mutual cooperations. In this scheme, to discriminate atomic Bell states, additional classical fields are employed besides the same highly-detuned single-mode cavities used to prepare atomic Bell states. This scheme is insensitive to the cavity decay and the thermal field, and usual joint Bell-state measurements are unnecessary.

  9. Relativistic semi-classical theory of atom ionization in ultra-intense laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.

  10. Axiomatics of classical electrodynamics and its relation to gauge field theory

    CERN Document Server

    Gronwald, F; Nitsch, J; Gronwald, Frank; Hehl, Friedrich W.

    2005-01-01

    We give a concise axiomatic introduction into the fundamental structure of classical electrodynamics: It is based on electric charge conservation, the Lorentz force, magnetic flux conservation, and the existence of local and linear constitutive relations. The {\\it inhomogeneous} Maxwell equations, expressed in terms of $D^i$ and $H_i$, turn out to be a consequence of electric charge conservation, whereas the {\\it homogeneous} Maxwell equations, expressed in terms of $E_i$ and $B^i$, are derived from magnetic flux conservation and special relativity theory. The excitations $D^i$ and $H_i$, by means of constitutive relations, are linked to the field strengths $E_i$ and $B^i$. Eventually, we point out how this axiomatic approach is related to the framework of gauge field theory.

  11. The Force Law of Classical Electrodynamics: Lorentz versus Einstein and Laub

    CERN Document Server

    Mansuripur, Masud

    2013-01-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy, and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. As it turns out, an alternative force law, first proposed in 1908 by Einstein and Laub, exists that is consistent with Maxwell's macroscopic equations and complies with the conservation laws as well as with the requirements of special relativity. While the Lorentz law requires the introduction of hidden energy and hidden momentum in situations where an electric field acts on a magnetic material, the Einstein...

  12. A generalisation of classical electrodynamics for the prediction of scalar field effects

    CERN Document Server

    van Vlaenderen, K J

    2003-01-01

    Within the framework of Classical Electrodynamics (CED) it is common practice to choose freely an arbitrary gauge condition with respect to a gauge transformation of the electromagnetic potentials. The Lorenz gauge condition allows for the derivation of the inhomogeneous potential wave equations (IPWE), but this also means that scalar derivatives of the electromagnetic potentials are considered to be \\emph{unphysical}. However, these scalar expressions might have the meaning of a new physical field, $\\mathsf S$. If this is the case, then a generalised CED is required such that scalar field effects are predicted and such that experiments can be performed in order to verify or falsify this generalised CED. The IPWE are viewed as a generalised Gauss law and a generalised Ampe\\`re law, that also contain derivatives of $\\mathsf S$, after reformulating the IPWE in terms of fields. Some recent experiment show positive results that are in qualitative agreement with the presented predictions of scalar field effects, b...

  13. Electric and Magnetic Dipoles in the Lorentz and Einstein-Laub Formulations of Classical Electrodynamics

    CERN Document Server

    Mansuripur, Masud

    2015-01-01

    The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density $\\rho_{free}$, electric current-density $J_{free}$, polarization P, and magnetization M. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media - the seat of...

  14. Momentum Maps and Classical Relativistic Fields; 1, Covariant Field Theory

    CERN Document Server

    Gotay, M J; Marsden, J E; Gotay, Mark J.; Isenberg, James; Marsden, Jerrold E.

    1998-01-01

    This is the first paper of a four part work in which we study the Lagrangian and Hamiltonian structure of classical field theories with constraints. Our goal is to explore some of the connections between initial value constraints and gauge transformations in such theories (either relativistic or not). To do this, in the course of these four papers, we develop and use a number of tools from symplectic and multisymplectic geometry. Of central importance in our analysis is the notion of the ``energy-momentum map'' associated to the gauge group of a given classical field theory. We hope to demonstrate that many different and apparently unrelated facets of field theories can be thereby tied together and understood in an essentially new way. In Part I we develop some of the basic theory of classical fields from a spacetime covariant viewpoint. We begin with a study of the covariant Lagrangian and Hamiltonian formalisms, on jet bundles and multisymplectic manifolds, respectively. Then we discuss symmetries, conserva...

  15. Introduction to relativistic statistical mechanics classical and quantum

    CERN Document Server

    Hakim, Rémi

    2011-01-01

    This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statisti

  16. On the electrodynamic model of ultra-relativistic laser-plasma interactions caused by radiation reaction effects

    CERN Document Server

    Bashinov, Aleksei

    2013-01-01

    {A simple electrodynamic model is developed to define plasma-field structures in self-consistent ultra-relativistic laser-plasma interactions when the radiation reaction effects come into play. An exact analysis of a circularly polarized laser interacting with plasmas is presented. We define fundamental notations such as nonlinear dielectric permittivity, ponderomotive and dissipative forces acting in a plasma. Plasma-field structures arising during the ultra-relativisitc interactions are also calculated. Based on these solutions we show that about 50% of laser energy can be converted into gamma-rays in the optimal conditions of laser-foil interaction.

  17. Softness of Sn isotopes in relativistic semi-classical approximation

    OpenAIRE

    Biswal, S. K.; Singh, S. K.; Bhuyan, M.; Patra, S.K.

    2014-01-01

    Within the frame-work of relativistic Thomas-Fermi and relativistic extended Thomas-Fermi approximations, we calculate the giant monopole resonance (GMR) excitation energies for Sn and related nuclei. A large number of non-linear relativistic force parameters are used in this calculations. We find that a parameter set is capable to reproduce the experimental monopole energy of Sn isotopes, when its nuclear matter compressibility lies within $210-230$ MeV, however fails to reproduce the GMR en...

  18. Classical and Quantum Mechanics of Free \\k Relativistic Systems

    OpenAIRE

    Lukierski, J.; Ruegg, H.; Zakrzewski, W. J.

    1993-01-01

    We consider the Hamiltonian and Lagrangian formalism describing free \\k-relativistic particles with their four-momenta constrained to the \\k-deformed mass shell. We study the modifications of the formalism which follow from the introduction of space coordinates with nonvanishing Poisson brackets and from the redefinitions of the energy operator. The quantum mechanics of free \\k-relativistic particles and of the free \\k-relativistic oscillator is also presented. It is shown that the \\k-relativ...

  19. Electric and magnetic dipoles in the Lorentz and Einstein-Laub formulations of classical electrodynamics

    Science.gov (United States)

    Mansuripur, Masud

    2015-01-01

    The classical theory of electrodynamics cannot explain the existence and structure of electric and magnetic dipoles, yet it incorporates such dipoles into its fundamental equations, simply by postulating their existence and properties, just as it postulates the existence and properties of electric charges and currents. Maxwell's macroscopic equations are mathematically exact and self-consistent differential equations that relate the electromagnetic (EM) field to its sources, namely, electric charge-density 𝜌𝜌free, electric current-density 𝑱𝑱free, polarization 𝑷𝑷, and magnetization 𝑴𝑴. At the level of Maxwell's macroscopic equations, there is no need for models of electric and magnetic dipoles. For example, whether a magnetic dipole is an Amperian current-loop or a Gilbertian pair of north and south magnetic monopoles has no effect on the solution of Maxwell's equations. Electromagnetic fields carry energy as well as linear and angular momenta, which they can exchange with material media—the seat of the sources of the EM field—thereby exerting force and torque on these media. In the Lorentz formulation of classical electrodynamics, the electric and magnetic fields, 𝑬𝑬 and 𝑩𝑩, exert forces and torques on electric charge and current distributions. An electric dipole is then modeled as a pair of electric charges on a stick (or spring), and a magnetic dipole is modeled as an Amperian current loop, so that the Lorentz force law can be applied to the corresponding (bound) charges and (bound) currents of these dipoles. In contrast, the Einstein-Laub formulation circumvents the need for specific models of the dipoles by simply providing a recipe for calculating the force- and torque-densities exerted by the 𝑬𝑬 and 𝑯𝑯 fields on charge, current, polarization and magnetization. The two formulations, while similar in many respects, have significant

  20. Speeds of Propagation in Classical and Relativistic Extended Thermodynamics

    Directory of Open Access Journals (Sweden)

    Müller Ingo

    1999-01-01

    Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

  1. Classical limit of equations of the relativistic quantum mechanics in the Foldy-Wouthuysen representation

    International Nuclear Information System (INIS)

    It is shown that the use of the Foldy-Wouthuysen representation allows one to reduce finding the classical limit of equations of the relativistic quantum mechanics to replacing operators in the Hamiltonian and quantum mechanical equations of motion with corresponding classical quantities when the conditions of the Wentzel-Kramers-Brillouin approximation are satisfied

  2. Classical solutions in a Lorentz-violating Maxwell-Chern-Simons electrodynamics

    International Nuclear Information System (INIS)

    We take as starting point the planar model arising from the dimensional reduction of the Maxwell Electrodynamics with the (Lorentz-violating) Carrol-Field-Jackiw term. We then write and study the extended Maxwell equations and the corresponding wave equations for the potentials. The solution to these equations show some interesting deviations from the usual MCS Electrodynamics, with background-dependent correction terms. In the case of a time-like background, the correction terms dominate over the MCS sector in the region far from the origin, and establish the behaviour of a massless Electrodynamics ( in the electric sector). In the space-like case, the solutions indicate the clear manifestation of spatial anisotropy, which is consistent with the existence of a privileged direction is space. (author)

  3. Classical Solutions in a Lorentz-violating Maxwell-Chern-Simons Electrodynamics

    CERN Document Server

    Belich, H; Orlando, M T D

    2003-01-01

    We take as starting point the planar model arising from the dimensional reduction of the Maxwell Electrodynamics with the (Lorentz-violating) Carroll-Field-Jackiw term. We then write and study the extended Maxwell equations and the corresponding wave equations for the potentials. The solution to these equations show some interesting deviations from the usual MCS Electrodynamics, with background-dependent correction terms. In the case of a time-like background, the correction terms dominate over the MCS sector in the region far from the origin, and establish the behaviour of a massless Electrodynamics (in the electric sector). In the space-like case, the solutions indicate the clear manifestation of spatial anisotropy, which is consistent with the existence of a privileged direction is space.

  4. An asymmetric relativistic model for classical double radio sources

    CERN Document Server

    Arshakian, T G

    2000-01-01

    There is substantial observational evidence against the symmetric relativistic model of FRII radio sources. An asymmetric relativistic model is proposed which takes account of both relativistic effects and intrinsic/environmental asymmetries to explain the structural asymmetries of their radio lobes. A key parameter of the model is the jet-side of the double sources, which is estimated for 80% of the FRII sources in the 3CRR complete sample. Statistical analyses of the properties of these sources show that the asymmetric model is in agreement with a wide range of observational data, and that the relativistic and intrinsic asymmetry effects are of comparable importance. Intrinsic/environmental asymmetry effects are more important at high radio luminosities and small physical scales. The mean translational speed of the lobes is found to be 0.11c, consistent with the speeds found from spectral ageing arguments. According to a Gaussian model, the standard deviation of lobe speeds is 0.04c. The results are in agre...

  5. Classical and quantum mechanics of free {kappa}-relativistic systems

    Energy Technology Data Exchange (ETDEWEB)

    Lukierski, J. [Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE (England); Ruegg, H. [Department de Physique Theorique, Universite de Geneve, 24 quai Ernest-Ansermet, 1211 Geneve 4 (Switzerland); Zakrzewski, W.J. [Department of Mathematical Sciences, University of Durham, South Road, Durham DH1 3LE (England)

    1995-10-01

    We consider the Hamiltonian and Lagrangian formalism describing free {kappa}-relativistic particles with their four-momenta constrained to the {kappa}-deformed mass shell. We study the formalism with commuting as well as noncommuting (i.e., with nonvanishing Poisson brackets) space-time coordinates; in particular a {kappa}-deformed phase space formalism leading to the {kappa}-deformed covariant Heisenberg algebra is presented. We also describe the dependence of the formalism on the various definitions of the energy operator corresponding to different choices of basic generators in the {kappa}-deformed Poincar{acute e} algebra. The quantum mechanics of free {kappa}-relativistic particles and of the free {kappa}-relativistic oscillator are also presented. It is shown that the {kappa}-relativistic oscillator describes a quantum statistical ensemble with a finite value of the Hagedorn temperature. The relation to a {kappa}-deformed Schr{umlt o}dinger quantum mechanics in which the time derivative is replaced by a finite difference is also discussed. {copyright} 1995 Academic Press, Inc.

  6. Two-loop fermion self-energy in reduced quantum electrodynamics and application to the ultra-relativistic limit of graphene

    CERN Document Server

    Kotikov, A V

    2013-01-01

    We compute the two-loop fermion self-energy in massless reduced quantum electrodynamics for an arbitrary gauge using the method of integration by parts. Focusing on the limit where the photon field is four-dimensional, our formula involves only recursively one-loop integrals and can therefore be evaluated exactly. From this formula, we deduce the anomalous scaling dimension of the fermion field as well as the renormalized fermion propagator up to two loops. The results are then applied to the ultra-relativistic limit of graphene and compared with similar results obtained for four-dimensional and three-dimensional quantum electrodynamics.

  7. Search for effective local model potentials for simulation of quantum electrodynamic effects in relativistic calculations

    International Nuclear Information System (INIS)

    Local model potentials that simulate the self-energy effects on atomic energy levels and magnetic dipole hyperfine integrals are presented. They are proposed for use in relativistic atomic, molecular or solid-state calculations

  8. A Generalized Model for the Classical Relativistic Spinning Particle

    OpenAIRE

    Hajihashemi, Mehdi; Shirzad, Ahmad

    2015-01-01

    Following the Poincare algebra for a free spinning particle and using the Casimirs of the algebra in the Hamiltonian approach, we construct systematically a set of Lagrangians for the relativistic spinning particle which includes the Lagrangian given in the literature. Then we analyze the dynamics of this generalized system in the Lagrangian formulation and show that the equations of motion support an oscillatory solution corresponding to the spinning nature of the system. Next we analyze the...

  9. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    OpenAIRE

    Louis-Martinez, Domingo J.

    2010-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions fo...

  10. Discrete phase space - I: Variational formalism for classical relativistic wave fields

    OpenAIRE

    A. Das

    2008-01-01

    The classical relativistic wave equations are presented as partial difference equations in the arena of covariant discrete phase space. These equations are also expressed as difference-differential equations in discrete phase space and continuous time. The relativistic invariance and covariance of the equations in both versions are established. The partial difference and difference-differential equations are derived as the Euler-Lagrange equations from the variational principle. The differenc...

  11. A generalized model for the classical relativistic spinning particle

    Science.gov (United States)

    Hajihashemi, Mahdi; Shirzad, Ahmad

    2016-03-01

    Following the Poincaré algebra, in the Hamiltonian approach, for a free spinning particle and using the Casimirs of the algebra, we construct systematically a set of Lagrangians for the relativistic spinning particle which includes the Lagrangian given in the literature. We analyze the dynamics of this generalized system in the Lagrangian formulation and show that the equations of motion support an oscillatory solution corresponding to the spinning nature of the system. Then we analyze the canonical structure of the system and present the correct gauge suitable for the spinning motion of the system.

  12. Classical Equation of State for Dilute Relativistic Plasma

    Science.gov (United States)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-06-01

    The aim of this paper is to calculate the analytical form of the equation of state for dilute relativistic plasma. We obtained the excess free energy and pressure in the form of a convergent series expansion in terms of the thermal parameter μ where μ = {{m{c^2}} over {KT}}, m is the mass of charge, c is the speed of light, K is the Boltzmann's constant, and T is the absolute temperature. The results are discussed and compared with previous work of other authors.

  13. Contributions from classical electrodynamics and from the Thomas effect to the spin precession of a particle with the electric dipole moment

    CERN Document Server

    Silenko, Alexander J

    2014-01-01

    The fulfilled derivation of equation of spin precession of a particle possessing magnetic and electric dipole moments uses a fully covariant approach and explicitly separates contributions from classical electrodynamics and from the Thomas effect. The expression of the final equation in terms of the fields in the instantly accompanying frame presents it in a very simple form. The Lorentz transformations of the magnetic and electric dipole moments and the spin are derived from basic equations of classical electrodynamics, namely, from the equation connecting the angular momentum and the magnetic moment and from the Maxwell equations in matter. An antisymmetric four-tensor is constructed from the electric and magnetic dipole moments.

  14. Semi-classical limit of relativistic quantum mechanics

    Indian Academy of Sciences (India)

    L Kocis

    2005-07-01

    It is shown that the semi-classical limit of solutions to the Klein–Gordon equation gives the particle probability density that is in direct proportion to the inverse of the particle velocity. It is also shown that in the case of the Dirac equation a different result is obtained.

  15. The Relativistic Covariance of the Fermion Green Function and Minimal Quantization of Electrodynamics

    Institute of Scientific and Technical Information of China (English)

    Nguyen Suan Han

    2002-01-01

    This paper is devoted to the one-loop calculation of the fermion Green function in QED within theframework of the minimal quantization method, based on an explicit solution of the constraint equations and the gaugc-invariance principle. The relativistic invariant expression for the fermion Green function with correct analytical propertiesis obtained.

  16. PREFACE: IARD 2012: 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    Science.gov (United States)

    Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo

    2013-04-01

    Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular

  17. The Wigner-Weyl formalism and the semi-classical relativistic approximation

    OpenAIRE

    Mourad, J.

    1993-01-01

    The relativistic semi-classical approximation for a free massive particle is studied using the Wigner-Weyl formalism. A non-covariant Wigner function is proposed using the Newton-Wigner position operator. The perturbative solution for the time evolution is found. Causality is found to be perturbatively respected.

  18. A gentle introduction into the foundations of classical electrodynamics Meaning of the excitations (D, H) and the field strengths (E, B)

    CERN Document Server

    Hehl, F W; Hehl, Friedrich W.; Obukhov, Yuri N.

    2000-01-01

    Coulomb comes in quanta, weber may come in quanta. -- We will base classical electrodynamics on electric charge conservation, the Lorentz force, and on magnetic flux conservation. This yields the Maxwell equations. The consequences will be drawn for the interpretation and the dimension of the electric and magnetic fields.

  19. A derivation of the Derbenev-Kondratenko formula using semi-classical electrodynamics

    International Nuclear Information System (INIS)

    We present a detailed exposition of the mechanism for the build-up of polarization in electron storage rings. A semi-classical approach is used to derive the rate of growth and asymptotic degree of polarization in an electron storage ring (the Derbenev-Kondratenko formula). Statistical mechanical concepts used to obtain as classical an understanding as possible of this phenomenon. (orig.)

  20. Quantum electrodynamics and the relativistic theory of many-electron atoms

    International Nuclear Information System (INIS)

    The development of relativistic theories of many-electron atoms is reviewed, with emphasis on the fact that the Dirac-Coulomb Hamiltonian H/sub DC/ has no bound states. This fact implies that neither the Dirac-Hartree-Fock (DHF) equations nor the DHF wavefunction chi have a simple theoretical interpretation. A no-pair hamiltonian H/sub +/ is defined which does not have the fatal flaw of H/sub DC/ and hence can serve as a starting point for a systematic study of relativistic effects in many-electron atoms which can go beyond central-field approximations. H/sub +/ differs from H/sub DC/ by the presence of external-field positive-energy projection operators in the electron-electron interaction terms. Unlike H/sub DC/, H/sub +/ and its eigenfunctions psi have a clear-cut field-theoretic meaning, which is described. Similar remarks hold for a simpler no-pair Hamiltonian h/sub +/, which involves free positive-energy projection operators and for related Hamiltonians H/sub +/' and h/sup +/' which include the Breit operator. Relativistic Hartree-Fock equations are obtained from H/sub +/ and the relation between their solutions psi and the DHF solutions chi is discussed. The DHF equations may be reinterpreted as approximations to the new HF-type equations; this provides a rationale for their success in applications. It is argued that the Breit operator ought to be included even in the original DHF equations

  1. Some problems in classical mechanics and relativistic astrophysics

    International Nuclear Information System (INIS)

    The first part of this thesis is indirectly related to high energy astrophysics. It concerns the study of binary systems consisting of a normal star and a neutronstar or a black hole. To interpret the observations from such a system; in X-ray, UV, optical, infrared and radio wavelengths; it is helpful to have a general idea of the evolution of the orbital and rotational parameters. Here we enter the old field of classical mechanics, in the form of celestial mechanics. In particular the effects of tidal interaction, precession, and sudden mass loss are treated. The second part starts with an article on thought experiments with a charged black hole enclosed in a huge box and in equilibrium with its own radiation. In this way the thermodynamic aspects of the Hawking radiation are fully explored. The connection between physical and kinematical cosmological parameters, as predicted by general relativity are explored. It is shown how the standard big bang model of cosmology restricts the possible properties of some elementary particle types. The theory of white dwarf structure is compared with observations in order to put low-energy constraints on (super) gravity theories. (Auth.)

  2. Pulsar electrodynamics: Relativistic kinetic theory of radiative plasmas--collective phenomena and their radiation

    International Nuclear Information System (INIS)

    The classical modeling of radiation by accelerated charged particles in pulsars predicts a cutoff in photon energy at around 25 GeV. While this is broadly consistent with observations, the classical treatment is not self-consistent, and cannot be extended to explain the rare high-energy detections of photons in the 100s of GeV range. In this paper we revisit the theoretical modeling of high-energy radiation processes in very strong electromagnetic fields, in the context of both single particles and collective plasmas. There are no classical constraints on this description. We find that there is indeed a critical energy of around 50 GeV that arises naturally in this self-consistent treatment, but rather than being a cutoff, this critical energy signals a transition from radiation that is classical to a quasiquantum description, in which the particle is able to radiate almost its total energy in a single event. This new modeling therefore places pulsar radiation processes on a more secure physical basis, and admits the possibility of the production of TeV photons in a self-consistent way.

  3. Galilean Podolsky Electrodynamics

    Science.gov (United States)

    Pompeia, P. J.; de Montigny, M.; Khanna, F. C.

    2009-09-01

    We analyze non-relativistic limits of Podolsky generalized electrodynamics in the context of the 5-dimensional Galilean formalism. The 'electric' and 'magnetic' limits are studied in analogy with the work of Le Bellac and Levy-Leblond (1973).

  4. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  5. On the Stability of Classical Orbits of the Hydrogen Ground State in Stochastic Electrodynamics

    Directory of Open Access Journals (Sweden)

    Theodorus M. Nieuwenhuizen

    2016-04-01

    Full Text Available De la Peña 1980 and Puthoff 1987 show that circular orbits in the hydrogen problem of Stochastic Electrodynamics connect to a stable situation, where the electron neither collapses onto the nucleus nor gets expelled from the atom. Although the Cole-Zou 2003 simulations support the stability, our recent numerics always lead to self-ionisation. Here the de la Peña-Puthoff argument is extended to elliptic orbits. For very eccentric orbits with energy close to zero and angular momentum below some not-small value, there is on the average a net gain in energy for each revolution, which explains the self-ionisation. Next, an 1 / r 2 potential is added, which could stem from a dipolar deformation of the nuclear charge by the electron at its moving position. This shape retains the analytical solvability. When it is enough repulsive, the ground state of this modified hydrogen problem is predicted to be stable. The same conclusions hold for positronium.

  6. Classical field theory on electrodynamics, non-Abelian gauge theories and gravitation

    CERN Document Server

    Scheck, Florian

    2012-01-01

    The book describes Maxwell's equations first in their integral, directly testable form, then moves on to their local formulation. The first two chapters cover all essential properties of Maxwell's equations, including their symmetries and their covariance in a modern notation. Chapter 3 is devoted to Maxwell theory as a classical field theory and to solutions of the wave equation. Chapter 4 deals with important applications of Maxwell theory. It includes topical subjects such as metamaterials with negative refraction index and solutions of Helmholtz' equation in paraxial approximation relevant for the description of laser beams. Chapter 5 describes non-Abelian gauge theories from a classical, geometric point of view, in analogy to Maxwell theory as a prototype, and culminates in an application to the U(2) theory relevant for electroweak interactions. The last chapter 6 gives a concise summary of semi-Riemannian geometry as the framework for the classical field theory of gravitation. The chapter concludes wit...

  7. Relativistic analogue of the phase space and the Liouville theorem of classical statistics

    International Nuclear Information System (INIS)

    Different anholonomic subspaces of the general relativistic μ-space (space of states of a free particle in the gravitational field; i.e. the tangent bundle V8=T(V4) on the space time V4) are introduced which, respectively, represent relativistic analogue of the classical phase space or the space on which the classical theory of radiation defines the distribution function of spectral intensity. These subspaces of V8 prove to be holonomic, if the 4-velocity field in V4 the extensions (prolongations) of which are involved in their defining multivector fields is submitted to certain conditions. In this case, from local equations holding for the mapping of sets of points of the subspaces of V8 and describing the development in time of states of particles, laws of conservation in integral form can be derived. (author)

  8. Gauge dependence of world lines and invariance of the S-matrix in relativistic classical mechanics

    International Nuclear Information System (INIS)

    The notion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend in general (in the presence of interaction) on the choice of the equal-time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a two-particle system and the (classical) S-matrix are indepent of this choice. (author)

  9. On plane-wave relativistic electrodynamics in plasmas and in vacuum

    CERN Document Server

    Fiore, Gaetano

    2016-01-01

    We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. Because of this penetration the el...

  10. Relativistic calculation, in quantum electrodynamic, of the Compton diffusion on a bound electron

    International Nuclear Information System (INIS)

    In order to explain Compton-peak displacement and broadening, when the incident photon energy is close to the electron binding energy, it is shown that a realistic calculation must include not only the binding and electron movement, but also the core participation, as a third parameter in the quadri-impulse conservation, in both initial and final states. A general equation giving the variation of the photon wavelength is deduced, taking into account all the variation sources and previous studies as limiting cases. It is shown that all the kinematical variables related to the primary electron must be analyzed in a relativistic way, for the deep atomic layers having high atomic number. An equation giving the mean square value of the atomic-electron momentum, which is true for whatever the electron state, is shown. Among the useful wave functions, a general equation for the radial functions of the atomic electrons is given. The applied propagator can explain the intermediate states describing an electron in a Coulombian field. A complete calculation of the covariant-matrice element and cross sections is accomplished. The final equations do not need any integration, except the ponderations related to an angle that is not experimentally accessible. This equation is shown in a computer program form

  11. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar, E-mail: t-seideman@northwestern.edu [Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113 (United States)

    2014-12-14

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  12. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    Science.gov (United States)

    Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar

    2014-12-01

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.

  13. Modeling light-induced charge transfer dynamics across a metal-molecule-metal junction: Bridging classical electrodynamics and quantum dynamics

    International Nuclear Information System (INIS)

    We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify our approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement

  14. Galilean Conformal Electrodynamics

    CERN Document Server

    Bagchi, Arjun; Mehra, Aditya

    2014-01-01

    Maxwell's Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D=4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the first example of an infinitely extended Galilean Conformal Field Theory in D>2. We examine details of the theory by looking at purely non-relativistic conformal methods and also use input from the limit of the relativistic theory.

  15. Galilean conformal electrodynamics

    Science.gov (United States)

    Bagchi, Arjun; Basu, Rudranil; Mehra, Aditya

    2014-11-01

    Maxwell's Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D = 4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the first example of an infinitely extended Galilean Conformal Field Theory in D > 2. We examine details of the theory by looking at purely non-relativistic conformal methods and also use input from the limit of the relativistic theory.

  16. Classical and relativistic node precessional effects in WASP-33b and perspectives for detecting them

    CERN Document Server

    Iorio, Lorenzo

    2010-01-01

    WASP-33 is a fast rotating, main sequence star which hosts a hot Jupiter moving along a retrograde and almost polar orbit with semi-major axis a = 0.02 au and eccentricity provisionally set to e = 0. The quadrupole mass moment J_2 and the proper angular momentum S of the star are 1900 and 400 times, respectively, larger than those of the Sun. Thus, huge classical and relativistic non-Keplerian orbital effects should take place in such a system. In this paper we investigate the perspectives in detecting them (Abridged)

  17. Communication: Dynamical embedding: Correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region

    Energy Technology Data Exchange (ETDEWEB)

    Gao Yi; Neuhauser, Daniel [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569 (United States)

    2013-05-14

    We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H{sub 2}O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.

  18. Communication: Dynamical embedding: Correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region

    International Nuclear Information System (INIS)

    We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H2O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics.

  19. Communication: dynamical embedding: correct quantum response from coupling TDDFT for a small cluster with classical near-field electrodynamics for an extended region.

    Science.gov (United States)

    Gao, Yi; Neuhauser, Daniel

    2013-05-14

    We show how to obtain the correct electronic response of a large system by embedding; a small region is propagated by TDDFT (time-dependent density functional theory) simultaneously with a classical electrodynamics evolution using the Near-Field method over a larger external region. The propagations are coupled through a combined time-dependent density yielding a common Coulomb potential. We show that the embedding correctly describes the plasmonic response of a Mg(0001) slab and its influence on the dynamical charge transfer between an adsorbed H2O molecule and the substrate, giving the same spectral shape as full TDDFT (similar plasmon peak and molecular-dependent differential spectra) with much less computational effort. The results demonstrate that atomistic embedding electrodynamics is promising for nanoplasmonics and nanopolaritonics. PMID:23676021

  20. Galilean Conformal Electrodynamics

    OpenAIRE

    Bagchi, Arjun; Basu, Rudranil; Mehra, Aditya

    2014-01-01

    Maxwell’s Electrodynamics admits two distinct Galilean limits called the Electric and Magnetic limits. We show that the equations of motion in both these limits are invariant under the Galilean Conformal Algebra in D = 4, thereby exhibiting non-relativistic conformal symmetries. Remarkably, the symmetries are infinite dimensional and thus Galilean Electrodynamics give us the first example of an infinitely extended Galilean Conformal Field Theory in D > 2. We examine details of the theory by l...

  1. Simulation of planar channeling-radiation spectra of relativistic electrons and positrons channeled in a diamond-structure or tungsten single crystal (classical approach)

    Science.gov (United States)

    Azadegan, B.; Wagner, W.

    2015-01-01

    We present a Mathematica package for simulation of spectral-angular distributions and energy spectra of planar channeling radiation of relativistic electrons and positrons channeled along major crystallographic planes of a diamond-structure or tungsten single crystal. The program is based on the classical theory of channeling radiation which has been successfully applied to study planar channeling of light charged particles at energies higher than 100 MeV. Continuous potentials for different planes of diamond, Si, Ge and W single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the classical one-dimensional equation of motion. The code is designed to calculate the trajectories, velocities and accelerations of electrons (positrons) channeled by the planar continuous potential. In the framework of classical electrodynamics, these data allow realistic simulations of spectral-angular distributions and energy spectra of planar channeling radiation. Since the generated output is quantitative, the results of calculation may be useful, e.g., for setup configuration and crystal alignment in channeling experiments, for the study of the dependence of channeling radiation on the input parameters of particle beams with respect to the crystal orientation, but also for the simulation of positron production by means of pair creation what is mandatory for the design of efficient positron sources necessary in high-energy and collider physics. Although the classical theory of channeling is well established for long time, there is no adequate library program for simulation of channeling radiation up to now, which is commonly available, sufficiently simple and effective to employ and, therefore, of benefit as for special investigations as for a quick overview of basic features of this type of radiation.

  2. Modeling of radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic laser-plasma interaction

    Science.gov (United States)

    Lobet, M.; d'Humières, E.; Grech, M.; Ruyer, C.; Davoine, X.; Gremillet, L.

    2016-03-01

    Next generation of ultra-intense laser facilities will lead to novel physical conditions ruled by collective and quantum electrodynamics effects, such as synchrotron-like emission of high-energy photons and e + e - pair generation. In view of the future experiments performed in this regime, the latter processes have been implemented into the particle-in-cell code CALDER.

  3. Understanding the Planck Blackbody Spectrum and Diamagnetism within Classical Electromagnetism

    CERN Document Server

    Boyer, Timothy H

    2016-01-01

    Electromagnetism is a \\textit{relativistic} theory and one must exercise care in coupling this theory with \\textit{nonrelativistic} classical mechanics and with \\textit{nonrelativistic} classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: 1)the neglect of classical electromagnetic zero-point radiation, and 2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we show that the use of Lorentz-invariant classical electromagnetic zero-point radiation can be used to explain both the Planck blackbody spectrum and diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statist...

  4. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  5. Semi-classical locality for the non-relativistic path integral in configuration space

    CERN Document Server

    Gomes, Henrique

    2015-01-01

    In an accompanying paper, we have put forward an interpretation of quantum mechanics grounded on a non-relativistic Lagrangian 3+1 formalism of a closed Universe, existing on timeless configuration space. However, not much was said there about the role of locality, which was not assumed. In this paper, I describe how subsystems existing in (spatial) regions with fixed boundary conditions can be represented as submanifolds of the complete configuration space. I show that if the action functional can be put in the form of Riemannian distance element, then dynamical independence of the subsystem implies that the respective submanifolds are totally geodesic. When two regions are mutually independent the semi-classical path integral kernel factorizes, showing cluster decomposition. To exemplify these constructions I then construct a specific gravitational system with two propagating physical degrees of freedom and no refoliation-invariance. Finally, considering the path integral in this 3+1 context, I implement an...

  6. Scale-lengths and instabilities in magnetized classical and relativistic plasma fluid models

    International Nuclear Information System (INIS)

    The validity of the traditional plasma continuum is predicated on a hierarchy of scale-lengths, with the Debye length being considered to be effectively unresolvable in the continuum limit. In this article, we revisit the strong magnetic field case in which the Larmor radius is comparable or smaller than the Debye length in the classical plasma, and also for a relativistic plasma. Fresh insight into the validity of the continuum assumption in each case is offered, including a fluid limit on the Alfvén speed that may impose restrictions on the validity of magnetohydrodynamics (MHD) in some solar and fusion contexts. Additional implications concerning the role of the firehose instability are also explored. (paper)

  7. PREFACE: IARD 2010: The 7th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    Science.gov (United States)

    Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin

    2011-12-01

    Although the subject of relativistic dynamics has been explored from both classical and quantum mechanical points of view since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anamolous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical realtivistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Linder et al (Phys. Rev. Lett. 95 0040401 (2005)) as well as the more recent work of Palacios et al (Phys. Rev. Lett. 103 253001 (2009)) and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg (Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)) could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular, local

  8. Soliton-like solution in quantum electrodynamics

    CERN Document Server

    Skoromnik, O D; Keitel, C H

    2016-01-01

    A novel soliton-like solution in quantum electrodynamics is obtained via a self-consistent field method. By writing the Hamiltonian of quantum electrodynamics in the Coulomb gauge, we separate out a classical component in the density operator of the electron-positron field. Then, by modeling the state vector in analogy with the theory of superconductivity, we minimize the functional for the energy of the system. This results in the equations of the self-consistent field, where the solutions are associated with the collective excitation of the electron-positron field---the soliton-like solution. In addition, the canonical transformation of the variables allowed us to separate out the total momentum of the system and, consequently, to find the relativistic energy dispersion relation for the moving soliton.

  9. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion. PMID:21929132

  10. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  11. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  12. Relativistic and nonrelativistic classical field theory on fivedimensional space-time

    International Nuclear Information System (INIS)

    This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form

  13. A High-Order Relativistic Two-Fluid Electrodynamic Scheme with Consistent Reconstruction of Electromagnetic Fields and a Multidimensional Riemann Solver for Electromagnetism

    CERN Document Server

    Balsara, Dinshaw S; Garain, Sudip; Kim, Jinho

    2016-01-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. Three important innovations are reported here. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our seco...

  14. Electrodynamics basics and duality principle

    OpenAIRE

    Ivanitckiy, A. M.

    2014-01-01

    The given report proposes general and consistent statement of the classical electrodynamics basis using axiomatic and duality principles for its construct. Vector algebra and vector analysis are created by the application of the duality principle. The last fact allows formulating Maxwell equations in strictly symmetric form. It means the statement of electrodynamics postulates (axioms) under a principle of duality. Electrodynamics basis construction begins immediately using its postulates for...

  15. Photon propagator in skewon electrodynamics

    OpenAIRE

    Itin, Yakov

    2015-01-01

    Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalisation of the standard electrodynamics. The two other parts, axion and skewon, represent non-classical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed wit...

  16. Massive Electrodynamics and Magnetic Monopoles

    OpenAIRE

    Israelit, Mark

    1996-01-01

    Including torsion in the geometric framework of the Weyl-Dirac theory we build up an action integral, and obtain from it a gauge covariant (in the Weyl sense) general relativistic massive electrodynamics. Photons having an arbitrary mass, electric, and magnetic currents (Dirac's monopole) coexist within this theory. Assuming that the space-time is torsionless, taking the photons mass zero, and turning to the Einstein gauge we obtain Maxwell's electrodynamics.

  17. Numerical Data-Processing Simulations of Microarcsecond Classical and Relativistic Effects in Space Astrometry

    OpenAIRE

    Kopeikin, Sergei M.; Shuygina, N. V.; Vasilyev, M. V.; Yagudina, E. I.; Yagudin, L. I.

    2000-01-01

    The accuracy of astrometric observations conducted via a space-borne optical interferometer orbiting the Earth is expected to approach a few microarcseconds. Data processing of such extremely high-precision measurements requires access to a rigorous relativistic model of light ray propagation developed in the framework of General Relativity. The data-processing of the space interferometric observations must rely upon the theory of general-relativistic transformations between the spacecraft, g...

  18. One-Step Generation of Cluster States Assisted by a Strong Driving Classical Field in Cavity Quantum Electrodynamics

    Institute of Scientific and Technical Information of China (English)

    SHAO Xiao-Qiang; ZHANG Shou

    2008-01-01

    We propose a scheme for one-step generation of cluster states with atoms sent through a thermal cavity with strong classical driving field, based on the resonant atom-cavity interaction so that the operating time is sharply short, which is important in the view of decoherence.

  19. Accretion disk electrodynamics

    Science.gov (United States)

    Coroniti, F. V.

    1985-01-01

    Accretion disk electrodynamic phenomena are separable into two classes: (1) disks and coronas with turbulent magnetic fields; (2) disks and black holes which are connected to a large-scale external magnetic field. Turbulent fields may originate in an alpha-omega dynamo, provide anomalous viscous transport, and sustain an active corona by magnetic buoyancy. The large-scale field can extract energy and angular momentum from the disk and black hole, and be dynamically configured into a collimated relativistic jet.

  20. On the non-relativistic limit of charge conjugation in QED

    CERN Document Server

    Perez, B Carballo

    2010-01-01

    We study the non-relativistic limit of the the charge conjugation operation (C) in Quantum Electrodynamics (QED). We arrive to the conclusion that, in the galilean limit, charge conjugation is not a symmetry in the context of QED. Nevertheless, it is possible to find the non-relativistic limit of C, considering the Dirac field coupled to an electromagnetic classical external field. We report the expressions for both the C matrix and the $\\hat{C}$ operator for "slow" electrons and positrons.

  1. Numerical Data-Processing Simulations of Microarcsecond Classical and Relativistic Effects in Space Astrometry

    CERN Document Server

    Kopeikin, S M; Vasilev, M V; Yagudina, E I; Yagudin, L I; Kopeikin, Sergei M.

    2000-01-01

    The accuracy of astrometric observations conducted via a space-borne optical interferometer orbiting the Earth is expected to approach a few microarcseconds. Data processing of such extremely high-precision measurements requires access to a rigorous relativistic model of light ray propagation developed in the framework of General Relativity. The data-processing of the space interferometric observations must rely upon the theory of general-relativistic transformations between the spacecraft, geocentric, and solar barycentric reference systems allowing unique and unambiguous interpretation of the stellar aberration and parallax effects. On the other hand, the algorithm must also include physically adequate treatment of the relativistic effect of light deflection caused by the spherically-symmetric (monopole-dependent) part of the gravitational field of the Sun and planets as well as the quadrupole- and spin-dependent counterparts of it. In some particular cases the gravitomagnetic field induced by the translati...

  2. Classical and quantum phenomenology in radiation by relativistic electrons in matter or in external fields

    International Nuclear Information System (INIS)

    Phenomenological aspects of radiation by relativistic electrons in external field, in matter or the vicinity of matter are reviewed, among which: infrared divergence, coherence length effects, shadowing, crystal-assisted radiation, quantum recoil and spin effects, electron side-slipping, photon impact parameter and tunneling in the radiation process

  3. Relativistic ExB polarization drift of light

    CERN Document Server

    Yu, Sunkyu; Park, Namkyoo

    2016-01-01

    The Minkowski representation with the general covariance modifies the classical definition of momentum for moving particles. The relativistic trajectory of a charged particle driven by electromagnetic fields is thus altered from the classical one, including the nonlinear acceleration by the Lorentz force. Here we demonstrate that the classical evolution of optical polarization states in parity-time (PT) symmetric potentials follows the nonlinear trajectory of charged particles under the relativistic ExB drift, without any optical nonlinearity or dynamic modulation. The competition between electric and magnetic pseudo-field each induced by external carriers and birefringence differentiates the acceleration of polarization states on opposite Poincar\\'e hemispheres. We reveal that the perfectly stable pole from zero Lorentz pseudo-force is the origin of strong optical chirality at the exceptional point (EP). Our results linking classical PT symmetry and relativistic electrodynamics bring new insight into the pol...

  4. Dimensions and Units in Electrodynamics

    CERN Document Server

    Hehl, F W; Hehl, Friedrich W; Obukhov, Yuri N

    2004-01-01

    We sketch the foundations of classical electrodynamics, in particular the transition that took place when Einstein, in 1915, succeeded to formulate general relativity. In 1916 Einstein demonstrated that, with a choice of suitable variables for the electromagnetic field, it is possible to put Maxwell's equation into a form that is covariant under general coordinate transformations. This unfolded, by basic contributions of Kottler, Cartan, van Dantzig, Schouten & Dorgelo, Toupin & Truesdell, and Post, to what one may call {\\em premetric classical electrodynamics.} This framework will be described shortly. An analysis is given of the physical dimensions involved in electrodynamics and subsequently the question of units addressed. It will be pointed out that these results are untouched by the generalization of classical to quantum electrodynamics (QED). We compare critically our results with those of {\\sl L.B. Okun} which he had presented at a recent conference.

  5. An asymptotic preserving scheme for the relativistic Vlasov–Maxwell equations in the classical limit

    OpenAIRE

    Crouseilles, Nicolas; Einkemmer, Lukas; Faou, Erwan

    2016-01-01

    We consider the relativistic Vlasov–Maxwell (RVM) equations in the limit when the light velocity c goes to infinity. In this regime, the RVM system converges towards the Vlasov–Poisson system and the aim of this paper is to construct asymptotic preserving numerical schemes that are robust with respect to this limit. Our approach relies on a time splitting approach for the RVM system employing an implicit time integrator for Maxwell's equations in order to damp the higher and higher frequencie...

  6. On the Remarkable Features of the Lower Limits of Charge and the Radiated Energy of Antennas as Predicted by Classical Electrodynamics

    Directory of Open Access Journals (Sweden)

    Vernon Cooray

    2016-05-01

    Full Text Available Electromagnetic energy radiated by antennas working in both the frequency domain and time domain is studied as a function of the charge associated with the current in the antenna. The frequency domain results, obtained under the assumption of sinusoidal current distribution, show that, for a given charge, the energy radiated within a period of oscillation increases initially with L/λ and then starts to oscillate around a steady value when L/λ > 1. The results show that for the energy radiated by the antenna to be equal to or larger than the energy of one photon, the oscillating charge in the antenna has to be equal to or larger than the electronic charge. That is, U ≥ hν or UT ≥ h ⇒ q ≥ e, where U is the energy dissipated over a period, ν is the frequency of oscillation, T is the period, h is Planck’s constant, q is the rms value of the oscillating charge, and e is the electronic charge. In the case of antennas working in the time domain, it is observed that UΔt ≥ h/4π ⇒ q ≥ e, where U is the total energy radiated, Δt is the time over which the energy is radiated, and q is the charge transported by the current. It is shown that one can recover the time–energy uncertainty principle of quantum mechanics from this time domain result. The results presented in this paper show that when quantum mechanical constraints are applied to the electromagnetic energy radiated by a finite antenna as estimated using the equations of classical electrodynamics, the electronic charge emerges as the smallest unit of free charge in nature.

  7. Contrasting Classical and Quantum Vacuum States in Non-Inertial Frames

    CERN Document Server

    Boyer, Timothy H

    2013-01-01

    Classical electron theory with classical electromagnetic zero-point radiation (stochastic electrodynamics) is the classical theory which most closely approximates quantum electrodynamics. Indeed, in inertial frames, there is a general connection between classical field theories with classical zero-point radiation and quantum field theories. However, this connection does not extend to noninertial frames where the time parameter is not a geodesic coordinate. Quantum field theory applies the canonical quantization procedure (depending on the local time coordinate) to a mirror-walled box, and, in general, each non-inertial coordinate frame has its own vacuum state. In complete contrast, the spectrum of random classical zero-point radiation is based upon symmetry principles of relativistic spacetime; in empty space, the correlation functions depend upon only the geodesic separations (and their coordinate derivatives) between the spacetime points. It makes no difference whether a box of classical zero-point radiati...

  8. A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional Riemann solver for electromagnetism

    Science.gov (United States)

    Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho

    2016-08-01

    In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This

  9. Photon propagator in skewon electrodynamics

    CERN Document Server

    Itin, Yakov

    2015-01-01

    Electrodynamics with a local and linear constitutive law is used as a framework for models violating Lorentz covariance. The constitutive tensor of such a construction is irreducibly decomposed into three independent pieces. The principal part is the anisotropic generalisation of the standard electrodynamics. The two other parts, axion and skewon, represent non-classical modifications of electrodynamics. We derive the expression for the photon propagator in the Minkowski spacetime endowed with a skewon field. For a relatively small (antisymmetric) skewon field, a modified Coulom law is exhibited.

  10. Quantum corrections to the Larmor radiation formula in scalar electrodynamics

    CERN Document Server

    Higuchi, A

    2009-01-01

    We use the semi-classical approximation in perturbative scalar quantum electrodynamics to calculate the quantum correction to the Larmor radiation formula to first order in Planck's constant in the non-relativistic approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We calculate this correction in two cases: in the first case the charged particle is accelerated by a time-dependent but space-independent vector potential whereas in the second case it is accelerated by a time-independent vector potential which is a function of one spatial coordinate. We find that the corrections in these two cases are different even for a charged particle with the same classical motion. The correction in each case turns out to be non-local in time in contrast to the classical approximation.

  11. New formulation of the classical dynamics of the relativistic string with massive ends

    International Nuclear Information System (INIS)

    Dynamic equations in the theory of a relativistic string with point masses at the ends are formulated only in terms of geometric invariants of the world trajectories of the massive ends of the string (curvature k1 and torsion k1 of the trajectories). These characteristics allow us to reproduce the string world surface up to shifts and rotations in the Minkowski space E21. The torsions k1(r) (1=1,2) obey a system of differential equations of the second order with shifted arguments describing the retardation effects of the interaction of masses through the string, k1 being constant. New particular solutions to these equations that correspond to periodic torsions will be discussed in the next paper. 12 refs

  12. Classical Dynamics of Rotating Relativistic String with Massive Ends: the Regge Trajectories and Quark Masses

    International Nuclear Information System (INIS)

    Dynamic equations in the theory of a relativistic string with point masses at the ends are formulated in terms of geometric invariants of the world trajectories of the massive ends of the string (curvature ki and torsion κi(τ), i=1,2 of the trajectories). With these characteristics we reproduce the string world surface up to its position in Minkowski space E21. The torsions κi(τ), i=1,2 obey a system of second order differential equations with delay arguments describing the retardation effects of the interaction of masses through the string, ki being constants. The constant torsions are investigated in detail. In this case the string world sheet is a helicoid in E21. A nonlinear relation (the Regge trajectory) between the angular momentum of the system, J and the mass squared, M2, is derived. For given meson masses (M) and spin (J), the masses of quarks are calculated. 14 refs., 1 fig., 1 tab

  13. Classical antiparticles

    Energy Technology Data Exchange (ETDEWEB)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors). 13 refs., 1 tab.

  14. The classical relativistic two-body problem with spin and self-interactions

    International Nuclear Information System (INIS)

    The recent classical model of a spinning Dirac particle with Zitterbewegung is generalized to two particles interacting electromagnetically. A variational principle is formulated which leads to covariant Hamiltonian with separate centre of mass and relative terms much like the quantum 2-body Dirac equation. The relative motion has the same form as the spinless case but with the time dependent modulated coupling constant representing the spin effects. The canonical quantization of the theory is immediate. (author). 10 refs

  15. Noether Symmetries and Covariant Conservation Laws in Classical, Relativistic and Quantum Physics

    Directory of Open Access Journals (Sweden)

    Lorenzo Fatibene

    2010-04-01

    Full Text Available We review the Lagrangian formulation of (generalised Noether symmetries in the framework of Calculus of Variations in Jet Bundles, with a special attention to so-called “Natural Theories” and “Gauge-Natural Theories” that include all relevant Field Theories and physical applications (from Mechanics to General Relativity, to Gauge Theories, Supersymmetric Theories, Spinors, etc.. It is discussed how the use of Poincar´e–Cartan forms and decompositions of natural (or gauge-natural variational operators give rise to notions such as “generators of Noether symmetries”, energy and reduced energy flow, Bianchi identities, weak and strong conservation laws, covariant conservation laws, Hamiltonian-like conservation laws (such as, e.g., so-calledADMlaws in General Relativity with emphasis on the physical interpretation of the quantities calculated in specific cases (energy, angular momentum, entropy, etc.. A few substantially new and very recent applications/examples are presented to better show the power of the methods introduced: one in Classical Mechanics (definition of strong conservation laws in a frame-independent setting and a discussion on the way in which conserved quantities depend on the choice of an observer; one in Classical Field Theories (energy and entropy in General Relativity, in its standard formulation, in its spin-frame formulation, in its first order formulation “à la Palatini” and in its extensions to Non-Linear Gravity Theories; one in Quantum Field Theories (applications to conservation laws in Loop Quantum Gravity via spin connections and Barbero–Immirzi connections.

  16. Scheme of motion as an action organizer in both classical and relativistic mechanics

    Directory of Open Access Journals (Sweden)

    Gabriel Dias de Carvalho Junior

    2015-12-01

    Full Text Available This paper reports our appropriation of the concept of scheme as one of the references for the analysis on the relative time process of signification. It has taken place within a current perspective that discusses the inclusion of modern physics in Brazilian high school, by the investigation of what are the conditions for such inclusion may occur. To do this, a didactic sequence was written placed in the transition between key concepts of classical mechanics and the theory of relativity, where one of the central points was the discussion on the influence of a frame of reference in the study of the movements. The research activities lasted 16 hours in a third grade high school and were quite diverse. We analyzed, in this work, episodes of verbal interaction and students written activities related to the concept of frame of reference and its relationship with relative time. It has been identified different epistemic content in the student’s scheme of movement. We conclude our research by the indication that there may be a reciprocal assimilation between time and motion schemes.

  17. On higher order estimates in quantum electrodynamics

    OpenAIRE

    Matte, Oliver

    2009-01-01

    We propose a new method to derive certain higher order estimates in quantum electrodynamics. Our method is particularly convenient in the application to the non-local semi-relativistic models of quantum electrodynamics as it avoids the use of iterated commutator expansions. We re-derive higher order estimates obtained earlier by Fr\\"ohlich, Griesemer, and Schlein and prove new estimates for a non-local molecular no-pair operator.

  18. A new exact solution to the classical equations of motion of the relativistic string with massive ends

    International Nuclear Information System (INIS)

    The classical histories of the relativistic string with massive ends in space-time are examined in terms of geometric invariants of both the string world surface and world lines of the point masses at the string ends. In this formulation the string variables are completely defined by means of the constant curvatures and torsions of the endpoint trajectories which are subjected to a system of differential equations with a delayed arguments that incorporates retardation effects of the interaction of two point masses through the string. The well-known example of the rotating straight-line string with massive ends corresponds to a particular solution of this system for the constant torsions. A new exact solution for the periodic torsions of the world trajectories of the massive string ends is found. In this case the string coordinates are represented in terms of normal elliptic integrals and describe a more intricate motion including its transverse vibrations than rotation of a stretched string in a given plane. 17 refs

  19. On the relativistic electron radiation in monocrystals

    International Nuclear Information System (INIS)

    Radiation of relativistic electrons moving in a crystal near the crystallographical axis under the conditions of superbarrier motion is considered within the frames of classical electrodynamics. Radiation spectrum of superbarrier electrons is obtained for an averaged potential of the v(e) approximately exp(-e) chain. The maximum is shown to be observed for certain electron inlet angles relatively to the chain in the radiation spectrum. It permits to conclude that the maximum in experimentally detected spectra may be caused by superbarrier particle radiation

  20. Relativistic energy loss in a dispersive medium

    International Nuclear Information System (INIS)

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase velocity c/n, where n is the complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical approximation

  1. Theoretical physics 3 electrodynamics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...

  2. Solving field equations in spinor electrodynamics

    OpenAIRE

    Bratchikov, A. V.

    2009-01-01

    Solutions of classical and quantum equations of motion in spinor electrodynamics are constructed within the context of perturbation theory. The solutions possess a graphical representation in terms of diagrams.

  3. Helicity eigenstates of a relativistic spin-0 and spin-1/2 constituent bound by minimal electrodynamics: Zero orbital angular momentum, zero four-momentum solutions

    Energy Technology Data Exchange (ETDEWEB)

    Mainland, G.B.

    1988-01-01

    Zero four-momentum, helicity eigenstates of the Bethe--Salpeter equation are found for a composite system consisting of a charged, spin-0 constituent and a charged, spin- 1/2 constituent bound by minimal electrodynamics. The form of the Bethe--Salpeter equation used to describe the bound state includes the contributions from both single photon exchange (ladder approximation) and the ''seagull'' diagram. Attention is restricted to zero orbital angular momentum states since these appear to be the most interesting physically.

  4. Classical Dynamics of Free Electromagnetic Laser Pulses

    CERN Document Server

    Goto, S; Walton, T J

    2015-01-01

    We discuss a class of exact finite energy solutions to the vacuum source-free Maxwell field equations as models for multi- and single cycle laser pulses in classical interaction with relativistic charged test particles. These solutions are classified in terms of their chiral content based on their influence on particular charge configurations in space. Such solutions offer a computationally efficient parameterization of compact laser pulses used in laser-matter simulations and provide a potential means for experimentally bounding the fundamental length scale in the generalized electrodynamics of Bopp, Lande and Podolsky.

  5. A relativistic microscopic approach and a semi-classical approach to high-energy meson-nucleus interactions

    International Nuclear Information System (INIS)

    An optical-potential model originally developed for low-energy (Tπ ≤ 300 MeV) pion-nucleus scattering in momentum space was extended to treat both kaon-nucleus and high-energy pion-nucleus elastic scattering (300 MeV ≤ Tπ ≤ 1 GeV). The optical model utilizes Lorentz covariantly normalized wave functions, full relativistic kinematics and a Klein-Gordon propagator in the Lippmann-Schwinger equation, finite range nucleon form factors plus various nuclear medium corrections. The fermi-averaging integration can be performed exactly. This work on the K+-12C and K+-40Ca elastic differential cross section at a kaon lab momentum of 800 MeV/c confirms a nucleon swelling effect. An enhancement in the two-body amplitude is needed to eliminate the discrepancy between the data and theory. For the high-energy pion-nucleus scattering problem, the optical model approach has been limited to light nuclei (A ≤ 90) and/or at low energy (Tπ ≤ 500 MeV). A simple but effective eikonal approximation for high-energy pion scattering was developed. Both the Coulomb interaction and the semi-classical Wallace corrections are included in the eikonal approximation. The same target wave functions and two-body amplitude are used in both the optical model and the eikonal calculation. Comparison of the results from both calculations shows that the fermi-averaging integration and various sources of non-locality are not important at high energies. The eikonal approximation gives very reliable results, especially for heavy nuclei (A ≥ 28). Predictions utilizing the eikonal approximation are made for elastic differential cross sections of π± on various target nuclei. Contributions from the Coulomb interaction and the Wallace corrections in this energy region are found to be important. Future prospects of studying high-energy pion scattering utilizing the eikonal approximation are discussed

  6. Relativistic classical strings. II

    International Nuclear Information System (INIS)

    The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.)

  7. Introduction to modern theoretical physics. Volume I. Classical physics and relativity

    International Nuclear Information System (INIS)

    The treatment covers vectors, tensors, and the structure of space, Newton's laws of motion and the law of gravitation, analytical mechanics, oscillatory motion, mechanics of a rigid body and of continuous media, classical fields, electromagnetic waves and radiation, the principle of relativity, relativistic electrodynamics and mechanics, general relativity theory and some of its consequences, and unified field theories and other modifications of the general theory of relativity

  8. On Kottler's path: origin and evolution of the premetric program in gravity and in electrodynamics

    CERN Document Server

    Hehl, Friedrich W; Obukhov, Yuri N

    2016-01-01

    In 1922, Kottler put forward the program to remove the gravitational potential, the metric of spacetime, from the fundamental equations in physics as far as possible. He successfully applied this idea to Newton's gravitostatics and to Maxwell's electrodynamics, where Kottler recast the field equations in premetric form and specified a metric-dependent constitutive law. We will discuss the basics of the premetric approach and some of its beautiful consequences, like the division of universal constants into two classes. We show that classical electrodynamics can be developed without a metric quite straightforwardly: the Maxwell equations, together with a local and linear response law for electromagnetic media, admit a consistent premetric formulation. Kottler's program succeeds here without provisos. In Kottler's approach to gravity, making the theory relativistic, two premetric quasi-Maxwellian field equations arise, but their field variables, if interpreted in terms of general relativity, do depend on the met...

  9. Quantum field theory from classical statistics

    CERN Document Server

    Wetterich, C

    2011-01-01

    An Ising-type classical statistical model is shown to describe quantum fermions. For a suitable time-evolution law for the probability distribution of the Ising-spins our model describes a quantum field theory for Dirac spinors in external electromagnetic fields, corresponding to a mean field approximation to quantum electrodynamics. All quantum features for the motion of an arbitrary number of electrons and positrons, including the characteristic interference effects for two-fermion states, are described by the classical statistical model. For one-particle states in the non-relativistic approximation we derive the Schr\\"odinger equation for a particle in a potential from the time evolution law for the probability distribution of the Ising-spins. Thus all characteristic quantum features, as interference in a double slit experiment, tunneling or discrete energy levels for stationary states, are derived from a classical statistical ensemble. Concerning the particle-wave-duality of quantum mechanics, the discret...

  10. Composed particle model in stochastic electrodynamics

    International Nuclear Information System (INIS)

    We analyse the statistical properties of the non-relativistic motion of a particle that has two constituents having finite nasses and charges. The main interaction is in contact with thermal and zero point radiation of Stochastic Electrodynamics. (M.W.O.)

  11. A Unified Theory of Interaction: Gravitation and Electrodynamics

    Directory of Open Access Journals (Sweden)

    Wagener P.

    2008-10-01

    Full Text Available A theory is proposed from which the basic equations of gravitation and electromagnetism are derived from a single Lagrangian. The total energy of an atom can be expressed in a power series of the fine structure constant, $alpha$. Specific selections of these terms yield the relativistic correction to the Bohr values of the hydrogen spectrum and the Sommerfeld-Dirac equation for the fine structure spectrum of the hydrogen atom. Expressions for the classical electron radius and some of the Large Number Coincidences are derived. A Lorentz-type force equation is derived for both gravitation and electrodynamics. Electron spin is shown to be an effect of fourth order in $alpha$.

  12. Quantum electrodynamics

    International Nuclear Information System (INIS)

    This document consists of translations of the following original papers: (A) the fluctuations of charge connected with the formation of matter from radiation, by W. Heisenberg, Sachsiche Akademie der Wissenschaften; 86:(1934) 317-322; (B) theory of the positron, by P.A.M. Dirac, Report to 7th Solvay Physics Conference, structure and properties of Atomic Nuclei (1934) 203-212; (C) comments on the Dirac theory of the positron, by W. Heisenberg, Zeitschrift fur Physik; 90:(1934) 209-231; and (D) the electrodynamics of the vacuum on the basis of the quantum theory of the electron, by V. Weisskopf, Kongelige Danske Videnskabernes Selskab, Mathematiskfysiske Meddelelser XIV, no. 6 (1936) 3-39. (U.K.)

  13. Substorm electrodynamics

    Science.gov (United States)

    Stern, David P.

    1990-01-01

    The present one-dimensional model analysis of substorm electrodynamics proceeds from the standard scenario in which the plasma sheet collapses into a neutral sheet, and magnetic merging occurs between the two tail lobes; plasma flows into the neutral sheet from the lobes and the sides, undergoing acceleration in the dawn-dusk direction. The process is modified by the tendency of the accelerated plasma to unbalance charge neutrality, leading to an exchange of electrons with the ionosphere in order to maintain neutrality. The cross-tail current is weakened by the diversion: this reduces the adjacent lobe-field intensity, but without notable effects apart from a slight expansion of the tail boundary.

  14. Role of superconducting shields in electrodynamic propulsion

    OpenAIRE

    Sanmartín Losada, Juan Ramón; Lorenzini, Enrico C.

    2008-01-01

    An electrodynamic tether can propel a spacecraft through a planetary magnetized plasma without using propellant. In the classical embodiment of an electrodynamic tether, the ambient magnetic fleld exerts a Lorentz force on the current along the tether, the ambient plasma providing circuit closure for the current A suggested propulsion scheme would hypothetically eliminate tether performance dependence on the plasma density by using a full wire loop to close the current circuit, and a supercon...

  15. The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics

    OpenAIRE

    Boyer, Timothy H.

    2011-01-01

    The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect...

  16. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian gauge theories, and gravitation. 3. ed.; Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation

    Energy Technology Data Exchange (ETDEWEB)

    Scheck, Florian [Mainz Univ. (Germany). Fachbereich Physik

    2010-07-01

    Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [German] Stringente Darstellung der Feldtheorie, vermittelt den Zusammenhang von der klassischen Elektrodynamik bis zu modernen Eichtheorien. Die kompakte Darstellung ist ideal fuer das Bachelor-Studium. Neues Kapitel zur Allgemeinen Relativitaetstheorie. Vertieft das Erlernte durch zahlreiche Anwendungsbeispiele aus Laserphysik, Metamaterialien uvm. Theoretische Physik 3. Klassische Feldtheorie. Von Elektrodynamik, nicht-Abelschen Eichtheorien und Gravitation ist der dritte von fuenf Baenden zur Theoretischen Physik von Professor Scheck. Der Zyklus Theoretische Physik umfasst: Band 1: Mechanik. Von den Newtonschen Gesetzen zum deterministischen Chaos. Band 2: Nichtrelativistische Quantentheorie. Vom Wasserstoffatom zu den Vielteilchensystemen. Band 3: Klassische Feldtheorie

  17. On the Electrodynamics of Moving Particles in Gravitational Fields

    CERN Document Server

    Nassif, Claudio

    2007-01-01

    We will look for an implementation of new symmetries in the space-time structure, which allows us to find a unified vision for electrodynamics and gravitation. We will atempt to develop a simple model of the electromagnetic nature of the electron such that the influence of the gravitational field over the electrodynamics in subatomic scales leads us to a reformulation in our comprehention of the space-time structure through the elimination of the classical idea of rest. This will lead to a reformulation of the relativistic theory by introducing the idea about a universal minimum limit of speed in the space-time. Such limit, unattainable by the particles, represents a perfect and absolute inertial reference frame associated to a universal background field (a kind of non-local vacuum energy), enabling a fundamental understanding of the quantum uncertainties. The structure of space-time becomes extended due to such vacuum energy density which leads to a negative pressure in cosmological scales like a cosmologica...

  18. Middle atmospheric electrodynamics

    Science.gov (United States)

    Kelley, M. C.

    1983-01-01

    A review is presented of the advances made during the last few years with respect to the study of the electrodynamics in the earth's middle atmosphere. In a report of the experimental work conducted, attention is given to large middle atmospheric electric fields, the downward coupling of high altitude processes into the middle atmosphere, and upward coupling of tropospheric processes into the middle atmosphere. It is pointed out that new developments in tethered balloons and superpressure balloons should greatly increase the measurement duration of earth-ionospheric potential measurements and of stratospheric electric field measurements in the next few years. Theoretical work considered provides an excellent starting point for study of upward coupling of transient and dc electric fields. Hays and Roble (1979) were the first to construct a model which included orographic features as well as the classical thunderstorm generator.

  19. Nonlinear Electrodynamics and QED

    OpenAIRE

    Delphenich, David

    2003-01-01

    The limits of linear electrodynamics are reviewed, and possible directions of nonlinear extension are explored. The central theme is that the qualitative character of the empirical successes of quantum electrodynamics must be used as a guide for understanding the nature of the nonlinearity of electrodynamics at the subatomic level. Some established theories of nonlinear electrodynamics, namely, those of Mie, Born, and Infeld are presented in the language of the modern geometrical and topologi...

  20. Hamiltonian formulation for the classical EM radiation-reaction problem: application to the kinetic theory for relativistic collisionless plasmas

    CERN Document Server

    Cremaschini, Claudio; 10.1140/epjp/i2011-11063-3

    2012-01-01

    A notorious difficulty in the covariant dynamics of classical charged particles subject to non-local electromagnetic (EM) interactions arising in the EM radiation-reaction (RR) phenomena is due to the definition of the related non-local Lagrangian and Hamiltonian systems. The lack of a standard Lagrangian/Hamiltonian formulation in the customary asymptotic approximation for the RR equation may inhibit the construction of consistent kinetic and fluid theories. In this paper the issue is investigated in the framework of Special Relativity. It is shown that, for finite-size spherically-symmetric classical charged particles, non-perturbative Lagrangian and Hamiltonian formulations in standard form can be obtained, which describe particle dynamics in the presence of the exact EM RR self-force. As a remarkable consequence, based on axiomatic formulation of classical statistical mechanics, the covariant kinetic theory for systems of charged particles subject to the EM RR self-force is formulated in Hamiltonian form....

  1. Higher-Order Kinetic Term for Controlling Photon Mass in Off-Shell Electrodynamics

    CERN Document Server

    Land, M

    2003-01-01

    In a relativistic classical and quantum mechanics with Poincare-invariant parameter, particle worldlines are traced out by the evolution of spacetime events. In pre-Maxwell electrodynamics -- the local gauge theory associated with this framework -- events induce five local off-shell fields, which mediate interactions between instantaneous events, not between the worldlines which represent entire particle histories. The fifth field, required to compensate for dependence of gauge transformations on the evolution parameter, enables the exchange of mass between particles and fields. In the equilibrium limit, these pre-Maxwell fields are pushed onto the zero-mass shell, but during interactions there is no mechanism regulating the mass that photons may acquire, even when event trajectories evolve far into the spacelike region. This feature of the off-shell formalism requires the application of some ad hoc mechanism for controlling the photon mass in low energy classical Coulomb scattering of charged events, and in ...

  2. The influence of the Lande $g$-factor in the classical general relativistic description of atomic and subatomic systems

    CERN Document Server

    Pachon, L A

    2010-01-01

    We study the electromagnetic and gravitational fields of the proton and electron in terms of the Einstenian gravity, by the introduction of an arbitrary Lande $g$-factor in the Kerr-Newman solution. We show that at length scales of the order of the Compton wavelength, corrections from different values of the $g$-factor are not negligible and predict the presence of general relativistic effects in highly ionized heavy atoms. On the other hand, since at the Compton-wavelength scale the gravitational field becomes spin dominated rather than mass dominated, we also point out the necessity of including angular momentum as a source of corrections to Newtonian gravity in the quantum description of gravity at this scale.

  3. Dyson-Schwinger equations in quantum electrodynamics

    International Nuclear Information System (INIS)

    A quantum field theory is completely determined by the knowledge of its Green functions and this thesis is concerned with the Salam and Delbourgo approximation method for the determination of the Green functions. In chapter 2 a Lorentz covariant, canonical formulation for quantum electrodynamics is described. In chapter 3 the definition of the Green functions in quantum electrodynamics is given with a derivation of the Dyson-Schwinger equations. The Ward-Takahashi identities, which are a consequence of current conservation, are derived and finally renormalization is briefly mentioned and the equations for the renormalized quantities are given. The gauge transformations, changing the gauge-parameter, a, discussed in Chapter 2 for the field operators, also have implications for the Green functions, and these are worked out in Chapter 4 for the electron propagator, which is not gauge-invariant. Before developing the main approximation, a simple, non-relativistic model is studied in Chapter 5. It has the feature of being exactly solvable in a way which closely resembles the approximation method of Chapter 6 for relativistic quantum electrodynamics. There the Dyson-Schwinger equations for the electron and photon propagator are studied. In chapter 7, the Johnson-Baker-Willey program of finite quantum electrodynamics is considered, in connection with the Ansatz of Salam and Delbourgo, and the question of a possible fixed point of the coupling constant is considered. In the last chapter, some remarks are made about how the results of the approximation scheme can be improved. (Auth.)

  4. Galilean electrodynamics. Part 1. Fields in vacuum

    International Nuclear Information System (INIS)

    Formulation of Galilean invariant electrodynamics is achieved by means of non-tensorial transformation rules for the fields. The basic concept of compensative fields as solutions of additional Maxwell equations allows to use one absolute time through-out the theory. There is an analogy between the obtained formulae and those of the relativistic theory and transition to the well-known formulae in the case of small velocities. 5 refs. (author)

  5. Recent advances in bound state quantum electrodynamics

    International Nuclear Information System (INIS)

    Recent developments are reviewed in four areas of computational quantum electrodynamics: a new relativistic two-body formalism equal in rigor to the Bethe-Salpeter formalism but with strong calculational advantages is discussed; recent work on the computation of the decay rate of bound systems (positronium in particular) is presented; limits on possible composite structure of leptons are discussed; a new multidimensional integration program ('VEGAS') suitable for higher order calculations is presented

  6. Continuous variable methods in relativistic quantum information: characterization of quantum and classical correlations of scalar field modes in noninertial frames

    International Nuclear Information System (INIS)

    We review a recently introduced unified approach to the analytical quantification of correlations in Gaussian states of bosonic scalar fields by means of Rényi-2 entropy. This allows us to obtain handy formulae for classical, quantum, total correlations, as well as bipartite and multipartite entanglement. We apply our techniques to the study of correlations between two modes of a scalar field as described by observers in different states of motion. When one or both observers are in uniform acceleration, the quantum and classical correlations are degraded differently by the Unruh effect, depending on which mode is detected. Residual quantum correlations, in the form of quantum discord without entanglement, may survive in the limit of an infinitely accelerated observer Rob, provided they are revealed in a measurement performed by the inertial Alice. (paper)

  7. Derivation of the Planck Spectrum for Relativistic Classical Scalar Radiation from Thermal Equilibrium in an Accelerating Frame

    OpenAIRE

    Boyer, Timothy H.

    2010-01-01

    The Planck spectrum of thermal scalar radiation is derived suggestively within classical physics by the use of an accelerating coordinate frame. The derivation has an analogue in Boltzmann's derivation of the Maxwell velocity distribution for thermal particle velocities by considering the thermal equilibrium of noninteracting particles in a uniform gravitational field. For the case of radiation, the gravitational field is provided by the acceleration of a Rindler frame through Minkowski space...

  8. Off-shell quantum electrodynamics

    CERN Document Server

    Land, M C

    1996-01-01

    More than twenty years have passed since the threads of the `proper time formalism' in covariant classical and quantum mechanics were brought together to construct a canonical formalism for the relativistic mechanics of many particles. Drawing on the work of Fock, Stueckelberg, Nambu, Schwinger, and Feynman, the formalism was raised from the status of a purely formal mathematical technique to a covariant evolution theory for interacting particles. In the context of this theory, solutions have been found for the relativistic bound state problem, classical and quantum scattering in relativistic potentials, as well as applications in statistical mechanics. It has been shown that a generalization of the Maxwell theory is required in order that the electromagnetic interaction be well-posed in the theory. The resulting theory of electromagnetism involves a fifth gauge field introduced to compensate for the dependence of the gauge transformation on the invariant time parameter; permitting such dependence relaxes the...

  9. Linear Response Laws and Causality in Electrodynamics

    Science.gov (United States)

    Yuffa, Alex J.; Scales, John A.

    2012-01-01

    Linear response laws and causality (the effect cannot precede the cause) are of fundamental importance in physics. In the context of classical electrodynamics, students often have a difficult time grasping these concepts because the physics is obscured by the intermingling of the time and frequency domains. In this paper, we analyse the linear…

  10. Non-relativistic model of the laws of gravitation and electromagnetism, invariant under the change of inertial and non-inertial coordinate systems

    CERN Document Server

    Poliakovsky, Arkady

    2015-01-01

    Under the classical non-relativistic consideration of the space-time we propose the model of the laws of gravitation and Electrodynamics, invariant under the galilean transformations and moreover, under every change of non-inertial cartesian coordinate system. Being in the frames of non-relativistic model of the space-time, we adopt some general ideas of the General Theory of Relativity, like the assumption of covariance of the most general physical laws in every inertial and non-inertial coordinate system and equivalence of factious forces in non-inertial coordinate systems and the force of gravitation.

  11. Non-relativistic model of the laws of gravitation and electromagnetism, invariant under the change of inertial and non-inertial coordinate systems

    OpenAIRE

    Poliakovsky, Arkady

    2015-01-01

    Under the classical non-relativistic consideration of the space-time we propose the model of the laws of gravitation and Electrodynamics, invariant under the galilean transformations and moreover, under every change of non-inertial cartesian coordinate system. Being in the frames of non-relativistic model of the space-time, we adopt some general ideas of the General Theory of Relativity, like the assumption of invariance of the most general physical laws in every inertial and non-inertial coo...

  12. Universe acceleration and nonlinear electrodynamics

    CERN Document Server

    Kruglov, S I

    2016-01-01

    A new model of nonlinear electrodynamics with a dimensional parameter $\\beta$ coupled to gravity is considered. We show that an accelerated expansion of the universe takes place if the nonlinear electromagnetic field is the source of the gravitational field. A pure magnetic universe is investigated and the magnetic field drives the universe to accelerate. In this model, after the big bang, the universe undergoes inflation, and the accelerated expansion and then decelerates approaching Minkowski spacetime asymptotically. We demonstrate the causality of the model and a classical stability at the deceleration phase.

  13. Multipole Expansion in Generalized Electrodynamics

    CERN Document Server

    Bonin, C A; Ortega, P H

    2016-01-01

    In this article we study some classical aspects of Podolsky Electrodynamics in the static regime. We develop the multipole expansion for the theory in both the electrostatic and the magnetostatic cases. We also address the problem of consistently truncating the infinite series associated with the several kinds of multipoles, yielding approximations for the static Podolskian electromagnetic field to any degree of precision required. Moreover, we apply the general theory of multipole expansion to some specific physical problems. In those problems we identify the first terms of the series with the monopole, dipole and quadrupole terms in the generalized theory. We also propose a situation in which Podolsky theory can be experimentally tested.

  14. On the relativistic calculation of spontaneous emission

    International Nuclear Information System (INIS)

    In a recent work, Barut and Salamin (1988) have derived a method for calculating the relativistic decay rates in atoms, in a formulation of quantum electrodynamics based upon the electron's self-energy. The decay rate appears as the imaginary part of a formula giving a complex energy shift, the real part of the formula being the Lamb shift. The presence of the the decay rate in the imaginary part of a formula, giving an energy in its real part, may appear a bit strange. A confirmation of the Barut and Alamin calculation, by means of a quite different point of view, would be useful. Therefore in this work the Einstein A coefficients are calculated, in all cases of degeneracies of the Dirac transition currents, by means of the energy balance method. This point of view is based on the balance between the energy released during the transitions of electrons from a higher state to a lower one, and the flux of the Poynting vector of the classical electromagnetic field, created by the electrons, through a sphere a large radius. The particularity of the present work lies in the direct calculation of the relativistic Dirac transition currents and the fact that the dipole and Pauli approximations are avoided. The quantum part of the relativistic calculation is based on the determination of the transition charge currents in the Darwin solutions of the Dirac equation. 13 refs

  15. A 3+1 formalism for quantum electrodynamical corrections to Maxwell equations in general relativity

    Science.gov (United States)

    Pétri, J.

    2015-08-01

    Magnetized neutron stars constitute a special class of compact objects harbouring gravitational fields that deviate strongly from the Newtonian weak field limit. Moreover, strong electromagnetic fields anchored into the star give rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). Electromagnetic fields close to or above the critical value of BQ = 4.4 × 109 T are probably present in some pulsars and for most of the magnetars. To account properly for emission emanating from the neutron star surface like for instance thermal radiation and its polarization properties, it is important to include general relativistic (GR) effects simultaneously with non-linear electrodynamics. This can be achieved through a 3+1 formalism known in general relativity and that incorporates QED perturbations to Maxwell equations. Starting from the lowest order corrections to the Lagrangian for the electromagnetic field, as given for instance by Born-Infeld or Euler-Heisenberg theory, we derive the non-linear Maxwell equations in general relativity including quantum vacuum effects. We also derive a prescription for the force-free limit and show that these equations can be solved with classical finite volume methods for hyperbolic conservation laws. It is therefore straightforward to include general relativity and QED in the description of neutron star magnetospheres by using standard classical numerical techniques borrowed from Maxwell and Newton theory. As an application, we show that spin-down luminosity corrections associated with QED effects are negligible with respect to GR corrections.

  16. Energy conservation laws in classical electrodynamics

    OpenAIRE

    Dmitriyev, Valery P.

    2004-01-01

    There are three electromagnetic integrals of motion that can be interpreted as the energy. These are the background energy, the elastic energy and the integral in the torsion field commonly referred to as the energy of the electromagnetic field. The integral in the torsion field gains the meaning of the energy insomuch as it is concerned with the mechanical energy of a charged particle.

  17. Electrodynamics of a Cosmic Dark Fluid

    CERN Document Server

    Balakin, Alexander B

    2016-01-01

    Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium - type representation of the Dark Fluid allows us to involve into analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent) and Dark Energy (a scalar element); respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of ten models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extende...

  18. On the electrodynamics of Minkowski at low velocities

    Science.gov (United States)

    Rousseaux, G.

    2008-10-01

    The Galilean constitutive equations for the electrodynamics of moving media are derived for the first time. They explain all the historic and modern experiments which were interpreted so far in a relativistic framework assuming the constant light celerity principle. Here, we show the latter to be sufficient but not necessary.

  19. Electrodynamics of Magnetoactive Media

    International Nuclear Information System (INIS)

    'Electrodynamics of Magnetoactive Media' is an unusual book in that it cuts across conventional physics discipline boundaries. The unifying theme allowing this is, quite simply, the physics of magnetic fields in various media. I believe the authors are correct in stating that the book is unique in specifically covering electrodynamic phenomena associated with magnetic fields, though of course some of the more elementary aspects are covered in the classical textbooks on electromagnetism, which are duly acknowledged. This interdisciplinarity makes the book very interesting to people with a range of backgrounds. For example, as a plasma physicist, I was familiar with most of the material on plasmas, but liquid crystals and superconductors were entirely new territory for me. These chapters were indeed both accessible and interesting, and it was surprising for me to see how much commonality there is in the physics of these various media. The first part of the book covers some fundamentals of electrodynamics and magnetostatics, and of electromagnetic waves. Most of this material is covered in textbooks on electromagnetism, and some of it is very basic (for example, LRC circuit theory, surely covered in most first year physics courses, is included) but it is perhaps a useful prelude for what is to come. The generic topic of charged particle motion in electromagnetic fields is well covered. Three main magnetoactive media are then discussed: plasmas (focusing on waves), liquid crystals and superconductors. It is all too easy to criticise a book on the grounds of omitted material, but I do feel that a chapter on magnetostatics in plasmas would have been very helpful, covering force-free fields and so on. Some interesting analogies could then have been exploited. For example, I was intrigued to discover an equation for magnetic fields in superconductors (equation (9.36)) which, apart from a change of sign, is identical to the Helmholtz equation used to model linear force

  20. Electrodynamics of Magnetoactive Media

    Energy Technology Data Exchange (ETDEWEB)

    Browning, P K [Department of Physics, UMIST, PO Box 88, Sackville Street, Manchester, M60 1QD (United Kingdom)

    2004-11-12

    'Electrodynamics of Magnetoactive Media' is an unusual book in that it cuts across conventional physics discipline boundaries. The unifying theme allowing this is, quite simply, the physics of magnetic fields in various media. I believe the authors are correct in stating that the book is unique in specifically covering electrodynamic phenomena associated with magnetic fields, though of course some of the more elementary aspects are covered in the classical textbooks on electromagnetism, which are duly acknowledged. This interdisciplinarity makes the book very interesting to people with a range of backgrounds. For example, as a plasma physicist, I was familiar with most of the material on plasmas, but liquid crystals and superconductors were entirely new territory for me. These chapters were indeed both accessible and interesting, and it was surprising for me to see how much commonality there is in the physics of these various media. The first part of the book covers some fundamentals of electrodynamics and magnetostatics, and of electromagnetic waves. Most of this material is covered in textbooks on electromagnetism, and some of it is very basic (for example, LRC circuit theory, surely covered in most first year physics courses, is included) but it is perhaps a useful prelude for what is to come. The generic topic of charged particle motion in electromagnetic fields is well covered. Three main magnetoactive media are then discussed: plasmas (focusing on waves), liquid crystals and superconductors. It is all too easy to criticise a book on the grounds of omitted material, but I do feel that a chapter on magnetostatics in plasmas would have been very helpful, covering force-free fields and so on. Some interesting analogies could then have been exploited. For example, I was intrigued to discover an equation for magnetic fields in superconductors (equation (9.36)) which, apart from a change of sign, is identical to the Helmholtz equation used to model linear

  1. Alternative formulations of magnetospheric plasma electrodynamics

    Science.gov (United States)

    Cragin, B. L.; Heikkila, W. J.

    1981-01-01

    The fundamental equations of magnetospheric plasma electrodynamics are considered from a theoretical standpoint that stresses the basic equivalence of various seemingly different formal representations. The mathematical properties of vector fields are reviewed, and their implications in electrodynamics are studied. The irrotational and solenoidal parts of the electric field are associated with two physically distinct types of sources. Relativistic covariance and gauge invariance in electromagnetic theory are reviewed and discussed in the context of an approach in which the mathematical properties of vector fields are taken as primary concepts. Special attention is given to the use and interpretation of the Coulomb gauge potential functions. This choice of gauge is sometimes regarded with undue suspicion, possibly because of a certain paradox concerning causality. The paradox is discussed and resolved. Useful properties of the Coulomb gauge are identified. These need not be limited to the case of slow time variations and can extend beyond the limits of validity of ideal MHD theory.

  2. Electrodynamics in rotating and other accelerated frames of reference

    International Nuclear Information System (INIS)

    A systematic description of the various aspects of electrodynamics in accelerated frames, with a special emphasis to that in frames rotating about a fixed axis, at a constant rate, is attempted here. The related basic problems and controversies are of such nature that these can not be covered briefly in books on classical electrodynamics. For this reason all authors of such books avoid any presentation of this electrodynamics, even for very small rotational velocities. These problems have been clearly exposed here. (author). 10 refs

  3. Off-Shell Quantum Electrodynamics

    OpenAIRE

    Land, M. C.; Horwitz, L. P.

    1996-01-01

    More than twenty years have passed since the threads of the `proper time formalism' in covariant classical and quantum mechanics were brought together to construct a canonical formalism for the relativistic mechanics of many particles. Drawing on the work of Fock, Stueckelberg, Nambu, Schwinger, and Feynman, the formalism was raised from the status of a purely formal mathematical technique to a covariant evolution theory for interacting particles. In the context of this theory, solutions have...

  4. On the self-force in Bopp–Podolsky electrodynamics

    International Nuclear Information System (INIS)

    In the classical vacuum Maxwell–Lorentz theory the self-force of a charged point particle is infinite. This makes classical mass renormalization necessary and, in the special relativistic domain, leads to the Abraham–Lorentz–Dirac equation of motion possessing unphysical run-away and pre-acceleration solutions. In this paper we investigate whether the higher-order modification of classical vacuum electrodynamics suggested by Bopp, Landé, Thomas and Podolsky in the 1940s, can provide a solution to this problem. Since the theory is linear, Green-function techniques enable one to write the field of a charged point particle on Minkowski spacetime as an integral over the particle’s history. By introducing the notion of timelike worldlines that are ‘bounded away from the backward light-cone’ we are able to prescribe criteria for the convergence of such integrals. We also exhibit a timelike worldline yielding singular fields on a lightlike hyperplane in spacetime. In this case the field is mildly singular at the event where the particle crosses the hyperplane. Even in the case when the Bopp–Podolsky field is bounded, it exhibits a directional discontinuity as one approaches the point particle. We describe a procedure for assigning a value to the field on the particle worldline which enables one to define a finite Lorentz self-force. This is explicitly derived leading to an integro-differential equation for the motion of the particle in an external electromagnetic field. We conclude that any worldline solutions to this equation belonging to the categories discussed in the paper have continuous four-velocities. (paper)

  5. Strong-field Relativistic Processes in Highly Charged Ions

    OpenAIRE

    Postavaru, Octavian

    2010-01-01

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part,we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic...

  6. Strong-field relativistic processes in highly chargerd ions

    OpenAIRE

    Postavaru, O.

    2010-01-01

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Diracv equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynam...

  7. Electrodynamics of a Cosmic Dark Fluid

    OpenAIRE

    Balakin, Alexander B.

    2016-01-01

    Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium - type representation of the Dark Fluid allows us to involve into analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- an...

  8. Relativistic geodesy

    Science.gov (United States)

    Flury, J.

    2016-06-01

    Quantum metrology enables new applications in geodesy, including relativistic geodesy. The recent progress in optical atomic clocks and in long-distance frequency transfer by optical fiber together pave the way for using measurements of the gravitational frequency redshift for geodesy. The remote comparison of frequencies generated by calibrated clocks will allow for a purely relativistic determination of differences in gravitational potential and height between stations on Earth surface (chronometric leveling). The long-term perspective is to tie potential and height differences to atomic standards in order to overcome the weaknesses and inhomogeneity of height systems determined by classical spirit leveling. Complementarily, gravity measurements with atom interferometric setups, and satellite gravimetry with space borne laser interferometers allow for new sensitivities in the measurement of the Earth's gravity field.

  9. The exact radiation-reaction equation for a classical charged particle

    CERN Document Server

    Tessarotto, M; Cremaschini, C; Nicolini, P; Beklemishev, A

    2008-01-01

    An unsolved problem of classical mechanics and classical electrodynamics is the search of the exact relativistic equations of motion for a classical charged point-particle subject to the force produced by the action of its EM self-field. The problem is related to the conjecture that for a classical charged point-particle there should exist a relativistic equation of motion (RR equation) which results both non-perturbative, in the sense that it does not rely on a perturbative expansion on the electromagnetic field generated by the charged particle and non-asymptotic, i.e., it does not depend on any infinitesimal parameter. In this paper we intend to propose a novel solution to this well known problem, and in particular to point out that the RR equation is necessarily variational. The approach is based on two key elements: 1) the adoption of the relativistic hybrid synchronous Hamilton variational principle recently pointed out (Tessarotto et al, 2006). Its basic feature is that it can be expressed in principle...

  10. Asymptotic algebra of quantum electrodynamics

    OpenAIRE

    Herdegen, Andrzej

    2004-01-01

    The Staruszkiewicz quantum model of the long-range structure in electrodynamics is reviewed in the form of a Weyl algebra. This is followed by a personal view on the asymptotic structure of quantum electrodynamics.

  11. Electrodynamics in Arbitrary Reference Frames and in Arbitrary Material Media

    International Nuclear Information System (INIS)

    Full text: The investigation of electromagnetic phenomena in material media still belongs to the most difficult tasks of electrodynamics. Complexity and variability of material media practically exclude effective applications of methods and computational techniques elaborated in the framework of standard microscopic electrodynamics with classical vacuum as a ground state. In order to obtain satisfactorily exact descriptions of electromagnetic properties of complex material media one is enforced to use methods and approximations which are difficult to control. Moreover, they usually break covariance properties and the results obtained are valid in one reference frame which choice remains subjective and model dependent. Some time ago we have proposed a reformulation of Maxwell electrodynamics which opens new ways in study of electromagnetic processes in material media. The formalism gets rid of assumptions characteristic for vacuum electrodynamics only and it avoids the usage of constitutive relations as primary relations put on quantities needed for a complete description of an electromagnetic system. Fundamental properties of all electromagnetic quantities are their uniquely defined transformation rules and their analysis allows to determine the possible relations between them. Within such a scheme it is possible to introduce constitutive relations which do not have analogies in macroscopic classical electrodynamics. They may be used in description of microscopic electromagnetic processes in a different way than it is done in the framework of quantum electrodynamics. (author)

  12. Differential formalism aspects of the gauge classical theories

    International Nuclear Information System (INIS)

    The classical aspects of the gauge theories are shown using differential geometry as fundamental tool. Somme comments are done about Maxwell Electro-dynamics, classical Yang-Mills and gravitation theories. (L.C.)

  13. Molecular quantum electrodynamics

    CERN Document Server

    Craig, D P

    1998-01-01

    This systematic introduction to quantum electrodynamics focuses on the interaction of radiation with outer electrons and nuclei of atoms and molecules, answering the long-standing need of chemists and physicists for a comprehensive text on this highly specialized subject.Geared toward postgraduate students in the chemical sciences who require an understanding of quantum electrodynamics as applied to the interpretation of optical experiments on atoms and molecules, the text offers a detailed explanation of the quantum theory of electromagnetic radiation and its interaction with matter. It feat

  14. Electrodynamics panel presentation

    Science.gov (United States)

    Mccoy, J.

    1986-01-01

    The Plasma Motor Generator (PMG) concept is explained in detail. The PMG tether systems being used to calculate the estimated performance data is described. The voltage drops and current contact geometries involved in the operation of an electrodynamic tether are displayed illustrating the comparative behavior of hollow cathodes, electron guns, and passive collectors for current coupling into the ionosphere. The basic PMG design involving the massive tether cable with little or no satellite mass at the far end(s) are also described. The Jupiter mission and its use of electrodynamic tethers are given. The need for demonstration experiments is stressed.

  15. Electrodynamics, wind and temperature

    Science.gov (United States)

    Schmidlin, F. J.

    1988-01-01

    This RTOP provides for correlative meteorological wind and temperature measurements with atmospheric electrodynamic measurements. Meteorological rocketsondes were launched as part of a number of electrodynamic investigations in Alaska, Norway, Peru, Sweden, and at the Wallops Flight Facility, Wallops Island, Virginia. Measurements obtained as part of the MAC/Epsilon campaign during October 1987 from Andoya, Norway, were in conjunction with electric field, ion mobility, conductivity, and energy deposition studies. The measurements obtained between 30 and 90 km are to evaluate and correlate changes in the atmospheric electrical structure caused by the neutral wind and temperature, or changes in the neutral atmosphere resulting from electrical anomalies.

  16. Applications of conformal symmetry in quantum electrodynamics

    International Nuclear Information System (INIS)

    Quantum electrodyanmics is a system in which the only scale is provided by the electron mass. A topic of continuing interest has been the structure of this field theory for spatial separations small in comparison to the scale defined by the Compton size ((h/2π)/mc), and one is thus led to consider 'massless' quantum electrodynamics (m equivalent to 0). The classical field equations for massless electrodynamics are invariant under a much larger group of space-time transformations than the massive theory, namely the full fifteen parameter conformal group. However, in contrast to the massive theory where calculations can be formulated in terms of a set of fully Lorentz covariant Green's functions, no fully conformally covariant formalism exists for the massless theory because of complications associated with gauge invariance. The authors present what they regard as the most salient aspects of the conformal symmetry when it is used to simplify calculations. (Auth.)

  17. Limits of electrodynamics: paraphotons

    International Nuclear Information System (INIS)

    The paper discusses the accuracy with which electromagnetic interaction is studied at large distances. Possible deviations from standard electrodynamics are investigated. The consideration is carried out the framework of a model which contains two (para) photons, the mass of one of them being non-negligible

  18. Testability of nonlinear electrodynamics

    International Nuclear Information System (INIS)

    Laser interferometry combined with present-day electronic techniques now make it possible to test nonlinear-electrodynamics predictions in the weak-field limit, up to a sensitivity of 10-23 in the relative variation of the velocity of light. The significance of such tests in regard to QED predictions is noted

  19. Electrodynamics with radiation reaction

    OpenAIRE

    Hammond, Richard T.

    2011-01-01

    The self force of electrodynamics is derived from a scalar field. The resulting equation of motion is free of all of the problems that plague the Lorentz Abraham Dirac equation. The age-old problem of a particle in a constant field is solved and the solution has intuitive appeal.

  20. Galilean electrodynamics. Part 2. Charged particle force and conservation laws

    International Nuclear Information System (INIS)

    From the general formulae for the transformation of fields in Galilean electrodynamics there are derived the expression for the force acting on a charged particle and the equation of motion of a charged particle. Without any additional assumptions these equations are performed into the relativistic form, that is with the relativistic momentum and energy. Hence, in an elementary way, Einstein's formula of the equivalence of energy and mass results. Then the conservation laws of energy and momentum for the fields are derived. 3 refs. (author)

  1. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...

  2. Stable discrete representation of relativistically drifting plasmas

    CERN Document Server

    Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R

    2016-01-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  3. Relativistic Quantum Communication

    CERN Document Server

    Hosler, Dominic

    2013-01-01

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...

  4. A Toy Model of Electrodynamics in (1 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    A model is presented that describes a scalar field interacting with a point particle in (1+1) dimensions. The model exhibits many of the same phenomena that appear in classical electrodynamics, such as radiation and radiation damping, yet has a much simpler mathematical structure. By studying these phenomena in a highly simplified model, the…

  5. Stochastic Electrodynamics and the Compton effect

    International Nuclear Information System (INIS)

    Some of the main qualitative features of the Compton effect are tried to be described within the realm of Classical Stochastic Electrodynamics (SED). It is found indications that the combined action of the incident wave (frequency ω), the radiation reaction force and the zero point fluctuating electromagnetic fields of SED, are able to given a high average recoil velocity v/c=α/(1+α) to the charged particle. The estimate of the parameter α gives α ∼ ℎω/mc2 where 2Πℎ is the constant and mc2 is the rest energy of the particle. It is verified that this recoil is just that necessary to explain the frequency shift, observed in the scattered radiation as due to a classical double Doppler shift. The differential cross section for the radiation scattered by the recoiling charge using classical electromagnetism also calculated. The same expression as obtained by Compton in his fundamental work of 1923 is found. (author)

  6. Minimal Quantum Electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui, R.; Berrondo, M.

    1985-01-01

    A simple and coherent formulation of quantum electrodynamics is obtained within the general framework of the LSZ field theory. The commutation relations for the interacting fields are obtained rather than being postulated a priori and the current densities fulfill the one particle stability conditions. Thus, the inconsistencies which appear in the canonical formalism are avoided. The resulting spectral representations do not have any ambiguities so that we do not have to introduce the renormalization concept.

  7. Minimal quantum electrodynamics

    International Nuclear Information System (INIS)

    A simple and coherent formulation of quantum electrodynamics is obtained within the general framework of the LSZ field theory. The commutation relations for the intereacting fields are obtained rather than being postulated a priori and the current densities fulfill the one particle stability conditions. Thus, the inconsistencies which appear in the canonical formalism are avoided. The resulting spectral representations do not have any ambiguities so that we do not have to introduce the ''renormalization'' concept

  8. Minimal Quantum Electrodynamics

    International Nuclear Information System (INIS)

    A simple and coherent formulation of quantum electrodynamics is obtained within the general framework of the LSZ field theory. The commutation relations for the interacting fields are obtained rather than being postulated a priori and the current densities fulfill the one particle stability conditions. Thus, the inconsistencies which appear in the canonical formalism are avoided. The resulting spectral representations do not have any ambiguities so that we do not have to introduce the renormalization concept

  9. Electrodynamics of a Cosmic Dark Fluid

    Directory of Open Access Journals (Sweden)

    Alexander B. Balakin

    2016-06-01

    Full Text Available Cosmic Dark Fluid is considered as a non-stationary medium, in which electromagnetic waves propagate, and magneto-electric field structures emerge and evolve. A medium-type representation of the Dark Fluid allows us to involve in its analysis the concepts and mathematical formalism elaborated in the framework of classical covariant electrodynamics of continua, and to distinguish dark analogs of well-known medium-effects, such as optical activity, pyro-electricity, piezo-magnetism, electro- and magneto-striction and dynamo-optical activity. The Dark Fluid is assumed to be formed by a duet of a Dark Matter (a pseudoscalar axionic constituent and Dark Energy (a scalar element; respectively, we distinguish electrodynamic effects induced by these two constituents of the Dark Fluid. The review contains discussions of 10 models, which describe electrodynamic effects induced by Dark Matter and/or Dark Energy. The models are accompanied by examples of exact solutions to the master equations, correspondingly extended; applications are considered for cosmology and space-times with spherical and pp-wave symmetries. In these applications we focused the attention on three main electromagnetic phenomena induced by the Dark Fluid: first, emergence of Longitudinal Magneto-Electric Clusters; second, generation of anomalous electromagnetic responses; third, formation of Dark Epochs in the Universe history.

  10. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  11. Cosmic electrodynamics electrodynamics and magnetic hydrodynamics of cosmic plasmas

    CERN Document Server

    Fleishman, Gregory D

    2013-01-01

    This volume offers a deep and detailed overview of plasma behavior in diverse astrophysical conditions. The presentation is based on a solid science foundation that includes well established physical laws of electromagnetism, hydrodynamics, classical and quantum mechanics and other relevant fields of science. Qualitative ideas and descriptions are followed by quantitative derivations and estimates of key physical quantities, and the results of theories and models are confronted with modern observational data obtained from numerous international science programs. Fundamental astrophysical phenomena, such as charged particle acceleration and magnetic field generation, are presented along with spectacular phenomena, such as stellar winds (including ultra-relativistic pulsar wind), supernova explosions and evolution of its remnants, and solar flares.

  12. Variational principles for a relativistic stochastic mechanics

    International Nuclear Information System (INIS)

    An extension to the relativistic case of the stochastic variational principles both of Lagrangian and Eulerian type is proposed. The action used is the mean classical action evaluated on the paths of relativistic covariant diffusions. The resulting equations of motion are the relativistic stochastic Lagrange equations

  13. Pole-factorization theorem in quantum electrodynamics

    International Nuclear Information System (INIS)

    In quantum electrodynamics a classical part of the S-matrix is normally factored out in order to obtain a quantum remainder that can be treated perturbatively without the occurrence of infrared divergences. However, this separation, as usually performed, introduces spurious large-distance effects that produce an apparent breakdown of the important correspondence between stable particles and poles of the S-matrix, and, consequently, lead to apparent violations of the correspondence principle and to incorrect results for computations in the mesoscopic domain lying between the atomic and classical regimes. An improved computational technique is described that allows valid results to be obtained in this domain, and that leads, for the quantum remainder, in the cases studied, to a physical-region singularity structure that, as regards the most singular parts, is the same as the normal physical-region analytic structure in theories in which all particles have non-zero mass. The key innovations here are to define the classical part in coordinate space, rather than in momentum space, and to define there a separation of the photon-electron coupling into its classical and quantum parts that has the following properties: (1) The contributions from the terms containing only classical couplings can be summed to all orders to give a unitary operator that generates the coherent state that corresponds to the appropriate classical process, and (2) The quantum remainder can be rigorously shown to exhibit, as regards its most singular parts, the normal analytic structure. 22 refs

  14. An Economic analogy to Electrodynamics

    OpenAIRE

    Sanjay Dasari; Anindya Kumar Biswas

    2010-01-01

    In this note, we would like to find the laws of electrodynamics in simple economic systems. In this direction, we identify the chief economic variables and parameters, scalar and vector, which are amenable to be put directly into the crouch of the laws of electrodynamics, namely Maxwell's equations. Moreover, we obtain Phillp's curve, recession and Black-Scholes formula, as sample applications.

  15. Limits on nonlinear electrodynamics

    Science.gov (United States)

    Fouché, M.; Battesti, R.; Rizzo, C.

    2016-05-01

    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test nonlinear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.

  16. Circuit Quantum Electrodynamics

    CERN Document Server

    Bishop, Lev S

    2010-01-01

    Circuit Quantum Electrodynamics (cQED), the study of the interaction between superconducting circuits behaving as artificial atoms and 1-dimensional transmission-line resonators, has shown much promise for quantum information processing tasks. For the purposes of quantum computing it is usual to approximate the artificial atoms as 2-level qubits, and much effort has been expended on attempts to isolate these qubits from the environment and to invent ever more sophisticated control and measurement schemes. Rather than focussing on these technological aspects of the field, this thesis investigates the opportunities for using these carefully engineered systems for answering questions of fundamental physics.

  17. Nonlinear electrodynamics with birefringence

    CERN Document Server

    Kruglov, S I

    2015-01-01

    A new model of nonlinear electrodynamics with three parameters is suggested. The phenomena of vacuum birefringence takes place when there is the external constant magnetic field. We calculate the indices of refraction for two polarizations of electromagnetic waves, parallel and perpendicular to the magnetic induction field. From the Bir\\'{e}fringence Magn\\'{e}tique du Vide (BMV) experiment one of the coefficients, $\\gamma\\approx 10^{-20}$ T$^{-2}$, was estimated. The canonical, symmetrical Belinfante energy-momentum tensors and dilatation current were obtained. The dilatation symmetry and the dual symmetry are broken in the model considered.

  18. On the Pre-metric Formulation and Nonlinearization of Charge-free Electrodynamics

    CERN Document Server

    Donev, Stoil

    2016-01-01

    This paper presents a coordinate free pre-metric formulation of charge free Maxwell-Minkowski electrodynamics, and of the developed by the authors non-linear Extended Electrodynamics. First we introduce some formal relations from multilinear algebra and differential geometry to be used further. Then we recall and appropriately modify the existing pre-metric formulation of linear charge free electrodynamics in pre-relativistic and relativistic forms as preparation to turn to corresponding pre-metric nonlinearization. After some preliminary examples and notes on nonlinearization, we motivate our view for existence and explicit formulation of time stable subsystems of the physical field objects considered. Section 5 presents the formal results of our approach on the pre-metric nonlinear formulations in static case, in time-dependent case, and in space-time formulation. In the Conclusion we give our general view on "why and how to nonlinearize". The Appendix gives a possible formal extension of our aproach to man...

  19. Relativistic Astrophysics; Astrofisica Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Font, J. A.

    2015-07-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  20. BOOK REVIEW: An Introduction to Classical Electromagnetic Radiation

    Science.gov (United States)

    Tran, Minh Quang

    1998-05-01

    This book provides the basic concepts necessary for an introduction to the classical theory of radiation. The reader is first introduced to Maxwell's equations and then led through their basic properties (Chapters 1 and 2). Non-uniform plane waves are treated in Chapter 3 with a discussion of the two and three dimensional cases. Many examples of two and three dimensional electromagnetic fields are given, and the physics of practical devices is also analysed. Geometrical rays, as well as the notion of a Gaussian beam, are introduced at this stage, and the link between electromagnetism and optical principles is amplified in Chapter 4 (the Huyghens principle, transmission through an aperture, scattering cross-section). The electromagnetic radiation from charge and current distributions is obtained in a general form from potential theory (Chapter 5), followed quite naturally by the classic illustration of the fields produced by a moving charge in the classical (v/c feature is the inclusion in the text, whenever necessary, of the required mathematical bases: numerical solutions of Maxwell's equation, Fourier transforms (Chapter 1), the stationary phase method (Chapter 3), the Dirac function (Chapter 5) and a review of vector analysis (Annex B). These mathematical sections will be specially useful for advanced undergraduates who may need some mathematical tools and, thus, will not need to search for these in more specialized books. The main focus of the book is to provide the reader with the fundamentals of the classical theory of radiation. This aim is well complemented by examples from a variety of fields. Since the purpose of the book is not to provide a general treatment of electromagnetism or electrodynamics, the reader cannot expect to find some of the topics usual in other electrodynamics texts, such as relativistic transforms of electromagnetic fields (although the Lorentz condition is mentioned) or a discussion of the causality principle in the derivation of the

  1. Dynamics Underlying the Gaussian Distribution of the Classical Harmonic Oscillator in Zero-Point Radiation

    OpenAIRE

    Wayne Cheng-Wei Huang; Herman Batelaan

    2013-01-01

    In the past decades, Random Electrodynamics (also called Stochastic Electrodynamics) has been used to study the classical harmonic oscillator immersed in the classical electromagnetic zero-point radiation. Random Electrodynamics (RED) predicts an identical probability distribution for the harmonic oscillator compared to the quantum mechanical prediction for the ground state. Moreover, the Heisenberg minimum uncertainty relation is also recovered with RED. To understand the dynamics that gives...

  2. Relativistic quantum mechanics. 2. ed.

    International Nuclear Information System (INIS)

    In this book, quantum mechanics is developed from the outset on a relativistic basis, using the superposition principle, Lorentz invariance and gauge invariance. Nonrelativistic quantum mechanics as well as classical relativistic mechanics appear as special cases. They are the sources of familiar names such as ''orbital angular momentum'', ''spin-orbit coupling'' and ''magnetic moment'' for operators of the relativistic quantum formalism. The theory of binaries, in terms of differential equations, is treated for the first time in this book. These have the mathematical structure of the corresponding one-body equations (Klein-Gordon for two spinless particles, Dirac for two spinor particles) with a relativistically reduced mass. They allow the calculation of radiative corrections via the vector potential operator. This second edition of the successful textbook adds various new sections on relativistic quantum chemistry and on the relativistic treatment of the proton in hydrogen. Others chapters have been expanded, e.g. on hyperfinite interactions, or carefully revisited. (orig.)

  3. Failure of the classical field model of Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    The conventional classical treatment of the field emitted by a Moessbauer nucleus predicts an enhanced counting rate in a two-detector coincidence scheme, whereas quantum electrodynamics does not. Our experiment agrees with QED

  4. Electrodynamics of continua

    CERN Document Server

    Eringen, A C

    1990-01-01

    The electrodynamics of continua is a branch ofthe physical sciences concerned with the interaction of electromagnetic fields with deformable bodies. De­ formable bodies are considered to be continua endowed with continuous distributions of mass and charge. The theory of electromagnetic continua is concerned with the determination of deformations, motions, stress, and elec­ tromagnetic fields developed in bodies upon the applications of external loads. External loads may be of mechanical origin (e.g., forces, couples, constraints placed on the surface of the body, and initial and boundary conditions arising from thermal and other changes) and/or electromagnetic origin (e.g., electric, magnetic, and current fields). Because bodies of different constitutions respond to external stimuli in a different way, it is imperative to characterize properly the response functions relevant to a given class of continua. This is done by means of the constitutive theory. For example, an elastic dielectric responds to electro...

  5. Relativistic plasma dispersion functions

    Science.gov (United States)

    Robinson, P. A.

    1986-05-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived.

  6. Experimental status of quantum electrodynamics

    International Nuclear Information System (INIS)

    This review of the experimental status of quantum electrodynamics covers the fine structure constant, the muon g-2 value, the Lamb shift in hydrogen, the finite proton radius, progress in muonium, and positronium. 37 references

  7. Pulsar Electrodynamics: an unsolved problem

    CERN Document Server

    Melrose, D B

    2016-01-01

    Pulsar electrodynamics is reviewed emphasizing the role of the inductive electric field in an oblique rotator and the incomplete screening of its parallel component by charges, leaving `gaps' with $E_\\parallel\

  8. Timelike Momenta In Quantum Electrodynamics

    Science.gov (United States)

    Brodsky, S. J.; Ting, S. C. C.

    1965-12-01

    In this note we discuss the possibility of studying the quantum electrodynamics of timelike photon propagators in muon or electron pair production by incident high energy muon or electron beams from presently available proton or electron accelerators.

  9. On the Relativistic Micro-Canonical Ensemble and Relativistic Kinetic Theory for N Relativistic Particles in Inertial and Non-Inertial Rest Frames

    OpenAIRE

    Alba, David; Crater, Horace W.; Lusanna, Luca

    2012-01-01

    A new formulation of relativistic classical mechanics allows a revisiting of old unsolved problems in relativistic kinetic theory and in relativistic statistical mechanics. In particular a definition of the relativistic micro-canonical partition function is given strictly in terms of the Poincar\\'e generators of an interacting N-particle system both in the inertial and non-inertial rest frames. The non-relativistic limit allows a definition of both the inertial and non-inertial micro-canonica...

  10. Two applications of axion electrodynamics

    Science.gov (United States)

    Wilczek, Frank

    1987-01-01

    The equations of axion electrodynamics are studied. Variations in the axion field can give rise to peculiar distributions of charge and current. These effects provide a simple understanding of the fractional electric charge on dyons and of some recently discovered oddities in the electrodynamics of antiphase boundaries in PbTe. Some speculations regarding the possible occurrence of related phenomena in other solids are presented.

  11. Ultrarelativistic sources in nonlinear electrodynamics

    OpenAIRE

    Bicak, Jiri; Kubiznak, David

    2006-01-01

    The fields of rapidly moving sources are studied within nonlinear electrodynamics by boosting the fields of sources at rest. As a consequence of the ultrarelativistic limit the delta-like electromagnetic shock waves are found. The character of the field within the shock depends on the theory of nonlinear electrodynamics considered. In particular, we obtain the field of an ultrarelativistic charge in the Born-Infeld theory.

  12. The absorber hypothesis of electrodynamics

    OpenAIRE

    De Luca, Jayme

    2008-01-01

    We test the absorber hypothesis of the action-at-a-distance electrodynamics for globally-bounded solutions of a finite-particle universe. We find that the absorber hypothesis forbids globally-bounded motions for a universe containing only two charged particles, otherwise the condition alone does not forbid globally-bounded motions. We discuss the implication of our results for the various forms of electrodynamics of point charges.

  13. Electrodynamic Arrays Having Nanomaterial Electrodes

    Science.gov (United States)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  14. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  15. On some applications of Galilean electrodynamics of moving bodies

    CERN Document Server

    De Montigny, M; Montigny, Marc De; Rousseaux, Germain

    2006-01-01

    We discuss the seminal article in which Le Bellac and L\\'{e}vy-Leblond have identified two Galilean limits of electromagnetism [1], and its modern implications. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We discuss various applications and experiments, such as in quantum mechanics, superconductivity, electrodynamics of continuous media, etc. Much of the current technology, where waves are not taken into account, is actually based on Galilean electromagnetism

  16. On some applications of Galilean electrodynamics of moving bodies

    OpenAIRE

    de Montigny, Marc; Rousseaux, Germain

    2006-01-01

    We discuss the seminal article in which Le Bellac and L\\'{e}vy-Leblond have identified two Galilean limits of electromagnetism [1], and its modern implications. Recent works have shed a new light on the choice of gauge conditions in classical electromagnetism. We discuss various applications and experiments, such as in quantum mechanics, superconductivity, electrodynamics of continuous media, etc. Much of the current technology, where waves are not taken into account, is actually based on Gal...

  17. SIM(1)–VSR Maxwell–Chern–Simons electrodynamics

    OpenAIRE

    Bufalo, R.

    2016-01-01

    In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM$(1)$--VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and health departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, ...

  18. Relativistic Thomas-Fermi Model at Finite Temperatures

    OpenAIRE

    G. Bertone(GRAPPA Center of Excellence, University of Amsterdam, Science Park 904, 1090 GL Amsterdam, The Netherlands); Ruffini, R.

    2001-01-01

    We briefly review the Thomas-Fermi statistical model of atoms in the classical non-relativistic formulation and in the generalised finite-nucleus relativistic formulation. We then discuss the classical generalisation of the model to finite temperatures in the non-relativistic approximation and present a new relativistic model at finite temperatures, investigating how to recover the existing theory in the limit of low temperatures. This work is intended to be a propedeutical study for the eval...

  19. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  20. Investigations of instabilities in nuclear matter in stochastic relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Ayik, S., E-mail: ayik@tntech.edu [Physics Department, Tennessee Technological University, Cookeville, TN 38505 (United States); Yilmaz, O.; Acar, F.; Danisman, B. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey); Er, N. [Physics Department, Abant Izzet Baysal University, Bolu (Turkey); Gokalp, A. [Physics Department, Middle East Technical University, 06531 Ankara (Turkey)

    2011-06-01

    The spinodal instabilities for symmetric nuclear matter at finite temperature are studied within different relativistic mean-field models in the semi-classical approximation and the relativistic results are compared with Skyrme type non-relativistic calculations. Qualitatively similar results appear in the unstable response of the system in both non-relativistic and relativistic descriptions. Furthermore, the early growth of baryon, scalar and current density correlation functions are calculated for hot symmetric nuclear matter.

  1. Experiments with Electrodynamic Wheels

    Science.gov (United States)

    Gaul, Nathan; Corey, Daniel; Cordrey, Vincent; Majewski, Walerian

    2015-04-01

    Our experiments were involving inductive magnetic levitation. A Halbach array is a system in which a series of magnets is arranged in a manner such that the magnetic field is cancelled on one side of the array while strengthening the field on the other. We constructed two circular Halbach wheels, making the strong magnetic field on the outer rim of the ring. Such system is usually dubbed as an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We demonstrated that these interactions produce both drag and lift forces on the EDW which can theoretically be used for lift and propulsion of the EDW. The focus of our experiments is determining how to maximize the lift-to-drag ratio by the proper choice of the induction element. We will also describe our experiments with a rotating circular Halbach array having the strong magnetic field of about 1 T on the flat side of the ring, and acting as a hovercraft.

  2. Electrodynamics of continua

    CERN Document Server

    Eringen, A C

    1990-01-01

    This is the second volume of a two-volume set presenting a unified approach to the electrodynamics of continua, based on the principles of contemporary continuum of physics. The first volume was devoted mainly to the development of the theory and applications to deformable solid media. This volume extends the developments of the first volume to richer and newer grounds. It contains discussions on fluid media, magnetohydrodynamics, eletrohydrodynamics and media with more complicated structures. With the discussion, in the last two chapters, of memory-dependent materials and non-local E-M theory, the authors account for the nonlocal effects arising from motions and fields of material points at past times and at spatially distant points. This discussion is included here to stimulate further research in these important fields, which are presently in development stages. The second volume is self-contained and can be studied without the help of volume I. A section summarizing the constitutive equations and the unde...

  3. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  4. Relativistic Mirrors in Laser Plasmas (Analytical Methods)

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K

    2016-01-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort X-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role.

  5. Electrostatics in Stueckelberg-Horwitz-Piron Electrodynamics

    CERN Document Server

    Land, Martin

    2016-01-01

    In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events $x^\\mu(\\tau)$ evolve in an unconstrained 8-dimensional phase space, interacting through five $\\tau$-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time $\\tau$ was introduced as an independent evolution parameter in order to free the laboratory clock $x^0$ to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this f...

  6. Relativistic formulation of the Voigt profile

    Science.gov (United States)

    Wcisło, P.; Amodio, P.; Ciuryło, R.; Gianfrani, L.

    2015-02-01

    The relativistic formulation of the Voigt profile is reported for the spontaneous emission from an atomic or molecular cloud, in coincidence with a given spectral line. We considered the simultaneous occurrence of homogeneous broadening and thermal broadening, this latter being determined by the relativistic Doppler effect. Our formula for the relativistic Voigt profile reproduces those characterizing the two available limit cases, namely, the relativistic Gaussian profile and the classical Voigt convolution. The relativistic deformation of the Voigt profile was carefully quantified at different temperatures, in the case of the molecular hydrogen spectrum.

  7. On inert properties of particles in classical theory

    CERN Document Server

    Kosyakov, B P

    2002-01-01

    This is a critical review of inert properties of classical relativistic point objects. The objects are classified as Galilean and non-Galilean. Three types of non-Galilean objects are considered: spinning, rigid, and dressed particles. In the absence of external forces, such particles are capable of executing not only uniform motions along straight lines but also Zitterbewegungs, self-accelerations, self-decelerations, and uniformly accelerated motions. A free non-Galilean object possesses the four-velocity and the four-momentum which are in general not collinear, therefore, its inert properties are specified by two, rather than one, invariant quantities. It is shown that a spinning particle need not be a non-Galilean object. The necessity of a rigid mechanics for the construction of a consistent classical electrodynamics in spacetimes of dimension D+1 is justified for D+1>4. The problem of how much the form of fundamental laws of physics orders four dimensions of our world is revised together with its soluti...

  8. Classical theory of the hydrogen atom

    CERN Document Server

    Rashkovskiy, Sergey

    2016-01-01

    It is shown that all of the basic properties of the hydrogen atom can be consistently described in terms of classical electrodynamics instead of taking the electron to be a particle; we consider an electrically charged classical wave field, an "electron wave", which is held in a limited region of space by the electrostatic field of the proton. It is shown that quantum mechanics must be considered to be not a theory of particles but a classical field theory in the spirit of classical electrodynamics. In this case, we are not faced with difficulties in interpreting the results of the theory. In the framework of classical electrodynamics, all of the well-known regularities of the spontaneous emission of the hydrogen atom are obtained, which is usually derived in the framework of quantum electrodynamics. It is shown that there are no discrete states and discrete energy levels of the atom: the energy of the atom and its states change continuously. An explanation of the conventional corpuscular-statistical interpre...

  9. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  10. Causal Structure and Birefringence in Nonlinear Electrodynamics

    OpenAIRE

    de Melo, C. A. M.; Medeiros, L. G.; Pompeia, P. J.(Instituto de Fomento e Coordenação Industrial, Departamento de Ciência e Tecnologia Aeroespacial, Praça Mal. Eduardo Gomes 50, 12228-901, São José dos Campos, SP , Brazil)

    2014-01-01

    We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also proof that there is only one analytic nonlinear electrodynamics presenting no birefringence.

  11. Revisiting spherically symmetric relativistic hydrodynamics

    CERN Document Server

    Guzman, F S; Morales, M D

    2012-01-01

    In this paper we revise two classical examples of Relativistic Hydrodynamics in order to illustrate in detail the numerical methods commonly used in fluid dynamics, specifically those designed to deal with shocks, which are based on a finite volume approximation. The two cases we consider are the relativistic blast wave problem and the evolution of a Tolman-Oppenheimer-Volkoff star model, in spherical symmetry. In the first case we illustrate the implementation of relativistic Euler's equations on a fixed background space-time, whereas in the second case we also show how to couple the evolution of the fluid to the evolution of the space-time.

  12. Covariant Electrodynamics in Vacuum

    Science.gov (United States)

    Wilhelm, H. E.

    1990-05-01

    The generalized Galilei covariant Maxwell equations and their EM field transformations are applied to the vacuum electrodynamics of a charged particle moving with an arbitrary velocity v in an inertial frame with EM carrier (ether) of velocity w. In accordance with the Galilean relativity principle, all velocities have absolute meaning (relative to the ether frame with isotropic light propagation), and the relative velocity of two bodies is defined by the linear relation uG = v1 - v2. It is shown that the electric equipotential surfaces of a charged particle are compressed in the direction parallel to its relative velocity v - w (mechanism for physical length contraction of bodies). The magnetic field H(r, t) excited in the ether by a charge e moving uniformly with velocity v is related to its electric field E(r, t) by the equation H=ɛ0(v - w)xE/[ 1 +w • (t>- w)/c20], which shows that (i) a magnetic field is excited only if the charge moves relative to the ether, and (ii) the magnetic field is weak if v - w is not comparable to the velocity of light c0 . It is remarkable that a charged particle can excite EM shock waves in the ether if |i> - w > c0. This condition is realizable for anti-parallel charge and ether velocities if |v-w| > c0- | w|, i.e., even if |v| is subluminal. The possibility of this Cerenkov effect in the ether is discussed for terrestrial and galactic situations

  13. Electrodynamics payloads for small rockets

    Science.gov (United States)

    Croskey, C. L.; Hale, L. C.; Mitchell, J. D.; Mccarthy, S. P.; Goodnow, K. J.; Li, C.; Goldberg, R. A.

    1992-01-01

    Totally integrated design facilitates electrical cleanliness and light weight, which are necessary in subsonic parachute-borne payloads for electrodynamics investigations. 'Blunt' probes measure ion conductivity, as do Gerdien condensers. Recent finite-element computer analyses combining flow and electrodynamics have resolved problems in determining ion densities and mobilities from Gerdien data. Three-axis electric fields are measured with deployable boom-mounted electrodes from dc through VLF. Splitting the cylindrical payload with an insulator and measuring the current between halves has provided a vertical Maxwell current detector mechanically rigid enough to measure, at ELF, energy related to coupling. A nose tip 'Smith' probe turbulence measurement is usually performed on ascent. Other instrumentation, such as photo-ionization sources and X-ray detectors, can also be included. These electrodynamic measurement payloads are about one meter in length and have a mass of about 9 kg. They can be launched with an Orion-class or smaller vehicle.

  14. High-precision metrology of highly charged ions via relativistic resonance fluorescence

    OpenAIRE

    Postavaru, O; Harman, Z.; Keitel, C. H.

    2010-01-01

    Resonance fluorescence of laser-driven highly charged ions is studied in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipo...

  15. The relativistic velocity composition paradox and the Thomas rotation

    Science.gov (United States)

    Ungar, Abraham A.

    1989-11-01

    The relativistic velocity composition paradox of Mocanu and its resolution are presented. The paradox, which rests on the bizarre and counterintuitive non-communtativity of the relativistic velocity composition operation, when applied to noncollinear admissible velocities, led Mocanu to claim that there are “some difficulties within the framework of relativistic electrodynamics.” The paradox is resolved in this article by means of the Thomas rotation, shedding light on the role played by composite velocities in special relativity, as opposed to the role they play in Galilean relativity.

  16. Advances in FDTD computational electrodynamics photonics and nanotechnology

    CERN Document Server

    Oskooi, Ardavan; Johnson, Steven G

    2013-01-01

    Advances in photonics and nanotechnology have the potential to revolutionize humanity s ability to communicate and compute. To pursue these advances, it is mandatory to understand and properly model interactions of light with materials such as silicon and gold at the nanoscale, i.e., the span of a few tens of atoms laid side by side. These interactions are governed by the fundamental Maxwell s equations of classical electrodynamics, supplemented by quantum electrodynamics. This book presents the current state-of-the-art in formulating and implementing computational models of these interactions. Maxwell s equations are solved using the finite-difference time-domain (FDTD) technique, pioneered by the senior editor, whose prior Artech books in this area are among the top ten most-cited in the history of engineering. You discover the most important advances in all areas of FDTD and PSTD computational modeling of electromagnetic wave interactions. This cutting-edge resource helps you understand the latest develo...

  17. Two loop stress-energy tensor for inflationary scalar electrodynamics

    International Nuclear Information System (INIS)

    We calculate the expectation value of the coincident product of two field strength tensors at two loop order in scalar electrodynamics on de Sitter background. The result agrees with the stochastic formulation which we have developed in a companion paper [T. Prokopec, N. C. Tsamis, and R. P. Woodard, Ann. Phys. (N.Y.) 323, 1324 (2008)] for the nonperturbative resummation of leading logarithms of the scale factor. When combined with a previous computation of scalar bilinears [T. Prokopec, N. C. Tsamis, and R. P. Woodard, Classical Quantum Gravity 24, 201 (2007)], our current result also gives the two loop stress-energy tensor for inflationary scalar electrodynamics. This shows a secular decrease in the vacuum energy which derives from the vacuum polarization induced by the inflationary production of charged scalars.

  18. Physico-mathematical foundations of relativistic cosmology

    CERN Document Server

    Soares, Domingos

    2013-01-01

    I briefly present the foundations of relativistic cosmology, which are, General Relativity Theory and the Cosmological Principle. I discuss some relativistic models, namely, "Einstein static universe" and "Friedmann universes". The classical bibliographic references for the relevant tensorial demonstrations are indicated whenever necessary, although the calculations themselves are not shown.

  19. Nonlinear Electrodynamics and black holes

    CERN Document Server

    Breton, N; Breton, Nora; Garcia-Salcedo, Ricardo

    2007-01-01

    It is addressed the issue of black holes with nonlinear electromagnetic field, focussing mainly in the Born-Infeld case. The main features of these systems are described, for instance, geodesics, energy conditions, thermodynamics and isolated horizon aspects. Also are revised some black hole solutions of alternative nonlinear electrodynamics and its inconveniences.

  20. Electrodynamics in an LTB scenario

    OpenAIRE

    Fanizza, G.; L. Tedesco

    2014-01-01

    In this article we analyze the electrodynamics in curved space-time in the Lemaître–Tolman–Bondi metric. We calculate the most general scale factor in this inhomogeneous Universe. We also study the presence of electromagnetic field bubbles in the Universe.

  1. Linear media in classical electrodynamics and the Post constraint

    Energy Technology Data Exchange (ETDEWEB)

    Hehl, Friedrich W. [Institute of Theoretical Physics, University of Cologne, 50923 Koeln (Germany) and Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO 65211 (United States)]. E-mail: hehl@thp.uni-koeln.de; Obukhov, Yuri N. [Institute of Theoretical Physics, University of Cologne, 50923 Cologne (Germany) and Department of Theoretical Physics, Moscow State University, 117234 Moscow (Russian Federation)]. E-mail: yo@thp.uni-koeln.de

    2005-01-17

    The Maxwell equations are formulated in a generally covariant and metric-free way in 1+3 and subsequently in 4 dimensions. For this purpose, we use the excitations D, H and the field strengths E,B. A local and linear constitutive law between excitations and field strengths is assumed, with a constitutive tensor of 36 components. The properties of this tensor are discussed. In particular, we address the validity of the Post constraint. In this connection, the Tellegen gyrator, the axion field, and the 'perfect electromagnetic conductor' of Lindell and Sihvola are compared with each other.

  2. Measuring a piecewise constant axion field in classical electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Obukhov, Yuri N. [Institute for Theoretical Physics, University of Cologne, 50923 Cologne (Germany)]. E-mail: yo@thp.uni-koeln.de; Hehl, Friedrich W. [Institute for Theoretical Physics, University of Cologne, 50923 Cologne (Germany)

    2005-06-27

    In order to settle the problem of the 'Post constraint' in material media, we consider the propagation of a plane electromagnetic wave in a medium with a piecewise constant axion field. Although a constant axion field does not affect the wave propagation in a homogeneous medium, we show that the reflection and transmission of a wave at an interface between the two media is sensitive to the difference of the axion values. This observation can be used to determine experimentally the axion piece in matter despite the fact that a constant axion value does not contribute to the Maxwell equations.

  3. Measuring a piecewise constant axion field in classical electrodynamics

    CERN Document Server

    Obukhov, Yu N; Obukhov, Yuri N.; Hehl, Friedrich W.

    2005-01-01

    In order to settle the problem of the "Post constraint" in material media, we consider the propagation of a plane electromagnetic wave in a medium with a piecewise constant axion field. Although a constant axion field does not affect the wave propagation in a homogeneous medium, we show that the reflection and transmission of a wave at an interface between the two media is sensitive to the difference of the axion values. This observation can be used to determine experimentally the axion piece in matter despite the fact that a constant axion value does not contribute to the Maxwell equations.

  4. Linear media in classical electrodynamics and the Post constraint

    CERN Document Server

    Hehl, F W; Hehl, Friedrich W.; Obukhov, Yuri N.

    2004-01-01

    The Maxwell equations are formulated in a generally covariant and metric-free way in 1+3 and subsequently in 4 dimensions. For this purpose, we use the excitations $\\cal D$, $\\cal H$ and the field strengths $E,B$. A local and linear constitutive law between excitations and field strengths is assumed, with a constitutive tensor $\\chi^{ijkl}=-\\chi^{jikl}=-\\chi^{ijlk}$ of 36 components. The properties of this tensor are discussed. In particular, we address the validity of the Post constraint, a subject that is very much under discussion. In this connection, the Tellegen gyrator, the axion field, and the ``perfect electromagnetic conductor'' of Lindell & Sihvola are compared with each other.

  5. The Charge-Magnet Paradoxes of Classical Electrodynamics

    OpenAIRE

    Mansuripur, Masud

    2014-01-01

    A number of charge-magnet paradoxes have been discussed in the literature, beginning with Shockley's famous 1967 paper, where he introduced the notion of hidden momentum in electromagnetic systems. We discuss all these paradoxes in a single, general context, showing that the conservation laws of linear and angular momenta can be satisfied without the need for hidden entities, provided that the Einstein-Laub laws of force and torque are used in place of the standard Lorentz law. Einstein and L...

  6. Classical Electrodynamics without Fields and the Aharonov-Bohm effect

    OpenAIRE

    Stefanovich, Eugene V.

    2008-01-01

    The Darwin-Breit Hamiltonian is applied to the Aharonov-Bohm experiment. In agreement with the standard Maxwell-Lorentz theory, the force acting on electrons from infinite solenoids or ferromagnetic rods vanishes. However, the interaction energies and phase factors of the electron wave packets are non-zero. This allows us to explain the Aharonov-Bohm effect without involvement of electromagnetic potentials, fields, and topological properties of space.

  7. On the initial value formulation of classical electrodynamics

    OpenAIRE

    Deckert, Dirk-André; Hartenstein, Vera

    2016-01-01

    For $N$ extended charges with smooth charge densities, the initial value problem for the coupled system of Maxwell's and Lorentz's equations is mathematically well-understood. This is not the case for point-like charges, even when excluding the ill-defined self-interaction term. We discuss a major obstacle: the manifestation of shock fronts in the Maxwell fields for generic initial data -- a phenomenon which seemingly has not received attention. We demonstrate that because of this the initial...

  8. Spin and paramagnetism in classical stochastic electrodynamics (SED)

    International Nuclear Information System (INIS)

    The statistical properties of the spin S-> and magnetic dipole μ- of a particle with two constituents bounded by a harmonic force are studied. The relation between μ-> and S-> and also conclude that ->2 > ∼ ℎ2 is found. The giromagnetic factor can assume any value depending on the charges and masses of the constituents. In another example, the case of a permanent magnetic dipole moving in an external magnetic field, under the influence of the fluctuations associated with the zero-point and thermal radiations characteristic of SED is considered. It is concluded that the system presents paramagnetism and comparison with the experimental data shows excellent agreement with SED. (author)

  9. Classical electrodynamics of a nonlinear Dirac field free solutions

    International Nuclear Information System (INIS)

    In previous papers it has been shown that adding a positive scalar self-interaction (anti psipsi)2 to the Dirac field Lagrangian provides a reasonably satisfactory model to describe the barions. In this work, the authors analyze other solutions of the same nonlinear Dirac equation, making progress in the direction of a systematic analysis. These solutions could provide the ground states for more elaborate interacting schemes of the real particles. Unfortunately the new solutions appear to have energies consistently higher than the ones analyzed in previous papers. Also, the more complicated solutions, whose energy seems to be much higher than the simplest one, leave little hope for a low minimum energy state. (Auth.)

  10. Classical Electrodynamics in Quasi-Metric Space-Time

    OpenAIRE

    Østvang, Dag

    2003-01-01

    In quasi-metric relativity it is necessary to separate between 2 different versions of the electromagnetic field tensor (EMFT): (1) The active EMFT determining the electromagnetic contribution to the active stress-energy tensor, and (2) The passive EMFT entering the equations of motion. The passive EMFT may be found from the usual Maxwell's equations in curved space-time, and local conservation laws for passive electromagnetism ensure that photons move on null geodesics in quasi-metric space-...

  11. Longitudinal electromagnetic waves in the framework of standard classical electrodynamics

    CERN Document Server

    Simulik, V M

    2016-01-01

    The link between the longitudinal electromagnetic waves and the system of Maxwell equations is demonstrated. The longitudinal wave component of the electric field strength vector is found as the exact solution of the standard Maxwell equations with specific gradient-type case of electric current and charge densities.

  12. Distributions in Spherical Coordinates with Applications to Classical Electrodynamics

    Science.gov (United States)

    Gsponer, Andre

    2007-01-01

    A general and rigorous method to deal with singularities at the origin of a polar coordinate system is presented. Its power derives from a clear distinction between the radial distance and the radial coordinate variable, which makes that all delta functions and their derivatives are automatically generated, and ensures that the Gauss theorem is…

  13. Bound states in the two-dimension massive quantum electrodynamics (Qed2)

    International Nuclear Information System (INIS)

    This work studies the fermion-antifermion bound states in the (1+1)D two-dimension massive quantum electrodynamic in the 1/N expansion. The scattering matrices in the non-relativistic approximation have been calculated through TQC, and compared with the cross section in the Born approximation, and therefore the potential responsible by the interactions in the scattering processes have been obtained. Using Schroedinger equation, the existence of possible bound states have been investigated

  14. Relative Nonlinear Electrodynamics Interaction of Charged Particles with Strong and Super Strong Laser Fields

    CERN Document Server

    Avetissian, Hamlet

    2006-01-01

    This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.

  15. Relativistic Quantum Communication

    Science.gov (United States)

    Hosler, Dominic

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tends to zero. We investigate the observers' abilities to precisely measure the parameter of a state that is communicated between Alice and Rob. This parameter was encoded to either the amplitudes of a single excitation state or the phase of a NOON state. With NOON states the dual rail encoding provided greater precision, which is different to the results for the other situations. The precision was maximum for a particular number of excitations in the NOON state. We calculated the bipartite communication for Alice-Rob and Alice-AntiRob beyond the single mode approximation. Rob and AntiRob are causally disconnected counter-accelerating observers. We found that Alice must choose in advance with whom, Rob or AntiRob she wants to create entanglement using a particular setup. She could communicate classically to both.

  16. Relativistic Thomas-Fermi Model at Finite Temperatures

    CERN Document Server

    Bertone, Gianfranco

    2002-01-01

    We briefly review the Thomas-Fermi statistical model of atoms in the classical non-relativistic formulation and in the generalised finite-nucleus relativistic formulation. We then discuss the classical generalisation of the model to finite temperatures in the non-relativistic approximation and present a new relativistic model at finite temperatures, investigating how to recover the existing theory in the limit of low temperatures. This work is intended to be a propedeutical study for the evaluation of equilibrium configurations of relativistic ``hot'' white dwarfs.

  17. Quasi-Hamiltonian description of classical spin

    CERN Document Server

    Matsyuk, Roman

    2015-01-01

    A family of Lagrange functions is considered, each producing the classical relativistic free spinning particle equation of motion of the third order. On this grounds a generalized Hamilton-Ostrohrads'kyj description of the free relativistic spherical top is proposed, which comply with the Pirani supplementary conditions.

  18. The shadow of light: evidences of photon behaviour contradicting known electrodynamics

    CERN Document Server

    Cardone, F; Perconti, W; Petrucci, A; Scrimaglio, R

    2007-01-01

    We report the results of a double-slit-like experiment in the infrared range, which evidence an anomalous behaviour of photon systems under particular (energy and space) constraints. The statistical analysis of these outcomes (independently confirmed by crossing photon beam experiments in both the optical and the microwave range) shows a significant departure from the predictions of both classical and quantum electrodynamics.

  19. Relativistic Continuum Shell Model

    Science.gov (United States)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  20. The Lagrangian and Hamiltonian Aspects of the Electrodynamic Vacuum-Field Theory Models

    CERN Document Server

    Bogolubov, Nikolai N; Blackmore, Denis; Prykarpatsky, Yarema A

    2012-01-01

    We review the modern classical electrodynamics problems and present the related main fundamental principles characterizing the electrodynamical vacuumfield structure. We analyze the models of the vacuumfield medium and charged point particle dynamics using the developed field theory concepts. There is also described a new approach to the classical Maxwell theory based on the derived and newly interpreted basic equations making use of the vacuum field theory approach. In particular, there are obtained the main classical special relativity theory relations and their new explanations. The well known Feynman approach to Maxwell electromagnetic equations and the Lorentz type force derivation is also discussed in detail. A related charged point particle dynamics and a hadronic string model analysis is also presented. We also revisited and reanalyzed the classical Lorentz force expression in arbitrary non-inertial reference frames and present some new interpretations of the relations between special relativity theor...

  1. The Potential in General Linear Electrodynamics: Causal Structure, Propagators and Quantization

    CERN Document Server

    Pfeifer, Christian

    2016-01-01

    An axiomatic approach to electrodynamics reveals that Maxwell electrodynamics is just one instance of a variety of theories for which the name electrodynamics is justified. They all have in common that their fundamental input are Maxwell's equations $\\textrm{d} F = 0$ (or $F = \\textrm{d} A$) and $\\textrm{d} H = J$ and a constitutive law $H = \\# F$ which relates the field strength two-form $F$ and the excitation two-form $H$. A local and linear constitutive law defines what is called general linear electrodynamics whose best known application are the effective description of electrodynamics inside media including, e.g., birefringence. We will analyze the classical theory of the electromagnetic potential $A$ before we use methods familiar from mathematical quantum field theory in curved spacetimes to quantize it in a locally covariant way. Our analysis of the classical theory contains the derivation of retarded and advanced propagators, the analysis of the causal structure on the basis of the constitutive law (...

  2. Simulation of the hydrogen ground state in stochastic electrodynamics

    Science.gov (United States)

    Nieuwenhuizen, Theo M.; Liska, Matthew T. P.

    2015-10-01

    Stochastic electrodynamics is a classical theory which assumes that the physical vacuum consists of classical stochastic fields with average energy \\frac{1}{2}{{\\hslash }}ω in each mode, i.e., the zero-point Planck spectrum. While this classical theory explains many quantum phenomena related to harmonic oscillator problems, hard results on nonlinear systems are still lacking. In this work the hydrogen ground state is studied by numerically solving the Abraham-Lorentz equation in the dipole approximation. First the stochastic Gaussian field is represented by a sum over Gaussian frequency components, next the dynamics is solved numerically using OpenCL. The approach improves on work by Cole and Zou 2003 by treating the full 3d problem and reaching longer simulation times. The results are compared with a conjecture for the ground state phase space density. Though short time results suggest a trend towards confirmation, in all attempted modellings the atom ionises at longer times.

  3. Pyroshock testing-electrodynamic shakers

    Science.gov (United States)

    Smallwood, David O.

    2002-05-01

    Far field pyroshock (accelerations less than a few hundred grams, and bandwidths less than a few kHz) can be simulated on electrodynamic shakers. Typically, the specification is in terms of the shock response spectrum (SRS). Wave forms are synthesized which will match the required SRS. The process is not unique, as many wave forms can have essentially the same SRS. Sometimes additional restrictions are placed on the synthesized wave form. Most common are restrictions on the duration of the wave form. The process of synthesizing wave forms, which will match an SRS and conform to the limitations of electrodynamic shakers, will be described. The methods used to reproduce these wave forms on the shaker will then be discussed.

  4. Potentialities of Revised Quantum Electrodynamics

    OpenAIRE

    Lehnert B.

    2013-01-01

    The potentialities of a revised quantum electrodynamic theory (RQED) earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by ...

  5. Accelerator and electrodynamics capability review

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Kevin W [Los Alamos National Laboratory

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  6. Accelerator and Electrodynamics Capability Review

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  7. Renormalizability of generalized quantum electrodynamics

    OpenAIRE

    Bufalo, R.; Pimentel, B. M.; Zambrano, G. E. R.

    2012-01-01

    In this work we present the study of the renormalizability of the Generalized Quantum Electrodynamics ($GQED_{4}$). We begin the article by reviewing the on-shell renormalization scheme applied to $GQED_{4}$. Thereafter, we calculate the explicit expressions for all the counter-terms at one-loop approximation and discuss the infrared behavior of the theory as well. Next, we explore some properties of the effective coupling of the theory which would give an indictment of the validity regime of...

  8. Electrodynamics on extrasolar giant planets

    Energy Technology Data Exchange (ETDEWEB)

    Koskinen, T. T.; Yelle, R. V. [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721-0092 (United States); Lavvas, P. [Groupe de Spectroscopie Moléculaire et Atmosphérique UMR CNRS 7331, Université Reims Champagne-Ardenne, F-51687 Reims (France); Cho, J. Y-K., E-mail: tommi@lpl.arizona.edu [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially

  9. Primordial magnetic fields and nonlinear electrodynamics

    OpenAIRE

    Kunze, Kerstin E.

    2007-01-01

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by lagrangians having a power law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which pri...

  10. Relativistic Entropy and Related Boltzmann Kinetics

    CERN Document Server

    Kaniadakis, G

    2009-01-01

    It is well known that the particular form of the two-particle correlation function, in the collisional integral of the classical Boltzmman equation, fix univocally the entropy of the system, which turn out to be the Boltzmann-Gibbs-Shannon entropy. In the ordinary relativistic Boltzmann equation, some standard generalizations, with respect its classical version, imposed by the special relativity, are customarily performed. The only ingredient of the equation, which tacitely remains in its original classical form, is the two-particle correlation function, and this fact imposes that also the relativistic kinetics is governed by the Boltzmann-Gibbs-Shannon entropy. Indeed the ordinary relativistic Boltzmann equation admits as stationary stable distribution, the exponential Juttner distribution. Here, we show that the special relativity laws and the maximum entropy principle, suggest a relativistic generalization also of the two-particle correlation function and then of the entropy. The so obtained, fully relativ...

  11. SIM(1)-VSR Maxwell-Chern-Simons electrodynamics

    Science.gov (United States)

    Bufalo, R.

    2016-06-01

    In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM (1)-VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and healthy departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges is derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.

  12. SIM$(1)$--VSR Maxwell-Chern-Simons electrodynamics

    CERN Document Server

    Bufalo, R

    2016-01-01

    In this paper we propose a very special relativity (VSR)-inspired generalization of the Maxwell-Chern-Simons (MCS) electrodynamics. This proposal is based upon the construction of a proper study of the SIM$(1)$--VSR gauge-symmetry. It is shown that the VSR nonlocal effects present a significant and health departure from the usual MCS theory. The classical dynamics is analysed in full detail, by studying the solution for the electric field and static energy for this configuration. Afterwards, the interaction energy between opposite charges are derived and we show that the VSR effects play an important part in obtaining a (novel) finite expression for the static potential.

  13. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  14. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  15. Covariant hyperbolization of force-free electrodynamics

    Science.gov (United States)

    Carrasco, F. L.; Reula, O. A.

    2016-04-01

    Force-free electrodynamics (FFE) is a nonlinear system of equations modeling the evolution of the electromagnetic field, in the presence of a magnetically dominated relativistic plasma. This configuration arises on several astrophysical scenarios which represent exciting laboratories to understand physics in extreme regimes. We show that this system, when restricted to the correct constraint submanifold, is symmetric hyperbolic. In numerical applications, it is not feasible to keep the system in that submanifold, and so it is necessary to analyze its structure first in the tangent space of that submanifold and then in a whole neighborhood of it. As has been shown [1], a direct (or naive) formulation of this system (in the whole tangent space) results in a weakly hyperbolic system of evolution equations for which well-posedness for the initial value formulation does not follow. Using the generalized symmetric hyperbolic formalism of Geroch [2], we introduce here a covariant hyperbolization for the FFE system. In fact, in analogy to the usual Maxwell case, a complete family of hyperbolizers is found, both for the restricted system on the constraint submanifold as well as for a suitably extended system defined in a whole neighborhood of it. A particular symmetrizer among the family is then used to write down the pertaining evolution equations, in a generic (3 +1 ) decomposition on a background spacetime. Interestingly, it turns out that for a particular choice of the lapse and shift functions of the foliation, our symmetrized system reduces to the one found in [1]. Finally, we analyze the characteristic structure of the resulting evolution system.

  16. Relativistically strong electromagnetic radiation in a plasma

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  17. Nonlinear Electrodynamics with Singularities (Modernized Born-Infeld Electrodynamics)

    OpenAIRE

    Chernitskii, Alexander A.

    1997-01-01

    Born-Infeld nonlinear electrodynamics are considered. Main attention is given to existence of singular point at static field configuration that M.Born and L.Infeld are considered as a model of electron. It is shown that such singularities are forbidden within the framework of the Born-Infeld model. It is proposed a modernized action that make possible an existence of the singularities. It is obtained main relations in view of the singularities. In initial approximation this model gives the us...

  18. Electrodynamics of disk-accreting magnetic neutron stars

    Science.gov (United States)

    Miller, M. Coleman; Lamb, Frederick K.; Hamilton, Russell J.

    1994-01-01

    We have investigated the electrodynamics of magnetic neutron stars accreting from Keplerian disks and the implications for particle acceleration and gamma-ray emission by such systems. We argue that the particle density in the magnetospheres of such stars is larger by orders of magnitude than the Goldreich-Julian density, so that the formation of vacuum gaps is unlikely. We show that even if the star rotates slowly, electromotive forces (EMFs) of order 10(exp 15) V are produced by the interaction of plasma in the accretion disk with the magnetic field of the neutron star. The resistance of the disk-magnetosphere-star circuit is small, and hence these EMFs drive very large conduction currents. Such large currents are likely to produce magnetospheric instabilities, such as relativistic double layers and reconnection events, that can accelerate electrons or ions to very high energies.

  19. An introduction to relativistic hydrodynamics

    International Nuclear Information System (INIS)

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics

  20. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  1. Theory of relativistic direct interaction

    International Nuclear Information System (INIS)

    Report discusses the structure, the generality and the physical meaning of the relativistic Hamiltonian theory (RHT) as a whole, starting from its most general quantum-field version and finishing with its classical counterpart. It is shown, in particular, that in the absence of bound states any relativistic invariant S-matrix can be obtained in the framework of the RHT. The properties of causality and locality of RHT are discussed, and two mechanisms of interaction transfer are considered. The space-time interaction of the motion of particles inside the direct interaction range is formulated and shown to be non-unique

  2. Relativistic Kinematics

    CERN Document Server

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  3. Relativistic elastica

    International Nuclear Information System (INIS)

    We give a complete description of timelike relativistic elastica, non-geodesic spacetime curves that solve the Euler-Lagrange equations for a lagrangian that depends on the square of the acceleration of the curve as well as its lorentzian length. (orig.)

  4. Generalized Langevin equation for the extended charge in stochastic electrodynamics

    International Nuclear Information System (INIS)

    A covariant equation for the motion of the extended charge is derived and it is shown how a consistent description is achieved for non relativistic velocities. If the external force is generated by the classical stochastic zero-point electromagnetic field the equation of motion has the form a Langevin equation with memory. The memory function is due to radiation reaction and is related to the charge density which it is assumed to be spherically symmetric and rigid in the non relativistic limit. Some deviations from similar attempts are obtained. The extention of the results to finite temperatures is discussed. (Author)

  5. Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory

    CERN Document Server

    Dolce, Donatello

    2016-01-01

    In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...

  6. Some Considerations About Podolsky-Axionic Electrodynamics

    OpenAIRE

    Gaete, Patricio(Departmento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Valparaiso, Chile)

    2011-01-01

    For a Podolsky-axionic electrodynamics, we compute the interaction potential within the structure of the gauge-invariant but path-dependent variables formalism. The result is equivalent to that of axionic electrodynamics from a new noncommutative approach, up to first order in $\\theta$.

  7. A Dyad Theory of Hydrodynamics and Electrodynamics

    OpenAIRE

    Jones, Preston

    2005-01-01

    The dyadic calculus is developed in a form suitable for the description of physical relations in curved space. The 4-space equations of hydrodynamics and electrodynamics are constructed using this dyadic calculus. As a demonstration of the relationship between gravity and electrodynamics a time varying metric is shown to generate electromagnetic radiation.

  8. Minimal theory of quantum electrodynamics

    International Nuclear Information System (INIS)

    Within the general framework of the Lehmann-Symanzik-Zimmermann axiomatic field theory, we obtain a simple and coherent formulation of quantum electrodynamics. The definitions of the current densities fulfill the one-particle stability condition, and the commutation relations for the interacting fields are obtained rather than being postulated a priori, thus avoiding the inconsistencies which appear in the canonical formalism. This is possible due to the fact that we use the integral form of the equations of motion in order to compute the propagators and the S matrix. The resulting spectral representations automatically fulfill the correct boundary conditions thus fixing the ubiquitous quasilocal operators in a unique fashion

  9. Short, high current electrodynamic tether

    OpenAIRE

    Savich, N.A.; Sanmartín Losada, Juan Ramón

    1994-01-01

    An electrodynamic tether experiment, to be carried out in the Russian spacecraft Almaz, is proposed. A 10 km tether would be deployed downwards; the lower 8 km would be nonconductive, the upper 2 km would be conductive, bare, and 2.2 mm in diameter, and would act as a thruster, with power supply at the top. This hybrid arrangement allows for other, onelectrodynamic experiments,reducing costs; it also limits the induced electromotive force, reducing the power to be handled. The current-volt...

  10. A variational formulation of electrodynamics

    CERN Document Server

    De Nicola, Antonio

    2007-01-01

    We present a variational formulation of electrodynamics using de Rham even and odd differential forms. Our formulation relies on a variational principle more complete than the Hamilton principle and thus leads to field equations with external sources and permits the derivation of the constitutive relations. We interpret a domain in space-time as an odd de Rham 4-current. This permits a treatment of different types of boundary problems in an unified way. In particular we obtain a smooth transition to the infinitesimal version by using a current with a one point support.

  11. Quantized Excitation Spectrum of the Classical Harmonic Oscillator in Zero-Point Radiation

    CERN Document Server

    Huang, Wayne Cheng-Wei

    2012-01-01

    We report that upon excitation by a single pulse, the classical harmonic oscillator immersed in classical electromagnetic zero-point radiation, as described by random electrodynamics, exhibits a quantized excitation spectrum in agreement to that of the quantum harmonic oscillator. This numerical result is interesting in view of the generally accepted idea that classical theories do not support quantized energy spectra.

  12. Exploration of the Galilean Moons using Electrodynamic Tethers for Propellantless Maneuvers and Self-Powering

    Science.gov (United States)

    Lorenzini, E. C.; Curreli, D.; Zanutto, D.

    2010-01-01

    Recent studies have demonstrated the benefits of using electrodynamic tethers (EDT) for the exploration of the inner region of the Jovian system. Intense planetary magnetic field and reasonable environmental plasma density make the electrodynamic interaction of the conductive tether with the plasmasphere strong. The interaction is responsible for a Lorentz force that can be conveniently used for propellantless maneuvers and extraction of electrical power for on board use. Jupiter and the four Galilean Moons represent an exceptional gravitational environment for the study of the orbital dynamics of an EDT. The dynamics of such a system was analyzed using a 3-body model, consisting of the planet plus one of its moons (Io in this work) and the EDT itself. New and interesting features appear, like for example the possibility to place the tether in equilibrium with respect to a frame co-rotating with the moon at points that do not coincide with the classical Lagrangian points for non-null electrodynamic forces.

  13. Electrodynamic phenomena induced by a dark fluid: Analogs of pyromagnetic, piezoelectric, and striction effects

    CERN Document Server

    Balakin, Alexander B

    2014-01-01

    We establish a new model of coupling between a cosmic dark fluid and electrodynamic systems, based on an analogy with effects of electric and magnetic striction, piezo-electricity and piezo-magnetism, pyro-electricity and pyro-magnetism, which appear in classical electrodynamics of continuous media. Extended master equations for electromagnetic and gravitational fields are derived using Lagrange formalism. A cosmological application of the model is considered, and it is shown that a striction-type interaction between the dark energy (the main constituent of the dark fluid) and electrodynamic system provides the universe history to include the so-called unlighted epochs, during which electromagnetic waves can not propagate and thus can not scan the universe interior.

  14. Relativistic integro-differential form of the Lorentz-Dirac equation in 3D without runaways

    International Nuclear Information System (INIS)

    It is well known that the third-order Lorentz-Dirac equation admits 'runaway' solutions wherein the energy of the particle grows without limit, even when there is no external force. These solutions can be denied simply on physical grounds, and on the basis of careful analysis of the correspondence between classical and quantum theory. Nonetheless, one would prefer an equation that did not admit unphysical behaviour at the outset. Such an equation - an integro-differential version of the Lorentz-Dirac equation - is currently available either in only one dimension or in three dimensions (3D) in the non-relativistic limit. It is shown herein how the Lorentz-Dirac equation may be integrated without approximation, and is thereby converted to a second-order integro-differential equation in 3D satisfying the above requirement, i.e. as a result, no additional constraints on the solutions are required because runaway solutions are intrinsically absent. The derivation is placed within the historical context established by standard works on classical electrodynamics by Rohrlich, and by Jackson. (author)

  15. General-relativistic force-free pulsar magnetospheres

    CERN Document Server

    Petri, J

    2015-01-01

    Pulsar magnetospheres are shaped by ultra-relativistic electron/positron plasmas flowing in a strong magnetic field and subject to strong gravitational fields. The former induces magnetospheric currents and space charges responsible for the distortion of the electromagnetic field based on pure electrodynamics. The latter induces other perturbations in these fields based on space-time curvature. The force-free approximation describes the response of this magnetosphere to the presence of currents and charges and has been investigated by many authors. In this context, general relativity has been less discussed to quantify its influence on the neutron star electrodynamics. It is the purpose of this paper to compute general-relativistic force-free pulsar magnetospheres for realistic magnetic field configurations such as the inclined dipole. We performed time-dependent simulations of Maxwell equations in the 3+1 formalism of a stationary background metric in the slow-rotation approximation. We computed the resultin...

  16. Gauge Theory for the Rate Equations: Electrodynamics on a Network

    International Nuclear Information System (INIS)

    Systems of coupled rate equations are ubiquitous in many areas of science, for example, in the description of electronic transport through quantum dots and molecules. They can be understood as a continuity equation expressing the conservation of probability. It is shown that this conservation law can be implemented by constructing a gauge theory akin to classical electrodynamics on the network of possible states described by the rate equations. The properties of this gauge theory are analyzed. It turns out that the network is maximally connected with respect to the electromagnetic fields even if the allowed transitions form a sparse network. It is found that the numbers of degrees of freedom of the electric and magnetic fields are equal. The results shed light on the structure of classical Abelian gauge theory beyond the particular motivation in terms of rate equations

  17. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  18. Relativistic Noise

    OpenAIRE

    Kapusta, Joseph; Mueller, Berndt; Stephanov, Misha

    2012-01-01

    The relativistic theory of hydrodynamic fluctuations, or noise, is derived and applied to high energy heavy ion collisions. These fluctuations are inherent in any space-time varying system and are in addition to initial state fluctuations. We illustrate the effects with the boost-invariant Bjorken solution to the hydrodynamic equations. Long range correlations in rapidity are induced by propagation of sound modes. The magnitude of these correlations are directly proportional to the viscositie...

  19. Atmospheric electrodynamics in the U.S. - 1987-1990

    Science.gov (United States)

    Holzworth, R. H.

    1991-01-01

    Atmospheric electrodynamics research is summarized, focusing on three general areas: the ionosphere as a source for middle atmospheric electrodynamics, regional and global scale electrodynamics, and thunderstorms and lightning. New or improved instrumentation techniques which have furthered atmospheric electrodynamics research are also discussed.

  20. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  1. Timeless path integral for relativistic quantum mechanics

    OpenAIRE

    Chiou, Dah-Wei

    2010-01-01

    Starting from the canonical formalism of relativistic (timeless) quantum mechanics, the formulation of timeless path integral is rigorously derived. The transition amplitude is reformulated as the sum, or functional integral, over all possible paths in the constraint surface specified by the (relativistic) Hamiltonian constraint, and each path contributes with a phase identical to the classical action divided by $\\hbar$. The timeless path integral manifests the timeless feature as it is compl...

  2. Primordial magnetic fields and nonlinear electrodynamics

    CERN Document Server

    Kunze, Kerstin E

    2007-01-01

    The creation of large scale magnetic fields is studied in an inflationary universe where electrodynamics is assumed to be nonlinear. After inflation ends electrodynamics becomes linear and thus the description of reheating and the subsequent radiation dominated stage are unaltered. The nonlinear regime of electrodynamics is described by lagrangians having a power law dependence on one of the invariants of the electromagnetic field. It is found that there is a range of parameters for which primordial magnetic fields of cosmologically interesting strengths can be created.

  3. A 3+1 formalism for quantum electrodynamical corrections to Maxwell equations in general relativity

    CERN Document Server

    Pétri, J

    2015-01-01

    Magnetized neutron stars constitute a special class of compact objects harbouring gravitational fields that deviate strongly from the Newtonian weak field limit. Moreover strong electromagnetic fields anchored into the star give rise to non-linear corrections to Maxwell equations described by quantum electrodynamics (QED). Electromagnetic fields close to or above the critical value of $\\BQ=4.4\\times10^9$~T are probably present in some pulsars and for most of the magnetars. To account properly for emission emanating from the neutron star surface like for instance thermal radiation and its polarization properties, it is important to include general relativistic (GR) effects simultaneously with non-linear electrodynamics. This can be achieved through a 3+1 formalism known in general relativity and that incorporates QED perturbations to Maxwell equations. Starting from the lowest order corrections to the Lagrangian for the electromagnetic field, as given for instance by Born-Infeld or Euler-Heisenberg theory, we ...

  4. New scale-relativistic derivations of Pauli and Dirac equations

    International Nuclear Information System (INIS)

    In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schroedinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation

  5. New scale-relativistic derivations of Pauli and Dirac equations

    Energy Technology Data Exchange (ETDEWEB)

    Hammad, F [Departement TC-SETI, Universite A Mira de Bejaia, Route Targa Ouzemmour, 06000 Bejaia (Algeria)], E-mail: fayhammad@yahoo.fr

    2008-02-22

    In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schroedinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation.

  6. New scale-relativistic derivations of Pauli and Dirac equations

    Science.gov (United States)

    Hammad, F.

    2008-02-01

    In scale relativity, quantum mechanics is recovered by transcribing the classical equations of motion to fractal spaces and demanding, as dictated by the principle of scale relativity, that the form of these equations be preserved. In the framework of this theory, however, the form of the classical energy equations both in the relativistic and nonrelativistic cases are not preserved. Aiming to get full covariance, i.e., to restore to these equations their classical forms, we show that the scale-relativistic form of the Schrödinger equation yields the Pauli equation, whilst the Pissondes's scale-relativistic form of the Klein-Gordon equation gives the Dirac equation.

  7. A special relativistic heat engine

    Directory of Open Access Journals (Sweden)

    William S. Cariens

    1983-01-01

    main concepts taken from themodynamics and special relativity are those of a heat engine and E=mc2 respectively. Central to understanding the operation of this relativistic heat engine is the fact that upon heating a mass, its rest mass increases! This concept is nonexistent in classical thermodynamics. An increase in rest mass means that both the internal energy of a mass and its macroscopic kinetic energy increase!!!

  8. Relativistic Field Theory of Fluids

    OpenAIRE

    Jacques, Sylvan A.

    2004-01-01

    Classical relativistic field theory is applied to perfect and magneto-hydrodynamic flows. The fields for Hamilton's principle are shown to be the Lagrangian coordinates of the fluid elements, which are potentials for the matter current 4-vector and the electromagnetic field 2-form. The energy momentum tensor and equations of motion are derived from the fields. In this way the theory of continua is shown to have the same form as other field theories, such as electromagnetism and general relati...

  9. The Relativistic Hyperbolic Parallelogram Law

    OpenAIRE

    Ungar, Abraham A.

    2006-01-01

    A gyrovector is a hyperbolic vector. Gyrovectors are equivalence classes of directed gyrosegments that add according to the gyroparallelogram law just as vectors are equivalence classes of directed segments that add ac- cording to the parallelogram law. In the “gyrolanguage” of this paper one attaches the prefix “gyro” to a classical term to mean the analogous term in hyperbolic geometry. The prefix stems from Thomas gyration, which is the mathematical abstraction of the relativistic effect k...

  10. DYNAMICS OF RELATIVISTIC FLUID FOR COMPRESSIBLE GAS

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper the relativistic fluid dynamics for compressible gas is studied.We show that the strict convexity of the negative thermodynamical entropy preserves invariant under the Lorentz transformation if and only if the local speed of sound in this gas is strictly less than that of light in the vacuum.A symmetric form for the equations of relativistic hydrodynamics is presented,and thus the local classical solutions to these equations can be deduced.At last,the non-relativistic limits of these local cla...

  11. Fluctuational electrodynamics of hyperbolic metamaterials

    CERN Document Server

    Guo, Yu

    2014-01-01

    We give a detailed account of equilibrium and non-equilibrium fluctuational electrodynamics of hyperbolic metamaterials. We show the unifying aspects of two different approaches; one utilizes the second kind of fluctuation dissipation theorem and the other makes use of the scattering method. We analyze the near-field of hyperbolic media at finite temperatures and show that the lack of spatial coherence can be attributed to the multi-modal nature of super-Planckian thermal emission. We also adopt the analysis to phonon-polaritonic super-lattice metamaterials and describe the regimes suitable for experimental verification of our predicted effects. The results reveal that far-field thermal emission spectra are dominated by epsilon-near-zero and epsilon-near-pole responses as expected from Kirchoff's laws. Our work should aid both theorists and experimentalists to study complex media and engineer equilibrium and non-equilibrium fluctuations for applications in thermal photonics.

  12. Electrodynamics of superconducting pnictide superlattices

    International Nuclear Information System (INIS)

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe2As2 superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO3 or of oxygen-rich BaFe2As2, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  13. Planar Multilayer Circuit Quantum Electrodynamics

    Science.gov (United States)

    Minev, Z. K.; Serniak, K.; Pop, I. M.; Leghtas, Z.; Sliwa, K.; Hatridge, M.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2016-04-01

    Experimental quantum information processing with superconducting circuits is rapidly advancing, driven by innovation in two classes of devices, one involving planar microfabricated (2D) resonators, and the other involving machined three-dimensional (3D) cavities. We demonstrate that circuit quantum electrodynamics can be implemented in a multilayer superconducting structure that combines 2D and 3D advantages. We employ standard microfabrication techniques to pattern each layer, and rely on a vacuum gap between the layers to store the electromagnetic energy. Planar qubits are lithographically defined as an aperture in a conducting boundary of the resonators. We demonstrate the aperture concept by implementing an integrated, two-cavity-mode, one-transmon-qubit system.

  14. Renormalizability of generalized quantum electrodynamics

    CERN Document Server

    Bufalo, R; Zambrano, G E R; 10.1103/PhysRevD.86.125023

    2012-01-01

    In this work we present the study of the renormalizability of the Generalized Quantum Electrodynamics ($GQED_{4}$). We begin the article by reviewing the on-shell renormalization scheme applied to $GQED_{4}$. Thereafter, we calculate the explicit expressions for all the counter-terms at one-loop approximation and discuss the infrared behavior of the theory as well. Next, we explore some properties of the effective coupling of the theory which would give an indictment of the validity regime of theory: $m^{2} \\leq k^{2} < m_{P}^{2}$. Afterwards, we make use of experimental data from the electron anomalous magnetic moment to set possible values for the theory free parameter through the one-loop contribution of Podolsky mass-dependent term to Pauli's form factor $F_{2}(q^{2})$.

  15. Potentialities of Revised Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Lehnert B.

    2013-10-01

    Full Text Available The potentialities of a revised quantum electrodynamic theory (RQED earlier established by the author are reconsidered, also in respect to other fundamental theories such as those by Dirac and Higgs. The RQED theory is characterized by intrinsic linear symmetry breaking due to a nonzero divergence of the electric field strength in the vacuum state, as supported by the Zero Point Energy and the experimentally confirmed Casimir force. It includes the results of electron spin and antimatter by Dirac, as well as the rest mass of elementary particles predicted by Higgs in terms of spontaneous nonlinear symmetry breaking. It will here be put into doubt whether the approach by Higgs is the only theory which becomes necessary for explaining the particle rest masses. In addition, RQED theory leads to new results beyond those being available from the theories by Dirac, Higgs and the Standard Model, such as in applications to leptons and the photon.

  16. Radiative corrections in bumblebee electrodynamics

    Directory of Open Access Journals (Sweden)

    R.V. Maluf

    2015-10-01

    Full Text Available We investigate some quantum features of the bumblebee electrodynamics in flat spacetimes. The bumblebee field is a vector field that leads to a spontaneous Lorentz symmetry breaking. For a smooth quadratic potential, the massless excitation (Nambu–Goldstone boson can be identified as the photon, transversal to the vacuum expectation value of the bumblebee field. Besides, there is a massive excitation associated with the longitudinal mode and whose presence leads to instability in the spectrum of the theory. By using the principal-value prescription, we show that no one-loop radiative corrections to the mass term is generated. Moreover, the bumblebee self-energy is not transverse, showing that the propagation of the longitudinal mode cannot be excluded from the effective theory.

  17. Electrostatics in Stueckelberg-Horwitz electrodynamics

    International Nuclear Information System (INIS)

    In this paper, we study fundamental aspects of electrostatics as a special case in Stueckelberg-Horwitz electromagnetic theory. In this theory, spacetime events xμ(τ) evolve in an unconstrained 8-dimensional phase space, interacting through five τ-dependent gauge fields induced by the current densities associated with their evolutions. The chronological time τ was introduced as an independent evolution parameter in order to free the laboratory clock x0 to evolve alternately 'forward' and 'backward' in time according to the sign of the energy, thus providing a classical implementation of the Feynman-Stueckelberg interpretation of pair creation/annihilation. The resulting theory differs in its underlying mechanics from conventional electromagnetism, but coincides with Maxwell theory in an equilibrium limit. After a brief review of Stueckelberg-Horwitz electrodynamics, we obtain the field produced by an event in uniform motion and verify that it satisfies the field equations. We study this field in the rest frame of the event, where it depends explicitly on coordinate time x0 and the parameter τ, as well as spatial distance R. Calculating with this generalized Coulomb field, we demonstrate how Gauss's theorem and Stoke's theorem apply in 4D spacetime, and obtain the fields associated with a charged line and a charged sheet. Finally, we use the field of the charged sheet to study a static event in the vicinity of a potential barrier. In all of these cases, we observe a small transfer of mass from the field to the particle. It is seen that for an event in the field of an oppositely charged sheet of sufficient density, the event can reverse time direction, providing a specific model for pair phenomena.

  18. Spin pumping in electrodynamically coupled magnon-photon systems

    Science.gov (United States)

    Bai, Lihui

    The electronics industry is quickly approaching the limitation of Moore's Law due to Joule heating in high density-integrated devices. To achieve new higher-speed devices and reduce energy consumption, researchers are turning to spintronics where the intrinsic spin, rather than the charge of electrons, is used to carry information in devices. Advances in spintronics have led to the discovery of giant magnetoresistance (GMR), spin transfer torque etc. Another subject, cavity electrodynamics, promises a completely new quantum algorithm by studying the properties of a single electron interacting with photons inside of a cavity. By merging both spintronics and cavity electrodynamics, a new cutting edge field called Cavity Spintronics is forming, which draws on the advantages of both subjects to develop new spintronics devices utilizing light-matter interaction. In this work, we use electrical detection, in combination with microwave transmission, to investigate both resonant and nonresonant magnon-photon coupling in a microwave cavity at room temperature. Spin pumping in a dynamically coupled magnon-photon system is found to be distinctly different from previous experiments. Characteristic coupling features such as modes anticrossing, linewidth evolution, peculiar line shape, and resonance broadening are systematically measured and consistently analyzed by a theoretical model set on the foundation of classical electrodynamic coupling. Our experimental and theoretical approach paves the way for pursuing microwave coherent manipulation of pure spin current via the combination of spin pumping and magnon-photon coupling. Co-authored with M. Harder, C.-M. Hu from University of Manitoba, Y. P. Chen, J. Q. Xiao from University of Delaware, and X. Fan from Univeristy of Denver.

  19. The physical state space of quantum electrodynamics

    International Nuclear Information System (INIS)

    Starting from the fact that electrically charged particles are massive we derive a criterion which characterizes the state space of quantum electrodynamics. This criterion clarifies the special role of the electric charge amongst the uncountably many superselection rules in quantum electrodynamics and provides a basis for a general analysis of the infrared problem. Within this framework we establish the existence of asymptotic electromagnetic fields in all charge-sectors, find a general characterization of infraparticles and introduce a notion of asymptotic completeness. (orig.)

  20. Maxwell's equations of electrodynamics an explanation

    CERN Document Server

    Ball, David W

    2012-01-01

    Maxwell's Equations of Electrodynamics: An Explanation is a concise discussion of Maxwell's four equations of electrodynamics - the fundamental theory of electricity, magnetism, and light. It guides readers step-by-step through the vector calculus and development of each equation. Pictures and diagrams illustrate what the equations mean in basic terms. The book not only provides a fundamental description of our universe but also explains how these equations predict the fact that light is better described as "electromagnetic radiation."

  1. Classical integrability

    Science.gov (United States)

    Torrielli, Alessandro

    2016-08-01

    We review some essential aspects of classically integrable systems. The detailed outline of the sections consists of: 1. Introduction and motivation, with historical remarks; 2. Liouville theorem and action-angle variables, with examples (harmonic oscillator, Kepler problem); 3. Algebraic tools: Lax pairs, monodromy and transfer matrices, classical r-matrices and exchange relations, non-ultralocal Poisson brackets, with examples (non-linear Schrödinger model, principal chiral field); 4. Features of classical r-matrices: Belavin–Drinfeld theorems, analyticity properties, and lift of the classical structures to quantum groups; 5. Classical inverse scattering method to solve integrable differential equations: soliton solutions, spectral properties and the Gel’fand–Levitan–Marchenko equation, with examples (KdV equation, Sine-Gordon model). Prepared for the Durham Young Researchers Integrability School, organised by the GATIS network. This is part of a collection of lecture notes.

  2. Maxwell–Lorentz Electrodynamics Revisited via the Lagrangian Formalism and Feynman Proper Time Paradigm

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogolubov

    2015-04-01

    Full Text Available We review new electrodynamics models of interacting charged point particles and related fundamental physical aspects, motivated by the classical A.M. Ampère magnetic and H. Lorentz force laws electromagnetic field expressions. Based on the Feynman proper time paradigm and a recently devised vacuum field theory approach to the Lagrangian and Hamiltonian, the formulations of alternative classical electrodynamics models are analyzed in detail and their Dirac type quantization is suggested. Problems closely related to the radiation reaction force and electron mass inertia are analyzed. The validity of the Abraham-Lorentz electromagnetic electron mass origin hypothesis is argued. The related electromagnetic Dirac–Fock–Podolsky problem and symplectic properties of the Maxwell and Yang–Mills type dynamical systems are analyzed. The crucial importance of the remaining reference systems, with respect to which the dynamics of charged point particles is framed, is explained and emphasized.

  3. Use of hyperfunctions for classical radiation-reaction calculations

    International Nuclear Information System (INIS)

    It is shown that the use of hyperfunctions for the evaluation of radiation reaction in classical field theories leads to calculational simplifications compared to other methods. As illustrations, we calculate the radiation-reaction terms for systems of point particles in electrodynamics and in the lowest nontrivial order of the ''fast motion'' approximation of general relativity. Applications to other field theories are discussed briefly

  4. Classical and quantum effects in noble metal and graphene plasmonics

    DEFF Research Database (Denmark)

    Mortensen, N. Asger

    2015-01-01

    Plasmonics — the interaction of light with free electrons in metals — is commonly understood within classical electrodynamics using local-response constitutive laws (such as Ohm's law). However, the tight localization of plasmons to small volumes is revealing intriguing new physics...

  5. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  6. Relativistic quantum cryptography

    Science.gov (United States)

    Molotkov, S. N.; Nazin, S. S.

    2003-07-01

    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistitic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not empoly collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of "antedate" coding).

  7. Middle Atmosphere Electrodynamics (MAE). Middle atmospheric electrodynamics during MAP

    Science.gov (United States)

    Goldberg, R. A.

    1989-01-01

    The recent revival and strong motivation for research in middle atmospheric electrodynamics can be attributed, in large part, to the discovery of large (V/m) electric fields within the lower mesosphere during the decade prior to MAP. Subsequent rocket soundings appeared to verify the preliminary findings. During the MAP era, more sophisticated techniques have been employed to obtain measurements which respond positively to criticisms of earlier results, and which provide more insight regarding the character of the fields. The occurrence of mesospheric V/m electric fields now seems to require the presence of aerosols, of local winds and related dynamics, and of an atmospheric electrical conductivity less than 10(-10)S/m. Furthermore, new theoretical ideas describing the origin of the V/m fields are consistent with the measurements. The current status of results regarding V/m fields in the middle atmosphere is reviewed in light of the more widely accepted electric field structure for this region from rocket, balloon and modeling results.

  8. Bound states in the (2+1)D scalar electrodynamics with Chern-Simons term

    International Nuclear Information System (INIS)

    This work studies the existence of bound states for the 3-dimensions scalar electrodynamics, with the Chern-Simons. Quantum field theory is used for calculation of the Mfi scattering matrices, in the non-relativistic approximation. The field propagators responsible for the interaction in the scattering processes have been calculated, and scattering matrices have been constructed. After obtaining the scattering matrix, the cross section in the quantum field theory has been compared with the quantum mechanic cross section in the Born approximation, allowing to obtain the form of the potential responsible for the interactions in the scattering processes. The possibility of bound states are analyzed by using the Schroedinger equation

  9. Role of nonlinearity in non-Hermitian quantum mechanics: Description of linear quantum electrodynamics from the nonlinear Schrödinger-Poisson equation

    Science.gov (United States)

    Reinisch, Gilbert C.; Gazeau, Maxime

    2016-07-01

    In this paper we consider a basic two-level nonlinear quantum model consisting in a two-particle interacting bound-state system. It is described by means of two different approaches: i) the mean-field stationary nonlinear Schrödinger-Poisson equation with classical Coulomb interaction and harmonic potential; ii) the linear quantum electrodynamics Hamiltonian of a quantized field coupled to two fixed charges. Computing numerically the ground state and the first excited state about the maximum eigenstate overlap (which is not zero because of eigenstate non-orthogonality), we numerically demonstrate that these two descriptions coincide at first order. As a consequence, a specific definition of the fine-structure constant α is provided within 99.95% accuracy by the present first-order non-relativistic and nonlinear quantum description. This result also means that the internal Coulomb interaction commutes with external particle confinement for the calculation of the ground state. Consequently peculiar nonlinear quantum properties become observable (an experiment with GaAs quantum-dot helium is suggested).

  10. Classical Models of Subatomic Particles

    OpenAIRE

    Mann, R. B.; Morris, M. S.

    1993-01-01

    We look at the program of modelling a subatomic particle---one having mass, charge, and angular momentum---as an interior solution joined to a classical general-relativistic Kerr-Newman exterior spacetime. We find that the assumption of stationarity upon which the validity of the Kerr-Newman exterior solution depends is in fact violated quantum mechanically for all known subatomic particles. We conclude that the appropriate stationary spacetime matched to any known subatomic particle is flat ...

  11. Classical models of subatomic particles

    International Nuclear Information System (INIS)

    We look at the program of modelling a subatomic particle - one having mass, charge, and angular momentum - as an interior solution joined to a classical general-relativistic Kerr-Newman exterior spacetime. We find that the assumption of stationarity upon which the validity of the Kerr-Newman exterior solution depends is in fact violated quantum mechanically for all known subatomic particles. We conclude that the appropriate stationary spacetime matched to any known subatomic particle is flat space. (orig.)

  12. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Zahn, J.W.

    2006-12-15

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the {phi}{sup 3} and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  13. Dispersion relations in quantum electrodynamics on the noncommutative Minkowski space

    International Nuclear Information System (INIS)

    We study field theories on the noncommutative Minkowski space with noncommuting time. The focus lies on dispersion relations in quantized interacting models in the Yang-Feldman formalism. In particular, we compute the two-point correlation function of the field strength in noncommutative quantum electrodynamics to second order. At this, we take into account the covariant coordinates that allow the construction of local gauge invariant quantities (observables). It turns out that this does not remove the well-known severe infrared problem, as one might have hoped. Instead, things become worse, since nonlocal divergences appear. We also show that these cancel in a supersymmetric version of the theory if the covariant coordinates are adjusted accordingly. Furthermore, we study the Φ3 and the Wess-Zumino model and show that the distortion of the dispersion relations is moderate for parameters typical for the Higgs field. We also discuss the formulation of gauge theories on noncommutative spaces and study classical electrodynamics on the noncommutative Minkowski space using covariant coordinates. In particular, we compute the change of the speed of light due to nonlinear effects in the presence of a background field. Finally, we examine the so-called twist approach to quantum field theory on the noncommutative Minkowski space and point out some conceptual problems of this approach. (orig.)

  14. On a relativistic Fokker-Planck equation in kinetic theory

    CERN Document Server

    Félix, José Antonio Alcántara

    2010-01-01

    A relativistic kinetic Fokker-Planck equation that has been recently proposed in the physical literature is studied. It is shown that, in contrast to other existing relativistic models, the one considered in this paper is invariant under Lorentz transformations in the absence of friction. A similar property (invariance by Galilean transformations in the absence of friction) is verified in the non-relativistic case. In the first part of the paper some fundamental mathematical properties of the relativistic Fokker-Planck equation are established. In particular, it is proved that the model is compatible with the finite propagation speed of particles in relativity. In the second part of the paper, two non-linear relativistic mean-field models are introduced. One is obtained by coupling the relativistic Fokker-Planck equation to the Maxwell equations of electrodynamics, and is therefore of interest in plasma physics. The other mean-field model couples the Fokker-Planck dynamics to a relativistic scalar theory of g...

  15. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  16. Counterfactual errors and state reduction in relativistic quantum physics

    OpenAIRE

    Eakins, Jon; Jaroszkiewicz, George

    2004-01-01

    We use the laws of relativistic physics to show that classically motivated counterfactual statements are inadequate when discussing the principles of quantum physics and that EPR style arguments against state reduction are incorrect.

  17. Conjunctions and Collision Avoidance with Electrodynamic Tethers

    Science.gov (United States)

    Levin, E.

    2013-09-01

    Electrodynamic propulsion technology is currently in development by NASA, ESA, and JAXA for the purpose of affordable removal of large debris objects from LEO. At the same time, the Naval Research Laboratory is preparing a 3U CubeSat with a 1-km electrodynamic tether for a flight demonstration of electrodynamic propulsion. This type of propulsion does not require fuel. The electrodynamic thrust is the Lorentz force acting on the electric current in a long conductor (tether) in the geomagnetic field. Electrons are collected from the ambient plasma on one end and emitted back into the plasma from the other end. The electric current loop is closed through the ionosphere, as demonstrated in two previous flights. The vehicle is solar powered. To support safe navigation of electrodynamic tethers, proper conjunction analysis and collision avoidance strategies are needed. The typical lengths of electrodynamic tethers for near-term applications are measured in kilometers, and the conjunction geometry is very different from the geometry of conjunctions between compact objects. It is commonly thought that the collision cross-section in a conjunction between a tether and a compact object is represented by the product of the tether length and the size of the object. However, rigorous analysis shows that this is not the case, and that the above assumption leads to grossly overestimated collision probabilities. The paper will present the results of a detailed mathematical analysis of the conjunction geometry and collision probabilities in close approaches between electrodynamic tethers and compact objects, such as satellites, rocket bodies, and debris fragments. Electrodynamic spacecraft will not require fuel, and therefore, can thrust constantly. Their orbit transfers can take many days, but can result in major orbit changes, including large rotations of the orbital plane, both in the inclination and the node. During these orbit transfers, the electrodynamic spacecraft will

  18. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  19. A Classical Approach to Multichromophoric Resonance Energy Transfer

    CERN Document Server

    Duque, Sebastian; Pachon, Leonardo A

    2014-01-01

    Enhanced rates in multichromophoric resonance energy transfer are shown to be well described by a classical theory based on classical electrodynamics. In a coupling configuration between $N_A$ acceptors and $N_D$ donors, the theory correctly predicts an enhancement of the energy transfer rate dependent on the total number of donor-acceptor pairs, $N_A N_D$. As an example, the theory, applied to the transfer rate in LH II, gives results in excellent agreement with experiment.

  20. Divergence of Electric Field of Continuous and of a Point Charge for Relativistic and non-Relativistic Motion

    CERN Document Server

    Zhakatayev, Altay

    2016-01-01

    In this paper we considered divergence of electric and of magnetic fields for four cases: classical point charge, classical continuous charge, relativistic point and relativistic continuous charges. Results for classical and relativistic point charges are the same as in literature, i.e. Gauss's law is valid. However results for time-varying classical and relativistic distributed charges indicate that divergence of electric field is not zero even for volumes of space where no charges are present. For these cases original Gauss's law might require modification. Divergence of electric field seems to be far-field type scalar anisotropic field, which is generated by time-varying electric charges or currents. Results indicate that for these effects to be sufficiently large to be experimentally observable the time variation of electric charges and/or of currents should be very fast. Divergence of magnetic field is zero for all cases.

  1. Classical Tunneling

    CERN Document Server

    Cohn, A G; Rabinowitz, Mario

    2003-01-01

    A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission coefficient.

  2. Classical Tunneling

    OpenAIRE

    Cohn, Arthur; Rabinowitz, Mario

    2003-01-01

    A classical representation of an extended body over barriers of height greater than the energy of the incident body is shown to have many features in common with quantum tunneling as the center-of-mass literally goes through the barrier. It is even classically possible to penetrate any finite barrier with a body of arbitrarily low energy if the body is sufficiently long. A distribution of body lengths around the de Broglie wavelength leads to reasonable agreement with the quantum transmission...

  3. Classical Motion

    OpenAIRE

    Mould, Richard A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previous...

  4. Electrodynamics of superconducting pnictide superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Perucchi, A.; Pietro, P. Di [INSTM Udr Trieste-ST and Elettra - Sincrotrone Trieste S.C.p.A., Area Science Park, I-34012 Trieste (Italy); Capitani, F. [Dipartimento di Fisica, Università di Roma Sapienza, Piazzale Aldo Moro 2, I-00185 Rome (Italy); Lupi, S. [CNR-IOM and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, I-00185 Roma (Italy); Lee, S.; Kang, J. H.; Eom, C. B. [Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Jiang, J.; Weiss, J. D.; Hellstrom, E. E. [Applied Superconductivity Center, National High Magnetic Field Laboratory, Florida State University, 2031 East Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Dore, P. [CNR-SPIN and Dipartimento di Fisica, Università di Roma Sapienza, P.le Aldo Moro 2, I-00185 Roma (Italy)

    2014-06-02

    It was recently shown that superlattices where layers of the 8% Co-doped BaFe{sub 2}As{sub 2} superconducting pnictide are intercalated with non superconducting ultrathin layers of either SrTiO{sub 3} or of oxygen-rich BaFe{sub 2}As{sub 2}, can be used to control flux pinning, thereby increasing critical fields and currents, without significantly affecting the critical temperature of the pristine superconducting material. However, little is known about the electron properties of these systems. Here, we investigate the electrodynamics of these superconducting pnictide superlattices in the normal and superconducting state by using infrared reflectivity, from THz to visible range. We find that multigap structure of these superlattices is preserved, whereas some significant changes are observed in their electronic structure with respect to those of the original pnictide. Our results suggest that possible attempts to further increase the flux pinning may lead to a breakdown of the pnictide superconducting properties.

  5. Global electrodynamics from superpressure balloons

    Science.gov (United States)

    Holzworth, R. H.; Hu, H.

    1995-01-01

    Electric field and conductivity measurements in the stratosphere between November 1992 and March 1993 have been made using superpressure balloons in the southern hemisphere. Over 400 payload-days of data have been made during a record setting experiment called ELBBO (Extended Life Balloon Borne Observatories). This experiment resulted in 4 flights aloft simultaneously for over 2 months including one flight which lasted over 4 months. Electrodynamical coupling between the atmosphere and ionosphere is studied using the measured electric fields, and a simple empirical model of the stratospheric conductivity. Altitude profiles of conductivity have been obtained from several superpressure balloon flights using the large end-of-flight altitude swings on the last few days of each flight (as the balloon begins to loose superpressure). Coupling between the fields and atmospheric inertial waves has been observed. Effects and dynamics of the global circuit suggest that standard models are missing significant phenomena. Large scale ionospheric convection activity has been studied from the polar cap to the middle latitudes. Cusp latitude fields have been continuously measured for many days in a row.

  6. Nanofriction in Cavity Quantum Electrodynamics.

    Science.gov (United States)

    Fogarty, T; Cormick, C; Landa, H; Stojanović, Vladimir M; Demler, E; Morigi, Giovanna

    2015-12-01

    The dynamics of cold trapped ions in a high-finesse resonator results from the interplay between the long-range Coulomb repulsion and the cavity-induced interactions. The latter are due to multiple scatterings of laser photons inside the cavity and become relevant when the laser pump is sufficiently strong to overcome photon decay. We study the stationary states of ions coupled with a mode of a standing-wave cavity as a function of the cavity and laser parameters, when the typical length scales of the two self-organizing processes, Coulomb crystallization and photon-mediated interactions, are incommensurate. The dynamics are frustrated and in specific limiting cases can be cast in terms of the Frenkel-Kontorova model, which reproduces features of friction in one dimension. We numerically recover the sliding and pinned phases. For strong cavity nonlinearities, they are in general separated by bistable regions where superlubric and stick-slip dynamics coexist. The cavity, moreover, acts as a thermal reservoir and can cool the chain vibrations to temperatures controlled by the cavity parameters and by the ions' phase. These features are imprinted in the radiation emitted by the cavity, which is readily measurable in state-of-the-art setups of cavity quantum electrodynamics. PMID:26684118

  7. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  8. On some applications of Galilean electrodynamics of moving bodies

    Science.gov (United States)

    de Montigny, M.; Rousseaux, G.

    2007-11-01

    We discuss the seminal article by Le Bellac and Lévy-Leblond in which they identified two Galilean limits (called "electric" and "magnetic" limits) of electromagnetism and their implications. Recent work has shed new light on the choice of gauge conditions in classical electromagnetism. We show that the recourse to potentials is compelling in order to demonstrate the existence of both (electric and magnetic) limits. We revisit some nonrelativistic systems and related experiments, in the light of these limits, in quantum mechanics, superconductivity, and the electrodynamics of continuous media. Much of the current technology where waves are not taken into account can be described in a coherent fashion by the two limits of Galilean electromagnetism instead of an inconsistent mixture of these limits.

  9. Quantum electrodynamics and plasmonic resonance of metallic nanostructures.

    Science.gov (United States)

    Zhang, Mingliang; Xiang, Hongping; Zhang, Xu; Lu, Gang

    2016-04-20

    Plasmonic resonance of a metallic nanostructure results from coherent motion of its conduction electrons driven by incident light. At the resonance, the induced dipole in the nanostructure is proportional to the number of the conduction electrons, hence 10(7) times larger than that in an atom. The interaction energy between the induced dipole and fluctuating virtual field of the incident light can reach a few tenths of an eV. Therefore, the classical electromagnetism dominating the field may become inadequate. We propose that quantum electrodynamics (QED) may be used as a fundamental theory to describe the interaction between the virtual field and the oscillating electrons. Based on QED, we derive analytic expressions for the plasmon resonant frequency, which depends on three easily accessible material parameters. The analytic theory reproduces very well the experimental data, and can be used in rational design of materials for plasmonic applications. PMID:26987436

  10. Numerical Simulation of Single Microparticle Trajectory in an Electrodynamic Balance

    Institute of Scientific and Technical Information of China (English)

    冯昭华; 朱家骅; 杨雪峰; 夏素兰; 关国强; DavisE.J.

    2004-01-01

    By introducing Oseen's formula to describe the viscous drag force, a more complete motion equation for a charged microparticle levitated in an electrodynamic balance (EDB) has been put forward and solved numerically by the classic Runge-Kutta method in this paper. The theoretical results have firstly demonstrated the existence of the particle oscillations and their characteristics, especially of the springpoint oscillation at large amplitude .And through the comparisons of theoretical and experimental trajectories, the adopted motion equation has proved to be able to rigorously describe the particle motion in non-Stokes region--the shape of trajectory and frequencycharacteristics are fairlv consistent and the deviations of amnliturla c~n n~llzll~r ho lo~ th~n 1cIfr/~

  11. Optical gyrotropy from axion electrodynamics in momentum space.

    Science.gov (United States)

    Zhong, Shudan; Orenstein, Joseph; Moore, Joel E

    2015-09-11

    Several emergent phenomena and phases in solids arise from configurations of the electronic Berry phase in momentum space that are similar to gauge field configurations in real space such as magnetic monopoles. We show that the momentum-space analogue of the "axion electrodynamics" term E·B plays a fundamental role in a unified theory of Berry-phase contributions to optical gyrotropy in time-reversal invariant materials and the chiral magnetic effect. The Berry-phase mechanism predicts that the rotatory power along the optic axes of a crystal must sum to zero, a constraint beyond that stipulated by point-group symmetry, but observed to high accuracy in classic experimental observations on alpha quartz. Furthermore, the Berry mechanism provides a microscopic basis for the surface conductance at the interface between gyrotropic and nongyrotropic media. PMID:26406854

  12. Non-relativistic leptogenesis

    OpenAIRE

    Bödeker, Dietrich; Wörmann, Mirco(Fakultät für Physik, Universität Bielefeld, Bielefeld, D-33615 Germany)

    2013-01-01

    In many phenomenologically interesting models of thermal leptogenesis the heavy neutrinos are non-relativistic when they decay and produce the baryon asymmetry of the Universe. We propose a non-relativistic approximation for the corresponding rate equations in the non-resonant case, and a systematic way for computing relativistic corrections. We determine the leading order coefficients in these equations, and the first relativistic corrections. The non-relativistic appr...

  13. On the Galilean Non-Invariance of Classical Electromagnetism

    Science.gov (United States)

    Preti, Giovanni; de Felice, Fernando; Masiero, Luca

    2009-01-01

    When asked to explain the Galilean non-invariance of classical electromagnetism on the basis of pre-relativistic considerations alone, students--and sometimes their teachers too--may face an impasse. Indeed, they often argue that a pre-relativistic physicist could most obviously have provided the explanation "at a glance", on the basis of the…

  14. New theoretical and practical aspects regarding electrodynamic relativity

    International Nuclear Information System (INIS)

    The relativity theory of Einstein and Minkowski, based on the principle of inertial systems equivalence and Lorentz's kinematics transformation, was born from the necessity of agreement between the theory of moving mediums and experimental observations. Although Lorentz's transformation was found in pre- relativistic electrodynamics, later the electrodynamics phenomena (and not only) were explained by kinematics relations. Faraday's experiences that rendered manifest importance of the relative movement between the inductor and the induced system, is well known today from the theory and practice of electrical machines. The tensor symbolic intrinsic 'manifest covariant' expressions of the state and evolution equations for the electromagnetic field used by the physicists are elegant but non-intuitive and unfriendly for engineers. The quadritensors of electromagnetic fields contain six independent Cartesian components: two absolute, parallel to the relative translation velocity vector of the inertial reference system and four relative components perpendicular to the velocity vector. That is way it is possible and didactically useful the split of quadritensors and quadrivectors in bitensors and bivectors for simplifying the tensor equations expressed in an explicit matrix form, which is covariant and intuitive. The Lorentz's transformation of space - temporal derivative operators and thus the transformation of proper coordinate of reference system is obtained as a consequence (and not as a premise) of the electromagnetic field properties. For non-relativistic velocities the moving in a magnetic field creates an important electric field but the moving in an electric field leads to an unimportant practically insignificant magnetic field. That is way, the hypothesis that magnetic field density as an absolute value and the constitutive relation B = μ0H also the magnetic fields intensity remains absolute, is practically justified. From the Maxwell homogeneous equations a

  15. Electrodynamic activity of healthy and cancer cells

    International Nuclear Information System (INIS)

    Microtubules in the cell form a structure capable of generating electrodynamic field and mitochondria form their supporting system for physical processes including energy supply. Mitochondria transfer protons from their matrix space into cytosol, create strong static field around them that causes ordering of water and altering it into quasi-elastic medium with reduced viscous damping. Microtubules are composed of heterodimers that are electric dipoles. Microtubule oscillations generate an electrodynamic field. The greatest energy supply may be provided by liberation of non-utilized energy from mitochondria. Microtubules and mitochondria form a unique cooperating system in the cell. Mitochondria form a boundary element whose function depends on chemical-genetic control but their output is essential for physical processes in the cell. Mitochondrial dysfunction in cancer cells results in diminished intensity of the static electric field, disturbed water ordering, increased damping of microtubule oscillations and their shift towards linear region, and decreased energy supply. Power and coherence of oscillations and generated electrodynamic field is weakened. Malignant properties of cancer cell, in particular local invasion and metastasis, may depend on disturbed electrodynamic field. Nanotechnology is promising for investigation of electrodynamic activity in living cells.

  16. On Quantum Corrections to Chern-Simons Spinor Electrodynamics

    CERN Document Server

    Chaichian, Masud; Fainberg, V Ya

    1998-01-01

    We make a detailed investigation on the quantum corrections to Abelian Chern-Simons spinor electrodynamics. Starting from Chern-Simons spinor quantum electrodynamics with the Maxwell term $-1/(4\\gamma){\\int}d^3x F_{\\mu\

  17. Relativistic Thermodynamics: A Modern 4-Vector Approach

    Directory of Open Access Journals (Sweden)

    J. Güémez

    2011-01-01

    Full Text Available Using the Minkowski relativistic 4-vector formalism, based on Einstein's equation, and the relativistic thermodynamics asynchronous formulation (Grøn (1973, the isothermal compression of an ideal gas is analyzed, considering an electromagnetic origin for forces applied to it. This treatment is similar to the description previously developed by Van Kampen (van Kampen (1969 and Hamity (Hamity (1969. In this relativistic framework Mechanics and Thermodynamics merge in the first law of relativistic thermodynamics expressed, using 4-vector notation, such as ΔUμ  =  Wμ  +  Qμ, in Lorentz covariant formulation, which, with the covariant formalism for electromagnetic forces, constitutes a complete Lorentz covariant formulation for classical physics.

  18. Theoretical study of ultra-relativistic laser electron interaction with radiation reaction by quantum description

    International Nuclear Information System (INIS)

    In the near future, the intensity of the ultra-short pulse laser will reach to 1022 W/cm2. When an electron is irradiated by this laser, the electron's behavior is relativistic with significant bremsstrahlung. This radiation from the electron is regarded as the energy loss of electron. Therefore, the electron's motion changes because of the kinetic energy changing. This radiation effect on the charged particle is the self-interaction, called the 'radiation reaction' or the 'radiation damping'. For this reason, the radiation reaction appears in laser electron interactions with an ultra-short pulse laser whose intensity becomes larger than 1022 W/cm2. In the classical theory, it is described by the Lorentz-Abraham-Dirac (LAD) equation. But, this equation has a mathematical difficulty, which we call the 'run-away'. Therefore, there are many methods for avoiding this problem. However, Dirac's viewpoint is brilliant, based on the idea of quantum electrodynamics. We propose a new equation of motion in the quantum theory with radiation reaction in this paper. (author)

  19. Flux-limited diffusion with relativistic corrections

    International Nuclear Information System (INIS)

    A recently reported flux-limited diffusion theory is extended to include relativistic terms, correct to first order in the fluid velocity. We show that this diffusion theory is fully flux limited, and yields the correct result for the radiative flux in the classical diffusion limit, namely a Fick's law component plus a v/c convective term

  20. Determination and verification of the electrodynamic postulates

    Science.gov (United States)

    Mann, Philip Jay

    1998-12-01

    The foundation of this research is a set of fundamental postulates from which electromagnetic theories can be derived. This set includes postulates on the following: (i)Velocity of light in vacuum, (ii)Kinematics of source and/or receiver, (iii)Temporal/spacial differentiation. The objective is to demonstrate which particular postulates will be able to correctly formulate a generalized electrodynamic theory based on Galilean relativity, which is consistent with the concept of universal time. This is significant because classical electromagnetic theory, in its current formulation, is inadequate in many regards: (1)Classical electromagnetism does not permit the establishment of universal time. (2)Explanation of crucial experiments is not postulate unique. (3)Quantities in classical electromagnetic theory are not coordinate invariant. (4) Longitudinal forces in current-carrying wires have been observed. (5)Mathematical problems with taking derivatives of functions with multiple-nested dependency. (i)Velocity of light. In current electromagnetic theory it is tacitly assumed (although not always explicitly stated) that the speed of light is always constant in all co-ordinate systems regardless of the motion of the source or receiver. This particular postulate is known as the velocity invariance of light, and is the cornerstone of special relativity. There is very little directly known about the speed of light and the interpretation of indirect experimental data, which does exist, is ambiguous. Even the often cited landmark experiments, with meson decay and atomic clocks in motion, do not prove the constancy of the speed of light. Rather, they only demonstrate that if the speed of light is invariant, then the conclusion that time ``dilates'' and length ``contracts'' as a function of velocity, must necessarily follow. This is just a consequence of the postulate, and does not prove its validity. (ii)Kinematics of source and/or receiver kinematics. is the study of

  1. Renormalizable Electrodynamics of Scalar and Vector Mesons. Part II

    Science.gov (United States)

    Salam, Abdus; Delbourgo, Robert

    1964-01-01

    The "gauge" technique" for solving theories introduced in an earlier paper is applied to scalar and vector electrodynamics. It is shown that for scalar electrodynamics, there is no {lambda}φ*2φ2 infinity in the theory, while with conventional subtractions vector electrodynamics is completely finite. The essential ideas of the gauge technique are explained in section 3, and a preliminary set of rules for finite computation in vector electrodynamics is set out in Eqs. (7.28) - (7.34).

  2. Finite Field-Energy and Interparticle Potential in Logarithmic Electrodynamics

    OpenAIRE

    Gaete, Patricio(Departmento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Valparaiso, Chile); Helayël-Neto, José(Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, RJ, Brasil)

    2013-01-01

    We pursue an investigation of logarithmic electrodynamics, for which the field energy of a point-like charge is finite, as happens in the case of the usual Born–Infeld electrodynamics. We also show that, contrary to the latter, logarithmic electrodynamics exhibits the feature of birefringence. Next, we analyze the lowest-order modifications for both logarithmic electrodynamics and for its non-commutative version, within the framework of the gauge-invariant path-dependent variables formalism. ...

  3. Classical Motion

    CERN Document Server

    Mould, R A

    2003-01-01

    Preciously given rules allow conscious systems to be included in quantum mechanical systems. There rules are derived from the empirical experience of an observer who witnesses a quantum mechanical interaction leading to the capture of a single particle. In the present paper it is shown that purely classical changes experienced by an observer are consistent with these rules. Three different interactions are considered, two of which combine classical and quantum mechanical changes. The previously given rules support all of these cases. Key Words: brain states, conscious observer, detector, measurement, probability current, state reduction, von Neumann, wave collapse.

  4. Anomalous skin effects in relativistic parallel propagating weakly magnetized electron plasma waves

    International Nuclear Information System (INIS)

    Fully relativistic analysis of anomalous skin effects for parallel propagating waves in a weakly magnetized electron plasma is presented and general expressions for longitudinal and transverse permittivites are derived. It is found that the penetration depth for R- and L-waves increases as we move from non-relativistic to highly relativistic regime. The ambient magnetic field reduces/enhances the skin effects for R-wave/L-wave as the strength of the field is increased. In general, the weak magnetic field effects are pronounced for the weakly relativistic regime as compared with other relativistic cases. The results are also graphically illustrated. On switching off the magnetic field, previous results for field free case are retrieved [A. F. Alexandrov, A. S. Bogdankevich, and A. A. Rukhadze, Priniples of Plasma Electrodynamics (Springer-Verlag, Berlin, Heidelberg, 1984), Vol. 9, p. 106].

  5. An electric charge has no screw sense--a comment on the twistfree formulation of electrodynamics by da Rocha & Rodrigues

    CERN Document Server

    Itin, Yakov; Hehl, Friedrich W

    2009-01-01

    Da Rocha and Rodigues (RR) claim (i) that in classical electrodynamics in vector calculus the distinction between polar and axial vectors and in exterior calculus between twisted and untwisted forms is inappropriate and superfluous, and (ii) that they can derive the Lorentz force equation from Maxwell's equations. As to (i), we point out that the distinction of polar/axial and twisted/untwisted derives from the property of the electric charge of being a pure scalar, that is, not carrying any screw sense. Therefore, the mentioned distinctions are necessary ingredients in any fundamental theory of electrodynamics. If one restricted the allowed coordinate transformations to those with positive Jacobian determinants (or prescribed an equivalent constraint), then the RR scheme could be accommodated; however, such a restriction is illegal since electrodynamics is, in fact, also covariant under transformations with negative Jacobians. As to (ii), the "derivation" of the Lorentz force from Maxwell's equations, we poi...

  6. A non-relativistic Model of Plasma Physics Containing a Radiation Reaction Term

    OpenAIRE

    Bauer, Sebastian

    2016-01-01

    While a fully relativistic collisionless plasma is modeled by the Vlasov-Maxwell system a good approximation in the non-relativistic limit is given by the Vlasov-Poisson system. We modify the Vlasov-Poisson system so that damping due to the relativistic effect of radiation reaction is included. We prove the existence and uniqueness as well as the higher regularity of local classical solutions. These theorems also include the higher regularity of classical solutions of the Vlasov-Poisson syste...

  7. Derivation of the relativistic momentum and relativistic equation of motion from Newton's second law and Minkowskian space-time geometry

    CERN Document Server

    Rębilas, Krzysztof

    2014-01-01

    Starting from the classical Newton's second law which, according to our assumption, is valid in any instantaneous inertial rest frame of body that moves in Minkowskian space-time we get the relativistic equation of motion $\\vec{F}=d\\vec{p}/dt$, where $\\vec{p}$ is the relativistic momentum. The relativistic momentum is then derived without referring to any additional assumptions concerning elastic collisions of bodies. Lorentz-invariance of the relativistic law is proved without tensor formalism. Some new method of force transformation is also presented.

  8. Microfabricated electrodynamic transformers for electromechanical power conversion

    International Nuclear Information System (INIS)

    This paper presents a compact power electronic device, called an ‘electrodynamic transformer (ET)’, that transfers electrical power between isolated circuits through electrodynamically coupled vibrations of a mechanical beam structure. Background motivating factors are discussed, and an equivalent circuit model of the ET is presented. A microscale (10 mm3) ET is designed, fabricated and characterized, achieving ∼40% maximum efficiency. Taking advantage of the unique circuit topology of the ET equivalent circuit model, a dc/ac power inverter is then implemented with only two external components, a MOSFET and a capacitor. (paper)

  9. Classical entanglement

    OpenAIRE

    Danforth, Douglas G.

    2001-01-01

    Classical systems can be entangled. Entanglement is defined by coincidence correlations. Quantum entanglement experiments can be mimicked by a mechanical system with a single conserved variable and 77.8% conditional efficiency. Experiments are replicated for four particle entanglement swapping and GHZ entanglement.

  10. Classical Mechanics

    OpenAIRE

    Gallavotti, Giovanni

    1999-01-01

    This is the English version of a friendly graduate course on Classical Mechanics, containing about 80% of the material I covered during the January-June 1999 semester at IFUG in the Mexican city of Leon. For the Spanish version, see physics/9906066

  11. Balance equations in semi-relativistic quantum hydrodynamics

    CERN Document Server

    Ivanov, A Yu; Kuz'menkov, L S

    2014-01-01

    Method of the quantum hydrodynamics has been applied in quantum plasmas studies. As the first step in our consideration, derivation of classical semi-relativistic (i. e. described by the Darwin Lagrangian on microscopic level) hydrodynamical equations is given after a brief review of method development. It provides better distinguishing between classic and quantum semi-relativistic effects. Derivation of the classical equations is interesting since it is made by a natural, but not very widespread method. This derivation contains explicit averaging of the microscopic dynamics. Derivation of corresponding quantum hydrodynamic equations is presented further. Equations are obtained in the five-momentum approximation including the continuity equation, Euler and energy balance equations. It is shown that relativistic corrections lead to presence of new quantum terms in expressions for a force field, a work field etc. The semi-relativistic generalization of the quantum Bohm potential is obtained. Quantum part of the...

  12. Polymeric Coatings for Electrodynamic Tethers

    Science.gov (United States)

    Vaughn, Jason A.; Kamenetzky, Rachel R.; Finckenor, Miria M.; Schuler, Peter

    2000-01-01

    Two polymeric coatings have been developed for the Propulsive Small Expendable Deployer System (ProSEDS) mission. ProSEDS is designed to provide an on-orbit demonstration of the electrodynamic propulsion capabilities of tethers in space. The ProSEDS experiment will be a secondary payload on a Delta II unmanned expendable booster scheduled for launch in August 2000. A 5-km conductive tether is attached to the Delta 11 second stage and collects current from the low Earth orbit (LEO) plasma to facilitate de-orbit of the spent stage. The conductive tether is attached to a 10-km non-conductive tether, the other end of which is attached to an endmass containing several scientific instruments. A bare metal tether would have the best conductivity but thermal concerns preclude this design. A conductive polymer developed by Triton Systems has been optimized for conductivity and thermo-optical properties. The current design for the ProSEDS conductive tether is seven strands of 28 AWG aluminum wire individually coated with 8.7 micrometers (0.35 mil) of an atomic oxygen-resistant conductive polymer composed of a mixture of 87% Clear Oxygen-Resistant polymer (COR) and 13% polyanaline (PANi), wrapped around a braided Kevlar (TM) 49 core. Extensive testing has been performed at the Marshall Space Flight Center (MSFC) to qualify this material for flight on ProSEDS. Atomic oxygen exposure was performed, with solar absorptance and infrared emittance measured before and after exposure. Conductivity was measured before and after atomic oxygen exposure. High voltage tests, up to 1500 V, of the current collecting ability of the COR/PANi have been completed. Approximately 160 meters of the conductive tether closest to the Delta 11 second stage is insulated to prevent any electron reconnection to the tether from the plasma contactor. The insulation is composed of polyimide overcoated with TOR-BP, another polymeric coating developed by Triton for this mission. TOR-BP acts as both insulator

  13. On the Electrodynamics of Moving Permanent Dipoles in External Electromagnetic Fields

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    The classical theory of electrodynamics is built upon Maxwell's equations and the concepts of electromagnetic field, force, energy and momentum, which are intimately tied together by Poynting's theorem and the Lorentz force law. Whereas Maxwell's macroscopic equations relate the electric and magnetic fields to their material sources (i.e., charge, current, polarization and magnetization), Poynting's theorem governs the flow of electromagnetic energy and its exchange between fields and material media, while the Lorentz law regulates the back-and-forth transfer of momentum between the media and the fields. The close association of momentum with energy thus demands that the Poynting theorem and the Lorentz law remain consistent with each other, while, at the same time, ensuring compliance with the conservation laws of energy, linear momentum, and angular momentum. This paper shows how a consistent application of the aforementioned laws of electrodynamics to moving permanent dipoles (both electric and magnetic) b...

  14. Mathematica® for Theoretical Physics Electrodynamics, Quantum Mechanics, General Relativity and Fractals

    CERN Document Server

    Baumann, Gerd

    2005-01-01

    Mathematica for Theoretical Physics: Electrodynamics, Quantum Mechanics, General Relativity, and Fractals This second edition of Baumann's Mathematica® in Theoretical Physics shows readers how to solve physical problems and deal with their underlying theoretical concepts while using Mathematica® to derive numeric and symbolic solutions. Each example and calculation can be evaluated by the reader, and the reader can change the example calculations and adopt the given code to related or similar problems. The second edition has been completely revised and expanded into two volumes: The first volume covers classical mechanics and nonlinear dynamics. Both topics are the basis of a regular mechanics course. The second volume covers electrodynamics, quantum mechanics, relativity, and fractals and fractional calculus. New examples have been added and the representation has been reworked to provide a more interactive problem-solving presentation. This book can be used as a textbook or as a reference work, by student...

  15. Atomistic electrodynamics simulations of bare and ligand-coated nanoparticles in the quantum size regime.

    Science.gov (United States)

    Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse

    2015-01-01

    The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications. PMID:26555179

  16. On Photon Spin and the Electrodynamic Origin of the charge of the Electron

    CERN Document Server

    Fischer, Ulrich C

    2016-01-01

    We recently performed experiments on the transfer of photon spin to electron orbital angular momentum. For an interpretation of the experimental results we used a classical electrodynamic model of the photon as a propagating electromagnetic solitary wave which is developed in detail here. A linearly polarized monochromatic photon is considered as a propagating solitary electromagnetic wave of finite energy hf which carries an angular momentum h/2pi with the frequency f and Plancks constant h. This model has, apart from being a tool for an interpretation of our experimental results, far reaching consequences of fundamental relevance and guides us to an outline to a unified quantum theory of electromagnetism and gravitation including an explanation of the electrodynamic origin of the quantized charge of an electron.

  17. The cosmological origins of nonlinear Electrodynamics

    CERN Document Server

    Novello, M

    2016-01-01

    We present a mechanism that allows to describe any nonlinear theory of Electrodynamics as a consequence of the coupling of the electromagnetic field to gravity in the presence of a vacuum represented by the cosmological constant. We emphasize gravity\\rq s exclusive role of catalysis.

  18. On Calculation of Amplitudes in Quantum Electrodynamics

    OpenAIRE

    Karplyuk, Kostyantyn; Zhmudsky, Oleksandr

    2012-01-01

    A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.

  19. Massless quantum electrodynamics: a variational study

    International Nuclear Information System (INIS)

    The variational method was used to study the probable existence of a compound vacuum in quantum electrodynamics. An Ansatz containing a condensate of electron-positron pairs was investigated and an optimization equation for the condensate wave function found. (L.C.J.A.)

  20. Electrodynamic Tethers for Novel LEO Missions

    Science.gov (United States)

    Kantner, Michael; Hoyt, Robert; Scardera, Michael; Johnson, Charles

    2011-01-01

    The exponential increase of launch system size - and cost - with deltaV makes missions requiring large total impulse cost prohibitive. Northrop Grumman and partners have matured a fundamentally different method for generating propulsion using electrodynamic tethers (EDTs) that escapes the limitations of the rocket equation. With essentially unlimited delta V, we can perform new classes of missions that are currently unaffordable or unfeasible.

  1. Quantum Hall Effect in Quantum Electrodynamics

    OpenAIRE

    Penin, Alexander A.

    2008-01-01

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak universal dependence of the von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted.

  2. Electrodynamics in One Dimension: Radiation and Reflection

    Science.gov (United States)

    Asti, G.; Coisson, R.

    2011-01-01

    Problems involving polarized plane waves and currents on sheets perpendicular to the wavevector involve only one component of the fields, so it is possible to discuss electrodynamics in one dimension. Taking for simplicity linearly polarized sinusoidal waves, we can derive the field emitted by currents (analogous to dipole radiation in three…

  3. Flux Modulation in the Electrodynamic Loudspeaker

    DEFF Research Database (Denmark)

    Halvorsen, Morten; Tinggaard, Carsten; Agerkvist, Finn T.

    2015-01-01

    This paper discusses the effect of flux modulation in the electrodynamic loudspeaker with main focus on the effect on the force factor. A measurement setup to measure the AC flux modulation with static voice coil is explained and the measurements shows good consistency with FEA simulations...

  4. Minimal resonator loss for circuit quantum electrodynamics

    NARCIS (Netherlands)

    Barends, R.; Vercruyssen, N.; Endo, A.; De Visser, P.J.; Zijlstra, T.; Klapwijk, T.M.; Diener, P.; Yates, S.J.C.; Baselmans, J.J.A.

    2010-01-01

    We report quality factors of up to 500x10³ in superconducting resonators at the single photon levels needed for circuit quantum electrodynamics. This result is achieved by using NbTiN and removing the dielectric from regions with high electric fields. As demonstrated by a comparison with Ta, the cru

  5. Quantum Electrodynamics in Photonic Crystal Waveguides

    DEFF Research Database (Denmark)

    Nielsen, Henri Thyrrestrup

    In this thesis we have performed quantum electrodynamics (QED) experiments in photonic crystal (PhC) waveguides and cavity QED in the Anderson localized regime in disordered PhC waveguides. Decay rate measurements of quantum dots embedded in PhC waveguides has been used to map out the variations in...

  6. Pulse interaction in nonlinear vacuum electrodynamics

    OpenAIRE

    Ignatov, A. M.; Poponin, V. P.

    2000-01-01

    The energy-momentum conservation law is used to investigate the interaction of pulses in the framework of nonlinear electrodynamics with Lorentz-invariant constitutive relations. It is shown that for the pulses of the arbitrary shape the interaction results in phase shift only.

  7. Students' Difficulties with Vector Calculus in Electrodynamics

    Science.gov (United States)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-01-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven…

  8. Lamb Shift in Nonrelativistic Quantum Electrodynamics.

    Science.gov (United States)

    Grotch, Howard

    1981-01-01

    The bound electron self-energy or Lamb shift is calculated in nonrelativistic quantum electrodynamics. Retardation is retained and also an interaction previously dropped in other nonrelativistic approaches is kept. Results are finite without introducing a cutoff and lead to a Lamb shift in hydrogen of 1030.9 MHz. (Author/JN)

  9. On the Galilean non-invariance of classical electromagnetism

    International Nuclear Information System (INIS)

    When asked to explain the Galilean non-invariance of classical electromagnetism on the basis of pre-relativistic considerations alone, students-and sometimes their teachers too-may face an impasse. Indeed, they often argue that a pre-relativistic physicist could most obviously have provided the explanation 'at a glance', on the basis of the presence of a parameter c with the dimensions of a velocity in Maxwell's equations, being well aware of the fact that any velocity is non-invariant in Galilean relativity. This 'obvious' answer, however popular, is not correct due to the actual observer-invariance of the Maxwell parameter c in pre-relativistic physics too. A pre-relativistic physicist would therefore have needed a different explanation. Playing the role of this physicist, we pedagogically show how a proof of the Galilean non-invariance of classical electromagnetism can be obtained, resting on simple pre-relativistic considerations alone

  10. Relativistic Theory of Superconductivity

    OpenAIRE

    Capelle, K.; Marques, M. A. L.; Gross, E. K. U.

    2001-01-01

    The relativistic generalization of the theory of superconductivity is reviewed with respect to its conceptual basis and first applications. The construction of relativistically covariant order parameters for superconductors is outlined and the generalization of the Dirac equation for the superconducting state is presented. A weakly relativistic expansion of this equation leads to the Pauli equation for superconductors, which describes the lowest-order relativistic corrections to the conventio...

  11. Relativistic diffusive transport

    OpenAIRE

    Haba, Z.

    2009-01-01

    We discuss transport equations resulting from relativistic diffusions in the proper time. We show that a solution of the transport equation can be obtained from the solution of the diffusion equation by means of an integration over the proper time. We study the stochastic processes solving the relativistic diffusion equation and the relativistic transport equation. We show that the relativistic transport equation for massive particles in the light cone coordinates and for massless particles i...

  12. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  13. The relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang L.

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here are of...... semi-classical nature. Our result on atoms and molecules is proved from a general semi-classical estimate for relativistic operators with potentials with Coulomb-like singularities. This semi-classical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains a...

  14. General relativistic tidal heating for Moller pseudotensor

    CERN Document Server

    So, Lau Loi

    2015-01-01

    Thorne elucidated that the relativistic tidal heating is the same as the Newtonian theory. Moreover, Thorne also claimed that the tidal heating is independent of how one localizes gravitational energy and is unambiguously given by a certain formula. Purdue and Favata calculated the tidal heating for different classical pseudotensors including Moller and obtained the results all matched with the Newtonian perspective. After re-examined this Moller pseudotensor, we find that there does not exist any tidal heating value. Thus we claim that the relativistic tidal heating is pseudotensor independent under the condition that if the peusdotensor is a Freud typed superpotential.

  15. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  16. Ten years of born and infeld electrodynamics investigations

    Energy Technology Data Exchange (ETDEWEB)

    Vellozo, Sergio O. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil); Helayel Neto, Jose Abdala [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Assis, Leonardo P. G. De [Stanford University (United States); Gaete, Patricio [U.S.M. (Chile)

    2013-07-01

    Full text: In this year, our group celebrates ten years of incursions in four-dimensional (3+1) Born and Infeld Electrodynamics (BIE). As is well known, BIE is a classical and nonlinear theory and it predicts a maximum finite value for the electric field, preventing the occurrence of classical singularities. It gives also finite energy for a point-like electric charge. In this period, our main effort was on BIE magnetic sector and the most significant results were: 1. the finite and well behaved magnetostatic field solution for a point-like electric charge at rest, 2. the intrinsic angular momentum (spin) as a self interaction among electric and magnetic field, 3. the cohesive resultant force, using the same natural and simple mechanism, giving stability to the electric charge. Another BIE incursion line stands for three-dimensional (2+1). We investigated the consequences of the space-time dimensionality on the existence of magnetostatic fields generated by electric charges at rest in an inertial frame, which were present in our four-dimensional version. A magnetostatic field associated with an electric charge at rest does not appear in this case. Interestingly, the addition of the topological term (Chern-Simons) to BIE yields the appearance of the magnetostatic field. Finally, we are looking for the hydrogen-like atom spectrum under the BI electrostatic potential, as well the muonic atom spectrum. (author)

  17. Ten years of born and infeld electrodynamics investigations

    International Nuclear Information System (INIS)

    Full text: In this year, our group celebrates ten years of incursions in four-dimensional (3+1) Born and Infeld Electrodynamics (BIE). As is well known, BIE is a classical and nonlinear theory and it predicts a maximum finite value for the electric field, preventing the occurrence of classical singularities. It gives also finite energy for a point-like electric charge. In this period, our main effort was on BIE magnetic sector and the most significant results were: 1. the finite and well behaved magnetostatic field solution for a point-like electric charge at rest, 2. the intrinsic angular momentum (spin) as a self interaction among electric and magnetic field, 3. the cohesive resultant force, using the same natural and simple mechanism, giving stability to the electric charge. Another BIE incursion line stands for three-dimensional (2+1). We investigated the consequences of the space-time dimensionality on the existence of magnetostatic fields generated by electric charges at rest in an inertial frame, which were present in our four-dimensional version. A magnetostatic field associated with an electric charge at rest does not appear in this case. Interestingly, the addition of the topological term (Chern-Simons) to BIE yields the appearance of the magnetostatic field. Finally, we are looking for the hydrogen-like atom spectrum under the BI electrostatic potential, as well the muonic atom spectrum. (author)

  18. Shock Dynamics In Relativistic Jets

    CERN Document Server

    Cantó, J; Fernández-López, M; González, R F; Hernández-Gómez, A

    2013-01-01

    We present a formalism of the dynamics of internal shocks in relativistic jets where the source has a time-dependent injection velocity and mass-loss rate. The variation of the injection velocity produces a two-shock wave structure, the working surface, that moves along the jet. This new formalism takes into account the fact that momentum conservation is not valid for relativistic flows where the relativistic mass lost by radiation must be taken into account, in contrast to the classic regime. We find analytic solutions for the working surface velocity and radiated energy for the particular case of a step function variability of the injection parameters. We model two cases: a pulse of fast material and a pulse of slow material (with respect to the mean flow). Applying these models to gamma ray burst light curves, one can determine the ratio of the Lorentz factors gamma_2 / gamma_1 and the ratio of the mass-loss rates dot{m_2} / dot{m_1} of the upstream and downstream flows. As an example, we apply this model ...

  19. Mass, momentum and kinetic energy of a relativistic particle

    International Nuclear Information System (INIS)

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of non-relativistic classical dynamics are postulated, in an axiomatic form which does not employ the concept of force. The axiomatic statements of the second and third laws of relativistic dynamics, which yield the relativistic definitions of mass and four-momentum and the conservation of four-momentum for an isolated pair of relativistic particles with a small relative velocity, are proved as simple consequences of the classical ones and of the Lorentz transformation of coordinates. Then, relativistic four-force and three-force are defined, and the expression of relativistic kinetic energy is deduced. Finally, a simple proof of the Lorentz invariance of the conservation of the sum of four-momenta for any set of particles, with arbitrary relative velocities, is presented.

  20. Field Theories from the Relativistic Law of Motion

    CERN Document Server

    Singh, P; Singh, Parampreet; Dadhich, Naresh

    2001-01-01

    From the relativistic law of motion we attempt to deduce the field theories corresponding to the force law being linear and quadratic in 4-velocity of the particle. The linear law leads to the vector gauge theory which could be the abelian Maxwell electrodynamics or the non-abelian Yang-Mills theory. On the other hand the quadratic law demands spacetime metric as its potential which is equivalent to demanding the Principle of Equivalence.It leads to the tensor theory of gravitational field - General Relativity. It is remarkable that a purely dynamical property of the force law leads uniquely to the corresponding field theories.

  1. Note on Maxwell's equations in relativistically rotating frames

    Science.gov (United States)

    Kichenassamy, S.; Krikorian, R. A.

    1994-11-01

    It is shown that the relativistic rotation transformation of Trocheris and Takeno restores the full Lorentz covariance of electrodynamics, lost in previous investigations using the Galilean rotation transformation along with the Frenet-Serret tetrad associated to the world line of a rotating observer of velocity v=ωΛr; it also recovers, at the approximation of small velocities, the results of the anholonomic approach corresponding to the use of the ``instantaneous'' Lorentz transformation of Galilean velocity v=ωr (in domains restricted by r

  2. Undamped relativistic magnetoplasmons in lossy two-dimensional electron systems

    CERN Document Server

    Volkov, V A

    2016-01-01

    We address electrodynamic effects in plasma oscillations of a lossy 2D electron system whose dc 2D conductivity is comparable to the speed of light. We argue that the perpendicular dc magnetic field B causes astonishing features of magnetoplasma dynamics. We show that plasmon-polariton spectra can be classified using a "relativistic" phase diagram 2D conductivity divided by the speed of light versus B. A novel, extraordinarily low damping branch in magnetoplasmon-polariton spectra emerges at two phases of this diagram. Some magnetoplasmons at these phases are predicted to be undamped waves.

  3. Strong-field relativistic processes in highly charged ions

    International Nuclear Information System (INIS)

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr30+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  4. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  5. Resonances and adiabatic invariance in classical and quantum scattering theory

    CERN Document Server

    Jain, S R

    2004-01-01

    We discover that the energy-integral of time-delay is an adiabatic invariant in quantum scattering theory and corresponds classically to the phase space volume. The integral thus found provides a quantization condition for resonances, explaining a series of results recently found in non-relativistic and relativistic regimes. Further, a connection between statistical quantities like quantal resonance-width and classical friction has been established with a classically deterministic quantity, the stability exponent of an adiabatically perturbed periodic orbit. This relation can be employed to estimate the rate of energy dissipation in finite quantum systems.

  6. Classical tachyons

    International Nuclear Information System (INIS)

    A review of tachyons, with particular attention to their classical theory, is presented. The extension of Special Relativity to tachyons in two dimensional is first presented, an elegant model-theory which allows a better understanding also of ordinary physics. Then, the results are extended to the four-dimensional case (particular on tachyon mechanics) that can be derived without assuming the existence of Super-luminal reference-frames. Localizability and the unexpected apparent shape of tachyonic objects are discussed, and it is shown (on the basis of tachyon kinematics) how to solve the common causal paradoxes. In connection with General Relativity, particularly the problem of the apparent superluminal expansions in astrophysics is reviewed. The problem (still open) of the extension of relativitic theories to tachyons in four dimensions is tackled, and the electromagnetic theory of tachyons, a topic that can be relevant also for the experimental side, is reviewed. (Author)

  7. EMC Test Report Electrodynamic Dust Shield

    Science.gov (United States)

    Carmody, Lynne M.; Boyette, Carl B.

    2014-01-01

    This report documents the Electromagnetic Interference E M I evaluation performed on the Electrodynamic Dust Shield (EDS) which is part of the MISSE-X System under the Electrostatics and Surface Physics Laboratory at Kennedy Space Center. Measurements are performed to document the emissions environment associated with the EDS units. The purpose of this report is to collect all information needed to reproduce the testing performed on the Electrodynamic Dust Shield units, document data gathered during testing, and present the results. This document presents information unique to the measurements performed on the Bioculture Express Rack payload; using test methods prepared to meet SSP 30238 requirements. It includes the information necessary to satisfy the needs of the customer per work order number 1037104. The information presented herein should only be used to meet the requirements for which it was prepared.

  8. Students' difficulties with vector calculus in electrodynamics

    Science.gov (United States)

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-12-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  9. Students' difficulties with vector calculus in electrodynamics

    CERN Document Server

    Bollen, Laurens; De Cock, Mieke

    2015-01-01

    Understanding Maxwell's equations in differential form is a prerequisite to study the electrodynamic phenomena that are discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found they are quite skilled at doing calculations, but struggle with interpreting graphical representations of vector fields and applying vector calculus to physical situations. We have found strong indications that traditional instruction is not sufficient for our students to fully understand the meaning and power of Maxwell's equations in electrodynamics.

  10. Investigation on regulators in quantum electrodynamics

    CERN Document Server

    Stora, Raymond Félix

    We present in this work three models which are able to suppress the divergences of approximate versions of Quantum Electrodynamics.It is indeed argued that, in view of the smallness of the fine structure constant, not only the first terms of a perturbation expansion, or of an expansion according to the number of particles involved in intermediate states, gives a fair approximattonbut furthermore, that it is in these terms that a breakdown of electrodynamics should be sought. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. Our goal is to connect the high energy behaviour of relevant physical processes with the suppression of the divergences. The first model assumes the existence of a photon cut off, whose observable consequences are clearly stated, and of a fermion out off which, although unable to give a satisfactory ...

  11. Modified Nonlinear Model of Arcsin-Electrodynamics

    Science.gov (United States)

    Kruglov, S. I.

    2016-07-01

    A new modified model of nonlinear arcsin-electrodynamics with two parameters is proposed and analyzed. We obtain the corrections to the Coulomb law. The effect of vacuum birefringence takes place when the external constant magnetic field is present. We calculate indices of refraction for two perpendicular polarizations of electromagnetic waves and estimate bounds on the parameter γ from the BMV and PVLAS experiments. It is shown that the electric field of a point-like charge is finite at the origin. We calculate the finite static electric energy of point-like particles and demonstrate that the electron mass can have the pure electromagnetic nature. The symmetrical Belinfante energy-momentum tensor and dilatation current are found. We show that the dilatation symmetry and dual symmetry are broken in the model suggested. We have investigated the gauge covariant quantization of the nonlinear electrodynamics fields as well as the gauge fixing approach based on Dirac's brackets.

  12. Continuum mechanics, stresses, currents and electrodynamics.

    Science.gov (United States)

    Segev, Reuven

    2016-04-28

    The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space-time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vector-valued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamics may be replaced by the condition that the force functional is continuous with respect to the flat topology of forms. PMID:27002071

  13. Relativistic Remnants of Non-Relativistic Electrons

    OpenAIRE

    Kashiwa, Taro; Yamaguchi, Taisuke

    2014-01-01

    Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.

  14. Octonion wave equation and tachyon electrodynamics

    Indian Academy of Sciences (India)

    P S Bisht; O P S Negi

    2009-09-01

    The octonion wave equation is discussed to formulate the localization spaces for subluminal and superluminal particles. Accordingly, tachyon electrodynamics is established to obtain a consistent and manifestly covariant equation for superluminal electromagnetic fields. It is shown that the true localization space for bradyons (subluminal particles) is 4 - (three space and one time dimensions) space while that for the description of tachyons is 4 - (three time and one space dimensions) space.

  15. Quantum electrodynamic perspective on multiphoton ionization

    International Nuclear Information System (INIS)

    A fully quantum nonperturbative method is developed to describe multiphoton ionization in intense fields. It is shown that, treating the radiation field with quantum electrodynamic (QED) theory enables the authors to obtain the above-threshold ionization energy distribution spectrum in analytical form firstly. Moreover, in addition to the well-known semiclassical theory, the framework presented here, derived from a QED perspective, provides a new picture of the multiphoton ionization

  16. Students' difficulties with vector calculus in electrodynamics

    OpenAIRE

    Bollen, Laurens; van Kampen, Paul; De Cock, Mieke

    2015-01-01

    Understanding Maxwell's equations in differential form is of great importance when studying the electrodynamic phenomena discussed in advanced electromagnetism courses. It is therefore necessary that students master the use of vector calculus in physical situations. In this light we investigated the difficulties second year students at KU Leuven encounter with the divergence and curl of a vector field in mathematical and physical contexts. We have found that they are quite skilled at doing ca...

  17. Integral model of pulsed electrodynamic launcher

    Czech Academy of Sciences Publication Activity Database

    Karban, P.; Ulrych, B.; Doležel, Ivo

    Graz: Technical University of Graz, 2006, s. 295-300. ISBN 3-902465-56-5. [International Symposium on Numerical Field Calculation in Electrical Engineering - IGTE /12./. Graz (AT), 18.09.2006-20.09.2006] R&D Projects: GA ČR(CZ) GA102/04/0095 Institutional research plan: CEZ:AV0Z20570509 Keywords : electrodynamic launching * integral approach * numerical simulation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  18. Path Integral Quantization of Generalized Quantum Electrodynamics

    OpenAIRE

    Bufalo, Rodrigo; Pimentel, Bruto Max; Zambrano, German Enrique Ramos

    2010-01-01

    In this paper, a complete covariant quantization of generalized electrodynamics is shown through the path integral approach. To this goal, we first studied the hamiltonian structure of system following Dirac's methodology and, then, we followed the Faddeev-Senjanovic procedure to obtain the transition amplitude. The complete propagators (Schwinger-Dyson-Fradkin equations) of the correct gauge fixation and the generalized Ward-Fradkin-Takahashi identities are also obtained. Afterwards, an expl...

  19. Auroral electrodynamics of plasma boundary regions

    OpenAIRE

    Liléo, Sónia

    2009-01-01

    The electrodynamic coupling between the auroral ionosphere and the magnetosphere is the main subject of this thesis. Satellite measurements of electric and magnetic fields and of charged particles are used to explore three distinct plasma boundaries, magnetically linked to the nightside auroral ionosphere. These boundaries are the inner edge of the plasma sheet (PS), and the inner and the outer edges of the plasma sheet boundary layer (PSBL). Strong ionospheric electric fields with amplitudes...

  20. Test of quantum electrodynamics at PETRA

    International Nuclear Information System (INIS)

    Differential cross sections for the reactions e+e → e+e- and e+e- → γγ are given for energies between 27.7 and 31.6 GeV. The results agree with the predictions of standard quantum electrodynamics and set lower limits to the usual cut off parameters of up to 104 GeV. A limit on the Weinberg angle, sin2theta sub(W) 2. (orig.)

  1. To the proof of manifest relativistic invariance of transverse variables in QED

    International Nuclear Information System (INIS)

    The quantization of electrodynamics in terms of transverse physical variables is accomplished. At all the steps of the theory construction: 1) the choice of transverse variables, 2) the choice of energy-momentum tensor, 3) quantization, 4) the Feynman diagram description the manifest gauge and relativistic invariance is preserved. For the transverse variables the relativistic-invariant self-energy of the electron is calculated. The results completely solve the problem of renormalization of physical quantities on the mass shell for the physical variables

  2. The existence and unambiguity of solutions of the nonlinear equations of the plasma electrodynamics in the kinetic description

    International Nuclear Information System (INIS)

    The problem of the existence and unambiguity of the electrodynamics plasma equations in the kinetic description has been considered. The local existence and unambiguity of the solutions of the relativistic and one-dimensional Maxwell-Vlasov equations has been proved using the contractile representations principle and choosing a suitable Banach space for the functions describing states of a plasma. It has been also assumed that the initial particles distribution has a compact support in relation to momenta. The existence and unambiguity of the solution of the nonrelativistic, electrostatic plasma model have also been proved. (S.B.)

  3. Assimilative Mapping of Interhemispheric Polar Ionospheric Electrodynamics

    Science.gov (United States)

    Matsuo, T.; Richmond, A. D.; Knipp, D. J.; McGranaghan, R. M.

    2015-12-01

    The Earth's main magnetic field is asymmetric between hemispheres due to its non-dipolar component, leading to various hemispherical differences in the coupling among the solar wind, magnetosphere and ionosphere. Manifestation of the asymmetric coupling through different electrodynamic parameters reported in past studies is considerably diverse. To fill the gap in our current understanding, obtained so far by analyzing individual parameters separately and comparing statistical behaviors of the parameters, we quantify the degree of instantaneous inter-hemispheric imbalance of electromagnetic energy deposition (Poynting flux), field-aligned currents, and convection electric fields though global and self-consistent analysis of electrodynamic variables at both polar regions, by means of data assimilation. Inter-hemispheric assimilative maps of different high-latitude electrodynamical parameters are obtained from simultaneous analysis of multiple types of space-based and ground-based observations made available though the AMPERE, SuperDARN, SuperMAG and DMSP programs with rigorous consideration of the uncertainty associated with each observation.

  4. Coulomb's law modification in nonlinear and in noncommutative electrodynamics

    OpenAIRE

    Gaete, Patricio(Departmento de Física and Centro Científico-Tecnológico de Valparaíso, Universidad Técnica Federico Santa María, Valparaiso, Chile); Schmidt, Iván

    2003-01-01

    We study the lowest-order modifications of the static potential for Born-Infeld electrodynamics and for the $\\theta$-expanded version of the noncommutative U(1) gauge theory, within the framework of the gauge-invariant but path-dependent variables formalism. The calculation shows a long-range correction ($1/r^5$-type) to the Coulomb potential in Born-Infeld electrodynamics. However, the Coulomb nature of the potential (to order $e^2$) is preserved in noncommutative electrodynamics.

  5. Awaking the vacuum in relativistic stars

    CERN Document Server

    Lima, William C C; Vanzella, Daniel A T

    2010-01-01

    Void of any inherent structure in classical physics, the vacuum has revealed to be incredibly crowded with all sorts of processes in relativistic quantum physics. Yet, its direct effects are usually so subtle that its structure remains almost as evasive as in classical physics. Here, in contrast, we report on the discovery of a novel effect according to which the vacuum is compelled to play an unexpected central role in an astrophysical context. We show that the formation of relativistic stars may lead the vacuum energy density of a quantum field to an exponential growth. The vacuum-driven evolution which would then follow may lead to unexpected implications for astrophysics, while the observation of stable neutron-star configurations may teach us much on the field content of our Universe.

  6. Dynamical spin effects in ultra-relativistic laser pulses

    OpenAIRE

    Wen, Meng; Bauke, Heiko; Keitel, Christoph H.

    2014-01-01

    The dynamics of single laser-driven electrons and many particle systems with spin are investigated on the basis of a classical theory. We demonstrate that the spin forces can alter the electron dynamics in an ultra-relativistic laser field due to the coupling of the electron's spin degree of freedom to its kinematic momentum. High-energy electrons can acquire significant spin-dependent transverse momenta while passing through a counterpropagating ultra-relativistic infrared laser pulse. Numer...

  7. Relativistic mechanical-thermodynamical formalism -- description of inelastic collisions

    CERN Document Server

    Guemez, Julio; Fernandez, Luis A

    2016-01-01

    We present a relativistic formalism inspired on the Minkowski four-vectors that also includes conservation laws such as the first law of thermodynamics. It remains close to the relativistic four-vector formalism developed for a single particle, but it is also related to the classical treatment of problems that imperatively require both the Newton's second law and the energy conservation law. We apply the developed formalism to inelastic collisions to better show how it works.

  8. Possible potentials responsible for stable circular relativistic orbits

    OpenAIRE

    Kumar, Prashant; Bhattacharya, Kaushik

    2011-01-01

    Bertrand's theorem in classical mechanics of the central force fields attracts us because of its predictive power. It categorically proves that there can only be two types of forces which can produce stable, circular orbits. In the present article an attempt has been made to generalize Bertrand's theorem to the central force problem of relativistic systems. The stability criterion for potentials which can produce stable, circular orbits in the relativistic central force problem has been deduc...

  9. Relativistic mechanical-thermodynamical formalism—description of inelastic collisions

    Science.gov (United States)

    Güémez, J.; Fiolhais, M.; Fernández, L. A.

    2016-01-01

    We present a relativistic formalism inspired by the Minkowski four-vectors that also includes conservation laws such as the first law of thermodynamics. It remains close to the relativistic four-vector formalism developed for a single particle, but is also related to the classical treatment of problems that require both Newton's second law and the energy conservation law. We apply the developed formalism to inelastic collisions to better show how it works.

  10. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  11. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  12. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  13. Directed Relativistic Blast Wave

    OpenAIRE

    Gruzinov, Andrei

    2007-01-01

    A spherically symmetrical ultra-relativistic blast wave is not an attractor of a generic asymmetric explosion. Spherical symmetry is reached only by the time the blast wave slows down to non-relativistic velocities, when the Sedov-Taylor-von Neumann attractor solution sets in. We show however, that a directed relativistic explosion, with the explosion momentum close to the explosion energy, produces a blast wave with a universal intermediate asymptotic -- a selfsimilar directed ultra-relativi...

  14. RELATIVISTIC TRANSPORT-THEORY

    NARCIS (Netherlands)

    MALFLIET, R

    1993-01-01

    We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.

  15. Synchrotron radiation of a relativistic magneton

    Energy Technology Data Exchange (ETDEWEB)

    Bordovitsyn, V.A.; Torres, R.

    1986-11-01

    The classical theory of synchrotron radiation of an electrically neutral relativistic particle with a large intrinsic magnetic moment is considered (g-factor much greater than unit). The spectral-angular composition and polarization of the radiation are studied. The magneton radiation self-polarization time is calculated. It is shown that identical results follow from the Ternov-Bagrov-Khapaev quantum theory constructed on the basis of the Dirac-Pauli equation for a neutron.

  16. Two centre problems in relativistic atomic physics

    OpenAIRE

    McConnell, Sean R.

    2012-01-01

    The work contained within this thesis is concerned with the explanation and usage of a set of theoretical procedures for the study of static and dynamic two–centre problems in the relativistic framework of Dirac’s equation. Two distinctly different theories for handling time–dependent atomic interactions are reviewed, namely semi–classical perturbation theory and a non–perturbative numerical technique based on the coupled channel equation to directly solve the time–dependent, two–centre Dirac...

  17. Relativistic Toda chain at root of unity

    OpenAIRE

    Pakuliak, S.; Sergeev, S.

    2001-01-01

    We declare briefly several interesting features of the quantum relativistic Toda chain at N-th root of unity. We consider the finite dimensional representation of the Weyl algebra. The origin of the features mentioned is that we consider simultaneously the quantum finite dimensional part and the classical dynamics of N-th powers of Weyl's elements. As the main result, using the technique of Q-operators, we establish a correspondence between the separation of variables in the quantum model and...

  18. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; XU Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical Gelds and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined.%We investigate the quantum discord dynamics in a cavity quantum electrodynamics system,which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields,and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields.It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields.Finally,the influence of the classical driving field on the fidelity of the system is also examined.

  19. Balance equations in semi-relativistic quantum hydrodynamics

    Science.gov (United States)

    Ivanov, A. Yu.; Andreev, P. A.; Kuz'menkov, L. S.

    2014-05-01

    Method of the quantum hydrodynamics has been applied in quantum plasmas studies. As the first step in our consideration, derivation of classical semi-relativistic (i.e., described by the Darwin Lagrangian on microscopic level) hydrodynamical equations is given after a brief review of method development. It provides better distinguishing between classic and quantum semi-relativistic effects. Derivation of the classical equations is interesting since it is made by a natural, but not very widespread method. This derivation contains explicit averaging of the microscopic dynamics. Derivation of corresponding quantum hydrodynamic equations is presented further. Equations are obtained in the five-momentum approximation including the continuity equation, Euler and energy balance equations. It is shown that relativistic corrections lead to presence of new quantum terms in expressions for a force field, a work field etc. The semi-relativistic generalization of the quantum Bohm potential is obtained. Quantum part of the energy current, which is an analog of the quantum Bohm potential for the energy evolution equation, is derived. The Langmuir wave dispersion in semi-relativistic quantum plasmas, corresponding to the Darwin Lagrangian, is also considered to demonstrate contribution of semi-relativistic effects on basic plasma phenomenon.

  20. Relativistic model for statevector reduction

    International Nuclear Information System (INIS)

    A relativistic quantum field model describing statevector reduction for fermion states is presented. The time evolution of the states is governed by a Schroedinger equation with a Hamiltonian that has a Hermitian and a non-Hermitian part. In addition to the fermions, the Hermitian part describes positive and negative energy mesons of equal mass, analogous to the longitudinal and timelike photons of electromagnetism. The meson-field-sum is coupled to the fermion field. This ''dresses'' each fermion so that, in the extreme nonrelativistic limit (non-moving fermions), a fermion in a position eigenstate is also in an eigenstate of the meson-field-difference with the Yukawa-potential as eigenvalue. However, the fermions do not interact: this is a theory of free dressed fermions. It is possible to obtain a stationary normalized ''vacuum'' state which satisfies two conditions analogous to the gauge conditions of electromagnetism (i.e., that the meson-field-difference, as well as its time derivative, give zero when applied to the vacuum state), to any desired degree of accuracy. The non-Hermitian part of the Hamiltonian contains the coupling of the meson-field-difference to an externally imposed c-number fluctuating white noise field, of the CSL (Continuous Spontaneous Localization) form. This causes statevector reduction, as is shown in the extreme nonrelativistic limit. For example, a superposition of spatially separated wavepackets of a fermion will eventually be reduced to a single wavepacket: the meson-field-difference discriminates among the Yukawa-potential ''handles'' attached to each wavepacket, thereby selecting one wavepacket to survive by the CSL mechanism. Analysis beyond that given in this paper is required to see what happens when the fermions are allowed to move. (It is possible that the ''vacuum'' state becomes involved in the dynamics so that the ''gauge'' conditions can no longer be maintained.) It is shown how to incorporate these ideas into quantum