WorldWideScience

Sample records for classical communication quantum

  1. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited...

  2. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases...

  3. Classical noise, quantum noise and secure communication

    International Nuclear Information System (INIS)

    Tannous, C; Langlois, J

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems. (review)

  4. Simultaneous classical communication and quantum key distribution using continuous variables*

    Science.gov (United States)

    Qi, Bing

    2016-10-01

    Presently, classical optical communication systems employing strong laser pulses and quantum key distribution (QKD) systems working at single-photon levels are very different communication modalities. Dedicated devices are commonly required to implement QKD. In this paper, we propose a scheme which allows classical communication and QKD to be implemented simultaneously using the same communication infrastructure. More specially, we propose a coherent communication scheme where both the bits for classical communication and the Gaussian distributed random numbers for QKD are encoded on the same weak coherent pulse and decoded by the same coherent receiver. Simulation results based on practical system parameters show that both deterministic classical communication with a bit error rate of 10-9 and secure key distribution could be achieved over tens of kilometers of single-mode fibers. It is conceivable that in the future coherent optical communication network, QKD will be operated in the background of classical communication at a minimal cost.

  5. Experimental multiplexing of quantum key distribution with classical optical communication

    International Nuclear Information System (INIS)

    Wang, Liu-Jun; Chen, Luo-Kan; Ju, Lei; Xu, Mu-Lan; Zhao, Yong; Chen, Kai; Chen, Zeng-Bing; Chen, Teng-Yun; Pan, Jian-Wei

    2015-01-01

    We demonstrate the realization of quantum key distribution (QKD) when combined with classical optical communication, and synchronous signals within a single optical fiber. In the experiment, the classical communication sources use Fabry-Pérot (FP) lasers, which are implemented extensively in optical access networks. To perform QKD, multistage band-stop filtering techniques are developed, and a wavelength-division multiplexing scheme is designed for the multi-longitudinal-mode FP lasers. We have managed to maintain sufficient isolation among the quantum channel, the synchronous channel and the classical channels to guarantee good QKD performance. Finally, the quantum bit error rate remains below a level of 2% across the entire practical application range. The proposed multiplexing scheme can ensure low classical light loss, and enables QKD over fiber lengths of up to 45 km simultaneously when the fibers are populated with bidirectional FP laser communications. Our demonstration paves the way for application of QKD to current optical access networks, where FP lasers are widely used by the end users

  6. Quantum secret sharing via local operations and classical communication.

    Science.gov (United States)

    Yang, Ying-Hui; Gao, Fei; Wu, Xia; Qin, Su-Juan; Zuo, Hui-Juan; Wen, Qiao-Yan

    2015-11-20

    We investigate the distinguishability of orthogonal multipartite entangled states in d-qudit system by restricted local operations and classical communication. According to these properties, we propose a standard (2, n)-threshold quantum secret sharing scheme (called LOCC-QSS scheme), which solves the open question in [Rahaman et al., Phys. Rev. A, 91, 022330 (2015)]. On the other hand, we find that all the existing (k, n)-threshold LOCC-QSS schemes are imperfect (or "ramp"), i.e., unauthorized groups can obtain some information about the shared secret. Furthermore, we present a (3, 4)-threshold LOCC-QSS scheme which is close to perfect.

  7. Integration of quantum key distribution and private classical communication through continuous variable

    Science.gov (United States)

    Wang, Tianyi; Gong, Feng; Lu, Anjiang; Zhang, Damin; Zhang, Zhengping

    2017-12-01

    In this paper, we propose a scheme that integrates quantum key distribution and private classical communication via continuous variables. The integrated scheme employs both quadratures of a weak coherent state, with encrypted bits encoded on the signs and Gaussian random numbers encoded on the values of the quadratures. The integration enables quantum and classical data to share the same physical and logical channel. Simulation results based on practical system parameters demonstrate that both classical communication and quantum communication can be implemented over distance of tens of kilometers, thus providing a potential solution for simultaneous transmission of quantum communication and classical communication.

  8. Moderate Deviation Analysis for Classical Communication over Quantum Channels

    Science.gov (United States)

    Chubb, Christopher T.; Tan, Vincent Y. F.; Tomamichel, Marco

    2017-11-01

    We analyse families of codes for classical data transmission over quantum channels that have both a vanishing probability of error and a code rate approaching capacity as the code length increases. To characterise the fundamental tradeoff between decoding error, code rate and code length for such codes we introduce a quantum generalisation of the moderate deviation analysis proposed by Altŭg and Wagner as well as Polyanskiy and Verdú. We derive such a tradeoff for classical-quantum (as well as image-additive) channels in terms of the channel capacity and the channel dispersion, giving further evidence that the latter quantity characterises the necessary backoff from capacity when transmitting finite blocks of classical data. To derive these results we also study asymmetric binary quantum hypothesis testing in the moderate deviations regime. Due to the central importance of the latter task, we expect that our techniques will find further applications in the analysis of other quantum information processing tasks.

  9. Tensor Norms and the Classical Communication Complexity of Nonlocal Quantum Measurement

    OpenAIRE

    Shi, Yaoyun; Zhu, Yufan

    2005-01-01

    We initiate the study of quantifying nonlocalness of a bipartite measurement by the minimum amount of classical communication required to simulate the measurement. We derive general upper bounds, which are expressed in terms of certain tensor norms of the measurement operator. As applications, we show that (a) If the amount of communication is constant, quantum and classical communication protocols with unlimited amount of shared entanglement or shared randomness compute the same set of funct...

  10. Information transmission in microbial and fungal communication: from classical to quantum.

    Science.gov (United States)

    Majumdar, Sarangam; Pal, Sukla

    2018-06-01

    Microbes have their own communication systems. Secretion and reception of chemical signaling molecules and ion-channels mediated electrical signaling mechanism are yet observed two special ways of information transmission in microbial community. In this article, we address the aspects of various crucial machineries which set the backbone of microbial cell-to-cell communication process such as quorum sensing mechanism (bacterial and fungal), quorum sensing regulated biofilm formation, gene expression, virulence, swarming, quorum quenching, role of noise in quorum sensing, mathematical models (therapy model, evolutionary model, molecular mechanism model and many more), synthetic bacterial communication, bacterial ion-channels, bacterial nanowires and electrical communication. In particular, we highlight bacterial collective behavior with classical and quantum mechanical approaches (including quantum information). Moreover, we shed a new light to introduce the concept of quantum synthetic biology and possible cellular quantum Turing test.

  11. Quantum money with classical verification

    Energy Technology Data Exchange (ETDEWEB)

    Gavinsky, Dmitry [NEC Laboratories America, Princeton, NJ (United States)

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  12. Quantum money with classical verification

    International Nuclear Information System (INIS)

    Gavinsky, Dmitry

    2014-01-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it

  13. Key rate of quantum key distribution with hashed two-way classical communication

    International Nuclear Information System (INIS)

    Watanabe, Shun; Matsumoto, Ryutaroh; Uyematsu, Tomohiko; Kawano, Yasuhito

    2007-01-01

    We propose an information reconciliation protocol that uses two-way classical communication. The key rates of quantum key distribution (QKD) protocols that use our protocol are higher than those using previously known protocols for a wide range of error rates for the Bennett-Brassard 1984 and six-state protocols. We also clarify the relation between the proposed and known QKD protocols, and the relation between the proposed protocol and entanglement distillation protocols

  14. Classicality in quantum mechanics

    International Nuclear Information System (INIS)

    Dreyer, Olaf

    2007-01-01

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity

  15. Classicality in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)

    2007-05-15

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.

  16. Quantum communications

    CERN Document Server

    Cariolaro, Gianfranco

    2015-01-01

    This book demonstrates that a quantum communication system using the coherent light of a laser can achieve performance orders of magnitude superior to classical optical communications Quantum Communications provides the Masters and PhD signals or communications student with a complete basics-to-applications course in using the principles of quantum mechanics to provide cutting-edge telecommunications. Assuming only knowledge of elementary probability, complex analysis and optics, the book guides its reader through the fundamentals of vector and Hilbert spaces and the necessary quantum-mechanical ideas, simply formulated in four postulates. A turn to practical matters begins with and is then developed by: ·         development of the concept of quantum decision, emphasizing the optimization of measurements to extract useful information from a quantum system; ·         general formulation of a transmitter–receiver system ·         particular treatment of the most popular quantum co...

  17. Detecting a set of entanglement measures in an unknown tripartite quantum state by local operations and classical communication

    International Nuclear Information System (INIS)

    Bai Yankui; Li Shushen; Zheng Houzhi; Wang, Z. D.

    2006-01-01

    We propose a more general method for detecting a set of entanglement measures, i.e., negativities, in an arbitrary tripartite quantum state by local operations and classical communication. To accomplish the detection task using this method, three observers do not need to perform partial transposition maps by the structural physical approximation; instead, they only need to collectively measure some functions via three local networks supplemented by a classical communication. With these functions, they are able to determine the set of negativities related to the tripartite quantum state

  18. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  19. Efficient quantum repeater with respect to both entanglement-concentration rate and complexity of local operations and classical communication

    Science.gov (United States)

    Su, Zhaofeng; Guan, Ji; Li, Lvzhou

    2018-01-01

    Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.

  20. Classical and quantum fingerprinting strategies

    International Nuclear Information System (INIS)

    Scott, A.; Walgate, J.; Sanders, B.

    2005-01-01

    Full text: Fingerprinting enables two parties to infer whether the messages they hold are the same or different when the cost of communication is high: each message is associated with a smaller fingerprint and comparisons between messages are made in terms of their fingerprints alone. When the two parties are forbidden access to a public coin, it is known that fingerprints composed of quantum information can be made exponentially smaller than those composed of classical information. We present specific constructions of classical fingerprinting strategies through the use of constant-weight codes and provide bounds on the worst-case error probability with the help of extremal set theory. These classical strategies are easily outperformed by quantum strategies constructed from line packings and equiangular tight frames. (author)

  1. Classical and quantum cosmology

    CERN Document Server

    Calcagni, Gianluca

    2017-01-01

    This comprehensive textbook is devoted to classical and quantum cosmology, with particular emphasis on modern approaches to quantum gravity and string theory and on their observational imprint. It covers major challenges in theoretical physics such as the big bang and the cosmological constant problem. An extensive review of standard cosmology, the cosmic microwave background, inflation and dark energy sets the scene for the phenomenological application of all the main quantum-gravity and string-theory models of cosmology. Born of the author's teaching experience and commitment to bridging the gap between cosmologists and theoreticians working beyond the established laws of particle physics and general relativity, this is a unique text where quantum-gravity approaches and string theory are treated on an equal footing. As well as introducing cosmology to undergraduate and graduate students with its pedagogical presentation and the help of 45 solved exercises, this book, which includes an ambitious bibliography...

  2. Can classical noise enhance quantum transmission?

    International Nuclear Information System (INIS)

    Wilde, Mark M

    2009-01-01

    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.

  3. Quantum symmetries of classical spaces

    OpenAIRE

    Bhowmick, Jyotishman; Goswami, Debashish; Roy, Subrata Shyam

    2009-01-01

    We give a general scheme for constructing faithful actions of genuine (noncommutative as $C^*$ algebra) compact quantum groups on classical topological spaces. Using this, we show that: (i) a compact connected classical space can have a faithful action by a genuine compact quantum group, and (ii) there exists a spectral triple on a classical connected compact space for which the quantum group of orientation and volume preserving isometries (in the sense of \\cite{qorient}) is a genuine quantum...

  4. Feasible quantum communication complexity protocol

    International Nuclear Information System (INIS)

    Galvao, Ernesto F.

    2002-01-01

    I show that a simple multiparty communication task can be performed more efficiently with quantum communication than with classical communication, even with low detection efficiency η. The task is a communication complexity problem in which distant parties need to compute a function of the distributed inputs, while minimizing the amount of communication between them. A realistic quantum optical setup is suggested that can demonstrate a five-party quantum protocol with higher-than-classical performance, provided η>0.33

  5. Quantum models of classical systems

    International Nuclear Information System (INIS)

    Hájíček, P

    2015-01-01

    Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)

  6. Gauge-fields and integrated quantum-classical theory

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1986-01-01

    Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs

  7. Minimal classical communication and measurement complexity for ...

    Indian Academy of Sciences (India)

    Minimal classical communication and measurement complexity for quantum ... Entanglement; teleportation; secret sharing; information splitting. ... Ahmedabad 380 009, India; Birla Institute of Technology and Science, Pilani 333 031, India ...

  8. Classicality of quantum information processing

    International Nuclear Information System (INIS)

    Poulin, David

    2002-01-01

    The ultimate goal of the classicality program is to quantify the amount of quantumness of certain processes. Here, classicality is studied for a restricted type of process: quantum information processing (QIP). Under special conditions, one can force some qubits of a quantum computer into a classical state without affecting the outcome of the computation. The minimal set of conditions is described and its structure is studied. Some implications of this formalism are the increase of noise robustness, a proof of the quantumness of mixed state quantum computing, and a step forward in understanding the very foundation of QIP

  9. Multiple-Access Quantum-Classical Networks

    Science.gov (United States)

    Razavi, Mohsen

    2011-10-01

    A multi-user network that supports both classical and quantum communication is proposed. By relying on optical code-division multiple access techniques, this system offers simultaneous key exchange between multiple pairs of network users. A lower bound on the secure key generation rate will be derived for decoy-state quantum key distribution protocols.

  10. Classical and quantum ghosts

    International Nuclear Information System (INIS)

    Sbisà, Fulvio

    2015-01-01

    The aim of these notes is to provide a self-contained review of why it is generically a problem when a solution of a theory possesses ghost fields among the perturbation modes. We define what a ghost field is and we show that its presence is associated with a classical instability whenever the ghost field interacts with standard fields. We then show that the instability is more severe at quantum level, and that perturbative ghosts can exist only in low energy effective theories. However, if we do not consider very ad hoc choices, compatibility with observational constraints implies that low energy effective ghosts can exist only at the price of giving up Lorentz invariance or locality above the cut-off, in which case the cut-off has to be much lower that the energy scales we currently probe in particle colliders. We also comment on the possible role of extra degrees of freedom which break Lorentz invariance spontaneously. (paper)

  11. A model of quantum communication device for quantum hashing

    International Nuclear Information System (INIS)

    Vasiliev, A

    2016-01-01

    In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols. (paper)

  12. Quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.

  13. Classical Limit and Quantum Logic

    Science.gov (United States)

    Losada, Marcelo; Fortin, Sebastian; Holik, Federico

    2018-02-01

    The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.

  14. A quantum secure direct communication protocol based on a five-particle cluster state and classical XOR operation

    International Nuclear Information System (INIS)

    Li Jian; Song Danjie; Guo Xiaojing; Jing Bo

    2012-01-01

    In order to transmit secure messages, a quantum secure direct communication protocol based on a five-particle cluster state and classical XOR operation is presented. The five-particle cluster state is used to detect eavesdroppers, and the classical XOR operation serving as a one-time-pad is used to ensure the security of the protocol. In the security analysis, the entropy theory method is introduced, and three detection strategies are compared quantitatively by using the constraint between the information that the eavesdroppers can obtain and the interference introduced. If the eavesdroppers intend to obtain all the information, the detection rate of the original ping-pong protocol is 50%; the second protocol, using two particles of the Einstein-Podolsky-Rosen pair as detection particles, is also 50%; while the presented protocol is 89%. Finally, the security of the proposed protocol is discussed, and the analysis results indicate that the protocol in this paper is more secure than the other two. (authors)

  15. Quantum Computing's Classical Problem, Classical Computing's Quantum Problem

    OpenAIRE

    Van Meter, Rodney

    2013-01-01

    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classica...

  16. Quantum formalism for classical statistics

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  17. Locking classical correlations in quantum States.

    Science.gov (United States)

    DiVincenzo, David P; Horodecki, Michał; Leung, Debbie W; Smolin, John A; Terhal, Barbara M

    2004-02-13

    We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  18. Quantum Models of Classical World

    Directory of Open Access Journals (Sweden)

    Petr Hájíček

    2013-02-01

    Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.

  19. Classical resonances and quantum scarring

    International Nuclear Information System (INIS)

    Manderfeld, Christopher

    2003-01-01

    We study the correspondence between phase-space localization of quantum (quasi-)energy eigenstates and classical correlation decay, given by Ruelle-Pollicott resonances of the Frobenius-Perron operator. It will be shown that scarred (quasi-)energy eigenstates are correlated: pairs of eigenstates strongly overlap in phase space (scar in same phase-space regions) if the difference of their eigenenergies is close to the phase of a leading classical resonance. Phase-space localization of quantum states will be measured by L 2 norms of their Husimi functions

  20. Quantum Mechanics as Classical Physics

    OpenAIRE

    Sebens, CT

    2015-01-01

    Here I explore a novel no-collapse interpretation of quantum mechanics which combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.

  1. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  2. Zwitters: Particles between quantum and classical

    International Nuclear Information System (INIS)

    Wetterich, C.

    2012-01-01

    We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics. -- Highlights: ► Quantum particles can be described within classical statistics. ► Classical particles are formulated in quantum formalism. ► Zwitters interpolate between classical and quantum particles. ► Zwitters allow for quantitative tests of quantum mechanics. ► Zwitters could be effective one-particle descriptions of droplets.

  3. From classical to quantum chaos

    International Nuclear Information System (INIS)

    Zaslavsky, G.M.

    1991-01-01

    The analysis is done for the quantum properties of systems that possess dynamical chaos in classical limit. Two main topics are considered: (i) the problem of quantum macroscopical description of the system and the Ehrenfest-Einstein problem of the validity of the classical approximation; and (ii) the problem of levels spacing distribution for the nonintegrable case. For the first topic the method of projecting on the coherent states base is considered and the ln 1/(h/2π) time for the quasiclassical approximation breaking is described. For the second topic the discussion of GOE and non-GOE distributions is done and estimations and simulations for the non-GOE case are reviewed. (author). 44 refs, 2 figs

  4. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  5. Classical Mechanics as Nonlinear Quantum Mechanics

    International Nuclear Information System (INIS)

    Nikolic, Hrvoje

    2007-01-01

    All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics

  6. From classical to quantum fields

    CERN Document Server

    Baulieu, Laurent; Sénéor, Roland

    2017-01-01

    Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a re...

  7. Classical and quantum thermal physics

    CERN Document Server

    Prasad, R

    2016-01-01

    Covering essential areas of thermal physics, this book includes kinetic theory, classical thermodynamics, and quantum thermodynamics. The text begins by explaining fundamental concepts of the kinetic theory of gases, viscosity, conductivity, diffusion, and the laws of thermodynamics and their applications. It then goes on to discuss applications of thermodynamics to problems of physics and engineering. These applications are explained with the help of P-V and P-S-H diagrams where necessary and are followed by a large number of solved examples and unsolved exercises. The book includes a dedicated chapter on the applications of thermodynamics to chemical reactions. Each application is explained by taking the example of an appropriate chemical reaction, where all technical terms are explained and complete mathematical derivations are worked out in steps starting from the first principle.

  8. Classical foundations of quantum logic

    International Nuclear Information System (INIS)

    Garola, C.

    1991-01-01

    The author constructs a language L for a classical first-order predicate calculus with monadic predicates only, extended by means of a family of statistical quantifiers. Then, a formal semantic model M is put forward for L which is compatible with a physical interpretation and embodies a truth theory which provides the statistical quantifiers with properties that fit their interpretation; in this framework, the truth mode of physical laws is suitably characterized and a probability-frequency correlation principle is established. By making use of L and M, a set of basic physical laws is stated that hold both in classical physics (CP) and in quantum physics (QP), which allow the selection of suitable subsets of primitive predicates of L and the introduction on these subsets of binary relations. Two languages L E x and L E S are constructed that can be mapped into L; the mapping induces on them mathematical structures, some kind of truth function, an interpretation. The formulas of L E S can be endowed with two different interpretations as statements about the frequency of some physical property in some class (state) of physical objects; consequently, a two-valued truth function and a multivalued fuzzy-truth function are defined on L E S . In all cases the algebras of propositions of these 'logics' are complete ortho-complemented lattices isomorphic to (E E , prec). These results hold both in CP and in QP; further physical assumptions endow the lattice (E E , prec), hence L E x and L E s , with further properties, such as distributivity in CP and weak modularity and covering law in QP. In the latter case, L E x and L E s , together with their interpretations, can be considered different models of the same basic mathematical structure, and can be identified with standard (elementary) quantum logics

  9. Classical randomness in quantum measurements

    International Nuclear Information System (INIS)

    D'Ariano, Giacomo Mauro; Presti, Paoloplacido Lo; Perinotti, Paolo

    2005-01-01

    Similarly to quantum states, also quantum measurements can be 'mixed', corresponding to a random choice within an ensemble of measuring apparatuses. Such mixing is equivalent to a sort of hidden variable, which produces a noise of purely classical nature. It is then natural to ask which apparatuses are indecomposable, i.e. do not correspond to any random choice of apparatuses. This problem is interesting not only for foundations, but also for applications, since most optimization strategies give optimal apparatuses that are indecomposable. Mathematically the problem is posed describing each measuring apparatus by a positive operator-valued measure (POVM), which gives the statistics of the outcomes for any input state. The POVMs form a convex set, and in this language the indecomposable apparatuses are represented by extremal points-the analogous of 'pure states' in the convex set of states. Differently from the case of states, however, indecomposable POVMs are not necessarily rank-one, e.g. von Neumann measurements. In this paper we give a complete classification of indecomposable apparatuses (for discrete spectrum), by providing different necessary and sufficient conditions for extremality of POVMs, along with a simple general algorithm for the decomposition of a POVM into extremals. As an interesting application, 'informationally complete' measurements are analysed in this respect. The convex set of POVMs is fully characterized by determining its border in terms of simple algebraic properties of the corresponding POVMs

  10. Implementation of generalized quantum measurements: Superadditive quantum coding, accessible information extraction, and classical capacity limit

    International Nuclear Information System (INIS)

    Takeoka, Masahiro; Fujiwara, Mikio; Mizuno, Jun; Sasaki, Masahide

    2004-01-01

    Quantum-information theory predicts that when the transmission resource is doubled in quantum channels, the amount of information transmitted can be increased more than twice by quantum-channel coding technique, whereas the increase is at most twice in classical information theory. This remarkable feature, the superadditive quantum-coding gain, can be implemented by appropriate choices of code words and corresponding quantum decoding which requires a collective quantum measurement. Recently, an experimental demonstration was reported [M. Fujiwara et al., Phys. Rev. Lett. 90, 167906 (2003)]. The purpose of this paper is to describe our experiment in detail. Particularly, a design strategy of quantum-collective decoding in physical quantum circuits is emphasized. We also address the practical implication of the gain on communication performance by introducing the quantum-classical hybrid coding scheme. We show how the superadditive quantum-coding gain, even in a small code length, can boost the communication performance of conventional coding techniques

  11. Quantum Statistical Operator and Classically Chaotic Hamiltonian ...

    African Journals Online (AJOL)

    Quantum Statistical Operator and Classically Chaotic Hamiltonian System. ... Journal of the Nigerian Association of Mathematical Physics ... In a Hamiltonian system von Neumann Statistical Operator is used to tease out the quantum consequence of (classical) chaos engendered by the nonlinear coupling of system to its ...

  12. Emergence of quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C

    2009-01-01

    The conceptual setting of quantum mechanics is subject to an ongoing debate from its beginnings until now. The consequences of the apparent differences between quantum statistics and classical statistics range from the philosophical interpretations to practical issues as quantum computing. In this note we demonstrate how quantum mechanics can emerge from classical statistical systems. We discuss conditions and circumstances for this to happen. Quantum systems describe isolated subsystems of classical statistical systems with infinitely many states. While infinitely many classical observables 'measure' properties of the subsystem and its environment, the state of the subsystem can be characterized by the expectation values of only a few probabilistic observables. They define a density matrix, and all the usual laws of quantum mechanics follow. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem.

  13. Interaction between classical and quantum systems

    International Nuclear Information System (INIS)

    Sherry, T.N.; Sudarshan, E.C.G.

    1977-10-01

    An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work

  14. Multipartite classical and quantum secrecy monotones

    International Nuclear Information System (INIS)

    Cerf, N.J.; Massar, S.; Schneider, S.

    2002-01-01

    In order to study multipartite quantum cryptography, we introduce quantities which vanish on product probability distributions, and which can only decrease if the parties carry out local operations or public classical communication. These 'secrecy monotones' therefore measure how much secret correlation is shared by the parties. In the bipartite case we show that the mutual information is a secrecy monotone. In the multipartite case we describe two different generalizations of the mutual information, both of which are secrecy monotones. The existence of two distinct secrecy monotones allows us to show that in multipartite quantum cryptography the parties must make irreversible choices about which multipartite correlations they want to obtain. Secrecy monotones can be extended to the quantum domain and are then defined on density matrices. We illustrate this generalization by considering tripartite quantum cryptography based on the Greenberger-Horne-Zeilinger state. We show that before carrying out measurements on the state, the parties must make an irreversible decision about what probability distribution they want to obtain

  15. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2017-01-01

    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  16. Quantum machine learning: a classical perspective.

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  17. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  18. Classical and Quantum Chaos in Atom Optics

    OpenAIRE

    Saif, Farhan

    2006-01-01

    The interaction of an atom with an electromagnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electromagnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits ...

  19. The relation between classical and quantum mechanics

    International Nuclear Information System (INIS)

    Taylor, Peter.

    1984-01-01

    The thesis examines the relationship between classical and quantum mechanics from philosophical, mathematical and physical standpoints. Arguments are presented in favour of 'conjectural realism' in scientific theories, distinguished by explicit contextual structure and empirical testability. The formulations of classical and quantum mechanics, based on a general theory of mechanics is investigated, as well as the mathematical treatments of these subjects. Finally the thesis questions the validity of 'classical limits' and 'quantisations' in intertheoretic reduction. (UK)

  20. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  1. Quantum classical correspondence in nonrelativistic electrodynamics

    International Nuclear Information System (INIS)

    Ritchie, B.; Weatherford, C.A.

    1999-01-01

    A form of classical electrodynamic field exists which gives exact agreement with the operator field of quantum electrodynamics (QED) for the Lamb shift of a harmonically bound point electron. Here it is pointed out that this form of classical theory, with its physically acceptable interpretation, is the result of an unconventional resolution of a mathematically ambiguous term in classical field theory. Finally, a quantum classical correspondence principle is shown to exist in the sense that the classical field and expectation value of the QED operator field are identical, if retardation is neglected in the latter

  2. Coalitions in the quantum Minority game: Classical cheats and quantum bullies

    International Nuclear Information System (INIS)

    Flitney, Adrian P.; Greentree, Andrew D.

    2007-01-01

    In a one-off Minority game, when a group of players agree to collaborate they gain an advantage over the remaining players. We consider the advantage obtained in a quantum Minority game by a coalition sharing an initially entangled state versus that obtained by a coalition that uses classical communication to arrive at an optimal group strategy. In a model of the quantum Minority game where the final measurement basis is randomized, quantum coalitions outperform classical ones when carried out by up to four players, but an unrestricted amount of classical communication is better for larger coalition sizes

  3. Continuous quantum measurement and the quantum to classical transition

    International Nuclear Information System (INIS)

    Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt

    2003-01-01

    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion

  4. Quantum manifestations of classical resonance zones

    International Nuclear Information System (INIS)

    De Leon, N.; Davis, M.J.; Heller, E.J.

    1984-01-01

    We examine the concept of nodal breakup of wave functions as a criterion for quantum mechanical ergodicity. We find that complex nodal structure of wave functions is not sufficient to determine quantum mechanical ergodicity. The influence of classical resonances [which manifest themselves as classical resonance zones (CRZ)] may also be responsible for the seeming complexity of nodal structure. We quantify this by reexamining one of the two systems studied by Stratt, Handy, and Miller [J. Chem. Phys. 71, 3311 (1974)] from both a quantum mechanical and classical point of view. We conclude that quasiperiodic classical motion can account for highly distorted quantum eigenstates. One should always keep this in mind when addressing questions regarding quantum mechanical ergodicity

  5. Capacity on wireless quantum cellular communication system

    Science.gov (United States)

    Zhou, Xiang-Zhen; Yu, Xu-Tao; Zhang, Zai-Chen

    2018-03-01

    Quantum technology is making excellent prospects in future communication networks. Entanglement generation and purification are two major components in quantum networks. Combining these two techniques with classical cellular mobile communication, we proposed a novel wireless quantum cellular(WQC) communication system which is possible to realize commercial mobile quantum communication. In this paper, the architecture and network topology of WQC communication system are discussed, the mathematical model of WQC system is extracted and the serving capacity, indicating the ability to serve customers, is defined and calculated under certain circumstances.

  6. Emergence of classical theories from quantum mechanics

    International Nuclear Information System (INIS)

    Hájícek, P

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  7. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  8. Location-dependent communications using quantum entanglement

    International Nuclear Information System (INIS)

    Malaney, Robert A.

    2010-01-01

    The ability to unconditionally verify the location of a communication receiver would lead to a wide range of new security paradigms. However, it is known that unconditional location verification in classical communication systems is impossible. In this work we show how unconditional location verification can be achieved with the use of quantum communication channels. Our verification remains unconditional irrespective of the number of receivers, computational capacity, or any other physical resource held by an adversary. Quantum location verification represents an application of quantum entanglement that delivers a feat not possible in the classical-only channel. It gives us the ability to deliver real-time communications viable only at specified geographical coordinates.

  9. Quantum cryptography communication technology

    International Nuclear Information System (INIS)

    Cho, Jai Wan; Choi, Young Soo; Lee, Jae Chul; Choi, Yu Rak; Jung, Gwang Il; Jung, Jong Eun; Hong, Seok Boong; Koo, In Soo

    2007-09-01

    Quantum cryptography communication based on quantum mechanics provides and unconditional security between two users. Even though huge advance has been done since the 1984, having a complete system is still far away. In the case of real quantum cryptography communication systems, an unconditional security level is lowered by the imperfection of the communication unit. It is important to investigate the unconditional security of quantum communication protocols based on these experimental results and implementation examples for the advanced spread all over the world. The Japanese report, titled, 'Investigation report on the worldwide trends of quantum cryptography communications systems' was translated and summarized in this report. An unconditional security theory of the quantum cryptography and real implementation examples in the domestic area are investigated also. The goal of the report is to make quantum cryptography communication more useful and reliable alternative telecommunication infrastructure as the one of the cyber security program of the class 1-E communication system of nuclear power plant. Also another goal of this report is to provide the quantitative decision basis on the quantum cryptography communication when this secure communication system will be used in class 1-E communication channel of the nuclear power plant

  10. Quantum cryptography communication technology

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Wan; Choi, Young Soo; Lee, Jae Chul; Choi, Yu Rak; Jung, Gwang Il; Jung, Jong Eun; Hong, Seok Boong; Koo, In Soo

    2007-09-15

    Quantum cryptography communication based on quantum mechanics provides and unconditional security between two users. Even though huge advance has been done since the 1984, having a complete system is still far away. In the case of real quantum cryptography communication systems, an unconditional security level is lowered by the imperfection of the communication unit. It is important to investigate the unconditional security of quantum communication protocols based on these experimental results and implementation examples for the advanced spread all over the world. The Japanese report, titled, 'Investigation report on the worldwide trends of quantum cryptography communications systems' was translated and summarized in this report. An unconditional security theory of the quantum cryptography and real implementation examples in the domestic area are investigated also. The goal of the report is to make quantum cryptography communication more useful and reliable alternative telecommunication infrastructure as the one of the cyber security program of the class 1-E communication system of nuclear power plant. Also another goal of this report is to provide the quantitative decision basis on the quantum cryptography communication when this secure communication system will be used in class 1-E communication channel of the nuclear power plant.

  11. Quantum communication with photons

    International Nuclear Information System (INIS)

    Tittel, W.

    2005-01-01

    Full text: The discovery that transmission of information encoded into single quantum systems enables new forms of communication let to the emergence of the domain of quantum communication. During the last ten years, various key experiments based on photons as carrier of the quantum information have been realized. Today, quantum cryptography systems based on faint laser pulses can be purchased commercially, bi-partite entanglement has been distributed over long distances and has been used for quantum key distribution, and quantum purification, teleportation and entanglement swapping have been demonstrated. I will give a general introduction into this fascinating field and will review experimental achievements in the domain of quantum communication with discrete two-level quantum systems (qubits) encoded into photons. (author)

  12. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  13. Classical limit for quantum mechanical energy eigenfunctions

    International Nuclear Information System (INIS)

    Sen, D.; Sengupta, S.

    2004-01-01

    The classical limit problem is discussed for the quantum mechanical energy eigenfunctions using the Wentzel-Kramers-Brillouin approximation, free from the problem at the classical turning points. A proper perspective of the whole issue is sought to appreciate the significance of the discussion. It is observed that for bound states in arbitrary potential, appropriate limiting condition is definable in terms of a dimensionless classical limit parameter leading smoothly to all observable classical results. Most important results are the emergence of classical phase space, keeping the observable distribution functions non-zero only within the so-called classical region at the limit point and resolution of some well-known paradoxes. (author)

  14. Hybrid Quantum-Classical Approach to Quantum Optimal Control.

    Science.gov (United States)

    Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu

    2017-04-14

    A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.

  15. Quantum remnants in the classical limit

    International Nuclear Information System (INIS)

    Kowalski, A.M.; Plastino, A.

    2016-01-01

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  16. Quantum remnants in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, A.M., E-mail: kowalski@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Comision de Investigaciones Científicas (CIC) (Argentina); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Argentina' s National Research Council (CONICET) (Argentina); SThAR, EPFL Innovation Park, Lausanne (Switzerland)

    2016-09-16

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  17. Classical and quantum chaos in atom optics

    International Nuclear Information System (INIS)

    Saif, Farhan

    2005-01-01

    The interaction of an atom with an electro-magnetic field is discussed in the presence of a time periodic external modulating force. It is explained that a control on atom by electro-magnetic fields helps to design the quantum analog of classical optical systems. In these atom optical systems chaos may appear at the onset of external fields. The classical and quantum chaotic dynamics is discussed, in particular in an atom optics Fermi accelerator. It is found that the quantum dynamics exhibits dynamical localization and quantum recurrences

  18. Constructing quantum dynamics from mixed quantum-classical descriptions

    International Nuclear Information System (INIS)

    Barsegov, V.; Rossky, P.J.

    2004-01-01

    The influence of quantum bath effects on the dynamics of a quantum two-level system linearly coupled to a harmonic bath is studied when the coupling is both diagonal and off-diagonal. It is shown that the pure dephasing kernel and the non-adiabatic quantum transition rate between Born-Oppenheimer states of the subsystem can be decomposed into a contribution from thermally excited bath modes plus a zero point energy contribution. This quantum rate can be modewise factorized exactly into a product of a mixed quantum subsystem-classical bath transition rate and a quantum correction factor. This factor determines dynamics of quantum bath correlations. Quantum bath corrections to both the transition rate and the pure dephasing kernel are shown to be readily evaluated via a mixed quantum-classical simulation. Hence, quantum dynamics can be recovered from a mixed quantum-classical counterpart by incorporating the missing quantum bath corrections. Within a mixed quantum-classical framework, a simple approach for evaluating quantum bath corrections in calculation of the non-adiabatic transition rate is presented

  19. Quantum theory of the classical: quantum jumps, Born's Rule and objective classical reality via quantum Darwinism.

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2018-07-13

    The emergence of the classical world from the quantum substrate of our Universe is a long-standing conundrum. In this paper, I describe three insights into the transition from quantum to classical that are based on the recognition of the role of the environment. I begin with the derivation of preferred sets of states that help to define what exists-our everyday classical reality. They emerge as a result of the breaking of the unitary symmetry of the Hilbert space which happens when the unitarity of quantum evolutions encounters nonlinearities inherent in the process of amplification-of replicating information. This derivation is accomplished without the usual tools of decoherence, and accounts for the appearance of quantum jumps and the emergence of preferred pointer states consistent with those obtained via environment-induced superselection, or einselection The pointer states obtained in this way determine what can happen-define events-without appealing to Born's Rule for probabilities. Therefore, p k =| ψ k | 2 can now be deduced from the entanglement-assisted invariance, or envariance -a symmetry of entangled quantum states. With probabilities at hand, one also gains new insights into the foundations of quantum statistical physics. Moreover, one can now analyse the information flows responsible for decoherence. These information flows explain how the perception of objective classical reality arises from the quantum substrate: the effective amplification that they represent accounts for the objective existence of the einselected states of macroscopic quantum systems through the redundancy of pointer state records in their environment-through quantum Darwinism This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  20. Unraveling Quantum Annealers using Classical Hardness

    Science.gov (United States)

    Martin-Mayor, Victor; Hen, Itay

    2015-01-01

    Recent advances in quantum technology have led to the development and manufacturing of experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the quantum nature of these chips have been met with both excitement and skepticism but have also brought up numerous fundamental questions pertaining to the distinguishability of experimental quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the computational intractability of hard optimization problems, we devise a general method to quantify the performance of quantum annealers on optimization problems suffering from varying degrees of temperature chaos: A superior performance of quantum annealers over classical algorithms on these may allude to the role that quantum effects play in providing speedup. We utilize our method to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, surprisingly, that its performance scales unfavorably as compared to several analogous classical algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the quantum behavior of the chip. PMID:26483257

  1. Stabilization of classic and quantum systems

    International Nuclear Information System (INIS)

    Buts, V.A.

    2012-01-01

    It is shown that the mechanism of quantum whirligig can be successfully used for stabilization of classical systems. In particular, the conditions for stabilization of charged particles and radiation fluxes in plasma are found.

  2. The classicality and quantumness of a quantum ensemble

    International Nuclear Information System (INIS)

    Zhu Xuanmin; Pang Shengshi; Wu Shengjun; Liu Quanhui

    2011-01-01

    In this Letter, we investigate the classicality and quantumness of a quantum ensemble. We define a quantity called ensemble classicality based on classical cloning strategy (ECCC) to characterize how classical a quantum ensemble is. An ensemble of commuting states has a unit ECCC, while a general ensemble can have a ECCC less than 1. We also study how quantum an ensemble is by defining a related quantity called quantumness. We find that the classicality of an ensemble is closely related to how perfectly the ensemble can be cloned, and that the quantumness of the ensemble used in a quantum key distribution (QKD) protocol is exactly the attainable lower bound of the error rate in the sifted key. - Highlights: → A quantity is defined to characterize how classical a quantum ensemble is. → The classicality of an ensemble is closely related to the cloning performance. → Another quantity is also defined to investigate how quantum an ensemble is. → This quantity gives the lower bound of the error rate in a QKD protocol.

  3. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  4. On obtaining classical mechanics from quantum mechanics

    International Nuclear Information System (INIS)

    Date, Ghanashyam

    2007-01-01

    Constructing a classical mechanical system associated with a given quantum-mechanical one entails construction of a classical phase space and a corresponding Hamiltonian function from the available quantum structures and a notion of coarser observations. The Hilbert space of any quantum-mechanical system naturally has the structure of an infinite-dimensional symplectic manifold ('quantum phase space'). There is also a systematic, quotienting procedure which imparts a bundle structure to the quantum phase space and extracts a classical phase space as the base space. This works straightforwardly when the Hilbert space carries weakly continuous representation of the Heisenberg group and one recovers the linear classical phase space R 2N . We report on how the procedure also allows extraction of nonlinear classical phase spaces and illustrate it for Hilbert spaces being finite dimensional (spin-j systems), infinite dimensional but separable (particle on a circle) and infinite dimensional but non-separable (polymer quantization). To construct a corresponding classical dynamics, one needs to choose a suitable section and identify an effective Hamiltonian. The effective dynamics mirrors the quantum dynamics provided the section satisfies conditions of semiclassicality and tangentiality

  5. Quantum fermions and quantum field theory from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, Christof

    2012-01-01

    An Ising-type classical statistical ensemble can describe the quantum physics of fermions if one chooses a particular law for the time evolution of the probability distribution. It accounts for the time evolution of a quantum field theory for Dirac particles in an external electromagnetic field. This yields in the non-relativistic one-particle limit the Schrödinger equation for a quantum particle in a potential. Interference or tunneling arise from classical probabilities.

  6. Quantum secret sharing with classical Bobs

    International Nuclear Information System (INIS)

    Li Lvzhou; Qiu Daowen; Mateus, Paulo

    2013-01-01

    Boyer et al (2007 Phys. Rev. Lett. 99 140501) proposed a novel idea of semi-quantum key distribution, where a key can be securely distributed between Alice, who can perform any quantum operation, and Bob, who is classical. Extending the ‘semi-quantum’ idea to other tasks of quantum information processing is of interest and worth considering. In this paper, we consider the issue of semi-quantum secret sharing, where a quantum participant Alice can share a secret key with two classical participants, Bobs. After analyzing the existing protocol, we propose a new protocol of semi-quantum secret sharing. Our protocol is more realistic, since it utilizes product states instead of entangled states. We prove that any attempt of an adversary to obtain information necessarily induces some errors that the legitimate users could notice. (paper)

  7. Quantum secure communication models comparison

    Directory of Open Access Journals (Sweden)

    Georgi Petrov Bebrov

    2017-12-01

    Full Text Available The paper concerns the quantum cryptography, more specifically, the quantum secure communication type of schemes. The main focus here is on making a comparison between the distinct secure quantum communication models – quantum secure direct communication and deterministic secure quantum communication, in terms of three parameters: resource efficiency, eavesdropping check efficiency, and security (degree of preserving the confidentiality.

  8. Integrable models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs

  9. Classical system underlying a diffracting quantum billiard

    Indian Academy of Sciences (India)

    Manan Jain

    2018-01-05

    Jan 5, 2018 ... Wave equation; rays; quantum chaos. PACS Nos 03.65.Ge; 05.45.Mt; 42.25.Fx. 1. Introduction. Diffraction [1] is a complex wave phenomenon which manifests classically and quantum mechanically. Among a wide range of systems where diffraction becomes important, there is an interesting situation of.

  10. "Scars" connect classical and quantum theory

    CERN Multimedia

    Monteiro, T

    1990-01-01

    Chaotic systems are unstable and extremely sensitive to initial condititions. So far, scientists have been unable to demonstrate that the same kind of behaviour exists in quantum or microscopic systems. New connections have been discovered though between classical and quantum theory. One is the phenomena of 'scars' which cut through the wave function of a particle (1 page).

  11. Classical and Quantum-Mechanical State Reconstruction

    Science.gov (United States)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  12. Can quantum imaging be classically simulated?

    OpenAIRE

    D'Angelo, Milena; Shih, Yanhua

    2003-01-01

    Quantum imaging has been demonstrated since 1995 by using entangled photon pairs. The physics community named these experiments "ghost image", "quantum crypto-FAX", "ghost interference", etc. Recently, Bennink et al. simulated the "ghost" imaging experiment by two co-rotating k-vector correlated lasers. Did the classical simulation simulate the quantum aspect of the "ghost" image? We wish to provide an answer. In fact, the simulation is very similar to a historical model of local realism. The...

  13. Hybrid quantum-classical master equations

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)

  14. Quantum dynamics and breakdown of classical realism in nonlinear oscillators

    International Nuclear Information System (INIS)

    Gat, Omri

    2007-01-01

    The leading nonclassical term in the quantum dynamics of nonlinear oscillators is calculated in the Moyal quasi-trajectory representation. The irreducibility of the quantum dynamics to phase-space trajectories is quantified by the discrepancy of the canonical quasi-flow and the quasi-flow of a general observable. This discrepancy is shown to imply the breakdown of classical realism that can give rise to a dynamical violation of Bell's inequalities. (fast track communication)

  15. Quantum locking of classical correlations and quantum discord of classical-quantum states

    OpenAIRE

    BOIXO, S.; AOLITA, L.; CAVALCANTI, D.; MODI, K.; WINTER, A.

    2011-01-01

    A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in thi...

  16. On the Classical and Quantum Momentum Map

    DEFF Research Database (Denmark)

    Esposito, Chiara

    In this thesis we study the classical and quantum momentum maps and the theory of reduction. We focus on the notion of momentum map in Poisson geometry and we discuss the classification of the momentum map in this framework. Furthermore, we describe the so-called Poisson Reduction, a technique...... that allows us to reduce the dimension of a manifold in presence of symmetries implemented by Poisson actions. Using techniques of deformation quantization and quantum groups, we introduce the quantum momentum map as a deformation of the classical momentum map, constructed in such a way that it factorizes...

  17. Classical topology and quantum states

    Indian Academy of Sciences (India)

    structures) can be reconstructed using Gel'fand–Naimark theory and its ..... pair production and annihilation [23], quantum gravity too can be expected to become ..... showed their utility for research of current interest such as topology change ...

  18. Quantum Secure Group Communication.

    Science.gov (United States)

    Li, Zheng-Hong; Zubairy, M Suhail; Al-Amri, M

    2018-03-01

    We propose a quantum secure group communication protocol for the purpose of sharing the same message among multiple authorized users. Our protocol can remove the need for key management that is needed for the quantum network built on quantum key distribution. Comparing with the secure quantum network based on BB84, we show our protocol is more efficient and securer. Particularly, in the security analysis, we introduce a new way of attack, i.e., the counterfactual quantum attack, which can steal information by "invisible" photons. This invisible photon can reveal a single-photon detector in the photon path without triggering the detector. Moreover, the photon can identify phase operations applied to itself, thereby stealing information. To defeat this counterfactual quantum attack, we propose a quantum multi-user authorization system. It allows us to precisely control the communication time so that the attack can not be completed in time.

  19. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2016-01-01

    Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.

  20. Classical and Quantum Thermal Physics

    Science.gov (United States)

    Prasad, R.

    2016-11-01

    List of figures; List of tables; Preface; Acknowledgement; Dedication; 1. The kinetic theory of gases; 2. Ideal to real gas, viscosity, conductivity and diffusion; 3. Thermodynamics: definitions and Zeroth law; 4. First Law of Thermodynamics and some of its applications; 5. Second Law of Thermodynamics and some of its applications; 6. TdS equations and their applications; 7. Thermodynamic functions, potentials, Maxwell equations, the Third Law and equilibrium; 8. Some applications of thermodynamics to problems of physics and engineering; 9. Application of thermodynamics to chemical reactions; 10. Quantum thermodynamics; 11. Some applications of quantum thermodynamics; 12. Introduction to the thermodynamics of irreversible processes; Index.

  1. Quantum tomography and classical propagator for quadratic quantum systems

    International Nuclear Information System (INIS)

    Man'ko, O.V.

    1999-03-01

    The classical propagator for tomographic probability (which describes the quantum state instead of wave function or density matrix) is presented for quadratic quantum systems and its relation to the quantum propagator is considered. The new formalism of quantum mechanics, based on the probability representation of the state, is applied to particular quadratic systems - the harmonic oscillator, particle's free motion, problems of an ion in a Paul trap and in asymmetric Penning trap, and to the process of stimulated Raman scattering. The classical propagator for these systems is written in an explicit form. (author)

  2. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed. PMID:29434508

  3. From classical to quantum plasmonics: Classical emitter and SPASER

    Science.gov (United States)

    Balykin, V. I.

    2018-02-01

    The key advantage of plasmonics is in pushing our control of light down to the nanoscale. It is possible to envision lithographically fabricated plasmonic devices for future quantum information processing or cryptography at the nanoscale in two dimensions. A first step in this direction is a demonstration of a highly efficient nanoscale light source. Here we demonstrate two types of nanoscale sources of optical fields: 1) the classical metallic nanostructure emitter and 2) the plasmonic nanolaser - SPASER.

  4. Quantum dynamics of classical stochastic systems

    Energy Technology Data Exchange (ETDEWEB)

    Casati, G

    1983-01-01

    It is shown that one hand Quantum Mechanics introduces limitations to the manifestations of chaotic motion resulting, for the case of the periodically kicked rotator, in the limitation of energy growth; also, as it is confirmed by numerical experiments, phenomena like the exponential instability of orbits, inherent to strongly chaotic systems, are absent here and therefore Quantum Mechanics appear to be more stable and predictable than Classical Mechanics. On the other hand, we have seen that nonrecurrent behavior may arise in Quantum Systems and it is connected to the presence of singular continuous spectrum. We conjecture that the classical chaotic behavior is reflected, at least partially, in the nature of the spectrum and the singular-continuity of the latter may possess a self-similar structure typical of classical chaos.

  5. Comparison of Classical and Quantum Bremsstrahlung

    International Nuclear Information System (INIS)

    Pratt, R.H.; Uskov, D.B.; Korol, A.V.; Obolensky, O.I.

    2003-01-01

    Classical features persist in bremsstrahlung at surprisingly high energies, while quantum features are present at low energies. For Coulomb bremsstrahlung this is related to the similar properties of Coulomb scattering. For bremsstrahlung in a screened potential, the low energy spectrum and angular distribution exhibit structures. In quantum mechanics these structures are associated with zeroes of particular angular-momentum transfer matrix elements at particular energies, a continuation of the Cooper minima in atomic photoeffect. They lead to transparency windows in free-free absorption. The trajectories of these zeroes in the plane of initial and final transition energies (bound and continuum) has been explored. Corresponding features have now been seen in classical bremsstrahlung, resulting from reduced contributions from particular impact parameters at particular energies. This has suggested the possibility of a more unified treatment of classical and quantum bremsstrahlung, based on the singularities of the scattering amplitude in angular momentum

  6. Classical dynamics and its quantum analogues

    International Nuclear Information System (INIS)

    Park, D.

    1979-01-01

    In this book the author establishes mathematical connections between classical and quantum mechanics, between ray optics and wave optics. The approach is to consider classical mechanics as a limiting case of quantum mechanics, and ray optics as a limiting case of wave optics. The conceptual background is discussed where necessary, so the reader should be already fairly familiar with it. The main goal of this approach is the revelation that classical and quantum theory are not so different conceptually as one thinks at first exposure. The first chapters recall the basic facts about light waves and light rays and demonstrate the construction of Newtonian orbits from Schroedinger waves. In the following the Lagrangian and Hamiltonian formulation of few-body system is developed showing as often as possible the relations to the corresponding quantum systems. To illustrate the theory planetary motion using perturbation theory is treated in some detail and several calculations in general relativity such as the deflection and retardation of light by the sun and the precession of planetary perikelia are included. The final parts deal with the motions of systems of many particles. The quantum mechanics of rigid bodies is presented in analogy with the classical theory and contrasts are noted. There is also a discussion of the roles of spinors in the two theories. The book is intended as a text in classical mechanics for readers which have already some knowledge in classical and quantum mechanics. It may help to deepen their understanding of the relation between the old and new theory and show something of the ways in which new discoveries are made. (orig.) 891 HJ/orig. 892 BRE

  7. Classical trajectories and quantum field theory

    International Nuclear Information System (INIS)

    Vitiello, Giuseppe; Istituto Nazionale di Fisica Nucleare, Salerno

    2005-01-01

    The density matrix and the Wigner function formalism requires the doubling of the degrees of freedom in quantum mechanics (QM) and quantum field theory (QFT). The doubled degrees of freedom play the role of the thermal bath or environment degrees of freedom and are entangled with the system degrees of freedom. They also account for quantum noise in the fluctuating random forces in the system-environment coupling. The algebraic structure of QFT turns out to be the one of the deformed Hopf algebra. In such a frame, the trajectories in the space of the unitarily inequivalent representations of the canonical commutation relations turn out to be classical trajectories and, under convenient conditions, they may exhibit properties typical of classical chaotic trajectories in nonlinear dynamics. The quantum Brownian motion and the two-slit experiment in QM are discussed in connection with the doubling of the degrees of freedom. (author)

  8. Progress in classical and quantum variational principles

    International Nuclear Information System (INIS)

    Gray, C G; Karl, G; Novikov, V A

    2004-01-01

    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The reciprocal Maupertuis principle is the classical limit of Schroedinger's variational principle of wave mechanics and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems. '... the most beautiful and important discovery of Mechanics.' Lagrange to Maupertuis (November 1756)

  9. Mathematical optics classical, quantum, and computational methods

    CERN Document Server

    Lakshminarayanan, Vasudevan

    2012-01-01

    Going beyond standard introductory texts, Mathematical Optics: Classical, Quantum, and Computational Methods brings together many new mathematical techniques from optical science and engineering research. Profusely illustrated, the book makes the material accessible to students and newcomers to the field. Divided into six parts, the text presents state-of-the-art mathematical methods and applications in classical optics, quantum optics, and image processing. Part I describes the use of phase space concepts to characterize optical beams and the application of dynamic programming in optical wave

  10. Some connections between classical and quantum anholonomy

    International Nuclear Information System (INIS)

    Giavarini, G.; Rohrlich, D.; Thacker, W.D.

    1988-08-01

    In this paper we study the interplay between the classical and quantum anholonomy effects (Hannay's angle and Berry's phase). When a finite-dimensional quantum system has a Berry phase, it has a nonzero Hannay angle. We show how infinite-dimensional systems can evade this correspondence, and find some necessary conditions for a system with a Berry phase to have no Hannay angle. (orig.)

  11. Quantum Secure Direct Communication with Quantum Memory.

    Science.gov (United States)

    Zhang, Wei; Ding, Dong-Sheng; Sheng, Yu-Bo; Zhou, Lan; Shi, Bao-Sen; Guo, Guang-Can

    2017-06-02

    Quantum communication provides an absolute security advantage, and it has been widely developed over the past 30 years. As an important branch of quantum communication, quantum secure direct communication (QSDC) promotes high security and instantaneousness in communication through directly transmitting messages over a quantum channel. The full implementation of a quantum protocol always requires the ability to control the transfer of a message effectively in the time domain; thus, it is essential to combine QSDC with quantum memory to accomplish the communication task. In this Letter, we report the experimental demonstration of QSDC with state-of-the-art atomic quantum memory for the first time in principle. We use the polarization degrees of freedom of photons as the information carrier, and the fidelity of entanglement decoding is verified as approximately 90%. Our work completes a fundamental step toward practical QSDC and demonstrates a potential application for long-distance quantum communication in a quantum network.

  12. Quantum and classical ripples in graphene

    Science.gov (United States)

    Hašík, Juraj; Tosatti, Erio; MartoÅák, Roman

    2018-04-01

    Thermal ripples of graphene are well understood at room temperature, but their quantum counterparts at low temperatures are in need of a realistic quantitative description. Here we present atomistic path-integral Monte Carlo simulations of freestanding graphene, which show upon cooling a striking classical-quantum evolution of height and angular fluctuations. The crossover takes place at ever-decreasing temperatures for ever-increasing wavelengths so that a completely quantum regime is never attained. Zero-temperature quantum graphene is flatter and smoother than classical graphene at large scales yet rougher at short scales. The angular fluctuation distribution of the normals can be quantitatively described by coexistence of two Gaussians, one classical strongly T -dependent and one quantum about 2° wide, of zero-point character. The quantum evolution of ripple-induced height and angular spread should be observable in electron diffraction in graphene and other two-dimensional materials, such as MoS2, bilayer graphene, boron nitride, etc.

  13. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  14. Classical correlations, Bell inequalities, and communication complexity

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Johannes; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Percival, Ian C. [Department of Physics, Univ. of London (United Kingdom)

    2007-07-01

    A computer program is presented which is capable of exploring generalizations of Bell-type inequalities for arbitrary numbers of classical inputs and outputs. Thereby, polytopes can be described which represent classical local realistic theories, classical theories without signaling, or classical theories with explicit signaling. These latter polytopes may also be of interest for exploring basic problems of communication complexity. As a first application the influence of non-perfect detectors is discussed in simple Bell experiments.

  15. Quantum and classical gauge symmetries

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Terashima, Hiroaki

    2001-01-01

    The use of the mass term of the gauge field as a gauge fixing term, which was discussed by Zwanziger, Parrinello and Jona-Lasinio in a large mass limit, is related to the non-linear gauge by Dirac and Nambu. We have recently shown that this use of the mass term as a gauge fixing term is in fact identical to the conventional local Faddeev-Popov formula without taking a large mass limit, if one takes into account the variation of the gauge field along the entire gauge orbit. This suggests that the classical massive vector theory, for example, could be re-interpreted as a gauge invariant theory with a gauge fixing term added in suitably quantized theory. As for massive gauge particles, the Higgs mechanics, where the mass term is gauge invariant, has a more intrinsic meaning. We comment on several implications of this observation. (author)

  16. Comparing classical and quantum PageRanks

    Science.gov (United States)

    Loke, T.; Tang, J. W.; Rodriguez, J.; Small, M.; Wang, J. B.

    2017-01-01

    Following recent developments in quantum PageRanking, we present a comparative analysis of discrete-time and continuous-time quantum-walk-based PageRank algorithms. Relative to classical PageRank and to different extents, the quantum measures better highlight secondary hubs and resolve ranking degeneracy among peripheral nodes for all networks we studied in this paper. For the discrete-time case, we investigated the periodic nature of the walker's probability distribution for a wide range of networks and found that the dominant period does not grow with the size of these networks. Based on this observation, we introduce a new quantum measure using the maximum probabilities of the associated walker during the first couple of periods. This is particularly important, since it leads to a quantum PageRanking scheme that is scalable with respect to network size.

  17. Classical quantum theory of wobbling modes

    International Nuclear Information System (INIS)

    Onishi, Naoki

    1986-01-01

    Wobbling modes are studied extensively in terms of time-dependent variational theory. Quantum states and their energies are determined by the Bohr-Sommerfeld rule of classical quantization. Numerical calculations are performed for states of 166 Er with vertical strokejvertical stroke=30-40 (h/2π). (orig.)

  18. Mathematics of classical and quantum physics

    CERN Document Server

    Byron, Frederick W

    Well-organized text designed to complement graduate-level physics texts in classical mechanics, electricity, magnetism, and quantum mechanics. Topics include theory of vector spaces, analytic function theory, Green's function method of solving differential and partial differential equations, theory of groups, more. Many problems, suggestions for further reading.

  19. Data Structures in Classical and Quantum Computing

    NARCIS (Netherlands)

    M.J. Fillinger (Max)

    2013-01-01

    textabstractThis survey summarizes several results about quantum computing related to (mostly static) data structures. First, we describe classical data structures for the set membership and the predecessor search problems: Perfect Hash tables for set membership by Fredman, Koml\\'{o}s and

  20. Isoperiodic classical systems and their quantum counterparts

    International Nuclear Information System (INIS)

    Asorey, M.; Carinena, J.F.; Marmo, G.; Perelomov, A.

    2007-01-01

    One-dimensional isoperiodic classical systems have been first analyzed by Abel. Abel's characterization can be extended for singular potentials and potentials which are not defined on the whole real line. The standard shear equivalence of isoperiodic potentials can also be extended by using reflection and inversion transformations. We provide a full characterization of isoperiodic rational potentials showing that they are connected by translations, reflections or Joukowski transformations. Upon quantization many of these isoperiodic systems fail to exhibit identical quantum energy spectra. This anomaly occurs at order O(h 2 ) because semiclassical corrections of energy levels of order O(h) are identical for all isoperiodic systems. We analyze families of systems where this quantum anomaly occurs and some special systems where the spectral identity is preserved by quantization. Conversely, we point out the existence of isospectral quantum systems which do not correspond to isoperiodic classical systems

  1. Quantum and classical optics–emerging links

    International Nuclear Information System (INIS)

    Eberly, J H; Qian, Xiao-Feng; Qasimi, Asma Al; Ali, Hazrat; Alonso, M A; Gutiérrez-Cuevas, R; Little, Bethany J; Howell, John C; Malhotra, Tanya; Vamivakas, A N

    2016-01-01

    Quantum optics and classical optics are linked in ways that are becoming apparent as a result of numerous recent detailed examinations of the relationships that elementary notions of optics have with each other. These elementary notions include interference, polarization, coherence, complementarity and entanglement. All of them are present in both quantum and classical optics. They have historic origins, and at least partly for this reason not all of them have quantitative definitions that are universally accepted. This makes further investigation into their engagement in optics very desirable. We pay particular attention to effects that arise from the mere co-existence of separately identifiable and readily available vector spaces. Exploitation of these vector-space relationships are shown to have unfamiliar theoretical implications and new options for observation. It is our goal to bring emerging quantum–classical links into wider view and to indicate directions in which forthcoming and future work will promote discussion and lead to unified understanding. (invited comment)

  2. Quantum experiments without classical counterparts

    International Nuclear Information System (INIS)

    Pavicic, M.

    2005-01-01

    Full text: We present a generalized and exhaustive method of finding the directions of the quantization axes of the measured eigenstates within experiments which have no classical counterparts. The method relies on a constructive and exhaustive definition of sets of such directions (which we call Kochen-Specker vectors) in a Hilbert space of any dimension as well as of all the remaining vectors of the space. Kochen-Specker vectors are elements of any set of orthonormal states, i.e., vectors in n-dim Hilbert space, Hn, n > 2 to which it is impossible to assign 1s and 0s in such a way that no two mutually orthogonal vectors from the set are both assigned 1 and that not all mutually orthogonal vectors are assigned 0. Our constructive definition of such Kochen-Specker vectors is based on algorithms that generate MMP diagrams corresponding to blocks of orthogonal vectors in Rn, on algorithms that single out those diagrams on which algebraic to 0-1 states cannot be defined, and on algorithms that solve nonlinear equations describing the orthogonalities of the vectors by means of statistically polynomially complex interval analysis and self-teaching programs. The algorithms are limited neither by the number of dimensions nor by the number of vectors. To demonstrate the power of the algorithms, all 4-dim KS vector systems containing up to 24 vectors were generated and described, all 3-dim vector systems containing up to 30 vectors were scanned, and several general properties of KS vectors were found. (author)

  3. Hybrid quantum-classical modeling of quantum dot devices

    Science.gov (United States)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  4. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  5. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  6. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  7. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  8. Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit

    International Nuclear Information System (INIS)

    Turner, L

    2004-01-01

    In only 150 pages, not counting appendices, references, or the index, this book is one author's perspective of the massive theoretical and philosophical hurdles in the no-man's-land separating the classical and quantum domains of physics. It ends with him emphasizing his own theoretical contribution to this area. In his own words, he has attempted to answer: 1. How can we obtain the quantum dynamics of open systems initially described by the equations of motion of classical physics (quantization process) 2. How can we retrieve classical dynamics from the quantum mechanical equations of motion by means of a classical limiting process (dequantization process). However, this monograph seems overly ambitious. Although the publisher's description refers to this book as an accessible entre, we find that this author scrambles too hastily over the peaks of information that are contained in his large collection of 272 references. Introductory motivating discussions are lacking. Profound ideas are glossed over superficially and shoddily. Equations morph. But no new convincing understanding of the physical world results. The author takes the viewpoint that physical systems are always in interaction with their environment and are thus not isolated and, therefore, not Hamiltonian. This impels him to produce a method of quantization of these stochastic systems without the need of a Hamiltonian. He also has interest in obtaining the classical limit of the quantized results. However, this reviewer does not understand why one needs to consider open systems to understand quantum-classical correspondence. The author demonstrates his method using various examples of the Smoluchowski form of the Fokker--Planck equation. He then renders these equations in a Wigner representation, uses what he terms an infinitesimality condition, and associates with a constant having the dimensions of an action. He thereby claims to develop master equations, such as the Caldeira-Leggett equation, without

  9. Duality Quantum Information and Duality Quantum Communication

    International Nuclear Information System (INIS)

    Li, C. Y.; Wang, W. Y.; Wang, C.; Song, S. Y.; Long, G. L.

    2011-01-01

    Quantum mechanical systems exhibit particle wave duality property. This duality property has been exploited for information processing. A duality quantum computer is a quantum computer on the move and passing through a multi-slits. It offers quantum wave divider and quantum wave combiner operations in addition to those allowed in an ordinary quantum computer. It has been shown that all linear bounded operators can be realized in a duality quantum computer, and a duality quantum computer with n qubits and d-slits can be realized in an ordinary quantum computer with n qubits and a qudit in the so-called duality quantum computing mode. The quantum particle-wave duality can be used in providing secure communication. In this paper, we will review duality quantum computing and duality quantum key distribution.

  10. Multiparty-controlled quantum secure direct communication

    International Nuclear Information System (INIS)

    Xiu, X.-M.; Dong, L.; Gao, Y.-J.; Chi, F.

    2007-01-01

    A theoretical scheme of a multiparty-controlled quantum secure direct communication is proposed. The supervisor prepares a communication network with Einstein-Podolsky-Rosen pairs and auxiliary particles. After passing a security test of the communication network, a supervisor tells the users the network is secure and they can communicate. If the controllers allow the communicators to communicate, the controllers should perform measurements and inform the communicators of the outcomes. The communicators then begin to communicate after they perform a security test of the quantum channel and verify that it is secure. The recipient can decrypt the secret message in a classical message from the sender depending on the protocol. Any two users in the network can communicate through the above processes under the control of the supervisor and the controllers

  11. Dynamics of quantum-classical differences for chaotic systems

    International Nuclear Information System (INIS)

    Ballentine, L.E.

    2002-01-01

    The differences between quantum and classical dynamics can be studied through the moments and correlations of the position and momentum variables in corresponding quantum and classical statistical states. In chaotic states the quantum-classical differences grow exponentially with an exponent that exceeds the classical Lyapunov exponent. It is shown analytically that the quantum-classical differences scale as (ℎ/2π) 2 , and that the exponent for the growth of these differences is independent of (ℎ/2π). The quantum-classical difference exponent is studied for two quartic potential models, and the results are compared with previous work on the Henon-Heiles model

  12. Quantum and classical dissipation of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra-Sierra, V.G. [Departamento de Física, Universidad Autónoma Metropolitana at Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Roa-Neri, J.A.E. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  13. Quantum and classical dissipation of charged particles

    International Nuclear Information System (INIS)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-01-01

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge

  14. New variables for classical and quantum gravity

    Science.gov (United States)

    Ashtekar, Abhay

    1986-01-01

    A Hamiltonian formulation of general relativity based on certain spinorial variables is introduced. These variables simplify the constraints of general relativity considerably and enable one to imbed the constraint surface in the phase space of Einstein's theory into that of Yang-Mills theory. The imbedding suggests new ways of attacking a number of problems in both classical and quantum gravity. Some illustrative applications are discussed.

  15. Quantum-classical hybrid dynamics – a summary

    International Nuclear Information System (INIS)

    Elze, Hans-Thomas

    2013-01-01

    A summary of a recently proposed description of quantum-classical hybrids is presented, which concerns quantum and classical degrees of freedom of a composite object that interact directly with each other. This is based on notions of classical Hamiltonian mechanics suitably extended to quantum mechanics.

  16. Entangled photons and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Zhensheng, E-mail: yuanzs@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Bao Xiaohui [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany); Lu Chaoyang; Zhang Jun; Peng Chengzhi [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Pan Jianwei, E-mail: pan@ustc.edu.c [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physikalisches Institut, Universitaet Heidelberg, Philosophenweg 12, 69120 Heidelberg (Germany)

    2010-12-15

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  17. Entangled photons and quantum communication

    International Nuclear Information System (INIS)

    Yuan Zhensheng; Bao Xiaohui; Lu Chaoyang; Zhang Jun; Peng Chengzhi; Pan Jianwei

    2010-01-01

    This article reviews the progress of quantum communication that utilizes photonic entanglement. We start with a survey of various methods for generating entangled photons, followed by an introduction of the theoretical principles and the experimental implementations of quantum key distribution. We then move on to a discussion of more involved quantum communication protocols including quantum dense coding, teleportation and quantum communication complexity. After that, we review the progress in free-space quantum communication, decoherence-free subspace, and quantum repeater protocols which are essential ingredients for long-distance quantum communication. Practical realizations of quantum repeaters, which require an interface between photons and quantum memories, are discussed briefly. Finally, we draw concluding remarks considering the technical challenges, and put forward an outlook on further developments of this field.

  18. Trading quantum for classical resources in quantum data compression

    International Nuclear Information System (INIS)

    Hayden, Patrick; Jozsa, Richard; Winter, Andreas

    2002-01-01

    We study the visible compression of a source E={|φ i >,p i } of pure quantum signal states or, more formally, the minimal resources per signal required to represent arbitrarily long strings of signals with arbitrarily high fidelity, when the compressor is given the identity of the input state sequence as classical information. According to the quantum source coding theorem, the optimal quantum rate is the von Neumann entropy S(E) qubits per signal. We develop a refinement of this theorem in order to analyze the situation in which the states are coded into classical and quantum bits that are quantified separately. This leads to a trade-off curve Q * (R), where Q * (R) qubits per signal is the optimal quantum rate for a given classical rate of R bits per signal. Our main result is an explicit characterization of this trade-off function by a simple formula in terms of only single-signal, perfect fidelity encodings of the source. We give a thorough discussion of many further mathematical properties of our formula, including an analysis of its behavior for group covariant sources and a generalization to sources with continuously parametrized states. We also show that our result leads to a number of corollaries characterizing the trade-off between information gain and state disturbance for quantum sources. In addition, we indicate how our techniques also provide a solution to the so-called remote state preparation problem. Finally, we develop a probability-free version of our main result which may be interpreted as an answer to the question: ''How many classical bits does a qubit cost?'' This theorem provides a type of dual to Holevo's theorem, insofar as the latter characterizes the cost of coding classical bits into qubits

  19. Classical Boolean logic gates with quantum systems

    International Nuclear Information System (INIS)

    Renaud, N; Joachim, C

    2011-01-01

    An analytical method is proposed to implement any classical Boolean function in a small quantum system by taking the advantage of its electronic transport properties. The logical input, α = {α 1 , ..., α N }, is used to control well-identified parameters of the Hamiltonian of the system noted H 0 (α). The logical output is encoded in the tunneling current intensity passing through the quantum system when connected to conducting electrodes. It is demonstrated how to implement the six symmetric two-input/one-output Boolean functions in a quantum system. This system can be switched from one logic function to another by changing its structural parameters. The stability of the logic gates is discussed, perturbing the Hamiltonian with noise sources and studying the effect of decoherence.

  20. Quantum cryptography approaching the classical limit.

    Science.gov (United States)

    Weedbrook, Christian; Pirandola, Stefano; Lloyd, Seth; Ralph, Timothy C

    2010-09-10

    We consider the security of continuous-variable quantum cryptography as we approach the classical limit, i.e., when the unknown preparation noise at the sender's station becomes significantly noisy or thermal (even by as much as 10(4) times greater than the variance of the vacuum mode). We show that, provided the channel transmission losses do not exceed 50%, the security of quantum cryptography is not dependent on the channel transmission, and is therefore incredibly robust against significant amounts of excess preparation noise. We extend these results to consider for the first time quantum cryptography at wavelengths considerably longer than optical and find that regions of security still exist all the way down to the microwave.

  1. Particle swarm optimisation classical and quantum perspectives

    CERN Document Server

    Sun, Jun; Wu, Xiao-Jun

    2016-01-01

    IntroductionOptimisation Problems and Optimisation MethodsRandom Search TechniquesMetaheuristic MethodsSwarm IntelligenceParticle Swarm OptimisationOverviewMotivationsPSO Algorithm: Basic Concepts and the ProcedureParadigm: How to Use PSO to Solve Optimisation ProblemsSome Harder Examples Some Variants of Particle Swarm Optimisation Why Does the PSO Algorithm Need to Be Improved? Inertia and Constriction-Acceleration Techniques for PSOLocal Best ModelProbabilistic AlgorithmsOther Variants of PSO Quantum-Behaved Particle Swarm Optimisation OverviewMotivation: From Classical Dynamics to Quantum MechanicsQuantum Model: Fundamentals of QPSOQPSO AlgorithmSome Essential ApplicationsSome Variants of QPSOSummary Advanced Topics Behaviour Analysis of Individual ParticlesConvergence Analysis of the AlgorithmTime Complexity and Rate of ConvergenceParameter Selection and PerformanceSummaryIndustrial Applications Inverse Problems for Partial Differential EquationsInverse Problems for Non-Linear Dynamical SystemsOptimal De...

  2. Classical particle dynamics in the quantum space

    International Nuclear Information System (INIS)

    Dineykhan, M.; Namsrai, Kh.

    1985-01-01

    It is suggested that if space-time is quantized at small distances then even at the classical level the particle motion in whole space is complicated and described by a nonlinear equation. In the quantum space the Lagrangian function or energy of the particle consists of two parts: usual kinetic and rotation term determined by the square of the inner angular momentum-torsion torque origin of which is caused by quantum nature of space. Rotation energy and rotation motion of the particle disappear in the limit l→0, l is the value of the fundamental length. In the free particle case, in addition to the rectilinear motion the particle undergoes rotation given by the inner angular momentum. Different possible types of the particle motion are discussed. Thus, the scheme may shed light on the essence of the appearance of rotation or twisting, stochastic and turbulent types of motion in classical physics and, perhaps, on the notion of spin in quantum physics within the framework of quantum character of space-time at small distances

  3. Classical system boundaries cannot be determined within quantum Darwinism

    Science.gov (United States)

    Fields, Chris

    Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.

  4. QUANTUM AND CLASSICAL CORRELATIONS IN GAUSSIAN OPEN QUANTUM SYSTEMS

    Directory of Open Access Journals (Sweden)

    Aurelian ISAR

    2015-01-01

    Full Text Available In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous-variable quantum correlations (quantum entanglement and quantum discord for a system consisting of two noninteracting bosonic modes embedded in a thermal environment. We solve the Kossakowski-Lindblad master equation for the time evolution of the considered system and describe the entanglement and discord in terms of the covariance matrix for Gaussian input states. For all values of the temperature of the thermal reservoir, an initial separable Gaussian state remains separable for all times. We study the time evolution of logarithmic negativity, which characterizes the degree of entanglement, and show that in the case of an entangled initial squeezed thermal state, entanglement suppression takes place for all temperatures of the environment, including zero temperature. We analyze the time evolution of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite state, including entanglement, and show that it decays asymptotically in time under the effect of the thermal bath. This is in contrast with the sudden death of entanglement. Before the suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that of the entanglement. We describe also the time evolution of the degree of classical correlations and of quantum mutual information, which measures the total correlations of the quantum system.

  5. Quantum Communication Using Coherent Rejection Sampling

    Science.gov (United States)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-01

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995), 10.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); , 10.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); , 10.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009), 10.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  6. Introduction to classical and quantum field theory

    International Nuclear Information System (INIS)

    Ng, Tai-Kai

    2009-01-01

    This is the first introductory textbook on quantum field theory to be written from the point of view of condensed matter physics. As such, it presents the basic concepts and techniques of statistical field theory, clearly explaining how and why they are integrated into modern quantum (and classical) field theory, and includes the latest developments. Written by an expert in the field, with a broad experience in teaching and training, it manages to present such substantial topics as phases and phase transitions or solitons and instantons in an accessible and concise way. Divided into three parts, the first part covers fundamental physics and the mathematics background needed by students in order to enter the field, while the second part introduces more advanced concepts and techniques. Part III discusses applications of quantum field theory to a few basic problems. The emphasis here lies on how modern concepts of quantum field theory are embedded in these approaches, and also on the limitations of standard quantum field theory techniques in facing, 'real' physics problems. Throughout there are numerous end-of-chapter problems, and a free solutions manual is available for lecturers. (orig.)

  7. Team decision problems with classical and quantum signals.

    Science.gov (United States)

    Brandenburger, Adam; La Mura, Pierfrancesco

    2016-01-13

    We study team decision problems where communication is not possible, but coordination among team members can be realized via signals in a shared environment. We consider a variety of decision problems that differ in what team members know about one another's actions and knowledge. For each type of decision problem, we investigate how different assumptions on the available signals affect team performance. Specifically, we consider the cases of perfectly correlated, i.i.d., and exchangeable classical signals, as well as the case of quantum signals. We find that, whereas in perfect-recall trees (Kuhn 1950 Proc. Natl Acad. Sci. USA 36, 570-576; Kuhn 1953 In Contributions to the theory of games, vol. II (eds H Kuhn, A Tucker), pp. 193-216) no type of signal improves performance, in imperfect-recall trees quantum signals may bring an improvement. Isbell (Isbell 1957 In Contributions to the theory of games, vol. III (eds M Drescher, A Tucker, P Wolfe), pp. 79-96) proved that, in non-Kuhn trees, classical i.i.d. signals may improve performance. We show that further improvement may be possible by use of classical exchangeable or quantum signals. We include an example of the effect of quantum signals in the context of high-frequency trading. © 2015 The Authors.

  8. Coherent eavesdropping attacks in tomographic quantum cryptography: Nonequivalence of quantum and classical key distillation

    International Nuclear Information System (INIS)

    Kaszlikowski, Dagomir; Lim, J.Y.; Englert, Berthold-Georg; Kwek, L.C.

    2005-01-01

    The security of a cryptographic key that is generated by communication through a noisy quantum channel relies on the ability to distill a shorter secure key sequence from a longer insecure one. We show that - for protocols that use quantum channels of any dimension and completely characterize them by state tomography - the noise threshold for classical advantage distillation of a specific kind is substantially lower than the threshold for quantum entanglement distillation if the eavesdropper can perform powerful coherent attacks. In marked contrast, earlier investigations had shown that the thresholds are identical for incoherent attacks on the same classical distillation scheme. It remains an open question whether other schemes for classical advantage distillation have higher thresholds for coherent eavesdropping attacks

  9. Quantum-classical correspondence in the vicinity of periodic orbits

    Science.gov (United States)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  10. Introduction to Classical and Quantum Harmonic Oscillators

    International Nuclear Information System (INIS)

    Latal, H

    1997-01-01

    As the title aptly states, this book deals with harmonic oscillators of various kinds, from classical mechanical and electrical oscillations up to quantum oscillations. It is written in a lively language, and occasional interspersed anecdotes make the reading of an otherwise mathematically oriented text quite a pleasure. Although the author claims to have written an 'elementary introduction', it is certainly necessary to have a good deal of previous knowledge in physics (mechanics, electrodynamics, quantum theory), electrical engineering and, of course, mathematics in order to follow the general line of his arguments. The book begins with a thorough treatment of classical oscillators (free, damped, forced) that is followed by an elaboration on Fourier analysis. Lagrange and Hamilton formalisms are then introduced before the problem of coupled oscillations is attacked. A chapter on statistical perspectives leads over to the final discussion of quantum oscillations. With the book comes a diskette containing a number of worksheets (Microsoft Excel) that can be used by the reader for instant visualization to get a better qualitative and quantitative understanding of the material. To the reviewer it seems difficult to pinpoint exactly the range of prospective readership of the book. It can certainly not be intended as a textbook for students, but rather as a reference book for teachers of physics or researchers, who want to look up one or other aspect of harmonic oscillations, for which purpose the diskette represents a very valuable tool. (book review)

  11. Probing quantum entanglement, quantum discord, classical correlation, and the quantum state without disturbing them

    International Nuclear Information System (INIS)

    Li Zhenni; Jin Jiasen; Yu Changshui

    2011-01-01

    We present schemes for a type of one-parameter bipartite quantum state to probe quantum entanglement, quantum discord, the classical correlation, and the quantum state based on cavity QED. It is shown that our detection does not influence all these measured quantities. We also discuss how the spontaneous emission introduced by our probe atom influences our detection.

  12. Integration of classical and quantum physics

    International Nuclear Information System (INIS)

    Tisza, L.

    1989-01-01

    The perennial aspect of the Newtonian foundation of mathematical physics is that the concept of ''motion,'' that is, ''kinematics,'' is to serve as the interface between mathematics and physics. Kinematics subdivides into the theory of orbital translation and that of undulation and spinning. Newtonian mechanics is based on giving to translational kinematics a priority over the other modes, since planetary revolution can be represented as translation modified by gravitation. The so-called breakdown of classical physics stems from giving the translational priority a canonical status and extending it to the constituents of matter. We claim that in this case the priority is to be reversed. The main content of this paper is to establish the algebraic model for an indivisible, undulating entity that we call a ''wave simplex.'' It is used as the point of departure for a non-Newtonian quantum dynamics in which physical and algebraic concepts are in close correspondence. The postulates of the classical phenomenological theories and those of the canonical theories based on translational priority are established as theorems under the proper limiting conditions, and forces are constructed rather than postulated. While the formal structure of two-level quantum mechanics is established as well, exception is taken to treating spin as a property of a point particle. It is considered self-evident that a spinning object is orientable, a property accounted for in terms of a unitary triplet. This is the point of departure for an intrinsic particle dynamics. A main result is the integration of classical and quantum physics, thus closing the gap created by the heuristic method of canonical quantization

  13. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  14. Quantum communication in noisy environments

    International Nuclear Information System (INIS)

    Aschauer, H.

    2004-01-01

    In this thesis, we investigate how protocols in quantum communication theory are influenced by noise. Specifically, we take into account noise during the transmission of quantum information and noise during the processing of quantum information. We describe three novel quantum communication protocols which can be accomplished efficiently in a noisy environment: (1) Factorization of Eve: We show that it is possible to disentangle transmitted qubits a posteriori from the quantum channel's degrees of freedom. (2) Cluster state purification: We give multi-partite entanglement purification protocols for a large class of entangled quantum states. (3) Entanglement purification protocols from quantum codes: We describe a constructive method to create bipartite entanglement purification protocols form quantum error correcting codes, and investigate the properties of these protocols, which can be operated in two different modes, which are related to quantum communication and quantum computation protocols, respectively

  15. Relativistic classical limit of quantum theory

    International Nuclear Information System (INIS)

    Shin, G.R.; Rafelski, J.

    1993-01-01

    We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density

  16. Quantum scattering from classical field theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1995-01-01

    We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))

  17. A Comparative Study of Quantum and Classical Deletion

    International Nuclear Information System (INIS)

    Shen Yao; Hao Liang; Long Guilu

    2010-01-01

    Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered. (general)

  18. Concept of indistinguishable particles in classical and quantum physics

    International Nuclear Information System (INIS)

    Bach, A.

    1988-01-01

    The consequences of the following definition of indistinguishability are analyzed. Indistinguishable classical or quantum particles are identical classical or quantum particles in a state characterized by a probability measure, a statistical operator respectively, which is invariant under any permutation of the particles. According to this definition the particles of classical Maxwell-Boltzmann statistics are indistinguishable

  19. Classical and nonclassical randomness in quantum measurements

    International Nuclear Information System (INIS)

    Farenick, Douglas; Plosker, Sarah; Smith, Jerrod

    2011-01-01

    The space POVM H (X) of positive operator-valued probability measures on the Borel sets of a compact (or even locally compact) Hausdorff space X with values in B(H), the algebra of linear operators acting on a d-dimensional Hilbert space H, is studied from the perspectives of classical and nonclassical convexity through a transform Γ that associates any positive operator-valued measure ν with a certain completely positive linear map Γ(ν) of the homogeneous C*-algebra C(X) x B(H) into B(H). This association is achieved by using an operator-valued integral in which nonclassical random variables (that is, operator-valued functions) are integrated with respect to positive operator-valued measures and which has the feature that the integral of a random quantum effect is itself a quantum effect. A left inverse Ω for Γ yields an integral representation, along the lines of the classical Riesz representation theorem for linear functionals on C(X), of certain (but not all) unital completely positive linear maps φ:C(X) x B(H)→B(H). The extremal and C*-extremal points of POVM H (X) are determined.

  20. Classical Information Storage in an n-Level Quantum System

    Science.gov (United States)

    Frenkel, Péter E.; Weiner, Mihály

    2015-12-01

    A game is played by a team of two—say Alice and Bob—in which the value of a random variable x is revealed to Alice only, who cannot freely communicate with Bob. Instead, she is given a quantum n-level system, respectively a classical n-state system, which she can put in possession of Bob in any state she wishes. We evaluate how successfully they managed to store and recover the value of x by requiring Bob to specify a value z and giving a reward of value f ( x, z) to the team. We show that whatever the probability distribution of x and the reward function f are, when using a quantum n-level system, the maximum expected reward obtainable with the best possible team strategy is equal to that obtainable with the use of a classical n-state system. The proof relies on mixed discriminants of positive matrices and—perhaps surprisingly—an application of the Supply-Demand Theorem for bipartite graphs. As a corollary, we get an infinite set of new, dimension dependent inequalities regarding positive operator valued measures and density operators on complex n-space. As a further corollary, we see that the greatest value, with respect to a given distribution of x, of the mutual information I ( x; z) that is obtainable using an n-level quantum system equals the analogous maximum for a classical n-state system.

  1. Quantum communication complexity advantage implies violation of a Bell inequality

    Science.gov (United States)

    Buhrman, Harry; Czekaj, Łukasz; Grudka, Andrzej; Horodecki, Michał; Horodecki, Paweł; Markiewicz, Marcin; Speelman, Florian; Strelchuk, Sergii

    2016-01-01

    We obtain a general connection between a large quantum advantage in communication complexity and Bell nonlocality. We show that given any protocol offering a sufficiently large quantum advantage in communication complexity, there exists a way of obtaining measurement statistics that violate some Bell inequality. Our main tool is port-based teleportation. If the gap between quantum and classical communication complexity can grow arbitrarily large, the ratio of the quantum value to the classical value of the Bell quantity becomes unbounded with the increase in the number of inputs and outputs. PMID:26957600

  2. Interplay of quantum and classical fluctuations near quantum critical points

    International Nuclear Information System (INIS)

    Continentino, Mucio Amado

    2011-01-01

    For a system near a quantum critical point (QCP), above its lower critical dimension d L , there is in general a critical line of second-order phase transitions that separates the broken symmetry phase at finite temperatures from the disordered phase. The phase transitions along this line are governed by thermal critical exponents that are different from those associated with the quantum critical point. We point out that, if the effective dimension of the QCP, d eff = d + z (d is the Euclidean dimension of the system and z the dynamic quantum critical exponent) is above its upper critical dimension d c there is an intermingle of classical (thermal) and quantum critical fluctuations near the QCP. This is due to the breakdown of the generalized scaling relation ψ = νz between the shift exponent ψ of the critical line and the crossover exponent νz, for d + z > d c by a dangerous irrelevant interaction. This phenomenon has clear experimental consequences, like the suppression of the amplitude of classical critical fluctuations near the line of finite temperature phase transitions as the critical temperature is reduced approaching the QCP. (author)

  3. Ground test of satellite constellation based quantum communication

    OpenAIRE

    Liao, Sheng-Kai; Yong, Hai-Lin; Liu, Chang; Shentu, Guo-Liang; Li, Dong-Dong; Lin, Jin; Dai, Hui; Zhao, Shuang-Qiang; Li, Bo; Guan, Jian-Yu; Chen, Wei; Gong, Yun-Hong; Li, Yang; Lin, Ze-Hong; Pan, Ge-Sheng

    2016-01-01

    Satellite based quantum communication has been proven as a feasible way to achieve global scale quantum communication network. Very recently, a low-Earth-orbit (LEO) satellite has been launched for this purpose. However, with a single satellite, it takes an inefficient 3-day period to provide the worldwide connectivity. On the other hand, similar to how the Iridium system functions in classic communication, satellite constellation (SC) composed of many quantum satellites, could provide global...

  4. Evolution equation for classical and quantum light in turbulence

    CSIR Research Space (South Africa)

    Roux, FS

    2015-06-01

    Full Text Available Recently, an infinitesimal propagation equation was derived for the evolution of orbital angular momentum entangled photonic quantum states through turbulence. The authors will discuss its derivation and application within both classical and quantum...

  5. Emergence of a classical Universe from quantum gravity and cosmology.

    Science.gov (United States)

    Kiefer, Claus

    2012-09-28

    I describe how we can understand the classical appearance of our world from a universal quantum theory. The essential ingredient is the process of decoherence. I start with a general discussion in ordinary quantum theory and then turn to quantum gravity and quantum cosmology. There is a whole hierarchy of classicality from the global gravitational field to the fluctuations in the cosmic microwave background, which serve as the seeds for the structure in the Universe.

  6. Non-classical Correlations and Quantum Coherence in Mixed Environments

    Science.gov (United States)

    Hu, Zheng-Da; Wei, Mei-Song; Wang, Jicheng; Zhang, Yixin; He, Qi-Liang

    2018-05-01

    We investigate non-classical correlations (entanglement and quantum discord) and quantum coherence for an open two-qubit system each independently coupled to a bosonic environment and a spin environment, respectively. The modulating effects of spin environment and bosonic environment are respectively explored. A relation among the quantum coherence, quantum discord and classical correlation is found during the sudden transition phenomenon. We also compare the case of mixed environments with that of the same environments, showing that the dynamics is dramatically changed.

  7. New derivation of quantum equations from classical stochastic arguments

    OpenAIRE

    Bergeron, H.

    2003-01-01

    In a previous article [H. Bergeron, J. Math. Phys. 42, 3983 (2001)], we presented a method to obtain a continuous transition from classical to quantum mechanics starting from the usual phase space formulation of classical mechanics. This procedure was based on a Koopman-von Neumann approach where classical equations are reformulated into a quantumlike form. In this article, we develop a different derivation of quantum equations, based on purely classical stochastic arguments, taking some elem...

  8. Dimensional discontinuity in quantum communication complexity at dimension seven

    Science.gov (United States)

    Tavakoli, Armin; Pawłowski, Marcin; Żukowski, Marek; Bourennane, Mohamed

    2017-02-01

    Entanglement-assisted classical communication and transmission of a quantum system are the two quantum resources for information processing. Many information tasks can be performed using either quantum resource. However, this equivalence is not always present since entanglement-assisted classical communication is sometimes known to be the better performing resource. Here, we show not only the opposite phenomenon, that there exist tasks for which transmission of a quantum system is a more powerful resource than entanglement-assisted classical communication, but also that such phenomena can have a surprisingly strong dependence on the dimension of Hilbert space. We introduce a family of communication complexity problems parametrized by the dimension of Hilbert space and study the performance of each quantum resource. Under an additional assumption of a linear strategy for the receiving party, we find that for low dimensions the two resources perform equally well, whereas for dimension seven and above the equivalence is suddenly broken and transmission of a quantum system becomes more powerful than entanglement-assisted classical communication. Moreover, we find that transmission of a quantum system may even outperform classical communication assisted by the stronger-than-quantum correlations obtained from the principle of macroscopic locality.

  9. Classical Physics and the Bounds of Quantum Correlations.

    Science.gov (United States)

    Frustaglia, Diego; Baltanás, José P; Velázquez-Ahumada, María C; Fernández-Prieto, Armando; Lujambio, Aintzane; Losada, Vicente; Freire, Manuel J; Cabello, Adán

    2016-06-24

    A unifying principle explaining the numerical bounds of quantum correlations remains elusive, despite the efforts devoted to identifying it. Here, we show that these bounds are indeed not exclusive to quantum theory: for any abstract correlation scenario with compatible measurements, models based on classical waves produce probability distributions indistinguishable from those of quantum theory and, therefore, share the same bounds. We demonstrate this finding by implementing classical microwaves that propagate along meter-size transmission-line circuits and reproduce the probabilities of three emblematic quantum experiments. Our results show that the "quantum" bounds would also occur in a classical universe without quanta. The implications of this observation are discussed.

  10. Fundamental limits of repeaterless quantum communications

    Science.gov (United States)

    Pirandola, Stefano; Laurenza, Riccardo; Ottaviani, Carlo; Banchi, Leonardo

    2017-01-01

    Quantum communications promises reliable transmission of quantum information, efficient distribution of entanglement and generation of completely secure keys. For all these tasks, we need to determine the optimal point-to-point rates that are achievable by two remote parties at the ends of a quantum channel, without restrictions on their local operations and classical communication, which can be unlimited and two-way. These two-way assisted capacities represent the ultimate rates that are reachable without quantum repeaters. Here, by constructing an upper bound based on the relative entropy of entanglement and devising a dimension-independent technique dubbed ‘teleportation stretching', we establish these capacities for many fundamental channels, namely bosonic lossy channels, quantum-limited amplifiers, dephasing and erasure channels in arbitrary dimension. In particular, we exactly determine the fundamental rate-loss tradeoff affecting any protocol of quantum key distribution. Our findings set the limits of point-to-point quantum communications and provide precise and general benchmarks for quantum repeaters. PMID:28443624

  11. Geometry from dynamics, classical and quantum

    CERN Document Server

    Cariñena, José F; Marmo, Giuseppe; Morandi, Giuseppe

    2015-01-01

    This book describes, by using elementary techniques, how some geometrical structures widely used today in many areas of physics, like symplectic, Poisson, Lagrangian, Hermitian, etc., emerge from dynamics. It is assumed that what can be accessed in actual experiences when studying a given system is just its dynamical behavior that is described by using a family of variables ("observables" of the system).   The book departs from the principle that ''dynamics is first'', and then tries to answer in what sense the sole dynamics determines the geometrical structures that have proved so useful to describe the dynamics in so many important instances. In this vein it is shown that most of the geometrical structures that are used in the standard presentations of classical dynamics (Jacobi, Poisson, symplectic, Hamiltonian, Lagrangian) are determined, though in general not uniquely, by the dynamics alone. The same program is accomplished for the geometrical structures relevant to describe quantum dynamics.  Finall...

  12. Quantum-Classical Hybrid for Information Processing

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source

  13. Quantum Vertex Model for Reversible Classical Computing

    Science.gov (United States)

    Chamon, Claudio; Mucciolo, Eduardo; Ruckenstein, Andrei; Yang, Zhicheng

    We present a planar vertex model that encodes the result of a universal reversible classical computation in its ground state. The approach involves Boolean variables (spins) placed on links of a two-dimensional lattice, with vertices representing logic gates. Large short-ranged interactions between at most two spins implement the operation of each gate. The lattice is anisotropic with one direction corresponding to computational time, and with transverse boundaries storing the computation's input and output. The model displays no finite temperature phase transitions, including no glass transitions, independent of circuit. The computational complexity is encoded in the scaling of the relaxation rate into the ground state with the system size. We use thermal annealing and a novel and more efficient heuristic \\x9Dannealing with learning to study various computational problems. To explore faster relaxation routes, we construct an explicit mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating a novel approach to reversible classical computation based on quantum annealing.

  14. Beyond quantum-classical analogies: high time for agreement?

    Science.gov (United States)

    Marrocco, Michele

    Lately, many quantum-classical analogies have been investigated and published in many acknowledged journals. Such a surge of research on conceptual connections between quantum and classical physics forces us to ask whether the correspondence between the quantum and classical interpretation of the reality is deeper than the correspondence principle stated by Bohr. Here, after a short introduction to quantum-classical analogies from the recent literature, we try to examine the question from the perspective of a possible agreement between quantum and classical laws. A paradigmatic example is given in the striking equivalence between the classical Mie theory of electromagnetic scattering from spherical scatterers and the corresponding quantum-mechanical wave scattering analyzed in terms of partial waves. The key features that make the correspondence possible are examined and finally employed to deal with the fundamental blackbody problem that marks the initial separation between classical and quantum physics. The procedure allows us to recover the blackbody spectrum in classical terms and the proof is rich in consequences. Among them, the strong analogy between the quantum vacuum and its classical counterpart.

  15. Quantum level dynamics as classical relaxation towards equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Haake, F; Kus, M

    1988-08-01

    We consider the transition from untypical to generic level fluctuations in quantum systems. An important example is the change from level clustering to level repulsion, a frequently observed quantum signature of the development of chaos in the classical limit. We argue that such transitions to genericity can be understood as analogues of equilibration processes in classical many-particle systems.

  16. The equivalence principle in classical mechanics and quantum mechanics

    OpenAIRE

    Mannheim, Philip D.

    1998-01-01

    We discuss our understanding of the equivalence principle in both classical mechanics and quantum mechanics. We show that not only does the equivalence principle hold for the trajectories of quantum particles in a background gravitational field, but also that it is only because of this that the equivalence principle is even to be expected to hold for classical particles at all.

  17. Quantum Communication Using Coherent Rejection Sampling.

    Science.gov (United States)

    Anshu, Anurag; Devabathini, Vamsi Krishna; Jain, Rahul

    2017-09-22

    Compression of a message up to the information it carries is key to many tasks involved in classical and quantum information theory. Schumacher [B. Schumacher, Phys. Rev. A 51, 2738 (1995)PLRAAN1050-294710.1103/PhysRevA.51.2738] provided one of the first quantum compression schemes and several more general schemes have been developed ever since [M. Horodecki, J. Oppenheim, and A. Winter, Commun. Math. Phys. 269, 107 (2007); CMPHAY0010-361610.1007/s00220-006-0118-xI. Devetak and J. Yard, Phys. Rev. Lett. 100, 230501 (2008); PRLTAO0031-900710.1103/PhysRevLett.100.230501A. Abeyesinghe, I. Devetak, P. Hayden, and A. Winter, Proc. R. Soc. A 465, 2537 (2009)PRLAAZ1364-502110.1098/rspa.2009.0202]. However, the one-shot characterization of these quantum tasks is still under development, and often lacks a direct connection with analogous classical tasks. Here we show a new technique for the compression of quantum messages with the aid of entanglement. We devise a new tool that we call the convex split lemma, which is a coherent quantum analogue of the widely used rejection sampling procedure in classical communication protocols. As a consequence, we exhibit new explicit protocols with tight communication cost for quantum state merging, quantum state splitting, and quantum state redistribution (up to a certain optimization in the latter case). We also present a port-based teleportation scheme which uses a fewer number of ports in the presence of information about input.

  18. Emerging Connections: Quantum & Classical Optics Incubator Program Book

    Energy Technology Data Exchange (ETDEWEB)

    Lesky, Marcia [Optical Society of America, Washington, DC (United States)

    2016-11-06

    The Emerging Connections: Quantum & Classical Optics Incubator was a scientific meeting held in Washington, DC on 6-8 November 2016. This Incubator provided unique and focused experiences and valuable opportunities to discuss advances, challenges and opportunities regarding this important area of research. Quantum optics and classical optics have coexisted for nearly a century as two distinct, but consistent descriptions of light in their respective domains. Recently, a number of detailed examinations of the structure of classical light beams have revealed that effects widely thought to be solely quantum in origin also have a place in classical optics. These new quantum-classical connections are informing classical optics in meaningful ways specifically by expanding understanding of optical coherence. Simultaneously, relationships discovered with classical light beams now also serve as a vehicle to illuminate concepts that no longer solely belong to the quantum realm. Interference, polarization, coherence, complementarity and entanglement are a partial list of elementary notions that now appear to belong to both quantum and classical optics. The goal of this meeting was to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work would promote discussion and lead to a more unified understanding of optics.

  19. Scaling of quantum and classical resonance peaks for the quantum kicked rotor

    International Nuclear Information System (INIS)

    Sadgrove, M.; Wimberger, S.; Parkings, S.; Leonhardt, R.

    2005-01-01

    Full text: We present results which demonstrate the relationship between the quantum resonance peaks of the classical kicked rotor and a classical resonance phenomenon. Both types of behaviour may be described using the same formalism (known as the ε - classical standard map). Furthermore, a scaling law exists for classical and quantum resonances which reduces the dynamics to a stationary function of one parameter. (author)

  20. Experimental Blind Quantum Computing for a Classical Client

    Science.gov (United States)

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C.; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-01

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  1. Experimental Blind Quantum Computing for a Classical Client.

    Science.gov (United States)

    Huang, He-Liang; Zhao, Qi; Ma, Xiongfeng; Liu, Chang; Su, Zu-En; Wang, Xi-Lin; Li, Li; Liu, Nai-Le; Sanders, Barry C; Lu, Chao-Yang; Pan, Jian-Wei

    2017-08-04

    To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.

  2. Heterotic quantum and classical computing on convergence spaces

    Science.gov (United States)

    Patten, D. R.; Jakel, D. W.; Irwin, R. J.; Blair, H. A.

    2015-05-01

    Category-theoretic characterizations of heterotic models of computation, introduced by Stepney et al., combine computational models such as classical/quantum, digital/analog, synchronous/asynchronous, etc. to obtain increased computational power. A highly informative classical/quantum heterotic model of computation is represented by Abramsky's simple sequential imperative quantum programming language which extends the classical simple imperative programming language to encompass quantum computation. The mathematical (denotational) semantics of this classical language serves as a basic foundation upon which formal verification methods can be developed. We present a more comprehensive heterotic classical/quantum model of computation based on heterotic dynamical systems on convergence spaces. Convergence spaces subsume topological spaces but admit finer structure from which, in prior work, we obtained differential calculi in the cartesian closed category of convergence spaces allowing us to define heterotic dynamical systems, given by coupled systems of first order differential equations whose variables are functions from the reals to convergence spaces.

  3. Entanglement enhances security in quantum communication

    International Nuclear Information System (INIS)

    Demkowicz-Dobrzanski, Rafal; Sen, Aditi; Sen, Ujjwal; Lewenstein, Maciej

    2009-01-01

    Secret sharing is a protocol in which a 'boss' wants to send a classical message secretly to two 'subordinates', such that none of the subordinates is able to know the message alone, while they can find it if they cooperate. Quantum mechanics is known to allow for such a possibility. We analyze tolerable quantum bit error rates in such secret sharing protocols in the physically relevant case when the eavesdropping is local with respect to the two channels of information transfer from the boss to the two subordinates. We find that using entangled encoding states is advantageous to legitimate users of the protocol. We therefore find that entanglement is useful for secure quantum communication. We also find that bound entangled states with positive partial transpose are not useful as a local eavesdropping resource. Moreover, we provide a criterion for security in secret sharing--a parallel of the Csiszar-Koerner criterion in single-receiver classical cryptography.

  4. The transition to chaos conservative classical systems and quantum manifestations

    CERN Document Server

    Reichl, Linda E

    2004-01-01

    This book provides a thorough and comprehensive discussion of classical and quantum chaos theory for bounded systems and for scattering processes Specific discussions include • Noether’s theorem, integrability, KAM theory, and a definition of chaotic behavior • Area-preserving maps, quantum billiards, semiclassical quantization, chaotic scattering, scaling in classical and quantum dynamics, dynamic localization, dynamic tunneling, effects of chaos in periodically driven systems and stochastic systems • Random matrix theory and supersymmetry The book is divided into several parts Chapters 2 through 4 deal with the dynamics of nonlinear conservative classical systems Chapter 5 and several appendices give a thorough grounding in random matrix theory and supersymmetry techniques Chapters 6 and 7 discuss the manifestations of chaos in bounded quantum systems and open quantum systems respectively Chapter 8 focuses on the semiclassical description of quantum systems with underlying classical chaos, and Chapt...

  5. Quantum and classical behavior in interacting bosonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)

    2016-11-21

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.

  6. Projective measurements in quantum and classical optical systems

    CSIR Research Space (South Africa)

    Roux, FS

    2014-09-01

    Full Text Available equally well to both classical and quantum optical systems. A projective measurement, in the context of quantum mechanics, is understood to be the process where a projection operator operates on some input state. Often this projection operator is composed...) Projective measurements in quantum and classical optical systems Filippus S. Roux* and Yingwen Zhang CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa (Received 3 July 2014; published 22 September 2014) Experimental setups for the optical...

  7. Dynamics of a discoordination game with classical and quantum correlations

    International Nuclear Information System (INIS)

    Oezdemir, Sahin Kaya; Shimamura, Junichi; Morikoshi, Fumiaki; Imoto, Nobuyuki

    2004-01-01

    Effects of classical/quantum correlations and operations in simultaneous move games are analyzed using a discoordination game, known as Samaritan's dilemma, in which there is no Nash equilibrium (NE) when played with classical pure strategies. We show that although the dilemma can be resolved with quantum operations provided that there is a shared classically correlated state between the players, it is only in the presence of entanglement that the players can receive the highest possible payoff sums

  8. On the correspondence between quantum and classical variational principles

    International Nuclear Information System (INIS)

    Ruiz, D.E.; Dodin, I.Y.

    2015-01-01

    Classical variational principles can be deduced from quantum variational principles via formal reparameterization of the latter. It is shown that such reparameterization is possible without invoking any assumptions other than classicality and without appealing to dynamical equations. As examples, first principle variational formulations of classical point-particle and cold-fluid motion are derived from their quantum counterparts for Schrödinger, Pauli, and Klein–Gordon particles

  9. Correlation function behavior in quantum systems which are classically chaotic

    International Nuclear Information System (INIS)

    Berman, G.P.; Kolovsky, A.R.

    1983-01-01

    The time behavior of a phase correlation function for dynamical quantum systems which are classically chaotic is considered. It is shown that under certain conditions there are three time regions of the quantum correlations behavior; the region of classical stochasticity (exponential decay of quantum correlations); the region of the correlations decay with a power law; the region of the constant level of the quantum correlations. The boundaries of these time regions are presented. The estimation of a remaining level of the quantum correlations is given. (orig.)

  10. There is no quantum ontology without classical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Helmut [Institut fuer Theoretische Physik, Univ. Erlangen-Nuernberg (Germany)

    2011-07-01

    The relation between quantum physics and classical physics is still under debate. In his recent book ''Rational Reconstructions of Modern Physics'', Peter Mittelstaedt explores a route from classical to quantum mechanics by reduction and elimination of (some of) the ontological hypotheses underlying classical mechanics. While, according to Mittelstaedt, classical mechanics describes a fictitious world that does not exist in reality, he claims to achieve a universal quantum ontology that can be improved by incorporating unsharp properties and equipped with Planck's constant without any need to refer to classical concepts. In this talk, we argue that quantum ontology in Mittelstaedt's sense is not enough. Quantum ontology can never be universal as long as the difference between potential and real properties is not represented adequately. Quantum properties are potential, not (yet) real, be they sharp or unsharp. Hence, preparation and measurement presuppose classical concepts, even in quantum theory. We end up with a classical-quantum sandwich ontology, which is still less extravagant than Bohmian or many-worlds ontologies are.

  11. Quantum-Classical Correspondence Principle for Work Distributions

    Directory of Open Access Journals (Sweden)

    Christopher Jarzynski

    2015-09-01

    Full Text Available For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.

  12. Quasi-superactivation for the classical capacity of quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117, Hungary and Information Systems Research Group, Mathematics and Natural Sciences, Hungarian Ac (Hungary); Imre, Sandor [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117 (Hungary)

    2014-12-04

    The superactivation effect has its roots in the extreme violation of additivity of the channel capacity and enables to reliably transmit quantum information over zero-capacity quantum channels. In this work we demonstrate a similar effect for the classical capacity of a quantum channel which previously was thought to be impossible.

  13. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  14. Markovianity and non-Markovianity in quantum and classical systems

    International Nuclear Information System (INIS)

    Vacchini, Bassano; Smirne, Andrea; Laine, Elsi-Mari; Piilo, Jyrki; Breuer, Heinz-Peter

    2011-01-01

    We discuss the conceptually different definitions used for the non-Markovianity of classical and quantum processes. The well-established definition of non-Markovianity of a classical stochastic process represents a condition on the Kolmogorov hierarchy of the n-point joint probability distributions. Since this definition cannot be transferred to the quantum regime, quantum non-Markovianity has recently been defined and quantified in terms of the underlying quantum dynamical map, using either its divisibility properties or the behavior of the trace distance between pairs of initial states. Here, we investigate and compare these definitions and their relations to the classical notion of non-Markovianity by employing a large class of non-Markovian processes, known as semi-Markov processes, which admit a natural extension to the quantum case. A number of specific physical examples are constructed that allow us to study the basic features of the classical and the quantum definitions and to evaluate explicitly the measures of quantum non-Markovianity. Our results clearly demonstrate several fundamental differences between the classical and the quantum notion of non-Markovianity, as well as between the various quantum measures of non-Markovianity. In particular, we show that the divisibility property in the classical case does not coincide with Markovianity and that the non-Markovianity measure based on divisibility assigns equal infinite values to different dynamics, which can be distinguished by exploiting the trace distance measure. A simple exact expression for the latter is also obtained in a special case.

  15. Embedding quantum into classical: contextualization vs conditionalization.

    Directory of Open Access Journals (Sweden)

    Ehtibar N Dzhafarov

    Full Text Available We compare two approaches to embedding joint distributions of random variables recorded under different conditions (such as spins of entangled particles for different settings into the framework of classical, Kolmogorovian probability theory. In the contextualization approach each random variable is "automatically" labeled by all conditions under which it is recorded, and the random variables across a set of mutually exclusive conditions are probabilistically coupled (imposed a joint distribution upon. Analysis of all possible probabilistic couplings for a given set of random variables allows one to characterize various relations between their separate distributions (such as Bell-type inequalities or quantum-mechanical constraints. In the conditionalization approach one considers the conditions under which the random variables are recorded as if they were values of another random variable, so that the observed distributions are interpreted as conditional ones. This approach is uninformative with respect to relations between the distributions observed under different conditions because any set of such distributions is compatible with any distribution assigned to the conditions.

  16. Classical and quantum superintegrability with applications

    International Nuclear Information System (INIS)

    Miller, Willard Jr; Post, Sarah; Winternitz, Pavel

    2013-01-01

    A superintegrable system is, roughly speaking, a system that allows more integrals of motion than degrees of freedom. This review is devoted to finite dimensional classical and quantum superintegrable systems with scalar potentials and integrals of motion that are polynomials in the momenta. We present a classification of second-order superintegrable systems in two-dimensional Riemannian and pseudo-Riemannian spaces. It is based on the study of the quadratic algebras of the integrals of motion and on the equivalence of different systems under coupling constant metamorphosis. The determining equations for the existence of integrals of motion of arbitrary order in real Euclidean space E 2 are presented and partially solved for the case of third-order integrals. A systematic exposition is given of systems in two and higher dimensional space that allow integrals of arbitrary order. The algebras of integrals of motions are not necessarily quadratic but close polynomially or rationally. The relation between superintegrability and the classification of orthogonal polynomials is analyzed. (topical review)

  17. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  18. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  19. Reliable quantum communication over a quantum relay channel

    Energy Technology Data Exchange (ETDEWEB)

    Gyongyosi, Laszlo, E-mail: gyongyosi@hit.bme.hu [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117, Hungary and Information Systems Research Group, Mathematics and Natural Sciences, Hungarian Ac (Hungary); Imre, Sandor [Quantum Technologies Laboratory, Department of Telecommunications, Budapest University of Technology and Economics, 2 Magyar tudosok krt, Budapest, H-1117 (Hungary)

    2014-12-04

    We show that reliable quantum communication over an unreliable quantum relay channels is possible. The coding scheme combines the results on the superadditivity of quantum channels and the efficient quantum coding approaches.

  20. Quantum versus classical statistical dynamics of an ultracold Bose gas

    International Nuclear Information System (INIS)

    Berges, Juergen; Gasenzer, Thomas

    2007-01-01

    We investigate the conditions under which quantum fluctuations are relevant for the quantitative interpretation of experiments with ultracold Bose gases. This requires to go beyond the description in terms of the Gross-Pitaevskii and Hartree-Fock-Bogoliubov mean-field theories, which can be obtained as classical (statistical) field-theory approximations of the quantum many-body problem. We employ functional-integral techniques based on the two-particle irreducible (2PI) effective action. The role of quantum fluctuations is studied within the nonperturbative 2PI 1/N expansion to next-to-leading order. At this accuracy level memory integrals enter the dynamic equations, which differ for quantum and classical statistical descriptions. This can be used to obtain a classicality condition for the many-body dynamics. We exemplify this condition by studying the nonequilibrium evolution of a one-dimensional Bose gas of sodium atoms, and discuss some distinctive properties of quantum versus classical statistical dynamics

  1. Optimal Classical Simulation of State-Independent Quantum Contextuality

    Science.gov (United States)

    Cabello, Adán; Gu, Mile; Gühne, Otfried; Xu, Zhen-Peng

    2018-03-01

    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log224 ≈4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.740 bits.

  2. Quantum-classical correspondence for the inverted oscillator

    Science.gov (United States)

    Maamache, Mustapha; Ryeol Choi, Jeong

    2017-11-01

    While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  3. Generic emergence of classical features in quantum Darwinism

    Science.gov (United States)

    Brandão, Fernando G. S. L.; Piani, Marco; Horodecki, Paweł

    2015-08-01

    Quantum Darwinism posits that only specific information about a quantum system that is redundantly proliferated to many parts of its environment becomes accessible and objective, leading to the emergence of classical reality. However, it is not clear under what conditions this mechanism holds true. Here we prove that the emergence of classical features along the lines of quantum Darwinism is a general feature of any quantum dynamics: observers who acquire information indirectly through the environment have effective access at most to classical information about one and the same measurement of the quantum system. Our analysis does not rely on a strict conceptual splitting between a system-of-interest and its environment, and allows one to interpret any system as part of the environment of any other system. Finally, our approach leads to a full operational characterization of quantum discord in terms of local redistribution of correlations.

  4. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  5. Quantum computation with classical light: The Deutsch Algorithm

    International Nuclear Information System (INIS)

    Perez-Garcia, Benjamin; Francis, Jason; McLaren, Melanie; Hernandez-Aranda, Raul I.; Forbes, Andrew; Konrad, Thomas

    2015-01-01

    We present an implementation of the Deutsch Algorithm using linear optical elements and laser light. We encoded two quantum bits in form of superpositions of electromagnetic fields in two degrees of freedom of the beam: its polarisation and orbital angular momentum. Our approach, based on a Sagnac interferometer, offers outstanding stability and demonstrates that optical quantum computation is possible using classical states of light. - Highlights: • We implement the Deutsh Algorithm using linear optical elements and classical light. • Our qubits are encoded in the polarisation and orbital angular momentum of the beam. • We show that it is possible to achieve quantum computation with two qubits in the classical domain of light

  6. Quantum computation with classical light: The Deutsch Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Garcia, Benjamin [Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849 (Mexico); University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Francis, Jason [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); McLaren, Melanie [University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Hernandez-Aranda, Raul I. [Photonics and Mathematical Optics Group, Tecnológico de Monterrey, Monterrey 64849 (Mexico); Forbes, Andrew [University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa); Konrad, Thomas, E-mail: konradt@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, Durban 4000 (South Africa); National Institute of Theoretical Physics, Durban Node, Private Bag X54001, Durban 4000 (South Africa)

    2015-08-28

    We present an implementation of the Deutsch Algorithm using linear optical elements and laser light. We encoded two quantum bits in form of superpositions of electromagnetic fields in two degrees of freedom of the beam: its polarisation and orbital angular momentum. Our approach, based on a Sagnac interferometer, offers outstanding stability and demonstrates that optical quantum computation is possible using classical states of light. - Highlights: • We implement the Deutsh Algorithm using linear optical elements and classical light. • Our qubits are encoded in the polarisation and orbital angular momentum of the beam. • We show that it is possible to achieve quantum computation with two qubits in the classical domain of light.

  7. Two-Way Communication with a Single Quantum Particle

    Science.gov (United States)

    Del Santo, Flavio; Dakić, Borivoje

    2018-02-01

    In this Letter we show that communication when restricted to a single information carrier (i.e., single particle) and finite speed of propagation is fundamentally limited for classical systems. On the other hand, quantum systems can surpass this limitation. We show that communication bounded to the exchange of a single quantum particle (in superposition of different spatial locations) can result in "two-way signaling," which is impossible in classical physics. We quantify the discrepancy between classical and quantum scenarios by the probability of winning a game played by distant players. We generalize our result to an arbitrary number of parties and we show that the probability of success is asymptotically decreasing to zero as the number of parties grows, for all classical strategies. In contrast, quantum strategy allows players to win the game with certainty.

  8. One-Way Quantum Authenticated Secure Communication Using Rotation Operation

    International Nuclear Information System (INIS)

    Tsai Chia-Wei; Wei Toung-Shang; Hwang Tzonelih

    2011-01-01

    This study proposes a theoretical quantum authenticated secure communication (QASC) protocol using Einstein-Podolsky-Rosen (EPR) entangle state, which enables a sender to send a secure as well as authenticated message to a receiver within only one step quantum transmission without having the classical channels and the certification authority. (general)

  9. The quantum to classical crossover for a weak link capacitor

    International Nuclear Information System (INIS)

    Spiller, T.P.; Clark, T.D.; Prance, H.; Prance, R.J.

    1995-01-01

    We consider a model weak link, an ultra-small capacitor subject to tunnelling, to ohmic dissipation and fed with an external displacement current. The framework we employ is the new approach of quantum state diffusion, which treats individual open quantum systems as well as being able to generate the conventional ensemble averages. We show how evidence, for archetypal quantum behaviour (coherent oscillations) and archetypal classical behaviour (chaos) arises, for weak links whose parameters are related by a rather modest scaling. Interestingly, the quantum behaviour can arise for a weak link with intrinsic parameter values such that it could exhibit chaos, if it were a purely classical device

  10. Quantum-classical correspondence in steady states of nonadiabatic systems

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels

  11. Quantum communication with coherent states of light

    Science.gov (United States)

    Khan, Imran; Elser, Dominique; Dirmeier, Thomas; Marquardt, Christoph; Leuchs, Gerd

    2017-06-01

    Quantum communication offers long-term security especially, but not only, relevant to government and industrial users. It is worth noting that, for the first time in the history of cryptographic encoding, we are currently in the situation that secure communication can be based on the fundamental laws of physics (information theoretical security) rather than on algorithmic security relying on the complexity of algorithms, which is periodically endangered as standard computer technology advances. On a fundamental level, the security of quantum key distribution (QKD) relies on the non-orthogonality of the quantum states used. So even coherent states are well suited for this task, the quantum states that largely describe the light generated by laser systems. Depending on whether one uses detectors resolving single or multiple photon states or detectors measuring the field quadratures, one speaks of, respectively, a discrete- or a continuous-variable description. Continuous-variable QKD with coherent states uses a technology that is very similar to the one employed in classical coherent communication systems, the backbone of today's Internet connections. Here, we review recent developments in this field in two connected regimes: (i) improving QKD equipment by implementing front-end telecom devices and (ii) research into satellite QKD for bridging long distances by building upon existing optical satellite links. This article is part of the themed issue 'Quantum technology for the 21st century'.

  12. Two-slit experiment: quantum and classical probabilities

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2015-01-01

    Inter-relation between quantum and classical probability models is one of the most fundamental problems of quantum foundations. Nowadays this problem also plays an important role in quantum technologies, in quantum cryptography and the theory of quantum random generators. In this letter, we compare the viewpoint of Richard Feynman that the behavior of quantum particles cannot be described by classical probability theory with the viewpoint that quantum–classical inter-relation is more complicated (cf, in particular, with the tomographic model of quantum mechanics developed in detail by Vladimir Man'ko). As a basic example, we consider the two-slit experiment, which played a crucial role in quantum foundational debates at the beginning of quantum mechanics (QM). In particular, its analysis led Niels Bohr to the formulation of the principle of complementarity. First, we demonstrate that in complete accordance with Feynman's viewpoint, the probabilities for the two-slit experiment have the non-Kolmogorovian structure, since they violate one of basic laws of classical probability theory, the law of total probability (the heart of the Bayesian analysis). However, then we show that these probabilities can be embedded in a natural way into the classical (Kolmogorov, 1933) probability model. To do this, one has to take into account the randomness of selection of different experimental contexts, the joint consideration of which led Feynman to a conclusion about the non-classicality of quantum probability. We compare this embedding of non-Kolmogorovian quantum probabilities into the Kolmogorov model with well-known embeddings of non-Euclidean geometries into Euclidean space (e.g., the Poincaré disk model for the Lobachvesky plane). (paper)

  13. Quantum Communication Scheme Using Non-symmetric Quantum Channel

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Zhonghua; Song Heshan

    2008-01-01

    A theoretical quantum communication scheme based on entanglement swapping and superdense coding is proposed with a 3-dimensional Bell state and 2-dimensional Bell state function as quantum channel. quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. The scheme is secure and has high source capacity. At last, we generalize the quantum communication scheme to d-dimensional quantum channel

  14. Unified treatment of the classical and quantum mechanics

    International Nuclear Information System (INIS)

    Shirokov, Yu.M.

    1979-01-01

    Classical and Quantum Mechanics are unified in the sense that almost all axioms of both mechanics are identical. The only distinction is the explicit form of one algebraic identity. The unified theory is applied to scattering problem. (Z.M.)

  15. Classical and quantum simulations of many-body systems

    Energy Technology Data Exchange (ETDEWEB)

    Murg, Valentin

    2008-04-07

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new 'analog' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  16. Photosynthetic Energy Transfer at the Quantum/Classical Border.

    Science.gov (United States)

    Keren, Nir; Paltiel, Yossi

    2018-06-01

    Quantum mechanics diverges from the classical description of our world when very small scales or very fast processes are involved. Unlike classical mechanics, quantum effects cannot be easily related to our everyday experience and are often counterintuitive to us. Nevertheless, the dimensions and time scales of the photosynthetic energy transfer processes puts them close to the quantum/classical border, bringing them into the range of measurable quantum effects. Here we review recent advances in the field and suggest that photosynthetic processes can take advantage of the sensitivity of quantum effects to the environmental 'noise' as means of tuning exciton energy transfer efficiency. If true, this design principle could be a base for 'nontrivial' coherent wave property nano-devices. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Decoherence and the quantum-to-classical transition

    CERN Document Server

    Schlosshauer, Maximilian

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: • Foundational problems at the quantum–classical border; • The role of the environment and entanglement; • Environment-induced loss of coherence and superselection; • Scattering-induced decoherence and spatial localization; • Master equations; • Decoherence models; • Experimental realization of "Schrödinger kittens" and their decoherence; • Quantum computing, quantum error correction, and decoherence-free subspaces; • Implications of decoherence for interpretations of quantum mechanics and for the "measurement problem"; • Decoherence in the brain. Written in a lucid and concise style that is accessib...

  18. Classical and quantum simulations of many-body systems

    International Nuclear Information System (INIS)

    Murg, Valentin

    2008-01-01

    This thesis is devoted to recent developments in the fields of classical and quantum simulations of many-body systems. We describe new classical algorithms that overcome problems apparent in conventional renormalization group and Monte Carlo methods. These algorithms make possible the detailed study of finite temperature properties of 2-D classical and 1-D quantum systems, the investigation of ground states of 2-D frustrated or fermionic systems and the analysis of time evolutions of 2-D quantum systems. Furthermore, we propose new ''analog'' quantum simulators that are able to realize interesting models such as a Tonks-Girardeau gas or a frustrated spin-1/2 XY model on a trigonal lattice. These quantum simulators make use of optical lattices and trapped ions and are technically feasible. In fact, the Tonks-Girardeau gas has been realized experimentally and we provide a detailed comparison between the experimental data and the theoretical predictions. (orig.)

  19. Quantum versus classical integrability in Calogero-Moser systems

    International Nuclear Information System (INIS)

    Corrigan, E.; Sasaki, R.

    2002-01-01

    Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Δ. The quantum Calogero systems having 1/q 2 potential and a confining q 2 potential and the Sutherland systems with 1/sin 2 q potentials have 'integer' energy spectra characterized by the root system Δ. Various quantities of the corresponding classical systems, e.g. minimum energy, frequencies of small oscillations, the eigenvalues of the classical Lax pair matrices etc, at the equilibrium point of the potential are investigated analytically as well as numerically for all root systems. To our surprise, most of these classical data are also 'integers', or they appear to be 'quantized'. To be more precise, these quantities are polynomials of the coupling constant(s) with integer coefficients. The close relationship between quantum and classical integrability in Calogero-Moser systems deserves fuller analytical treatment, which would lead to better understanding of these systems and of integrable systems in general. (author)

  20. Classical-quantum correspondence in electron-positron pair creation

    International Nuclear Information System (INIS)

    Chott, N. I.; Su, Q.; Grobe, R.

    2007-01-01

    We examine the creation of electron-positron pairs in a very strong force field. Using numerical solutions to quantum field theory we calculate the spatial and momentum probability distributions for the created particles. A comparison with classical mechanical phase space calculations suggests that despite the fully relativistic and quantum mechanical nature of the matter creation process, most aspects can be reproduced accurately in terms of classical mechanics

  1. Inverse problems in classical and quantum physics

    International Nuclear Information System (INIS)

    Almasy, A.A.

    2007-01-01

    The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A

  2. Inverse problems in classical and quantum physics

    Energy Technology Data Exchange (ETDEWEB)

    Almasy, A.A.

    2007-06-29

    The subject of this thesis is in the area of Applied Mathematics known as Inverse Problems. Inverse problems are those where a set of measured data is analysed in order to get as much information as possible on a model which is assumed to represent a system in the real world. We study two inverse problems in the fields of classical and quantum physics: QCD condensates from tau-decay data and the inverse conductivity problem. Despite a concentrated effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continues to appear which provide a rather direct probe of the inner workings of the strong interactions. We use a functional method which allows us to extract within rather general assumptions phenomenological parameters of QCD (the condensates) from a comparison of the time-like experimental data with asymptotic space-like results from theory. The price to be paid for the generality of assumptions is relatively large errors in the values of the extracted parameters. Although we do not claim that our method is superior to other approaches, we hope that our results lend additional confidence to the numerical results obtained with the help of methods based on QCD sum rules. EIT is a technology developed to image the electrical conductivity distribution of a conductive medium. The technique works by performing simultaneous measurements of direct or alternating electric currents and voltages on the boundary of an object. These are the data used by an image reconstruction algorithm to determine the electrical conductivity distribution within the object. In this thesis, two approaches of EIT image reconstruction are proposed. The first is based on reformulating the inverse problem in terms of integral equations. This method uses only a single set of measurements for the reconstruction. The second approach is an algorithm based on linearisation which uses more then one set of measurements. A

  3. Quantum communication, reference frames, and gauge theory

    International Nuclear Information System (INIS)

    Enk, S. J. van

    2006-01-01

    We consider quantum communication in the case that the communicating parties not only do not share a reference frame but use imperfect quantum communication channels, in that each channel applies some fixed but unknown unitary rotation to each qubit. We discuss similarities and differences between reference frames within that quantum communication model and gauge fields in gauge theory. We generalize the concept of refbits and analyze various quantum communication protocols within the communication model

  4. Distinguishing quantum from classical oscillations in a driven phase qubit

    International Nuclear Information System (INIS)

    Shevchenko, S N; Omelyanchouk, A N; Zagoskin, A M; Savel'ev, S; Nori, Franco

    2008-01-01

    Rabi oscillations are coherent transitions in a quantum two-level system under the influence of a resonant drive, with a much lower frequency dependent on the perturbation amplitude. These serve as one of the signatures of quantum coherent evolution in mesoscopic systems. It was shown recently (Groenbech-Jensen N and Cirillo M 2005 Phys. Rev. Lett. 95 067001) that in phase qubits (current-biased Josephson junctions) this effect can be mimicked by classical oscillations arising due to the anharmonicity of the effective potential. Nevertheless, we find qualitative differences between the classical and quantum effects. Firstly, while the quantum Rabi oscillations can be produced by the subharmonics of the resonant frequency ω 10 (multiphoton processes), the classical effect also exists when the system is excited at the overtones, nω 10 . Secondly, the shape of the resonance is, in the classical case, characteristically asymmetric, whereas quantum resonances are described by symmetric Lorentzians. Thirdly, the anharmonicity of the potential results in the negative shift of the resonant frequency in the classical case, in contrast to the positive Bloch-Siegert shift in the quantum case. We show that in the relevant range of parameters these features allow us to distinguish confidently the bona fide Rabi oscillations from their classical Doppelgaenger

  5. Dynamics in the quantum/classical limit based on selective use of the quantum potential

    International Nuclear Information System (INIS)

    Garashchuk, Sophya; Dell’Angelo, David; Rassolov, Vitaly A.

    2014-01-01

    A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction

  6. Dynamics in the quantum/classical limit based on selective use of the quantum potential

    Energy Technology Data Exchange (ETDEWEB)

    Garashchuk, Sophya, E-mail: garashchuk@sc.edu; Dell’Angelo, David; Rassolov, Vitaly A. [Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208 (United States)

    2014-12-21

    A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.

  7. Decoherence and the quantum-to-classical transition

    International Nuclear Information System (INIS)

    Schlosshauer, M.A.

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: - Foundational problems at the quantum-classical border; - The role of the environment and entanglement; - Environment-induced loss of coherence and superselection; - Scattering-induced decoherence and spatial localization; - Master equations; - Decoherence models; - Experimental realization of ''Schroedinger's kittens'' and their decoherence; - Quantum computing, quantum error correction, and decoherence-free subspaces; - Implications of decoherence for interpretations of quantum mechanics and for the ''measurement problem''; - Decoherence in the brain. Written in a lucid and concise style that is accessible to all readers with a basic knowledge of quantum mechanics, this stimulating book tells the ''classical from quantum'' story in a comprehensive and coherent manner that brings together the foundational, technical, and experimental aspects of decoherence. It will be an indispensable resource for newcomers and experts alike. (orig.)

  8. Quantum group symmetry of classical and noncommutative geometry

    Indian Academy of Sciences (India)

    Debashish Goswami

    2016-07-01

    Jul 1, 2016 ... universal enveloping algebra U(L) of a Lie algebra L, (iv) ... Kustermans defined locally compact quantum groups too. .... There are other versions of quantum isometries formulated by me ..... classical connected spaces when either the space is ..... Etingof-Walton's paper, we have : (i) M0 is open and dense,.

  9. Classical and quantum position-dependent mass harmonic oscillators

    International Nuclear Information System (INIS)

    Cruz y Cruz, S.; Negro, J.; Nieto, L.M.

    2007-01-01

    The position-dependent mass oscillator is studied from both, classical and quantum mechanical points of view, in order to discuss the ambiguity on the operator ordering of the kinetic term in the quantum framework. The results are illustrated by some examples of specific mass functions

  10. On the suppression of chaos in quantum and classical physics

    International Nuclear Information System (INIS)

    Fried, H.M.; Gabellini, Y.

    1997-01-01

    A brief outline is presented of an example of potential-theory quantum chaos, which is suppressed by the full radiative corrections of quantum field theory. A similar mechanism may be devised and applied to classically chaotic systems, and provides an example in which an explicit diminution of the original chaos becomes apparent. (author)

  11. Chaos and the classical limit of quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Hogg, T; Huberman, B A [Xerox Palo Alto Research Center, CA (USA)

    1984-10-01

    The authors discuss the question of whether experiments can be designed to test the existence of quantum chaos. In particular, they show that high energies are not sufficient to guarantee that an initially localized wave packet will behave classically for long times. Computer simulations illustrating these ideas are presented and the question whether experiments can be designed to observe quantum chaos is commented on.

  12. Quantum Secure Direct Communication Using W State

    International Nuclear Information System (INIS)

    Dong Li; Xiu Xiaoming; Gao Yajun; Chi Feng

    2008-01-01

    A theoretical scheme of quantum secure direct communication using teleportation is proposed. In the scheme, the sender needs to prepare a class of three-particle W states to use as quantum channel. The two communicators may communicate after they test the security of the quantum channel. The security of the protocol is ensured by quantum entanglement and quantum no-cloning theorem. The receiver can obtain the secret message determinately if the quantum channel is secure

  13. Quantum communication through an unmodulated spin chain

    International Nuclear Information System (INIS)

    Bose, Sougato

    2003-01-01

    We propose a scheme for using an unmodulated and unmeasured spin chain as a channel for short distance quantum communications. The state to be transmitted is placed on one spin of the chain and received later on a distant spin with some fidelity. We first obtain simple expressions for the fidelity of quantum state transfer and the amount of entanglement sharable between any two sites of an arbitrary Heisenberg ferromagnet using our scheme. We then apply this to the realizable case of an open ended chain with nearest neighbor interactions. The fidelity of quantum state transfer is obtained as an inverse discrete cosine transform and as a Bessel function series. We find that in a reasonable time, a qubit can be directly transmitted with better than classical fidelity across the full length of chains of up to 80 spins. Moreover, our channel allows distillable entanglement to be shared over arbitrary distances

  14. Analogies between classical statistical mechanics and quantum mechanics

    International Nuclear Information System (INIS)

    Uehara, M.

    1986-01-01

    Some analogies between nonequilibrium classical statistical mechanics and quantum mechanics, at the level of the Liouville equation and at the kinetic level, are commented on. A theorem, related to the Vlasov equation applied to a plasma, is proved. The theorem presents an analogy with Ehrenfest's theorem of quantum mechanics. An analogy between the plasma kinetic theory and Bohm's quantum theory with 'hidden variables' is also shown. (Author) [pt

  15. Quantum mechanics as a natural generalization of classical statistical mechanics

    International Nuclear Information System (INIS)

    Xu Laizi; Qian Shangwu

    1994-01-01

    By comparison between equations of motion of geometrical optics (GO) and that of classical statistical mechanics (CSM), it is found that there should be an analogy between GO and CSM instead of GO and classical mechanics (CM). Furthermore, by comparison between the classical limit (CL) of quantum mechanics (QM) and CSM, the authors find that CL of QM is CSM not CM, hence they demonstrated that QM is a natural generalization of CSM instead of CM

  16. A quantum algorithm for Viterbi decoding of classical convolutional codes

    OpenAIRE

    Grice, Jon R.; Meyer, David A.

    2014-01-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper the proposed algorithm is applied to decoding classical convolutional codes, for instance; large constraint length $Q$ and short decode frames $N$. Other applications of the classical Viterbi algorithm where $Q$ is large (e.g. speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butter...

  17. Classical and quantum Fisher information in the geometrical formulation of quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Facchi, Paolo [Dipartimento di Matematica, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Kulkarni, Ravi [Vivekananda Yoga Research Foundation, Bangalore 560 080 (India); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, Giuseppe [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy); Sudarshan, E.C.G. [Department of Physics, University of Texas, Austin, TX 78712 (United States); Ventriglia, Franco [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , I-80126 Napoli (Italy); INFN, Sezione di Napoli, I-80126 Napoli (Italy); MECENAS, Universita Federico II di Napoli and Universita di Bari (Italy)

    2010-11-01

    The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.

  18. Classical and quantum Fisher information in the geometrical formulation of quantum mechanics

    International Nuclear Information System (INIS)

    Facchi, Paolo; Kulkarni, Ravi; Man'ko, V.I.; Marmo, Giuseppe; Sudarshan, E.C.G.; Ventriglia, Franco

    2010-01-01

    The tomographic picture of quantum mechanics has brought the description of quantum states closer to that of classical probability and statistics. On the other hand, the geometrical formulation of quantum mechanics introduces a metric tensor and a symplectic tensor (Hermitian tensor) on the space of pure states. By putting these two aspects together, we show that the Fisher information metric, both classical and quantum, can be described by means of the Hermitian tensor on the manifold of pure states.

  19. Quantum data locking for high-rate private communication

    OpenAIRE

    Lupo, Cosmo; Lloyd, Seth

    2015-01-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security ...

  20. Quantum versus classical dynamics in the optical centrifuge

    Science.gov (United States)

    Armon, Tsafrir; Friedland, Lazar

    2017-09-01

    The interplay between classical and quantum-mechanical evolution in the optical centrifuge (OC) is discussed. The analysis is based on the quantum-mechanical formalism starting from either the ground state or a thermal ensemble. Two resonant mechanisms are identified, i.e., the classical autoresonance and the quantum-mechanical ladder climbing, yielding different dynamics and rotational excitation efficiencies. The rotating-wave approximation is used to analyze the two resonant regimes in the associated dimensionless two-parameter space and calculate the OC excitation efficiency. The results show good agreement between numerical simulations and theory and are relevant to existing experimental setups.

  1. Classical and quantum mechanics of non-abelian gauge fields

    International Nuclear Information System (INIS)

    Savvidy, G.K.

    1984-01-01

    Classical and quantum mechanics of non-abelian gauge fields are investigated both with and without spontaneous symmetry breaking. The fundamental subsystem (FS) of Yang-Mills classical mechanics (YMCM) is considered. It is shown to be a Kolmogorov K-system, and hence to have strong statistical properties. Integrable systems are also found, to which in terms of KAM theory Yang-Mills-Higgs classical mechanics (YMHCM) is close. Quantum-mechanical properties of the YM system and their relation to the problem of confinement are discussed. (orig.)

  2. Conjugate dynamical systems: classical analogue of the quantum energy translation

    International Nuclear Information System (INIS)

    Torres-Vega, Gabino

    2012-01-01

    An aspect of quantum mechanics that has not been fully understood is the energy shift generated by the time operator. In this study, we introduce the use of the eigensurfaces of dynamical variables and commutators in classical mechanics to study the classical analogue of the quantum translation of energy. We determine that there is a conjugate dynamical system that is conjugate to Hamilton's equations of motion, and then we generate the analogue of the time operator and use it in the translation of points along the energy direction, i.e. the classical analogue of the Pauli theorem. The theory is illustrated with a nonlinear oscillator model. (paper)

  3. A quantum analogy to the classical gravitomagnetic clock effect

    Science.gov (United States)

    Faruque, S. B.

    2018-06-01

    We present an approximation to the solution of Dirac equation in Schwarzschild field found through the use of Foldy-Wouthuysen Hamiltonian. We solve the equation for the positive energy states and found the frequencies by which the states oscillate. Difference of the periods of oscillation of the two states with two different total angular momentum quantum number j has an analogical form of the classical clock effect found in general relativity. But unlike the term that appears as clock effect in classical physics, here the term is quantized. Thus, we find a quantum analogue of the classical gravitomagnetic clock effect.

  4. Classical limit of the quantum inverse scattering problem

    International Nuclear Information System (INIS)

    Bogdanov, I.V.

    1986-01-01

    This paper studies the passage to the limit of classical mechanics which is realized in the formalism of Marchenko's method for a spherically symmetric inverse problem of quantum scattering for fixed angular momentum. The limit is considered for the general case of partial waves with arbitrary values of the orbital number 1>0 in the lowest order of perturbation theory. It is shown how in the limit h→0 in the quantum inverse problem the integral Able transformation characteristic of classical inverse problems arises. The classical inversion formula with delay time is derived from the Marchenko equation

  5. Distributed wireless quantum communication networks with partially entangled pairs

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Zhang Zai-Chen; Xu Jin

    2014-01-01

    Wireless quantum communication networks transfer quantum state by teleportation. Existing research focuses on maximal entangled pairs. In this paper, we analyse the distributed wireless quantum communication networks with partially entangled pairs. A quantum routing scheme with multi-hop teleportation is proposed. With the proposed scheme, is not necessary for the quantum path to be consistent with the classical path. The quantum path and its associated classical path are established in a distributed way. Direct multi-hop teleportation is conducted on the selected path to transfer a quantum state from the source to the destination. Based on the feature of multi-hop teleportation using partially entangled pairs, if the node number of the quantum path is even, the destination node will add another teleportation at itself. We simulated the performance of distributed wireless quantum communication networks with a partially entangled state. The probability of transferring the quantum state successfully is statistically analyzed. Our work shows that multi-hop teleportation on distributed wireless quantum networks with partially entangled pairs is feasible. (general)

  6. Entropy in the classical and quantum polymer black hole models

    International Nuclear Information System (INIS)

    Livine, Etera R; Terno, Daniel R

    2012-01-01

    We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3D closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work (Bianchi 2011 Class. Quantum Grav. 28 114006) we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of ‘almost-closed polyhedra’. (paper)

  7. The ambiguity of simplicity in quantum and classical simulation

    Science.gov (United States)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-04-01

    A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  8. Classical particle limit of non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zucchini, R.

    1984-01-01

    We study the classical particle limit of non-relativistic quantum mechanics. We show that the unitary group describing the evolution of the quantum fluctuation around any classical phase orbit has a classical limit as h → 0 in the strong operator topology for a very large class of time independent scalar and vector potentials, which in practice covers all physically interesting cases. We also show that the mean values of the quantum mechanical position and velocity operators on suitable states, obtained by time evolution of the product of a Weyl operator centred around the large coordinates and momenta and a fixed n-independent wave function, converge to the solution of the classical equations with initial data as h → 0 for a broad class of repulsive interactions

  9. Ensembles and Experiments in Classical and Quantum Physics

    Science.gov (United States)

    Neumaier, Arnold

    A philosophically consistent axiomatic approach to classical and quantum mechanics is given. The approach realizes a strong formal implementation of Bohr's correspondence principle. In all instances, classical and quantum concepts are fully parallel: the same general theory has a classical realization and a quantum realization. Extending the ''probability via expectation'' approach of Whittle to noncommuting quantities, this paper defines quantities, ensembles, and experiments as mathematical concepts and shows how to model complementarity, uncertainty, probability, nonlocality and dynamics in these terms. The approach carries no connotation of unlimited repeatability; hence it can be applied to unique systems such as the universe. Consistent experiments provide an elegant solution to the reality problem, confirming the insistence of the orthodox Copenhagen interpretation on that there is nothing but ensembles, while avoiding its elusive reality picture. The weak law of large numbers explains the emergence of classical properties for macroscopic systems.

  10. Quantum direct communication with authentication

    International Nuclear Information System (INIS)

    Lee, Hwayean; Lim, Jongin; Yang, HyungJin

    2006-01-01

    We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states

  11. Distributed wireless quantum communication networks

    International Nuclear Information System (INIS)

    Yu Xu-Tao; Xu Jin; Zhang Zai-Chen

    2013-01-01

    The distributed wireless quantum communication network (DWQCN) has a distributed network topology and transmits information by quantum states. In this paper, we present the concept of the DWQCN and propose a system scheme to transfer quantum states in the DWQCN. The system scheme for transmitting information between any two nodes in the DWQCN includes a routing protocol and a scheme for transferring quantum states. The routing protocol is on-demand and the routing metric is selected based on the number of entangled particle pairs. After setting up a route, quantum teleportation and entanglement swapping are used for transferring quantum states. Entanglement swapping is achieved along with the process of routing set up and the acknowledgment packet transmission. The measurement results of each entanglement swapping are piggybacked with route reply packets or acknowledgment packets. After entanglement swapping, a direct quantum link between source and destination is set up and quantum states are transferred by quantum teleportation. Adopting this scheme, the measurement results of entanglement swapping do not need to be transmitted specially, which decreases the wireless transmission cost and transmission delay. (general)

  12. Classical behavior of few-electron parabolic quantum dots

    International Nuclear Information System (INIS)

    Ciftja, O.

    2009-01-01

    Quantum dots are intricate and fascinating systems to study novel phenomena of great theoretical and practical interest because low dimensionality coupled with the interplay between strong correlations, quantum confinement and magnetic field creates unique conditions for emergence of fundamentally new physics. In this work we consider two-dimensional semiconductor quantum dot systems consisting of few interacting electrons confined in an isotropic parabolic potential. We study the many-electron quantum ground state properties of such systems in presence of a perpendicular magnetic field as the number of electrons is varied using exact numerical diagonalizations and other approaches. The results derived from the calculations of the quantum model are then compared to corresponding results for a classical model of parabolically confined point charges who interact with a Coulomb potential. We find that, for a wide range of parameters and magnetic fields considered in this work, the quantum ground state energy is very close to the classical energy of the most stable classical configuration under the condition that the classical energy is properly adjusted to incorporate the quantum zero point motion.

  13. A wave equation interpolating between classical and quantum mechanics

    Science.gov (United States)

    Schleich, W. P.; Greenberger, D. M.; Kobe, D. H.; Scully, M. O.

    2015-10-01

    We derive a ‘master’ wave equation for a family of complex-valued waves {{Φ }}\\equiv R{exp}[{{{i}}S}({cl)}/{{\\hbar }}] whose phase dynamics is dictated by the Hamilton-Jacobi equation for the classical action {S}({cl)}. For a special choice of the dynamics of the amplitude R which eliminates all remnants of classical mechanics associated with {S}({cl)} our wave equation reduces to the Schrödinger equation. In this case the amplitude satisfies a Schrödinger equation analogous to that of a charged particle in an electromagnetic field where the roles of the scalar and the vector potentials are played by the classical energy and the momentum, respectively. In general this amplitude is complex and thereby creates in addition to the classical phase {S}({cl)}/{{\\hbar }} a quantum phase. Classical statistical mechanics, as described by a classical matter wave, follows from our wave equation when we choose the dynamics of the amplitude such that it remains real for all times. Our analysis shows that classical and quantum matter waves are distinguished by two different choices of the dynamics of their amplitudes rather than two values of Planck’s constant. We dedicate this paper to the memory of Richard Lewis Arnowitt—a pioneer of many-body theory, a path finder at the interface of gravity and quantum mechanics, and a true leader in non-relativistic and relativistic quantum field theory.

  14. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication

    Science.gov (United States)

    Guérin, Philippe Allard; Feix, Adrien; Araújo, Mateus; Brukner, Časlav

    2016-09-01

    In communication complexity, a number of distant parties have the task of calculating a distributed function of their inputs, while minimizing the amount of communication between them. It is known that with quantum resources, such as entanglement and quantum channels, one can obtain significant reductions in the communication complexity of some tasks. In this work, we study the role of the quantum superposition of the direction of communication as a resource for communication complexity. We present a tripartite communication task for which such a superposition allows for an exponential saving in communication, compared to one-way quantum (or classical) communication; the advantage also holds when we allow for protocols with bounded error probability.

  15. Correlation Functions in Open Quantum-Classical Systems

    Directory of Open Access Journals (Sweden)

    Chang-Yu Hsieh

    2013-12-01

    Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.

  16. Quantum group of isometries in classical and noncommutative geometry

    International Nuclear Information System (INIS)

    Goswami, D.

    2007-04-01

    We formulate a quantum generalization of the notion of the group of Riemannian isometries for a compact Riemannian manifold, by introducing a natural notion of smooth and isometric action by a compact quantum group on a classical or noncommutative manifold described by spectral triples, and then proving the existence of a universal object (called the quantum isometry group) in the category of compact quantum groups acting smoothly and isometrically on a given (possibly noncommutative) manifold. Our formulation accommodates spectral triples which are not of type II. We give an explicit description of quantum isometry groups of commutative and noncommutative tori, and in this context, obtain the quantum double torus defined in [7] as the universal quantum group of holomorphic isometries of the noncommutative torus. (author)

  17. Classical and quantum computing with C++ and Java simulations

    CERN Document Server

    Hardy, Y

    2001-01-01

    Classical and Quantum computing provides a self-contained, systematic and comprehensive introduction to all the subjects and techniques important in scientific computing. The style and presentation are readily accessible to undergraduates and graduates. A large number of examples, accompanied by complete C++ and Java code wherever possible, cover every topic. Features and benefits: - Comprehensive coverage of the theory with many examples - Topics in classical computing include boolean algebra, gates, circuits, latches, error detection and correction, neural networks, Turing machines, cryptography, genetic algorithms - For the first time, genetic expression programming is presented in a textbook - Topics in quantum computing include mathematical foundations, quantum algorithms, quantum information theory, hardware used in quantum computing This book serves as a textbook for courses in scientific computing and is also very suitable for self-study. Students, professionals and practitioners in computer...

  18. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J

    2017-01-01

    This textbook presents basic numerical methods and applies them to a large variety of physical models in multiple computer experiments. Classical algorithms and more recent methods are explained. Partial differential equations are treated generally comparing important methods, and equations of motion are solved by a large number of simple as well as more sophisticated methods. Several modern algorithms for quantum wavepacket motion are compared. The first part of the book discusses the basic numerical methods, while the second part simulates classical and quantum systems. Simple but non-trivial examples from a broad range of physical topics offer readers insights into the numerical treatment but also the simulated problems. Rotational motion is studied in detail, as are simple quantum systems. A two-level system in an external field demonstrates elementary principles from quantum optics and simulation of a quantum bit. Principles of molecular dynamics are shown. Modern bounda ry element methods are presented ...

  19. Roughness as classicality indicator of a quantum state

    Science.gov (United States)

    Lemos, Humberto C. F.; Almeida, Alexandre C. L.; Amaral, Barbara; Oliveira, Adélcio C.

    2018-03-01

    We define a new quantifier of classicality for a quantum state, the Roughness, which is given by the L2 (R2) distance between Wigner and Husimi functions. We show that the Roughness is bounded and therefore it is a useful tool for comparison between different quantum states for single bosonic systems. The state classification via the Roughness is not binary, but rather it is continuous in the interval [ 0 , 1 ], being the state more classic as the Roughness approaches to zero, and more quantum when it is closer to the unity. The Roughness is maximum for Fock states when its number of photons is arbitrarily large, and also for squeezed states at the maximum compression limit. On the other hand, the Roughness approaches its minimum value for thermal states at infinite temperature and, more generally, for infinite entropy states. The Roughness of a coherent state is slightly below one half, so we may say that it is more a classical state than a quantum one. Another important result is that the Roughness performs well for discriminating both pure and mixed states. Since the Roughness measures the inherent quantumness of a state, we propose another function, the Dynamic Distance Measure (DDM), which is suitable for measure how much quantum is a dynamics. Using DDM, we studied the quartic oscillator, and we observed that there is a certain complementarity between dynamics and state, i.e. when dynamics becomes more quantum, the Roughness of the state decreases, while the Roughness grows as the dynamics becomes less quantum.

  20. Elements of classical and quantum physics

    CERN Document Server

    Cini, Michele

    2018-01-01

    This book presents the basic elements of theoretical physics in a highly accessible, captivating way for university students in the third year of a degree in physics. It covers analytical mechanics, thermodynamics and statistical physics, special and general relativity and non-relativistic quantum theory, fully developing the necessary mathematical methods beyond standard calculus. The central theme is scientific curiosity and the main focus is on the experimental meaning of all quantities and equations. Several recent verifications of General Relativity are presented, with emphasis on the physical effects – why they were predicted to exist and what signals they were seen to produce. Similarly, the basic reasons why superconductors have zero resistance and are perfect diamagnets are pinpointed. Quantum Eraser Experiments and Delayed Choice Experiments are described. Many statements of Quantum Theory are a challenge to common sense and some crucial predictions have often been considered hard to believe and h...

  1. Decoy-state quantum key distribution with two-way classical postprocessing

    International Nuclear Information System (INIS)

    Ma Xiongfeng; Fung, C.-H.F.; Chen Kai; Lo, H.-K.; Dupuis, Frederic; Tamaki, Kiyoshi

    2006-01-01

    Decoy states have recently been proposed as a useful method for substantially improving the performance of quantum key distribution (QKD) protocols when a coherent-state source is used. Previously, data postprocessing schemes based on one-way classical communications were considered for use with decoy states. In this paper, we develop two data postprocessing schemes for the decoy-state method using two-way classical communications. Our numerical simulation (using parameters from a specific QKD experiment as an example) results show that our scheme is able to extend the maximal secure distance from 142 km (using only one-way classical communications with decoy states) to 181 km. The second scheme is able to achieve a 10% greater key generation rate in the whole regime of distances. We conclude that decoy-state QKD with two-way classical postprocessing is of practical interest

  2. Gaussian density matrices: Quantum analogs of classical states

    International Nuclear Information System (INIS)

    Mann, A.; Revzen, M.

    1993-01-01

    We study quantum analogs of clasical situations, i.e. quantum states possessing some specific classical attribute(s). These states seem quite generally, to have the form of gaussian density matrices. Such states can always be parametrized as thermal squeezed states (TSS). We consider the following specific cases: (a) Two beams that are built from initial beams which passed through a beam splitter cannot, classically, be distinguished from (appropriately prepared) two independent beams that did not go through a splitter. The only quantum states possessing this classical attribute are TSS. (b) The classical Cramer's theorem was shown to have a quantum version (Hegerfeldt). Again, the states here are Gaussian density matrices. (c) The special case in the study of the quantum version of Cramer's theorem, viz. when the state obtained after partial tracing is a pure state, leads to the conclusion that all states involved are zero temperature limit TSS. The classical analog here are gaussians of zero width, i.e. all distributions are δ functions in phase space. (orig.)

  3. The ambiguity of simplicity in quantum and classical simulation

    International Nuclear Information System (INIS)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-01-01

    Highlights: • Simplicity depends on whether a system is represented classically or quantally. • We demonstrate that simplicity is unavoidably ambiguous. • Relative simplicity changes order moving between classical and quantum descriptions. • Ambiguity of simplicity bears directly on model selection. - Abstract: A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the “elegance” of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  4. The ambiguity of simplicity in quantum and classical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Cina, E-mail: caghamohammadi@ucdavis.edu; Mahoney, John R., E-mail: jrmahoney@ucdavis.edu; Crutchfield, James P., E-mail: chaos@ucdavis.edu

    2017-04-11

    Highlights: • Simplicity depends on whether a system is represented classically or quantally. • We demonstrate that simplicity is unavoidably ambiguous. • Relative simplicity changes order moving between classical and quantum descriptions. • Ambiguity of simplicity bears directly on model selection. - Abstract: A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the “elegance” of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  5. Classical and quantum plasmonics in graphene nanodisks

    DEFF Research Database (Denmark)

    Christensen, Thomas; Wang, Weihua; Jauho, Antti-Pekka

    2014-01-01

    Edge states are ubiquitous for many condensed matter systems with multicomponent wave functions. For example, edge states play a crucial role in transport in zigzag graphene nanoribbons. Here, we report microscopic calculations of quantum plasmonics in doped graphene nanodisks with zigzag edges. We...

  6. Ultra-fast secure communication with complex systems in classical channels (Conference Presentation)

    KAUST Repository

    Mazzone, Valerio

    2017-04-28

    Developing secure communications is a research area of growing interest. During the past years, several cryptographic schemes have been developed, with Quantum cryptography being a promising scheme due to the use of quantum effects, which make very difficult for an eavesdropper to intercept the communication. However, practical quantum key distribution methods have encountered several limitations; current experimental realizations, in fact, fail to scale up on long distances, as well as in providing unconditional security and speed comparable to classical optical communications channels. Here we propose a new, low cost and ultra-fast cryptographic system based on a fully classical optical channel. Our cryptographic scheme exploits the complex synchronization of two different random systems (one on the side of the sender and another on the side of the receiver) to realize a “physical” one paid system. The random medium is created by an optical chip fabricated through electron beam lithography on a Silicon On Insulator (SOI) substrate. We present experiments with ps lasers and commercial fibers, showing the ultrafast distribution of a random key between two users (Alice and Bob), with absolute no possibility for a passive/active eavesdropper to intercept the communication. Remarkably, this system enables the same security of quantum cryptography, but with the use of a classical communication channel. Our system exploits a unique synchronization that exists between two different random systems, and at such is extremely versatile and can enable safe communications among different users in standards telecommunications channels.

  7. Dynamics of classical and quantum fields an introduction

    CERN Document Server

    Setlur, Girish S

    2014-01-01

    Dynamics of Classical and Quantum Fields: An Introduction focuses on dynamical fields in non-relativistic physics. Written by a physicist for physicists, the book is designed to help readers develop analytical skills related to classical and quantum fields at the non-relativistic level, and think about the concepts and theory through numerous problems. In-depth yet accessible, the book presents new and conventional topics in a self-contained manner that beginners would find useful. A partial list of topics covered includes: Geometrical meaning of Legendre transformation in classical mechanics Dynamical symmetries in the context of Noether's theorem The derivation of the stress energy tensor of the electromagnetic field, the expression for strain energy in elastic bodies, and the Navier Stokes equation Concepts of right and left movers in case of a Fermi gas explained Functional integration is interpreted as a limit of a sequence of ordinary integrations Path integrals for one and two quantum particles and for...

  8. A generalization of Fermat's principle for classical and quantum systems

    Science.gov (United States)

    Elsayed, Tarek A.

    2014-09-01

    The analogy between dynamics and optics had a great influence on the development of the foundations of classical and quantum mechanics. We take this analogy one step further and investigate the validity of Fermat's principle in many-dimensional spaces describing dynamical systems (i.e., the quantum Hilbert space and the classical phase and configuration space). We propose that if the notion of a metric distance is well defined in that space and the velocity of the representative point of the system is an invariant of motion, then a generalized version of Fermat's principle will hold. We substantiate this conjecture for time-independent quantum systems and for a classical system consisting of coupled harmonic oscillators. An exception to this principle is the configuration space of a charged particle in a constant magnetic field; in this case the principle is valid in a frame rotating by half the Larmor frequency, not the stationary lab frame.

  9. Foundations of classical and quantum electrodynamics

    CERN Document Server

    Toptygin, Igor N

    2014-01-01

    This advanced textbook covers many fundamental, traditional and new branches of electrodynamics, as well as the related fields of special relativity, quantum mechanics and quantum electrodynamics. The book introduces the material at different levels, oriented towards 3rd–4th year bachelor, master, and PhD students. This is so as to describe the whole complexity of physical phenomena. The required mathematical background is collated in Chapter 1, while the necessary physical background is included in the main text of the corresponding chapters and also given in appendices. It contains approximately 800 examples and problems, many of which are described in detail. Some of these problems are designed for students to work on their own with only the answers and descriptions of results, and may be solved selectively. Equally suitable as a reference for researchers specialized in science and engineering.

  10. Direct estimation of functionals of density operators by local operations and classical communication

    International Nuclear Information System (INIS)

    Alves, Carolina Moura; Horodecki, Pawel; Oi, Daniel K. L.; Kwek, L. C.; Ekert, Artur K.

    2003-01-01

    We present a method of direct estimation of important properties of a shared bipartite quantum state, within the ''distant laboratories'' paradigm, using only local operations and classical communication. We apply this procedure to spectrum estimation of shared states, and locally implementable structural physical approximations to incompletely positive maps. This procedure can also be applied to the estimation of channel capacity and measures of entanglement

  11. Quantum magnification of classical sub-Planck phase space features

    International Nuclear Information System (INIS)

    Hensinger, W.K.; Heckenberg, N.; Rubinsztein-Dunlop, H.; Delande, D.

    2002-01-01

    Full text: To understand the relationship between quantum mechanics and classical physics a crucial question to be answered is how distinct classical dynamical phase space features translate into the quantum picture. This problem becomes even more interesting if these phase space features occupy a much smaller volume than ℎ in a phase space spanned by two non-commuting variables such as position and momentum. The question whether phase space structures in quantum mechanics associated with sub-Planck scales have physical signatures has recently evoked a lot of discussion. Here we will show that sub-Planck classical dynamical phase space structures, for example regions of regular motion, can give rise to states whose phase space representation is of size ℎ or larger. This is illustrated using period-1 regions of regular motion (modes of oscillatory motion of a particle in a modulated well) whose volume is distinctly smaller than Planck's constant. They are magnified in the quantum picture and appear as states whose phase space representation is of size h or larger. Cold atoms provide an ideal test bed to probe such fundamental aspects of quantum and classical dynamics. In the experiment a Bose-Einstein condensate is loaded into a far detuned optical lattice. The lattice depth is modulated resulting in the emergence of regions of regular motion surrounded by chaotic motion in the phase space spanned by position and momentum of the atoms along the standing wave. Sub-Planck scaled phase space features in the classical phase space are magnified and appear as distinct broad peaks in the atomic momentum distribution. The corresponding quantum analysis shows states of size Ti which can be associated with much smaller classical dynamical phase space features. This effect may considered as the dynamical equivalent of the Goldstone and Jaffe theorem which predicts the existence of at least one bound state at a bend in a two or three dimensional spatial potential

  12. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  13. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  14. Quantum nodal points as fingerprints of classical chaos

    International Nuclear Information System (INIS)

    Leboeuf, P.; Voros, A.

    1992-08-01

    Semiclassical analysis of the individual eigenfunctions in a quantum system is presented, especially when the classical dynamics is chaotic and the quantum bound states are considered. Quantum maps have emerged as ideal dynamical models for basic studies, with their ability to exhibit classical chaos within a single degree of freedom. On the other hand, phase space techniques have become recognized as extremely powerful for describing quantum states. It is argued that representations of eigenfunctions are essential for semiclassical analysis. An explicit realization of that program in one degree is overviewed, in which the crucial ingredient is a phase-space parametrization of 1-d wave-functions. (K.A.) 44 refs.; 6 figs

  15. The Weyl representation in classical and quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Alfredo M.O. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paris-6 Univ., 75 (France). Inst. Henri Poincare

    1996-09-01

    The position representation of the evolution operator in quantum mechanics is analogous to the generating function formalism of classical mechanics. Similarly, the Weyl representation is connected to new generating functions described by chords and centres. Both classical and quantal theories rely on the group of translations and reflections through a point in phase space. The composition of small time evolutions leads to new versions of the classical variational principle and to path integrals in quantum mechanics. The restriction of the motion to the energy shell in classical mechanics is the basis for a full review of the semiclassical Wigner function and the theory of scars of periodic orbits. By embedding the theory of scars in a fully uniform approximation, it is shown that the region in which the scar contribution is oscillatory is separated from a decaying region by a caustic that touches the shell along the periodic orbit and widens quadratically within the energy shell. (author). 56 refs., 35 figs.

  16. Classical and quantum motion in an inverse square potential

    International Nuclear Information System (INIS)

    Avila-Aoki, M.; Cisneros, C.; Martinez-y-Romero, R.P.; Nunez-Yepez, H.N.; Salas-Brito, A.L.

    2009-01-01

    Classical motion in an inverse square potential is shown to be equivalent to free motion on a hyperbola. The existence of a classical splitting between the q>0 and q<0 regions of motion is demonstrated. We show that this last property may be regarded as the classical counterpart of the superselection rule occurring in the corresponding quantum problem. We solve the quantum problem in momentum space finding that there is no way of quantizing its energy but that the eigenfunctions suffice to describe the single renormalized bound state of the system. The dynamical symmetry of the classical problem is found to be O(1,1). Both this symmetry and the symmetry of inversion through the origin are found to be broken

  17. A unified approach to classical and quantum physics

    International Nuclear Information System (INIS)

    Wignall, J.W.G.

    1991-01-01

    A non-mathematical account of a theory in which particles are pictured not as points but as spatially extended periodic disturbances in a classical background field - objects which vary in form and size according to the interactions they encounter and which, in particular, abruptly collapse to much smaller disturbances when they are detected. This quasi-classical theory treats the classical and quantum domains on the same fundamental footing. It is shown that, when the particle sizes are small compared with their separations, they must satisfy classical laws such as Newton's equations of motion and Maxwell's electrodynamics, but when a particle is close to, or overlaps, the source of interaction its time evolution is given by quantum formulae such as the Schroedinger equation

  18. The Weyl representation in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Almeida, Alfredo M.O. de; Paris-6 Univ., 75

    1996-09-01

    The position representation of the evolution operator in quantum mechanics is analogous to the generating function formalism of classical mechanics. Similarly, the Weyl representation is connected to new generating functions described by chords and centres. Both classical and quantal theories rely on the group of translations and reflections through a point in phase space. The composition of small time evolutions leads to new versions of the classical variational principle and to path integrals in quantum mechanics. The restriction of the motion to the energy shell in classical mechanics is the basis for a full review of the semiclassical Wigner function and the theory of scars of periodic orbits. By embedding the theory of scars in a fully uniform approximation, it is shown that the region in which the scar contribution is oscillatory is separated from a decaying region by a caustic that touches the shell along the periodic orbit and widens quadratically within the energy shell. (author). 56 refs., 35 figs

  19. Non-classical state engineering for quantum networks

    International Nuclear Information System (INIS)

    Vollmer, Christina E.

    2014-01-01

    The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With

  20. Non-classical state engineering for quantum networks

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, Christina E.

    2014-01-24

    The wide field of quantum information processing and quantum networks has developed very fast in the last two decades. Besides the regime of discrete variables, which was developed first, the regime of continuous variables represents an alternative approach to realize many quantum applications. Non-classical states of light, like squeezed or entangled states, are a fundamental resource for quantum applications like quantum repeaters, quantum memories, quantum key distribution, quantum spectroscopy, and quantum metrology. These states can be generated successfully in the infrared wavelength regime. However, for some tasks other wavelengths, especially in the visible wavelength regime, are desirable. To generate non-classical states of light in this wavelength regime frequency up-conversion can be used, since all quantum properties are maintained in this process. The first part of this thesis deals with the experimental frequency up-conversion of quantum states. Squeezed vacuum states of light at 1550 nm were up-converted to 532 nm and a noise reduction of -1.5 dB at 532 nm was achieved. These states can be used for increasing the sensitivity of gravitational wave detectors or spectroscopic measurements. Furthermore, one part of an entangled state at 1550 nm was up-converted to 532 nm and, thus, entanglement between these two wavelengths was generated and characterized to -1.4 dB following Duan et al. With such a quantum link it is possible to establish a quantum network, which takes advantage of the low optical loss at 1550 nm for information transmission and of atomic transitions around 532 nm for a quantum memory in a quantum repeater. For quantum networks the distribution of entanglement and especially of a quantum key is essential. In the second part of this thesis the experimental distribution of entanglement by separable states is demonstrated. The underlying protocol requires a special three-mode state, which is separable in two of the three splittings. With

  1. Quantum versus classical laws for sequential decay processes

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Omero, C.; Weber, T.

    1979-05-01

    The problem of the deviations of the quantum from the classical laws for the occupation numbers of the various levels in a sequential decay process is discussed in general. A factorization formula is obtained for the matrix elements of the complete Green function entering in the expression of the occupation numbers of the levels. Through this formula and using specific forms of the quantum non-decay probability for the single levels, explicit expressions for the occupation numbers of the levels are obtained and compared with the classical ones. (author)

  2. The significance of classical structures in quantum theories

    International Nuclear Information System (INIS)

    Lowe, M.J.

    1978-09-01

    The implications for the quantum theory of the presence of non-linear classical solutions of the equations of motion are investigated in various model systems under the headings: (1) Canonical quantisation of the soliton in lambdaphi 4 theory in two dimensions. (2) Bound for soliton masses in two dimensional field theories. (3) The canonical quantisation of a soliton like solution in the non-linear schrodinger equation. (4) The significance of the instanton classical solution in a quantum mechanical system. (U.K.)

  3. Computational Physics Simulation of Classical and Quantum Systems

    CERN Document Server

    Scherer, Philipp O. J

    2010-01-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills.

  4. Computational physics. Simulation of classical and quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Philipp O.J. [TU Muenchen (Germany). Physikdepartment T38

    2010-07-01

    This book encapsulates the coverage for a two-semester course in computational physics. The first part introduces the basic numerical methods while omitting mathematical proofs but demonstrating the algorithms by way of numerous computer experiments. The second part specializes in simulation of classical and quantum systems with instructive examples spanning many fields in physics, from a classical rotor to a quantum bit. All program examples are realized as Java applets ready to run in your browser and do not require any programming skills. (orig.)

  5. Quantum healing of classical singularities in power-law spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Helliwell, T M [Department of Physics, Harvey Mudd College, Claremont, CA 91711 (United States); Konkowski, D A [Department of Mathematics, US Naval Academy, Annapolis, MD 21402 (United States)

    2007-07-07

    We study a broad class of spacetimes whose metric coefficients reduce to powers of a radius r in the limit of small r. Among these four-parameter 'power-law' metrics, we identify those parameters for which the spacetimes have classical singularities as r {yields} 0. We show that a large set of such classically-singular spacetimes is nevertheless non-singular quantum mechanically, in that the Hamiltonian operator is essentially self-adjoint, so that the evolution of quantum wave packets lacks the ambiguity associated with scattering off singularities. Using these metrics, the broadest class yet studied to compare classical with quantum singularities, we explore the physical reasons why some that are singular classically are 'healed' quantum mechanically, while others are not. We show that most (but not all) of the remaining quantum-mechanically singular spacetimes can be excluded if either the weak energy condition or the dominant energy condition is invoked, and we briefly discuss the effect of this work on the strong cosmic censorship conjecture.

  6. Quantum and classical mechanics in the phase space representation

    International Nuclear Information System (INIS)

    Shirokov, Yu.M.

    1979-01-01

    The theory of the hamiltonian mechanical systems has been formulated in terms of only such physical and mathematical concepts which are meaningful in both mechanics. For instance the observables in both mechanics are represented as c-number functions of coordinates and momenta. The operations of the usual multiplication of observables as well as Poisson bracket (also treated as a sort of multiplication) are singled out as separate objects which can possess their own structure including h-dependence. This leads to the conclusion that the only primary distinction between classical and quantum mechanics is reduced to the distinction in the form of the algebraic identity for the multiplication operations. All other distinctions are proved to be of the secondary origin. The formalism developed in the paper is especially useful for quantizations and for the transitions (including partial ones) to the classical limits. The transitions in both directions are transparent and accessible for analysis for any quantity at any step of calculations. The unified quantum-classical scattering theory is constructed. The integral quantum Lippman-Schwinder type equation is derived where the free solution term is replaced by the solution of the corresponding classical problem. The iteration of this equation gives the quantum corrections to the classical solution

  7. Classical and quantum cosmology of minimal massive bigravity

    International Nuclear Information System (INIS)

    Darabi, F.; Mousavi, M.

    2016-01-01

    In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  8. Classical and quantum cosmology of minimal massive bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F., E-mail: f.darabi@azaruniv.edu; Mousavi, M., E-mail: mousavi@azaruniv.edu

    2016-10-10

    In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  9. Classical limit of quantum gravity in an accelerating universe

    International Nuclear Information System (INIS)

    Schuller, Frederic P.; Wohlfarth, Mattias N.R.

    2005-01-01

    A one-parameter deformation of Einstein-Hilbert gravity with an inverse Riemann curvature term is derived as the classical limit of quantum gravity compatible with an accelerating universe. This result is based on the investigation of semi-classical theories with sectional curvature bounds which are shown not to admit static spherically symmetric black holes if otherwise of phenomenological interest. We discuss the impact on the canonical quantization of gravity, and observe that worldsheet string theory is not affected

  10. Hydrogen atom as a quantum-classical hybrid system

    International Nuclear Information System (INIS)

    Zhan, Fei; Wu, Biao

    2013-01-01

    Hydrogen atom is studied as a quantum-classical hybrid system, where the proton is treated as a classical object while the electron is regarded as a quantum object. We use a well known mean-field approach to describe this hybrid hydrogen atom; the resulting dynamics for the electron and the proton is compared to their full quantum dynamics. The electron dynamics in the hybrid description is found to be only marginally different from its full quantum counterpart. The situation is very different for the proton: in the hybrid description, the proton behaves like a free particle; in the fully quantum description, the wave packet center of the proton orbits around the center of mass. Furthermore, we find that the failure to describe the proton dynamics properly can be regarded as a manifestation of the fact that there is no conservation of momentum in the mean-field hybrid approach. We expect that such a failure is a common feature for all existing approaches for quantum-classical hybrid systems of Born-Oppenheimer type.

  11. Quantum data locking for high-rate private communication

    International Nuclear Information System (INIS)

    Lupo, Cosmo; Lloyd, Seth

    2015-01-01

    We show that, if the accessible information is used as a security quantifier, quantum channels with a certain symmetry can convey private messages at a tremendously high rate, as high as less than one bit below the rate of non-private classical communication. This result is obtained by exploiting the quantum data locking effect. The price to pay to achieve such a high private communication rate is that accessible information security is in general not composable. However, composable security holds against an eavesdropper who is forced to measure her share of the quantum system within a finite time after she gets it. (paper)

  12. Classical and quantum gravity of brane black holes

    International Nuclear Information System (INIS)

    Gregory, Ruth; Ross, Simon F.; Zegers, Robin

    2008-01-01

    We test the holographic conjecture of brane black holes: that a full classical 5D solution will correspond to a quantum corrected 4D black hole. Using the Schwarzschild-AdS black string, we compare the braneworld back reaction at strong coupling with the calculation of the quantum stress tensor on Schwarzschild-AdS 4 at weak coupling. The two calculations give different results and provide evidence that the stress tensor at strong coupling is indeed different to the weak coupling calculations, and hence does not conform to our notion of a quantum corrected black hole. We comment on the implications for an asymptotically flat black hole.

  13. Hybrid classical/quantum simulation for infrared spectroscopy of water

    Science.gov (United States)

    Maekawa, Yuki; Sasaoka, Kenji; Ube, Takuji; Ishiguro, Takashi; Yamamoto, Takahiro

    2018-05-01

    We have developed a hybrid classical/quantum simulation method to calculate the infrared (IR) spectrum of water. The proposed method achieves much higher accuracy than conventional classical molecular dynamics (MD) simulations at a much lower computational cost than ab initio MD simulations. The IR spectrum of water is obtained as an ensemble average of the eigenvalues of the dynamical matrix constructed by ab initio calculations, using the positions of oxygen atoms that constitute water molecules obtained from the classical MD simulation. The calculated IR spectrum is in excellent agreement with the experimental IR spectrum.

  14. Evidence for a Quantum-to-Classical Transition in a Pair of Coupled Quantum Rotors

    Science.gov (United States)

    Gadway, Bryce; Reeves, Jeremy; Krinner, Ludwig; Schneble, Dominik

    2013-05-01

    The understanding of how classical dynamics can emerge in closed quantum systems is a problem of fundamental importance. Remarkably, while classical behavior usually arises from coupling to thermal fluctuations or random spectral noise, it may also be an innate property of certain isolated, periodically driven quantum systems. Here, we experimentally realize the simplest such system, consisting of two coupled, kicked quantum rotors, by subjecting a coherent atomic matter wave to two periodically pulsed, incommensurate optical lattices. Momentum transport in this system is found to be radically different from that in a single kicked rotor, with a breakdown of dynamical localization and the emergence of classical diffusion. Our observation, which confirms a long-standing prediction for many-dimensional quantum-chaotic systems, sheds new light on the quantum-classical correspondence.

  15. Classical and quantum temperature fluctuations via holography

    Energy Technology Data Exchange (ETDEWEB)

    Balatsky, Alexander V. [KTH Royal Inst. of Technology, Stockholm (Sweden); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gudnason, Sven Bjarke [KTH Royal Inst. of Technology, Stockholm (Sweden); Thorlacius, Larus [KTH Royal Inst. of Technology, Stockholm (Sweden); University of Iceland, Reykjavik (Iceland); Zarembo, Konstantin [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Uppsala Univ. (Sweden); Krikun, Alexander [KTH Royal Inst. of Technology, Stockholm (Sweden); Inst. of Theoretical and Experimental Physics (ITEP), Moscow (Russian Federation); Kedem, Yaron [KTH Royal Inst. of Technology, Stockholm (Sweden)

    2014-05-27

    We study local temperature fluctuations in a 2+1 dimensional CFT on the sphere, dual to a black hole in asymptotically AdS space-time. The fluctuation spectrum is governed by the lowest-lying hydrodynamic sound modes of the system whose frequency and damping rate determine whether temperature fluctuations are thermal or quantum. We calculate numerically the corresponding quasinormal frequencies and match the result with the hydrodynamics of the dual CFT at large temperature. As a by-product of our analysis we determine the appropriate boundary conditions for calculating low-lying quasinormal modes for a four-dimensional Reissner-Nordstrom black hole in global AdS.

  16. Quantum cosmology of classically constrained gravity

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Shang Yanwen

    2006-01-01

    In [G. Gabadadze, Y. Shang, hep-th/0506040] we discussed a classically constrained model of gravity. This theory contains known solutions of General Relativity (GR), and admits solutions that are absent in GR. Here we study cosmological implications of some of these new solutions. We show that a spatially-flat de Sitter universe can be created from 'nothing'. This universe has boundaries, and its total energy equals to zero. Although the probability to create such a universe is exponentially suppressed, it favors initial conditions suitable for inflation. Then we discuss a finite-energy solution with a nonzero cosmological constant and zero space-time curvature. There is no tunneling suppression to fluctuate into this state. We show that for a positive cosmological constant this state is unstable-it can rapidly transition to a de Sitter universe providing a new unsuppressed channel for inflation. For a negative cosmological constant the space-time flat solutions is stable.

  17. Dynamics of electrically charged extended bodies: classical and quantum systems

    International Nuclear Information System (INIS)

    Aaberge, T.

    1987-01-01

    The author present generalizations of classical mechanics and quantum mechanics that make it possible to describe N charged extended bodies.In particular, we are able to write down a set of coupled equations for the system of N bodies plus field. The theory is based on a theory for the description of N charged chemical fluid components

  18. Classical and quantum mechanics of complex Hamiltonian systems ...

    Indian Academy of Sciences (India)

    Vol. 73, No. 2. — journal of. August 2009 physics pp. 287–297. Classical and quantum mechanics of complex. Hamiltonian systems: An extended complex phase space ... 1Department of Physics, Ramjas College (University Enclave), University of Delhi,. Delhi 110 ... 1.1 Motivation behind the study of complex Hamiltonians.

  19. Classical behaviour of macroscopic bodies and quantum measurements

    International Nuclear Information System (INIS)

    Ghirardi, G.; Rimini, A.; Weber, T.

    1986-01-01

    This report describes a recent attempt of giving a consistent and unified description of microscopic and macroscopic phenomena. The model presented in this paper exhibits the nice features of leaving unaltered the quantum description of microsystems and of accounting for the classical behaviour of the macroscopic objects when their dynamical evolution is consistently deduced from the dynamics of their elementary constituents

  20. Making the Transition from Classical to Quantum Physics

    Science.gov (United States)

    Dutt, Amit

    2011-01-01

    This paper reports on the nature of the conceptual understandings developed by Year 12 Victorian Certificate of Education (VCE) physics students as they made the transition from the essentially deterministic notions of classical physics, to interpretations characteristic of quantum theory. The research findings revealed the fact that the…

  1. Classical and quantum mechanics of complex Hamiltonian systems

    Indian Academy of Sciences (India)

    Certain aspects of classical and quantum mechanics of complex Hamiltonian systems in one dimension investigated within the framework of an extended complex phase space approach, characterized by the transformation = 1 + 2, = 1 + 2, are revisited. It is argued that Carl Bender inducted P T symmetry in ...

  2. Principles of maximally classical and maximally realistic quantum ...

    Indian Academy of Sciences (India)

    Principles of maximally classical and maximally realistic quantum mechanics. S M ROY. Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India. Abstract. Recently Auberson, Mahoux, Roy and Singh have proved a long standing conjecture of Roy and Singh: In 2N-dimensional phase space, ...

  3. Rotating fluid models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Arvieu, R.; Troudet, T.

    1979-01-01

    To describe the behavior of high-spin nuclei it is necessary to refer back to the classical mechanics of fluids in rotation where some results are general enough to apply to the rotational nuclear fluid. It is then shown that the quantum model of rotational oscillator gives a simple classification of rotating configurations [fr

  4. Quantum and classical eigenfunctions in Calogero and Sutherland systems

    International Nuclear Information System (INIS)

    Loris, I; Sasaki, R

    2004-01-01

    An interesting observation was reported by Corrigan-Sasaki that all the frequencies of small oscillations around equilibrium are 'quantized' for Calogero and Sutherland (CS) systems, typical integrable multi-particle dynamics. We present an analytic proof by applying recent results. Explicit forms of 'classical' and quantum eigenfunctions are presented for CS systems based on any root system

  5. A decoupling approach to classical data transmission over quantum channels

    DEFF Research Database (Denmark)

    Dupont-Dupuis, Fréderic; Szehr, Oleg; Tomamichel, Marco

    2014-01-01

    be solved this way, one of the most basic coding problems remains impervious to a direct application of this method, sending classical information through a quantum channel. We will show that this problem can, in fact, be solved using decoupling ideas, specifically by proving a dequantizing theorem, which...

  6. Interferometric weak value deflections: Quantum and classical treatments

    International Nuclear Information System (INIS)

    Howell, John C.; Starling, David J.; Dixon, P. Ben; Vudyasetu, Praveen K.; Jordan, Andrew N.

    2010-01-01

    We derive the weak value deflection given in an article by Dixon et al.[P. B. Dixon et al. Phys. Rev. Lett. 102 173601 (2009)] both quantum mechanically and classically, including diffraction effects. This article is meant to cover some of the mathematical details omitted in that article owing to space constraints.

  7. Quantum communication under channel uncertainty

    International Nuclear Information System (INIS)

    Noetzel, Janis Christian Gregor

    2012-01-01

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  8. Classical Solutions in Quantum Field Theory

    International Nuclear Information System (INIS)

    Mann, Robert

    2013-01-01

    Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons-–kinks, vortices, and magnetic monopoles-–and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is

  9. Programmable dispersion on a photonic integrated circuit for classical and quantum applications.

    Science.gov (United States)

    Notaros, Jelena; Mower, Jacob; Heuck, Mikkel; Lupo, Cosmo; Harris, Nicholas C; Steinbrecher, Gregory R; Bunandar, Darius; Baehr-Jones, Tom; Hochberg, Michael; Lloyd, Seth; Englund, Dirk

    2017-09-04

    We demonstrate a large-scale tunable-coupling ring resonator array, suitable for high-dimensional classical and quantum transforms, in a CMOS-compatible silicon photonics platform. The device consists of a waveguide coupled to 15 ring-based dispersive elements with programmable linewidths and resonance frequencies. The ability to control both quality factor and frequency of each ring provides an unprecedented 30 degrees of freedom in dispersion control on a single spatial channel. This programmable dispersion control system has a range of applications, including mode-locked lasers, quantum key distribution, and photon-pair generation. We also propose a novel application enabled by this circuit - high-speed quantum communications using temporal-mode-based quantum data locking - and discuss the utility of the system for performing the high-dimensional unitary optical transformations necessary for a quantum data locking demonstration.

  10. A classical-quantum coupling strategy for a hierarchy of one dimensional models for semiconductors

    OpenAIRE

    Jourdana, Clément; Pietra, Paola; Vauchelet, Nicolas

    2014-01-01

    We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable : the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. This leads to a hierarchy of classical model. The qu...

  11. Remarks on the classical limit of quantum field theories

    International Nuclear Information System (INIS)

    Eckmann, J.P.

    1977-01-01

    Recently, there has been an increasing interest in computing quantum mechanical corrections to solutions of classical field equations. In this note, proceeding in the opposite way, theorems about the classical limit of relativistic quantum field models are summarized. These results are a byproduct of the so called 'constructive' approach to quantum field theory. Section 1 deals with generalities; in Section 2 the situation where no phase transitions occur is discussed in the limit h→0; and in Section 3 one result in the case where such a transition occurs is reformulated (Glimm et al). The validity of the loop expansion is discussed. It seems however that the tools to show the rigorous validity of soliton calculations are not yet prepared. (Auth.)

  12. de Broglie Swapping Metadynamics for Quantum and Classical Sampling.

    Science.gov (United States)

    Nava, Marco; Quhe, Ruge; Palazzesi, Ferruccio; Tiwary, Pratyush; Parrinello, Michele

    2015-11-10

    This paper builds on our previous work on Path Integral Metadynamics [ Ruge et al. J. Chem. Theory Comput. 2015 , 11 , 1383 ] in which we have accelerated sampling in quantum systems described by Feynman's Path Integrals using Metadynamics. We extend the scope of Path Integral Metadynamics by combining it with a replica exchange scheme in which artificially enhanced quantum effects play the same role as temperature does in parallel tempering. Our scheme can be adapted so as to be used in an ancillary way to sample systems described by classical statistical mechanics. Contrary to Metadynamics and many other sampling methods no collective variables need to be defined. The method in its two variants, quantum and classical, is tested in a number of examples.

  13. Positive Wigner functions render classical simulation of quantum computation efficient.

    Science.gov (United States)

    Mari, A; Eisert, J

    2012-12-07

    We show that quantum circuits where the initial state and all the following quantum operations can be represented by positive Wigner functions can be classically efficiently simulated. This is true both for continuous-variable as well as discrete variable systems in odd prime dimensions, two cases which will be treated on entirely the same footing. Noting the fact that Clifford and Gaussian operations preserve the positivity of the Wigner function, our result generalizes the Gottesman-Knill theorem. Our algorithm provides a way of sampling from the output distribution of a computation or a simulation, including the efficient sampling from an approximate output distribution in the case of sampling imperfections for initial states, gates, or measurements. In this sense, this work highlights the role of the positive Wigner function as separating classically efficiently simulable systems from those that are potentially universal for quantum computing and simulation, and it emphasizes the role of negativity of the Wigner function as a computational resource.

  14. Logical reformulation of quantum mechanics. III. Classical limit and irreversibility

    International Nuclear Information System (INIS)

    Omnes, R.

    1988-01-01

    This paper deals with two questions: (1) It contains a proof of the fact that consistent quantum representations of logic tend to the classical representation of logic when Planck's constant tends to zero. This result is obtained by using the microlocal analysis of partial differential equations and the Weyl calculus, which turn out to be the proper mathematical framework for this type of problems. (2) The analysis of the limitations of this proof turn out to be of physical significance, in particular when one considers quantum systems having for their classical version a Kolmogorov K-system. These limitations are used to show the existence of a best classical description for such a system leading to an objective definition of entropy. It is shown that in such a description the approach to equilibrium is strictly reduced to a Markov process

  15. Lectures on classical and quantum theory of fields

    Energy Technology Data Exchange (ETDEWEB)

    Arodz, Henryk; Hadasz, Leszek [Jagiellonian Univ., Krakow (Poland). Inst. Physics

    2010-07-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  16. Lectures on classical and quantum theory of fields

    International Nuclear Information System (INIS)

    Arodz, Henryk; Hadasz, Leszek

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course. (orig.)

  17. Lectures on Classical and Quantum Theory of Fields

    CERN Document Server

    Arodź, Henryk

    2010-01-01

    This textbook on classical and quantum theory of fields addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. The textbook is based on lectures delivered to students of theoretical physics at Jagiellonian University. It aims to deliver a unique combination of classical and quantum field theory in one compact course.

  18. Quantum versus classical hyperfine-induced dynamics in a quantum dota)

    Science.gov (United States)

    Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.

    2007-04-01

    In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.

  19. Quantum and Classical OpticsEmerging Links

    Science.gov (United States)

    2016-05-09

    reduced matrix obtained from the dyadic tensor ¬  E E: by tracing over the t sector, via the complete set of modes in which the F functions can be...á ñ + á ñ = á ñá ñ + á ñá ñs s s s s sE E E E E Ex y x x y y2 2 , i.e., the trace of the dyadic ∣ ∣ñáE E over the spin space. The result is a... communication Opt. Lett. 34 1099 [30] Borges C V S, Hor-Meyll M, Huguenin J A O and Khoury A Z 2010 Bell-like inequality for the spin–orbit separability of

  20. Decoherence control in open quantum systems via classical feedback

    International Nuclear Information System (INIS)

    Ganesan, Narayan; Tarn, Tzyh-Jong

    2007-01-01

    In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations

  1. Quantum predictions for an unmeasured system cannot be simulated with a finite-memory classical system

    Science.gov (United States)

    Tavakoli, Armin; Cabello, Adán

    2018-03-01

    We consider an ideal experiment in which unlimited nonprojective quantum measurements are sequentially performed on a system that is initially entangled with a distant one. At each step of the sequence, the measurements are randomly chosen between two. However, regardless of which measurement is chosen or which outcome is obtained, the quantum state of the pair always remains entangled. We show that the classical simulation of the reduced state of the distant system requires not only unlimited rounds of communication, but also that the distant system has infinite memory. Otherwise, a thermodynamical argument predicts heating at a distance. Our proposal can be used for experimentally ruling out nonlocal finite-memory classical models of quantum theory.

  2. Foundations of quantum theory from classical concepts to operator algebras

    CERN Document Server

    Landsman, Klaas

    2017-01-01

    This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This book is Open Access under a CC BY licence.

  3. The classical and quantum dynamics of molecular spins on graphene

    Science.gov (United States)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2016-02-01

    Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain’s threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices.

  4. Observation of a Dissipation-Induced Classical to Quantum Transition

    Directory of Open Access Journals (Sweden)

    J. Raftery

    2014-09-01

    Full Text Available Here, we report the experimental observation of a dynamical quantum phase transition in a strongly interacting open photonic system. The system studied, comprising a Jaynes-Cummings dimer realized on a superconducting circuit platform, exhibits a dissipation-driven localization transition. Signatures of the transition in the homodyne signal and photon number reveal this transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a small-scale realization of a new class of quantum simulator, whose well-controlled coherent and dissipative dynamics is suited to the study of quantum many-body phenomena out of equilibrium.

  5. A quantum algorithm for Viterbi decoding of classical convolutional codes

    Science.gov (United States)

    Grice, Jon R.; Meyer, David A.

    2015-07-01

    We present a quantum Viterbi algorithm (QVA) with better than classical performance under certain conditions. In this paper, the proposed algorithm is applied to decoding classical convolutional codes, for instance, large constraint length and short decode frames . Other applications of the classical Viterbi algorithm where is large (e.g., speech processing) could experience significant speedup with the QVA. The QVA exploits the fact that the decoding trellis is similar to the butterfly diagram of the fast Fourier transform, with its corresponding fast quantum algorithm. The tensor-product structure of the butterfly diagram corresponds to a quantum superposition that we show can be efficiently prepared. The quantum speedup is possible because the performance of the QVA depends on the fanout (number of possible transitions from any given state in the hidden Markov model) which is in general much less than . The QVA constructs a superposition of states which correspond to all legal paths through the decoding lattice, with phase as a function of the probability of the path being taken given received data. A specialized amplitude amplification procedure is applied one or more times to recover a superposition where the most probable path has a high probability of being measured.

  6. Classical and quantum chaotic scattering in a muffin tin potential

    International Nuclear Information System (INIS)

    Brandis, S.

    1995-05-01

    In this paper, we study the classical mechanics, the quantum mechanics and the semi-classical approximation of the 2-dimensional scattering from a muffin tin potential. The classical dynamical system for Coulombic muffin tins is proven to be chaotic by explicit construction of the exponentially increasing number of periodic orbits. These are all shown to be completely unstable (hyperbolic). By methods of the thermodynamic formalism we can determine the Hausdorff dimension, escape rate and Kolmogorov-Sinai-entropy of the system. An extended KKR-method is developed to determine the quantum mechanical S-matrix. We compare a few integrable scattering examples with the results of the muffin tin scattering. Characteristic features of the spectrum of eigenphases turn out to be the level repulsion and long range rigidity as compared to a completely random spectrum. In the semiclassical analysis we can rederive the regularized Gutzwiller trace formula directly from the exact KKR-determinant to prove that no further terms contribute in the case of the muffin tin potential. The periodic orbit sum allows to draw some qualitative conclusions about the effects of classical chaos on the quantum mechanics. In the context of scaling systems the theory of almost periodic functions is discussed as a possible mathematical foundation for the semiclassical periodic orbit sums. Some results that can be obtained from this analysis are developed in the context of autocorrelation functions and distribution functions for chaotic scattering systems. (orig.)

  7. Some studies on arithmetical chaos in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Bolte, J.

    1993-04-01

    Several aspects of classical and quantum mechanics applied to a class of strongly chaotic systems are studied. The latter consists of single particles moving without external forces on surfaces of constant negative Gaussian curvature whose corresponding fundamental groups are supplied with an arithmetic structure. It is shown that the arithmetical features of the considered systems lead to exceptional properties of the corresponding spectra of lengths of closed geodesics (periodic orbits). The most significant one is an exponential growth of degeneracies in these geodesic length spectra. Furthermore, the arithmetical systems are distinguished by a structure that appears as a generalization of geometric symmetries. These pseudosymmetries occur in the quantization of the classical arithmetic systems as Hecke operators, which form an infinite algebra of self-adjoint operators commuting with the Hamiltonian. The statistical properties of quantum energies in the arithmetical systems have previously been identified as exceptional. They do not fit into the general scheme of random matrix theory. It is shown with the help of a simplified model for the spectral form factor how the spectral statistics in arithmetical quantum chaos can be understood by the properties of the corresponding classical geodesic length spectra. A decisive role is played by the exponentially increasing multiplicities of lengths. The model developed for the level spacings distribution and for the number variance is compared to the corresponding quantities obtained from quantum energies for a specific arithmetical system. Finally, the convergence properties of a representation for the Selberg zeta function as a Dirichlet series are studied. It turns out that the exceptional classical and quantum mechanical properties shared by the arithmetical systems prohibit a convergence of this important function in the physically interesting domain. (orig.)

  8. The classical limit of non-integrable quantum systems, a route to quantum chaos

    International Nuclear Information System (INIS)

    Castagnino, Mario; Lombardi, Olimpia

    2006-01-01

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state

  9. Quantum to classical transition in the Hořava-Lifshitz quantum cosmology

    Science.gov (United States)

    Bernardini, A. E.; Leal, P.; Bertolami, O.

    2018-02-01

    A quasi-Gaussian quantum superposition of Hořava-Lifshitz (HL) stationary states is built in order to describe the transition of the quantum cosmological problem to the related classical dynamics. The obtained HL phase-space superposed Wigner function and its associated Wigner currents describe the conditions for the matching between classical and quantum phase-space trajectories. The matching quantum superposition parameter is associated to the total energy of the classical trajectory which, at the same time, drives the engendered Wigner function to the classical stationary regime. Through the analysis of the Wigner flows, the quantum fluctuations that distort the classical regime can be quantified as a measure of (non)classicality. Finally, the modifications to the Wigner currents due to the inclusion of perturbative potentials are computed in the HL quantum cosmological context. In particular, the inclusion of a cosmological constant provides complementary information that allows for connecting the age of the Universe with the overall stiff matter density profile.

  10. The classical limit of non-integrable quantum systems, a route to quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)

    2006-05-15

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.

  11. Quantum tagging for tags containing secret classical data

    International Nuclear Information System (INIS)

    Kent, Adrian

    2011-01-01

    Various authors have considered schemes for quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is potentially unbounded. All of the schemes proposed elsewhere in the literature assume that the adversary is able to inspect the interior of the tagging device. All of these schemes have been shown to be breakable if the adversary has unbounded predistributed entanglement. We consider here the case in which the tagging device contains a finite key string shared with distant sites but kept secret from the adversary, and show this allows the location of the tagging device to be authenticated securely and indefinitely. Our protocol relies on quantum key distribution between the tagging device and at least one distant site, and demonstrates a new practical application of quantum key distribution. It also illustrates that the attainable security in position-based cryptography can depend crucially on apparently subtle details in the security scenario considered.

  12. Experimental non-classicality of an indivisible quantum system.

    Science.gov (United States)

    Lapkiewicz, Radek; Li, Peizhe; Schaeff, Christoph; Langford, Nathan K; Ramelow, Sven; Wieśniak, Marcin; Zeilinger, Anton

    2011-06-22

    In contrast to classical physics, quantum theory demands that not all properties can be simultaneously well defined; the Heisenberg uncertainty principle is a manifestation of this fact. Alternatives have been explored--notably theories relying on joint probability distributions or non-contextual hidden-variable models, in which the properties of a system are defined independently of their own measurement and any other measurements that are made. Various deep theoretical results imply that such theories are in conflict with quantum mechanics. Simpler cases demonstrating this conflict have been found and tested experimentally with pairs of quantum bits (qubits). Recently, an inequality satisfied by non-contextual hidden-variable models and violated by quantum mechanics for all states of two qubits was introduced and tested experimentally. A single three-state system (a qutrit) is the simplest system in which such a contradiction is possible; moreover, the contradiction cannot result from entanglement between subsystems, because such a three-state system is indivisible. Here we report an experiment with single photonic qutrits which provides evidence that no joint probability distribution describing the outcomes of all possible measurements--and, therefore, no non-contextual theory--can exist. Specifically, we observe a violation of the Bell-type inequality found by Klyachko, Can, Binicioğlu and Shumovsky. Our results illustrate a deep incompatibility between quantum mechanics and classical physics that cannot in any way result from entanglement.

  13. Scale covariant physics: a 'quantum deformation' of classical electrodynamics

    International Nuclear Information System (INIS)

    Knoll, Yehonatan; Yavneh, Irad

    2010-01-01

    We present a deformation of classical electrodynamics, continuously depending on a 'quantum parameter', featuring manifest gauge, Poincare and scale covariance. The theory, dubbed extended charge dynamics (ECD), associates a certain length scale with each charge which, due to scale covariance, is an attribute of a solution, not a parameter of the theory. When the EM field experienced by an ECD charge is slowly varying over that length scale, the dynamics of the charge reduces to classical dynamics, its emitted radiation reduces to the familiar Lienard-Wiechert potential and the above length scale is identified as the charge's Compton length. It is conjectured that quantum mechanics describes statistical aspects of ensembles of ECD solutions, much like classical thermodynamics describes statistical aspects of ensembles of classical solutions. A unique 'remote sensing' feature of ECD, supporting that conjecture, is presented, along with an explanation for the illusion of a photon within a classical treatment of the EM field. Finally, a novel conservation law associated with the scale covariance of ECD is derived, indicating that the scale of a solution may 'drift' with time at a constant rate, much like translation covariance implies a uniform drift of the (average) position.

  14. A derivation of the classical limit of quantum mechanics and quantum electrodynamics

    International Nuclear Information System (INIS)

    Ajanapon, P.

    1985-01-01

    Instead of regarding the classical limit as the h → 0, an alternative view based on the physical interpretation of the elements of the density matrix is proposed. According to this alternative view, taking the classical limit corresponds to taking the diagonal elements and ignoring the off-diagonal elements of the density matrix. As illustrations of this alternative approach, the classical limits of quantum mechanics and quantum electrodynamics are derived. The derivation is carried out in two stages. First, the statistical classical limit is derived. Then with an appropriate initial condition, the deterministic classical limit is obtained. In the case of quantum mechanics, it is found that the classical limit of Schroedinger's wave mechanics is at best statistical, i.e., Schroedinger's wave mechanics does not reduce to deterministic (Hamilton's or Newton's) classical mechanics. In order to obtain the latter, it is necessary to start out initially with a mixture at the level of statistical quantum mechanics. The derivation hinges on the use of the Feynman path integral rigorously defined with the aid of nonstandard analysis. Nonstandard analysis is also applied to extend the method to the case of quantum electrodynamics. The fundamental decoupling problem arising form the use of Grassmann variables is circumvented by the use of c-number electron fields, but antisymmetrically tagged. The basic classical (deterministic) field equations are obtained in the classical limit with appropriate initial conditions. The result raises the question as to what the corresponding classical field equations obtained in the classical limit from the renormalized Lagrangian containing infinite counterterms really mean

  15. Anonymous quantum communications using the quantum one-time pad

    International Nuclear Information System (INIS)

    Wang, Qing-Le; Gao, Fei-; Liu, Bin; Song, Ting-Ting; Wen, Qiao-Yan

    2015-01-01

    We present the first quantum secure communication protocol for an anonymous receiver without the assistance of anonymous entanglement. In previous works, if a public sender wants to send quantum messages to a chosen receiver while protecting the identity of the receiver from others, all participants should cooperate first to construct the entanglement between the sender and the anonymous receiver. This is the most important process in anonymous quantum communications. With anonymous entanglement, the sender can communicate quantum messages to the anonymous receiver by applying teleportation protocols. In contrast, our protocol is novel and achieves communication of quantum messages directly from the public sender to the anonymous receiver based on the quantum one-time pad and current achievements. Notably, the anonymity of the receiver, as well as the privacy of the quantum messages, is perfectly protected with the exception of an exponentially small probability in our protocol. (paper)

  16. Nonmonotonic quantum-to-classical transition in multiparticle interference

    DEFF Research Database (Denmark)

    Ra, Young-Sik; Tichy, Malte; Lim, Hyang-Tag

    2013-01-01

    Quantum-mechanical wave–particle duality implies that probability distributions for granular detection events exhibit wave-like interference. On the single-particle level, this leads to self-interference—e.g., on transit across a double slit—for photons as well as for large, massive particles...... that interference fades away monotonically with increasing distinguishability—in accord with available experimental evidence on the single- and on the many-particle level. Here, we demonstrate experimentally and theoretically that such monotonicity of the quantum-to-classical transition is the exception rather than...

  17. Classical verification of quantum circuits containing few basis changes

    Science.gov (United States)

    Demarie, Tommaso F.; Ouyang, Yingkai; Fitzsimons, Joseph F.

    2018-04-01

    We consider the task of verifying the correctness of quantum computation for a restricted class of circuits which contain at most two basis changes. This contains circuits giving rise to the second level of the Fourier hierarchy, the lowest level for which there is an established quantum advantage. We show that when the circuit has an outcome with probability at least the inverse of some polynomial in the circuit size, the outcome can be checked in polynomial time with bounded error by a completely classical verifier. This verification procedure is based on random sampling of computational paths and is only possible given knowledge of the likely outcome.

  18. Scattering of classical and quantum particles by impulsive fields

    Science.gov (United States)

    Balasin, Herbert; Aichelburg, Peter C.

    2018-05-01

    We investigate the scattering of classical and quantum particles in impulsive backgrounds fields. These fields model short outbursts of radiation propagating with the speed of light. The singular nature of the problem will be accounted for by the use of Colombeau’s generalized function which however give rise to ambiguities. It is the aim of the paper to show that these ambiguities can be overcome by implementing additional physical conditions, which in the non-singular case would be satisfied automatically. As example we discuss the scattering of classical, Klein–Gordon and Dirac particles in impulsive electromagnetic fields.

  19. Lectures on classical and quantum theory of fields

    CERN Document Server

    Arodz, Henryk

    2017-01-01

    This textbook addresses graduate students starting to specialize in theoretical physics. It provides didactic introductions to the main topics in the theory of fields, while taking into account the contemporary view of the subject. The student will find concise explanations of basic notions essential for applications of the theory of fields as well as for frontier research in theoretical physics. One third of the book is devoted to classical fields. Each chapter contains exercises of varying degree of difficulty with hints or solutions, plus summaries and worked examples as useful. It aims to deliver a unique combination of classical and quantum field theory in one compact course.

  20. Enhancing Quantum Discord in Cavity QED by Applying Classical Driving Field

    International Nuclear Information System (INIS)

    Qian Yi; Xu Jing-Bo

    2012-01-01

    We investigate the quantum discord dynamics in a cavity quantum electrodynamics system, which consists of two noninteracting two-level atoms driven by independent optical fields and classical fields, and find that the quantum discord vanishes only asymptotically although entanglement disappears suddenly during the time evolution in the absence of classical fields. It is shown that the amount of quantum discord can be increased by adjusting the classical driving fields because the increasing degree of the amount of quantum mutual information is greater than classical correlation by applying the classical driving fields. Finally, the influence of the classical driving field on the fidelity of the system is also examined. (general)

  1. Relativistic quantum channel of communication through field quanta

    International Nuclear Information System (INIS)

    Cliche, M.; Kempf, A.

    2010-01-01

    Setups in which a system Alice emits field quanta that a system Bob receives are prototypical for wireless communication and have been extensively studied. In the most basic setup, Alice and Bob are modeled as Unruh-DeWitt detectors for scalar quanta, and the only noise in their communication is due to quantum fluctuations. For this basic setup, we construct the corresponding information-theoretic quantum channel. We calculate the classical channel capacity as a function of the spacetime separation, and we confirm that the classical as well as the quantum channel capacity are strictly zero for spacelike separations. We show that this channel can be used to entangle Alice and Bob instantaneously. Alice and Bob are shown to extract this entanglement from the vacuum through a Casimir-Polder effect.

  2. Implementation of quantum and classical discrete fractional Fourier transforms

    Science.gov (United States)

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N.; Szameit, Alexander

    2016-01-01

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools. PMID:27006089

  3. Time-dependent coupled harmonic oscillators: classical and quantum solutions

    International Nuclear Information System (INIS)

    Macedo, D.X.; Guedes, I.

    2014-01-01

    In this work we present the classical and quantum solutions for an arbitrary system of time-dependent coupled harmonic oscillators, where the masses (m), frequencies (ω) and coupling parameter (k) are functions of time. To obtain the classical solutions, we use a coordinate and momentum transformations along with a canonical transformation to write the original Hamiltonian as the sum of two Hamiltonians of uncoupled harmonic oscillators with modified time-dependent frequencies and unitary masses. To obtain the exact quantum solutions we use a unitary transformation and the Lewis and Riesenfeld (LR) invariant method. The exact wave functions are obtained by solving the respective Milne–Pinney (MP) equation for each system. We obtain the solutions for the system with m 1 = m 2 = m 0 e γt , ω 1 = ω 01 e -γt/2 , ω 2 = ω 02 e -γt/2 and k = k 0 . (author)

  4. Supersymmetric quantum spin chains and classical integrable systems

    International Nuclear Information System (INIS)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-01-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  5. Implementation of quantum and classical discrete fractional Fourier transforms.

    Science.gov (United States)

    Weimann, Steffen; Perez-Leija, Armando; Lebugle, Maxime; Keil, Robert; Tichy, Malte; Gräfe, Markus; Heilmann, René; Nolte, Stefan; Moya-Cessa, Hector; Weihs, Gregor; Christodoulides, Demetrios N; Szameit, Alexander

    2016-03-23

    Fourier transforms, integer and fractional, are ubiquitous mathematical tools in basic and applied science. Certainly, since the ordinary Fourier transform is merely a particular case of a continuous set of fractional Fourier domains, every property and application of the ordinary Fourier transform becomes a special case of the fractional Fourier transform. Despite the great practical importance of the discrete Fourier transform, implementation of fractional orders of the corresponding discrete operation has been elusive. Here we report classical and quantum optical realizations of the discrete fractional Fourier transform. In the context of classical optics, we implement discrete fractional Fourier transforms of exemplary wave functions and experimentally demonstrate the shift theorem. Moreover, we apply this approach in the quantum realm to Fourier transform separable and path-entangled biphoton wave functions. The proposed approach is versatile and could find applications in various fields where Fourier transforms are essential tools.

  6. A stepping stone from classical to quantum mechanics

    International Nuclear Information System (INIS)

    Tzara, C.

    1984-01-01

    A microscopic mechanics is constructed in order to incorporate the Planck constant while retaining the concept of particle location. In the one-dimensional stationary case, the first integral of the equation of motion can be solved explicitly with the help of the Schroedinger equation. It is thus shown that, in describing bound-state motions, this mechanics meets a serious difficulty. It can be overcome only by renouncing the classical concepts of trajectories and opting for quantum mechanics

  7. Are classical tachyons slower-than-light quantum particles

    International Nuclear Information System (INIS)

    Recami, E.; Maccarrone, G.D.

    1983-01-01

    After having studied the shape that a tachyon T (e.g., intrinsecally spherical) would take up, it is shown in an explicit example that the characteristic of classical tachyons are similar to those of the ordinary (slower-than-light) quantum particles. In particular, a realistic tachyon is associated with a 'phase-speed' V [V 2 >Cσ2], but with a 'group speed' v=c 2 /V [v 2 2

  8. Microscopic phenomenon in light of classical and quantum theory

    International Nuclear Information System (INIS)

    Mandal, C.R.

    1999-01-01

    Quantum mechanical boundary corrected continuum intermediate state (BCCIS) approximation and classical trajectory Monte Carlo (CTMC) simulation method have been employed to study total charge transfer cross sections in collisions of Be q+ (q = 2-4) and B q+ (q = 3-5) with atomic hydrogen in ground state in the energy range of 30 - 200 keV/amu. Results have been found to be in reasonable agreement with each other. Attempts have been made to find justifications for such resemblance. (author)

  9. Classical Simulation of Intermediate-Size Quantum Circuits

    OpenAIRE

    Chen, Jianxin; Zhang, Fang; Chen, Mingcheng; Huang, Cupjin; Newman, Michael; Shi, Yaoyun

    2018-01-01

    We introduce a distributed classical simulation algorithm for general quantum circuits, and present numerical results for calculating the output probabilities of universal random circuits. We find that we can simulate more qubits to greater depth than previously reported using the cluster supported by the Data Infrastructure and Search Technology Division of the Alibaba Group. For example, computing a single amplitude of an $8\\times 8$ qubit circuit with depth $40$ was previously beyond the r...

  10. Fourth-order constants of motion for time independent classical and quantum systems in three dimensions

    International Nuclear Information System (INIS)

    Chand, F.

    2010-01-01

    Exact fourth-order constants of motion are investigated for three-dimensional classical and quantum Hamiltonian systems. The rationalization method is utilized to obtain constants of motion for classical systems. Constants of motion for quantum systems are obtained by adding quantum correction terms, computed using Moyal's bracket, to the corresponding classical counterparts. (author)

  11. Canonical partition functions: ideal quantum gases, interacting classical gases, and interacting quantum gases

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-02-01

    In statistical mechanics, for a system with a fixed number of particles, e.g. a finite-size system, strictly speaking, the thermodynamic quantity needs to be calculated in the canonical ensemble. Nevertheless, the calculation of the canonical partition function is difficult. In this paper, based on the mathematical theory of the symmetric function, we suggest a method for the calculation of the canonical partition function of ideal quantum gases, including ideal Bose, Fermi, and Gentile gases. Moreover, we express the canonical partition functions of interacting classical and quantum gases given by the classical and quantum cluster expansion methods in terms of the Bell polynomial in mathematics. The virial coefficients of ideal Bose, Fermi, and Gentile gases are calculated from the exact canonical partition function. The virial coefficients of interacting classical and quantum gases are calculated from the canonical partition function by using the expansion of the Bell polynomial, rather than calculated from the grand canonical potential.

  12. Numerical approaches to complex quantum, semiclassical and classical systems

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, Gerald

    2008-11-03

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and

  13. Numerical approaches to complex quantum, semiclassical and classical systems

    International Nuclear Information System (INIS)

    Schubert, Gerald

    2008-01-01

    In this work we analyse the capabilities of several numerical techniques for the description of different physical systems. Thereby, the considered systems range from quantum over semiclassical to classical and from few- to many-particle systems. In chapter 1 we investigate the behaviour of a single quantum particle in the presence of an external disordered background (static potentials). Starting from the quantum percolation problem, we address the fundamental question of a disorder induced (Anderson-) transition from extended to localised single-particle eigenstates. Distinguishing isolating from conducting states by applying a local distribution approach for the local density of states (LDOS), we detect the quantum percolation threshold in two- and three-dimensions. Extending the quantum percolation model to a quantum random resistor model, we comment on the possible relevance of our results to the influence of disorder on the conductivity in graphene sheets. For the calculation of the LDOS as well as for the Chebyshev expansion of the time evolution operator, the kernel polynomial method (KPM) is the key numerical technique. In chapter 2 we examine how a single quantum particle is influenced by retarded bosonic fields that are inherent to the system. Within the Holstein model, these bosonic degrees of freedom (phonons) give rise to an infinite dimensional Hilbert space, posing a true many-particle problem. Constituting a minimal model for polaron formation, the Holstein model allows us to study the optical absorption and activated transport in polaronic systems. Using a two-dimensional variant of the KPM, we calculate for the first time quasi-exactly the optical absorption and dc-conductivity as a function of temperature. In chapter 3 we come back to the time evolution of a quantum particle in an external, static potential and investigate the capability of semiclassical approximations to it. We address basic quantum effects as tunneling, interference and

  14. Quantum and classical dynamics in biologically inspired systems

    International Nuclear Information System (INIS)

    Guerreschi, G.

    2012-01-01

    Quantum biology is an emerging field in which traditional believes and paradigms are under examination. Typically, quantum effects are witnessed inside quantum optics or atomic physics laboratories in systems which are kept under control and isolated from any noise source by means of very advanced technology. Biological systems exhibit opposite characteristics: They are usually constituted of macromolecules continuously exposed to a warm and wet environment, well beyond our control; but at the same time, they operate far away from equilibrium. Recently, the experimental observation of excitonic coherence in photosynthetic complexes has con firmed that, in non-equilibrium scenarios, quantum phenomena can survive even in presence of a noisy environment. The challenge faced by the ongoing research is twofold: On one side, considering biological molecules as effective nanomachines, one has to address questions of principle regarding their design and functioning; on the other side, one has to investigate real systems which are experimentally accessible and identify such features in these concrete scenarios. The present thesis contributes to both of these aspects. In Part I, we demonstrate how entanglement can be persistently generated even under unfavorable environmental conditions. The physical mechanism is modeled after the idea of conformational changes, and it relies on the interplay of classical oscillations of large structures with the quantum dynamics of a few interacting degrees of freedom. In a similar context, we show that the transfer of an excitation through a linear chain of sites can be enhanced when the inter-site distances oscillate periodically. This enhancement is present even in comparison with the static con figuration which is optimal in the classical case and, therefore, it constitutes a clear signature of the underlying quantum dynamics. In Part II of this thesis, we study the radical pair mechanism from the perspective of quantum control and

  15. Manifestations of classical phase space structures in quantum mechanics

    International Nuclear Information System (INIS)

    Bohigas, O.; Ullmo, D.; Tomsovic, S.; Paris-11 Univ., 91 - Orsay

    1992-11-01

    Using two coupled quartic oscillators for illustration, the quantum mechanics of simple systems whose classical analogues have varying degrees of non-integrability is investigated. By taking advantage of discrete symmetries and dynamical quasidegeneracies it is shown that Percival's semiclassical classification scheme, i.e. eigenstates may be separated into a regular or an irregular group, basically works. Some observations of intermediate status states are made. Generalized ensembles are constructed which apply equally well to both spectral and eigenstate properties. They typically show non-universal, but nevertheless characteristic level fluctuations. In addition, they predict 'semiclassical localization' of eigenfunctions and 'quantum suppression of chaos' which are quantitatively borne out in the quantum systems. (author) 101 refs.; 27 figs.; 6 tabs

  16. Completeness of classical spin models and universal quantum computation

    International Nuclear Information System (INIS)

    De las Cuevas, Gemma; Dür, Wolfgang; Briegel, Hans J; Van den Nest, Maarten

    2009-01-01

    We study mappings between different classical spin systems that leave the partition function invariant. As recently shown in Van den Nest et al (2008 Phys. Rev. Lett. 100 110501), the partition function of the 2D square lattice Ising model in the presence of an inhomogeneous magnetic field can specialize to the partition function of any Ising system on an arbitrary graph. In this sense the 2D Ising model is said to be 'complete'. However, in order to obtain the above result, the coupling strengths on the 2D lattice must assume complex values, and thus do not allow for a physical interpretation. Here we show how a complete model with real—and, hence, 'physical'—couplings can be obtained if the 3D Ising model is considered. We furthermore show how to map general q-state systems with possibly many-body interactions to the 2D Ising model with complex parameters, and give completeness results for these models with real parameters. We also demonstrate that the computational overhead in these constructions is in all relevant cases polynomial. These results are proved by invoking a recently found cross-connection between statistical mechanics and quantum information theory, where partition functions are expressed as quantum mechanical amplitudes. Within this framework, there exists a natural correspondence between many-body quantum states that allow for universal quantum computation via local measurements only, and complete classical spin systems

  17. Quantum and classical nonlinear dynamics in a microwave cavity

    Energy Technology Data Exchange (ETDEWEB)

    Meaney, Charles H.; Milburn, Gerard J. [The University of Queensland, Department of Physics, St Lucia, QLD (Australia); Nha, Hyunchul [Texas A and M University at Qatar, Department of Physics, PO Box 23874, Doha (Qatar); Duty, Timothy [The University of New South Wales, Department of Physics, Kensington, NSW (Australia)

    2014-12-01

    We consider a quarter wave coplanar microwave cavity terminated to ground via a superconducting quantum interference device. By modulating the flux through the loop, the cavity frequency is modulated. The flux is varied at twice the cavity frequency implementing a parametric driving of the cavity field. The cavity field also exhibits a large effective nonlinear susceptibility modelled as an effective Kerr nonlinearity, and is also driven by a detuned linear drive. We show that the semi-classical model corresponding to this system exhibits a fixed point bifurcation at a particular threshold of parametric pumping power. We show the quantum signature of this bifurcation in the dissipative quantum system. We further linearise about the below threshold classical steady state and consider it to act as a bifurcation amplifier, calculating gain and noise spectra for the corresponding small signal regime. Furthermore, we use a phase space technique to analytically solve for the exact quantum steady state. We use this solution to calculate the exact small signal gain of the amplifier. (orig.)

  18. Representational Realism, Closed Theories and the Quantum to Classical Limit

    Science.gov (United States)

    de Ronde, Christian

    In this chapter, we discuss the representational realist stance as a pluralistontic approach to inter-theoretic relationships. Our stance stresses the fact that physical theories require the necessary consideration of a conceptual level of discourse which determines and configures the specific field of phenomena discussed by each particular theory. We will criticize the orthodox line of research which has grounded the analysis about QM in two (Bohrian) metaphysical presuppositions - accepted in the present as dogmas that all interpretations must follow. We will also examine how the orthodox project of "bridging the gap" between the quantum and the classical domains has constrained the possibilities of research, producing only a limited set of interpretational problems which only focus in the justification of "classical reality" and exclude the possibility of analyzing the possibilities of non-classical conceptual representations of QM. The representational realist stance introduces two new problems, namely, the superposition problem and the contextuality problem, which consider explicitly the conceptual representation of orthodox QM beyond the mere reference to mathematical structures and measurement outcomes. In the final part of the chapter, we revisit, from representational realist perspective, the quantum to classical limit and the orthodox claim that this inter-theoretic relation can be explained through the principle of decoherence.

  19. Bukhvostov–Lipatov model and quantum-classical duality

    Directory of Open Access Journals (Sweden)

    Vladimir V. Bazhanov

    2018-02-01

    Full Text Available The Bukhvostov–Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3 non-linear sigma model. In our previous work [arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov–Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  20. Bukhvostov-Lipatov model and quantum-classical duality

    Science.gov (United States)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  1. Quantum and classical aspects of deformed c = 1 strings

    International Nuclear Information System (INIS)

    Nakatsu, T.; Tsujimaru, S.; Takasaki, K.

    1995-01-01

    The quantum and classical aspects of a deformed c=1 matrix model proposed by Jevicki and Yoneya are studied. String equations are formulated in the framework of the Toda lattice hierarchy. The Whittaker functions now play the role of generalized Airy functions in c<1 strings. This matrix model has two distinct parameters. Identification of the string coupling constant is thereby not unique, and leads to several different perturbative interpretations of this model as a string theory. Two such possible interpretations are examined. In both cases, the classical limit of the string equations, which turns out to give a formal solution of Polchinski's scattering equations, shows that the classical scattering amplitudes of massless tachyons are insensitive to deformations of the parameters in the matrix model. (author)

  2. Classical and quantum dynamics in an inverse square potential

    International Nuclear Information System (INIS)

    Guillaumín-España, Elisa; Núñez-Yépez, H. N.; Salas-Brito, A. L.

    2014-01-01

    The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrödinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete “fall-to-the-center” with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) × SO(2, 1) corroborating previously obtained results

  3. Classical and quantum dynamics in an inverse square potential

    Energy Technology Data Exchange (ETDEWEB)

    Guillaumín-España, Elisa, E-mail: ege@correo.azc.uam.mx [Laboratorio de Sistemas Dinámicos, Departamento de Ciencias Básicas, Universidad Autónoma Metropolitana, Unidad Azcapotzalco, Azcapotzalco CP 02200 D. F. (Mexico); Núñez-Yépez, H. N., E-mail: nyhn@xanum.uam.mx [Departamento de Física, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Apartado Postal 55-534, Iztapalapa CP 09340 D. F. (Mexico); Salas-Brito, A. L., E-mail: asb@correo.azc.uam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (ICN-UNAM), Apartado Postal 70-543, 04510 México D F (Mexico)

    2014-10-15

    The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrödinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete “fall-to-the-center” with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) × SO(2, 1) corroborating previously obtained results.

  4. Modeling the quantum to classical crossover in topologically disordered networks

    International Nuclear Information System (INIS)

    Schijven, P; Kohlberger, J; Blumen, A; Mülken, O

    2012-01-01

    We model transport in topologically disordered networks that are subjected to an environment that induces classical diffusion. The dynamics is phenomenologically described within the framework of the recently introduced quantum stochastic walk, allowing study of the crossover between coherent transport and purely classical diffusion. To study the transport efficiency, we connect our system with a source and a drain and provide a detailed analysis of their effects. We find that the coupling to the environment removes all effects of localization and quickly leads to classical transport. Furthermore, we find that on the level of the transport efficiency, the system can be well described by reducing it to a two-node network (a dimer). (paper)

  5. Quantum communication under channel uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Noetzel, Janis Christian Gregor

    2012-09-06

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  6. Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue

    Science.gov (United States)

    Shukla, Chitra; Thapliyal, Kishore; Pathak, Anirban

    2017-12-01

    Semi-quantum protocols that allow some of the users to remain classical are proposed for a large class of problems associated with secure communication and secure multiparty computation. Specifically, first-time semi-quantum protocols are proposed for key agreement, controlled deterministic secure communication and dialogue, and it is shown that the semi-quantum protocols for controlled deterministic secure communication and dialogue can be reduced to semi-quantum protocols for e-commerce and private comparison (socialist millionaire problem), respectively. Complementing with the earlier proposed semi-quantum schemes for key distribution, secret sharing and deterministic secure communication, set of schemes proposed here and subsequent discussions have established that almost every secure communication and computation tasks that can be performed using fully quantum protocols can also be performed in semi-quantum manner. Some of the proposed schemes are completely orthogonal-state-based, and thus, fundamentally different from the existing semi-quantum schemes that are conjugate coding-based. Security, efficiency and applicability of the proposed schemes have been discussed with appropriate importance.

  7. Condition for unambiguous state discrimination using local operations and classical communication

    International Nuclear Information System (INIS)

    Chefles, Anthony

    2004-01-01

    We obtain a necessary and sufficient condition for a finite set of states of a finite-dimensional multiparticle quantum system to be amenable to unambiguous discrimination using local operations and classical communication. This condition is valid for states which may be mixed, entangled, or both. When the support of the set of states is the entire multiparticle Hilbert space, this condition is found to have an intriguing connection with the theory of entanglement witnesses

  8. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  9. Probabilistic Teleportation of an Arbitrary Three-Level Two-Particle State and Classical Communication Cost

    Institute of Scientific and Technical Information of China (English)

    DAIHong-Yi; KUANGLe-Man; LICheng-Zu

    2005-01-01

    We propose a scheme to probabilistically teleport an unknown arbitrary three-level two-particle state by using two partial entangled two-particle states of three-level as the quantum channel. The classical communication cost required in the ideal probabilistic teleportation process is also calculated. This scheme can be directly generalized to teleport an unknown and arbitrary three-level K-particle state by using K partial entangled two-particle states of three-level as the quantum channel.

  10. Asymptotically perfect discrimination in the local-operation-and-classical-communication paradigm

    International Nuclear Information System (INIS)

    Kleinmann, M.; Kampermann, H.; Bruss, D.

    2011-01-01

    We revisit the problem of discriminating orthogonal quantum states within the local-quantum-operation-and-classical-communication (LOCC) paradigm. Our particular focus is on the asymptotic situation where the parties have infinite resources and the protocol may become arbitrarily long. Our main result is a necessary condition for perfect asymptotic LOCC discrimination. As an application, we prove that for complete product bases, unlimited resources are of no advantage. On the other hand, we identify an example for which it still remains undecided whether unlimited resources are superior.

  11. Quantum secure direct communication by EPR pairs and entanglement swapping

    CERN Document Server

    Gao, T; Yan, F L; 10.1393/ncb/i2004-10090-1

    2004-01-01

    We present, a quantum secure direct communication scheme achieved by swapping quantum entanglement. In this scheme a set of ordered Einstein-Podolsky-Rosen (HPIl) pairs is used as a quantum information channel for sending secret messages directly. After insuring the safety of the quantum channel, the sender Alice encodes the secret messages directly by applying a series local operations on her particle sequences according to their stipulation. Using three EPR pairs, three bits of secret classical information can be faithfully transmitted from Alice to remote Bob without revealing any information to a potential eavesdropper. By both Alice and Bob's GHZ state measurement results, Bob is able to read out the encoded secret messages directly. The protocol is completely secure if perfect quantum channel is used, because there is not a transmission of the qubits carrying the secret message between Alice and Bob in the public channel.

  12. Classical and quantum mechanics of the damped harmonic oscillator

    International Nuclear Information System (INIS)

    Dekker, H.

    1981-01-01

    The relations between various treatments of the classical linearly damped harmonic oscillator and its quantization are investigated. In the course of a historical survey typical features of the problem are discussed on the basis of Havas' classical Hamiltonian and the quantum mechanical Suessmann-Hasse-Albrecht models as coined by the Muenchen/Garching nuclear physics group. It is then shown how by imposing a restriction on the classical trajectories in order to connect the Hamiltonian with the energy, the time-independent Bateman-Morse-Feshbach-Bopp Hamiltonian leads to the time-dependent Caldirola-Kanai Hamiltonian. Canonical quantization of either formulation entails a violation of Heisenberg's principle. By means of a unified treatment of both the electrical and mechanical semi-infinite transmission line, this defect is related to the disregard of additional quantum fluctuations that are intrinsically connected with the dissipation. The difficulties of these models are discussed. Then it is proved that the Bateman dual Hamiltonian is connected to a recently developed complex symplectic formulation by a simple canonical transformation. (orig.)

  13. Quantum Zeno and anti-Zeno effects on quantum and classical correlations

    International Nuclear Information System (INIS)

    Francica, F.; Plastina, F.; Maniscalco, S.

    2010-01-01

    In this paper we study the possibility of modifying the dynamics of both quantum correlations, such as entanglement and discord, and classical correlations of an open bipartite system by means of the quantum Zeno effect. We consider two qubits coupled to a common boson reservoir at zero temperature. This model describes, for example, two atoms interacting with a quantized mode of a lossy cavity. We show that when the frequencies of the two atoms are symmetrically detuned from that of the cavity mode, oscillations between the Zeno and anti-Zeno regimes occur. We also calculate analytically the time evolution of both classical correlations and quantum discord, and we compare the Zeno dynamics of entanglement with the Zeno dynamics of classical correlations and discord.

  14. Single-shot secure quantum network coding on butterfly network with free public communication

    Science.gov (United States)

    Owari, Masaki; Kato, Go; Hayashi, Masahito

    2018-01-01

    Quantum network coding on the butterfly network has been studied as a typical example of quantum multiple cast network. We propose a secure quantum network code for the butterfly network with free public classical communication in the multiple unicast setting under restricted eavesdropper’s power. This protocol certainly transmits quantum states when there is no attack. We also show the secrecy with shared randomness as additional resource when the eavesdropper wiretaps one of the channels in the butterfly network and also derives the information sending through public classical communication. Our protocol does not require verification process, which ensures single-shot security.

  15. A classical appraisal of quantum definitions of non-Markovian dynamics

    International Nuclear Information System (INIS)

    Vacchini, Bassano

    2012-01-01

    We consider the issue of non-Markovianity of a quantum dynamics starting from a comparison with the classical definition of Markovian processes. We point to the fact that two sufficient but not necessary signatures of non-Markovianity of a classical process find their natural quantum counterpart in recently introduced measures of quantum non-Markovianity. This behaviour is analysed in detail for quantum dynamics which can be built taking as input a class of classical processes. (paper)

  16. Quantum communications and quantum metrology in the spacetime of a rotating planet

    Energy Technology Data Exchange (ETDEWEB)

    Kohlrus, Jan; Louko, Jorma [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom); Bruschi, David Edward [The Hebrew University of Jerusalem, Racah Institute of Physics and Quantum Information Science Centre, Jerusalem (Israel); University of York, York Centre for Quantum Technologies, Department of Physics, York (United Kingdom); Fuentes, Ivette [University of Nottingham, School of Mathematical Sciences, Nottingham (United Kingdom); University of Vienna, Faculty of Physics, Wien (Austria)

    2017-12-15

    We study how quantum systems that propagate in the spacetime of a rotating planet are affected by the curved background. Spacetime curvature affects wavepackets of photons propagating from Earth to a satellite, and the changes in the wavepacket encode the parameters of the spacetime. This allows us to evaluate quantitatively how quantum communications are affected by the curved spacetime background of the Earth and to achieve precise measurements of Earth's Schwarzschild radius and equatorial angular velocity. We then provide a comparison with the state of the art in parameter estimation obtained through classical means. Satellite to satellite communications and future directions are also discussed. (orig.)

  17. Quantum-classical correspondence for the Fourier spectrum of a trajectory

    International Nuclear Information System (INIS)

    Heller, E.J.

    1983-01-01

    Using a displaced localized wavepacket (coherent state) as a quantum analog to a classical trajectory, we examine the Fourier spectrum of the expectation value of position Xsub(t)sup(Q), and compare it with the classical Fourier spectrum of position Xsub(t). In both the quasiperiodic and chaotic regimes, a strong classical-quantum correspondence exists in the Fourier spectrum. However, the quantum spectrum has certain interesting features not present in the classical case. (orig.)

  18. The Pendulum as a Vehicle for Transitioning from Classical to Quantum Physics: History, Quantum Concepts, and Educational Challenges

    Science.gov (United States)

    Barnes, Marianne B.; Garner, James; Reid, David

    2004-01-01

    In this article we use the pendulum as the vehicle for discussing the transition from classical to quantum physics. Since student knowledge of the classical pendulum can be generalized to all harmonic oscillators, we propose that a quantum analysis of the pendulum can lead students into the unanticipated consequences of quantum phenomena at the…

  19. Quantum-classical interface based on single flux quantum digital logic

    Science.gov (United States)

    McDermott, R.; Vavilov, M. G.; Plourde, B. L. T.; Wilhelm, F. K.; Liebermann, P. J.; Mukhanov, O. A.; Ohki, T. A.

    2018-04-01

    We describe an approach to the integrated control and measurement of a large-scale superconducting multiqubit array comprising up to 108 physical qubits using a proximal coprocessor based on the Single Flux Quantum (SFQ) digital logic family. Coherent control is realized by irradiating the qubits directly with classical bitstreams derived from optimal control theory. Qubit measurement is performed by a Josephson photon counter, which provides access to the classical result of projective quantum measurement at the millikelvin stage. We analyze the power budget and physical footprint of the SFQ coprocessor and discuss challenges and opportunities associated with this approach.

  20. Stochastic theory for classical and quantum mechanical systems

    International Nuclear Information System (INIS)

    Pena, L. de la; Cetto, A.M.

    1975-01-01

    From first principles a theory of stochastic processes in configuration space is formulated. The fundamental equations of the theory are an equation of motion which generalizes Newton's second law and an equation which expresses the condition of conservation of matter. Two types of stochastic motion are possible, both described by the same general equations, but leading in one case to classical Brownian motion behavior and in the other to quantum mechanical behavior. The Schroedinger equation, which is derived with no further assumption, is thus shown to describe a specific stochastic process. It is explicitly shown that only in the quantum mechanical process does the superposition of probability amplitudes give rise to interference phenomena; moreover, the presence of dissipative forces in the Brownian motion equations invalidates the superposition principle. At no point are any special assumptions made concerning the physical nature of the underlying stochastic medium, although some suggestions are discussed in the last section

  1. Principles of physics from quantum field theory to classical mechanics

    CERN Document Server

    Jun, Ni

    2014-01-01

    This book starts from a set of common basic principles to establish the formalisms in all areas of fundamental physics, including quantum field theory, quantum mechanics, statistical mechanics, thermodynamics, general relativity, electromagnetic field, and classical mechanics. Instead of the traditional pedagogic way, the author arranges the subjects and formalisms in a logical-sequential way, i.e. all the formulas are derived from the formulas before them. The formalisms are also kept self-contained. Most of the required mathematical tools are also given in the appendices. Although this book covers all the disciplines of fundamental physics, the book is concise and can be treated as an integrated entity. This is consistent with the aphorism that simplicity is beauty, unification is beauty, and thus physics is beauty. The book may be used as an advanced textbook by graduate students. It is also suitable for physicists who wish to have an overview of fundamental physics. Readership: This is an advanced gradua...

  2. Classical and quantum initial conditions for Higgs inflation

    Directory of Open Access Journals (Sweden)

    Alberto Salvio

    2015-11-01

    Full Text Available We investigate whether Higgs inflation can occur in the Standard Model starting from natural initial conditions or not. The Higgs has a non-minimal coupling to the Ricci scalar. We confine our attention to the regime where quantum Einstein gravity effects are small in order to have results that are independent of the ultraviolet completion of gravity. At the classical level we find no tuning is required to have successful Higgs inflation, provided the initial homogeneity condition is satisfied. On the other hand, at the quantum level we obtain that the renormalization for large non-minimal coupling requires an additional degree of freedom, unless a tuning of the initial values of the running parameters is made. In order to see that this effect may change the predictions we finally include such degree of freedom in the field content and show that Starobinsky's R2 inflation dominates over Higgs inflation.

  3. On the consistency of classical and quantum supergravity theories

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [II. Institute for Theoretical Physics, University of Hamburg (Germany); Makedonski, Mathias [Department of Mathematical Sciences, University of Copenhagen (Denmark); Schenkel, Alexander [Department of Stochastics, University of Wuppertal (Germany)

    2012-07-01

    It is known that pure N=1 supergravity in d=4 spacetime dimensions is consistent at a classical and quantum level, i.e. that in a particular gauge the field equations assume a hyperbolic form - ensuring causal propagation of the degrees of freedom - and that the associated canonical quantum field theory satisfies unitarity. It seems, however, that it is yet unclear whether these properties persist if one considers the more general and realistic case of N=1, d=4 supergravity theories including arbitrary matter fields. We partially clarify the issue by introducing novel hyperbolic gauges for the gravitino field and proving that they commute with the resulting equations of motion. Moreover, we review recent partial results on the unitarity of these general supergravity theories and suggest first steps towards a comprehensive unitarity proof.

  4. Effective state metamorphosis in semi-classical loop quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Parampreet [Institute for Gravitational Physics and Geometry, Pennsylvania State University, University Park, PA 16802 (United States)

    2005-10-21

    Modification to the behaviour of geometrical density at short scales is a key result of loop quantum cosmology, responsible for an interesting phenomenology in the very early universe. We demonstrate the way matter with arbitrary scale factor dependence in Hamiltonian incorporates this change in its effective dynamics in the loop-modified phase. For generic matter, the equation of state starts varying near a critical scale factor, becomes negative below it and violates the strong energy condition. This opens a new avenue to generalize various phenomenological applications in loop quantum cosmology. We show that different ways to define energy density may yield radically different results, especially for the case corresponding to classical dust. We also discuss implications for frequency dispersion induced by modification to geometric density at small scales.

  5. Mixed quantum-classical equilibrium in global flux surface hopping

    International Nuclear Information System (INIS)

    Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.

    2015-01-01

    Global flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport. By studying the dynamics in a three-level quantum system coupled to a classical atom in contact with a classical bath, we demonstrate that both FSSH and GFSH achieve the Boltzmann state populations. Thermal equilibrium is attained significantly faster with GFSH, since it accurately represents the superexchange process. GFSH converges closer to the Boltzmann averages than FSSH and exhibits significantly smaller statistical errors

  6. Computational physics simulation of classical and quantum systems

    CERN Document Server

    Scherer, Philipp O J

    2013-01-01

    This textbook presents basic and advanced computational physics in a very didactic style. It contains very-well-presented and simple mathematical descriptions of many of the most important algorithms used in computational physics. Many clear mathematical descriptions of important techniques in computational physics are given. The first part of the book discusses the basic numerical methods. A large number of exercises and computer experiments allows to study the properties of these methods. The second part concentrates on simulation of classical and quantum systems. It uses a rather general concept for the equation of motion which can be applied to ordinary and partial differential equations. Several classes of integration methods are discussed including not only the standard Euler and Runge Kutta method but also multistep methods and the class of Verlet methods which is introduced by studying the motion in Liouville space. Besides the classical methods, inverse interpolation is discussed, together with the p...

  7. Long-distance quantum communication. Decoherence-avoiding mechanisms

    International Nuclear Information System (INIS)

    Kolb Bernardes, Nadja

    2012-01-01

    Entanglement is the essence of most quantum information processes. For instance, it is used as a resource for quantum teleportation or perfectly secure classical communication. Unfortunately, inevitable noise in the quantum channel will typically affect the distribution of entanglement. Owing to fundamental principles, common procedures used in classical communication, such as amplification, cannot be applied. Therefore, the fidelity and rate of transmission will be limited by the length of the channel. Quantum repeaters were proposed to avoid the exponential decay with the distance and to permit long-distance quantum communication. Long-distance quantum communication constitutes the framework for the results presented in this thesis. The main question addressed in this thesis is how the performance of quantum repeaters are affected by various sources of decoherence. Moreover, what can be done against decoherence to improve the performance of the repeater. We are especially interested in the so-called hybrid quantum repeater; however, many of the results presented here are sufficiently general and may be applied to other systems as well. First, we present a detailed entanglement generation rate analysis for the quantum repeater. In contrast to what is commonly found in the literature, our analysis is general and analytical. Moreover, various sources of errors are considered, such as imperfect local two-qubit operations and imperfect memories, making it possible to determine the requirements for memory decoherence times. More specifically, we apply our formulae in the context of a hybrid quantum repeater and we show that in a possible experimental scenario, our hybrid system can create near-maximally entangled pairs over a distance of 1280 km at rates of the order of 100 Hz. Furthermore, aiming to protect the system against different types of errors, we analyze the hybrid quantum repeater when supplemented by quantum error correction. We propose a scheme for

  8. Long-distance quantum communication. Decoherence-avoiding mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kolb Bernardes, Nadja

    2012-12-17

    Entanglement is the essence of most quantum information processes. For instance, it is used as a resource for quantum teleportation or perfectly secure classical communication. Unfortunately, inevitable noise in the quantum channel will typically affect the distribution of entanglement. Owing to fundamental principles, common procedures used in classical communication, such as amplification, cannot be applied. Therefore, the fidelity and rate of transmission will be limited by the length of the channel. Quantum repeaters were proposed to avoid the exponential decay with the distance and to permit long-distance quantum communication. Long-distance quantum communication constitutes the framework for the results presented in this thesis. The main question addressed in this thesis is how the performance of quantum repeaters are affected by various sources of decoherence. Moreover, what can be done against decoherence to improve the performance of the repeater. We are especially interested in the so-called hybrid quantum repeater; however, many of the results presented here are sufficiently general and may be applied to other systems as well. First, we present a detailed entanglement generation rate analysis for the quantum repeater. In contrast to what is commonly found in the literature, our analysis is general and analytical. Moreover, various sources of errors are considered, such as imperfect local two-qubit operations and imperfect memories, making it possible to determine the requirements for memory decoherence times. More specifically, we apply our formulae in the context of a hybrid quantum repeater and we show that in a possible experimental scenario, our hybrid system can create near-maximally entangled pairs over a distance of 1280 km at rates of the order of 100 Hz. Furthermore, aiming to protect the system against different types of errors, we analyze the hybrid quantum repeater when supplemented by quantum error correction. We propose a scheme for

  9. High-dimensional quantum channel estimation using classical light

    CSIR Research Space (South Africa)

    Mabena, Chemist M

    2017-11-01

    Full Text Available stream_source_info Mabena_20007_2017.pdf.txt stream_content_type text/plain stream_size 960 Content-Encoding UTF-8 stream_name Mabena_20007_2017.pdf.txt Content-Type text/plain; charset=UTF-8 PHYSICAL REVIEW A 96, 053860... (2017) High-dimensional quantum channel estimation using classical light Chemist M. Mabena CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa and School of Physics, University of the Witwatersrand, Johannesburg 2000, South...

  10. Lessons from classical gravity about the quantum structure of spacetime

    International Nuclear Information System (INIS)

    Padmanabhan, Thanu

    2011-01-01

    I present the theoretical evidence which suggests that gravity is an emergent phenomenon like gas dynamics or elasticity with the gravitational field equations having the same status as, say, the equations of fluid dynamics/elasticity. This paradigm views a wide class of gravitational theories - including Einstein's theory - as describing the thermodynamic limit of the statistical mechanics of 'atoms of spacetime'. Strong internal evidence in favour of such a point of view is presented using the classical features of the gravitational theories with just one quantum mechanical input, viz. the existence of Davies-Unruh temperature of horizons. I discuss several conceptual ingredients of this approach.

  11. Brane classical and quantum cosmology from an effective action

    International Nuclear Information System (INIS)

    Seahra, Sanjeev S.; Sepangi, H.R.; Ponce de Leon, J.

    2003-01-01

    Motivated by the Randall-Sundrum braneworld scenario, we discuss the classical and quantum dynamics of a (d+1)-dimensional boundary wall between a pair of (d+2)-dimensional topological Schwarzschild-AdS black holes. We assume there are quite general--but not completely arbitrary--matter fields living on the boundary 'brane universe', and that its geometry is that of a Friedmann-Lemaitre-Robertson-Walker (FLRW) model. The effective action governing the model in the minisuperspace approximation is derived. We find that the presence of black hole horizons in the bulk gives rise to a complex action for certain classically allowed brane configurations, but that the imaginary contribution plays no role in the equations of motion. Classical and instanton brane trajectories are examined in general and for special cases, and we find a subset of configuration space that is not allowed at the classical or semiclassical level; this subset corresponds to spacelike branes carrying tachyonic matter. The Hamiltonization and Dirac quantization of the model is then performed for the general case; the latter involves the manipulation of the Hamiltonian constraint before it is transformed into an operator that annihilates physical state vectors. The ensuing covariant Wheeler-DeWitt equation is examined at the semiclassical level, and we consider the possible localization of the brane universe's wave function away from the cosmological singularity. This is easier to achieve for branes with low density and/or spherical spatial sections

  12. Brane classical and quantum cosmology from an effective action

    Science.gov (United States)

    Seahra, Sanjeev S.; Sepangi, H. R.; Ponce de Leon, J.

    2003-09-01

    Motivated by the Randall-Sundrum braneworld scenario, we discuss the classical and quantum dynamics of a (d+1)-dimensional boundary wall between a pair of (d+2)-dimensional topological Schwarzschild-AdS black holes. We assume there are quite general—but not completely arbitrary—matter fields living on the boundary “brane universe,” and that its geometry is that of a Friedmann-Lemaître-Robertson-Walker (FLRW) model. The effective action governing the model in the minisuperspace approximation is derived. We find that the presence of black hole horizons in the bulk gives rise to a complex action for certain classically allowed brane configurations, but that the imaginary contribution plays no role in the equations of motion. Classical and instanton brane trajectories are examined in general and for special cases, and we find a subset of configuration space that is not allowed at the classical or semiclassical level; this subset corresponds to spacelike branes carrying tachyonic matter. The Hamiltonization and Dirac quantization of the model is then performed for the general case; the latter involves the manipulation of the Hamiltonian constraint before it is transformed into an operator that annihilates physical state vectors. The ensuing covariant Wheeler-DeWitt equation is examined at the semiclassical level, and we consider the possible localization of the brane universe’s wave function away from the cosmological singularity. This is easier to achieve for branes with low density and/or spherical spatial sections.

  13. CLASSICS

    Indian Academy of Sciences (India)

    2013-11-11

    Nov 11, 2013 ... Polanyi's classic paper, co-authored by Henry Eyring, reproduced in this ... spatial conf guration of the atoms in terms of the energy function of the diatomic .... The present communication deals with the construction of such .... These three contributions are complemented by a fourth term if one takes into.

  14. Quantum dynamics simulation of a small quantum system embedded in a classical environment

    International Nuclear Information System (INIS)

    Berendsen, H.J.C.; Mavri, J.; Mavri, J.

    1996-01-01

    The authors wish to consider quantum-dynamical processes that are not restricted to motion on a ground state Born-Oppenheimer surface, but may involve transitions between states. The authors interest is in such processes occurring in a complex environment that modulates the quantum process and interacts with it. In a system containing thousands degrees of freedom, the essential quantum behaviour is generally restricted to a small subsystem containing only a few degrees of freedom, while the environment can be treated classically. The challenge is threefold: 1) to treat the quantum subsystem correctly in a quantum-dynamical sense, 2) to treat the environment correctly in a classical dynamical sense, 3) to couple both systems in such a way that errors in the average or long-term behaviour are minimized. After an exposition of the theory, an insight into quantum-dynamical behaviour by using pictorial analogue, valid for a simple two-level system is given. Then, the authors give a short survey of applications related to collision processes involving quantum levels of one particle, and to proton transfer processes along hydrogen bonds in complex environments. Finally, they conclude with some general remarks on the validity of their approach. (N.T.)

  15. Reformulating classical and quantum mechanics in terms of a unified set of consistency conditions

    International Nuclear Information System (INIS)

    Bordley, R.F.

    1983-01-01

    This paper imposes consistency conditions on the path of a particle and shows that they imply Hamilton's principle in classical contexts and Schroedinger's equation in quantum mechanical contexts. Thus this paper provides a common, intuitive foundation for classical and quantum mechanics. It also provides a very new perspective on quantum mechanics. (author

  16. Occam’s Quantum Strop: Synchronizing and Compressing Classical Cryptic Processes via a Quantum Channel

    Science.gov (United States)

    Mahoney, John R.; Aghamohammadi, Cina; Crutchfield, James P.

    2016-02-01

    A stochastic process’ statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process’ cryptic order-a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost-one trades off prediction for generation complexity.

  17. Classical and quantum aspects of topological solitons (using numerical methods)

    International Nuclear Information System (INIS)

    Weidig, T.

    1999-08-01

    In Introduction, we review integrable and topological solitons. In Numerical Methods, we describe how to minimise functionals, time-integrate configurations and solve eigenvalue problems. We also present the Simulated Annealing scheme for minimisation in solitonic systems. In Classical Aspects, we analyse the effect of the potential term on the structure of minimal-energy solutions for any topological charge n. The simplest holomorphic baby Skyrme model has no known stable minimal-energy solution for n > 1. The one-vacuum baby Skyrme model possesses non-radially symmetric multi-skyrmions that look like 'skyrmion lattices' formed by skyrmions with n = 2. The two-vacua baby Skyrme model has radially symmetric multi-skyrmions. We implement Simulated Annealing and it works well for higher order terms. We find that the spatial part of the six-derivative term is zero. In Quantum Aspects, we find the first order quantum mass correction for the φ 4 kink using the semi-classical expansion. We derive a trace formula which gives the mass correction by using the eigenmodes and values of the soliton and vacuum perturbations. We show that the zero mode is the most important contribution. We compute the mass correction of φ 4 kink and Sine-Gordon numerically by solving the eigenvalue equations and substituting into the trace formula. (author)

  18. Classical and quantum dynamics of driven elliptical billiards

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Florian

    2009-12-09

    Subject of this thesis is the investigation of the classical dynamics of the driven elliptical billiard and the development of a numerical method allowing the propagation of arbitrary initial states in the quantum version of the system. In the classical case, we demonstrate that there is Fermi acceleration in the driven billiard. The corresponding transport process in momentum space shows a surprising crossover from sub- to normal diffusion. This crossover is not parameter induced, but rather occurs dynamically in the evolution of the ensemble. The four-dimensional phase space is analyzed in depth, especially how its composition changes in different velocity regimes. We show that the stickiness properties, which eventually determine the diffusion, are intimately connected with this change of the composition of the phase space with respect to velocity. In the course of the evolution, the accelerating ensemble thus explores regions of varying stickiness, leading to the mentioned crossover in the diffusion. In the quantum case, a series of transformations tailored to the elliptical billiard is applied to circumvent the time-dependent Dirichlet boundary conditions. By means of an expansion ansatz, this eventually yields a large system of coupled ordinary differential equations, which can be solved by standard techniques. (orig.)

  19. Classical and quantum dynamics of driven elliptical billiards

    International Nuclear Information System (INIS)

    Lenz, Florian

    2009-01-01

    Subject of this thesis is the investigation of the classical dynamics of the driven elliptical billiard and the development of a numerical method allowing the propagation of arbitrary initial states in the quantum version of the system. In the classical case, we demonstrate that there is Fermi acceleration in the driven billiard. The corresponding transport process in momentum space shows a surprising crossover from sub- to normal diffusion. This crossover is not parameter induced, but rather occurs dynamically in the evolution of the ensemble. The four-dimensional phase space is analyzed in depth, especially how its composition changes in different velocity regimes. We show that the stickiness properties, which eventually determine the diffusion, are intimately connected with this change of the composition of the phase space with respect to velocity. In the course of the evolution, the accelerating ensemble thus explores regions of varying stickiness, leading to the mentioned crossover in the diffusion. In the quantum case, a series of transformations tailored to the elliptical billiard is applied to circumvent the time-dependent Dirichlet boundary conditions. By means of an expansion ansatz, this eventually yields a large system of coupled ordinary differential equations, which can be solved by standard techniques. (orig.)

  20. BOOK REVIEW: Classical Solutions in Quantum Field Theory Classical Solutions in Quantum Field Theory

    Science.gov (United States)

    Mann, Robert

    2013-02-01

    Quantum field theory has evolved from its early beginnings as a tool for understanding the interaction of light with matter into a rather formidable technical paradigm, one that has successfully provided the mathematical underpinnings of all non-gravitational interactions. Over the eight decades since it was first contemplated the methods have become increasingly more streamlined and sophisticated, yielding new insights into our understanding of the subatomic world and our abilities to make clear and precise predictions. Some of the more elegant methods have to do with non-perturbative and semiclassical approaches to the subject. The chief players here are solitons, instantons, and anomalies. Over the past three decades there has been a steady rise in our understanding of these objects and of our ability to calculate their effects and implications for the rest of quantum field theory. This book is a welcome contribution to this subject. In 12 chapters it provides a clear synthesis of the key developments in these subjects at a level accessible to graduate students that have had an introductory course to quantum field theory. In the author's own words it provides both 'a survey and an overview of this field'. The first half of the book concentrates on solitons--kinks, vortices, and magnetic monopoles--and their implications for the subject. The reader is led first through the simplest models in one spatial dimension, into more sophisticated cases that required more advanced topological methods. The author does quite a nice job of introducing the various concepts as required, and beginning students should be able to get a good grasp of the subject directly from the text without having to first go through the primary literature. The middle part of the book deals with the implications of these solitons for both cosmology and for duality. While the cosmological discussion is quite nice, the discussion on BPS solitons, supersymmetry and duality is rather condensed. It is

  1. Can decoherence make quantum theories unfalsifiable? Understanding the quantum-to-classical transition without it

    International Nuclear Information System (INIS)

    Oriols, X.

    2016-01-01

    Exact predictions for most quantum systems are computationally inaccessible. This is the so-called many body problem, which is present in most common interpretations of quantum mechanics. Therefore, predictions of natural quantum phenomena have to rely on some approximations (assumptions or simplifications). In the literature, there are different types of approximations, ranging from those whose justification is basically based on theoretical developments to those whose justification lies on the agreement with experiments. This last type of approximations can convert a quantum theory into an “unfalsifiable” quantum theory, true by construction. On the practical side, converting some part of a quantum theory into an “unfalsifiable” one ensures a successful modeling (i.e. compatible with experiments) for quantum engineering applications. An example of including irreversibility and dissipation in the Bohmian modeling of open systems is presented. On the ontological level, however, the present-day foundational problems related to controversial quantum phenomena have to avoid (if possible) being contaminated by the unfalsifiability originated from the many body problem. An original attempt to show how the Bohmian theory itself (minimizing the role of many body approximations) explains the transitions from a microscopic quantum system towards a macroscopic classical one is presented. (paper)

  2. Classical and Quantum Nonlinear Integrable Systems: Theory and Application

    International Nuclear Information System (INIS)

    Brzezinski, Tomasz

    2003-01-01

    This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical

  3. Quantum communication and other quantum information technologies

    CSIR Research Space (South Africa)

    Roux, FS

    2014-02-01

    Full Text Available -Podolsky-Rosen Albert Einstein Boris Podolsky Nathan Rosen Quantum mechanics: measurements on one particle dictate the state of the other particle. Spontaneous decay Unstable particle x p ∆x ∆p – p. 4/41 Parametric down conversion One incoming photon→ Two outgoing... ⊲ Decay of entanglement in turbulence — Theory — Numerical simulations — Experimental results – p. 2/41 Quantum mechanics Neils Bohr Paul Dirac Erwin Schroedinger Werner Heisenberg Lasers Computers Microelectronics Transistors – p. 3/41 Einstein...

  4. Coherent states and classical limit of algebraic quantum models

    International Nuclear Information System (INIS)

    Scutaru, H.

    1983-01-01

    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  5. Outline of a classical theory of quantum physics and gravitation

    International Nuclear Information System (INIS)

    Gallop, J.W.

    1975-01-01

    It is argued that in the manner in which the Galilean-Newtonian physics may be said to have explained the Ptolemaic-Copernican theories in terms which have since been called classical, so also Milner's theories of the structure of matter may be said to explain present day quantum and relativistic theory. In both cases the former employ the concept of force and the latter, by contrast, are geometrical theories. Milner envisaged space as being stressed, whereas Einstein thought of it as strained. Development of Milner's theory from criticisms and suggestions made by Kilmister has taken it further into the realms of quantum and gravitational physics, where it is found to give a more physically comprehensible explanation of the phenomena. Further, it shows why present day quantum theory is cast in a statistical form. The theory is supported by many predictions such as the ratio of Planck's constant to the mass of the electron, the value of the fine structure constant and reason for apparent variations in past measurements, the magnetic moment of the electron and proton of the stable particles such as the neutron Λ and Σ together with the kaon, and a relation between the universal gravitational constant and Hubble's constant - all within published experimental accuracy. The latest results to be accounted for by the theory are the masses of the newly discovered psi particles and confirmation of the value of the decay of Newton's gravitational constant obtained from lunar measurements. (author)

  6. Classical and quantum phases of low-dimensional dipolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartarius, Florian

    2016-09-22

    In this thesis we present a detailed study of the phase diagram of ultracold bosonic atoms confined along a tight atomic wave guide, along which they experience an optical lattice potential. In this quasi-one dimensional model we analyse the interplay between interactions and quantum fluctuations in (i) determining the non-equilibrium steady state after a quench and (ii) giving rise to novel equilibrium phases, when the interactions combine the s-wave contact interaction and the anisotropic long range dipole-dipole interactions. In detail, in the first part of the thesis we study the depinning of a gas of impenetrable bosons following the sudden switch of of the optical lattice. By means of a Bose-Fermi mapping we infer the exact quantum dynamical evolution and show that in the thermodynamic limit the system is in a non-equilibrium steady state without quasi-long range order. In the second part of the thesis, we study the effect of quantum fluctuations on the linear-zigzag instability in the ground state of ultracold dipolar bosons, as a function of the strength of the transverse confinement. We first analyse the linear-zigzag instability in the classical regime, and then use our results to develop a multi-mode Bose-Hubbard model for the system. We then develop several numerical methods, to determine the ground state.

  7. Free-Space Quantum Communication with a Portable Quantum Memory

    Science.gov (United States)

    Namazi, Mehdi; Vallone, Giuseppe; Jordaan, Bertus; Goham, Connor; Shahrokhshahi, Reihaneh; Villoresi, Paolo; Figueroa, Eden

    2017-12-01

    The realization of an elementary quantum network that is intrinsically secure and operates over long distances requires the interconnection of several quantum modules performing different tasks. In this work, we report the realization of a communication network functioning in a quantum regime, consisting of four different quantum modules: (i) a random polarization qubit generator, (ii) a free-space quantum-communication channel, (iii) an ultralow-noise portable quantum memory, and (iv) a qubit decoder, in a functional elementary quantum network possessing all capabilities needed for quantum-information distribution protocols. We create weak coherent pulses at the single-photon level encoding polarization states |H ⟩ , |V ⟩, |D ⟩, and |A ⟩ in a randomized sequence. The random qubits are sent over a free-space link and coupled into a dual-rail room-temperature quantum memory and after storage and retrieval are analyzed in a four-detector polarization analysis akin to the requirements of the BB84 protocol. We also show ultralow noise and fully portable operation, paving the way towards memory-assisted all-environment free-space quantum cryptographic networks.

  8. The difference between the classical and quantum mechanical definitions of scattering cross sections and the problem of the classical limit

    International Nuclear Information System (INIS)

    Sen, D.; Basu, A.N.; Sengupta, S.

    1994-01-01

    A critical analysis of the difference between the classical and quantum mechanical definitions of scattering cross sections for particles is presented. This leads to a clarification of the classical limit problem and suggests precise criteria for its validity. In particular these criteria are derived for both finite and infinite range potentials. (orig.)

  9. Semi-quantum Secure Direct Communication Scheme Based on Bell States

    Science.gov (United States)

    Xie, Chen; Li, Lvzhou; Situ, Haozhen; He, Jianhao

    2018-06-01

    Recently, the idea of semi-quantumness has been often used in designing quantum cryptographic schemes, which allows some of the participants of a quantum cryptographic scheme to remain classical. One of the reasons why this idea is popular is that it allows a quantum information processing task to be accomplished by using quantum resources as few as possible. In this paper, we extend the idea to quantum secure direct communication(QSDC) by proposing a semi-quantum secure direct communication scheme. In the scheme, the message sender, Alice, encodes each bit into a Bell state |φ+> = 1/{√2}(|00> +|11> ) or |{Ψ }+> = 1/{√ 2}(|01> +|10> ), and the message receiver, Bob, who is classical in the sense that he can either let the qubit he received reflect undisturbed, or measure the qubit in the computational basis |0>, |1> and then resend it in the state he found. Moreover, the security analysis of our scheme is also given.

  10. Classical limit of a quantum particle in an external Yang-Mills field

    International Nuclear Information System (INIS)

    Moschella, U.

    1989-01-01

    It is studied the classical limit of a quantum particle in an external non-abelian gauge field. It is shown that the unitary group describing the quantum fluctuations around any classic phase orbit has a classical limit when h tends to zero under very general conditions on the potentials. It is also proved the self-adjointness of the Hamilton's operator of the quantum theory for a large class of potentials. Some applications of the theory are finally exposed

  11. A quantum-classical simulation of a multi-surface multi-mode ...

    Indian Academy of Sciences (India)

    Multi surface multi mode quantum dynamics; parallelized quantum classical approach; TDDVR method. 1. ... cal simulation on molecular system is a great cha- llenge for ..... on a multiple core cluster with shared memory using. OpenMP based ...

  12. Quantum gravity removes classical singularities and shortens the life of black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.; Vilkovisky, G.A.

    1979-07-01

    The problem of the gravitational collapse is considered in the framework of the quantum gravity effective action. It is shown that quantum gravity removes classical singularity and possibly shortens the lifetime of the black hole. (author)

  13. On the hypothesis that quantum mechanism manifests classical mechanics: Numerical approach to the correspondence in search of quantum chaos

    International Nuclear Information System (INIS)

    Lee, Sang-Bong.

    1993-09-01

    Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaotic nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover's and Kubo-Fox-Keizer's approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty

  14. The Holy Grail of quantum optical communication

    International Nuclear Information System (INIS)

    García-Patrón, Raúl; Navarrete-Benlloch, Carlos; Lloyd, Seth; Shapiro, Jeffrey H.; Cerf, Nicolas J.

    2014-01-01

    Optical parametric amplifiers together with phase-shifters and beamsplitters have certainly been the most studied objects in the field of quantum optics. Despite such an intensive study, optical parametric amplifiers still keep secrets from us. We will show how they hold the answer to one of the oldest problems in quantum communication theory, namely the calculation of the optimal communication rate of optical channels

  15. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  16. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    International Nuclear Information System (INIS)

    Kamenshchik, A. Yu.; Manti, S.

    2013-01-01

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  17. Satellite-based quantum communication terminal employing state-of-the-art technology

    Science.gov (United States)

    Pfennigbauer, Martin; Aspelmeyer, Markus; Leeb, Walter R.; Baister, Guy; Dreischer, Thomas; Jennewein, Thomas; Neckamm, Gregor; Perdigues, Josep M.; Weinfurter, Harald; Zeilinger, Anton

    2005-09-01

    Feature Issue on Optical Wireless Communications (OWC) We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

  18. Analysis of the Forward-Backward Trajectory Solution for the Mixed Quantum-Classical Liouville Equation

    OpenAIRE

    Hsieh, Chang-Yu; Kapral, Raymond

    2013-01-01

    Mixed quantum-classical methods provide powerful algorithms for the simulation of quantum processes in large and complex systems. The forward-backward trajectory solution of the mixed quantum-classical Liouville equation in the mapping basis [J. Chem. Phys. 137, 22A507 (2012)] is one such scheme. It simulates the dynamics via the propagation of forward and backward trajectories of quantum coherent state variables, and the propagation of bath trajectories on a mean-field potential determined j...

  19. On possibility of agreement of quantum mechanics with classical probability theory

    International Nuclear Information System (INIS)

    Slavnov, D.A.

    2006-01-01

    Paper describes a scheme to carry out a construction of the quantum mechanics where the quantum system is assumed to be a pattern of the open classical subsystems. It enables to make use both of the formal classical logic and the classical probability theory in the quantum mechanics. On the other hand, in terms of the mentioned approach one manages to ensure complete reconstruction of the quantum mechanics standard mathematical tool specifying its application limits. The problem dealing with the quantum state reduction is scrutinized [ru

  20. Classical foundations of many-particle quantum chaos

    International Nuclear Information System (INIS)

    Gutkin, Boris; Osipov, Vladimir

    2016-01-01

    In the framework of semiclassical theory the universal properties of quantum systems with classically chaotic dynamics can be accounted for through correlations between partner periodic orbits with small action differences. So far, however, the scope of this approach has been mainly limited to systems of a few particles with low-dimensional phase spaces. In the present work we consider N-particle chaotic systems with local homogeneous interactions, where N is not necessarily small. Based on a model of coupled cat maps we demonstrate emergence of a new mechanism for correlation between periodic orbit actions. In particular, we show the existence of partner orbits which are specific to many-particle systems. For a sufficiently large N these new partners dominate the spectrum of correlating periodic orbits and seem to be necessary for construction of a consistent many-particle semiclassical theory. (paper)

  1. Molecular machines operating on the nanoscale: from classical to quantum

    Directory of Open Access Journals (Sweden)

    Igor Goychuk

    2016-03-01

    Full Text Available The main physical features and operating principles of isothermal nanomachines in the microworld, common to both classical and quantum machines, are reviewed. Special attention is paid to the dual, constructive role of dissipation and thermal fluctuations, the fluctuation–dissipation theorem, heat losses and free energy transduction, thermodynamic efficiency, and thermodynamic efficiency at maximum power. Several basic models are considered and discussed to highlight generic physical features. This work examines some common fallacies that continue to plague the literature. In particular, the erroneous beliefs that one should minimize friction and lower the temperature for high performance of Brownian machines, and that the thermodynamic efficiency at maximum power cannot exceed one-half are discussed. The emerging topic of anomalous molecular motors operating subdiffusively but very efficiently in the viscoelastic environment of living cells is also discussed.

  2. Classical and quantum N=2 supersymmetric black holes

    International Nuclear Information System (INIS)

    Behrndt, K.; De Wit, B.; Kallosh, R.; Luest, D.; Mohaupt, T.

    1997-01-01

    We use heterotic/type-II prepotentials to study quantum/classical black holes with half the N=2, D=4 supersymmetries unbroken. We show that, in the case of heterotic string compactifications, the perturbatively corrected entropy formula is given by the tree-level entropy formula with the tree-level coupling constant replaced by the perturbative coupling constant. In the case of type-II compactifications, we display a new entropy/area formula associated with axion-free black-hole solutions, which depends on the electric and magnetic charges as well as on certain topological data of Calabi-Yau three-folds, namely the intersection numbers, the second Chern class and the Euler number of the three-fold. We show that, for both heterotic and type-II theories, there is the possibility to relax the usual requirement of the non-vanishing of some of the charges and still have a finite entropy. (orig.)

  3. Information dynamics and open systems classical and quantum approach

    CERN Document Server

    Ingarden, R S; Ohya, M

    1997-01-01

    This book aims to present an information-theoretical approach to thermodynamics and its generalisations On the one hand, it generalises the concept of `information thermodynamics' to that of `information dynamics' in order to stress applications outside thermal phenomena On the other hand, it is a synthesis of the dynamics of state change and the theory of complexity, which provide a common framework to treat both physical and nonphysical systems together Both classical and quantum systems are discussed, and two appendices are included to explain principal definitions and some important aspects of the theory of Hilbert spaces and operator algebras The concept of higher-order temperatures is explained and applied to biological and linguistic systems The theory of open systems is presented in a new, much more general form Audience This volume is intended mainly for theoretical and mathematical physicists, but also for mathematicians, experimental physicists, physical chemists, theoretical biologists, communicat...

  4. Quantum Secure Communication Scheme with W State

    International Nuclear Information System (INIS)

    Wang Jian; Zhang Quan; Tang Chaojng

    2007-01-01

    We present a quantum secure communication scheme using three-qubit W state. It is unnecessary for the present scheme to use alternative measurement or Bell basis measurement. Compared with the quantum secure direct communication scheme proposed by Cao et al. [H.J. Cao and H.S. Song, Chin. Phys. Lett. 23 (2006) 290], in our scheme, the detection probability for an eavesdropper's attack increases from 8.3% to 25%. We also show that our scheme is secure for a noise quantum channel.

  5. Quantum and classical parallelism in parity algorithms for ensemble quantum computers

    International Nuclear Information System (INIS)

    Stadelhofer, Ralf; Suter, Dieter; Banzhaf, Wolfgang

    2005-01-01

    The determination of the parity of a string of N binary digits is a well-known problem in classical as well as quantum information processing, which can be formulated as an oracle problem. It has been established that quantum algorithms require at least N/2 oracle calls. We present an algorithm that reaches this lower bound and is also optimal in terms of additional gate operations required. We discuss its application to pure and mixed states. Since it can be applied directly to thermal states, it does not suffer from signal loss associated with pseudo-pure-state preparation. For ensemble quantum computers, the number of oracle calls can be further reduced by a factor 2 k , with k is a member of {{1,2,...,log 2 (N/2}}, provided the signal-to-noise ratio is sufficiently high. This additional speed-up is linked to (classical) parallelism of the ensemble quantum computer. Experimental realizations are demonstrated on a liquid-state NMR quantum computer

  6. Communication: Quantum mechanics without wavefunctions

    Energy Technology Data Exchange (ETDEWEB)

    Schiff, Jeremy [Department of Mathematics, Bar-Ilan University, Ramat Gan 52900 (Israel); Poirier, Bill [Department of Chemistry and Biochemistry, Texas Tech University, Box 41061, Lubbock, Texas 79409-1061 (United States) and Department of Physics, Texas Tech University, Box 41051, Lubbock, Texas 79409-1051 (United States)

    2012-01-21

    We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.

  7. Communication: Quantum mechanics without wavefunctions

    International Nuclear Information System (INIS)

    Schiff, Jeremy; Poirier, Bill

    2012-01-01

    We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications--theoretical, computational, and interpretational--are discussed.

  8. On the connections between the classical and quantum-mechanical Kepler problems

    International Nuclear Information System (INIS)

    Dahl, J.P.; Jorgensen, T.G.

    1993-01-01

    The Runge-Lenz vector, which accounts for the accidental degeneracy of the non-relativistic Kepler problem, has been the subject matter of many studies, both in quantum mechanics and in classical mechanics. Much less attention has been paid to the Johnson-Lippmann operator which accounts for the accidental degeneracy of the relativistic Kepler problem in Dirac's quantum-mechanical description. In the present communication we discuss the properties of the Johnson-Lippmann operator. We show its relation to the non-relativistic Runge-Lenz vector and draw a connection to Sommerfield's early discussion of the relativistic Kepler problem. This enables us, inter alia, to give an explanation of the apparent coincidence of the energy expressions of the two theories

  9. Use of the classical approximation in quantum electrodynamics

    International Nuclear Information System (INIS)

    Brezin, Edouard

    1970-01-01

    Approximations commonly used in the study of the classical limit of quantum mechanics are applied, with justification, to quantum electrodynamics. First, the infrared divergence in the scattering of two charged particles is examined with the help of a remarkable series of Feynman diagrams, which in particular preserves gauge invariance and a correct static limit. Looking for the poles in energy of the scattering amplitude, a formula for the binding energies of two charged particles, which generalizes the Balmer formula and takes into account the correct relativistic kinematics, has been derived. A second type of applications concerns phenomena due to the interaction of the electromagnetic field with the vacuum current and charge fluctuations. For instance, when the intensities become very high, the theory predicts the creation of electron-positron pairs by the field. The creation rate is known in the limit of static fields, and the aim of these calculations was to demonstrate the role of frequency in the domain starting from the lowest frequencies up to X-rays. The pair production rate was found to be entirely negligible, even for the most intense laser beams. An increase in frequency, even up to several tens of keV, did not have any effect on the pair production. (author) [fr

  10. Classical and Quantum Consistency of the DGP Model

    CERN Document Server

    Nicolis, A; Nicolis, Alberto; Rattazzi, Riccardo

    2004-01-01

    We study the Dvali-Gabadadze-Porrati model by the method of the boundary effective action. The truncation of this action to the bending mode \\pi consistently describes physics in a wide range of regimes both at the classical and at the quantum level. The Vainshtein effect, which restores agreement with precise tests of general relativity, follows straightforwardly. We give a simple and general proof of stability, i.e. absence of ghosts in the fluctuations, valid for most of the relevant cases, like for instance the spherical source in asymptotically flat space. However we confirm that around certain interesting self-accelerating cosmological solutions there is a ghost. We consider the issue of quantum corrections. Around flat space \\pi becomes strongly coupled below a macroscopic length of 1000 km, thus impairing the predictivity of the model. Indeed the tower of higher dimensional operators which is expected by a generic UV completion of the model limits predictivity at even larger length scales. We outline ...

  11. The speed of quantum and classical learning for performing the kth root of NOT

    International Nuclear Information System (INIS)

    Manzano, Daniel; Pawlowski, Marcin; Brukner, Caslav

    2009-01-01

    We consider quantum learning machines-quantum computers that modify themselves in order to improve their performance in some way-that are trained to perform certain classical task, i.e. to execute a function that takes classical bits as input and returns classical bits as output. This allows a fair comparison between learning efficiency of quantum and classical learning machines in terms of the number of iterations required for completion of learning. We find an explicit example of the task for which numerical simulations show that quantum learning is faster than its classical counterpart. The task is extraction of the kth root of NOT (NOT = logical negation), with k=2 m and m element of N. The reason for this speed-up is that the classical machine requires memory of size log k=m to accomplish the learning, while the memory of a single qubit is sufficient for the quantum machine for any k.

  12. Quantum and classical vacuum forces at zero and finite temperature

    International Nuclear Information System (INIS)

    Niekerken, Ole

    2009-06-01

    In this diploma thesis the Casimir-Polder force at zero temperature and at finite temperatures is calculated by using a well-defined quantum field theory (formulated in position space) and the method of image charges. For the calculations at finite temperature KMS-states are used. The so defined temperature describes the temperature of the electromagnetic background. A one oscillator model for inhomogeneous dispersive absorbing dielectric material is introduced and canonically quantized to calculate the Casimir-Polder force at a dielectric interface at finite temperature. The model fulfils causal commutation relations and the dielectric function of the model fulfils the Kramer-Kronig relations. We then use the same methods to calculate the van der Waals force between two neutral atoms at zero temperature and at finite temperatures. It is shown that the high temperature behaviour of the Casimir-Polder force and the van der Waals force are independent of ℎ. This means that they have to be understood classically, what is then shown in an algebraic statistical theory by using classical KMS states. (orig.)

  13. Simulating quantum systems on classical computers with matrix product states

    International Nuclear Information System (INIS)

    Kleine, Adrian

    2010-01-01

    In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of

  14. Simulating quantum systems on classical computers with matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Kleine, Adrian

    2010-11-08

    In this thesis, the numerical simulation of strongly-interacting many-body quantum-mechanical systems using matrix product states (MPS) is considered. Matrix-Product-States are a novel representation of arbitrary quantum many-body states. Using quantum information theory, it is possible to show that Matrix-Product-States provide a polynomial-sized representation of one-dimensional quantum systems, thus allowing an efficient simulation of one-dimensional quantum system on classical computers. Matrix-Product-States form the conceptual framework of the density-matrix renormalization group (DMRG). After a general introduction in the first chapter of this thesis, the second chapter deals with Matrix-Product-States, focusing on the development of fast and stable algorithms. To obtain algorithms to efficiently calculate ground states, the density-matrix renormalization group is reformulated using the Matrix-Product-States framework. Further, time-dependent problems are considered. Two different algorithms are presented, one based on a Trotter decomposition of the time-evolution operator, the other one on Krylov subspaces. Finally, the evaluation of dynamical spectral functions is discussed, and a correction vector-based method is presented. In the following chapters, the methods presented in the second chapter, are applied to a number of different physical problems. The third chapter deals with the existence of chiral phases in isotropic one-dimensional quantum spin systems. A preceding analytical study based on a mean-field approach indicated the possible existence of those phases in an isotropic Heisenberg model with a frustrating zig-zag interaction and a magnetic field. In this thesis, the existence of the chiral phases is shown numerically by using Matrix-Product-States-based algorithms. In the fourth chapter, we propose an experiment using ultracold atomic gases in optical lattices, which allows a well controlled observation of the spin-charge separation (of

  15. Trajectory-based understanding of the quantum-classical transition for barrier scattering

    Science.gov (United States)

    Chou, Chia-Chun

    2018-06-01

    The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.

  16. Authenticated communication from quantum readout of PUFs

    NARCIS (Netherlands)

    Skoric, Boris; Pinkse, Pepijn Willemszoon Harry; Mosk, Allard

    2016-01-01

    Quantum Readout of Physical Unclonable Functions (PUFs) is a recently introduced method for remote authentication of objects. We present an extension of the protocol to enable the authentication of data: a verifier can check if received classical data was sent by the PUF holder. We call this

  17. Direct counterfactual communication via quantum Zeno effect

    Science.gov (United States)

    Cao, Yuan; Li, Yu-Huai; Cao, Zhu; Yin, Juan; Chen, Yu-Ao; Yin, Hua-Lei; Chen, Teng-Yun; Ma, Xiongfeng; Peng, Cheng-Zhi; Pan, Jian-Wei

    2017-05-01

    Intuition from our everyday lives gives rise to the belief that information exchanged between remote parties is carried by physical particles. Surprisingly, in a recent theoretical study [Salih H, Li ZH, Al-Amri M, Zubairy MS (2013) Phys Rev Lett 110:170502], quantum mechanics was found to allow for communication, even without the actual transmission of physical particles. From the viewpoint of communication, this mystery stems from a (nonintuitive) fundamental concept in quantum mechanics—wave-particle duality. All particles can be described fully by wave functions. To determine whether light appears in a channel, one refers to the amplitude of its wave function. However, in counterfactual communication, information is carried by the phase part of the wave function. Using a single-photon source, we experimentally demonstrate the counterfactual communication and successfully transfer a monochrome bitmap from one location to another by using a nested version of the quantum Zeno effect.

  18. Quantum control using genetic algorithms in quantum communication: superdense coding

    International Nuclear Information System (INIS)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-01-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations. (paper)

  19. Noiseless method for checking the Peres separability criterion by local operations and classical communication

    International Nuclear Information System (INIS)

    Bai Yankui; Li Shushen; Zheng Houzhi

    2005-01-01

    We present a method for checking the Peres separability criterion in an arbitrary bipartite quantum state ρ AB within local operations and classical communication scenario. The method does not require noise operation which is needed in making the partial transposition map physically implementable. The main task for the two observers, Alice and Bob, is to measure some specific functions of the partial transposed matrix. With these functions, they can determine the eigenvalues of ρ AB T B , among which the minimum serves as an entanglement witness

  20. Distinguishing the elements of a full product basis set needs only projective measurements and classical communication

    International Nuclear Information System (INIS)

    Chen Pingxing; Li Chengzu

    2004-01-01

    Nonlocality without entanglement is an interesting field. A manifestation of quantum nonlocality without entanglement is the possible local indistinguishability of orthogonal product states. In this paper we analyze the character of operators to distinguish the elements of a full product basis set in a multipartite system, and show that distinguishing perfectly these product bases needs only local projective measurements and classical communication, and these measurements cannot damage each product basis. Employing these conclusions one can discuss local distinguishability of the elements of any full product basis set easily. Finally we discuss the generalization of these results to the locally distinguishability of the elements of incomplete product basis set

  1. When the asymptotic limit offers no advantage in the local-operations-and-classical-communication paradigm

    Science.gov (United States)

    Fu, Honghao; Leung, Debbie; Mančinska, Laura

    2014-05-01

    We consider bipartite LOCC, the class of operations implementable by local quantum operations and classical communication between two parties. Surprisingly, there are operations that can be approximated to arbitrary precision but are impossible to implement exactly if only a finite number of messages are exchanged. This significantly complicates the analysis of what can or cannot be approximated with LOCC. Toward alleviating this problem, we exhibit two scenarios in which allowing vanishing error does not help. The first scenario is implementation of projective measurements with product measurement operators. The second scenario is the discrimination of unextendable product bases on two three-dimensional systems.

  2. Quantum Secure Direct Communication Based on Authentication

    International Nuclear Information System (INIS)

    Min-Jie, Wang; Wei, Pan

    2008-01-01

    We propose two schemes of quantum secure direct communication (QSDC) combined ideas of user authentication [Phys. Rev. A 73 (2006) 042305] and direct communication with dense coding [Phys. Rev. A. 68 (2003) 042317]. In these protocols, the privacy of authentication keys and the properties of the EPR pairs not only ensure the realization of identity authentication but also further improve the security of communication, and no secret messages are leaked even if the messages were broken. (general)

  3. A New Quantum Communication Scheme by Using Bell States

    International Nuclear Information System (INIS)

    Cao Haijing; Chen Jing; Song Heshan

    2006-01-01

    A new quantum communication scheme based on entanglement swapping is presented. Simplified calculation symbols are adopted to realize the process. Quantum key distribution and quantum secure direct communication can be simultaneously accomplished in the scheme. Two legitimate communicators can secretly share four certain key bits and four random key bits via three EPR pairs (quantum channels).

  4. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    Science.gov (United States)

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  5. A universal quantum module for quantum communication, computation, and metrology

    Science.gov (United States)

    Hanks, Michael; Lo Piparo, Nicolò; Trupke, Michael; Schmiedmayer, Jorg; Munro, William J.; Nemoto, Kae

    2017-08-01

    In this work, we describe a simple module that could be ubiquitous for quantum information based applications. The basic modules comprises a single NV- center in diamond embedded in an optical cavity, where the cavity mediates interactions between photons and the electron spin (enabling entanglement distribution and efficient readout), while the nuclear spins constitutes a long-lived quantum memories capable of storing and processing quantum information. We discuss how a network of connected modules can be used for distributed metrology, communication and computation applications. Finally, we investigate the possible use of alternative diamond centers (SiV/GeV) within the module and illustrate potential advantages.

  6. Experimental bit commitment based on quantum communication and special relativity.

    Science.gov (United States)

    Lunghi, T; Kaniewski, J; Bussières, F; Houlmann, R; Tomamichel, M; Kent, A; Gisin, N; Wehner, S; Zbinden, H

    2013-11-01

    Bit commitment is a fundamental cryptographic primitive in which Bob wishes to commit a secret bit to Alice. Perfectly secure bit commitment between two mistrustful parties is impossible through asynchronous exchange of quantum information. Perfect security is however possible when Alice and Bob split into several agents exchanging classical and quantum information at times and locations suitably chosen to satisfy specific relativistic constraints. Here we report on an implementation of a bit commitment protocol using quantum communication and special relativity. Our protocol is based on [A. Kent, Phys. Rev. Lett. 109, 130501 (2012)] and has the advantage that it is practically feasible with arbitrary large separations between the agents in order to maximize the commitment time. By positioning agents in Geneva and Singapore, we obtain a commitment time of 15 ms. A security analysis considering experimental imperfections and finite statistics is presented.

  7. Activation of zero-error classical capacity in low-dimensional quantum systems

    Science.gov (United States)

    Park, Jeonghoon; Heo, Jun

    2018-06-01

    Channel capacities of quantum channels can be nonadditive even if one of two quantum channels has no channel capacity. We call this phenomenon activation of the channel capacity. In this paper, we show that when we use a quantum channel on a qubit system, only a noiseless qubit channel can generate the activation of the zero-error classical capacity. In particular, we show that the zero-error classical capacity of two quantum channels on qubit systems cannot be activated. Furthermore, we present a class of examples showing the activation of the zero-error classical capacity in low-dimensional systems.

  8. The Ups and Downs of Classical and Quantum Formulations of Magnetic Resonance

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    2015-01-01

    in the connection between the seemingly very different classical and quantum descriptions. Such understanding is needed by students, authors, and lecturers, in particular. With limited complexity, the text introduces probabilistic classical and quantum mechanics with emphasis on similarities and differences......), which gives insight into the resonance phenomenon itself as well as spectral features resulting from intramolecular J-coupling of atomic nuclei. It is discussed how classical and quantum mechanics give rise to similar expectations for basic NMR and why a classical understanding is central....

  9. Quantifying the nonlocality of Greenberger-Horne-Zeilinger quantum correlations by a bounded communication simulation protocol.

    Science.gov (United States)

    Branciard, Cyril; Gisin, Nicolas

    2011-07-08

    The simulation of quantum correlations with finite nonlocal resources, such as classical communication, gives a natural way to quantify their nonlocality. While multipartite nonlocal correlations appear to be useful resources, very little is known on how to simulate multipartite quantum correlations. We present a protocol that reproduces tripartite Greenberger-Horne-Zeilinger correlations with bounded communication: 3 bits in total turn out to be sufficient to simulate all equatorial Von Neumann measurements on the tripartite Greenberger-Horne-Zeilinger state.

  10. Classical treatments of quantum mechanical effects in collisions of weakly bound complexes

    International Nuclear Information System (INIS)

    Lopez, Jose G.; McCoy, Anne B.

    2005-01-01

    Classical and quantum simulations of Ne + Ar 2 collision dynamics are performed in order to investigate where quantum mechanical effects are most important and where classical simulations provide good descriptions of the dynamics. It is found that when Ar 2 is in a low-lying vibrational state, the differences between the results of quantum and quasiclassical simulations are profound. However, excellent agreement between the results of the quantum and classical simulations can be achieved when the initial conditions for the classical trajectories are sampled from the quantum phase space distribution given by the Wigner function. These effects are largest when collisions occur under constrained geometries or when Ar 2 is in its ground vibrational state. The results of this work suggest that sampling the initial conditions using the Wigner function provides a straightforward way to incorporate the most important quantum mechanical effects in simulations of collisions involving very cold weakly bound complexes

  11. Quantum communication in spin star configuration

    International Nuclear Information System (INIS)

    Deng Hongliang; Fang Ximing

    2008-01-01

    This paper considers a generalized spin star system which can be solved exactly, with the central spin-½ system embedded in an outer ring of N spin-½ particles(denoted as spin bath). In this model, in addition to the central-outer interaction, each pair of nearest neighbour of the bath interacts within themselves. The general expressions of the eigenstates as well as the eigenvalues of the model are derived with the use of the symmetries of system. It analyses the quantum state transfer and the dynamical behaviour of entanglement created during quantum communication. It also analyses the efficiency of the configuration regarded as quantum phase covariant clone or decoherence model. Some interesting results are discovered concerning the properties of quantum communication in this model

  12. Quantum solitons and their classical relatives. II. ''Fermion--boson reciprocity'' and classical versus quantum problem for the sine-Gordon system

    International Nuclear Information System (INIS)

    Garbaczewski, P.

    1981-01-01

    Both quantum and classical sine--Gordon fields can be built out of the fundamental free neutral massive excitations, which quantally obey the Bose--Einstein statistics. At the roots of the ''boson-fermion reciprocity'' invented by Coleman, lies the spin 1/2 approximation of the underlying Bose system. By generalizing the coherent state methods to incorporate non-Fock quantum structures and to give account of the so-called boson transformation theory, we construct the carrier Hilbert space H/sub SG/ for quantum soliton operators. The h→0 limit of state expectation values of these operators among pure coherentlike states in H/sub SG/ reproduces the classical sine--Gordon field. The related (classical and quantum) spin 1/2 xyz Heisenberg model field is built out of the fundamental sine--Gordon excitations, and hence can be consistently defined on the appropriate subset of the quantum soliton Hilbert space H/sub x/yz . A correct classical limit is here shown to arise for the Heisenberg system: phase manifolds of the classical Heisenberg and sine--Gordon systems cannot be then viewed independently as a consequence of the quantum relation

  13. Phenomenological analysis of quantum level correlations and classical repulsion effects in SU(3) model

    International Nuclear Information System (INIS)

    Fujiwara, Shigeyasu; Sakata, Fumihiko

    2003-01-01

    The quantum level fluctuation in various systems has been shown to be characterized by the random matrix theory, and to be related to a regular-to-chaos transition in classical system. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of quantum level density is inversely proportional to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)

  14. Bell’s measure and implementing quantum Fourier transform with orbital angular momentum of classical light

    Science.gov (United States)

    Song, Xinbing; Sun, Yifan; Li, Pengyun; Qin, Hongwei; Zhang, Xiangdong

    2015-01-01

    We perform Bell’s measurement for the non-separable correlation between polarization and orbital angular momentum from the same classical vortex beam. The violation of Bell’s inequality for such a non-separable classical correlation has been demonstrated experimentally. Based on the classical vortex beam and non-quantum entanglement between the polarization and the orbital angular momentum, the Hadamard gates and conditional phase gates have been designed. Furthermore, a quantum Fourier transform has been implemented experimentally. PMID:26369424

  15. Classical and quantum contents of solvable game theory on Hilbert space

    International Nuclear Information System (INIS)

    Cheon, Taksu; Tsutsui, Izumi

    2006-01-01

    A simple and general formulation of the quantum game theory is presented, accommodating all possible strategies in the Hilbert space for the first time. The theory is solvable for the two strategy quantum game, which is shown to be equivalent to a family of classical games supplemented by quantum interference. Our formulation gives a clear perspective to understand why and how quantum strategies outmaneuver classical strategies. It also reveals novel aspects of quantum games such as the stone-scissor-paper phase sub-game and the fluctuation-induced moderation

  16. Correlation analysis of quantum fluctuations and repulsion effects of classical dynamics in SU(3) model

    International Nuclear Information System (INIS)

    Fujiwara, Shigeyasu; Sakata, Fumihiko

    2003-01-01

    In many quantum systems, random matrix theory has been used to characterize quantum level fluctuations, which is known to be a quantum correspondent to a regular-to-chaos transition in classical systems. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of the quantum level density is roughly inversely proportional relation to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)

  17. Comparative role of potential structure in classical, semiclassical, and quantum mechanics

    International Nuclear Information System (INIS)

    Judson, R.S.; Shi, S.; Rabitz, H.

    1989-01-01

    The corresponding effects of features in the potential on classical, semiclassical, and quantum mechanics are probed using the technique of functional sensitivity analysis. It is shown that the classical and quantum functional sensitivities are equivalent in the classical (small (h/2π)) and harmonic limits. Classical and quantum mechanics are known to react in qualitatively similar ways provided that features on the potential are smooth on the length scale of oscillations in the quantum wave function. By using functional sensitivity analysis, we are able to show in detail how the classical and quantum dynamics differ in the way that they sense the potential. Two examples are given, the first of which is the harmonic oscillator. This problem is well understood by other means but is useful to examine because it illustrates the detailed information about the interaction of the potential and the dynamics which can be provided by functional sensitivity analysis, simplifying the analysis of more complex systems. The second example is the collinear H+H 2 reaction. In that case there are a number of detailed and striking differences between the ways that classical and quantum mechanics react to features on the potential. For features which are broad compared to oscillations in the wave function, the two react in qualitatively the same way. The sensitivities are oscillatory, however, and there are phasing differences between the classical and quantum sensitivity functions. This means that using classical mechanics plus experimental data in an inversion scheme intended to find the ''true'' potential will necessarily introduce sizeable errors

  18. Classical Communication and Entanglement Cost in Preparing a Class of Multi-qubit States

    International Nuclear Information System (INIS)

    Pan Guixia; Liu Yimin; Zhang Zhanjun

    2008-01-01

    Recently, several similar protocols [J. Opt. B 4 (2002) 380; Phys. Lett. A 316 (2003) 159; Phys. Lett. A 355 (2006) 285; Phys. Lett. A 336 (2005) 317] for remotely preparing a class of multi-qubit states (i.e, α|0...0> + β|1...1>) were proposed, respectively. In this paper, by applying the controlled-not (CNOT) gate, a new simple protocol is proposed for remotely preparing such class of states. Compared to the previous protocols, both classical communication cost and required quantum entanglement in our protocol are remarkably reduced. Moreover, the difficulty of identifying some quantum states in our protocol is also degraded. Hence our protocol is more economical and feasible.

  19. Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.

    Science.gov (United States)

    Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso

    2016-10-17

    Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.

  20. Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics

    Science.gov (United States)

    Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso

    2016-01-01

    Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418

  1. Implementing quantum walks using orbital angular momentum of classical light

    CSIR Research Space (South Africa)

    Goyal, SK

    2013-06-01

    Full Text Available –5]. This speed up gained in quantum walks promises ad- vantages when applied in quantum computation for cer- tain classes of quantum algorithms [6], for example, quan- tum search algorithms [7, 8]. Quantum walks have also been used to analyze energy transport...

  2. Transition to classical chaos in a coupled quantum system through continuous measurement

    International Nuclear Information System (INIS)

    Ghose, Shohini; Alsing, Paul; Deutsch, Ivan; Bhattacharya, Tanmoy; Habib, Salman

    2004-01-01

    Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via a continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling, we find that classical dynamics emerges only when the position and spin actions are both large compared to (ℎ/2π). These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result, it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin-(1/2) particle. When the conditions for classicality are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence, we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value

  3. Sum Rules, Classical and Quantum - A Pedagogical Approach

    Science.gov (United States)

    Karstens, William; Smith, David Y.

    2014-03-01

    Sum rules in the form of integrals over the response of a system to an external probe provide general analytical tools for both experiment and theory. For example, the celebrated f-sum rule gives a system's plasma frequency as an integral over the optical-dipole absorption spectrum regardless of the specific spectral distribution. Moreover, this rule underlies Smakula's equation for the number density of absorbers in a sample in terms of the area under their absorption bands. Commonly such rules are derived from quantum-mechanical commutation relations, but many are fundamentally classical (independent of ℏ) and so can be derived from more transparent mechanical models. We have exploited this to illustrate the fundamental role of inertia in the case of optical sum rules. Similar considerations apply to sum rules in many other branches of physics. Thus, the ``attenuation integral theorems'' of ac circuit theory reflect the ``inertial'' effect of Lenz's Law in inductors or the potential energy ``storage'' in capacitors. These considerations are closely related to the fact that the real and imaginary parts of a response function cannot be specified independently, a result that is encapsulated in the Kramers-Kronig relations. Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.

  4. Cleaning graphene: A first quantum/classical molecular dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Delfour, L.; Magaud, L., E-mail: emilie.despiau-pujo@cea.fr, E-mail: laurence.magaud@grenoble.cnrs.fr [Institut Néel, CNRS/Université Grenoble Alpes, 25 Avenue des Martyrs, 38054 Grenoble (France); Davydova, A.; Despiau-Pujo, E., E-mail: emilie.despiau-pujo@cea.fr, E-mail: laurence.magaud@grenoble.cnrs.fr; Cunge, G. [LTM, CNRS/Université Grenoble Alpes/CEA, 17 Avenue des Martyrs, 38054 Grenoble (France); Graves, D. B. [Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720 (United States)

    2016-03-28

    Graphene outstanding properties created a huge interest in the condensed matter community and unprecedented fundings at the international scale in the hope of application developments. Recently, there have been several reports of incomplete removal of the polymer resists used to transfer as-grown graphene from one substrate to another, resulting in altered graphene transport properties. Finding a large-scale solution to clean graphene from adsorbed residues is highly desirable and one promising possibility would be to use hydrogen plasmas. In this spirit, we couple here quantum and classical molecular dynamics simulations to explore the kinetic energy ranges required by atomic hydrogen to selectively etch a simple residue—a CH{sub 3} group—without irreversibly damaging the graphene. For incident energies in the 2–15 eV range, the CH{sub 3} radical can be etched by forming a volatile CH{sub 4} compound which leaves the surface, either in the CH{sub 4} form or breaking into CH{sub 3} + H fragments, without further defect formation. At this energy, adsorption of H atoms on graphene is possible and further annealing will be required to recover pristine graphene.

  5. Which causal structures might support a quantum-classical gap?

    Science.gov (United States)

    Pienaar, Jacques

    2017-04-01

    A causal scenario is a graph that describes the cause and effect relationships between all relevant variables in an experiment. A scenario is deemed ‘not interesting’ if there is no device-independent way to distinguish the predictions of classical physics from any generalised probabilistic theory (including quantum mechanics). Conversely, an interesting scenario is one in which there exists a gap between the predictions of different operational probabilistic theories, as occurs for example in Bell-type experiments. Henson, Lal and Pusey (HLP) recently proposed a sufficient condition for a causal scenario to not be interesting. In this paper we supplement their analysis with some new techniques and results. We first show that existing graphical techniques due to Evans can be used to confirm by inspection that many graphs are interesting without having to explicitly search for inequality violations. For three exceptional cases—the graphs numbered \\#15,16,20 in HLP—we show that there exist non-Shannon type entropic inequalities that imply these graphs are interesting. In doing so, we find that existing methods of entropic inequalities can be greatly enhanced by conditioning on the specific values of certain variables.

  6. Classical Collapse to Black Holes and Quantum Bounces: A Review

    Directory of Open Access Journals (Sweden)

    Daniele Malafarina

    2017-05-01

    Full Text Available In the last four decades, different programs have been carried out aiming at understanding the final fate of gravitational collapse of massive bodies once some prescriptions for the behaviour of gravity in the strong field regime are provided. The general picture arising from most of these scenarios is that the classical singularity at the end of collapse is replaced by a bounce. The most striking consequence of the bounce is that the black hole horizon may live for only a finite time. The possible implications for astrophysics are important since, if these models capture the essence of the collapse of a massive star, an observable signature of quantum gravity may be hiding in astrophysical phenomena. One intriguing idea that is implied by these models is the possible existence of exotic compact objects, of high density and finite size, that may not be covered by an horizon. The present article outlines the main features of these collapse models and some of the most relevant open problems. The aim is to provide a comprehensive (as much as possible overview of the current status of the field from the point of view of astrophysics. As a little extra, a new toy model for collapse leading to the formation of a quasi static compact object is presented.

  7. Scale invariance in chaotic time series: Classical and quantum examples

    Science.gov (United States)

    Landa, Emmanuel; Morales, Irving O.; Stránský, Pavel; Fossion, Rubén; Velázquez, Victor; López Vieyra, J. C.; Frank, Alejandro

    Important aspects of chaotic behavior appear in systems of low dimension, as illustrated by the Map Module 1. It is indeed a remarkable fact that all systems tha make a transition from order to disorder display common properties, irrespective of their exacta functional form. We discuss evidence for 1/f power spectra in the chaotic time series associated in classical and quantum examples, the one-dimensional map module 1 and the spectrum of 48Ca. A Detrended Fluctuation Analysis (DFA) method is applied to investigate the scaling properties of the energy fluctuations in the spectrum of 48Ca obtained with a large realistic shell model calculation (ANTOINE code) and with a random shell model (TBRE) calculation also in the time series obtained with the map mod 1. We compare the scale invariant properties of the 48Ca nuclear spectrum sith similar analyses applied to the RMT ensambles GOE and GDE. A comparison with the corresponding power spectra is made in both cases. The possible consequences of the results are discussed.

  8. Metric freeness and projectivity for classical and quantum normed modules

    Energy Technology Data Exchange (ETDEWEB)

    Helemskii, A Ya [M. V. Lomonosov Moscow State University, Moscow (Russian Federation)

    2013-07-31

    In functional analysis, there are several diverse approaches to the notion of projective module. We show that a certain general categorical scheme contains all basic versions as special cases. In this scheme, the notion of free object comes to the foreground, and, in the best categories, projective objects are precisely retracts of free ones. We are especially interested in the so-called metric version of projectivity and characterize the metrically free classical and quantum (= operator) normed modules. Informally speaking, so-called extremal projectivity, which was known earlier, is interpreted as a kind of 'asymptotical metric projectivity'. In addition, we answer the following specific question in the geometry of normed spaces: what is the structure of metrically projective modules in the simplest case of normed spaces? We prove that metrically projective normed spaces are precisely the subspaces of l{sub 1}(M) (where M is a set) that are denoted by l{sub 1}{sup 0}(M) and consist of finitely supported functions. Thus, in this case, projectivity coincides with freeness. Bibliography: 28 titles.

  9. Correlation Functions in Open Quantum-Classical Systems

    OpenAIRE

    Hsieh, Chang-Yu; Kapral, Raymond

    2013-01-01

    Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is diff...

  10. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    Science.gov (United States)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by

  11. Quantum Entropy and Its Applications to Quantum Communication and Statistical Physics

    Directory of Open Access Journals (Sweden)

    Masanori Ohya

    2010-05-01

    Full Text Available Quantum entropy is a fundamental concept for quantum information recently developed in various directions. We will review the mathematical aspects of quantum entropy (entropies and discuss some applications to quantum communication, statistical physics. All topics taken here are somehow related to the quantum entropy that the present authors have been studied. Many other fields recently developed in quantum information theory, such as quantum algorithm, quantum teleportation, quantum cryptography, etc., are totally discussed in the book (reference number 60.

  12. Photonic entanglement as a resource in quantum computation and quantum communication

    OpenAIRE

    Prevedel, Robert; Aspelmeyer, Markus; Brukner, Caslav; Jennewein, Thomas; Zeilinger, Anton

    2008-01-01

    Entanglement is an essential resource in current experimental implementations for quantum information processing. We review a class of experiments exploiting photonic entanglement, ranging from one-way quantum computing over quantum communication complexity to long-distance quantum communication. We then propose a set of feasible experiments that will underline the advantages of photonic entanglement for quantum information processing.

  13. Some Remarks on Classical and Classical-Quantum Sphere Packing Bounds: Rényi vs. Kullback–Leibler

    Directory of Open Access Journals (Sweden)

    Marco Dalai

    2017-07-01

    Full Text Available We review the use of binary hypothesis testing for the derivation of the sphere packing bound in channel coding, pointing out a key difference between the classical and the classical-quantum setting. In the first case, two ways of using the binary hypothesis testing are known, which lead to the same bound written in different analytical expressions. The first method historically compares output distributions induced by the codewords with an auxiliary fixed output distribution, and naturally leads to an expression using the Renyi divergence. The second method compares the given channel with an auxiliary one and leads to an expression using the Kullback–Leibler divergence. In the classical-quantum case, due to a fundamental difference in the quantum binary hypothesis testing, these two approaches lead to two different bounds, the first being the “right” one. We discuss the details of this phenomenon, which suggests the question of whether auxiliary channels are used in the optimal way in the second approach and whether recent results on the exact strong-converse exponent in classical-quantum channel coding might play a role in the considered problem.

  14. Using measurement-induced disturbance to characterize correlations as classical or quantum

    International Nuclear Information System (INIS)

    Luo Shunlong

    2008-01-01

    In contrast to the seminal entanglement-separability paradigm widely used in quantum information theory, we introduce a quantum-classical dichotomy in order to classify and quantify statistical correlations in bipartite states. This is based on the idea that while in the classical description of nature measurements can be carried out without disturbance, in the quantum description, generic measurements often disturb the system and the disturbance can be exploited to quantify the quantumness of correlations therein. It turns out that certain separable states still possess correlations of a quantum nature and indicates that quantum correlations are more general than entanglement. The results are illustrated in the Werner states and the isotropic states, and are applied to quantify the quantum advantage of the model of quantum computation proposed by Knill and Laflamme [Phys. Rev. Lett. 81, 5672 (1998)

  15. From the attempt of certain classical reformulations of quantum mechanics to quasi-probability representations

    International Nuclear Information System (INIS)

    Stulpe, Werner

    2014-01-01

    The concept of an injective affine embedding of the quantum states into a set of classical states, i.e., into the set of the probability measures on some measurable space, as well as its relation to statistically complete observables is revisited, and its limitation in view of a classical reformulation of the statistical scheme of quantum mechanics is discussed. In particular, on the basis of a theorem concerning a non-denseness property of a set of coexistent effects, it is shown that an injective classical embedding of the quantum states cannot be supplemented by an at least approximate classical description of the quantum mechanical effects. As an alternative approach, the concept of quasi-probability representations of quantum mechanics is considered

  16. Classical Logic and Quantum Logic with Multiple and Common Lattice Models

    Directory of Open Access Journals (Sweden)

    Mladen Pavičić

    2016-01-01

    Full Text Available We consider a proper propositional quantum logic and show that it has multiple disjoint lattice models, only one of which is an orthomodular lattice (algebra underlying Hilbert (quantum space. We give an equivalent proof for the classical logic which turns out to have disjoint distributive and nondistributive ortholattices. In particular, we prove that both classical logic and quantum logic are sound and complete with respect to each of these lattices. We also show that there is one common nonorthomodular lattice that is a model of both quantum and classical logic. In technical terms, that enables us to run the same classical logic on both a digital (standard, two-subset, 0-1-bit computer and a nondigital (say, a six-subset computer (with appropriate chips and circuits. With quantum logic, the same six-element common lattice can serve us as a benchmark for an efficient evaluation of equations of bigger lattice models or theorems of the logic.

  17. Quantum mechanics as classical statistical mechanics with an ontic extension and an epistemic restriction.

    Science.gov (United States)

    Budiyono, Agung; Rohrlich, Daniel

    2017-11-03

    Where does quantum mechanics part ways with classical mechanics? How does quantum randomness differ fundamentally from classical randomness? We cannot fully explain how the theories differ until we can derive them within a single axiomatic framework, allowing an unambiguous account of how one theory is the limit of the other. Here we derive non-relativistic quantum mechanics and classical statistical mechanics within a common framework. The common axioms include conservation of average energy and conservation of probability current. But two axioms distinguish quantum mechanics from classical statistical mechanics: an "ontic extension" defines a nonseparable (global) random variable that generates physical correlations, and an "epistemic restriction" constrains allowed phase space distributions. The ontic extension and epistemic restriction, with strength on the order of Planck's constant, imply quantum entanglement and uncertainty relations. This framework suggests that the wave function is epistemic, yet it does not provide an ontic dynamics for individual systems.

  18. Quantum-classical transition in the electron dynamics of thin metal films

    Energy Technology Data Exchange (ETDEWEB)

    Jasiak, R; Manfredi, G; Hervieux, P-A [Institut de Physique et Chimie des Materiaux, CNRS and Universite de Strasbourg, BP 43, F-67034 Strasbourg (France); Haefele, M [INRIA Nancy Grand-Est and Institut de Recherche en Mathematiques Avancees, 7 rue Rene Descartes, F-67084 Strasbourg (France)], E-mail: Giovanni.Manfredi@ipcms.u-strasbg.fr

    2009-06-15

    The quantum electrons dynamics in a thin metal film is studied numerically using the self-consistent Wigner-Poisson equations. The initial equilibrium is computed from the Kohn-Sham equations at finite temperature, and then mapped into the phase-space Wigner function. The time-dependent results are compared systematically with those obtained previously with a classical approach (Vlasov-Poisson equations). It is found that, for large excitations, the quantum and classical dynamics display the same low-frequency oscillations due to ballistic electrons bouncing back and forth on the film surfaces. However, below a certain excitation energy (roughly corresponding to one quantum of plasmon energy {Dirac_h}{omega}{sub p}), the quantum and classical results diverge, and the ballistic oscillations are no longer observed. These results provide an example of a quantum-classical transition that may be observed with current pump-probe experiments on thin metal films.

  19. Quantum-classical transition in the electron dynamics of thin metal films

    International Nuclear Information System (INIS)

    Jasiak, R; Manfredi, G; Hervieux, P-A; Haefele, M

    2009-01-01

    The quantum electrons dynamics in a thin metal film is studied numerically using the self-consistent Wigner-Poisson equations. The initial equilibrium is computed from the Kohn-Sham equations at finite temperature, and then mapped into the phase-space Wigner function. The time-dependent results are compared systematically with those obtained previously with a classical approach (Vlasov-Poisson equations). It is found that, for large excitations, the quantum and classical dynamics display the same low-frequency oscillations due to ballistic electrons bouncing back and forth on the film surfaces. However, below a certain excitation energy (roughly corresponding to one quantum of plasmon energy ℎω p ), the quantum and classical results diverge, and the ballistic oscillations are no longer observed. These results provide an example of a quantum-classical transition that may be observed with current pump-probe experiments on thin metal films.

  20. Conditions for the classicality of the center of mass of many-particle quantum states

    International Nuclear Information System (INIS)

    Oriols, Xavier; Benseny, Albert

    2017-01-01

    We discuss the conditions for the classicality of quantum states with a very large number of identical particles. By defining the center of mass from a large set of Bohmian particles, we show that it follows a classical trajectory when the distribution of the Bohmian particle positions in a single experiment is always equal to the marginal distribution of the quantum state in physical space. This result can also be interpreted as a single experiment generalization of the well-known Ehrenfest theorem. We also demonstrate that the classical trajectory of the center of mass is fully compatible with a quantum (conditional) wave function solution of a classical non-linear Schrödinger equation. Our work shows clear evidence for a quantum–classical inter-theory unification, and opens new possibilities for practical quantum computations with decoherence. (paper)

  1. Entangled network and quantum communication

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, Nasser, E-mail: Nmetwally@gmail.com [Math. Dept., Faculty of Science, South Valley University, Aswan (Egypt); Math. Dept., College of Science, University of Bahrain, P.O. Box 32038 (Bahrain)

    2011-11-21

    A theoretical scheme is introduced to generate entangled network via Dzyaloshinskii–Moriya (DM) interaction. The dynamics of entanglement between different nodes, which is generated by direct or indirect interaction, is investigated. It is shown that, the direction of (DM) interaction and the locations of the nodes have a sensational effect on the degree of entanglement. The minimum entanglement generated between all the nodes is quantified. The upper and lower bounds of the entanglement depend on the direction of DM interaction, and the repetition of the behavior depends on the strength of DM. The generated entangled nodes are used as quantum channel to perform quantum teleportation, where it is shown that the fidelity of teleporting unknown information between the network members depends on the locations of the members.

  2. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information

    International Nuclear Information System (INIS)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2006-01-01

    We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of 'singly branching' states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment's size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or 'nonredundant', information

  3. Quantum Darwinism: Entanglement, branches, and the emergent classicality of redundantly stored quantum information

    Science.gov (United States)

    Blume-Kohout, Robin; Zurek, Wojciech H.

    2006-06-01

    We lay a comprehensive foundation for the study of redundant information storage in decoherence processes. Redundancy has been proposed as a prerequisite for objectivity, the defining property of classical objects. We consider two ensembles of states for a model universe consisting of one system and many environments: the first consisting of arbitrary states, and the second consisting of “singly branching” states consistent with a simple decoherence model. Typical states from the random ensemble do not store information about the system redundantly, but information stored in branching states has a redundancy proportional to the environment’s size. We compute the specific redundancy for a wide range of model universes, and fit the results to a simple first-principles theory. Our results show that the presence of redundancy divides information about the system into three parts: classical (redundant); purely quantum; and the borderline, undifferentiated or “nonredundant,” information.

  4. Optimal classical-communication-assisted local model of n-qubit Greenberger-Horne-Zeilinger correlations

    International Nuclear Information System (INIS)

    Tessier, Tracey E.; Caves, Carlton M.; Deutsch, Ivan H.; Eastin, Bryan; Bacon, Dave

    2005-01-01

    We present a model, motivated by the criterion of reality put forward by Einstein, Podolsky, and Rosen and supplemented by classical communication, which correctly reproduces the quantum-mechanical predictions for measurements of all products of Pauli operators on an n-qubit GHZ state (or 'cat state'). The n-2 bits employed by our model are shown to be optimal for the allowed set of measurements, demonstrating that the required communication overhead scales linearly with n. We formulate a connection between the generation of the local values utilized by our model and the stabilizer formalism, which leads us to conjecture that a generalization of this method will shed light on the content of the Gottesman-Knill theorem

  5. Quantum correlations and dynamics from classical random fields valued in complex Hilbert spaces

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2010-01-01

    One of the crucial differences between mathematical models of classical and quantum mechanics (QM) is the use of the tensor product of the state spaces of subsystems as the state space of the corresponding composite system. (To describe an ensemble of classical composite systems, one uses random variables taking values in the Cartesian product of the state spaces of subsystems.) We show that, nevertheless, it is possible to establish a natural correspondence between the classical and the quantum probabilistic descriptions of composite systems. Quantum averages for composite systems (including entangled) can be represented as averages with respect to classical random fields. It is essentially what Albert Einstein dreamed of. QM is represented as classical statistical mechanics with infinite-dimensional phase space. While the mathematical construction is completely rigorous, its physical interpretation is a complicated problem. We present the basic physical interpretation of prequantum classical statistical field theory in Sec. II. However, this is only the first step toward real physical theory.

  6. Duplex quantum communication through a spin chain

    Science.gov (United States)

    Wang, Zhao-Ming; Bishop, C. Allen; Gu, Yong-Jian; Shao, Bin

    2011-08-01

    Data multiplexing within a quantum computer can allow for the simultaneous transfer of multiple streams of information over a shared medium thereby minimizing the number of channels needed for requisite data transmission. Here, we investigate a two-way quantum communication protocol using a spin chain placed in an external magnetic field. In our scheme, Alice and Bob each play the role of a sender and a receiver as two states, cos((θ1)/(2))0+sin((θ1)/(2))eiφ11 and cos((θ2)/(2))0+sin((θ2)/(2))eiφ21, are transferred through one channel simultaneously. We find that the transmission fidelity at each end of a spin chain can usually be enhanced by the presence of a second party. This is an important result for establishing the viability of duplex quantum communication through spin chain networks.

  7. Simulation of classical thermal states on a quantum computer: A transfer-matrix approach

    International Nuclear Information System (INIS)

    Yung, Man-Hong; Nagaj, Daniel; Whitfield, James D.; Aspuru-Guzik, Alan

    2010-01-01

    We present a hybrid quantum-classical algorithm to simulate thermal states of classical Hamiltonians on a quantum computer. Our scheme employs a sequence of locally controlled rotations, building up the desired state by adding qubits one at a time. We identified a class of classical models for which our method is efficient and avoids potential exponential overheads encountered by Grover-like or quantum Metropolis schemes. Our algorithm also gives an exponential advantage for two-dimensional Ising models with magnetic field on a square lattice, compared with the previously known Zalka's algorithm.

  8. Dissipative dynamics with the corrected propagator method. Numerical comparison between fully quantum and mixed quantum/classical simulations

    International Nuclear Information System (INIS)

    Gelman, David; Schwartz, Steven D.

    2010-01-01

    The recently developed quantum-classical method has been applied to the study of dissipative dynamics in multidimensional systems. The method is designed to treat many-body systems consisting of a low dimensional quantum part coupled to a classical bath. Assuming the approximate zeroth order evolution rule, the corrections to the quantum propagator are defined in terms of the total Hamiltonian and the zeroth order propagator. Then the corrections are taken to the classical limit by introducing the frozen Gaussian approximation for the bath degrees of freedom. The evolution of the primary part is governed by the corrected propagator yielding the exact quantum dynamics. The method has been tested on two model systems coupled to a harmonic bath: (i) an anharmonic (Morse) oscillator and (ii) a double-well potential. The simulations have been performed at zero temperature. The results have been compared to the exact quantum simulations using the surrogate Hamiltonian approach.

  9. Classical and quantum modes of coupled Mathieu equations

    DEFF Research Database (Denmark)

    Landa, H.; Reznik, B.; Drewsen, M.

    2012-01-01

    is that of decoupled linear oscillators. We use this transformation to solve the Heisenberg equations of the corresponding quantum-mechanical problem, and find the quantum wavefunctions for stable oscillations, expressed in configuration space. The obtained transformation and quantum solutions can be applied to more...

  10. From classical to quantum mechanics: ``How to translate physical ideas into mathematical language''

    Science.gov (United States)

    Bergeron, H.

    2001-09-01

    Following previous works by E. Prugovečki [Physica A 91A, 202 (1978) and Stochastic Quantum Mechanics and Quantum Space-time (Reidel, Dordrecht, 1986)] on common features of classical and quantum mechanics, we develop a unified mathematical framework for classical and quantum mechanics (based on L2-spaces over classical phase space), in order to investigate to what extent quantum mechanics can be obtained as a simple modification of classical mechanics (on both logical and analytical levels). To obtain this unified framework, we split quantum theory in two parts: (i) general quantum axiomatics (a system is described by a state in a Hilbert space, observables are self-adjoints operators, and so on) and (ii) quantum mechanics proper that specifies the Hilbert space as L2(Rn); the Heisenberg rule [pi,qj]=-iℏδij with p=-iℏ∇, the free Hamiltonian H=-ℏ2Δ/2m and so on. We show that general quantum axiomatics (up to a supplementary "axiom of classicity") can be used as a nonstandard mathematical ground to formulate physical ideas and equations of ordinary classical statistical mechanics. So, the question of a "true quantization" with "ℏ" must be seen as an independent physical problem not directly related with quantum formalism. At this stage, we show that this nonstandard formulation of classical mechanics exhibits a new kind of operation that has no classical counterpart: this operation is related to the "quantization process," and we show why quantization physically depends on group theory (the Galilei group). This analytical procedure of quantization replaces the "correspondence principle" (or canonical quantization) and allows us to map classical mechanics into quantum mechanics, giving all operators of quantum dynamics and the Schrödinger equation. The great advantage of this point of view is that quantization is based on concrete physical arguments and not derived from some "pure algebraic rule" (we exhibit also some limit of the correspondence

  11. Towards long-distance quantum communication: new techniques and tools

    International Nuclear Information System (INIS)

    Lukin, M.

    2005-01-01

    Full text: We will describe our efforts to develop new techniques and tools for long-distance quantum communication. Specifically we will discuss recent experimental work towards developing elements for long-distance quantum communication using atomic ensembles. In addition, we will describe a novel approach to long-distance quantum communication that is based on solid-state single photon emitters. (author)

  12. Classical and quantum chaos in a circular billiard with a straight cut

    International Nuclear Information System (INIS)

    Ree, S.; Reichl, L.E.

    1999-01-01

    We study classical and quantum dynamics of a particle in a circular billiard with a straight cut. Classically, this system can be integrable, nonintegrable with soft chaos, or nonintegrable with hard chaos as we vary the size of the cut. We plot Poincaracute e surfaces of section to study chaos. Quantum mechanically, we look at Husimi plots, and also use the quantum web, the technique primarily used in spin systems so far, to try to see differences in quantum manifestations of soft and hard chaos. copyright 1999 The American Physical Society

  13. Classical Wigner method with an effective quantum force: application to reaction rates.

    Science.gov (United States)

    Poulsen, Jens Aage; Li, Huaqing; Nyman, Gunnar

    2009-07-14

    We construct an effective "quantum force" to be used in the classical molecular dynamics part of the classical Wigner method when determining correlation functions. The quantum force is obtained by estimating the most important short time separation of the Feynman paths that enter into the expression for the correlation function. The evaluation of the force is then as easy as classical potential energy evaluations. The ideas are tested on three reaction rate problems. The resulting transmission coefficients are in much better agreement with accurate results than transmission coefficients from the ordinary classical Wigner method.

  14. Finite-time quantum-to-classical transition for a Schroedinger-cat state

    International Nuclear Information System (INIS)

    Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.; Maniscalco, Sabrina

    2011-01-01

    The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysis shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.

  15. Unification of Quantum and Gravity by Non Classical Information Entropy Space

    Directory of Open Access Journals (Sweden)

    Davide Fiscaletti

    2013-09-01

    Full Text Available A quantum entropy space is suggested as the fundamental arena describing the quantum effects. In the quantum regime the entropy is expressed as the superposition of many different Boltzmann entropies that span the space of the entropies before any measure. When a measure is performed the quantum entropy collapses to one component. A suggestive reading of the relational interpretation of quantum mechanics and of Bohm’s quantum potential in terms of the quantum entropy are provided. The space associated with the quantum entropy determines a distortion in the classical space of position, which appears as a Weyl-like gauge potential connected with Fisher information. This Weyl-like gauge potential produces a deformation of the moments which changes the classical action in such a way that Bohm’s quantum potential emerges as consequence of the non classical definition of entropy, in a non-Euclidean information space under the constraint of a minimum condition of Fisher information (Fisher Bohm- entropy. Finally, the possible quantum relativistic extensions of the theory and the connections with the problem of quantum gravity are investigated. The non classical thermodynamic approach to quantum phenomena changes the geometry of the particle phase space. In the light of the representation of gravity in ordinary phase space by torsion in the flat space (Teleparallel gravity, the change of geometry in the phase space introduces quantum phenomena in a natural way. This gives a new force to F. Shojai’s and A. Shojai’s theory where the geometry of space-time is highly coupled with a quantum potential whose origin is not the Schrödinger equation but the non classical entropy of a system of many particles that together change the geometry of the phase space of the positions (entanglement. In this way the non classical thermodynamic changes the classical geodetic as a consequence of the quantum phenomena and quantum and gravity are unified. Quantum

  16. An efficient deterministic secure quantum communication scheme based on cluster states and identity authentication

    International Nuclear Information System (INIS)

    Wen-Jie, Liu; Han-Wu, Chen; Zhi-Qiang, Li; Zhi-Hao, Liu; Wen-Bo, Hu; Ting-Huai, Ma

    2009-01-01

    A novel efficient deterministic secure quantum communication scheme based on four-qubit cluster states and single-photon identity authentication is proposed. In this scheme, the two authenticated users can transmit two bits of classical information per cluster state, and its efficiency of the quantum communication is 1/3, which is approximately 1.67 times that of the previous protocol presented by Wang et al [Chin. Phys. Lett. 23 (2006) 2658]. Security analysis shows the present scheme is secure against intercept-resend attack and the impersonator's attack. Furthermore, it is more economic with present-day techniques and easily processed by a one-way quantum computer. (general)

  17. Communication: Fully coherent quantum state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Craig C., E-mail: cmartens@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2015-10-14

    In this paper, we describe a new and fully coherent stochastic surface hopping method for simulating mixed quantum-classical systems. We illustrate the approach on the simple but unforgiving problem of quantum evolution of a two-state quantum system in the limit of unperturbed pure state dynamics and for dissipative evolution in the presence of both stationary and nonstationary random environments. We formulate our approach in the Liouville representation and describe the density matrix elements by ensembles of trajectories. Population dynamics are represented by stochastic surface hops for trajectories representing diagonal density matrix elements. These are combined with an unconventional coherent stochastic hopping algorithm for trajectories representing off-diagonal quantum coherences. The latter generalizes the binary (0,1) “probability” of a trajectory to be associated with a given state to allow integers that can be negative or greater than unity in magnitude. Unlike existing surface hopping methods, the dynamics of the ensembles are fully entangled, correctly capturing the coherent and nonlocal structure of quantum mechanics.

  18. Visualizing the solutions for the circular infinite well in quantum and classical mechanics

    International Nuclear Information System (INIS)

    Robinett, R.W.

    1996-01-01

    The classical and quantum mechanical problem of a particle in the infinite circular well has recently surfaced in two quite different manifestations: (i) the observation of open-quote open-quote electron standing waves close-quote close-quote in circular open-quote open-quote corrals close-quote close-quote of atoms adsorbed on surfaces and (ii) as a benchmark example of an integrable system for comparison to the classical and quantum chaotic behavior of the open-quote open-quote stadium billiards close-quote close-quote problem. Motivated by this, we review the quantum and classical probability distributions for both position and momentum for this familiar problem, focusing on the visualization of the quantum wave functions and classical trajectories as well as the semiclassical connections between the two. copyright 1996 American Association of Physics Teachers

  19. Classical geometrical interpretation of ghost fields and anomalies in Yang-Mills theory and quantum gravity

    International Nuclear Information System (INIS)

    Thierry-Mieg, J.

    1985-01-01

    This paper discusses the reinterpretation of the BRS equations of Quantum Field Theory as the Maurer Cartan equation of a classical principal fiber bundle leads to a simple gauge invariant classification of the anomalies in Yang Mills theory and gravity

  20. Quantum dynamics in transverse-field Ising models from classical networks

    Directory of Open Access Journals (Sweden)

    Markus Schmitt, Markus Heyl

    2018-02-01

    Full Text Available The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.