WorldWideScience

Sample records for clams inhabiting deep-sea

  1. Morphological and functional characterization of hemocytes from two deep-sea vesicomyid clams Phreagena okutanii and Abyssogena phaseoliformis.

    Science.gov (United States)

    Tame, Akihiro; Ozawa, Genki; Maruyama, Tadashi; Yoshida, Takao

    2018-03-01

    Deep-sea vesicomyid clams harboring intracellular symbiotic sulfur-oxidizing bacteria are often dominant in chemosynthetic animal communities. Although they are known to have erythrocytes, little is known about other hemocytes. To investigate the types and roles of various hemocytes in vesicomyid clams, we performed morphological, histochemical and functional characterization of the hemocytes in two species, Phreagena okutanii, collected from 873 to 978 m depth, and Abyssogena phaseoliformis, from 5199 to 5355 m. Both were found to have three types of hemocytes: erythrocytes (ERCs), eosinophilic granulocytes (EGs), and basophilic granulocytes (BGs). The ERCs contain hemoglobin in the cytoplasm, with basophilic vacuoles containing acid polysaccharide, neutral lipids, and peroxidase. The EGs were found to contain acid polysaccharides and eosinophilic granules containing lysosomal enzymes, acid and alkaline phosphatases, chloroacetate esterase, and peroxidase. Although BGs had some basophilic granules with alkaline phosphatase, they lacked acid phosphatase and acid polysaccharides. The EGs and BGs were shown to have phagocytic ability, while the ERCs exhibited no phagocytosis. The EGs showed higher phagocytic activity as well as a higher phagosome-lysosome fusion rate than BGs. The hemocytes of the two vesicomyid species differed in the intracellular structures. In A. phaseoliformis, ERCs additionally contained neutral polysaccharides in vacuoles and had vesicles with acinus-like acidic mucus in the cytoplasm, neither of which were observed in P. okutanii. The eosinophilic granules in the EGs had heteromorphically-elongated shapes containing homogeneously electron-dense material in P. okutanii, but were more spherical and composed of fibrous structures in A. phaseoliformis. The difference in hemocytes between the two clams seems to be reflective of phylogenetically differentiated lineages adapting to differing conditions in their respective deep-sea environments

  2. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter.

    Science.gov (United States)

    Jiang, Lijing; Xu, Hongxiu; Zeng, Xiang; Wu, Xiaobing; Long, Minnan; Shao, Zongze

    2015-11-01

    Hydrogen is an important energy source for deep-sea hydrothermal vent ecosystems. However, little is known about microbes and their role in hydrogen turnover in the environment. In this study, the diversity and physiological characteristics of fermentative hydrogen-producing microbes from deep-sea hydrothermal vent fields were described for the first time. Seven enrichments were obtained from hydrothermal vent sulfides collected from the Southwest Indian Ocean, East Pacific and South Atlantic. 16S rRNA gene analysis revealed that members of the Caloranaerobacter genus were the dominant component in these enrichments. Subsequently, three thermophilic hydrogen producers, strains H363, H53214 and DY22619, were isolated. They were phylogenetically related to species of the genus Caloranaerobacter. The H2 yields of strains H363, H53214, DY22619 and MV107, which was the type species of genus Caloranaerobacter, were 0.11, 1.21, 3.13 and 2.85 mol H2/mol glucose, respectively. Determination of the main soluble metabolites revealed that strains H363, H53214 and MV107 performed heterolactic fermentations, while strain DY22619 performed butyric acid fermentation, indicating distinct fermentation patterns among members of the genus. Finally, a diversity of forms of [FeFe]-hydrogenase with different modular structures was revealed based on draft genomic data of Caloranaerobacter strains. This highlights the complexity of hydrogen metabolism in Caloranaerobacter, reflecting adaptations to environmental conditions in hydrothermal vent systems. Collectively, results suggested that Caloranaerobacter species might be ubiquitous and play a role in biological hydrogen generation in deep-sea hydrothermal vent fields. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  3. Metagenomic comparison of two Thiomicrospira lineages inhabiting contrasting deep-sea hydrothermal environments.

    Directory of Open Access Journals (Sweden)

    William J Brazelton

    Full Text Available BACKGROUND: The most widespread bacteria in oxic zones of carbonate chimneys at the serpentinite-hosted Lost City hydrothermal field, Mid-Atlantic Ridge, belong to the Thiomicrospira group of sulfur-oxidizing chemolithoautotrophs. It is unclear why Thiomicrospira-like organisms thrive in these chimneys considering that Lost City hydrothermal fluids are notably lacking in hydrogen sulfide and carbon dioxide. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe metagenomic sequences obtained from a Lost City carbonate chimney that are highly similar to the genome of Thiomicrospira crunogena XCL-2, an isolate from a basalt-hosted hydrothermal vent in the Pacific Ocean. Even though T. crunogena and Lost City Thiomicrospira inhabit different types of hydrothermal systems in different oceans, their genomic contents are highly similar. For example, sequences encoding the sulfur oxidation and carbon fixation pathways (including a carbon concentration mechanism of T. crunogena are also present in the Lost City metagenome. Comparative genomic analyses also revealed substantial genomic changes that must have occurred since the divergence of the two lineages, including large genomic rearrangements, gene fusion events, a prophage insertion, and transposase activity. CONCLUSIONS/SIGNIFICANCE: Our results show significant genomic similarity between Thiomicrospira organisms inhabiting different kinds of hydrothermal systems in different oceans, suggesting that these organisms are widespread and highly adaptable. These data also indicate genomic processes potentially associated with the adaptation of these lineages into strikingly different habitats.

  4. Can the hemoglobin characteristics of vesicomyid clam species influence their distribution in deep-sea sulfide-rich sediments? A case study in the Angola Basin

    Science.gov (United States)

    Decker, C.; Zorn, N.; Le Bruchec, J.; Caprais, J. C.; Potier, N.; Leize-Wagner, E.; Lallier, F. H.; Olu, K.; Andersen, A. C.

    2017-08-01

    Vesicomyids live in endosymbiosis with sulfur-oxidizing bacteria and therefore need hydrogen sulfide to survive. They can nevertheless live in a wide range of sulfide and oxygen levels and depths, which may explain the exceptional diversity of this clam family in deep-sea habitats. In the Gulf of Guinea, nine species of vesicomyid clams are known to live in cold-seep areas with pockmarks from 600 to 3200 m deep, as well as in the organic-rich sediments of the Congo deep-sea fan at 5000 m deep. Our previous study showed that two species living in a giant pockmark have different oxygen carriers, suggesting different adaptations to hypoxia. Here, we studied the hemoglobin structure and oxygen affinity in three other species, Calyptogena valdiviae, Elenaconcha guiness and Abyssogena southwardae to determine whether the characteristics of their oxygen carriers contribute to their distribution in sulfide-rich sediments at a regional scale. Documenting pairwise species associations in various proportions, we give a semi-quantitative account of their local distribution and oxygen and sulfide measurements at seven sites. Mass spectrometry showed that each vesicomyid species has four intracellular monomeric hemoglobin molecules of 15-16 kDa, all differing in their molecular mass. As expected, the monomers showed no cooperativity in oxygen binding. Their oxygen affinities were very high (below 1 Torr), but differed significantly. C. valdiviae had the highest affinity and was dominant in the Harp pockmark, the site with the lowest oxygen content (half the value of fully oxygenated water). A. southwardae dominated in the Congo Lobe area, the site with the deepest sulfides. We discuss how hemoglobin may favor an active, vertical distribution of vesicomyids in sulfide-rich sediments.

  5. Expression of genes involved in the uptake of inorganic carbon in the gill of a deep-sea vesicomyid clam harboring intracellular thioautotrophic bacteria.

    Science.gov (United States)

    Hongo, Yuki; Ikuta, Tetsuro; Takaki, Yoshihiro; Shimamura, Shigeru; Shigenobu, Shuji; Maruyama, Tadashi; Yoshida, Takao

    2016-07-10

    Deep-sea vesicomyid clams, including the genus Phreagena (formerly Calyptogena), harbor thioautotrophic bacterial symbionts in the host symbiosome, which consists of cytoplasmic vacuoles in gill epithelial cells called bacteriocytes. The symbiont requires inorganic carbon (Ci), such as CO2, HCO3(-), and CO3(2-), to synthesize organic compounds, which are utilized by the host clam. The dominant Ci in seawater is HCO3(-), which is impermeable to cell membranes. Within the bacteriocyte, cytoplasmic carbonic anhydrase (CA) from the host, which catalyzes the inter-conversion between CO2 and HCO3(-), has been shown to be abundant and is thought to supply intracellular CO2 to symbionts in the symbiosome. However, the mechanism of Ci uptake by the host gill from seawater is poorly understood. To elucidate the influx pathway of Ci into the bacteriocyte, we isolated the genes related to Ci uptake via the pyrosequencing of cDNA from the gill of Phreagena okutanii, and investigated their expression patterns. Using phylogenetic and amino acid sequence analyses, three solute carrier family 4 (SLC4) bicarbonate transporters (slc4co1, slc4co2, and slc4co4) and two membrane-associated CAs (mcaco1 and mcaco2) were identified as candidate genes for Ci uptake. In an in situ hybridization analysis of gill sections, the expression of mcaco1 and mcaco2 was detected in the bacteriocytes and asymbiotic non-ciliated cells, respectively, and the expression of slc4co1 and slc4co2 was detected in the asymbiotic cells, including the intermediate cells of the inner area and the non-ciliated cells of the external area. Although subcellular localizations of the products of these genes have not been fully elucidated, they may play an important role in the uptake of Ci into the bacteriocytes. These findings will improve our understanding of the Ci transport system in the symbiotic relationships of chemosynthetic bivalves. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Oxygen isotopic distribution along the otolith growth axis by secondary ion mass spectrometry: Applications for studying ontogenetic change in the depth inhabited by deep-sea fishes

    Science.gov (United States)

    Shiao, Jen-Chieh; Itoh, Shoichi; Yurimoto, Hisayoshi; Iizuka, Yoshiyuki; Liao, Yun-Chih

    2014-02-01

    This study using tuna otoliths as working standards established a high lateral resolution and precision analysis to measure δ18Ootolith by secondary ion mass spectrometry. This analytical approach of the ion probe was applied to deep-sea fishes to reconstruct the likely depths inhabited by the fishes at different life history stages based on the measured δ18Ootolith values as a proxy of water temperature. Dramatic increases up to 5-6‰ in δ18Ootolith, representing a temperature decrease of approximately 20 °C, were detected in a blind cusk eel (Barathronus maculatus) otolith and in the otoliths of Synaphobranchus kaupii during leptocephalus metamorphosis to glass eel, inferred from the drop of otolith Sr/Ca ratios and increase of otolith growth increment width. δ18Ootolith profiles clearly divided the fish's life history into a planktonic stage in the mixed layer of the ocean and a benthic stage on the deep-sea ocean bottom. The habitat shift signal was recorded within a 150 μm width of otolith growth zone, which was too narrow to be clearly detected by mechanical drilling and conventional isotopic ratio mass spectrometry. However, variations down to -7‰ were found in δ18Ootolith profiles as the result of Cs2+ beam sputter in the core and larval portions of the otoliths. Carbon mapping by electron probe microanalyzer and staining by toluidine blue suggested abundant proteins existed in the areas with anomaly negative δ18Ootolith values, which cannot be interpreted as a habitat change but due to the isotopic fractionation by O emission from the proteins. These results implied that careful design and understanding of the chemical composition of the analytical areas or tracks on the heterogeneous otolith was essential for highly accurate and precise analysis.

  7. A Deep-Sea Simulation.

    Science.gov (United States)

    Montes, Georgia E.

    1997-01-01

    Describes an activity that simulates exploration techniques used in deep-sea explorations and teaches students how this technology can be used to take a closer look inside volcanoes, inspect hazardous waste sites such as nuclear reactors, and explore other environments dangerous to humans. (DDR)

  8. Mapping the deep sea floor

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    By the early 20th century, oceanographers intensified their efforts to map the deep sea. The great depth of the Philippine Trench was first observed by the German Planet Expedition in 1912. During World War II, the US naval vessel Cape Johnson used directional echo-sounding to obtain a depth of 10...... Trench in order to map its bathymetric features. The resulting maps are presented in this poster. Unlike many other contemporary developments in deep sea topography and cartography that were shaped by the Cold War, the Galathea maps of the Philippine Trench were intimately connected with the expedition......'s attempt to "wave the Danish flag". The expedition was the first scientific expedition to have on board a separate press section communicating its scientific results as well as Danish nationality to the wider public. In this poster, the Galathea maps of the Philippine Trench are placed within this context...

  9. Ploughing the deep sea floor.

    Science.gov (United States)

    Puig, Pere; Canals, Miquel; Company, Joan B; Martín, Jacobo; Amblas, David; Lastras, Galderic; Palanques, Albert

    2012-09-13

    Bottom trawling is a non-selective commercial fishing technique whereby heavy nets and gear are pulled along the sea floor. The direct impact of this technique on fish populations and benthic communities has received much attention, but trawling can also modify the physical properties of seafloor sediments, water–sediment chemical exchanges and sediment fluxes. Most of the studies addressing the physical disturbances of trawl gear on the seabed have been undertaken in coastal and shelf environments, however, where the capacity of trawling to modify the seafloor morphology coexists with high-energy natural processes driving sediment erosion, transport and deposition. Here we show that on upper continental slopes, the reworking of the deep sea floor by trawling gradually modifies the shape of the submarine landscape over large spatial scales. We found that trawling-induced sediment displacement and removal from fishing grounds causes the morphology of the deep sea floor to become smoother over time, reducing its original complexity as shown by high-resolution seafloor relief maps. Our results suggest that in recent decades, following the industrialization of fishing fleets, bottom trawling has become an important driver of deep seascape evolution. Given the global dimension of this type of fishery, we anticipate that the morphology of the upper continental slope in many parts of the world’s oceans could be altered by intensive bottom trawling, producing comparable effects on the deep sea floor to those generated by agricultural ploughing on land.

  10. Vision in the deep sea.

    Science.gov (United States)

    Warrant, Eric J; Locket, N Adam

    2004-08-01

    The deep sea is the largest habitat on earth. Its three great faunal environments--the twilight mesopelagic zone, the dark bathypelagic zone and the vast flat expanses of the benthic habitat--are home to a rich fauna of vertebrates and invertebrates. In the mesopelagic zone (150-1000 m), the down-welling daylight creates an extended scene that becomes increasingly dimmer and bluer with depth. The available daylight also originates increasingly from vertically above, and bioluminescent point-source flashes, well contrasted against the dim background daylight, become increasingly visible. In the bathypelagic zone below 1000 m no daylight remains, and the scene becomes entirely dominated by point-like bioluminescence. This changing nature of visual scenes with depth--from extended source to point source--has had a profound effect on the designs of deep-sea eyes, both optically and neurally, a fact that until recently was not fully appreciated. Recent measurements of the sensitivity and spatial resolution of deep-sea eyes--particularly from the camera eyes of fishes and cephalopods and the compound eyes of crustaceans--reveal that ocular designs are well matched to the nature of the visual scene at any given depth. This match between eye design and visual scene is the subject of this review. The greatest variation in eye design is found in the mesopelagic zone, where dim down-welling daylight and bio-luminescent point sources may be visible simultaneously. Some mesopelagic eyes rely on spatial and temporal summation to increase sensitivity to a dim extended scene, while others sacrifice this sensitivity to localise pinpoints of bright bioluminescence. Yet other eyes have retinal regions separately specialised for each type of light. In the bathypelagic zone, eyes generally get smaller and therefore less sensitive to point sources with increasing depth. In fishes, this insensitivity, combined with surprisingly high spatial resolution, is very well adapted to the

  11. Deep-sea genetic resources

    OpenAIRE

    Desbruyere, D; Arnaud-haond, Sophie; Fabri, Marie-claire; Guezennec, Jean; Querellou, Joel

    2007-01-01

    Two third of our Planet are covered by oceans more than 3,000m deep (~ 307 millions km2) and the mean depth of the sea is approximately 3,800m. The volume of the deep ocean (aphotic) is about 1,280 Millions of km3 while the volume of terrestrial ecosystems is only 125 Millions of km3. Therefore, the deep-sea ecosystem is by far the largest complex biome on the Earth. However, it suffers from a general disinterest of the public and decision makers due to its remoteness and inaccessibility. Edw...

  12. How deep-sea wood falls sustain chemosynthetic life.

    Directory of Open Access Journals (Sweden)

    Christina Bienhold

    Full Text Available Large organic food falls to the deep sea--such as whale carcasses and wood logs--are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals.

  13. How Deep-Sea Wood Falls Sustain Chemosynthetic Life

    Science.gov (United States)

    Bienhold, Christina; Pop Ristova, Petra; Wenzhöfer, Frank; Dittmar, Thorsten; Boetius, Antje

    2013-01-01

    Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals. PMID:23301092

  14. Potential impact of global climate change on benthic deep-sea microbes.

    Science.gov (United States)

    Danovaro, Roberto; Corinaldesi, Cinzia; Dell'Anno, Antonio; Rastelli, Eugenio

    2017-12-15

    Benthic deep-sea environments are the largest ecosystem on Earth, covering ∼65% of the Earth surface. Microbes inhabiting this huge biome at all water depths represent the most abundant biological components and a relevant portion of the biomass of the biosphere, and play a crucial role in global biogeochemical cycles. Increasing evidence suggests that global climate changes are affecting also deep-sea ecosystems, both directly (causing shifts in bottom-water temperature, oxygen concentration and pH) and indirectly (through changes in surface oceans' productivity and in the consequent export of organic matter to the seafloor). However, the responses of the benthic deep-sea biota to such shifts remain largely unknown. This applies particularly to deep-sea microbes, which include bacteria, archaea, microeukaryotes and their viruses. Understanding the potential impacts of global change on the benthic deep-sea microbial assemblages and the consequences on the functioning of the ocean interior is a priority to better forecast the potential consequences at global scale. Here we explore the potential changes in the benthic deep-sea microbiology expected in the coming decades using case studies on specific systems used as test models. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Methods in mooring deep sea sediment traps

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesan, R.; Fernando, V.; Rajaraman, V.S.; Janakiraman, G.

    The experience gained during the process of deployment and retrieval of nearly 39 sets of deep sea sediment trap moorings on various ships like FS Sonne, ORV Sagarkanya and DSV Nand Rachit are outlined. The various problems encountered...

  16. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  17. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  18. 47 CFR 32.2424 - Submarine & deep sea cable.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Submarine & deep sea cable. 32.2424 Section 32... Submarine & deep sea cable. (a) This account shall include the original cost of submarine cable and deep sea... defined below, are to be maintained for nonmetallic submarine and deep sea cable and metallic submarine...

  19. Mg isotope fractionation in biogenic carbonates of deep-sea coral, benthic foraminifera, and hermatypic coral.

    Science.gov (United States)

    Yoshimura, Toshihiro; Tanimizu, Masaharu; Inoue, Mayuri; Suzuki, Atsushi; Iwasaki, Nozomu; Kawahata, Hodaka

    2011-11-01

    High-precision Mg isotope measurements by multiple collector inductively coupled plasma mass spectrometry were applied for determinations of magnesium isotopic fractionation of biogenic calcium carbonates from seawater with a rapid Mg purification technique. The mean δ(26)Mg values of scleractinian corals, giant clam, benthic foraminifera, and calcite deep-sea corals were -0.87‰, -2.57‰, -2.34‰, and -2.43‰, suggesting preferential precipitation of light Mg isotopes to produce carbonate skeleton in biomineralization. Mg isotope fractionation in deep-sea coral, which has high Mg calcite skeleton, showed a clear temperature (T) dependence from 2.5 °C to 19.5 °C: 1,000 × ln(α) = -2.63 (±0.076) + 0.0138 (±0.0051) × T(R(2) = 0.82, p coral. Since the precipitation rates of deep-sea coral and benthic foraminifera are several orders of magnitude different, the results suggest that kinetic isotope fractionation may not be a major controlling factor for high-Mg calcite. The Mg isotope fractionation factors and the slope of temperature dependence from deep-sea corals and benthic foraminifera are similar to that for an inorganically precipitated calcite speleothem. Taking into account element partitioning and the calcification rate of biogenic CaCO(3), the similarity among inorganic minerals, deep-sea corals, and benthic foraminiferas may indicate a strong mineralogical control on Mg isotope fractionation for high-Mg calcite. On the other hand, δ(26)Mg in hermatypic corals composed of aragonite has been comparable with previous data on biogenic aragonite of coral, sclerosponges, and scaphopad, regardless of species differences of samples.

  20. Deep-sea fungi: Occurrence and adaptations

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.

    . In spite of this, fungi have remained largely neglected in the vast environment of deep sea, with some sporadic reports appearing once in a while. With this study, it is tried to reduce this void by describing the occurrence and diversity of fungi from...

  1. Cosmopolitanism and Biogeography of the Genus Manganonema (Nematoda: Monhysterida in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    2011-09-01

    Full Text Available Spatial patterns of species diversity provide information about the mechanisms that regulate biodiversity and are important for setting conservation priorities. Present knowledge of the biogeography of meiofauna in the deep sea is scarce. This investigation focuses on the distribution of the deep-sea nematode genus Manganonema, which is typically extremely rare in deep-sea sediment samples. Forty-four specimens of eight different species of this genus were recorded from different Atlantic and Mediterranean regions. Four out of the eight species encountered are new to science. We report here that this genus is widespread both in the Atlantic and in the Mediterranean Sea. These new findings together with literature information indicate that Manganonema is a cosmopolitan genus, inhabiting a variety of deep-sea habitats and oceans. Manganonema shows the highest diversity at water depths >4,000 m. Our data, therefore, indicate that this is preferentially an abyssal genus that is able, at the same time, to colonize specific habitats at depths shallower than 1,000 m. The analysis of the distribution of the genus Manganonema indicates the presence of large differences in dispersal strategies among different species, ranging from locally endemic to cosmopolitan. Lacking meroplanktonic larvae and having limited dispersal ability due to their small size, it has been hypothesized that nematodes have limited dispersal potential. However, the investigated deep-sea nematodes were present across different oceans covering macro-scale distances. Among the possible explanations (hydrological conditions, geographical and geological pathways, long-term processes, specific historical events, their apparent preference of colonizing highly hydrodynamic systems, could suggest that these infaunal organisms are transported by means of deep-sea benthic storms and turbidity currents over long distances.

  2. Invertebrate population genetics across Earth's largest habitat: The deep-sea floor.

    Science.gov (United States)

    Taylor, M L; Roterman, C N

    2017-10-01

    Despite the deep sea being the largest habitat on Earth, there are just 77 population genetic studies of invertebrates (115 species) inhabiting non-chemosynthetic ecosystems on the deep-sea floor (below 200 m depth). We review and synthesize the results of these papers. Studies reveal levels of genetic diversity comparable to shallow-water species. Generally, populations at similar depths were well connected over 100s-1,000s km, but studies that sampled across depth ranges reveal population structure at much smaller scales (100s-1,000s m) consistent with isolation by adaptation across environmental gradients, or the existence of physical barriers to connectivity with depth. Few studies were ocean-wide (under 4%), and 48% were Atlantic-focused. There is strong emphasis on megafauna and commercial species with research into meiofauna, "ecosystem engineers" and other ecologically important species lacking. Only nine papers account for ~50% of the planet's surface (depths below 3,500 m). Just two species were studied below 5,000 m, a quarter of Earth's seafloor. Most studies used single-locus mitochondrial genes revealing a common pattern of non-neutrality, consistent with demographic instability or selective sweeps; similar to deep-sea hydrothermal vent fauna. The absence of a clear difference between vent and non-vent could signify that demographic instability is common in the deep sea, or that selective sweeps render single-locus mitochondrial studies demographically uninformative. The number of population genetics studies to date is miniscule in relation to the size of the deep sea. The paucity of studies constrains meta-analyses where broad inferences about deep-sea ecology could be made. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  3. Assessing Deep Sea Communities Through Seabed Imagery

    Science.gov (United States)

    Matkin, A. G.; Cross, K.; Milititsky, M.

    2016-02-01

    The deep sea still remains virtually unexplored. Human activity, such as oil and gas exploration and deep sea mining, is expanding further into the deep sea, increasing the need to survey and map extensive areas of this habitat in order to assess ecosystem health and value. The technology needed to explore this remote environment has been advancing. Seabed imagery can cover extensive areas of the seafloor and investigate areas where sampling with traditional coring methodologies is just not possible (e.g. cold water coral reefs). Remotely operated vehicles (ROVs) are an expensive option, so drop or towed camera systems can provide a more viable and affordable alternative, while still allowing for real-time control. Assessment of seabed imagery in terms of presence, abundance and density of particular species can be conducted by bringing together a variety of analytical tools for a holistic approach. Sixteen deep sea transects located offshore West Africa were investigated with a towed digital video telemetry system (DTS). Both digital stills and video footage were acquired. An extensive data set was obtained from over 13,000 usable photographs, allowing for characterisation of the different habitats present in terms of community composition and abundance. All observed fauna were identified to the lowest taxonomic level and enumerated when possible, with densities derived after the seabed area was calculated for each suitable photograph. This methodology allowed for consistent assessment of the different habitat types present, overcoming constraints, such as specific taxa that cannot be enumerated, such as sponges, corals or bryozoans, the presence of mobile and sessile species, or the level of taxonomic detail. Although this methodology will not enable a full characterisation of a deep sea community, in terms of species composition for instance, itt will allow a robust assessment of large areas of the deep sea in terms of sensitive habitats present and community

  4. Microplastic pollution in deep-sea sediments

    International Nuclear Information System (INIS)

    Van Cauwenberghe, Lisbeth; Vanreusel, Ann; Mees, Jan; Janssen, Colin R.

    2013-01-01

    Microplastics are small plastic particles ( 3 was observed. •The depths from where these microplastics were recovered range from 1176 to 4843 m. •The sizes of the particles range from 75 to 161 μm at their largest cross-section. -- Here, we demonstrate that microplastics have invaded the marine environment to an extent that they appear to even be present in the remote deep sea

  5. A Moessbauer study of deep sea sediments

    International Nuclear Information System (INIS)

    Minai, Y.; Tominaga, T.; Furuta, T.; Kobayashi, K.

    1981-01-01

    In order to determine the chemical states of iron in deep sea sediments, Moessbauer spectra of the sediments collected from various areas of the Pacific have been measured. The Moessbauer spectra were composed of paramagnetic ferric, high-spin ferrous, and magnetic components. The correlation of their relative abundance to the sampling location and the kind of sediments may afford clues to infer the origin of each iron-bearing phase. (author)

  6. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem

    2015-08-07

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean\\'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  7. Fungal diversity in deep-sea sediments associated with asphalt seeps at the Sao Paulo Plateau

    Science.gov (United States)

    Nagano, Yuriko; Miura, Toshiko; Nishi, Shinro; Lima, Andre O.; Nakayama, Cristina; Pellizari, Vivian H.; Fujikura, Katsunori

    2017-12-01

    We investigated the fungal diversity in a total of 20 deep-sea sediment samples (of which 14 samples were associated with natural asphalt seeps and 6 samples were not associated) collected from two different sites at the Sao Paulo Plateau off Brazil by Ion Torrent PGM targeting ITS region of ribosomal RNA. Our results suggest that diverse fungi (113 operational taxonomic units (OTUs) based on clustering at 97% sequence similarity assigned into 9 classes and 31 genus) are present in deep-sea sediment samples collected at the Sao Paulo Plateau, dominated by Ascomycota (74.3%), followed by Basidiomycota (11.5%), unidentified fungi (7.1%), and sequences with no affiliation to any organisms in the public database (7.1%). However, it was revealed that only three species, namely Penicillium sp., Cadophora malorum and Rhodosporidium diobovatum, were dominant, with the majority of OTUs remaining a minor community. Unexpectedly, there was no significant difference in major fungal community structure between the asphalt seep and non-asphalt seep sites, despite the presence of mass hydrocarbon deposits and the high amount of macro organisms surrounding the asphalt seeps. However, there were some differences in the minor fungal communities, with possible asphalt degrading fungi present specifically in the asphalt seep sites. In contrast, some differences were found between the two different sampling sites. Classification of OTUs revealed that only 47 (41.6%) fungal OTUs exhibited >97% sequence similarity, in comparison with pre-existing ITS sequences in public databases, indicating that a majority of deep-sea inhabiting fungal taxa still remain undescribed. Although our knowledge on fungi and their role in deep-sea environments is still limited and scarce, this study increases our understanding of fungal diversity and community structure in deep-sea environments.

  8. Life on wood - the carnivorous deep-sea mussel Idas argenteus (Bathymodiolinae, Mytilidae, Bivalvia

    DEFF Research Database (Denmark)

    Ockelmann, Kurt W.; Dinesen, Grete E.

    2011-01-01

    Deep-sea mussels associated with sunken wood are less well known in terms of anatomy, biology and evolution than their bathymodioline allies from cold seeps and hydrothermal vents. During the Danish 'Ingolf Expedition' (1895-96) to the Northeast Atlantic, two pieces of pinewood were collected from...... a depth of 1836 m. The wood was inhabited by several hundred individuals of the deep-sea mussel Idas argenteus and the wood-boring pholadid Xyloredo ingolfia. Idas argenteus is the type species of its genus and differs from some of the species until now referred to Idas by having gill filaments like those...... to its shell development, alimentary system, gill anatomy and life habits provide important clues to the evolution of the Bathymodiolinae....

  9. Mesoscale eddies transport deep-sea sediments.

    Science.gov (United States)

    Zhang, Yanwei; Liu, Zhifei; Zhao, Yulong; Wang, Wenguang; Li, Jianru; Xu, Jingping

    2014-08-04

    Mesoscale eddies, which contribute to long-distance water mass transport and biogeochemical budget in the upper ocean, have recently been taken into assessment of the deep-sea hydrodynamic variability. However, how such eddies influence sediment movement in the deepwater environment has not been explored. Here for the first time we observed deep-sea sediment transport processes driven by mesoscale eddies in the northern South China Sea via a full-water column mooring system located at 2100 m water depth. Two southwestward propagating, deep-reaching anticyclonic eddies passed by the study site during January to March 2012 and November 2012 to January 2013, respectively. Our multiple moored instruments recorded simultaneous or lagging enhancement of suspended sediment concentration with full-water column velocity and temperature anomalies. We interpret these suspended sediments to have been trapped and transported from the southwest of Taiwan by the mesoscale eddies. The net near-bottom southwestward sediment transport by the two events is estimated up to one million tons. Our study highlights the significance of surface-generated mesoscale eddies on the deepwater sedimentary dynamic process.

  10. The deep sea Acoustic Detection system AMADEUS

    International Nuclear Information System (INIS)

    Naumann, Christopher Lindsay

    2008-01-01

    As a part of the ANTARES neutrino telescope, the AMADEUS (ANTARES Modules for Acoustic Detection Under the Sea) system is an array of acoustical sensors designed to investigate the possibilities of acoustic detection of ultra-high energy neutrinos in the deep sea. The complete system will comprise a total of 36 acoustic sensors in six clusters on two of the ANTARES detector lines. With an inter-sensor spacing of about one metre inside the clusters and between 15 and 340 metres between the different clusters, it will cover a wide range of distances as will as provide a considerable lever arm for point source triangulation. Three of these clusters have already been deployed in 2007 and have been in operation since, currently yielding around 2GB of acoustic data per day. The remaining three clusters are scheduled to be deployed in May 2008 together with the final ANTARES detector line. Apart from proving the feasibility of operating an acoustic detection system in the deep sea, the main aim of this project is an in-depth survey of both the acoustic properties of the sea water and the acoustic background present at the detector site. It will also serve as a platform for the development and refinement of triggering, filtering and reconstruction algorithms for acoustic particle detection. In this presentation, a description of the acoustic sensor and read-out system is given, together with examples for the reconstruction and evaluation of the acoustic data.

  11. Metagenomic Signatures of Microbial Communities in Deep-Sea Hydrothermal Sediments of Azores Vent Fields.

    Science.gov (United States)

    Cerqueira, Teresa; Barroso, Cristina; Froufe, Hugo; Egas, Conceição; Bettencourt, Raul

    2018-01-21

    The organisms inhabiting the deep-seafloor are known to play a crucial role in global biogeochemical cycles. Chemolithoautotrophic prokaryotes, which produce biomass from single carbon molecules, constitute the primary source of nutrition for the higher organisms, being critical for the sustainability of food webs and overall life in the deep-sea hydrothermal ecosystems. The present study investigates the metabolic profiles of chemolithoautotrophs inhabiting the sediments of Menez Gwen and Rainbow deep-sea vent fields, in the Mid-Atlantic Ridge. Differences in the microbial community structure might be reflecting the distinct depth, geology, and distance from vent of the studied sediments. A metagenomic sequencing approach was conducted to characterize the microbiome of the deep-sea hydrothermal sediments and the relevant metabolic pathways used by microbes. Both Menez Gwen and Rainbow metagenomes contained a significant number of genes involved in carbon fixation, revealing the largely autotrophic communities thriving in both sites. Carbon fixation at Menez Gwen site was predicted to occur mainly via the reductive tricarboxylic acid cycle, likely reflecting the dominance of sulfur-oxidizing Epsilonproteobacteria at this site, while different autotrophic pathways were identified at Rainbow site, in particular the Calvin-Benson-Bassham cycle. Chemolithotrophy appeared to be primarily driven by the oxidation of reduced sulfur compounds, whether through the SOX-dependent pathway at Menez Gwen site or through reverse sulfate reduction at Rainbow site. Other energy-yielding processes, such as methane, nitrite, or ammonia oxidation, were also detected but presumably contributing less to chemolithoautotrophy. This work furthers our knowledge of the microbial ecology of deep-sea hydrothermal sediments and represents an important repository of novel genes with potential biotechnological interest.

  12. Environment and deep-sea mining: A perspective

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Sharma, R.

    of the effects of deep-sea mining is resulting in these effects being studied in different oceans, and efforts to develop regulations governing this exploitation are also underway at national and international levels. The impact assessment of deep-sea mining...

  13. A new procedure for deep sea mining tailings disposal

    NARCIS (Netherlands)

    Ma, W.; Schott, D.L.; Lodewijks, G.

    2017-01-01

    Deep sea mining tailings disposal is a new environmental challenge related to water pollution, mineral crust waste handling, and ocean biology. The objective of this paper is to propose a new tailings disposal procedure for the deep sea mining industry. Through comparisons of the tailings disposal

  14. Adapting to the Deep Sea: A Fun Activity with Bioluminescence

    Science.gov (United States)

    Rife, Gwynne

    2006-01-01

    Over the past decade, much has been learned about the ocean's secrets and especially about the creatures of the deep sea. The deepest parts of the oceans are currently the focus of many new discoveries in both the physical and biological sciences. Middle school students find the deep sea fascinating and especially seem to enjoy its mysterious and…

  15. Ion transport in deep-sea sediments

    International Nuclear Information System (INIS)

    Heath, G.R.

    1979-01-01

    Initial assessment of the ability of deep-sea clays to contain nuclear waste is optimistic. Yet, the investigators have no delusions about the complexity of the natural geochemical system and the perturbations that may result from emplacement of thermally-hot waste cannisters. Even though they may never be able to predict the exact nature of all these perturbations, containment of the nuclides by the waste form/cannister system until most of the heat has decayed, and burial of the waste to a sufficient depth that the altered zone can be treated as a black box source of dissolved nuclides to the enclosing unperturbed sediment, encourage them to believe that ion migration in the deep seabed can be modeled accurately and that our preliminary estimates of migration rates are likely to be reasonably realistic

  16. Extreme Longevity in Proteinaceous Deep-Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Fallon, S J; Mucciarone, D A

    2009-02-09

    Deep-sea corals are found on hard substrates on seamounts and continental margins world-wide at depths of 300 to {approx}3000 meters. Deep-sea coral communities are hotspots of deep ocean biomass and biodiversity, providing critical habitat for fish and invertebrates. Newly applied radiocarbon age date from the deep water proteinaceous corals Gerardia sp. and Leiopathes glaberrima show that radial growth rates are as low as 4 to 35 {micro}m yr{sup -1} and that individual colony longevities are on the order of thousands of years. The management and conservation of deep sea coral communities is challenged by their commercial harvest for the jewelry trade and damage caused by deep water fishing practices. In light of their unusual longevity, a better understanding of deep sea coral ecology and their interrelationships with associated benthic communities is needed to inform coherent international conservation strategies for these important deep-sea ecosystems.

  17. Recent developments in the thermophilic microbiology of deep-sea hydrothermal vents.

    Science.gov (United States)

    Miroshnichenko, Margarita L; Bonch-Osmolovskaya, Elizaveta A

    2006-04-01

    The diversity of thermophilic prokaryotes inhabiting deep-sea hot vents was actively studied over the last two decades. The ever growing interest is reflected in the exponentially increasing number of novel thermophilic genera described. The goal of this paper is to survey the progress in this field made in the years 2000-2005. In this period, representatives of several new taxa of hyperthermophilic archaea were obtained from deep-sea environments. Two of these isolates had phenotypic features new for this group of organisms: the presence of an outer cell membrane (the genus Ignicoccus) and the ability to grow anaerobically with acetate and ferric iron (the genus Geoglobus). Also, our knowledge on the diversity of thermophilic bacteria from deep-sea thermal environments extended significantly. The new bacterial isolates represented diverse bacterial divisions: the phylum Aquificae, the subclass Epsilonproteobacteria, the order Thermotogales, the families Thermodesulfobacteriaceae, Deferribacteraceae, and Thermaceae, and a novel bacterial phylum represented by the genus Caldithrix. Most of these isolates are obligate or facultative lithotrophs, oxidizing molecular hydrogen in the course of different types of anaerobic respiration or microaerobic growth. The existence and significant ecological role of some of new bacterial thermophilic isolates was initially established by molecular methods.

  18. New perspectives in benthic deep-sea microbial ecology

    Directory of Open Access Journals (Sweden)

    Cinzia eCorinaldesi

    2015-03-01

    Full Text Available Deep-sea ecosystems represent the largest and most remote biome of the biosphere. They play a fundamental role in global biogeochemical cycles and their functions allow existence of life on our planet. In the last 20 years enormous progress has been made in the investigation of deep-sea microbes, but the knowledge of the microbial ecology of the soft bottoms (representing >90% of the deep-sea floor surface is still very limited. Deep-sea sediments host the largest fractions of Bacteria, Archaea and viruses on Earth, and potentially, a high diversity. At the same time, available results from metagenomics suggest that a large fraction of microbial taxa is completely unknown to science. Estimating the diversity of deep-sea benthic microbes and understanding their functions are some of the challenges of absolute priority, not only for deep-sea microbial ecology, but also for the entire research field of life sciences. The achievement of these goals, given the importance of the deep-sea microbial life for the functioning of the global biosphere, will open new perspectives for the comprehension of adaptation processes to the impact of global changes.

  19. Fauna and habitat types driven by turbidity currents in the lobe complex of the Congo deep-sea fan

    Science.gov (United States)

    Sen, Arunima; Dennielou, Bernard; Tourolle, Julie; Arnaubec, Aurélien; Rabouille, Christophe; Olu, Karine

    2017-08-01

    This study characterizes the habitats and megafaunal community of the Congo distal lobe complex driven by turbidity currents through the use of remotely operated vehicle (ROV) still imagery transects covering distances in the order of kilometers. In this sedimentary, abyssal area about 5000 m deep and 750 km offshore from western Africa, large quantities of deposited organic material supplied by the Congo River canyon and channel support aggregations of large sized foraminifers (Bathysiphon sp.) and vesicomyid clams (Christineconcha regab, Abyssogena southwardae) often associated with methane cold seeps, as well as opportunistic deep-sea scavengers. Additionally, bacterial mats, assumed to be formed by large sulfur-oxidizing filamentous bacteria (Beggiatoa type), and black patches of presumably reduced sediment were seen which are, together with sulfur-oxidizing symbiont- bearing vesicomyids, indicators of sulfide-rich sediments. Habitat and faunal distribution were analyzed in relation to the microtopography obtained with the ROV multibeam echosounder, at three sites from the entrance of the lobe complex where the channel is still deep, to the main, flatter area of turbidite deposition. Specific characteristics of the system influence animal distributions: both the forams and the vesicomyid clams tended to avoid the channels characterized by high-speed currents, and are therefore preferentially located along channel flanks affected by sliding, and on levees formed by channel overspill. Foram fields are found in flat areas and form large fields, whereas the vesicomyids have a patchy distribution and appear to show a preference for regions of local topographical relief such as slide scars or collapsed blocks of sediments, which likely facilitate sulfide exhumation. The colonization of sulfide rich sediments by vesicomyids is limited, but nonetheless was seen to occur in the main deposition area where they have to cope with very high sedimentation rates (up to 20 cm

  20. Nuclear wastes beneath the deep sea floor

    International Nuclear Information System (INIS)

    Bishop, W.P.; Hollister, C.D.

    1974-01-01

    Projections of energy demands for the year 2000 show that nuclear power will likely be one of our energy sources. But the benefits of nuclear power must be balanced against the drawbacks of its by-product: high-level wastes. While it may become possible to completely destroy or eliminate these wastes, it is at least equally possible that we may have to dispose of them on earth in such a way as to assure their isolation from man for periods of the order of a million years. Undersea regions in the middle of tectonic plates and in the approximate center of major current gyres offer some conceptual promise for waste disposal because of their geologic stability and comparatively low organic productivity. The advantages of this concept and the types of detailed information needed for its accurate assessment are discussed. The technical feasibility of permanent disposal beneath the deep sea floor cannot be accurately assessed with present knowledge, and there is a need for a thorough study of the types and rates of processes that affect this part of the earth's surface. Basic oceanographic research aimed at understanding these processes is yielding answers that apply to this societal need. (U.S.)

  1. Light at deep sea hydrothermal vents

    Science.gov (United States)

    Van Dover, Cindy Lee; Cann, J. R.; Cavanaugh, Colleen; Chamberlain, Steven; Delaney, John R.; Janecky, David; Imhoff, Johannes; Tyson, J. Anthony

    We usually think of the bottom of the sea as a dark environment, lit only by flashes of bioluminescent light. Discovery of light associated with geothermal processes at deep sea hydrothermal vents forces us to qualify our textbook descriptions of the seafloor as a uniformly dark environment. While a very dim glow emitted from high temperature (350°) vents (black smokers) at mid-oceanic ridge spreading centers has been documented [Van Dover et al, 1988], the source of this light and its role, if any, in the evolution and adaptation of photobiochemical processes have yet to be determined. Preliminary studies indicate that thermal radiation alone may account for the “glow” ]Smith and Delaney, 1989] and that a novel photoreceptor in shrimp-colonizing black smoker chimneys may detect this “glow” [Van Dover et al., 1989; Pelli and Chamberlain, 1989]. A more controversial question, posed by C. L. Van Dover, J. R. Cann, and J. R. Delaney at the 1993 LITE Workshop at the Woods Hole Oceanographic Institution in Massachusetts, is whether there may be sufficient light of appropriate wavelengths to support geothermally driven photosynthesis by microorganisms.

  2. Complete genome sequence of the highly Mn(II) tolerant Staphylococcus sp. AntiMn-1 isolated from deep-sea sediment in the Clarion-Clipperton Zone.

    Science.gov (United States)

    Wang, Xing; Lin, Danqiu; Jing, Xiaohuan; Zhu, Sidong; Yang, Jifang; Chen, Jigang

    2018-01-20

    Staphylococcus sp. AntiMn-1 is a deep-sea bacterium inhabiting seafloor sediment in the Clarion-Clipperton Zone (CCZ) that is highly tolerant to Mn(II) and displays efficient Mn(II) oxidation. Herein, we present the assembly and annotation of its genome. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Deep Sea Coral National Observation Database, Northeast Region

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The national database of deep sea coral observations. Northeast version 1.0. * This database was developed by the NOAA NOS NCCOS CCMA Biogeography office as part of...

  4. The MEUST deep sea infrastructure in the Toulon site

    Directory of Open Access Journals (Sweden)

    Lamare Patrick

    2016-01-01

    Full Text Available The MEUST infrastructure (Mediterranean Eurocentre for Underwater Sciences and Technologies is a permanent deep sea cabled infrastructure currently being deployed off shore of Toulon, France. The design and the status of the infrastructure are presented.

  5. Deepwater Program: Lophelia II, continuing ecological research on deep-sea corals and deep-reef habitats in the Gulf of Mexico

    Science.gov (United States)

    Demopoulos, Amanda W.J.; Ross, Steve W.; Kellogg, Christina A.; Morrison, Cheryl L.; Nizinski, Martha S.; Prouty, Nancy G.; Bourque, Jill R.; Galkiewicz, Julie P.; Gray, Michael A.; Springmann, Marcus J.; Coykendall, D. Katharine; Miller, Andrew; Rhode, Mike; Quattrini, Andrea; Ames, Cheryl L.; Brooke, Sandra D.; McClain Counts, Jennifer; Roark, E. Brendan; Buster, Noreen A.; Phillips, Ryan M.; Frometa, Janessy

    2017-12-11

    The deep sea is a rich environment composed of diverse habitat types. While deep-sea coral habitats have been discovered within each ocean basin, knowledge about the ecology of these habitats and associated inhabitants continues to grow. This report presents information and results from the Lophelia II project that examined deep-sea coral habitats in the Gulf of Mexico. The Lophelia II project focused on Lophelia pertusa habitats along the continental slope, at depths ranging from 300 to 1,000 meters. The chapters are authored by several scientists from the U.S. Geological Survey, National Oceanic and Atmospheric Administration, University of North Carolina Wilmington, and Florida State University who examined the community ecology (from microbes to fishes), deep-sea coral age, growth, and reproduction, and population connectivity of deep-sea corals and inhabitants. Data from these studies are presented in the chapters and appendixes of the report as well as in journal publications. This study was conducted by the Ecosystems Mission Area of the U.S. Geological Survey to meet information needs identified by the Bureau of Ocean Energy Management.

  6. Indian Deep-sea Environment Experiment (INDEX): An appraisal

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    -Sea Research II 48 (2001) 3295–3307 Indian Deep-sea EnvironmentExperiment(INDEX): An appraisal Rahul Sharma* National Institute of Oceanography, Dona Paula, Goa 403004, India Abstract Indian Deep-sea Environment Experiment (INDEX) is a multi-disciplinary study... rights reserved. 1. Introduction Concern for environmental conservation and developing methods for assessing the possible effects of large-scale mining on marine environment have prompted various research groups to simulate small-scale disturbance...

  7. Erbium-doped fiber lasers as deep-sea hydrophones

    International Nuclear Information System (INIS)

    Bagnoli, P.E.; Beverini, N.; Bouhadef, B.; Castorina, E.; Falchini, E.; Falciai, R.; Flaminio, V.; Maccioni, E.; Morganti, M.; Sorrentino, F.; Stefani, F.; Trono, C.

    2006-01-01

    The present work describes the development of a hydrophone prototype for deep-sea acoustic detection. The base-sensitive element is a single-mode erbium-doped fiber laser. The high sensitivity of these sensors makes them particularly suitable for a wide range of deep-sea acoustic applications, including geological and marine mammals surveys and above all as acoustic detectors in under-water telescopes for high-energy neutrinos

  8. Importance of sieve size in deep-sea macrobenthic studies

    Digital Repository Service at National Institute of Oceanography (India)

    Pavithran, S.; Ingole, B.S.; Nanajkar, M.; Goltekar, R.C.

    Among deep-sea organisms, both gigantism and dwarfism occur, evolutionary trends that can be explained by selection on optimal foraging strategies (Gage and Tyler 1991). Deep-sea dwarfism is common among a variety of taxa (Shirayama and Horikoshi 1989... (metabolism, faunal abundance, biomass production, nutrient recycling, home range size) have been shown to correlate strongly with individual body size (Peters 1983; Schmidt-Nielsen 1984; Brown et al. 2004; Kaariainen and Bett 2006). Most studies have...

  9. Studies of the reproductive biology of deep-sea megabenthos III. The deep-sea commensal species Epizoanthus paguriphilus (zoanthidea, anthozoa) and Parapagurus pilosimanus (paguroidea, crustacea)

    International Nuclear Information System (INIS)

    Muirhead, A.; Tyler, P.A.

    1984-01-01

    This report is the third in a series concerned with the biological processes of deep-sea megainvertebrates. The research programme aims to aid long term planning of nuclear waste disposal by providing information on the nature and rates of reproductive activities of deep sea invertebrates from several different phylogenetic groups. This information serves three functions:- Firstly, baseline information is provided concerning processes at or around the sediment/water interface. Secondly, knowledge of the actual mode of reproduction indicates the extent to which the biota could be involved in recycling leaked radioactive heavy metals to different areas of the environment via their reproductive processes. The third function fulfilled by this programme is to provide information on the rates at which these processes occur. Evaluation of these aspects of the life cycles of the megainvertebrates of a specific site will indicate the potential role of a large proportion of the biota inhabiting that site following leakage of dumped material. This report is concerned with the growth and modes of reproduction of a hermit crab, Parapagurus pilosimanus and the zoanthids Epizoanthus paguriphilus and E. abyssorum with which it lives at different depths of the N. Atlantic. (U.K.)

  10. U.V. repair in deep-sea bacteria

    International Nuclear Information System (INIS)

    Lutz, L.; Yayanos, A.A.

    1986-01-01

    Exposure of cells to light of less than 320 nanometers wavelengths may lead to lethal lesions and perhaps carcinogenesis. Many organisms have evolved mechanisms to repair U.V. light-induced damage. Organisms such as deep-sea bacteria are presumably never exposed to U.V. light and perhaps occasionally to visible from bioluminescence. Thus, the repair of U.V. damage in deep-sea bacterial DNA might be inefficient and repair by photoreactivation unlikely. The bacteria utilized in this investigation are temperature sensitive and barophilic. Four deep-sea isolates were chosen for this study: PE-36 from 3584 m, CNPT-3 from 5782 m, HS-34 from 5682 m, and MT-41 from 10,476 m, all are from the North Pacific ocean. The deep-sea extends from 1100 m to depths greater than 7000 m. It is a region of relatively uniform conditions. The temperature ranges from 5 to -1 0 C. There is no solar light in the deep-sea. Deep-sea bacteria are sensitive to U.V. light; in fact more sensitive than a variety of terrestrial and sea-surface bacteria. All four isolates demonstrate thymine dimer repair. Photoreactivation was observed in only MT-41. The other strains from shallower depths displayed no photoreactivation. The presence of DNA sequences homologous to the rec A, uvr A, B, and C and phr genes of E. coli have been examined by Southern hybridization techniques

  11. 46 CFR 167.40-20 - Deep-sea sounding apparatus.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Deep-sea sounding apparatus. 167.40-20 Section 167.40-20... SHIPS Certain Equipment Requirements § 167.40-20 Deep-sea sounding apparatus. Nautical school ships shall be equipped with an efficient or electronic deep-sea sounding apparatus. The electronic deep-sea...

  12. Evolutionary process of deep-sea bathymodiolus mussels.

    Directory of Open Access Journals (Sweden)

    Jun-Ichi Miyazaki

    Full Text Available BACKGROUND: Since the discovery of deep-sea chemosynthesis-based communities, much work has been done to clarify their organismal and environmental aspects. However, major topics remain to be resolved, including when and how organisms invade and adapt to deep-sea environments; whether strategies for invasion and adaptation are shared by different taxa or unique to each taxon; how organisms extend their distribution and diversity; and how they become isolated to speciate in continuous waters. Deep-sea mussels are one of the dominant organisms in chemosynthesis-based communities, thus investigations of their origin and evolution contribute to resolving questions about life in those communities. METHODOLOGY/PRINCIPAL FINDING: We investigated worldwide phylogenetic relationships of deep-sea Bathymodiolus mussels and their mytilid relatives by analyzing nucleotide sequences of the mitochondrial cytochrome c oxidase subunit I (COI and NADH dehydrogenase subunit 4 (ND4 genes. Phylogenetic analysis of the concatenated sequence data showed that mussels of the subfamily Bathymodiolinae from vents and seeps were divided into four groups, and that mussels of the subfamily Modiolinae from sunken wood and whale carcasses assumed the outgroup position and shallow-water modioline mussels were positioned more distantly to the bathymodioline mussels. We provisionally hypothesized the evolutionary history of Bathymodilolus mussels by estimating evolutionary time under a relaxed molecular clock model. Diversification of bathymodioline mussels was initiated in the early Miocene, and subsequently diversification of the groups occurred in the early to middle Miocene. CONCLUSIONS/SIGNIFICANCE: The phylogenetic relationships support the "Evolutionary stepping stone hypothesis," in which mytilid ancestors exploited sunken wood and whale carcasses in their progressive adaptation to deep-sea environments. This hypothesis is also supported by the evolutionary transition of

  13. Deep-sea coral research and technology program: Alaska deep-sea coral and sponge initiative final report

    Science.gov (United States)

    Rooper, Chris; Stone, Robert P.; Etnoyer, Peter; Conrath, Christina; Reynolds, Jennifer; Greene, H. Gary; Williams, Branwen; Salgado, Enrique; Morrison, Cheryl L.; Waller, Rhian G.; Demopoulos, Amanda W.J.

    2017-01-01

    Deep-sea coral and sponge ecosystems are widespread throughout most of Alaska’s marine waters. In some places, such as the central and western Aleutian Islands, deep-sea coral and sponge resources can be extremely diverse and may rank among the most abundant deep-sea coral and sponge communities in the world. Many different species of fishes and invertebrates are associated with deep-sea coral and sponge communities in Alaska. Because of their biology, these benthic invertebrates are potentially impacted by climate change and ocean acidification. Deepsea coral and sponge ecosystems are also vulnerable to the effects of commercial fishing activities. Because of the size and scope of Alaska’s continental shelf and slope, the vast majority of the area has not been visually surveyed for deep-sea corals and sponges. NOAA’s Deep Sea Coral Research and Technology Program (DSCRTP) sponsored a field research program in the Alaska region between 2012–2015, referred to hereafter as the Alaska Initiative. The priorities for Alaska were derived from ongoing data needs and objectives identified by the DSCRTP, the North Pacific Fishery Management Council (NPFMC), and Essential Fish Habitat-Environmental Impact Statement (EFH-EIS) process.This report presents the results of 15 projects conducted using DSCRTP funds from 2012-2015. Three of the projects conducted as part of the Alaska deep-sea coral and sponge initiative included dedicated at-sea cruises and fieldwork spread across multiple years. These projects were the eastern Gulf of Alaska Primnoa pacifica study, the Aleutian Islands mapping study, and the Gulf of Alaska fish productivity study. In all, there were nine separate research cruises carried out with a total of 109 at-sea days conducting research. The remaining projects either used data and samples collected by the three major fieldwork projects or were piggy-backed onto existing research programs at the Alaska Fisheries Science Center (AFSC).

  14. Use of 210Pb/ 226Ra disequilibria in the dating of deep-sea whale falls

    Science.gov (United States)

    Schuller, Daniel; Kadko, David; Smith, Craig R.

    2004-02-01

    Deep-sea whale falls, in particular the skeletal remains of whales that have sunk to the seafloor, are remarkable temporary reducing habitats. Reduced chemical species created by anaerobic microbial decay of lipid and organic compounds within the whale bone matrix fuel chemosynthetic-based communities, including bacteria, mussels, limpets, snails, and clams. Many of these species exhibit taxonomic affinities to other chemosynthetic deep-sea organisms colonizing hydrothermal vents and cold seeps. Knowledge of the timescales of whale fall community succession and persistence of these assemblages is needed to reliably estimate the abundance of whale fall habitats and to understand the dynamics of the whale fall communities and their potential roles as stepping stones for sulfophilic species. We have developed a radiochemical method based on 210Pb/ 226Ra disequilibria for estimating the ages of seafloor whale bone communities. Measurements of 210Pb/ 226Ra performed on known age bone samples yielded radioisotope ages in good agreement with the known ages. Our results indicate that this technique is valid for bones 10-85 years old (time since cetacean death). This technique, applied to multiple bones of unknown age whale falls taken from Monterey Canyon, Santa Catalina Basin, and San Nicholas Basin, constrained the upper limit ages of these systems (in 2002) to 6.3±1.0 years, 44.0±7.0 to 53.4±8.3 years, and 66.4±9.6 to 82.6±11 years, respectively. These ages were in reasonable agreement with faunal and/or skeletal observations. In addition, a preliminary lipid degradation rate was calculated for the Santa Catalina Basin whale fall using an independent time series and calibrated to the radiochemically determined age. Both radiochemical and lipid degradation evidence suggest that the whale fall microhabitat is able to support life for many decades.

  15. Feeding strategies and resource partitioning among elasmobranchs and cephalopods in Mediterranean deep-sea ecosystems

    Science.gov (United States)

    Valls, Maria; Rueda, Lucía; Quetglas, Antoni

    2017-10-01

    Cephalopods and elasmobranchs are important components of marine ecosystems, whereby knowing the ecological role they play in the structure and dynamics of trophic networks is paramount. With this aim, stomach contents and stable isotopes of the most abundant elasmobranch and cephalopod species (5 and 18 species, respectively) inhabiting deep-sea ecosystems from the western Mediterranean were analyzed. The predators investigated encompassed different taxonomic groups, such as rays and sharks within elasmobranchs, and squids, octopuses and cuttlefishes within cephalopods. Specifically, we investigated ontogenetic shifts in diet, feeding strategies and prey consumption, trophic structure and potential dietary overlap between and within both taxonomical groups. Stable isotope analysis revealed ontogenetic shifts in diet in three elasmobranch (rays and sharks) and two cephalopod (octopuses and squids) species. Isotopic data showed a contrasting food source gradient (δ13C), from pelagic (squids and cuttlefishes) to benthic (octopuses and elasmobranchs). Stomach data highlighted a great variety of trophic guilds which could be further aggregated into three broad categories: benthic, benthopelagic and pelagic feeders. The combination of both stomach content and stable isotope analyses revealed a clear food partitioning among species. Mesopelagic prey were found to be an important food resource for deep-sea elasmobranchs and cephalopods, which could be related to the strong oligotrophic conditions in the area. The observed differences in feeding strategies within cephalopods and elasmobranchs should be taken into account when defining functional groups in trophodynamic models from the western Mediterranean. Our results also revealed that cephalopods play a key role for the benthopelagic coupling, whereas demersal elasmobranchs contribute primarily to a one-way flux accumulating energy resources into deep-sea ecosystems.

  16. Cultured and uncultured fungal diversity in deep-sea environments.

    Science.gov (United States)

    Nagahama, Takahiko; Nagano, Yuriko

    2012-01-01

    The importance of fungi found in deep-sea extreme environments is becoming increasingly recognized. In this chapter, current scientific findings on the fungal diversity in several deep-sea environments by conventional culture and culture-independent methods are reviewed and discussed, primarily focused on culture-independent approaches. Fungal species detected by conventional culture methods mostly belonged to Ascomycota and Basidiomycota phyla. Culture-independent approaches have revealed the presence of highly novel fungal phylotypes, including new taxonomic groups placed in deep branches within the phylum Chytridiomycota and unknown ancient fungal groups. Future attempts to culture these unknown fungal groups may provide key insights into the early evolution of fungi and their ecological and physiological significance in deep-sea environments.

  17. Species distribution models of tropical deep-sea snappers.

    Directory of Open Access Journals (Sweden)

    Céline Gomez

    Full Text Available Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna. Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and

  18. Studies of the reproductive biology of deep-sea megabenthos

    International Nuclear Information System (INIS)

    Tyler, P.A.

    1987-07-01

    The final report describes the general biology and ecology of the 15 holothurians, 3 asteroids, 2 zoanthids and 1 crustacea species studied in Reports I-XIII, the sampling methods used and the station data. A summary of the histological, histochemical and biochemical results for the species examined is given. The data suggest that the reproductive processes in the deep-sea species examined are highly unlikely to be part of a pathway for the transfer of radionuclides from the deep-sea back to man. (author)

  19. Bipolar gene flow in deep-sea benthic foraminifera

    DEFF Research Database (Denmark)

    Pawlowski, J.; Fahrni, J.; Lecroq, B.

    2007-01-01

    Despite its often featureless appearance, the deep-ocean floor includes some of the most diverse habitats on Earth. However, the accurate assessment of global deep-sea diversity is impeded by a paucity of data on the geographical ranges of bottom-dwelling species, particularly at the genetic level....... Here, we present molecular evidence for exceptionally wide distribution of benthic foraminifera, which constitute the major part of deep-sea meiofauna. Our analyses of nuclear ribosomal RNA genes revealed high genetic similarity between Arctic and Antarctic populations of three common deep...

  20. Radio-active waste disposal and deep-sea biology

    International Nuclear Information System (INIS)

    Rice, A.L.

    1978-01-01

    The deep-sea has been widely thought of as a remote, sparsely populated, and biologically inactive environment, well suited to receive the noxious products of nuclear fission processes. Much of what is known of abyssal biology tends to support this view, but there are a few disquieting contra-indications. The realisation, in recent years, that many animal groups show a previously unsuspected high species diversity in the deep-sea emphasized the paucity of our knowledge of this environment. More dramatically, the discovery of a large, active, and highly mobile abysso-bentho-pelagic fauna changed the whole concept of abyssal life. Finally, while there is little evidence for the existence of vertical migration patterns linking the deep-sea bottom communities with those of the overlying water layers, there are similarly too few negative results for the possibility of such transport mechanisms to be dismissed. In summary, biological knowledge of the abyss is insufficient to answer the questions raised in connection with deep-sea dumping, but in the absence of adequate answers it might be dangerous to ignore the questions

  1. Species diversity variations in Neogene deep-sea benthic ...

    Indian Academy of Sciences (India)

    climatic turnovers. Some species of benthic foraminifera are sensitive to changes in water mass proper- ties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass sta- bility.

  2. Deep-sea palaeoceanography of the Maldives Islands (ODP Hole ...

    Indian Academy of Sciences (India)

    Madhsudhan

    2009-10-28

    Oct 28, 2009 ... Deep-sea benthic foraminifera have widely been used in palaeoceanographic reconstructions throughout the world ocean including the Arabian Sea owing to availability of knowledge on modern ecology of benthic foraminifera. (Gupta 1994 1997; Jannink et al. 1998; Dickens and Owen. 1999; Gupta and ...

  3. The deep sea is a major sink for microplastic debris

    Science.gov (United States)

    Woodall, Lucy C.; Sanchez-Vidal, Anna; Canals, Miquel; Paterson, Gordon L.J.; Coppock, Rachel; Sleight, Victoria; Calafat, Antonio; Rogers, Alex D.; Narayanaswamy, Bhavani E.; Thompson, Richard C.

    2014-01-01

    Marine debris, mostly consisting of plastic, is a global problem, negatively impacting wildlife, tourism and shipping. However, despite the durability of plastic, and the exponential increase in its production, monitoring data show limited evidence of concomitant increasing concentrations in marine habitats. There appears to be a considerable proportion of the manufactured plastic that is unaccounted for in surveys tracking the fate of environmental plastics. Even the discovery of widespread accumulation of microscopic fragments (microplastics) in oceanic gyres and shallow water sediments is unable to explain the missing fraction. Here, we show that deep-sea sediments are a likely sink for microplastics. Microplastic, in the form of fibres, was up to four orders of magnitude more abundant (per unit volume) in deep-sea sediments from the Atlantic Ocean, Mediterranean Sea and Indian Ocean than in contaminated sea-surface waters. Our results show evidence for a large and hitherto unknown repository of microplastics. The dominance of microfibres points to a previously underreported and unsampled plastic fraction. Given the vastness of the deep sea and the prevalence of microplastics at all sites we investigated, the deep-sea floor appears to provide an answer to the question—where is all the plastic? PMID:26064573

  4. Diversity and adaptations of deep-sea microorganisms

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    hydrostatic pressures and slow decaying process at depth aided preservation opened up a whole new area of research in biology and chemistry of deep-sea waters. This unique and challenging extreme environment is home to native baro- and psychrophiles whereas...

  5. Heavy mineral variation in the deep sea sediment of southeastern ...

    Indian Academy of Sciences (India)

    2004), explo- ration of minerals, and acquiring information on paleoenvironmental changes in marine sediments. (Okay and Ergün 2005). Earlier, very few attempts have been made to study the heavy mineral assemblages (HM) in deep sea sediment for paleoenvironmental characterization (Nechaev and. Isphording 1993).

  6. Error and precision of deep-sea photogrammetric methods

    Science.gov (United States)

    Peart, S.; Dunlop, K.; Schlining, B.

    2016-02-01

    The effects of climate change are well studied in oceanic surface waters and coastal areas, however, impacts are least known for the deep-sea. The Station M time series data set has been collected for 26 years to examine the effect of climate change on the deep-sea carbon cycle. As part of the time series, measurements of animal body size are gathered to calculate biomass and respiration rates. This is important to better define the role of deep-seafloor animals in the deep-sea carbon cycle. Measurements of deep-sea animals at Station M are made from Remotely Operated Vehicle (ROV) video footage using paired lasers and laser measurement algorithms. In this study ROV video data of a calibration target were collected at 4000 m and analyzed to quantify the effect of length and angle on measurement error. This data was used to develop a correction factor that can be used to achieve more accurate measurements of epibenthic megafauna.

  7. Deep sea benthos of the western and central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Parulekar, A.H.; Ingole, B.S.; Harkantra, S.N.; Ansari, Z.A.

    Quantitative investigations on deep sea benthos from 112 stations between lat. 21 degrees N-21 degrees S and long. 51 degrees E-94 degrees E and in the depth range of 1500 to 6000 m, revealed a rich biota having relatively low species diversity...

  8. Species diversity variations in Neogene deep-sea benthic ...

    Indian Academy of Sciences (India)

    Some species of benthic foraminifera are sensitive to changes in water mass properties whereas others are sensitive to organic fluxes and deep-sea oxygenation. Benthic faunal diversity has been found closely linked to food web, bottom water oxygen levels, and substrate and water mass stability. The present study is ...

  9. Potential biomass in deep-sea hydrothermal vent ecosystem

    Science.gov (United States)

    Nakamura, K.; Takai, K.

    2012-12-01

    Since the first discovery of black smoker vents hosting chemosynthetic macrofaunal communities (Spiess et al., 1980), submarine hydrothermal systems and associated biota have attracted interest of many researchers (e.g., Humphris et al., 1995; Van Dover, 2000; Wilcock et al., 2004). In the past couple of decades, particular attention has been paid to chemolithoautotrophic microorganisms that sustain the hydrothermal vent-endemic animal communities as the primary producer. This type of microorganisms obtains energy from inorganic substances (e.g., sulfur, hydrogen, and methane) derived from hydrothermal vent fluids, and is often considered as an important modern analogue to the early ecosystems of the Earth as well as the extraterrestrial life in other planets and moons (e.g., Jannasch and Mottl, 1985; Nealson et al., 2005; Takai et al., 2006). Even today, however, the size of this type of chemosynthetic deep-sea hydrothermal vent ecosystem is largely unknown. Here, we present geophysical and geochemical constraints on potential biomass in the deep-sea hydrothermal vent ecosystem. The estimation of the potential biomass in the deep-sea hydrothermal vent ecosystem is based on hydrothermal fluid flux calculated from heat flux (Elderfield and Schltz, 1996), maximum chemical energy available from metabolic reactions during mixing between hydrothermal vent fluids and seawater (McCollom, 2007), and maintenance energy requirements of the chemolithoautotrophic microorganisms (Hoehler, 2004). The result shows that the most of metabolic energy sustaining the deep-sea hydrothermal vent ecosystem is produced by oxidation reaction of reduced sulfur, although some parts of the energy are derived from hydrogenotrophic and methanotrophic reactions. The overall total of the potential biomass in deep-sea hydrothermal vent ecosystem is calculated to be much smaller than that in terrestrial ecosystems including terrestrial plants. The big difference in biomass between the

  10. Ecosystem function and services provided by the deep sea

    Science.gov (United States)

    Thurber, A. R.; Sweetman, A. K.; Narayanaswamy, B. E.; Jones, D. O. B.; Ingels, J.; Hansman, R. L.

    2014-07-01

    The deep sea is often viewed as a vast, dark, remote, and inhospitable environment, yet the deep ocean and seafloor are crucial to our lives through the services that they provide. Our understanding of how the deep sea functions remains limited, but when treated synoptically, a diversity of supporting, provisioning, regulating and cultural services becomes apparent. The biological pump transports carbon from the atmosphere into deep-ocean water masses that are separated over prolonged periods, reducing the impact of anthropogenic carbon release. Microbial oxidation of methane keeps another potent greenhouse gas out of the atmosphere while trapping carbon in authigenic carbonates. Nutrient regeneration by all faunal size classes provides the elements necessary for fueling surface productivity and fisheries, and microbial processes detoxify a diversity of compounds. Each of these processes occur on a very small scale, yet considering the vast area over which they occur they become important for the global functioning of the ocean. The deep sea also provides a wealth of resources, including fish stocks, enormous bioprospecting potential, and elements and energy reserves that are currently being extracted and will be increasingly important in the near future. Society benefits from the intrigue and mystery, the strange life forms, and the great unknown that has acted as a muse for inspiration and imagination since near the beginning of civilization. While many functions occur on the scale of microns to meters and timescales up to years, the derived services that result are only useful after centuries of integrated activity. This vast dark habitat, which covers the majority of the globe, harbors processes that directly impact humans in a variety of ways; however, the same traits that differentiate it from terrestrial or shallow marine systems also result in a greater need for integrated spatial and temporal understanding as it experiences increased use by society. In

  11. Worldwide Analysis of Sedimentary DNA Reveals Major Gaps in Taxonomic Knowledge of Deep-Sea Benthos

    DEFF Research Database (Denmark)

    Sinniger, Frédéric; Pawlowski, Jan; Harii, Saki

    2016-01-01

    in the deep sea, they also expose the difficulties in exploiting metabarcoding datasets resulting from the lack of taxonomic knowledge and appropriate reference databases. Overall, our study demonstrates the promising potential of eDNA metabarcoding to accelerate the assessment of deep-sea biodiversity...... for pure and applied deep-sea environmental research but also emphasizes the necessity to integrate such new approaches with traditional morphology-based examination of deep-sea organisms....

  12. Association of deep-sea incirrate octopods with manganese crusts and nodule fields in the Pacific Ocean

    OpenAIRE

    Purser, Autun; Marcon, Yann; Hoving, Henk-Jan T.; Vecchione, Michael; Piatkowski, Uwe; Eason, Deborah; Bluhm, Hartmut; Boetius, Antje

    2016-01-01

    Incirrate octopods (those without fins) are among the larger megafauna inhabiting the benthic environments of all oceans, commonly in water depths down to about 3,000 m. They are known to protect and brood their eggs until the juveniles hatch, but to date there is little published information on octopod deep-sea life cycles and distribution. For this study, three manganese-crust and nodule-abundant regions of the deep Pacific were examined by remote operated-vehicle and towed camera surveys c...

  13. Indian deep-sea environment experiment (INDEX): Monitoring the restoration of marine enviroment after artificial disturbance to simulate deep-sea mining in central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    Erratum Marine Georesources and Geotechnology vol. 23, no. 4 (September–December 2005) was a special issue, but this was not indicated. The correct special issue information is below. Indian Deep-Sea Environment Experiment (INDEX): Monitoring... the restoration of marine environment after artificial disturbance to simulate deep-sea mining in Central Indian Basin Guest Editor Rahul Sharma Note from guest editor A special issue on Indian Deep-sea Environment Experiment (INDEX) conducted by the scientists...

  14. Plastic microfibre ingestion by deep-sea organisms

    Science.gov (United States)

    Taylor, M. L.; Gwinnett, C.; Robinson, L. F.; Woodall, L. C.

    2016-09-01

    Plastic waste is a distinctive indicator of the world-wide impact of anthropogenic activities. Both macro- and micro-plastics are found in the ocean, but as yet little is known about their ultimate fate and their impact on marine ecosystems. In this study we present the first evidence that microplastics are already becoming integrated into deep-water organisms. By examining organisms that live on the deep-sea floor we show that plastic microfibres are ingested and internalised by members of at least three major phyla with different feeding mechanisms. These results demonstrate that, despite its remote location, the deep sea and its fragile habitats are already being exposed to human waste to the extent that diverse organisms are ingesting microplastics.

  15. Engineering for Deep Sea Drilling for Scientific Purposes

    Science.gov (United States)

    1980-01-01

    much smaller. In addition, personnel will have to be trained, detailed procedures developed, and new types of bottomhole and seafloor instrumentation...the Gulf of Mexico appears to have released some 3 million barrels of crude oil. 394 Site selection for scientific deep sea drilling should be...tidal and other currents in the deepest part of the ocean, there is relatively little vertical mixing of water because of the effect of temperature

  16. Physiological and molecular studies of deep-sea fungi

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, P.

    it to survive under such extreme conditions (Iwahashi et al, 2003; Domitrovic et al, 2006). In my study, I tried to isolate total RNA from yeast cells after giving shocks of elevated hydrostatic pressure and low temperature according to manufacturer protocol... of yeast adopted for survival. Summary 142    5.3 Future directions �� Assessment of biological activity of fungi in the deep-sea sediments by the application of functional genomics. �� Improvise isolation...

  17. Phosphate solubilizing bacteria: Comparison between coastal and deep sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Biche, S.; Pandey, S.; Gonsalves, M.J.B.D.; Das, A.; Mascarenhas-Pereira, M.B.L.; LokaBharathi, P.A.

    -4 hours of retrieving the sample. Dissolved PO43- was determined colorimetrically using standard photometric methods for seawater analyses (Grasshoff et al., 1983). Briefly, to 10 ml of distilled water blank, working standards (1, 2, 3 µM), diluted pore... and Ravindran also encountered Bacillus, Pseudomonas and Vibrio spp from coral reefs of Gulf of Mannar. Promod and Dhevendaran (1987) and De Souza et al (2000) reported Bacillus as the dominant group in the inshore areas. In the deep sea isolates Xanthomonas...

  18. A new genus of Nanaloricidae (Loricifera) from deep-sea sediments of volcanic origin in the Kilinailau Trench north of Papua New Guinea

    Science.gov (United States)

    Gad, Gunnar

    2004-02-01

    A new genus and species of Nanaloricidae (Loricifera), Phoeniciloricus simplidigitatus, is described inhabiting fine sand covered by a layer of volcanic ash at a water depth of 1,813 m in the New Ireland Basin near the Kilinailau Trench (north of Papua New Guinea). The described specimen is a postlarva enclosed in a larval exuvium. This is the first report of a species belonging to the Nanaloricidae from the deep sea. This occurrence is surprising, because Nanaloricidae are typical inhabitants of coarse sands in the intertidal or littoral zone. Preference for these shallow water habitats is reflected in many morphological features which characterize the Nanaloricidae, and are not normally found in Loricifera inhabiting fine-grained, clayish, deep-sea bottoms. The postlarva of the new species is characterized by a long narrow mouth tube, an urn-shaped lorica divided into ten plates, and 13 small lorica spikes. Distinguishing features of the Higgins-larva include short spinose toes lacking mucros but having small and slightly enlarged bases, short scalids on the introvert, many thoracic plates arranged in 6-8 rows, numerous small papillate flosculi in the collar and caudal regions, and three pairs of filiform, short locomotory appendages on the ventral side. Some features of the new species, especially of the Higgins-larva, are discussed as adaptations to the deep-sea environment.

  19. Do larval supply and recruitment vary among chemosynthetic environments of the deep sea?

    Directory of Open Access Journals (Sweden)

    Anna Metaxas

    Full Text Available BACKGROUND: The biological communities that inhabit chemosynthetic environments exist in an ephemeral and patchily distributed habitat with unique physicochemical properties that lead to high endemicity. Consequently, the maintenance and recovery from perturbation of the populations in these habitats is, arguably, mainly regulated by larval supply and recruitment. METHODOLOGY/PRINCIPAL FINDINGS: WE USE DATA FROM THE PUBLISHED SCIENTIFIC LITERATURE TO: (1 compare the magnitudes of and variability in larval supply and settlement and recruitment at hydrothermal vents, seeps, and whale, wood and kelp falls; (2 explore factors that affect these life history processes, when information is available; and (3 explore taxonomic affinities in the recruit assemblages of the different chemosynthetic habitats, using multivariate statistical techniques. Larval supply at vents can vary across segments by several orders of magnitude for gastropods; for bivalves, supply is similar at vents on different segments, and at cold seeps. The limited information on larval development suggests that dispersal potential may be highest for molluscs from cold seeps, intermediate for siboglinids at vents and lowest for the whale-bone siboglinid Osedax. Settlement is poorly studied and only at vents and seeps, but tends to be highest near an active source of emanating fluid in both habitats. Rate of recruitment at vents is more variable among studies within a segment than among segments. Across different chemosynthetic habitats, recruitment rate of bivalves is much more variable than that of gastropods and polychaetes. Total recruitment rate ranges only between 0.1 and 1 ind dm(-2 d(-1 across all chemosynthetic habitats, falling above rates in the non-reducing deep sea. The recruit assemblages at vents, seeps and kelp falls have lower taxonomic breadth, and include more families and genera that have many species more closely related to each other than those at whale and wood

  20. Observations of Deep-Sea Coral and Sponge Occurrences from the NOAA National Deep-Sea Coral and Sponge Database, 1842-Present (NCEI Accession 0145037)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA’s Deep-Sea Coral Research and Technology Program (DSC-RTP) compiles a national database of the known locations of deep-sea corals and sponges in U.S....

  1. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction.

    Science.gov (United States)

    Thuy, Ben; Kiel, Steffen; Dulai, Alfréd; Gale, Andy S; Kroh, Andreas; Lord, Alan R; Numberger-Thuy, Lea D; Stöhr, Sabine; Wisshak, Max

    2014-07-07

    Owing to the assumed lack of deep-sea macrofossils older than the Late Cretaceous, very little is known about the geological history of deep-sea communities, and most inference-based hypotheses argue for repeated recolonizations of the deep sea from shelf habitats following major palaeoceanographic perturbations. We present a fossil deep-sea assemblage of echinoderms, gastropods, brachiopods and ostracods, from the Early Jurassic of the Glasenbach Gorge, Austria, which includes the oldest known representatives of a number of extant deep-sea groups, and thus implies that in situ diversification, in contrast to immigration from shelf habitats, played a much greater role in shaping modern deep-sea biodiversity than previously thought. A comparison with coeval shelf assemblages reveals that, at least in some of the analysed groups, significantly more extant families/superfamilies have endured in the deep sea since the Early Jurassic than in the shelf seas, which suggests that deep-sea biota are more resilient against extinction than shallow-water ones. In addition, a number of extant deep-sea families/superfamilies found in the Glasenbach assemblage lack post-Jurassic shelf occurrences, implying that if there was a complete extinction of the deep-sea fauna followed by replacement from the shelf, it must have happened before the Late Jurassic. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    Energy Technology Data Exchange (ETDEWEB)

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  3. Deep-sea benthic footprint of the deepwater horizon blowout.

    Directory of Open Access Journals (Sweden)

    Paul A Montagna

    Full Text Available The Deepwater Horizon (DWH accident in the northern Gulf of Mexico occurred on April 20, 2010 at a water depth of 1525 meters, and a deep-sea plume was detected within one month. Oil contacted and persisted in parts of the bottom of the deep-sea in the Gulf of Mexico. As part of the response to the accident, monitoring cruises were deployed in fall 2010 to measure potential impacts on the two main soft-bottom benthic invertebrate groups: macrofauna and meiofauna. Sediment was collected using a multicorer so that samples for chemical, physical and biological analyses could be taken simultaneously and analyzed using multivariate methods. The footprint of the oil spill was identified by creating a new variable with principal components analysis where the first factor was indicative of the oil spill impacts and this new variable mapped in a geographic information system to identify the area of the oil spill footprint. The most severe relative reduction of faunal abundance and diversity extended to 3 km from the wellhead in all directions covering an area about 24 km(2. Moderate impacts were observed up to 17 km towards the southwest and 8.5 km towards the northeast of the wellhead, covering an area 148 km(2. Benthic effects were correlated to total petroleum hydrocarbon, polycyclic aromatic hydrocarbons and barium concentrations, and distance to the wellhead; but not distance to hydrocarbon seeps. Thus, benthic effects are more likely due to the oil spill, and not natural hydrocarbon seepage. Recovery rates in the deep sea are likely to be slow, on the order of decades or longer.

  4. NAA of two deep sea manganese nodule RMs for multielements

    International Nuclear Information System (INIS)

    Ni Bangfa; Tian Weizhi; Wang Pingsheng; Yu Zhanqin

    2002-01-01

    Mn-nodule is one of the most important deep sea mineral resources to be explored and exploited in the next century. Analytical quality control based on these kinds of CRMs is therefore necessary. In present work, nearly 30 elements in two Chinese Mn nodule RMs, GSPN-2 and GSPN-3, were determined using extended K 0 -relative comparison NAA technique, developed in our laboratory. The unique features of this work include: i) high accuracy obtained by the internal-validation function of our technique; ii) extensive determinable elements obtained by the hybrid nature of our software; and iii) neutron flux self-shielding corrections. (author)

  5. NAA of two deep sea manganese nodule RMs for multielements

    International Nuclear Information System (INIS)

    Bangfa Ni; Zhanqin Yu; Gaokui He; Pingsheng Wang; Weizhi Tian

    1997-01-01

    Mn-nodule is one of the most important deep sea mineral resources to be explored and exploited in the next century. Analytical quality control based on this kind of Certified Reference Materials (CRMs) is therefore necessary. In the present work, nearly 30 elements in two Chinese Mn nodule Reference Materials (RMs), GSPN-2 and GSPN-3, were determined using extended K 0 -relative comparison NAA technique, developed in our laboratory. The unique features of this work include: (1) high accuracy obtained by the internal validation function of our technique; (2) extensive determinable elements obtained by the hybrid nature of our software and (3) neutron flux self-shielding corrections. (author)

  6. Deep sea AUV navigation using multiple acoustic beacons

    Science.gov (United States)

    Ji, Da-xiong; Song, Wei; Zhao, Hong-yu; Liu, Jian

    2016-04-01

    Navigation is a critical requirement for the operation of Autonomous Underwater Vehicles (AUVs). To estimate the vehicle position, we present an algorithm using an extended Kalman filter (EKF) to integrate dead-reckoning position with acoustic ranges from multiple beacons pre-deployed in the operating environment. Owing to high latency, variable sound speed multipath transmissions and unreliability in acoustic measurements, outlier recognition techniques are proposed as well. The navigation algorithm has been tested by the recorded data of deep sea AUV during field operations in a variety of environments. Our results show the improved performance over prior techniques based on position computation.

  7. Turbidites and Benthic Faunal Succession in the Deep Sea: An Ecological Paradox

    National Research Council Canada - National Science Library

    Young, David

    2001-01-01

    Characteristics of benthic faunal succession following turbidity flows in the deep sea will vary according to the composition of turbidite materials, the spatial scales of deposition, the structure...

  8. Magnetically tunable oil droplet lens of deep-sea shrimp

    Science.gov (United States)

    Iwasaka, M.; Hirota, N.; Oba, Y.

    2018-05-01

    In this study, the tunable properties of a bio-lens from a deep-sea shrimp were investigated for the first time using magnetic fields. The skin of the shrimp exhibited a brilliantly colored reflection of incident white light. The light reflecting parts and the oil droplets in the shrimp's skin were observed in a glass slide sample cell using a digital microscope that operated in the bore of two superconducting magnets (maximum strengths of 5 and 13 T). In the ventral skin of the shrimp, which contained many oil droplets, some comparatively large oil droplets (50 to 150 μm in diameter) were present. A distinct response to magnetic fields was found in these large oil droplets. Further, the application of the magnetic fields to the sample cell caused a change in the size of the oil droplets. The phenomena observed in this work indicate that the oil droplets of deep sea shrimp can act as lenses in which the optical focusing can be modified via the application of external magnetic fields. The results of this study will make it possible to fabricate bio-inspired soft optical devices in future.

  9. Association of thioautotrophic bacteria with deep-sea sponges.

    Science.gov (United States)

    Nishijima, Miyuki; Lindsay, Dhugal J; Hata, Junko; Nakamura, Aoi; Kasai, Hiroaki; Ise, Yuji; Fisher, Charles R; Fujiwara, Yoshihiro; Kawato, Masaru; Maruyama, Tadashi

    2010-06-01

    We investigated microorganisms associated with a deep-sea sponge, Characella sp. (Pachastrellidae) collected at a hydrothermal vent site (686 m depth) in the Sumisu Caldera, Ogasawara Island chain, Japan, and with two sponges, Pachastrella sp. (Pachastrellidae) and an unidentified Poecilosclerida sponge, collected at an oil seep (572 m depth) in the Gulf of Mexico, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) directed at bacterial 16S rRNA gene sequences. In the PCR-DGGE profiles, we detected a single clearly dominant band in each of the Characella sp. and the unidentified Poecilosclerida sponge. BLAST search of their sequences showed that they were most similar (>99% identity) to those of the gammaproteobacterial thioautotrophic symbionts of deep-sea bivalves from hydrothermal vents, Bathymodiolus spp. Phylogenetic analysis of the near-full length sequences of the 16S rRNA genes cloned from the unidentified Poecilosclerida sponge and Characella sp. confirmed that they were closely related to thioautotrophic symbionts. Although associations between sponges and methanotrophic bacteria have been reported previously, this is the first report of a possible stable association between sponges and thioautotrophic bacteria.

  10. Global ocean conveyor lowers extinction risk in the deep sea

    Science.gov (United States)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Weinberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Melanie; Morrison, Cheryl L.; Correa, Matthias Lopez; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-01-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth׳s largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium–thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  11. Global ocean conveyor lowers extinction risk in the deep sea

    Science.gov (United States)

    Henry, Lea-Anne; Frank, Norbert; Hebbeln, Dierk; Wienberg, Claudia; Robinson, Laura; van de Flierdt, Tina; Dahl, Mikael; Douarin, Mélanie; Morrison, Cheryl L.; López Correa, Matthias; Rogers, Alex D.; Ruckelshausen, Mario; Roberts, J. Murray

    2014-06-01

    General paradigms of species extinction risk are urgently needed as global habitat loss and rapid climate change threaten Earth with what could be its sixth mass extinction. Using the stony coral Lophelia pertusa as a model organism with the potential for wide larval dispersal, we investigated how the global ocean conveyor drove an unprecedented post-glacial range expansion in Earth's largest biome, the deep sea. We compiled a unique ocean-scale dataset of published radiocarbon and uranium-series dates of fossil corals, the sedimentary protactinium-thorium record of Atlantic meridional overturning circulation (AMOC) strength, authigenic neodymium and lead isotopic ratios of circulation pathways, and coral biogeography, and integrated new Bayesian estimates of historic gene flow. Our compilation shows how the export of Southern Ocean and Mediterranean waters after the Younger Dryas 11.6 kyr ago simultaneously triggered two dispersal events in the western and eastern Atlantic respectively. Each pathway injected larvae from refugia into ocean currents powered by a re-invigorated AMOC that led to the fastest postglacial range expansion ever recorded, covering 7500 km in under 400 years. In addition to its role in modulating global climate, our study illuminates how the ocean conveyor creates broad geographic ranges that lower extinction risk in the deep sea.

  12. Deep Sea Coral voucher sequence dataset - Identification of deep-sea corals collected during the 2009 - 2014 West Coast Groundfish Bottom Trawl Survey

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Data for this project resides in the West Coast Groundfish Bottom Trawl Survey Database. Deep-sea corals are often components of trawling bycatch, though their...

  13. Automated Video Quality Assessment for Deep-Sea Video

    Science.gov (United States)

    Pirenne, B.; Hoeberechts, M.; Kalmbach, A.; Sadhu, T.; Branzan Albu, A.; Glotin, H.; Jeffries, M. A.; Bui, A. O. V.

    2015-12-01

    Video provides a rich source of data for geophysical analysis, often supplying detailed information about the environment when other instruments may not. This is especially true of deep-sea environments, where direct visual observations cannot be made. As computer vision techniques improve and volumes of video data increase, automated video analysis is emerging as a practical alternative to labor-intensive manual analysis. Automated techniques can be much more sensitive to video quality than their manual counterparts, so performing quality assessment before doing full analysis is critical to producing valid results.Ocean Networks Canada (ONC), an initiative of the University of Victoria, operates cabled ocean observatories that supply continuous power and Internet connectivity to a broad suite of subsea instruments from the coast to the deep sea, including video and still cameras. This network of ocean observatories has produced almost 20,000 hours of video (about 38 hours are recorded each day) and an additional 8,000 hours of logs from remotely operated vehicle (ROV) dives. We begin by surveying some ways in which deep-sea video poses challenges for automated analysis, including: 1. Non-uniform lighting: Single, directional, light sources produce uneven luminance distributions and shadows; remotely operated lighting equipment are also susceptible to technical failures. 2. Particulate noise: Turbidity and marine snow are often present in underwater video; particles in the water column can have sharper focus and higher contrast than the objects of interest due to their proximity to the light source and can also influence the camera's autofocus and auto white-balance routines. 3. Color distortion (low contrast): The rate of absorption of light in water varies by wavelength, and is higher overall than in air, altering apparent colors and lowering the contrast of objects at a distance.We also describe measures under development at ONC for detecting and mitigating

  14. 47 CFR 32.6424 - Submarine and deep sea cable expense.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Submarine and deep sea cable expense. 32.6424 Section 32.6424 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES... Submarine and deep sea cable expense. (a) This account shall include expenses associated with submarine and...

  15. NOAA National Deep-Sea Coral and Sponge Database 1842-Present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA's Deep-Sea Coral Research and Technology Program (DSC-RTP) is compiling a national geodatabase of the known locations of deep-sea corals and sponges in U.S....

  16. An interactive end-user software application for a deep-sea photographic database

    Digital Repository Service at National Institute of Oceanography (India)

    Jaisankar, S.; Sharma, R.

    . The software is the first of its kind in deep-sea applications and it also attempts to educate the user about deep-sea photography. The application software is developed by modifying established routines and by creating new routines to save the retrieved...

  17. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1986-01-01

    This report reviews the present knowledge of oceanic processes by which substances might be transferred from a deep-sea dump site back to man or his food chain and recommends pragmatic ways to calculate such transfers in order that deep-sea dumping of contaminants may be regulated effectively. The recommendations as to the currently most appropriate models are given

  18. Alchemy or Science? Compromising Archaeology in the Deep Sea

    Science.gov (United States)

    Adams, Jonathan

    2007-06-01

    In the torrid debate between archaeology and treasure hunting, compromise is often suggested as the pragmatic solution, especially for archaeology carried out either in deep water or beyond the constraints that commonly regulate such activities in territorial seas. Both the wisdom and the need for such compromise have even been advocated by some archaeologists, particularly in forums such as the internet and conferences. This paper argues that such a compromise is impossible, not in order to fuel confrontation but simply because of the nature of any academic discipline. We can define what archaeology is in terms of its aims, theories, methods and ethics, so combining it with an activity founded on opposing principles must transform it into something else. The way forward for archaeology in the deep sea does not lie in a contradictory realignment of archaeology’s goals but in collaborative research designed to mesh with emerging national and regional research and management plans.

  19. Potential Health Benefits of Deep Sea Water: A Review

    Directory of Open Access Journals (Sweden)

    Samihah Zura Mohd Nani

    2016-01-01

    Full Text Available Deep sea water (DSW commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.

  20. Indian Deep-sea Environment Experiment (INDEX):. An appraisal

    Science.gov (United States)

    Sharma, Rahul

    Indian Deep-sea Environment Experiment (INDEX) is a multi-disciplinary study to establish baseline conditions and evaluate the possible impact of deep-seabed mining in Central Indian Basin. A disturbance was simulated to study the effects of sediment re-suspension and re-settlement in the benthic areas. Monitoring the process of restoration and recolonisation of benthic environment and development of predictive models for environmental impact of deep seabed mining are underway. Significant information on physical, chemical, biological and geological characteristics of water column and benthic baseline conditions has been generated in the programme. Evaluation of impact of simulated disturbance on the seafloor shows vertical mixing of sediment on the seafloor, lateral migration of sediment plume, changes in geochemical and biochemical conditions as well as reduction in biomass in the benthic environment. The results obtained are useful in determining the indicator parameters and standardising the methods for assessment of effects of large-scale mining.

  1. Consolidation properties and stress history of some deep sea sediments

    International Nuclear Information System (INIS)

    Silva, A.J.; Jordan, S.A.

    1983-09-01

    This paper summarizes results of 180 consolidation tests on samples from 52 cores taken with a variety of samplers in deep sea regimes of the North Western Atlantic and North Central Pacific. Most of the samplers were of large cross sectional area (over 10-cm dia) and attention was given to improving field techniques and reducing structural disturbance to the sediments. Good quality samples have been recovered to depths in excess of 25 m in several locations. The sediments were primarily fine-grained clays and silty clays with the predominant clay mineral being illite; however, the presence of smectite and calcium carbonate in some samples had significant influence on the properties. 34 references, 11 figures, 2 tables

  2. Dynamics of a deep-sea cable system

    International Nuclear Information System (INIS)

    Gulyaev, V.I.; Koshkin, V.L.; Serpak, I.O.

    1995-01-01

    We consider the problem of the dynamics of a deep-sea cable system consisting of branches of constant and variable length, interacting with an undercurrent which is variable in depth and direction. We construct a mathematical model for the motion of the element of the cable system. The cables are modeled as inextensible, flexible filaments of variable length. For numerical realization of the problem, we suggest special regularizing transformations of the variables, making it possible (without additional simplifications) to take into account all the characteristic features of the motion of the filaments and to avoid difficulties in the integration of the equations of motion connected with the variability of the length of the branches of the cable system. The proposed mathematical model and the technique for its numerical analysis is applicable for the investigation of the dynamics of a complex for mining minerals from the ocean floor

  3. Activity syndromes and metabolism in giant deep-sea isopods

    Science.gov (United States)

    Wilson, Alexander D. M.; Szekeres, Petra; Violich, Mackellar; Gutowsky, Lee F. G.; Eliason, Erika J.; Cooke, Steven J.

    2017-03-01

    Despite growing interest, the behavioural ecology of deep-sea organisms is largely unknown. Much of this scarcity in knowledge can be attributed to deepwater animals being secretive or comparatively 'rare', as well as technical difficulties associated with accessing such remote habitats. Here we tested whether two species of giant marine isopod (Bathynomus giganteus, Booralana tricarinata) captured from 653 to 875 m in the Caribbean Sea near Eleuthera, The Bahamas, exhibited an activity behavioural syndrome across two environmental contexts (presence/absence of food stimulus) and further whether this syndrome carried over consistently between sexes. We also measured routine metabolic rate and oxygen consumption in response to a food stimulus in B. giganteus to assess whether these variables are related to individual differences in personality. We found that both species show an activity syndrome across environmental contexts, but the underlying mechanistic basis of this syndrome, particularly in B. giganteus, is unclear. Contrary to our initial predictions, neither B. giganteus nor B. tricarinata showed any differences between mean expression of behavioural traits between sexes. Both sexes of B. tricarinata showed strong evidence of an activity syndrome underlying movement and foraging ecology, whereas only male B. giganteus showed evidence of an activity syndrome. Generally, individuals that were more active and bolder, in a standard open arena test were also more active when a food stimulus was present. Interestingly, individual differences in metabolism were not related to individual differences in behaviour based on present data. Our study provides the first measurements of behavioural syndromes and metabolism in giant deep-sea isopods.

  4. Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity

    Science.gov (United States)

    Yasuhara, Moriaki; Hunt, Gene; Cronin, Thomas M.; Okahashi, Hisayo

    2009-01-01

    A benthic microfaunal record from the equatorial Atlantic Ocean over the past four glacial-interglacial cycles was investigated to understand temporal dynamics of deep-sea latitudinal species diversity gradients (LSDGs). The results demonstrate unexpected instability and high amplitude fluctuations of species diversity in the tropical deep ocean that are correlated with orbital-scale oscillations in global climate: Species diversity is low during glacial and high during interglacial periods. This implies that climate severely influences deep-sea diversity, even at tropical latitudes, and that deep-sea LSDGs, while generally present for the last 36 million years, were weakened or absent during glacial periods. Temporally dynamic LSDGs and unstable tropical diversity require reconsideration of current ecological hypotheses about the generation and maintenance of biodiversity as they apply to the deep sea, and underscore the potential vulnerability and conservation importance of tropical deep-sea ecosystems. PMID:20018702

  5. First biological measurements of deep-sea corals from the Red Sea.

    KAUST Repository

    Roder, Cornelia

    2013-10-03

    It is usually assumed that metabolic constraints restrict deep-sea corals to cold-water habitats, with \\'deep-sea\\' and \\'cold-water\\' corals often used as synonymous. Here we report on the first measurements of biological characters of deep-sea corals from the central Red Sea, where they occur at temperatures exceeding 20°C in highly oligotrophic and oxygen-limited waters. Low respiration rates, low calcification rates, and minimized tissue cover indicate that a reduced metabolism is one of the key adaptations to prevailing environmental conditions. We investigated four sites and encountered six species of which at least two appear to be undescribed. One species is previously reported from the Red Sea but occurs in deep cold waters outside the Red Sea raising interesting questions about presumed environmental constraints for other deep-sea corals. Our findings suggest that the present understanding of deep-sea coral persistence and resilience needs to be revisited.

  6. Egg size and reproductive adaptations among Arctic deep-sea copepods (Calanoida, Paraeuchaeta)

    Science.gov (United States)

    Auel, Holger

    2004-10-01

    Reproductive strategies of the four congeneric and sympatric calanoid copepods Paraeuchaeta glacialis, P. norvegica, P. barbata, and P. polaris were studied in the Arctic Greenland Sea. Females of all species produce egg sacs and carry their brood attached to the genital opening until the offspring hatch. However, egg size and lipid content as well as clutch size and the fraction of females carrying egg masses show characteristic differences among the four species. P. glacialis and P. norvegica produce large numbers (37 to more than 50) of relatively small eggs, whereas P. barbata and P. polaris rely on small numbers (10 to 19 and 4 to 6, respectively) of large eggs with a high energy content. There is no correlation between female body size and egg size or clutch size, respectively. Females of the smallest species, P. polaris, produce relatively large eggs and show the highest energetic investment per egg. In contrast, energetic investment per clutch is highest in P. glacialis. Reproductive adaptations appear to be strongly related to the depth range inhabited by the respective species. In the central Greenland Sea P. glacialis and P. norvegica occur in the epipelagial and upper mesopelagial, whereas the other two species inhabit lower mesopelagic to bathypelagic depths. Thus, egg size increases with depth of occurrence, whereas clutch size is inversely correlated with depth. This observation leads to the hypothesis that the evolution of large eggs in deep-sea copepods may enable hatchlings to rely on a lecithotrophic development and thus represents a successful adaptation to cope with the limited food supply at great depths, whereas high offspring numbers in epipelagic species compensate for higher predation risks in the euphotic zone.

  7. Exploring Archaeal Communities And Genomes Across Five Deep-Sea Brine Lakes Of The Red Sea With A Focus On Methanogens

    KAUST Repository

    Guan, Yue

    2015-12-15

    The deep-sea hypersaline lakes in the Red Sea are among the most challenging, extreme, and unusual environments on the planet Earth. Despite their harshness to life, they are inhabited by diverse and novel members of prokaryotes. Methanogenesis was proposed as one of the main metabolic pathways that drive microbial colonization in similar habitats. However, not much is known about the identities of the methane-producing microbes in the Red Sea, let alone the way in which they could adapt to such poly extreme environments. Combining a range of microbial community assessment, cultivation and omics (genomics, transcriptomics, and single amplified genomics) approaches, this dissertation seeks to fill these gaps in our knowledge by studying archaeal composition, particularly methanogens, their genomic capacities and transcriptomic characteristics in order to elucidate their diversity, function, and adaptation to the deep-sea brines of the Red Sea. Although typical methanogens are not abundant in the samples collected from brine pool habitats of the Red Sea, the pilot cultivation experiment has revealed novel halophilic methanogenic species of the domain Archaea. Their physiological traits as well as their genomic and transcriptomic features unveil an interesting genetic and functional adaptive capacity that allows them to thrive in the unique deep-sea hypersaline environments in the Red Sea.

  8. Rhodopsin in the Dark Hot Sea: Molecular Analysis of Rhodopsin in a Snailfish, Careproctus rhodomelas, Living near the Deep-Sea Hydrothermal Vent.

    Directory of Open Access Journals (Sweden)

    Rie Sakata

    Full Text Available Visual systems in deep-sea fishes have been previously studied from a photobiological aspect; however, those of deep-sea fish inhabiting the hydrothermal vents are far less understood due to sampling difficulties. In this study, we analyzed the visual pigment of a deep-sea snailfish, Careproctus rhodomelas, discovered and collected only near the hydrothermal vents of oceans around Japan. Proteins were solubilized from the C. rhodomelas eyeball and subjected to spectroscopic analysis, which revealed the presence of a pigment characterized by an absorption maximum (λmax at 480 nm. Immunoblot analysis of the ocular protein showed a rhodopsin-like immunoreactivity. We also isolated a retinal cDNA encoding the entire coding sequence of putative C. rhodomelas rhodopsin (CrRh. HEK293EBNA cells were transfected with the CrRh cDNA and the proteins extracted from the cells were subjected to spectroscopic analysis. The recombinant CrRh showed the absorption maximum at 480 nm in the presence of 11-cis retinal. Comparison of the results from the eyeball extract and the recombinant CrRh strongly suggests that CrRh has an A1-based 11-cis-retinal chromophore and works as a photoreceptor in the C. rhodomelas retina, and hence that C. rhodomelas responds to dim blue light much the same as other deep-sea fishes. Because hydrothermal vent is a huge supply of viable food, C. rhodomelas likely do not need to participate diel vertical migration and may recognize the bioluminescence produced by aquatic animals living near the hydrothermal vents.

  9. Mechanism of deep-sea fish α-actin pressure tolerance investigated by molecular dynamics simulations.

    Directory of Open Access Journals (Sweden)

    Nobuhiko Wakai

    Full Text Available The pressure tolerance of monomeric α-actin proteins from the deep-sea fish Coryphaenoides armatus and C. yaquinae was compared to that of non-deep-sea fish C. acrolepis, carp, and rabbit/human/chicken actins using molecular dynamics simulations at 0.1 and 60 MPa. The amino acid sequences of actins are highly conserved across a variety of species. The actins from C. armatus and C. yaquinae have the specific substitutions Q137K/V54A and Q137K/L67P, respectively, relative to C. acrolepis, and are pressure tolerant to depths of at least 6000 m. At high pressure, we observed significant changes in the salt bridge patterns in deep-sea fish actins, and these changes are expected to stabilize ATP binding and subdomain arrangement. Salt bridges between ATP and K137, formed in deep-sea fish actins, are expected to stabilize ATP binding even at high pressure. At high pressure, deep-sea fish actins also formed a greater total number of salt bridges than non-deep-sea fish actins owing to the formation of inter-helix/strand and inter-subdomain salt bridges. Free energy analysis suggests that deep-sea fish actins are stabilized to a greater degree by the conformational energy decrease associated with pressure effect.

  10. Anaerobic methanotrophic community of a 5346-m-deep vesicomyid clam colony in the Japan Trench.

    Science.gov (United States)

    Felden, J; Ruff, S E; Ertefai, T; Inagaki, F; Hinrichs, K-U; Wenzhöfer, F

    2014-05-01

    Vesicomyidae clams harbor sulfide-oxidizing endosymbionts and are typical members of cold seep communities where active venting of fluids and gases takes place. We investigated the central biogeochemical processes that supported a vesicomyid clam colony as part of a locally restricted seep community in the Japan Trench at 5346 m water depth, one of the deepest seep settings studied to date. An integrated approach of biogeochemical and molecular ecological techniques was used combining in situ and ex situ measurements. In sediment of the clam colony, low sulfate reduction rates (maximum 128 nmol mL(-1) day(-1)) were coupled to the anaerobic oxidation of methane. They were observed over a depth range of 15 cm, caused by active transport of sulfate due to bioturbation of the vesicomyid clams. A distinct separation between the seep and the surrounding seafloor was shown by steep horizontal geochemical gradients and pronounced microbial community shifts. The sediment below the clam colony was dominated by anaerobic methanotrophic archaea (ANME-2c) and sulfate-reducing Desulfobulbaceae (SEEP-SRB-3, SEEP-SRB-4). Aerobic methanotrophic bacteria were not detected in the sediment, and the oxidation of sulfide seemed to be carried out chemolithoautotrophically by Sulfurovum species. Thus, major redox processes were mediated by distinct subgroups of seep-related microorganisms that might have been selected by this specific abyssal seep environment. Fluid flow and microbial activity were low but sufficient to support the clam community over decades and to build up high biomasses. Hence, the clams and their microbial communities adapted successfully to a low-energy regime and may represent widespread chemosynthetic communities in the Japan Trench. In this regard, they contributed to the restricted deep-sea trench biodiversity as well as to the organic carbon availability, also for non-seep organisms, in such oligotrophic benthic environment of the dark deep ocean. © 2014 The

  11. Hexactinellid cave, a unique deep-sea habitat in the scuba zone

    Science.gov (United States)

    Vacelet, Jean; Boury-Esnault, Nicole; Harmelin, Jean-Georges

    1994-07-01

    Deep-sea organisms have colonized an unusual Mediterranean cave 18-24 m below the sea surface, in which the entrapment of a cold water mass results in stable temperature conditions throughout the year. These conditions, together with lack of light and limited food resources, approximate those of the deep Mediterranean. Among other deep-sea organisms, Oopsacas minuta, a representative of the bathyo-abyssal cold-water-adapted hexactinellid sponges, reproduces here yearround, making possible the first observations of larval behavior and ultrastructure on this phylogenetically important group of invertebrates. Easily accessible to scuba divers, this "bathyal island" in the littoral zone offers exceptional opportunities for deep-sea biology.

  12. Food web transport of trace metals and radionuclides from the deep sea: a review

    International Nuclear Information System (INIS)

    Young, J.S.

    1979-06-01

    This report summarizes aspects of the potential distribution pathways of metals and radionuclides, particularly Co and Ni, through a biological trophic framework after their deposition at 4000 to 5000 meters in the North Atlantic or North Pacific. It discusses (a) the basic, deep-sea trophic structure of eutrophic and oligotrophic regions; (b) the transport pathways of biologically available energy to and from the deep sea, pathways that may act as accumulators and vectors of radionuclide distribution, and (c) distribution routes that have come into question as potential carriers of radionuclides from the deep-sea bed to man

  13. Monitoring the impact of simulated deep-sea mining in Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Nath, B.N.; Jaisankar, S.

    Ocean (Foell et al. 1990; Trueblood 1993; Fukushima 1995; Tkatchenko et al. 1996). Sediment transport during deep-sea disturbances, natural or artificial, not only has immediate effects, but also long term impacts, and the restoration is a very com- plex... for designing and undertaking a deep-sea mining operation. This study gives an overview on the immediate effects and long-term (44 months later) restoration of the deep-sea floor environment at the INDEX site in the Central Indian Basin. Work Done Under...

  14. Cellulomonas marina sp. nov., isolated from deep-sea water.

    Science.gov (United States)

    Zhang, Limin; Xi, Lijun; Qiu, Danheng; Song, Lei; Dai, Xin; Ruan, Jisheng; Huang, Ying

    2013-08-01

    A bacterial strain FXJ8.089(T) was isolated from deep-sea water collected from the southwest Indian Ocean (49° 39' E 37° 47' S) at a depth of 2800 m, and its taxonomic position was investigated by a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain FXJ8.089(T) belonged to the genus Cellulomonas and had the highest similarities with Cellulomonas oligotrophica (96.9 %) and Cellulomonas aerilata (96.6 %). It contained MK-9(H4) as the predominant menaquinone. The polar lipids were diphosphatidylglycerol and phosphatidylinositol mannosides. The cell-wall peptidoglycan type was A4β with an interpeptide bridge L-Orn-D-Glu. The cell-wall sugars were glucose, mannose and ribose. The DNA G+C content was 70.3 mol%. The strain also showed a number of physiological and biochemical characteristics that were distinct from the closely related species. Based on phenotypic and genotypic data, strain FXJ8.089(T) (= CGMCC 4.6945(T) = DSM 24960(T)) represents a novel species of the genus Cellulomonas, for which the name Cellulomonas marina sp. nov. is proposed.

  15. ASSESSMENT OF THE DEEP SEA WRECK USS INDEPENDENCE

    Directory of Open Access Journals (Sweden)

    Lisa C. Symons

    2016-07-01

    Full Text Available As part of ongoing efforts to better understand the nature of shipwrecks in National Marine Sanctuaries which may pose some level of pollution risk, and in this case, to definitively locate what is likely the only shipwreck in a sanctuary involved in both nuclear testing and nuclear waste disposal, NOAA’s Office of National Marine Sanctuaries collaborated with NOAA’s Office of Ocean Exploration and The Boeing Company, which provided their autonomous underwater vehicle, Echo Ranger, to conduct the first deep-water archaeological survey of the scuttled aircraft carrier USS Independence in the waters of Monterey Bay National Marine Sanctuary (MBNMS in March 2015. The presence of the deep-sea scuttled radioactive aircraft carrier USS Independence off the California coast has been the source of consistent media speculation and public concern for decades. The survey confirmed that a sonar target charted at the location was Independence, and provided details on the condition of the wreck, and revealed no detectable levels of radioactivity. At the same time, new information from declassified government reports provided more detail on Independence’s use as a naval test craft for radiological decontamination as well as its use as a repository for radioactive materials at the time of its scuttling in 1951. While further surveys may reveal more, physical assessment and focused archival work has demonstrated that the level of concern and speculation of danger from either a radioactive or oil pollution threat posed may be exaggerated.

  16. Hydration of high-silica glasses in the deep sea

    International Nuclear Information System (INIS)

    Federman, A.N.

    1986-01-01

    Natural analogs of nuclear waste glasses are important because they provide information of the one variable that is not controllable in the laboratory - long intervals of time in the actual environment of storage. Some natural glasses have persisted for millions of years in deep-sea sediments in the form of disseminated particles and distinct tephra layers, while other apparently similar specimens have been completely altered to clay assemblages relatively quickly. Geologists have reached no firm conclusions as to why these differences exist, and more research is certainly warranted. These glasses vary in age, composition, and in the in-situ conditions they have experienced. They may provide important information for two different aspects of nuclear waste glass research: First, the chemical composition and especially the water content of these glasses as a function of time may give an understanding of the mechanisms and rates of diffusion in glasses in the natural environment. Second, the apparent differing durability of these glasses in different environmental conditions may suggest the optimal characteristics of a nuclear waste glass depository

  17. The fluid dynamics of deep-sea mining

    Science.gov (United States)

    Peacock, Thomas; Rzeznik, Andrew

    2017-11-01

    With vast mineral deposits on the ocean floor, deep-sea nodule mining operations are expected to commence in the next decade. Among several fundamental fluid dynamics problems, this could involve plans for dewatering plumes to be released into the water column by surface processing vessels. To study this scenario, we consider the effects of non-uniform, realistic stratifications on forced compressible plumes with finite initial size. The classical plume model is developed to take into account the influence of thermal conduction through the dewatering pipe and also compressibility effects, for which a dimensionless number is introduced to determine their importance compared to the background stratification. Among other things, our results show that small-scale features of a realistic stratification can have a large effect on plume dynamics compared to smoothed profiles and that for any given set of environmental parameters there is a discharge flow rate that minimizes the plume vertical extent. Our findings are put in the context of nodule mining plumes for which the rapid and efficient re-sedimentation of waste material has important environmental consequences.

  18. Real-Time Visualization System for Deep-Sea Surveying

    Directory of Open Access Journals (Sweden)

    Yujie Li

    2014-01-01

    Full Text Available Remote robotic exploration holds vast potential for gaining knowledge about extreme environments, which is difficult to be accessed by humans. In the last two decades, various underwater devices were developed for detecting the mines and mine-like objects in the deep-sea environment. However, there are some problems in recent equipment, like poor accuracy of mineral objects detection, without real-time processing, and low resolution of underwater video frames. Consequently, the underwater objects recognition is a difficult task, because the physical properties of the medium, the captured video frames, are distorted seriously. In this paper, we are considering use of the modern image processing methods to determine the mineral location and to recognize the mineral actually within a little computation complex. We firstly analyze the recent underwater imaging models and propose a novel underwater optical imaging model, which is much closer to the light propagation model in the underwater environment. In our imaging system, we remove the electrical noise by dual-tree complex wavelet transform. And then we solve the nonuniform illumination of artificial lights by fast guided trilateral bilateral filter and recover the image color through automatic color equalization. Finally, a shape-based mineral recognition algorithm is proposed for underwater objects detection. These methods are designed for real-time execution on limited-memory platforms. This pipeline is suitable for detecting underwater objects in practice by our experiences. The initial results are presented and experiments demonstrate the effectiveness of the proposed real-time visualization system.

  19. The permeability and consolidation of deep-sea sediments

    International Nuclear Information System (INIS)

    Schultheiss, P.J.; Gunn, D.E.

    1985-01-01

    This report presents permeability and consolidation data for a wide range of sediment types. Permeability is one of the two parameters which are needed to directly quantify pore water advection in deep sea sediments and which are being investigated in high-level radioactive waste study areas. While it is desirable that these parameters should be measured in situ it is argued that values of permeability can be measured sufficiently accurately in the laboratory from core samples. Consequently, an apparatus has been developed which enables sediment permeability to be measured at decreasing void ratios during a back-pressured consolidation test. Data presented in this report from over 60 samples have established the major differences in permeability between various sediment types and how permeability changes as a function of burial depth and void ratio. Samples from two study areas in the North Atlantic Ocean, King's Trough Flank (KTF) and Great Meteor East (GME), have been compared with samples of Red Clay (RC) obtained from the NW Pacific Ocean. Results are presented and discussed. (author)

  20. Stronger at Depth: Jamming Grippers as Deep Sea Sampling Tools.

    Science.gov (United States)

    Licht, Stephen; Collins, Everett; Mendes, Manuel Lopes; Baxter, Christopher

    2017-12-01

    In this work we experimentally demonstrate (a) that the holding strength of universal jamming grippers increases as a function of the jamming pressure to greater than three atmospheres, and (b) that jamming grippers can be operated in the deep sea in ambient pressures exceeding one hundred atmospheres, where such high jamming pressures can be readily achieved. Laboratory experiments in a pressurized, water-filled test cell are used to measure the holding force of a "universal" style jamming gripper as a function of the pressure difference between internal membrane pressure and ambient pressure. Experiments at sea are used to demonstrate that jamming grippers can be installed on, and operated from, remotely operated vehicles at depths in excess of 1200 m. In both experiments, the jamming gripper consists of a latex balloon filled with a mixture of fresh water and ∼200 μm glass beads, which are cheaply available in large quantities as sand blasting media. The use of a liquid, rather than a gas, as the fluid media allows operation of the gripper with a closed-loop fluid system; jamming pressure is controlled with an electrically driven water hydraulic cylinder in the laboratory and with an oil hydraulic-driven large-bore water hydraulic cylinder at sea.

  1. Ship Sensor Observations for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly measurements made by selected ship sensors on the NOAA ship Ronald H. Brown during the "Deep Sea Medicines 2003: Exploration of the Gulf of Mexico" expedition...

  2. Environmental studies for mining of deep-sea polymetallic nodules - Accomplishments and future plans

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    Environmental studies for mining of deep-sea polymetallic nodules were initiated to evaluate the possible impacts of mining on benthic environment and develop protocols for environmental studies, to fulfill one of the obligations of the country as a...

  3. Ship Track for Deep Sea Medicines 2003 - Office of Ocean Exploration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ship track of the Ronald H. Brown during the "Deep Sea Medicines 2003: Exploring the Gulf of Mexico" expedition sponsored by the National Oceanic and Atmospheric...

  4. Chemosynthesis in deep-sea red-clay: Linking concepts to probable martian life

    Digital Repository Service at National Institute of Oceanography (India)

    Das, A.; Mourya, B.S.; Mamatha, S.S.; Khadge, N.H.; LokaBharathi, P.A.

    Chemosynthetic microbial activity could share similarities between Martian and Earth systems. The present study examined the patterns of distribution of chemosynthetic bacteria in the deep-sea red clay sediments of CIB along with chemosynthetic...

  5. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    OpenAIRE

    Takai, K; Horikoshi, K

    1999-01-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the...

  6. Deep-sea genetic resources: New frontiers for science and stewardship in areas beyond national jurisdiction

    Science.gov (United States)

    Harden-Davies, Harriet

    2017-03-01

    The deep-sea is a large source of marine genetic resources (MGR), which have many potential uses and are a growing area of research. Much of the deep-sea lies in areas beyond national jurisdiction (ABNJ), including 65% of the global ocean. MGR in ABNJ occupy a significant gap in the international legal framework. Access and benefit sharing of MGR is a key issue in the development of a new international legally-binding instrument under the United Nations Convention on the Law of the Sea (UNCLOS) for the conservation and sustainable use of marine biological diversity in ABNJ. This paper examines how this is relevant to deep-sea scientific research and identifies emerging challenges and opportunities. There is no internationally agreed definition of MGR, however, deep-sea genetic resources could incorporate any biological material including genes, proteins and natural products. Deep-sea scientific research is the key actor accessing MGR in ABNJ and sharing benefits such as data, samples and knowledge. UNCLOS provides the international legal framework for marine scientific research, international science cooperation, capacity building and marine technology transfer. Enhanced implementation could support access and benefit sharing of MGR in ABNJ. Deep-sea scientific researchers could play an important role in informing practical new governance solutions for access and benefit sharing of MGR that promote scientific research in ABNJ and support deep-sea stewardship. Advancing knowledge of deep-sea biodiversity in ABNJ, enhancing open-access to data and samples, standardisation and international marine science cooperation are significant potential opportunity areas.

  7. Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii).

    Science.gov (United States)

    Davies, Wayne I L; Tay, Boon-Hui; Zheng, Lei; Danks, Janine A; Brenner, Sydney; Foster, Russell G; Collin, Shaun P; Hankins, Mark W; Venkatesh, Byrappa; Hunt, David M

    2012-01-01

    Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M) gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii), as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate) lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas "long" and "short" splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both "invertebrate-like" bistable and classical "vertebrate-like" monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates.

  8. Evolution and functional characterisation of melanopsins in a deep-sea chimaera (elephant shark, Callorhinchus milii.

    Directory of Open Access Journals (Sweden)

    Wayne I L Davies

    Full Text Available Non-visual photoreception in mammals is primarily mediated by two splice variants that derive from a single melanopsin (OPN4M gene, whose expression is restricted to a subset of retinal ganglion cells. Physiologically, this sensory system regulates the photoentrainment of many biological rhythms, such as sleep via the melatonin endocrine system and pupil constriction. By contrast, melanopsin exists as two distinct lineages in non-mammals, opn4m and opn4x, and is broadly expressed in a wide range of tissue types, including the eye, brain, pineal gland and skin. Despite these findings, the evolution and function of melanopsin in early vertebrates are largely unknown. We, therefore, investigated the complement of opn4 classes present in the genome of a model deep-sea cartilaginous species, the elephant shark (Callorhinchus milii, as a representative vertebrate that resides at the base of the gnathostome (jawed vertebrate lineage. We reveal that three melanopsin genes, opn4m1, opn4m2 and opn4x, are expressed in multiple tissues of the elephant shark. The two opn4m genes are likely to have arisen as a result of a lineage-specific duplication, whereas "long" and "short" splice variants are generated from a single opn4x gene. By using a heterologous expression system, we suggest that these genes encode functional photopigments that exhibit both "invertebrate-like" bistable and classical "vertebrate-like" monostable biochemical characteristics. We discuss the evolution and function of these melanopsin pigments within the context of the diverse photic and ecological environments inhabited by this chimaerid holocephalan, as well as the origin of non-visual sensory systems in early vertebrates.

  9. Life history of the deep-sea cephalopod family Histioteuthidae in the western Mediterranean

    Science.gov (United States)

    Quetglas, Antoni; de Mesa, Aina; Ordines, Francesc; Grau, Amàlia

    2010-08-01

    The life cycle of the two species of the deep-sea family Histioteuthidae inhabiting the Mediterranean Sea ( Histioteuthis reversa and Histioteuthis bonnellii) was studied from monthly samples taken throughout the year during daytime hours by bottom trawl gears. A small sample of individuals found floating dead on the sea surface was also analyzed. Both species were caught exclusively on the upper slope at depths greater than 300 m. Their frequency of occurrence increased with depth and showed two different peaks, at 500-600 m and 600-700 m depth in H. bonnellii and H. reversa, respectively, which might indicate spatial segregation. Maturity stages were assigned using macroscopic determination and confirmed with histological analyses. Although mature males were caught all year round, no mature females were found, which suggests that their sexual maturation in the western Mediterranean takes place deeper than the maximum depth sampled (800 m). In fact, the increase in mean squid size with increasing depth in H. reversa indicates an ontogenetic migration to deeper waters. The individuals of both species found floating dead on the sea surface were spent females which had a relatively large cluster of small atresic eggs and a small number of remaining mature eggs scattered in the ovary and mantle cavity. The sizes of these females were clearly larger than the largest individuals caught with bottom trawls. A total of 12 and 7 different types of prey, belonging to three major taxonomic groups (crustaceans, osteichthyes and cephalopods), were identified in the stomach contents of H. reversa and H. bonnellii, respectively. In both species fishes were by far the main prey followed by crustaceans, whereas cephalopods were found only occasionally. The preys identified, mainly myctophids and natantian crustaceans, indicate that both histioteuthids base their diet on pelagic nictemeral migrators.

  10. Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice

    Directory of Open Access Journals (Sweden)

    Hen-Yu Liu

    2013-01-01

    Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.

  11. Species-energy relationship in the deep sea: A test using the Quaternary fossil record

    Science.gov (United States)

    Hunt, G.; Cronin, T. M.; Roy, K.

    2005-01-01

    Little is known about the processes regulating species richness in deep-sea communities. Here we take advantage of natural experiments involving climate change to test whether predictions of the species-energy hypothesis hold in the deep sea. In addition, we test for the relationship between temperature and species richness predicted by a recent model based on biochemical kinetics of metabolism. Using the deep-sea fossil record of benthic foraminifera and statistical meta-analyses of temperature-richness and productivity-richness relationships in 10 deep-sea cores, we show that temperature but not productivity is a significant predictor of species richness over the past c. 130 000 years. Our results not only show that the temperature-richness relationship in the deep-sea is remarkably similar to that found in terrestrial and shallow marine habitats, but also that species richness tracks temperature change over geological time, at least on scales of c. 100 000 years. Thus, predicting biotic response to global climate change in the deep sea would require better understanding of how temperature regulates the occurrences and geographical ranges of species. ??2005 Blackwell Publishing Ltd/CNRS.

  12. The Age of Human-Robot Collaboration: Deep Sea Exploration

    KAUST Repository

    Khatib, Oussama

    2018-01-18

    The promise of oceanic discovery has intrigued scientists and explorers for centuries, whether to study underwater ecology and climate change, or to uncover natural resources and historic secrets buried deep at archaeological sites. Reaching these depth is imperative since factors such as pollution and deep-sea trawling increasingly threaten ecology and archaeological sites. These needs demand a system deploying human-level expertise at the depths, and yet remotely operated vehicles (ROVs) are inadequate for the task. To meet the challenge of dexterous operation at oceanic depths, in collaboration with KAUSTメs Red Sea Research Center and MEKA Robotics, Oussama Khatib and the team developed Ocean One, a bimanual humanoid robot that brings immediate and intuitive haptic interaction to oceanic environments. Introducing Ocean One, the haptic robotic avatar During this lecture, Oussama Khatib will talk about how teaming with the French Ministry of Cultureメs Underwater Archaeology Research Department, they deployed Ocean One in an expedition in the Mediterranean to Louis XIVメs flagship Lune, lying off the coast of Toulon at ninety-one meters. In the spring of 2016, Ocean One became the first robotic avatar to embody a humanメs presence at the seabed. Ocean Oneメs journey in the Mediterranean marks a new level of marine exploration: Much as past technological innovations have impacted society, Ocean Oneメs ability to distance humans physically from dangerous and unreachable work spaces while connecting their skills, intuition, and experience to the task promises to fundamentally alter remote work. Robotic avatars will search for and acquire materials, support equipment, build infrastructure, and perform disaster prevention and recovery operations - be it deep in oceans and mines, at mountain tops, or in space.

  13. Seawater Carbonate Chemistry of Deep-sea Coral Beds off the Northwestern Hawaiian Islands

    Science.gov (United States)

    Brooks, J.; Shamberger, K.; Roark, E. B.; Miller, K.; Baco-Taylor, A.

    2016-02-01

    Many species of deep-sea octocorals produce calcium carbonate (CaCO3) skeletons and form coral beds that support diverse ecosystems crucial to fisheries. The geochemistry of deep-sea coral skeletons can provide valuable paleoceanographic information on ocean circulation and nutrient cycling. Deep-sea corals in the older bottom waters of the Pacific are naturally exposed to higher carbon dioxide (CO2) concentrations and lower pH than in the Atlantic where much of the previous deep-sea coral work has occurred. Therefore, some Pacific deep-sea corals may live and calcify in waters that are corrosive to their skeletons, but there have been few current seawater carbonate chemistry measurements of the waters surrounding deep-sea coral beds to assess this. The input of anthropogenic atmospheric CO2 known as ocean acidification (OA) lowers ocean pH and causes an expansion of these corrosive waters. Seawater carbonate chemistry must be characterized before accurate predictions can be made for the effects of OA on these important ecosystems. Total Alkalinity (TA) and Dissolved Inorganic Carbon (DIC) samples were collected in the fall of 2014 and 2015 from the surface to 1450 m depth off the Northwestern Hawaiian Island chain where deep-sea octocorals are found. The partial pressure of CO2 increased and pH, calcite saturation state (Ωca) and aragonite saturation state (Ωar) decreased with increasing latitude and depth. Notably, waters were undersaturated with respect to calcite and aragonite (Ωca and Ωar less than 1) below 800 m and 500 m, respectively. Therefore, deep-sea corals below these depths must calcify in waters that are thermodynamically favorable for CaCO3 dissolution. How deep-sea octocorals cope with such adverse seawater chemistry is critical to understanding future effects of OA. It is not known whether OA is currently negatively impacting deep-sea octocorals, but their naturally acidified environments could make them particularly susceptible to OA.

  14. Man and the last great wilderness: human impact on the deep sea.

    Directory of Open Access Journals (Sweden)

    Eva Ramirez-Llodra

    Full Text Available The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008. A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past to exploitation (present. We predict that from now and into the future, increases in atmospheric CO(2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this

  15. Stakeholder perspectives on the importance of rare-species research for deep-sea environmental management

    Science.gov (United States)

    Turner, Phillip J.; Campbell, Lisa M.; Van Dover, Cindy L.

    2017-07-01

    The apparent prevalence of rare species (rarity) in the deep sea is a concern for environmental management and conservation of biodiversity. Rare species are often considered at risk of extinction and, in terrestrial and shallow water environments, have been shown to play key roles within an ecosystem. In the deep-sea environment, current research focuses primarily on abundant species and deep-sea stakeholders are questioning the importance of rare species in ecosystem functioning. This study asks whether deep-sea stakeholders (primarily scientists) view rare-species research as a priority in guiding environmental management. Delphi methodology (i.e., an iterative survey approach) was used to understand views about whether or not 'deep-sea scientists should allocate more resources to research on rare species in the deep sea, even if this means less resources might be available for abundant-species research.' Results suggest little consensus regarding the prioritization of resources for rare-species research. From Survey 1 to Survey 3, the average participant response shifted toward a view that rare-species research is not a priority if it comes at a cost to research on abundant species. Participants pointed to the need for a balanced approach and highlighted knowledge gaps about even the most fundamental questions, including whether rare species are truly 'rare' or simply under-sampled. Participants emphasized the lack of basic biological knowledge for rare and abundant species, particularly abundant meio- and microscopic species, as well as uncertainty in the roles rare and abundant species play in ecosystem processes. Approaches that jointly consider the role of rare and abundant species in ecosystem functioning (e.g., biological trait analysis) may help to clarify the extent to which rare species need to be incorporated into deep-sea environment management in order to maintain ecosystem functioning.

  16. Man and the last great wilderness: human impact on the deep sea.

    Science.gov (United States)

    Ramirez-Llodra, Eva; Tyler, Paul A; Baker, Maria C; Bergstad, Odd Aksel; Clark, Malcolm R; Escobar, Elva; Levin, Lisa A; Menot, Lenaick; Rowden, Ashley A; Smith, Craig R; Van Dover, Cindy L

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life--SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO(2) and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO(2) and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  17. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    Science.gov (United States)

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short

  18. Advances in deep-sea biology: biodiversity, ecosystem functioning and conservation. An introduction and overview

    Science.gov (United States)

    Cunha, Marina R.; Hilário, Ana; Santos, Ricardo S.

    2017-03-01

    Once considered as monotonous and devoid of life, the deep sea was revealed during the last century as an environment with a plethora of life forms and extremely high species richness (Rex and Etter, 2010). Underwater vehicle developments allowed direct observations of the deep, disclosing unique habitats and diverse seascapes, and other technological advances enabled manipulative experimentation and unprecedented prospects to pursue novel research topics (Levin and Sibuet, 2012; Danovaro et al., 2014). Alongside, the growing human population greatly increased the pressure on deep-sea ecosystems and the services they provide (Ramirez-Llodra et al., 2011; Thurber et al., 2014; Levin et al., 2016). Societal changes further intensified worldwide competition for natural resources, extending the present footprint of impacts over most of the global ocean (Halpern et al., 2008). In this socio-economic context, and in tandem with cutting edge technological advances and an unclear legal framework to regulate access to natural resources (Boyes and Elliott, 2014), the deep sea has emerged as a new opportunity for industrial exploitation and novel economic activities. The expanding use of the deep sea prompted a rapid reply from deep-sea scientists that recommended "a move from a frontier mentality of exploitation and single-sector management to a precautionary system that balances use of living marine resources, energy, and minerals from the deep ocean with maintenance of a productive and healthy marine environment, while improving knowledge and collaboration" and proposed "three directions to advance deep-ocean stewardship: i) protection and mitigation, ii) research, and iii) collaborative governance" (Mengerink et al., 2014). The European Marine Board position paper 22 (Rogers et al., 2015) further examined the key societal and environmental drivers confronting the deep sea and the role of deep-sea research to deliver future knowledge needs for science and society; a clear

  19. Genetic diversity of archaea in deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Takai, K; Horikoshi, K

    1999-08-01

    Molecular phylogenetic analysis of naturally occurring archaeal communities in deep-sea hydrothermal vent environments was carried out by PCR-mediated small subunit rRNA gene (SSU rDNA) sequencing. As determined through partial sequencing of rDNA clones amplified with archaea-specific primers, the archaeal populations in deep-sea hydrothermal vent environments showed a great genetic diversity, and most members of these populations appeared to be uncultivated and unidentified organisms. In the phylogenetic analysis, a number of rDNA sequences obtained from deep-sea hydrothermal vents were placed in deep lineages of the crenarchaeotic phylum prior to the divergence of cultivated thermophilic members of the crenarchaeota or between thermophilic members of the euryarchaeota and members of the methanogen-halophile clade. Whole cell in situ hybridization analysis suggested that some microorganisms of novel phylotypes predicted by molecular phylogenetic analysis were likely present in deep-sea hydrothermal vent environments. These findings expand our view of the genetic diversity of archaea in deep-sea hydrothermal vent environments and of the phylogenetic organization of archaea.

  20. Distinctive Microbial Community Structure in Highly Stratified Deep-Sea Brine Water Columns

    KAUST Repository

    Bougouffa, Salim

    2013-03-29

    Atlantis II and Discovery are two hydrothermal and hypersaline deep-sea pools in the Red Sea rift that are characterized by strong thermohalo-stratification and temperatures steadily peaking near the bottom. We conducted comprehensive vertical profiling of the microbial populations in both pools and highlighted the influential environmental factors. Pyrosequencing of the 16S rRNA genes revealed shifts in community structures vis-à-vis depth. High diversity and low abundance were features of the deepest convective layers despite the low cell density. Surprisingly, the brine interfaces had significantly higher cell counts than the overlying deep-sea water, yet they were lowest in diversity. Vertical stratification of the bacterial populations was apparent as we moved from the Alphaproteobacteria-dominated deep sea to the Planctomycetaceae- or Deferribacteres-dominated interfaces to the Gammaproteobacteria-dominated brine layers. Archaeal marine group I was dominant in the deep-sea water and interfaces, while several euryarchaeotic groups increased in the brine. Across sites, microbial phylotypes and abundances varied substantially in the brine interface of Discovery compared with Atlantis II, despite the near-identical populations in the overlying deep-sea waters. The lowest convective layers harbored interestingly similar microbial communities, even though temperature and heavy metal concentrations were very different. Multivariate analysis indicated that temperature and salinity were the major influences shaping the communities. The harsh conditions and the low-abundance phylotypes could explain the observed correlation in the brine pools.

  1. The use of multibeam backscatter and bathymetry as a means of identifying faunal assemblages in a deep-sea cold seep

    Science.gov (United States)

    Sen, Arunima; Ondréas, Hélène; Gaillot, Arnaud; Marcon, Yann; Augustin, Jean-Marie; Olu, Karine

    2016-04-01

    Deep-sea ecosystems have attracted considerable commercial interest in recent years because of their potential to sustain a diverse range of mankind's industrial needs. If these systems are to be preserved or exploited in a sustainable manner, mapping habitats and species distributions is critical. As biodiversity at cold-seeps or other deep-sea ecosystems is driven by habitat heterogeneity, imagery is the obvious choice for characterizing these systems and has indeed proven extremely valuable towards mapping biogenic habitats formed by dense aggregations of large sized species, such as coral reefs, tubeworm bushes or bivalve beds. However, the acquisition of detailed images with resolution sufficient for reliable identification is extremely time consuming, labor intensive and highly susceptible to logistical issues. We developed a novel method for quickly mapping cold seep fauna and habitats over large areas, at the scale of squares of kilometers. Our method uses multibeam echosounder bathymetry and acoustic backscatter data, both segmented and reclassified based on topographical features and then combined to obtain a raster containing unique values incorporating both backscatter and bathymetry data. Two datasets, obtained from 30 m and 8 m above the seafloor were used and the results from the two datasets were compared. The method was applied to a cold seep community located in a pockmark in the deep Congo channel and we were able to ground truth the accuracy of our method against images of the area. The two datasets, obtained from different altitudes gave varying results: the 8 m altitude dataset reliably predicted tubeworms and carbonate rock, while the 30 m altitude dataset predicted tubeworms and vesicomyid clams. The 30 m dataset was more accurate than the 8 m altitude dataset in predicting distributions of tubeworms. Overall, all the predictions were quite accurate, with at least 90% of predictions being within 5 m of real distributions.

  2. Bacciger bacciger (Trematoda: Fellodistomidae) infection effects on wedge clam Donax trunculus condition.

    Science.gov (United States)

    de Montaudouin, Xavier; Bazairi, Hocein; Mlik, Karima Ait; Gonzalez, Patrice

    2014-10-16

    Wedge clams Donax trunculus inhabit high-energy environments along sandy coasts of the northeastern Atlantic Ocean and the Mediterranean Sea. Two sites were sampled monthly, one in Morocco (Mehdia), where the density was normal, and one in France (Biscarosse), where the density was very low. We tested the hypothesis that the difference in density between the sites was related to infection by the trematode parasite Bacciger bacciger. Identity of both the parasite and the host were verified using anatomical and molecular criteria. Parasite prevalence (i.e. the percentage of parasitized clams) was almost 3 times higher at Biscarosse. At this site, overall prevalence reached 32% in July and was correlated with the migration of several individuals (with a prevalence of 88%) to the sediment surface. After this peak, prevalence decreased rapidly, suggesting death of parasitized clams. The deleterious effect of B. bacciger on wedge clams was also supported by our calculations indicating that the weight of the parasite made up to 56% of the total weight of the parasitized clams. However, condition indices of trematode-free clams were also lower in Biscarosse than in Mehdia or other sites, suggesting that other factors such as pollutants or microparasites (Microcytos sp.) may alter wedge clam population fitness in Biscarosse.

  3. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z.; Deng, Y.; Nostrand, J.D. Van; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.-J.; Mason, O.U.; Dubinsky, E.; Chavarria, K.; Tom, L.; Fortney, J.; Lamendella, R.; Jansson, J.K.; D?haeseleer, P.; Hazen, T.C.; Zhou, J.

    2011-06-15

    The Deepwater Horizon oil spill in the Gulf of Mexico is the deepest and largest offshore spill in U.S. history and its impacts on marine ecosystems are largely unknown. Here, we showed that the microbial community functional composition and structure were dramatically altered in a deep-sea oil plume resulting from the spill. A variety of metabolic genes involved in both aerobic and anaerobic hydrocarbon degradation were highly enriched in the plume compared to outside the plume, indicating a great potential for intrinsic bioremediation or natural attenuation in the deep-sea. Various other microbial functional genes relevant to carbon, nitrogen, phosphorus, sulfur and iron cycling, metal resistance, and bacteriophage replication were also enriched in the plume. Together, these results suggest that the indigenous marine microbial communities could play a significant role in biodegradation of oil spills in deep-sea environments.

  4. An oceanographic model for the dispersion of wastes disposed of in the deep sea

    International Nuclear Information System (INIS)

    1983-06-01

    The report presents results of IMO/FAO/UNESCO/WMO/WHO/IAEA/UN/UNEP joint group of experts on the scientific aspects of marine pollution (GESAMP) to provide advice on the most suitable oceanographic modelling techniques to be applied to the deep-sea dumping of both radioactive and non-radioactive substances. There are four main parts of the work: the present knowledge of oceanic processes that may transfer substances from a deep-sea dump site back to man or his food chain, methods and models presently available for estimating or calculating concentration distributions of contaminants arising from releases from deep-sea dump sites and recommendations as to the presently most appropriate models, the reliability of the concentration distributions obtained using these models and recommended areas for further improvements including research needs

  5. Ecological impacts of large-scale disposal of mining waste in the deep sea.

    Science.gov (United States)

    Hughes, David J; Shimmield, Tracy M; Black, Kenneth D; Howe, John A

    2015-05-05

    Deep-Sea Tailings Placement (DSTP) from terrestrial mines is one of several large-scale industrial activities now taking place in the deep sea. The scale and persistence of its impacts on seabed biota are unknown. We sampled around the Lihir and Misima island mines in Papua New Guinea to measure the impacts of ongoing DSTP and assess the state of benthic infaunal communities after its conclusion. At Lihir, where DSTP has operated continuously since 1996, abundance of sediment infauna was substantially reduced across the sampled depth range (800-2020 m), accompanied by changes in higher-taxon community structure, in comparison with unimpacted reference stations. At Misima, where DSTP took place for 15 years, ending in 2004, effects on community composition persisted 3.5 years after its conclusion. Active tailings deposition has severe impacts on deep-sea infaunal communities and these impacts are detectable at a coarse level of taxonomic resolution.

  6. Unexpected Positive Buoyancy in Deep Sea Sharks, Hexanchus griseus, and a Echinorhinus cookei.

    Science.gov (United States)

    Nakamura, Itsumi; Meyer, Carl G; Sato, Katsufumi

    2015-01-01

    We do not expect non air-breathing aquatic animals to exhibit positive buoyancy. Sharks, for example, rely on oil-filled livers instead of gas-filled swim bladders to increase their buoyancy, but are nonetheless ubiquitously regarded as either negatively or neutrally buoyant. Deep-sea sharks have particularly large, oil-filled livers, and are believed to be neutrally buoyant in their natural habitat, but this has never been confirmed. To empirically determine the buoyancy status of two species of deep-sea sharks (bluntnose sixgill sharks, Hexanchus griseus, and a prickly shark, Echinorhinus cookei) in their natural habitat, we used accelerometer-magnetometer data loggers to measure their swimming performance. Both species of deep-sea sharks showed similar diel vertical migrations: they swam at depths of 200-300 m at night and deeper than 500 m during the day. Ambient water temperature was around 15°C at 200-300 m but below 7°C at depths greater than 500 m. During vertical movements, all deep-sea sharks showed higher swimming efforts during descent than ascent to maintain a given swimming speed, and were able to glide uphill for extended periods (several minutes), indicating that these deep-sea sharks are in fact positively buoyant in their natural habitats. This positive buoyancy may adaptive for stealthy hunting (i.e. upward gliding to surprise prey from underneath) or may facilitate evening upward migrations when muscle temperatures are coolest, and swimming most sluggish, after spending the day in deep, cold water. Positive buoyancy could potentially be widespread in fish conducting daily vertical migration in deep-sea habitats.

  7. Submarine canyons: hotspots of benthic biomass and productivity in the deep sea

    Science.gov (United States)

    De Leo, Fabio C.; Smith, Craig R.; Rowden, Ashley A.; Bowden, David A.; Clark, Malcolm R.

    2010-01-01

    Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42°01′ S, 173°03′ E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study. PMID:20444722

  8. Predicted deep-sea coral habitat suitability for the U.S. West coast.

    Science.gov (United States)

    Guinotte, John M; Davies, Andrew J

    2014-01-01

    Regional scale habitat suitability models provide finer scale resolution and more focused predictions of where organisms may occur. Previous modelling approaches have focused primarily on local and/or global scales, while regional scale models have been relatively few. In this study, regional scale predictive habitat models are presented for deep-sea corals for the U.S. West Coast (California, Oregon and Washington). Model results are intended to aid in future research or mapping efforts and to assess potential coral habitat suitability both within and outside existing bottom trawl closures (i.e. Essential Fish Habitat (EFH)) and identify suitable habitat within U.S. National Marine Sanctuaries (NMS). Deep-sea coral habitat suitability was modelled at 500 m×500 m spatial resolution using a range of physical, chemical and environmental variables known or thought to influence the distribution of deep-sea corals. Using a spatial partitioning cross-validation approach, maximum entropy models identified slope, temperature, salinity and depth as important predictors for most deep-sea coral taxa. Large areas of highly suitable deep-sea coral habitat were predicted both within and outside of existing bottom trawl closures and NMS boundaries. Predicted habitat suitability over regional scales are not currently able to identify coral areas with pin point accuracy and probably overpredict actual coral distribution due to model limitations and unincorporated variables (i.e. data on distribution of hard substrate) that are known to limit their distribution. Predicted habitat results should be used in conjunction with multibeam bathymetry, geological mapping and other tools to guide future research efforts to areas with the highest probability of harboring deep-sea corals. Field validation of predicted habitat is needed to quantify model accuracy, particularly in areas that have not been sampled.

  9. A Dataset of Deep-Sea Fishes Surveyed by Research Vessels in the Waters around Taiwan

    Directory of Open Access Journals (Sweden)

    Kwang-Tsao Shao

    2014-12-01

    Full Text Available The study of deep-sea fish fauna is hampered by a lack of data due to the difficulty and high cost incurred in its surveys and collections. Taiwan is situated along the edge of the Eurasia fig, at the junction of three Large Marine Ecosystems or Ecoregions of the East China Sea, South China Sea and the Philippines. As nearly two-thirds of its surrounding marine ecosystems are deep-sea environments, Taiwan is expected to hold a rich diversity of deep-sea fish. However, in the past, no research vessels were employed to collect fish data on site. Only specimens, caught by bottom trawl fishing in the waters hundreds of meters deep and missing precise locality information, were collected from Dasi and Donggang fishing harbors. Began in 2001, with the support of National Science Council, research vessels were made available to take on the task of systematically collecting deep-sea fish specimens and occurrence records in the waters surrounding Taiwan. By the end of 2006, a total of 3,653 specimens, belonging to 26 orders, 88 families, 198 genera and 366 species, were collected in addition to data such as sampling site geographical coordinates and water depth, and fish body length and weight. The information, all accessible from the “Database of Taiwan’s Deep-Sea Fauna and Its Distribution (http://deepsea.biodiv.tw/” as part of the “Fish Database of Taiwan,” can benefit the study of temporal and spatial changes in distribution and abundance of fish fauna in the context of global deep-sea biodiversity.

  10. Application of Low cost Spirulina growth medium using Deep sea water

    Science.gov (United States)

    Lim, Dae-hack; Kim, Bong-ju; Lee, Sung-jae; Choi, Nag-chul; Park, Cheon-young

    2017-04-01

    Deep-sea water has a relatively constant temperature, abundant nutrients such as calcium, magnesium, nitrates, and phosphates, etc., and stable water quality, even though there might be some variations of their compositions according to collection places. Thus, deep-sea water would be a good substrate for algal growth and biomass production since it contains various nutrients, including a fluorescent red pigment, and β-carotene, etc. The aim of this study was to investigate the economics of a culture condition through comparative analysis to Spirulina platensis growth characteristic under various medium conditions for cost-effective production of Spirulina sp.. Growth experiments were performed with S. platensis under various culture medium conditions (deep sea water + SP medium). Growth tests for culture medium demonstrated that the deep sea water to SP medium ratio of 50:50(W/W) was effective in S. platensis with the maximum biomass (1.35g/L) and minimum medium making cost per production mass (133.28 KRW/g). Parameter estimation of bio-kinetics (maximum growth rate and yield) for low cost medium results showed that the maximum growth rate and yield of N, P, K were obtained under deep sea water to SP medium ratio of 50:50(W/W) of 0.057 1/day and 0.151, 0.076, 0.123, respectively. Acknowledgment : "This research was a part of the project titled 'Development of microalgae culture technique for cosmetic materials based on ocean deep sea water(20160297)', funded by the Ministry of Oceans and Fisheries, Korea."

  11. The National Deep-Sea Coral and Sponge Database: A Comprehensive Resource for United States Deep-Sea Coral and Sponge Records

    Science.gov (United States)

    Dornback, M.; Hourigan, T.; Etnoyer, P.; McGuinn, R.; Cross, S. L.

    2014-12-01

    Research on deep-sea corals has expanded rapidly over the last two decades, as scientists began to realize their value as long-lived structural components of high biodiversity habitats and archives of environmental information. The NOAA Deep Sea Coral Research and Technology Program's National Database for Deep-Sea Corals and Sponges is a comprehensive resource for georeferenced data on these organisms in U.S. waters. The National Database currently includes more than 220,000 deep-sea coral records representing approximately 880 unique species. Database records from museum archives, commercial and scientific bycatch, and from journal publications provide baseline information with relatively coarse spatial resolution dating back as far as 1842. These data are complemented by modern, in-situ submersible observations with high spatial resolution, from surveys conducted by NOAA and NOAA partners. Management of high volumes of modern high-resolution observational data can be challenging. NOAA is working with our data partners to incorporate this occurrence data into the National Database, along with images and associated information related to geoposition, time, biology, taxonomy, environment, provenance, and accuracy. NOAA is also working to link associated datasets collected by our program's research, to properly archive them to the NOAA National Data Centers, to build a robust metadata record, and to establish a standard protocol to simplify the process. Access to the National Database is provided through an online mapping portal. The map displays point based records from the database. Records can be refined by taxon, region, time, and depth. The queries and extent used to view the map can also be used to download subsets of the database. The database, map, and website is already in use by NOAA, regional fishery management councils, and regional ocean planning bodies, but we envision it as a model that can expand to accommodate data on a global scale.

  12. Deep-sea biodiversity in the Mediterranean Sea: the known, the unknown, and the unknowable.

    Directory of Open Access Journals (Sweden)

    Roberto Danovaro

    Full Text Available Deep-sea ecosystems represent the largest biome of the global biosphere, but knowledge of their biodiversity is still scant. The Mediterranean basin has been proposed as a hot spot of terrestrial and coastal marine biodiversity but has been supposed to be impoverished of deep-sea species richness. We summarized all available information on benthic biodiversity (Prokaryotes, Foraminifera, Meiofauna, Macrofauna, and Megafauna in different deep-sea ecosystems of the Mediterranean Sea (200 to more than 4,000 m depth, including open slopes, deep basins, canyons, cold seeps, seamounts, deep-water corals and deep-hypersaline anoxic basins and analyzed overall longitudinal and bathymetric patterns. We show that in contrast to what was expected from the sharp decrease in organic carbon fluxes and reduced faunal abundance, the deep-sea biodiversity of both the eastern and the western basins of the Mediterranean Sea is similarly high. All of the biodiversity components, except Bacteria and Archaea, displayed a decreasing pattern with increasing water depth, but to a different extent for each component. Unlike patterns observed for faunal abundance, highest negative values of the slopes of the biodiversity patterns were observed for Meiofauna, followed by Macrofauna and Megafauna. Comparison of the biodiversity associated with open slopes, deep basins, canyons, and deep-water corals showed that the deep basins were the least diverse. Rarefaction curves allowed us to estimate the expected number of species for each benthic component in different bathymetric ranges. A large fraction of exclusive species was associated with each specific habitat or ecosystem. Thus, each deep-sea ecosystem contributes significantly to overall biodiversity. From theoretical extrapolations we estimate that the overall deep-sea Mediterranean biodiversity (excluding prokaryotes reaches approximately 2805 species of which about 66% is still undiscovered. Among the biotic components

  13. Uptake and distribution of organo-iodine in deep-sea corals.

    Science.gov (United States)

    Prouty, Nancy G; Roark, E Brendan; Mohon, Leslye M; Chang, Ching-Chih

    2018-07-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon ( 14 C) measurements. These results hold promise for developing chronologies independent of 14 C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129 I/ 127 I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129 I composition provides further evidence that iodine composition and isotope

  14. Uptake and distribution of organo-iodine in deep-sea corals

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Mohon, Leslye M.; Chang, Ching-Chih

    2018-01-01

    Understanding iodine concentration, transport, and bioavailability is essential in evaluating iodine's impact to the environment and its effectiveness as an environmental biogeotracer. While iodine and its radionuclides have proven to be important tracers in geologic and biologic studies, little is known about transport of this element to the deep sea and subsequent uptake in deep-sea coral habitats. Results presented here on deep-sea black coral iodine speciation and iodine isotope variability provides key information on iodine behavior in natural and anthropogenic environments, and its geochemical pathway in the Gulf of Mexico. Organo-iodine is the dominant iodine species in the black corals, demonstrating that binding of iodine to organic matter plays an important role in the transport and transfer of iodine to the deep-sea corals. The identification of growth bands captured in high-resolution scanning electron images (SEM) with synchronous peaks in iodine variability suggest that riverine delivery of terrestrial-derived organo-iodine is the most plausible explanation to account for annual periodicity in the deep-sea coral geochemistry. Whereas previous studies have suggested the presence of annual growth rings in deep-sea corals, this present study provides a mechanism to explain the formation of annual growth bands. Furthermore, deep-sea coral ages based on iodine peak counts agree well with those ages derived from radiocarbon (14C) measurements. These results hold promise for developing chronologies independent of 14C dating, which is an essential component in constraining reservoir ages and using radiocarbon as a tracer of ocean circulation. Furthermore, the presence of enriched 129I/127I ratios during the most recent period of skeleton growth is linked to nuclear weapons testing during the 1960s. The sensitivity of the coral skeleton to record changes in surface water 129I composition provides further evidence that iodine composition and isotope

  15. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  16. Indian Moorings: Deep-sea current meter moorings in the Eastern Equatorial Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, M.S.S.; Suryanarayana, A.; Sengupta, D.; Unnikrishnan, A.S.; Fernando, V.; Almeida, A.; Khalap, S.; Sardar, A.; Somasundar, K.; Ravichandran, M.

    at the 93°E mooring location. The time-series currents data are available from the NIO website (http://www.nio.org/data_info/deep-sea_mooring/oos- deep-sea-currentmeter-moorings.htm) and are submitted to the Indian National Center for Ocean Information... System (INCOIS), Hyderabad for display at INCOIS website. The moorings will be recovered in August – September 2006 and will be redeployed at the same locations for another year. Table 1 shows the status of the current data available as of July 2006...

  17. Deep-sea epibiotic hydroids from the abyssal plain adjacent to the Kuril-Kamchatka Trench with description of Garveia belyaevi sp. nov. (Hydrozoa, Bougainvilliidae)

    Science.gov (United States)

    Stepanjants, Sofia D.; Chernyshev, Alexey V.

    2015-01-01

    Examination of material collected by the German-Russian KuramBio Deep-Sea Expedition to the abyssal plain adjacent to the Kuril-Kamchatka Trench revealed about 17 hydroid species, including two species presumably new to science. Before the KuramBio Expedition only fragments of the unidentified hydroids and Cryptolaria sp. were collected in the Kuril-Kamchatka Trench from depths exceeding 3000 m. Descriptions of three species of epibiotic hydroids (including one new species, Garveia belyaevi sp. nov.) are presented herein. A colony of G. belyaevi sp. nov. (the third deep-sea and deepest species of the wide distributed genus Garveia) was attached to the spines of unidentified irregular sea urchins from depths 5217 to 5229 m. Нalitholus (?) sp. (Hydrozoa, Anthoathecata) colonized the skin of spoon worms (Echiura) but could not be identified to species level because the mature medusa stage was absent in the material. An unidentified juvenile polyp (Pandeidae) was found on the bryozoan Tricitella minini attached to spines of irregular sea urchins Echinosigra amphora. Colonial sedentary organisms inhabiting abyssal plains with soft bottoms may colonize invertebrates which are seldom used as substrates for epibiota in shallow waters. Epibiosis among abyssal colonial invertebrates, though extremely poorly studied, appears to be rather frequent.

  18. South America-Africa missing links revealed by the taxonomy of deep-sea molluscs: Examples from prochaetodermatid aplacophorans

    Science.gov (United States)

    Corrêa, Paulo Vinicius Ferraz; Miranda, Marcel Sabino; Passos, Flávio Dias

    2018-02-01

    Prochaetodermatidae (Mollusca, Aplacophora, Caudofoveata), typical inhabitants of the deep sea, occur mainly along the continental slope, sometimes in high abundance. Their diversity in some regions, such as the South Atlantic Ocean, is little studied. The genus Claviderma is so far composed of one Pacific Ocean, two Indian Ocean and seven Atlantic Ocean species. Collections of the southeastern Brazilian coast contained three species of this genus. One, C. virium sp. nov., is new to science, and the other two, C. crassum and C. amplum, are new occurrences, extending their distributions southward into the western Atlantic. The external morphology and details of their radula and sclerites are described. The new species is distinguished by its long trunk and comparatively narrow, short posterium, and its trunk sclerites bearing numerous evident transverse growth lines. In the Atlantic Ocean, species with similar body forms and with sclerites of the same shape occur off the western and eastern coasts: the South American C. compactum is similar externally to the African C. brevicaudatum, and the Brazilian C. virium sp. nov. is comparable to the eastern Atlantic C. gladiatum. This suggests that these pairs of species are sister-groups, sharing the same morphological traits as a result of common ancestry. In the western and eastern Atlantic, most species of Claviderma that live over a wider range of depths are more widely distributed.

  19. AMADEUS-The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NARCIS (Netherlands)

    Aguilar, J.A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.; Aubert, J.J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M.C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chiarusi, T.; Sen, N.C.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; De Bonis, G.; Decowski, M.P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.L.; Gay, P.; Giacomelli, G.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A.J.; Heine, E.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; De Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchneri, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefevre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Pavalas, G.E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G.V.; Salesa, F.; Sapienza, P.; Schock, F.; Schuller, J.P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic

  20. 77 FR 35850 - Safety Zone; F/V Deep Sea, Penn Cove, WA

    Science.gov (United States)

    2012-06-15

    ... the Fishing Vessel (F/V) Deep Sea, located in Penn Cove, WA. This action is necessary to ensure the... response vessels in or around Penn Cove, WA, from hazards created by a sunken fishing vessel, which may... the zone must request permission for entry by contacting on-scene patrol craft on VHF CH 13 or Joint...

  1. Bacterial diversity and biogeography in deep-sea sediments of the South Atlantic Ocean

    DEFF Research Database (Denmark)

    Schauer, Regina; Bienhold, Christina; Ramette, Alban

    2010-01-01

    Microbial biogeographic patterns in the deep sea depend on the ability of microorganisms to disperse. One possible limitation to microbial dispersal may be the Walvis Ridge that separates the Antarctic Lower Circumpolar Deep Water from the North Atlantic Deep Water. We examined bacterial communit...

  2. Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface

    NARCIS (Netherlands)

    Tamburini, C.; Canals, M.; de Madron, X.D.; Houpert, L.; Lefevre, D.; Martini, V.; D'Ortenzio, F.; Robert, A.; Testor, P.; Aguilar, J.A.; Al Samarai, I.; Albert, A.; Andre, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Jesus, A.C.A.; Astraatmadja, T.L.; Aubert, J.J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M.C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Carloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, P.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, P.; Dekeyser, I.; Deschamps, A.; Donzaud, C.; Dornic, D.; Dorosti, H.Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.L.; Galata, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gomez-Gonzalez, J.P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Herold, B.; Hossl, J.; Hsu, C.C.; De Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J.A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.N.; Palioselitis, D.; Pavalas, G.E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Riviere, C.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, V.G.; Salesa, F.; Sanchez-Losa, A.; Sapienza, P.; Schock, F.; Schuller, J.P.; Schussler, F.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J.J.M.; Stolarczyk, T.; Taiuti, M.G.F.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J.D.; Zuniga, J.

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June

  3. Modeling food web interactions in benthic deep-sea ecosystems. A practical guide

    NARCIS (Netherlands)

    Soetaert, K.E.R.; Van Oevelen, D.J.

    2009-01-01

    Deep-sea benthic systems are notoriously difficult to sample. Even more than for other benthic systems, many flows among biological groups cannot be directly measured, and data sets remain incomplete and uncertain. In such cases, mathematical models are often used to quantify unmeasured biological

  4. The cirrate, or finned, octopods are deep-sea animals about which ...

    African Journals Online (AJOL)

    spamer

    The cirrate, or finned, octopods are deep-sea animals about which little is known. They are rarely seen. ... or medusoid pulses with the arm/web complex. It may be capable of limited changes in colour pattern, .... that of the adjacent web, always lighter than the dark areas of the web but darker (cirri) or highlighted with.

  5. Trace element and stable isotope analyses of deep sea fish from the ...

    African Journals Online (AJOL)

    Thirty-five deep sea fishes belonging to 22 species and one unidentified specimen obtained from the Sulu Sea, located in the southwestern area of the Philippines were analyzed in the late 2002, for 23 trace elements using ICP-MS, HGAAS and CV-AAS. Predominant accumulation of strontium (Sr) was observed in all the ...

  6. Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific.

    Directory of Open Access Journals (Sweden)

    Sayaka eMino

    2013-04-01

    Full Text Available Deep-sea hydrothermal vent fields are areas on the seafloor with high biological productivity fueled by microbial chemosynthesis. Members of the Aquificales genus Persephonella are obligately chemosynthetic bacteria, and appear to be key players in carbon, sulfur, and nitrogen cycles in high temperature habitats at deep-sea vents. Although this group of bacteria has cosmopolitan distribution in deep-sea hydrothermal ecosystem around the world, little is known about their population structure such as intraspecific genomic diversity, distribution pattern, and phenotypic diversity. We developed the multi-locus sequence analysis (MLSA scheme for their genomic characterization. Sequence variation was determined in five housekeeping genes and one functional gene of 36 P. hydrogeniphila strains originated from the Okinawa Trough and the South Mariana Trough. Although the strains share > 98.7% similarities in 16S rRNA gene sequences, MLSA revealed 35 different sequence types, indicating their extensive genomic diversity. A phylogenetic tree inferred from all concatenated gene sequences revealed the clustering of isolates according to the geographic origin. In addition, the phenotypic clustering pattern inferred from whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS analysis can be correlated to their MLSA clustering pattern. This study represents the first MLSA combined with phenotypic analysis indicative of allopatric speciation of deep-sea hydrothermal vent bacteria.

  7. Deep-sea environment and biodiversity of the West African Equatorial margin

    Science.gov (United States)

    Sibuet, Myriam; Vangriesheim, Annick

    2009-12-01

    The long-term BIOZAIRE multidisciplinary deep-sea environmental program on the West Equatorial African margin organized in partnership between Ifremer and TOTAL aimed at characterizing the benthic community structure in relation with physical and chemical processes in a region of oil and gas interest. The morphology of the deep Congo submarine channel and the sedimentological structures of the deep-sea fan were established during the geological ZAIANGO project and helped to select study sites ranging from 350 to 4800 m water depth inside or near the channel and away from its influence. Ifremer conducted eight deep-sea cruises on board research vessels between 2000 and 2005. Standardized methods of sampling together with new technologies such as the ROV Victor 6000 and its associated instrumentation were used to investigate this poorly known continental margin. In addition to the study of sedimentary environments more or less influenced by turbidity events, the discovery of one of the largest cold seeps near the Congo channel and deep coral reefs extends our knowledge of the different habitats of this margin. This paper presents the background, objectives and major results of the BIOZAIRE Program. It highlights the work achieved in the 16 papers in this special issue. This synthesis paper describes the knowledge acquired at a regional and local scale of the Equatorial East Atlantic margin, and tackles new interdisciplinary questions to be answered in the various domains of physics, chemistry, taxonomy and ecology to better understand the deep-sea environment in the Gulf of Guinea.

  8. Correcting the Cenozoic δ18O deep-sea temperature record

    NARCIS (Netherlands)

    Oerlemans, J.

    2004-01-01

    The oxygen isotope signal in benthic foraminifera from deep-sea cores is mainly determined by deep-ocean temperature and land ice volume. Separating the temperature and ice volume signals is a key step in understanding the evolution of Cenozoic climate. Except for the last few million years,

  9. Deep-sea mining: Economic, technical, technological, and environmental considerations for sustainable development

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.

    investment of $1.95 billion as capital expenditure and $9 billion as operating expenditure for a single deep-sea mining venture. In view of high investment, technological challenges and economic considerations, private-public cooperation could be an effective...

  10. Trophic Dynamics of Deep-Sea Megabenthos Are Mediated by Surface Productivity

    Science.gov (United States)

    Tecchio, Samuele; van Oevelen, Dick; Soetaert, Karline; Navarro, Joan; Ramírez-Llodra, Eva

    2013-01-01

    Most deep-sea benthic ecosystems are food limited and, in the majority of cases, are driven by the organic matter falling from the surface or advected downslope. Species may adapt to this scarceness by applying a wide variety of responses, such as feeding specialisation, niche width variation, and reduction in metabolic rates. The Mediterranean Sea hosts a gradient of food availability at the deep seafloor over its wide longitudinal transect. In the Mediterranean, broad regional studies on trophic habits are almost absent, and the response of deep-sea benthos to different trophic conditions is still speculative. Here, we show that both primary and secondary production processes taking place at surface layers are key drivers of deep-sea food web structuring. By employing an innovative statistical tool, we interpreted bulk-tissue δ13C and δ15N isotope ratios in benthic megafauna, and associated surface and mesopelagic components from the 3 basins of the Mediterranean Sea at 3 different depths (1200, 2000, and 3000 m). The trophic niche width and the amplitude of primary carbon sources were positively correlated with both primary and secondary surface production indicators. Moreover, mesopelagic organic matter utilization processes showed an intermediate position between surface and deep benthic components. These results shed light on the understanding of deep-sea ecosystems functioning and, at the same time, they demand further investigation. PMID:23691098

  11. Vertical hydraulic transport for deep sea mining : A study into flow assurance

    NARCIS (Netherlands)

    Van Wijk, J.M.

    2016-01-01

    Deep sea mining activities require excavation of material at the sea floor, transport of the material from the sea floor to the sea surface and processing of the material afterwards. One way to transport the material from the sea floor to sea surface is by means of a riser with centrifugal pump

  12. State of the deep-sea shrimp stock of Angola | Djama | Journal of the ...

    African Journals Online (AJOL)

    Journal of the Cameroon Academy of Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 1, No 3 (2001) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. State of the deep-sea shrimp stock of Angola.

  13. Trace Element and Stable Isotope Analyses of Deep Sea Fish from ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    Trace Element and Stable Isotope Analyses of Deep Sea Fish from the Sulu Sea, Philippines. K. A. Asante1, 2*, R. Kubota1, T. Agusa1, A. Subramanian1, S. Tanabe1, S. Nishida3, M. Yamaguchi3, K. Suetsugu3, S. Ohta3 and H. Yeh4. 1 Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-Cho 2–5,.

  14. Biological responses to disturbance from simulated deep-sea polymetallic nodulemining

    NARCIS (Netherlands)

    Jones, D.O.B.; Kaiser, S.; Sweetman, A.K.; Smith, C.R.; Menot, L.; Vink, A.; Trueblood, D.; Greinert, J.; Billett, D.S.M.; Martinez Arbizu, P.; Radziejewska, T.; Singh, R.; Ingole, B.; Stratmann, T.; Simon-Lledó, E.; Durden, J.M.; Clack, M.R.

    2017-01-01

    Commercial-scale mining for polymetallic nodules could have a major impact on the deepseaenvironment, but the effects of these mining activities on deep-sea ecosystems are verypoorly known. The first commercial test mining for polymetallic nodules was carried out in1970. Since then a number of

  15. Deep-Sea Mining With No Net Loss of Biodiversity—An Impossible Aim

    Directory of Open Access Journals (Sweden)

    Holly J. Niner

    2018-03-01

    Full Text Available Deep-sea mining is likely to result in biodiversity loss, and the significance of this to ecosystem function is not known. “Out of kind” biodiversity offsets substituting one ecosystem type (e.g., coral reefs for another (e.g., abyssal nodule fields have been proposed to compensate for such loss. Here we consider a goal of no net loss (NNL of biodiversity and explore the challenges of applying this aim to deep seabed mining, based on the associated mitigation hierarchy (avoid, minimize, remediate. We conclude that the industry cannot at present deliver an outcome of NNL. This results from the vulnerable nature of deep-sea environments to mining impacts, currently limited technological capacity to minimize harm, significant gaps in ecological knowledge, and uncertainties of recovery potential of deep-sea ecosystems. Avoidance and minimization of impacts are therefore the only presently viable means of reducing biodiversity losses from seabed mining. Because of these constraints, when and if deep-sea mining proceeds, it must be approached in a precautionary and step-wise manner to integrate new and developing knowledge. Each step should be subject to explicit environmental management goals, monitoring protocols, and binding standards to avoid serious environmental harm and minimize loss of biodiversity. “Out of kind” measures, an option for compensation currently proposed, cannot replicate biodiversity and ecosystem services lost through mining of the deep seabed and thus cannot be considered true offsets. The ecosystem functions provided by deep-sea biodiversity contribute to a wide range of provisioning services (e.g., the exploitation of fish, energy, pharmaceuticals, and cosmetics, play an essential role in regulatory services (e.g., carbon sequestration and are important culturally. The level of “acceptable” biodiversity loss in the deep sea requires public, transparent, and well-informed consideration, as well as wide agreement

  16. Model output for deep-sea coral habitat suitability in the U.S. North and Mid-Atlantic from 2013 (NCEI Accession 0145923)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset was created for potential use as an environmental predictor in spatial predictive models of deep-sea coral habitat suitability. Deep-sea corals are of...

  17. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.

    Directory of Open Access Journals (Sweden)

    Jon M Yearsley

    Full Text Available BACKGROUND: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. PRINCIPAL FINDINGS: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore larvae of polyplacophoran molluscs (chitons, we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. CONCLUSIONS/SIGNIFICANCE: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.

  18. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations.

    Science.gov (United States)

    Yearsley, Jon M; Sigwart, Julia D

    2011-01-01

    Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate 'stepping stone' populations yet to be discovered. We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.

  19. Surface oceanographic fronts influencing deep-sea biological activity: Using fish stable isotopes as ecological tracers

    Science.gov (United States)

    Louzao, Maite; Navarro, Joan; Delgado-Huertas, Antonio; de Sola, Luis Gil; Forero, Manuela G.

    2017-06-01

    Ecotones can be described as transition zones between neighbouring ecological systems that can be shaped by environmental gradients over a range of space and time scales. In the marine environment, the detection of ecotones is complex given the highly dynamic nature of marine systems and the paucity of empirical data over ocean-basin scales. One approach to overcome these limitations is to use stable isotopes from animal tissues since they can track spatial oceanographic variability across marine systems and, in turn, can be used as ecological tracers. Here, we analysed stable isotopes of deep-sea fishes to assess the presence of ecological discontinuities across the western Mediterranean. We were specifically interested in exploring the connection between deep-sea biological activity and particular oceanographic features (i.e., surface fronts) occurring in the pelagic domain. We collected samples for three different abundant deep-sea species in May 2004 from an experimental oceanographic trawling cruise (MEDITS): the Mictophydae jewel lanternfish Lampanyctus crocodilus and two species of the Gadidae family, the silvery pout Gadiculus argenteus and the blue whiting Micromesistius poutassou. The experimental survey occurred along the Iberian continental shelf and the upper and middle slopes, from the Strait of Gibraltar in the SW to the Cape Creus in the NE. The three deep-sea species were highly abundant throughout the study area and they showed geographic variation in their isotopic values, with decreasing values from north to south disrupted by an important change point around the Vera Gulf. Isotopic latitudinal gradients were explained by pelagic oceanographic conditions along the study area and confirm the existence of an ecotone at the Vera Gulf. This area could be considered as an oceanographic boundary where waters of Atlantic origin meet Mediterranean surface waters forming important frontal structures such as the Almeria-Oran front. In fact, our results

  20. A continuum of life histories in deep-sea demersal fishes

    Science.gov (United States)

    Drazen, Jeffrey C.; Haedrich, Richard L.

    2012-03-01

    It is generally perceived that all deep-sea fishes have great longevity, slow growth, and low reproductive output in comparison to shelf dwelling species. However, such a dichotomy is too simplistic because some fishes living on continental slopes are relatively fecund and fast growing, important considerations in respect to the management of expanding deep-sea fisheries. We tested two hypotheses that might explain variation in life history attributes of commercially exploited demersal fishes: (1) phylogeny best explains the differences because deep-sea species are often in different families from shelf dwelling ones and, alternatively, (2) environmental factors affecting individual life history attributes that change with depth account for the observed variation. Our analysis was based on 40 species from 9 orders, including all major commercially exploited deep-sea fishes and several phylogenetically related shelf species. Depth of occurrence correlated significantly with age at 50% maturity increasing linearly with depth (r2=0.46), while the von Bertalanffy growth coefficient, maximum fecundity and potential rate of population increase declined significantly and exponentially with depth (r2=0.41, 0.25 and 0.53, respectively). These trends were still significant when phylogenetically independent contrasts were applied. The trends were also consistent with similar slopes amongst members of the order Gadiformes and the order Scorpaeniformes. Reduced temperatures, predation pressure, food availability, or metabolic rates may all contribute to such changes with depth. Regardless of the mechanisms, by analyzing a suite of fishes from the shelves to the slope the present analysis has shown that rather than a simple dichotomy between deep-sea fishes and shelf fishes there is a continuum of life history attributes in fishes which correlate strongly with depth of occurrence.

  1. 21 CFR 102.49 - Fried clams made from minced clams.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Fried clams made from minced clams. 102.49 Section 102.49 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Nonstandardized Foods § 102.49 Fried clams made from minced clams. (a) The common or usual name of the food...

  2. A comparative experimental approach to ecotoxicology in shallow-water and deep-sea holothurians suggests similar behavioural responses.

    Science.gov (United States)

    Brown, Alastair; Wright, Roseanna; Mevenkamp, Lisa; Hauton, Chris

    2017-10-01

    Exploration of deep-sea mineral resources is burgeoning, raising concerns regarding ecotoxicological impacts on deep-sea fauna. Assessing toxicity in deep-sea species is technologically challenging, which promotes interest in establishing shallow-water ecotoxicological proxy species. However, the effects of temperature and hydrostatic pressure on toxicity, and how adaptation to deep-sea environmental conditions might moderate these effects, are unknown. To address these uncertainties we assessed behavioural and physiological (antioxidant enzyme activity) responses to exposure to copper-spiked artificial sediments in a laboratory experiment using a shallow-water holothurian (Holothuria forskali), and in an in situ experiment using a deep-sea holothurian (Amperima sp.). Both species demonstrated sustained avoidance behaviour, evading contact with contaminated artificial sediment. However, A. sp. demonstrated sustained avoidance of 5mgl -1 copper-contaminated artificial sediment whereas H. forskali demonstrated only temporary avoidance of 5mgl -1 copper-contaminated artificial sediment, suggesting that H. forskali may be more tolerant of metal exposure over 96h. Nonetheless, the acute behavioural response appears consistent between the shallow-water species and the deep-sea species, suggesting that H. forskali may be a suitable ecotoxicological proxy for A. sp. in acute (≤24h) exposures, which may be representative of deep-sea mining impacts. No antioxidant response was observed in either species, which was interpreted to be the consequence of avoiding copper exposure. Although these data suggest that shallow-water taxa may be suitable ecotoxicological proxies for deep-sea taxa, differences in methodological and analytical approaches, and in sex and reproductive stage of experimental subjects, require caution in assessing the suitability of H. forskali as an ecotoxicological proxy for A. sp. Nonetheless, avoidance behaviour may have bioenergetic consequences that

  3. Sensitivity of the deep-sea amphipod Eurythenes gryllus to chemically dispersed oil.

    Science.gov (United States)

    Olsen, Gro Harlaug; Coquillé, Nathalie; Le Floch, Stephane; Geraudie, Perrine; Dussauze, Matthieu; Lemaire, Philippe; Camus, Lionel

    2016-04-01

    In the context of an oil spill accident and the following oil spill response, much attention is given to the use of dispersants. Dispersants are used to disperse an oil slick from the sea surface into the water column generating a cloud of dispersed oil droplets. The main consequence is an increasing of the sea water-oil interface which induces an increase of the oil biodegradation. Hence, the use of dispersants can be effective in preventing oiling of sensitive coastal environments. Also, in case of an oil blowout from the seabed, subsea injection of dispersants may offer some benefits compared to containment and recovery of the oil or in situ burning operation at the sea surface. However, biological effects of dispersed oil are poorly understood for deep-sea species. Most effects studies on dispersed oil and also other oil-related compounds have been focusing on more shallow water species. This is the first approach to assess the sensitivity of a macro-benthic deep-sea organism to dispersed oil. This paper describes a toxicity test which was performed on the macro-benthic deep-sea amphipod (Eurythenes gryllus) to determine the concentration causing lethality to 50% of test individuals (LC50) after an exposure to dispersed Brut Arabian Light (BAL) oil. The LC50 (24 h) was 101 and 24 mg L(-1) after 72 h and 12 mg L(-1) at 96 h. Based on EPA scale of toxicity categories to aquatic organisms, an LC50 (96 h) of 12 mg L(-1) indicates that the dispersed oil was slightly to moderately toxic to E. gryllus. As an attempt to compare our results to others, a literature study was performed. Due to limited amount of data available for dispersed oil and amphipods, information on other crustacean species and other oil-related compounds was also collected. Only one study on dispersed oil and amphipods was found, the LC50 value in this study was similar to the LC50 value of E. gryllus in our study. Since toxicity data are important input to risk assessment and net environmental

  4. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    Science.gov (United States)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  5. Postcolonial partnerships: deep sea research, media coverage and (inter)national narratives on the Galathea Deep Sea Expedition from 1950 to 1952.

    Science.gov (United States)

    Nielsen, Kristian Hvidtfelt

    2010-03-01

    The Danish Galathea Deep Sea Expedition between 1950 and 1952 combined scientific and official objectives with the production of national and international narratives distributed through the daily press and other media. Dispatched by the Danish government on a newly acquired naval ship, the expedition undertook groundbreaking deep sea research while also devoting efforts to showing the flag, public communication of science, and international cooperation. The expedition was conceived after the war as a way in which to rehabilitate Denmark's reputation internationally and to rebuild national pride. To this end, the expedition included an onboard press section reporting the expedition to the Danish public and to an international audience. The press section mediated the favourable, post-war and postcolonial image of Denmark as an internationalist, scientific, modernizing and civilizing nation for which the expedition planners and many others were hoping. The expedition, therefore, was highly relevant to, indeed fed on, the emerging internationalist agenda in Denmark's foreign policy. Bringing out these aspects of the historical context of the expedition, this paper adds important perspectives to our knowledge about the expedition in particular and, more generally, about scientific exploration in the immediate post-war and postcolonial period.

  6. Paleocorrosion studies in deep sea sediments and the geological disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Fehrenbach, L.; Maurette, M.; Guichard, F.; Havette, A.; Monaco, A.

    1984-01-01

    Uncertainties still surround assessment of the safety of disposal of nuclear wastes incorporated into 'radwaste' matrices. This is mostly due to the long time required for radioactive decay of 237 Np. The present work explores the usefulness of an experimental approach in 'paleocorrosion', which should help in minimizing such uncertainties. In this approach, polished sections of sediments containing high concentrations of natural analogues of radwaste matrices are subjected to element micromapping. Thus it is possible to characterize the long-term interactions of such analogues in their geological repositories, and to identify which generate reaction aureoles and protective and/or unprotective coatings. These analogues include grains incorporated in deep sea sediments (uraninite and quartz from the Oklo uranium ore deposit; volcanic ash particles; magnetic cosmic spherules). The present results indicate that uraninite should be a much more durable radwaste matrix than any type of glass in deep sea sediments. (orig./TWO)

  7. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Predicting drivers and distributions of deep-sea ecosystems: A cold-water coral case study

    DEFF Research Database (Denmark)

    Mohn, Christian; Rengstorf, Anna; Brown, Colin

    2015-01-01

    Little is yet known about species distribution patterns and physical drivers in deep-sea environments due the expensive and time consuming sampling effort. The increasing need to manage and protect vulnerable marine ecosystems, such as cold-water corals, has motivated the use of predictive...... and to provide decision support for marine spatial planning and conservation in the deep sea. Mohn et al., 2014.Linking benthic hydrodynamics and cold water coral occurrences: A high-resolution model study at three cold-water coral provinces in the NE Atlantic. Progress in Oceanography 122, 92-104. Rengstorf et......, facilitating species distribution modelling with high spatial detail. In this study, we used high resolution data (250 m grid size) from a newly developed hydrodynamic model to explore linkages between key physical drivers and occurrences of the cold-water coral Lophelia pertusa in selected areas of the NE...

  9. Deep-sea lebensspuren: remarks on some echiuran traces in the Porcupine Seabight, northeast Atlantic

    Science.gov (United States)

    de Vaugelas, Jean

    1989-06-01

    During an exploration of the Porcupine Seabight aboard the French submersible Cyana, large rosettes attributed to echiurans were observed on the muddy bottom, sometimes associated with clumped mounds showing tension gashes. The intrusion of cores into the gashed mounds resulted in the creation of a fountain-like current of water flowing out of the center hole of the rosette, illustrating a direct connection. These two types of traces, which are classified under distinct generic names in recent classifications of deep-sea lebensspuren, are presumed to be produced by the echiuroid worm, being the two ends of an L-shaped burrow. A sketch of deep-sea echiurans' mode of life is proposed.

  10. From Exploration to Exploitation? Opportunities and Imperatives in the Deep Sea

    KAUST Repository

    Van Dover, Cindy Lee

    2017-01-16

    We may think of the depths of the ocean as unseen, unfathomable, but there have been breakthroughs in technology that allow scientists access to the deep sea and that bring the deep sea directly to the public through live video feeds and data links. We can now map the seafloor to resolve features the size of a football and smaller using sound waves, while at the same time, sensors report to us the chemical nature of the surrounding environment. We will look at examples of robots and other assets that we use to explore the seafloor and at some of the discoveries that arise from our expanding capabilities. We will look at some of the blank places on the map and wonder what might be located there. And finally, we will explore the growing interest in mining the seabed and the potential for a Blue Economy in the deep ocean.

  11. Phylogenetic relationships among deep-sea and chemosynthetic sea anemones: actinoscyphiidae and actinostolidae (Actiniaria: Mesomyaria.

    Directory of Open Access Journals (Sweden)

    Estefanía Rodríguez

    Full Text Available Sea anemones (Cnidaria, Actiniaria are present in all marine ecosystems, including chemosynthetic environments. The high level of endemicity of sea anemones in chemosynthetic environments and the taxonomic confusion in many of the groups to which these animals belong makes their systematic relationships obscure. We use five molecular markers to explore the phylogenetic relationships of the superfamily Mesomyaria, which includes most of the species that live in chemosynthetic, deep-sea, and polar sea habitats and to test the monophyly of the recently defined clades Actinostolina and Chemosynthina. We found that sea anemones of chemosynthetic environments derive from at least two different lineages: one lineage including acontiate deep-sea taxa and the other primarily encompassing shallow-water taxa.

  12. The giant deep-sea octopus Haliphron atlanticus forages on gelatinous fauna.

    Science.gov (United States)

    Hoving, H J T; Haddock, S H D

    2017-03-27

    Feeding strategies and predator-prey interactions of many deep-sea pelagic organisms are still unknown. This is also true for pelagic cephalopods, some of which are very abundant in oceanic ecosystems and which are known for their elaborate behaviors and central role in many foodwebs. We report on the first observations of the giant deep-sea octopus Haliphron atlanticus with prey. Using remotely operated vehicles, we saw these giant octopods holding medusae in their arms. One of the medusae could be identified as Phacellophora camtschatica (the egg-yolk jelly). Stomach content analysis confirmed predation on cnidarians and gelatinous organisms. The relationship between medusae and H. atlanticus is discussed, also in comparison with other species of the Argonautoidea, all of which have close relationships with gelatinous zooplankton.

  13. Deep-Sea Trench Microbiology Down to 10.9 Kilometers Below the Surface

    Science.gov (United States)

    Bartlett, D. H.

    2012-12-01

    Deep-sea trenches, extending to more than 10.9 km below the sea surface, are among the most remote and infrequently sampled habitats. As a result a global perspective of microbial diversity and adaptation is lacking in these extreme settings. I will present the results of studies of deep-sea trench microbes collected in the Puerto Rico Trench (PRT), Tonga Trench, New Britain Trench and Mariana Trench. The samples collected include sediment, seawater and animals in baited traps. The analyses to be described include microbial community activity and viability measurements as a function of hydrostatic pressure, microbial culturing at high pressure under various physiological conditions, phylogenetics and metagenome and single-cell genome characterizations. Most of the results to date stem from samples recovered from the PRT. The deep-sea PRT Trench microbes have more in common at the species level with other deep-sea microbial communities previously characterized in the Pacific Ocean and the Mediterranean Sea than with the microbial populations above them in shallow waters. They also harbor larger genomes with more genes assigned to signal transduction, transcription, replication, recombination and repair and inorganic ion transport. The overrepresented transporters in the PRT metagenome include di- and tri-carboxylate transporters that correspond to the prevailing catabolic processes such as butanoate, glyoxylate and dicarboxylate metabolism. A surprisingly high abundance of sulfatases for the degradation of sulfated polysaccharides were also present in the PRT. But, perhaps the most dramatic adaptational feature of the PRT microbes is heavy metal resistance, as reflected in the high numbers of metal efflux systems present. Single-cell genomics approaches have proven particularly useful for placing PRT metagenomic data into context.

  14. Exploring deep sea habitats for baseline characterization using NOAA Ship Okeanos Explorer

    Science.gov (United States)

    McKenna, L.; Cantwell, K. L.; Kennedy, B. R.; Lobecker, E.; Sowers, D.; Elliott, K.

    2015-12-01

    In 2015, NOAA Ship Okeanos Explorer, the only US federal ship dedicated to ocean exploration, systematically explored previously unknown deep sea ecosystems in the Caribbean and remote regions in the vicinity of the Hawaiian Islands. Initial characterization of these areas is essential in order to establish a baseline against which to assess potential future changes due to climate and anthropogenic change. In the Caribbean, over 37,500 sq km of previously unmapped seafloor were mapped with a high resolution multibeam revealing rugged canyons along shelf breaks, intricate incised channels, and complex tectonic features. 12 ROV dives, in the 300-6,000 m depth range, visually explored seamounts, escarpments, submarine canyons, and the water column revealing diverse ecosystems and habitats. Discoveries include large assemblages of deep sea corals, range extensions, and observations of several rare and potentially new organisms - including a seastar that had not been documented since its holotype specimen. In the Pacific, over 50,000 sq km of seafloor were mapped in high-resolution, revealing long linear ridge and tectonic fracture zone features, both peaked and flat-topped seamounts, and numerous features that appear to be volcanic in origin. To better understand ecosystem dynamics in depths greater than 2,000 m, the deepest ever ROV surveys and sampling were conducted in remote Pacific island marine sanctuaries and monuments. Novel observations include range extensions and exploration of dense deep sea coral and sponge habitat. Baseline habitat characterization was also conducted on seamounts within the Prime Crust Zone (PCZ), an area with the highest expected concentration of deep-sea minerals in the Pacific. The Hawaiian operations marked the first ever ROV sampling effort conducted onboard Okeanos, and several geological and biological samples are now available at museums and sample repositories in addition to all digital data available through the National

  15. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Science.gov (United States)

    Tamburini, Christian; Canals, Miquel; Durrieu de Madron, Xavier; Houpert, Loïc; Lefèvre, Dominique; Martini, Séverine; D'Ortenzio, Fabrizio; Robert, Anne; Testor, Pierre; Aguilar, Juan Antonio; Samarai, Imen Al; Albert, Arnaud; André, Michel; Anghinolfi, Marco; Anton, Gisela; Anvar, Shebli; Ardid, Miguel; Jesus, Ana Carolina Assis; Astraatmadja, Tri L; Aubert, Jean-Jacques; Baret, Bruny; Basa, Stéphane; Bertin, Vincent; Biagi, Simone; Bigi, Armando; Bigongiari, Ciro; Bogazzi, Claudio; Bou-Cabo, Manuel; Bouhou, Boutayeb; Bouwhuis, Mieke C; Brunner, Jurgen; Busto, José; Camarena, Francisco; Capone, Antonio; Cârloganu, Christina; Carminati, Giada; Carr, John; Cecchini, Stefano; Charif, Ziad; Charvis, Philippe; Chiarusi, Tommaso; Circella, Marco; Coniglione, Rosa; Costantini, Heide; Coyle, Paschal; Curtil, Christian; Decowski, Patrick; Dekeyser, Ivan; Deschamps, Anne; Donzaud, Corinne; Dornic, Damien; Dorosti, Hasankiadeh Q; Drouhin, Doriane; Eberl, Thomas; Emanuele, Umberto; Ernenwein, Jean-Pierre; Escoffier, Stéphanie; Fermani, Paolo; Ferri, Marcelino; Flaminio, Vincenzo; Folger, Florian; Fritsch, Ulf; Fuda, Jean-Luc; Galatà, Salvatore; Gay, Pascal; Giacomelli, Giorgio; Giordano, Valentina; Gómez-González, Juan-Pablo; Graf, Kay; Guillard, Goulven; Halladjian, Garadeb; Hallewell, Gregory; van Haren, Hans; Hartman, Joris; Heijboer, Aart J; Hello, Yann; Hernández-Rey, Juan Jose; Herold, Bjoern; Hößl, Jurgen; Hsu, Ching-Cheng; de Jong, Marteen; Kadler, Matthias; Kalekin, Oleg; Kappes, Alexander; Katz, Uli; Kavatsyuk, Oksana; Kooijman, Paul; Kopper, Claudio; Kouchner, Antoine; Kreykenbohm, Ingo; Kulikovskiy, Vladimir; Lahmann, Robert; Lamare, Patrick; Larosa, Giuseppina; Lattuada, Dario; Lim, Gordon; Presti, Domenico Lo; Loehner, Herbert; Loucatos, Sotiris; Mangano, Salvatore; Marcelin, Michel; Margiotta, Annarita; Martinez-Mora, Juan Antonio; Meli, Athina; Montaruli, Teresa; Moscoso, Luciano; Motz, Holger; Neff, Max; Nezri, Emma Nuel; Palioselitis, Dimitris; Păvălaş, Gabriela E; Payet, Kevin; Payre, Patrice; Petrovic, Jelena; Piattelli, Paolo; Picot-Clemente, Nicolas; Popa, Vlad; Pradier, Thierry; Presani, Eleonora; Racca, Chantal; Reed, Corey; Riccobene, Giorgio; Richardt, Carsten; Richter, Roland; Rivière, Colas; Roensch, Kathrin; Rostovtsev, Andrei; Ruiz-Rivas, Joaquin; Rujoiu, Marius; Russo, Valerio G; Salesa, Francisco; Sánchez-Losa, Augustin; Sapienza, Piera; Schöck, Friederike; Schuller, Jean-Pierre; Schussler, Fabian; Shanidze, Rezo; Simeone, Francesco; Spies, Andreas; Spurio, Maurizio; Steijger, Jos J M; Stolarczyk, Thierry; Taiuti, Mauro G F; Toscano, Simona; Vallage, Bertrand; Van Elewyck, Véronique; Vannoni, Giulia; Vecchi, Manuela; Vernin, Pascal; Wijnker, Guus; Wilms, Jorn; de Wolf, Els; Yepes, Harold; Zaborov, Dmitry; De Dios Zornoza, Juan; Zúñiga, Juan

    2013-01-01

    The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  16. Deep-sea bioluminescence blooms after dense water formation at the ocean surface.

    Directory of Open Access Journals (Sweden)

    Christian Tamburini

    Full Text Available The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as "open-sea convection". It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.

  17. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation.

    Science.gov (United States)

    Campeão, Mariana E; Reis, Luciana; Leomil, Luciana; de Oliveira, Louisi; Otsuki, Koko; Gardinali, Piero; Pelz, Oliver; Valle, Rogerio; Thompson, Fabiano L; Thompson, Cristiane C

    2017-01-01

    One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical-chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae , and Alcanivoracaceae ), archaea (e.g., Halobacteriaceae, Desulfurococcaceae , and Methanobacteriaceae ), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.

  18. Modeling food web interactions in benthic deep-sea ecosystems: a practical guide

    OpenAIRE

    Soetaert, K.

    2009-01-01

    Deep-sea benthic systems are notoriously difficult to sample. Even more than for other benthic systems, many flows among biological groups cannot be directly measured, and data sets remain incomplete and uncertain. In such cases, mathematical models are often used to quantify unmeasured biological interactions. Here, we show how to use so-called linear inverse models (LIMs) to reconstruct material and energy flows through food webs in which the number of measurements is a fraction of the tota...

  19. Spore germination of fungi belonging to Aspergillus species under deep-sea conditions

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Nagarajan, M.; Raghukumar, C.

    of fungal spores in the deep sea may face several obstacles like the mycostatic effect of seawater (Kirk, 1980), low temperature, elevated hydrostatic pressure and low nutrient conditions. A defining characteristic of spores is their ability to develop... hyphal colony. The first step in this is the spore germina- tion, which can be defined as the sequence of events that converts the resting/dormant spore into a rapidly growing germ tube from which the myce- lium is produced by elongation, septum formation...

  20. Response of deep-sea macrobenthos to a small-scale environmental disturbance

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Ansari, Z.A.; Rathod, V.; Rodrigues, N.

    to rely on the particulate organic matter that is produced in the euphotic zone. The benthic community has presumably adapted to the prevailing conditions at deep-sea and any disturbance to their environment will certainly bring major changes... in the composition and abundance of the macro-benthic invertebrate communities at dredged material disposal sites in the Anse a Beaufils, Baie des Chaleurs, Eastern Canada. Marine Pollution Bulletin 36 (1):41-55. Ingole, B. S., Ansari, Z. A., Parulekar, A. H...

  1. Trophic ecology of deep-sea Asteroidea (Echinodermata) from eastern Canada

    Science.gov (United States)

    Gale, Katie S. P.; Hamel, Jean-François; Mercier, Annie

    2013-10-01

    Asteroids (sea stars) can be important predators in benthic communities and are often present in ecologically important and vulnerable deep-sea coral and sponge habitats. However, explicit studies on the trophic ecology of deep-sea asteroids are rare. We investigated the diets of seven species of deep-sea asteroid from the bathyal zone of Newfoundland and Labrador, eastern Canada. A multifaceted approach including live animal observations, stomach content analysis, and stable isotope analysis revealed the asteroids to be either top predators of megafauna or secondary consumers (mud ingesters, infaunal predators, and suspension feeders). The stable isotope signatures of Ceramaster granularis, Hippasteria phrygiana, and Mediaster bairdi are characteristic of high-level predators, having δ15N values 4.4‰ (more than one trophic level) above Ctenodiscus crispatus, Leptychaster arcticus, Novodinia americana, and Zoroaster fulgens. We present strong evidence that corals and sponges are common food items for two of the predatory species, C. granularis and H. phrygiana. During laboratory feeding trials, live H. phrygiana fed on several species of soft coral and C. granularis fed on sponges. Stomach content analysis of wild-caught individuals revealed sclerites from sea pens (e.g. Pennatula sp.) in the stomachs of both asteroid species; H. phrygiana also contained sclerites from at least two other species of octocoral and siliceous sponge spicules were present in the stomachs of C. granularis. The stomach contents of the secondary consumers contained a range of invertebrate material. Leptychaster arcticus and Ctenodiscus crispatus feed infaunally on bulk sediment and molluscs, Zoroaster fulgens is a generalist infaunal predator, and the brisingid Novodinia americana is a specialist suspension feeder on benthopelagic crustaceans. This study provides a foundation for understanding the ecological roles of bathyal asteroids, and suggests that some species may have the

  2. How can we identify and communicate the ecological value of deep-sea ecosystem services?

    Science.gov (United States)

    Jobstvogt, Niels; Townsend, Michael; Witte, Ursula; Hanley, Nick

    2014-01-01

    Submarine canyons are considered biodiversity hotspots which have been identified for their important roles in connecting the deep sea with shallower waters. To date, a huge gap exists between the high importance that scientists associate with deep-sea ecosystem services and the communication of this knowledge to decision makers and to the wider public, who remain largely ignorant of the importance of these services. The connectivity and complexity of marine ecosystems makes knowledge transfer very challenging, and new communication tools are necessary to increase understanding of ecological values beyond the science community. We show how the Ecosystem Principles Approach, a method that explains the importance of ocean processes via easily understandable ecological principles, might overcome this challenge for deep-sea ecosystem services. Scientists were asked to help develop a list of clear and concise ecosystem principles for the functioning of submarine canyons through a Delphi process to facilitate future transfers of ecological knowledge. These ecosystem principles describe ecosystem processes, link such processes to ecosystem services, and provide spatial and temporal information on the connectivity between deep and shallow waters. They also elucidate unique characteristics of submarine canyons. Our Ecosystem Principles Approach was successful in integrating ecological information into the ecosystem services assessment process. It therefore has a high potential to be the next step towards a wider implementation of ecological values in marine planning. We believe that successful communication of ecological knowledge is the key to a wider public support for ocean conservation, and that this endeavour has to be driven by scientists in their own interest as major deep-sea stakeholders.

  3. Restoration of deep-sea macrofauna after simulated benthic disturbance in the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Pavithran, S.; Ansari, Z.A.

    and expensive mining technology, it could be a reality in future. Mining activities in the deep-sea are expected to introduce a new set of environmental conditions to the benthic communities of the oceanic basin (Borowski, 2001). The possible effects... due to the augmented food material. Hence, the decrease in polychaete density immediately after the disturbance is largely attributed to the heavy sedimentation (Tkatchenko and Radziejewska, 1998) and exposure of burrowing fauna to the predatory...

  4. Genetic homogeneity in the deep-sea grenadier Macrourus berglax across the North Atlantic Ocean

    Science.gov (United States)

    Coscia, Ilaria; Castilho, Rita; Massa-Gallucci, Alexia; Sacchi, Carlotta; Cunha, Regina L.; Stefanni, Sergio; Helyar, Sarah J.; Knutsen, Halvor; Mariani, Stefano

    2018-02-01

    Paucity of data on population structure and connectivity in deep sea species remains a major obstacle to their sustainable management and conservation in the face of ever increasing fisheries pressure and other forms of impacts on deep sea ecosystems. The roughhead grenadier Macrourus berglax presents all the classical characteristics of a deep sea species, such as slow growth and low fecundity, which make them particularly vulnerable to anthropogenic impact, due to their low resilience to change. In this study, the population structure of the roughhead grenadier is investigated throughout its geographic distribution using two sets of molecular markers: a partial sequence of the Control Region of mitochondrial DNA and species-specific microsatellites. No evidence of significant structure was found throughout the North Atlantic, with both sets of molecular markers yielding the same results of overall homogeneity. We posit two non-mutually exclusive scenarios that can explain such outcome: i) substantial high gene flow among locations, possibly maintained by larval stages, ii) very large effective size of post-glacially expanded populations. The results can inform management strategies in this by-caught species, and contribute to the broader issue of biological connectivity in the deep ocean.

  5. Bacterial community diversity of the deep-sea octocoral Paramuricea placomus

    Directory of Open Access Journals (Sweden)

    Christina A. Kellogg

    2016-09-01

    Full Text Available Compared to tropical corals, much less is known about deep-sea coral biology and ecology. Although the microbial communities of some deep-sea corals have been described, this is the first study to characterize the bacterial community associated with the deep-sea octocoral, Paramuricea placomus. Samples from five colonies of P. placomus were collected from Baltimore Canyon (379–382 m depth in the Atlantic Ocean off the east coast of the United States of America. DNA was extracted from the coral samples and 16S rRNA gene amplicons were pyrosequenced using V4-V5 primers. Three samples sequenced deeply (>4,000 sequences each and were further analyzed. The dominant microbial phylum was Proteobacteria, but other major phyla included Firmicutes and Planctomycetes. A conserved community of bacterial taxa held in common across the three P. placomus colonies was identified, comprising 68–90% of the total bacterial community depending on the coral individual. The bacterial community of P. placomus does not appear to include the genus Endozoicomonas, which has been found previously to be the dominant bacterial associate in several temperate and tropical gorgonians. Inferred functionality suggests the possibility of nitrogen cycling by the core bacterial community.

  6. In-situ measurements of rare earth elements in deep sea sediments using nuclear methods.

    Science.gov (United States)

    Obhođaš, Jasmina; Sudac, Davorin; Meric, Ilker; Pettersen, Helge E S; Uroić, Milivoj; Nađ, Karlo; Valković, Vlado

    2018-03-21

    The prospecting activities for finding new rare earth elements (REE) sources have increased greatly in recent years. One of the main discoveries was announced in 2011 by Japanese researchers who found large quantities of REE on the ocean seafloor at the sea depths greater than 4,000 m. The classic approach to investigate REE in deep sea sediments is to obtain sediment samples by drilling that is followed by laborious laboratory analysis. This is very expensive, time consuming and not appropriate for exploring vast areas. In order to efficiently explore the ocean floor for REE deposits, the further development of affordable sensors is needed. Here, we propose two nuclear techniques for exploring REE in surface deep sea sediments: i) Passive measurement of lutetium-176 radioactivity, appropriate if long-term in-situ measurements are possible, and ii) The use of the neutron sensor attached to a remotely operated vehicle for rapid in-situ measurement of gadolinium by thermal neutron-capture. Since concentrations of lutetium and gadolinium show strong linear correlation to the total REE concentrations in deep sea sediments, it is possible to deduce the total REE content by measuring Lu or Gd concentrations only.

  7. Feeding in deep-sea demosponges: Influence of abiotic and biotic factors

    Science.gov (United States)

    Robertson, Leah M.; Hamel, Jean-François; Mercier, Annie

    2017-09-01

    In shallow benthic communities, sponges are widely recognized for their ability to contribute to food webs by cycling nutrients and mediating carbon fluxes through filter feeding. In comparison, little is known about filter feeding in deep-sea species and how it may be modulated by environmental conditions. Here, a rare opportunity to maintain live healthy deep-sea sponges for an extended period led to a preliminary experimental study of their feeding metrics. This work focused on demosponges collected from the continental slope of eastern Canada at 1000 m depth. Filtration rates (as clearance of phytoplankton cells) at holding temperature (6 °C) were positively correlated with food particle concentration, ranging on average from 18.8 to 160.6 cells ml-1 h-1 at nominal concentrations of 10,000-40,000 cells ml-1. Cell clearance was not significantly affected by decreasing seawater temperature, from 6 °C to 3 °C or 0 °C, although two of the sponges showed decreased filtration rates. Low pH ( 7.5) and the presence of a predatory sea star markedly depressed or inhibited feeding activity in all sponges tested. While performed under laboratory conditions on a limited number of specimens, this work highlights the possible sensitivity of deep-sea demosponges to various types and levels of biotic and abiotic factors, inferring a consequent vulnerability to natural and anthropogenic disturbances.

  8. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species.

    Science.gov (United States)

    Hasan, Nur A; Grim, Christopher J; Lipp, Erin K; Rivera, Irma N G; Chun, Jongsik; Haley, Bradd J; Taviani, Elisa; Choi, Seon Young; Hoq, Mozammel; Munk, A Christine; Brettin, Thomas S; Bruce, David; Challacombe, Jean F; Detter, J Chris; Han, Cliff S; Eisen, Jonathan A; Huq, Anwar; Colwell, Rita R

    2015-05-26

    Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea.

  9. Gulf of Mexico Deep-Sea Coral Ecosystem Studies, 2008-2011

    Science.gov (United States)

    Kellogg, Christina A.

    2009-01-01

    Most people are familiar with tropical coral reefs, located in warm, well-illuminated, shallow waters. However, corals also exist hundreds and even thousands of meters below the ocean surface, where it is cold and completely dark. These deep-sea corals, also known as cold-water corals, have become a topic of interest due to conservation concerns over the impacts of trawling, exploration for oil and gas, and climate change. Although the existence of these corals has been known since the 1800s, our understanding of their distribution, ecology, and biology is limited due to the technical difficulties of conducting deep-sea research. DISCOVRE (DIversity, Systematics, and COnnectivity of Vulnerable Reef Ecosystems) is a new U.S. Geological Survey (USGS) program focused on deep-water coral ecosystems in the Gulf of Mexico. This integrated, multidisciplinary, international effort investigates a variety of topics related to unique and fragile deep-sea coral ecosystems from the microscopic level to the ecosystem level, including components of microbiology, population genetics, paleoecology, food webs, taxonomy, community ecology, physical oceanography, and mapping.

  10. The detection of magnetotactic bacteria in deep sea sediments from the east Pacific Manganese Nodule Province.

    Science.gov (United States)

    Dong, Yi; Li, Jinhua; Zhang, Wuchang; Zhang, Wenyan; Zhao, Yuan; Xiao, Tian; Wu, Long-Fei; Pan, Hongmiao

    2016-04-01

    Magnetotactic bacteria (MTB) are distributed ubiquitously in sediments from coastal environments to the deep sea. The Pacific Manganese Nodule Province contains numerous polymetallic nodules mainly composed of manganese, iron, cobalt, copper and nickel. In the present study we used Illumina MiSeq sequencing technology to assess the communities of putative MTB in deep sea surface sediments at nine stations in the east Pacific Manganese Nodule Province. A total of 402 sequence reads from MTB were classified into six operational taxonomic units (OTUs). Among these, OTU113 and OTU759 were affiliated with the genus Magnetospira, OTU2224 and OTU2794 were affiliated with the genus Magnetococcus and Magnetovibrio, respectively, OTU3017 had no known genus affiliation, and OTU2556 was most similar to Candidatus Magnetananas. Interestingly, OTU759 was widely distributed, occurring at all study sites. Magnetism measurements revealed that all sediments were dominated by low coercivity, non-interacting single domain magnetic minerals. Transmission electron microscopy confirmed that the magnetic minerals were magnetosomes. Our data suggest that diverse putative MTB are widely distributed in deep sea surface sediments from the east Pacific Manganese Nodule Province. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Predictive modeling of deep-sea fish distribution in the Azores

    Science.gov (United States)

    Parra, Hugo E.; Pham, Christopher K.; Menezes, Gui M.; Rosa, Alexandra; Tempera, Fernando; Morato, Telmo

    2017-11-01

    Understanding the link between fish and their habitat is essential for an ecosystem approach to fisheries management. However, determining such relationship is challenging, especially for deep-sea species. In this study, we applied generalized additive models (GAMs) to relate presence-absence and relative abundance data of eight economically-important fish species to environmental variables (depth, slope, aspect, substrate type, bottom temperature, salinity and oxygen saturation). We combined 13 years of catch data collected from systematic longline surveys performed across the region. Overall, presence-absence GAMs performed better than abundance models and predictions made for the observed data successfully predicted the occurrence of the eight deep-sea fish species. Depth was the most influential predictor of all fish species occurrence and abundance distributions, whereas other factors were found to be significant for some species but did not show such a clear influence. Our results predicted that despite the extensive Azores EEZ, the habitats available for the studied deep-sea fish species are highly limited and patchy, restricted to seamounts slopes and summits, offshore banks and island slopes. Despite some identified limitations, our GAMs provide an improved knowledge of the spatial distribution of these commercially important fish species in the region.

  12. [Bacterial diversity in a deep-sea hydrothermal plume in the southwest Indian Ocean].

    Science.gov (United States)

    Ren, Fei; Xi, Lijun; Song, Lei; Zhu, Yaxin; Dong, Zhiyang; Huang, Ying; Huang, Li; Dai, Xin

    2012-11-04

    We characterized bacterial divefity in a deep-sea hydrothermal plume seawater in the southwest Indian Ocean to increase our understanding of the impact of the microorganisms on the ocean ecosystem and to survey microbial resources in this special environment. The deep-sea hydrothermal plume seawater in the southwest Indian Ocean was concentrated in situ by 1000 folds, enrichment cultures were established with the concentrated sample, and isolates were purified. Bacterial 16S rRNA gene libraries were constructed from both the concentrated seawater sample and from the enrichment culture and analyzed. The 16S rRNA genes from the isolated strains were also analyzed. A total of 104 16S rRNA genes were obtained, in which 50 were from the concentrated plume seawater, 40 from the enrichment culture, and 14 from the isolated strains. These sequences are affiliated with gamma-proteobacteria (74), alpha-proteobacteria (14), beta-Proteobacteria (5), Bacteroidetes (4), Firmicutes (2), Planctomycetes (2), Verrucomicrobia (2) and Actinobacteria (1), and fall into 29 different operational taxonomic units (OTUs). Twenty-six sequences share less than 97% identity with the best-matched sequences in the public database, with the lowest being 86%. There is rich bacterial diversity in the deep-sea hydrothermal plume seawater in the southwest Indian Ocean, where gamma-proteobacterial groups were dominant, followed by alpha-proteobacterial groups. A number of species remain uncultured.

  13. Species profiles: Life histories and environmental requirements of coastal fish and invertebrates (North Atlantic): Softshell clam. [Mya arenaria

    Energy Technology Data Exchange (ETDEWEB)

    Newell, C.R.; Hidu, H.

    1986-06-01

    The softshell clam, Mya arenaria, is a commercially and recreationally important invertebrate that inhabits the bottom sediments of subtidal and intertidal waters of moderate to high salinity. Its range is limited by water temperatures too low for reproduction in the north and by lethal warm temperatures in the south. Clams feed by siphoning seawater and removing food particles, especially phytoplankton, with their gills. Clams are therefore sensitive to factors affecting water quality, including suspended sediments, salinity, water temperature, oxygen, and waterborne pollutants. The clam life cycle consists of mass spawning and external fertilization, the development of pelagic larvae, settlement and metamorphosis into spat, and rapid juvenile growth to maturity. Clam recruitment and the migration of spat are dependent upon inshore currents. High morality of eggs, larvae, and spat is largely offset by high reproductive potential. As the clam grows, it finds refuge from most predators deep in the sediments, but it also loses its ability to burrow and is subject to suffocation by siltation. Sediment types, currents, and tidal heights all affect clam growth rates.

  14. Highly sensitive avoidance plays a key role in sensory adaptation to deep-sea hydrothermal vent environments.

    Directory of Open Access Journals (Sweden)

    Tetsuya Ogino

    Full Text Available The environments around deep-sea hydrothermal vents are very harsh conditions for organisms due to the possibility of exposure to highly toxic compounds and extremely hot venting there. Despite such extreme environments, some indigenous species have thrived there. Alvinellid worms (Annelida are among the organisms best adapted to high-temperature and oxidatively stressful venting regions. Although intensive studies of the adaptation of these worms to the environments of hydrothermal vents have been made, little is known about the worms' sensory adaptation to the severe chemical conditions there. To examine the sensitivity of the vent-endemic worm Paralvinella hessleri to low pH and oxidative stress, we determined the concentration of acetic acid and hydrogen peroxide that induced avoidance behavior of this worm, and compared these concentrations to those obtained for related species inhabiting intertidal zones, Thelepus sp. The concentrations of the chemicals that induced avoidance behavior of P. hessleri were 10-100 times lower than those for Thelepus sp. To identify the receptors for these chemicals, chemical avoidance tests were performed with the addition of ruthenium red, a blocker of transient receptor potential (TRP channels. This treatment suppressed the chemical avoidance behavior of P. hessleri, which suggests that TRP channels are involved in the chemical avoidance behavior of this species. Our results revealed for the first time hypersensitive detection systems for acid and for oxidative stress in the vent-endemic worm P. hessleri, possibly mediated by TRP channels, suggesting that such sensory systems may have facilitated the adaptation of this organism to harsh vent environments.

  15. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge.

    Science.gov (United States)

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-08-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched with the PAH mixture mentioned above in the lab. The resulting consortia were named C2CO and C2PPN respectively. Their bacterial composition was analysed with plate cultivation, PCR-DGGE and 16S rDNA library analysis. On plates, isolates belonging to Pseudoalteromonas, Halomonas, Marinobacter, Thalassospira and Tistrella dominated the culturable populations. With PCR-DGGE, five major bands closely related to Cycloclasticus, Alteromonas, Thalassospira, Alcanivorax and Rhodospirillaceae were detected in consortium C2CO, while only one major band of Cycloclasticus was detected in consortium C2PPN. In addition, the dynamics of community structure in response to aromatic substrate alterations were examined. As a result, three ribotypes of Cycloclasticus were detected by 16S rDNA library analysis, one which played a key role in phenanthrene degradation; two Alteromonas bacteria dominated the naphthalene reselected consortium. Although bacteria of the two genera grew as the main members of the communities, none of them were isolated, probably owing to their poor cultivability. These results confirm that bacteria of Cycloclasticus are important obligate PAH degraders in marine environments, and coexist with other degrading bacteria that inhabit the deep subsurface sediment of the Atlantic. This supports the view that PAH accumulation and bioattenuation occur in remote areas consistently and continuously.

  16. Sea-level and deep-sea-temperature variability over the past 5.3 million years.

    Science.gov (United States)

    Rohling, E J; Foster, G L; Grant, K M; Marino, G; Roberts, A P; Tamisiea, M E; Williams, F

    2014-04-24

    Ice volume (and hence sea level) and deep-sea temperature are key measures of global climate change. Sea level has been documented using several independent methods over the past 0.5 million years (Myr). Older periods, however, lack such independent validation; all existing records are related to deep-sea oxygen isotope (δ(18)O) data that are influenced by processes unrelated to sea level. For deep-sea temperature, only one continuous high-resolution (Mg/Ca-based) record exists, with related sea-level estimates, spanning the past 1.5 Myr. Here we present a novel sea-level reconstruction, with associated estimates of deep-sea temperature, which independently validates the previous 0-1.5 Myr reconstruction and extends it back to 5.3 Myr ago. We find that deep-sea temperature and sea level generally decreased through time, but distinctly out of synchrony, which is remarkable given the importance of ice-albedo feedbacks on the radiative forcing of climate. In particular, we observe a large temporal offset during the onset of Plio-Pleistocene ice ages, between a marked cooling step at 2.73 Myr ago and the first major glaciation at 2.15 Myr ago. Last, we tentatively infer that ice sheets may have grown largest during glacials with more modest reductions in deep-sea temperature.

  17. A Three-Component Microbial Consortium from Deep-Sea Salt-Saturated Anoxic Lake Thetis Links Anaerobic Glycine Betaine Degradation with Methanogenesis

    Directory of Open Access Journals (Sweden)

    Violetta La Cono

    2015-09-01

    Full Text Available Microbial communities inhabiting the deep-sea salt-saturated anoxic lakes of the Eastern Mediterranean operate under harsh physical-chemical conditions that are incompatible with the lifestyle of common marine microorganisms. Here, we investigated a stable three-component microbial consortium obtained from the brine of the recently discovered deep-sea salt-saturated Lake Thetis. The trophic network of this consortium, established at salinities up to 240, relies on fermentative decomposition of common osmoprotectant glycine betaine (GB. Similarly to known extreme halophilic anaerobic GB-degrading enrichments, the initial step of GB degradation starts with its reductive cleavage to trimethylamine and acetate, carried out by the fermenting member of the Thetis enrichment, Halobacteroides lacunaris TB21. In contrast to acetate, which cannot be easily oxidized in salt-saturated anoxic environments, trimethylamine represents an advantageous C1-substrate for methylotrophic methanogenic member of the Thetis enrichment, Methanohalophilus sp. TA21. This second member of the consortium likely produces hydrogen via methylotrophic modification of reductive acetyl-CoA pathway because the initial anaerobic GB cleavage reaction requires the consumption of reducing equivalents. Ecophysiological role of the third member of the Thetis consortium, Halanaerobium sp. TB24, which lacks the capability of either GB or trimethylamine degradation, remains yet to be elucidated. As it is true for cultivated members of family Halanaerobiaceae, the isolate TB24 can obtain energy primarily by fermenting simple sugars and producing hydrogen as one of the end products. Hence, by consuming of TB21 and TA21 metabolites, Halanaerobium sp. TB24 can be an additional provider of reducing equivalents required for reductive degradation of GB. Description of the Thetis GB-degrading consortium indicated that anaerobic degradation of osmoregulatory molecules may play important role in the

  18. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    Science.gov (United States)

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  19. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren

    2017-07-19

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  20. Borders of life: lessons from Microbiology of deep-sea hydrothermal vents

    Science.gov (United States)

    Prieur, D.

    Thirty years ago, the deep-sea was known as a low density biotope due to coldness, darkness and famine-like conditions. The discovery of deep-sea hydrothermal vents in the Eastern Pacific in 1977 and the associated black smokers in 1979 considerably changed our views about life on Earth. For the first time, an ecosystem almost independent (at least for tens of years) of solar nergy was discovered. Besides the spectacular and unexpected communities of invertebrates based on symbiotic associations with chemo-litho-autotrophic bacteria, prokaryotic communities associated with high temperature black smokers fascinated microbiologists of extreme environments. Within mineral structures where temperature gradients may fluctuate from ambient seawater temperatures (2°C) up to 350°C, thermophilic (optimal growth above 60°C) and hyperthermophilic (optimal growth above 80°C) microorganisms thrived under very severe conditions due to elevated hydrostatic pressure, toxic compounds or strong ionizing radiations. These organisms belong to both domains of Bacteria and Archaea and live aerobically but mostly anaerobically, using a variety of inorganic and organic carbon sources, and a variety of electron donnors and acceptors as well. The most thermophilic organism known on Earth was isolated from a mid-Atlantic-Ridge hydrotermal vent: Pyrolobus fumarii grows optimally at 110°c and its upper temperature limit for life is 113°C. Such an organism survived to autoclaving conditions currently used for sterilization procedures. Many other hyperthermophilic organisms were isolated and described, including fermenters, sulphate and sulphur reducers, hydrogen oxidizers, nitrate reducers, methanogens, etc. Although most of anaerobes are killed when exposed to oxygen, several deep-sea hyperthermophiles appeared to survive to both oxygen and starvation exposures, indicating that they probably can colonize rather distant environments Because of elevated hydrostatic pressure that exists at

  1. Food web structure and vulnerability of a deep-sea ecosystem in the NW Mediterranean Sea

    Science.gov (United States)

    Tecchio, Samuele; Coll, Marta; Christensen, Villy; Company, Joan B.; Ramírez-Llodra, Eva; Sardà, Francisco

    2013-05-01

    There is increasing fishing pressure on the continental margins of the oceans, and this raises concerns about the vulnerability of the ecosystems thriving there. The current knowledge of the biology of deep-water fish species identifies potential reduced resilience to anthropogenic disturbance. However, there are extreme difficulties in sampling the deep sea, resulting in poorly resolved and indirectly obtained food-web relationships. Here, we modelled the flows and biomasses of a Mediterranean deep-sea ecosystem, the Catalan Sea continental slope at depths of 1000-1400 m. This is the first model of a deep-water ecosystem in the Mediterranean Sea. The objectives were to (a) quantitatively describe the food web structure of the ecosystem, (b) examine the role of key species in the ecosystem, and (c) explore the vulnerability of this deep-sea ecosystem to potential future fishing exploitation. We used the Ecopath with Ecosim (EwE) modelling approach and software to model the ecosystem. The trophic model included 18 consumers, a marine snow group, and a sediment detritus group. Trophic network analysis identified low levels of consumer biomass cycling and low system omnivory index when compared with expected values of marine ecosystems, and higher cycling and omnivory when compared with available EwE models of shallower areas of the Mediterranean Sea. The majority of flows in the ecosystem were concentrated at the trophic level of first-order consumers (TL 2). Benthic invertebrates and demersal sharks were identified to have key ecological roles in the ecosystem. We used the dynamic temporal model Ecosim to simulate expansion of the red-shrimp benthic trawl fishery that currently operates at shallower depths, down to 800 m depth. The simulations showed reductions in fish biomass and that the state of the deep continental slope ecosystem in the western Mediterranean seems to be the result of a long-term succession process, which has reached ecological stability, and is

  2. Ecosystem Services: a Framework for Environmental Management of the Deep Sea

    Science.gov (United States)

    Le, J. T.; Levin, L. A.; Carson, R. T.

    2016-02-01

    As demand for deep-sea resources rapidly expands in the food, energy, mineral, and pharmaceutical sectors, it has become increasingly clear that a regulatory structure for extracting these resources is not yet in place. There are jurisdictional gaps and a lack of regulatory consistency regarding what aspects of the deep sea need protection and what requirements might help guarantee that protection. Given the mining sector's intent to exploit seafloor massive sulphides, Mn nodules, cobalt crusts, and phosphorites in the coming years, there is an urgent need for deep-ocean environmental management. Here, we propose an ecosystem services-based framework to inform decisions and best practices regarding resource exploitation, and to guide baseline studies, preventative actions, monitoring, and remediation. With policy in early stages of development, an ecosystem services approach has the potential to serve as an overarching framework that takes protection of natural capital provided by the environment into account during the decision-making process. We show how an ecosystem services approach combined with economic tools, such as benefit transfer techniques, should help illuminate issues where there are direct conflicts among different industries, and between industry and conservation. We argue for baseline and monitoring measurements and metrics that inform about deep-sea ecosystem services that would be impaired by mining, and discuss ways to incorporate the value of those losses into decision making, mitigation measures, and ultimately product costs. This proposal is considered relative to current International Seabed Authority recommendations and contractor practices, and new actions are proposed. An ecosystem services-based understanding of how these systems work and their value to society can improve sustainability and stewardship of the deep ocean.

  3. Age and growth rate validation of Gerardia spp., a deep-sea colonial zoanthid

    Science.gov (United States)

    Guilderson, T.; Roark, B.; Dunbar, R. B.; Fallon, S. J.; Mucciarone, D.; Kerby, T.; Cremer, M.

    2006-12-01

    Radiocarbon evidence implies unappreciated longevity and slow growth rate in Gerardia spp (gold coral), a colonial zoanthid found at depths of 300 to 500 m on hard substrates such as seamount basalt and carbonate hardgrounds. Gerardia, a precious deep-sea "coral" found in the north and equatorial Pacific, can attain sizes approaching 3 m in height with basal attachment "trunks" of 10s of cm in diameter. We have produced a radiocarbon time series from a pruned, live collected Gerardia branch from off Hawai'i that matches a surface water pre-to-post bomb surface water 14C time series reconstructed from Hawai'ian hermatypic, reef building corals. The growth rate estimates provided by the pre-to-post bomb transition (peak value, rise) are equivalent to those from inner/outer radiocarbon age determinations. The use of radiocarbon as a dating tool for proteinanceous deep sea corals such as Gerardia requires an understanding of the source and age of the carbon with which they construct their skeletons. Stable isotope and radiocarbon analysis of living polyps and coral tissues support the tenet that Gerardia feed primarily on relatively labile, and therefore young, particulate organic carbon (POC) through a combination of direct collection of POC and indirectly via feeding upon meso- pelagic zooplankton. Analyses of large living and subfossil specimens (n=16) indicate that if undisturbed, Gerardia can attain 3000 year or more lifespans with radial growth rates of only a few 10s of microns per year. These results strongly suggest the need for new approaches to the conservation of mid-depth and deep-sea marine ecosystems that are associated with organisms of such great longevity.

  4. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    Science.gov (United States)

    Prouty, N.; Roark, B.; Koenig, A.; Batista, F. C.; Kocar, B. D.; Selby, D. S.; Mccarthy, M. D.; Mienis, F.; Ross, S. W.; Demopoulos, A. W.

    2015-12-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150-200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  5. Deep-sea coral record of human impact on watershed quality in the Mississippi River Basin

    Science.gov (United States)

    Prouty, Nancy G.; Roark, E. Brendan; Koenig, Alan E.; Demopoulos, Amanda W. J.; Batista, Fabian C.; Kocar, Benjamin D.; Selby, David; McCarthy, Matthew D.; Mienis, Furu

    2014-01-01

    One of the greatest drivers of historical nutrient and sediment transport into the Gulf of Mexico is the unprecedented scale and intensity of land use change in the Mississippi River Basin. These landscape changes are linked to enhanced fluxes of carbon and nitrogen pollution from the Mississippi River, and persistent eutrophication and hypoxia in the northern Gulf of Mexico. Increased terrestrial runoff is one hypothesis for recent enrichment in bulk nitrogen isotope (δ15N) values, a tracer for nutrient source, observed in a Gulf of Mexico deep-sea coral record. However, unambiguously linking anthropogenic land use change to whole scale shifts in downstream Gulf of Mexico biogeochemical cycles is difficult. Here we present a novel approach, coupling a new tracer of agro-industrialization to a multiproxy record of nutrient loading in long-lived deep-sea corals collected in the Gulf of Mexico. We found that coral bulk δ15N values are enriched over the last 150–200 years relative to the last millennia, and compound-specific amino acid δ15N data indicate a strong increase in baseline δ15N of nitrate as the primary cause. Coral rhenium (Re) values are also strongly elevated during this period, suggesting that 34% of Re is of anthropogenic origin, consistent with Re enrichment in major world rivers. However, there are no pre-anthropogenic measurements of Re to confirm this observation. For the first time, an unprecedented record of natural and anthropogenic Re variability is documented through coral Re records. Taken together, these novel proxies link upstream changes in water quality to impacts on the deep-sea coral ecosystem.

  6. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani.

    Science.gov (United States)

    Batista-García, Ramón Alberto; Sutton, Thomas; Jackson, Stephen A; Tovar-Herrera, Omar Eduardo; Balcázar-López, Edgar; Sánchez-Carbente, María Del Rayo; Sánchez-Reyes, Ayixon; Dobson, Alan D W; Folch-Mallol, Jorge Luis

    2017-01-01

    Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12) were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.

  7. Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani.

    Directory of Open Access Journals (Sweden)

    Ramón Alberto Batista-García

    Full Text Available Extreme habitats have usually been regarded as a source of microorganisms that possess robust proteins that help enable them to survive in such harsh conditions. The deep sea can be considered an extreme habitat due to low temperatures (<5°C and high pressure, however marine sponges survive in these habitats. While bacteria derived from deep-sea marine sponges have been studied, much less information is available on fungal biodiversity associated with these sponges. Following screening of fourteen fungi isolated from the deep-sea sponge Stelletta normani sampled at a depth of 751 metres, three halotolerant strains (TS2, TS11 and TS12 were identified which displayed high CMCase and xylanase activities. Molecular based taxonomic approaches identified these strains as Cadophora sp. TS2, Emericellopsis sp. TS11 and Pseudogymnoascus sp. TS 12. These three fungi displayed psychrotolerance and halotolerant growth on CMC and xylan as sole carbon sources, with optimal growth rates at 20°C. They produced CMCase and xylanase activities, which displayed optimal temperature and pH values of between 50-70°C and pH 5-8 respectively, together with good thermostability and halotolerance. In solid-state fermentations TS2, TS11 and TS12 produced CMCases, xylanases and peroxidase/phenol oxidases when grown on corn stover and wheat straw. This is the first time that CMCase, xylanase and peroxidase/phenol oxidase activities have been reported in these three fungal genera isolated from a marine sponge. Given the biochemical characteristics of these ligninolytic enzymes it is likely that they may prove useful in future biomass conversion strategies involving lignocellulosic materials.

  8. Thermophysiological responses and work strain in fishermen on deep-sea fishing vessels.

    Science.gov (United States)

    Høye, Erik Ulvolden; Sandsund, Mariann; Heidelberg, Cecilie Thon; Aasmoe, Lisbeth; Reinertsen, Randi Eidsmo

    2016-01-01

    Fishermen working on deep-sea vessels in the Barents and Norwegian Sea are exposed to low air temperatures, strong winds, high humidity, rain, snow and work at different intensities. Few studies have investigated the effect of environmental work factors on the physiology of this occupational group. The aim of the study was to investigate work strain and thermophysiological responses of fishermen on the trawl and factory decks of deep-sea vessels. Twenty-five professional male fishermen (age 39 ± 13 years) were recruited to the study which was performed on three trawlers in the Norwegian Sea in April, June and August 2014. During a six-hour shift, heart rate (HR), core (Tc) and mean skin (Ts) temperatures were recorded, and questions about subjective thermal sensation and comfort were answered. Short periods of hard (above 86% of HRmax) work raised Tc by 0.8°C to 37.8°C and decreased Ts by 2.3°C to 29.8°C during work on the trawl deck, and subjects reported being warm and sweaty. On the factory deck long periods of fairly light (between 52% and 66% HRmax) work, Tc of 37.4°C and Ts of 30.9°C were measured. Fishermen experience intermittent periods of heavy work on the trawl deck shown with elevated core temperature and HR. Work on the factory deck includes long periods of repetitive work with light to moderate work strain. A better understanding of work strain and environmental challenges during work on Norwegian deep-sea vessels will help identify exposure risks during work in the cold and heat.

  9. Deep Sea Researches in the South China Sea: Past, Present and Future

    Science.gov (United States)

    Wang, P.

    2016-12-01

    The South China Sea(SCS) has increasingly become a global focus in ocean research. Over the last two decades, at least 17 international cruises including ocean drillings were conducted in the SCS, and many new international expeditions will take place in the years to come. International collaboration is a tradition of deep sea researches in the SCS. After the pioneering works in the 1970s and 1980s, based on research vessels from US, Germany, USSR and China, more systematical studies of paleoceanography and geophysics/tectonics took place in the 1990s and 2000s, supported largely by research vessels from Germany, France and China. Since the launch of the "SCS Deep" Program in 2011, the deep sea researches in the SCS reached unprecedented level, again with active international collaboration. A suite of state-of-art techniques have been adopted to dissect this typical marginal sea in its history of evolution and its modern processes. Of particular importance was the IODP Leg 349 in 2014 aimed at dating the process of seafloor spreading. Currently, many new research activities in the deep water SCS are underway or in preparation. Four months of IODP drilling is scheduled for early 2017 to address the mechanism of continental breakup at its northern margin. A multi-national team is pushing to drill the Sunda shelf for the Plio-Pleistocene sea-level history. Located between the largest ocean and the largest continent of the world, the SCS provides an ideal natural laboratory for the international community to investigate marine processes and sea-land interactions. A new initiative of international collaboration in the SCS is called for to further enhance the deep-sea researches there. This new major research program should lead to a series of breakthroughs in our understanding not only of the evolution of a marginal basin, but also of many basic processes of sea-land interactions.

  10. Microfabric of illitic clays from the Pacific deep-sea basin

    International Nuclear Information System (INIS)

    Burkett, D.J.; Bennett, R.H.; Bryant, W.R.

    1990-01-01

    The microfabric of deep-sea illitic clays was investigated using electron microscopy in support of the In-Situ Heat Transfer Experiment (ISHTE) Simulation test (ISIMU) and the Subseabed Disposal Program (SDP). Sandia National Laboratories, ISHTE and the field exercises were designed to investigate the thermal, fluid, and mechanical response of the sediment to the emplacement of radioactive waste in the seabed. Clay fabric of an undisturbed core sample, designated RAMA, was compared to dredge, remolded, reconsolidated material in order to investigate the effects of mechanical disturbances from sediment remolding and heater probe insertion and effects of induced thermal gradients caused by heating of the sediment

  11. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    Science.gov (United States)

    McCulloch, Malcolm; Taviani, Marco; Montagna, Paolo; López Correa, Matthias; Remia, Alessandro; Mortimer, Graham

    2010-09-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480,000 years, especially during cool interstadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12,900 to 11,700 years BP followed by a short (~ 330 years) phase of post-YD coral growth from 11,230 to 10,900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had Δ 14C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12,500 ± 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had Δ 14C values falling significantly below the marine curve. Using a refined approach, isolation ages (τ isol) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low Δ 14C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at ~ 10,900 years BP, with many of the coral-bearing mounds on the continental slopes being draped in a thin veneer

  12. Molecular Phylogeny Of Microbes In The Deep-Sea Sediments From Tropical West Pacific Warm Pool

    Science.gov (United States)

    Wang, F.; Xiao, X.; Wang, P.

    2005-12-01

    The presence and phylogeny of bacteria and archaea in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1cm-, 3cm-, 6cm-, 10cm-, 12cm- layer) of the 12-cm sediment core of WP-0 were checked and compared. The microbial diversity in the five deep-sea sediments were similar as revealed by denaturing gradient gel electrophoresis, and all of them contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. The composition of methylotrophs including methanotrophs, sulfate reducing bacteria in the WP-0 sediment core were further investigated by molecular marker based analysis of mxaF, pmoA, dsrAB, specific anoxic methane oxidation archaeal and sulfate reducing bacterial 16S rRNA genes. From MxaF amino acid sequence analysis, it was demonstrated that microbes belonging to α - Proteobacteria most related to Hyphomicrobium and Methylobacterium were dominant aerobic methylotrophs in this deep-sea sediment; and small percentage of type II methanotrophs affiliating closest to Methylocystis and Methylosinus were also detected in this environment. mxaF quantitative PCR results showed that in the west Pacific WP sediment there existed around 3× 10 4-5 methylotrophs per gram sediment, 10-100 times more than that in samples collected from several other deep-sea Pacific sediment sample, but about 10 times less than that present in samples collected from rice and flower garden soil. Diverse groups of novel archaea (named as WPA), not belonging to any known archaeal lineages were checked out. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. Possible sulfate reducing bacterial related with Desulfotomaculum, Desulfacinum, Desulfomonile and Desulfanuticus were also detected in our study. The vertical distributions of WPA

  13. Biscogniauxone, a New Isopyrrolonaphthoquinone Compound from the Fungus Biscogniauxia mediterranea Isolated from Deep-Sea Sediments

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2016-11-01

    Full Text Available The properties and the production of new metabolites from the fungal strain LF657 isolated from the Herodotes Deep (2800 m depth in the Mediterranean Sea are reported in this study. The new isolate was identified as Biscogniauxia mediterranea based on ITS1-5.8S-ITS2 and 28S rRNA gene sequences. A new isopyrrolonaphthoquinone with inhibitory activity against glycogen synthase kinase (GSK-3β was isolated from this fungus. This is the first report of this class of compounds from a fungus isolated from a deep-sea sediment, as well as from a Biscogniauxia species.

  14. Are deep-sea ecosystems surrounding Madagascar threatened by land-use or climate change?

    Science.gov (United States)

    Fontanier, Christophe; Mamo, Briony; Toucanne, Samuel; Bayon, Germain; Schmidt, Sabine; Deflandre, Bruno; Dennielou, Bernard; Jouet, Gwenael; Garnier, Eline; Sakai, Saburo; Lamas, Ruth Martinez; Duros, Pauline; Toyofuku, Takashi; Salé, Aurélien; Belleney, Déborah; Bichon, Sabrina; Boissier, Audrey; Chéron, Sandrine; Pitel, Mathilde; Roubi, Angélique; Rovere, Mickaël; Grémare, Antoine; Dupré, Stéphanie; Jorry, Stéphan J.

    2018-01-01

    In this short communication, we present a multidisciplinary study of sedimentary records collected from a deep-sea interfluve proximal to the mouths of major northwestern Madagascan rivers. For the last 60 years, the seafloor has been repeatedly disturbed by the deposition of organic rich, tropical, terrestrial sediments causing marked reductions in benthic biodiversity. Increased soil erosion due to local land-use, deforestation and intensifying tropical cyclones are potential causes for this sedimentary budget and biodiversity shift. Our marine sedimentary records indicate that until now, these conditions have not occurred within the region for at least 20,000 years.

  15. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    International Nuclear Information System (INIS)

    McCulloch, Malcolm; Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro; Montagna, Paolo; Mortimer, Graham

    2010-01-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short (∼ 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had Δ 14 C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 ± 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had Δ 14 C values falling significantly below the marine curve. Using a refined approach, isolation ages (T isol ) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low Δ 14 C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at ∼ 10, 900 years BP, with many of the coral-bearing mounds on the continental slopes being draped in

  16. Proliferation and demise of deep-sea corals in the Mediterranean during the Younger Dryas

    Energy Technology Data Exchange (ETDEWEB)

    McCulloch, Malcolm [ARC Centre of Excellence for Coral Reef Studies, School of Earth and Environment, The University of Western Australian, Crawley, 6009, Western Australia (Australia); Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia); Taviani, Marco; Lopez Correa, Matthias; Remia, Alessandro [ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Montagna, Paolo [LSCE, Av. de la Terrasse, 91198 Gif-sur-Yvette, France, ISMAR-CNR, via Gobetti 101, I-40129 Bologna (Italy); Mortimer, Graham [Research School of Earth Sciences, Australian National University, Canberra, 0200 (Australia)

    2010-07-01

    Uranium-series and radiocarbon ages are reported for deep-sea corals Madrepora oculata, Desmophyllum dianthus, Lophelia pertusa and Caryophyllia smithii from the Mediterranean Sea. U-series dating indicates that deep-sea corals have persisted in the Mediterranean for over 480, 000 years, especially during cool inter-stadial periods. The most prolific period of growth however appears to have occurred within the Younger Dryas (YD) period from 12, 900 to 11, 700 years BP followed by a short ({approx} 330 years) phase of post-YD coral growth from 11, 230 to 10, 900 years BP. This indicates that deep-sea corals were prolific in the Mediterranean not only during the return to the more glacial-like conditions of the YD, but also following the rapid deglaciation and transition to warmer conditions that followed the end of the YD. Surprisingly, there is a paucity Last Glacial Maximum (LGM) coral ages, implying they were largely absent during this period when cold-water conditions were more prevalent. Radiocarbon ages show that the intermediate depth waters of the Mediterranean generally had {Delta}{sup 14}C compositions similar to surface waters, indicating that these waters were extremely well ventilated. The only exception is a narrow period in the YD (12, 500 {+-} 100 years BP) when several samples of Lophelia pertusa from the Ionian Sea had {Delta}{sup 14}C values falling significantly below the marine curve. Using a refined approach, isolation ages (T{sub isol}) of 300 years to 500 years are estimated for these intermediate (800-1000 m) depth waters relative to surface marine waters, indicating a reduction or absence of deep-water formation in the Ionian and adjacent Adriatic Seas during the YD. Contrary to previous findings, we find no evidence for widespread intrusion of low {Delta}{sup 14}C Atlantic waters into the Mediterranean. Prolific growth of deep-sea corals in the Mediterranean ended abruptly at {approx} 10, 900 years BP, with many of the coral-bearing mounds

  17. Dynamic and static elastic moduli of North Sea and deep sea chalk

    DEFF Research Database (Denmark)

    Gommesen, Lars; Fabricius, Ida Lykke

    2001-01-01

    We have established an empirical relationship between the dynamic and the static mechanical properties of North Sea and deep sea chalk for a large porosity interval with respect to porosity, effective stress history and textural composition. The chalk investigated is from the Tor and Hod Formations...... data of the studied North Sea area with the Ontong Java Plateau data, the paleo effective stress of the studied North Sea area is estimated, and from oedometer modulus and porosity a compaction trend is established. 0 2001 Elsevier Science Ltd. All rights reserved....

  18. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water

    OpenAIRE

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-01-01

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α f...

  19. Behaviour of long-lived radionuclides associated with deep-sea disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1986-04-01

    The IAEA sponsored this Coordinated Research Programme to improve knowledge of various long-lived radionuclides likely to be dumped in the deep sea. During the three years of this programme the state of knowledge has advanced significantly in this area, and this document provides a review of the progress. The isotopes studied were mainly 238 Pu, 239 Pu, 240 Pu, 241 Am, 226 Ra, 210 Po, 90 Sr, 137 Cs, 60 Co, and 99 Tc. A separate abstract was prepared for each of the 15 papers

  20. Evolution in the deep sea: biological traits, ecology and phylogenetics of pelagic copepods.

    Science.gov (United States)

    Laakmann, Silke; Auel, Holger; Kochzius, Marc

    2012-11-01

    Deep-sea biodiversity has received increasing interest in the last decade, mainly focusing on benthic communities. In contrast, studies of zooplankton in the meso- to bathypelagic zones are relatively scarce. In order to explore evolutionary processes in the pelagic deep sea, the present study focuses on copepods of two clausocalanoid families, Euchaetidae and Aetideidae, which are abundant and species-rich in the deep-sea pelagic realm. Molecular phylogenies based on concatenated-portioned data on 18S, 28S and internal transcribed spacer 2 (ITS2), as well as mitochondrial cytochrome c oxidase subunit I (COI), were examined on 13 species, mainly from Arctic and Antarctic regions, together with species-specific biological traits (i.e. vertical occurrence, feeding behaviour, dietary preferences, energy storage, and reproductive strategy). Relationships were resolved on genus, species and even sub-species levels, the latter two established by COI with maximum average genetic distances ranging from ≤5.3% at the intra-specific, and 20.6% at the inter-specific level. There is no resolution at a family level, emphasising the state of Euchaetidae and Aetideidae as sister families and suggesting a fast radiation of these lineages, a hypothesis which is further supported by biological parameters. Euchaetidae were similar in lipid-specific energy storage, reproductive strategy, as well as feeding behaviour and dietary preference. In contrast, Aetideidae were more diverse, comprising a variety of characteristics ranging from similar adaptations within Paraeuchaeta, to genera consisting of species with completely different reproductive and feeding ecologies. Reproductive strategies were generally similar within each aetideid genus, but differed between genera. Closely related species (congeners), which were similar in the aforementioned biological and ecological traits, generally occurred in different depth layers, suggesting that vertical partitioning of the water column

  1. Alterations in geochemical associations in artificially disturbed deep-sea sediments

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Parthiban, G.; Banaulikar, S.; Sarkar, S.

    al. 2000). An attempt is made in this study to assess the immediate and long-term geo- chemical changes, imparted to the deep-sea sediments from the Central Indian Basin, induced by the benthic disturbance. Moreover, the sediments collected at three... in 10ml 6N HCl and made to final volume of 50ml. The sample solutions were visibly clear, indicating complete digestion. Any changes induced while washing the samples free of salt would be con- sistent for the sediments of all the three phases. The final...

  2. Fungi in deep-sea sediments of the Central Indian Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, S.; Raghukumar, C.; Raghukumar, S.

    -section that had not been in contact with the walls of the PVC cylinder was removed with a flame - sterilized spatula and placed in sterile vials for isolation of fungi (Raghukumar et 4 al., 2004). The media used for isolations were malt extract agar (MEA), malt... obtained from Microbial Type Culture Collection (MTCC, Chandigarh, India) were included in this study for comparison. 2.3. Direct detection of fungi in deep-sea sediments About 0.5 g of each sediment sample in sterile vials were fixed with 5% formalin...

  3. Image analysis of seafloor photographs for estimation of deep-sea minerals

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, R.; Jaisankar, S.; Samanta, S.; Sardar, A.A.; Gracias, D.G.

    : Geo-Mar. Lett., vol.30(6); 2010; 617-626 Image analysis of seafloor photographs for estimation of deep-sea minerals Rahul Sharma, S. Jai Sankar, Sudeshna Samanta, A.A. Sardar. D. Gracious R. Sharma (corresponding author) (e-mail: rsharma... in the 1940s (e.g. Ewing 1946) and became an effective tool for observing the seafloor environment, including its benthic organisms and bottom currents (e.g. Shipek 1960; La Fond 1962; Edgerton 1967; Heezen and Hollister 1971; Borowski 2001; Grizzle et al...

  4. Shelf erosion and submarine river canyons: implications for deep-sea oxygenation and ocean productivity during glaciation

    Directory of Open Access Journals (Sweden)

    I. Tsandev

    2010-06-01

    Full Text Available The areal exposure of continental shelves during glacial sea level lowering enhanced the transfer of erodible reactive organic matter to the open ocean. Sea level fall also activated submarine canyons thereby allowing large rivers to deposit their particulate load, via gravity flows, directly in the deep-sea. Here, we analyze the effects of shelf erosion and particulate matter re-routing to the open ocean during interglacial to glacial transitions, using a coupled model of the marine phosphorus, organic carbon and oxygen cycles. The results indicate that shelf erosion and submarine canyon formation may significantly lower deep-sea oxygen levels, by up to 25%, during sea level low stands, mainly due to the supply of new material from the shelves, and to a lesser extent due to particulate organic matter bypassing the coastal zone. Our simulations imply that deep-sea oxygen levels can drop significantly if eroded shelf material is deposited to the seafloor. Thus the glacial ocean's oxygen content could have been significantly lower than during interglacial stages. Primary production, organic carbon burial and dissolved phosphorus inventories are all affected by the erosion and rerouting mechanisms. However, re-routing of the continental and eroded shelf material to the deep-sea has the effect of decoupling deep-sea oxygen demand from primary productivity in the open ocean. P burial is also not affected showing a disconnection between the biogeochemical cycles in the water column and the P burial record.

  5. Physiological impacts of acute Cu exposure on deep-sea vent mussel Bathymodiolus azoricus under a deep-sea mining activity scenario.

    Science.gov (United States)

    Martins, Inês; Goulart, Joana; Martins, Eva; Morales-Román, Rosa; Marín, Sergio; Riou, Virginie; Colaço, Ana; Bettencourt, Raul

    2017-12-01

    Over the past years, several studies have been dedicated to understanding the physiological ability of the vent mussel Bathymodiolus azoricus to overcome the high metal concentrations present in their surrounding hydrothermal environment. Potential deep-sea mining activities at Azores Triple junction hydrothermal vent deposits would inevitably lead to the emergence of new fluid sources close to mussel beds, with consequent emission of high metal concentrations and potential resolubilization of Cu from minerals formed during the active phase of the vent field. Copper is an essential metal playing a key role in the activation of metalloenzymes and metalloproteins responsible for important cellular metabolic processes and tissue homeostasis. However, excessive intracellular amounts of reactive Cu ions may cause irreversible damages triggering possible cell apoptosis. In the present study, B. azoricus was exposed to increasing concentrations of Cu for 96h in conditions of temperature and hydrostatic pressure similar to those experienced at the Lucky Strike hydrothermal vent field. Specimens were kept in 1L flasks, exposed to four Cu concentrations: 0μg/L (control), 300, 800 and 1600μg/L and pressurized to 1750bar. We addressed the question of how increased Cu concentration would affect the function of antioxidant defense proteins and expression of antioxidant and immune-related genes in B. azoricus. Both antioxidant enzymatic activities and gene expression were examined in gills, mantle and digestive gland tissues of exposed vent mussels. Our study reveals that stressful short-term Cu exposure has a strong effect on molecular metabolism of the hydrothermal vent mussel, especially in gill tissue. Initially, both the stress caused by unpressurization or by Cu exposure was associated with high antioxidant enzyme activities and tissue-specific transcriptional up-regulation. However, mussels exposed to increased Cu concentrations showed both antioxidant and immune

  6. Larval development and metamorphosis of the deep-sea cidaroid urchin Cidaris blakei.

    Science.gov (United States)

    Bennett, Kathleen C; Young, Craig M; Emlet, Richard B

    2012-04-01

    Cidaroids, one of the two major sister clades of sea urchins, first appeared during the lower Permian (ca. 270 mya) and are considered to represent the primitive form of all living echinoids. This study of Cidaris blakei, a deep-sea cidaroid urchin with planktotrophic larvae, provides a description of development from fertilization through early juvenile stages and is the first report of a deep-sea urchin reared through metamorphosis. C. blakei resembles other cidaroids in its lack of a cohesive hyaline layer, the absence of an amniotic invagination for juvenile rudiment formation, and the presence of spines with a single morphotype at metamorphosis. C. blakei differed from other cidaroids in the presence of an apical tuft, the extent of fenestration of postoral skeletal rods, the shape of juvenile spines, and an extended (14-day) lecithotrophic stage prior to development of a complete gut. The development of C. blakei, 120 days from fertilization to metamorphosis, was protracted relative to that of shallow-water cidaroids. Preliminary work on temperature tolerances suggests that C. blakei larvae would be unable to survive the warmer temperatures higher in the water column and are therefore unable to vertically migrate.

  7. Biomagnification of persistent organic pollutants in a deep-sea, temperate food web.

    Science.gov (United States)

    Romero-Romero, Sonia; Herrero, Laura; Fernández, Mario; Gómara, Belén; Acuña, José Luis

    2017-12-15

    Polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polychlorinated dibenzo-p-dioxins and -furans (PCDD/Fs) were measured in a temperate, deep-sea ecosystem, the Avilés submarine Canyon (AC; Cantabrian Sea, Southern Bay of Biscay). There was an increase of contaminant concentration with the trophic level of the organisms, as calculated from stable nitrogen isotope data (δ 15 N). Such biomagnification was only significant for the pelagic food web and its magnitude was highly dependent on the type of top predators included in the analysis. The trophic magnification factor (TMF) for PCB-153 in the pelagic food web (spanning four trophic levels) was 6.2 or 2.2, depending on whether homeotherm top predators (cetaceans and seabirds) were included or not in the analysis, respectively. Since body size is significantly correlated with δ 15 N, it can be used as a proxy to estimate trophic magnification, what can potentially lead to a simple and convenient method to calculate the TMF. In spite of their lower biomagnification, deep-sea fishes showed higher concentrations than their shallower counterparts, although those differences were not significant. In summary, the AC fauna exhibits contaminant levels comparable or lower than those reported in other systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The Biological Deep Sea Hydrothermal Vent as a Model to Study Carbon Dioxide Capturing Enzymes

    Directory of Open Access Journals (Sweden)

    Premila D. Thongbam

    2011-04-01

    Full Text Available Deep sea hydrothermal vents are located along the mid-ocean ridge system, near volcanically active areas, where tectonic plates are moving away from each other. Sea water penetrates the fissures of the volcanic bed and is heated by magma. This heated sea water rises to the surface dissolving large amounts of minerals which provide a source of energy and nutrients to chemoautotrophic organisms. Although this environment is characterized by extreme conditions (high temperature, high pressure, chemical toxicity, acidic pH and absence of photosynthesis a diversity of microorganisms and many animal species are specially adapted to this hostile environment. These organisms have developed a very efficient metabolism for the assimilation of inorganic CO2 from the external environment. In order to develop technology for the capture of carbon dioxide to reduce greenhouse gases in the atmosphere, enzymes involved in CO2 fixation and assimilation might be very useful. This review describes some current research concerning CO2 fixation and assimilation in the deep sea environment and possible biotechnological application of enzymes for carbon dioxide capture.

  9. Biotechnological Potential of Cold Adapted Pseudoalteromonas spp. Isolated from 'Deep Sea' Sponges.

    Science.gov (United States)

    Borchert, Erik; Knobloch, Stephen; Dwyer, Emilie; Flynn, Sinéad; Jackson, Stephen A; Jóhannsson, Ragnar; Marteinsson, Viggó T; O'Gara, Fergal; Dobson, Alan D W

    2017-06-19

    The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including β-galactosidase, β-glucosidase, and protease activities. A β-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.

  10. Isotope analysis of water trapped in fluid inclusions in deep sea corals

    Science.gov (United States)

    Vonhof, Hubert; Reijmer, John; Feenstra, Eline; Mienis, Furu

    2015-04-01

    Extant Lophelia pertusa deep sea coral specimens from the Loachev mound region in the North Atlantic Ocean contain water filled fluid inclusions in their skeleton. This fluid inclusion water was extracted with a crushing device, and its hydrogen and oxygen isotope ratios analysed. The resulting data span a wide range of isotope values which are remarkably different from the seawater isotope composition of the sites studied. Comparison with food source isotope signatures suggests that coral inclusion water contains a high, but variable proportion of metabolic water. The isotope composition of the inclusion water appears to vary with the position on the deep see coral reef, and shows a correlation with the stable isotope composition of the coral aragonite. This correlation seems to suggest that growth rate and other ecological factors play an important role in determining the isotope composition of fluids trapped in the coral skeleton, which can potentially be developed as a proxy for non-equilibrium isotope fractionation observed in the aragonite skeleton of many of the common deep sea coral species.

  11. Functional, size and taxonomic diversity of fish along a depth gradient in the deep sea.

    Science.gov (United States)

    Mindel, Beth L; Neat, Francis C; Trueman, Clive N; Webb, Thomas J; Blanchard, Julia L

    2016-01-01

    Biodiversity is well studied in ecology and the concept has been developed to include traits of species, rather than solely taxonomy, to better reflect the functional diversity of a system. The deep sea provides a natural environmental gradient within which to study changes in different diversity metrics, but traits of deep-sea fish are not widely known, hampering the application of functional diversity to this globally important system. We used morphological traits to determine the functional richness and functional divergence of demersal fish assemblages along the continental slope in the Northeast Atlantic, at depths of 300-2,000 m. We compared these metrics to size diversity based on individual body size and species richness. Functional richness and size diversity showed similar patterns, with the highest diversity at intermediate depths; functional divergence showed the opposite pattern, with the highest values at the shallowest and deepest parts of the study site. Species richness increased with depth. The functional implications of these patterns were deduced by examining depth-related changes in morphological traits and the dominance of feeding guilds as illustrated by stable isotope analyses. The patterns in diversity and the variation in certain morphological traits can potentially be explained by changes in the relative dominance of pelagic and benthic feeding guilds. All measures of diversity examined here suggest that the deep areas of the continental slope may be equally or more diverse than assemblages just beyond the continental shelf.

  12. The "island rule" and deep-sea gastropods: re-examining the evidence.

    Directory of Open Access Journals (Sweden)

    John J Welch

    2010-01-01

    Full Text Available One of the most intriguing patterns in mammalian biogeography is the "island rule", which states that colonising species have a tendency to converge in body size, with larger species evolving decreased sizes and smaller species increased sizes. It has recently been suggested that an analogous pattern holds for the colonisation of the deep-sea benthos by marine Gastropoda. In particular, a pioneering study showed that gastropods from the Western Atlantic showed the same graded trend from dwarfism to gigantism that is evident in island endemic mammals. However, subsequent to the publication of the gastropod study, the standard tests of the island rule have been shown to yield false positives at a very high rate, leaving the result open to doubt.The evolution of gastropod body size in the deep sea is reexamined. Using an extended and updated data set, and improved statistical methods, it is shown that some results of the previous study may have been artifactual, but that its central conclusion is robust. It is further shown that the effect is not restricted to a single gastropod clade, that its strength increases markedly with depth, but that it applies even in the mesopelagic zone.The replication of the island rule in a distant taxonomic group and a partially analogous ecological situation could help to uncover the causes of the patterns observed--which are currently much disputed. The gastropod pattern is evident at intermediate depths, and so cannot be attributed to the unique features of abyssal ecology.

  13. Area Estimation of Deep-Sea Surfaces from Oblique Still Images.

    Directory of Open Access Journals (Sweden)

    Frederico Carvalho Dias

    Full Text Available Estimating the area of seabed surfaces from pictures or videos is an important problem in seafloor surveys. This task is complex to achieve with moving platforms such as submersibles, towed or remotely operated vehicles (ROV, where the recording camera is typically not static and provides an oblique view of the seafloor. A new method for obtaining seabed surface area estimates is presented here, using the classical set up of two laser devices fixed to the ROV frame projecting two parallel lines over the seabed. By combining lengths measured directly from the image containing the laser lines, the area of seabed surfaces is estimated, as well as the camera's distance to the seabed, pan and tilt angles. The only parameters required are the distance between the parallel laser lines and the camera's horizontal and vertical angles of view. The method was validated with a controlled in situ experiment using a deep-sea ROV, yielding an area estimate error of 1.5%. Further applications and generalizations of the method are discussed, with emphasis on deep-sea applications.

  14. A Simple and Efficient RNA Extraction Method from Deep-Sea Hydrothermal Vent Chimney Structures.

    Science.gov (United States)

    Muto, Hisashi; Takaki, Yoshihiro; Hirai, Miho; Mino, Sayaka; Sawayama, Shigeki; Takai, Ken; Nakagawa, Satoshi

    2017-12-27

    RNA-based microbiological analyses, e.g., transcriptome and reverse transcription-quantitative PCR, require a relatively large amount of high quality RNA. RNA-based analyses on microbial communities in deep-sea hydrothermal environments often encounter methodological difficulties with RNA extraction due to the presence of unique minerals in and the low biomass of samples. In the present study, we assessed RNA extraction methods for deep-sea vent chimneys that had complex mineral compositions. Mineral-RNA adsorption experiments were conducted using mock chimney minerals and Escherichia coli total RNA solution, and showed that detectable RNA significantly decreased possibly due to adsorption onto minerals. This decrease in RNA was prevented by the addition of sodium tripolyphosphate (STPP), deoxynucleotide triphosphates (dNTPs), salmon sperm DNA, and NaOH. The addition of STPP was also effective for RNA extraction from the mixture of E. coli cells and mock chimney minerals when TRIzol reagent and the RNeasy column were used, but not when the RNeasy PowerSoil total RNA kit was used. A combination of STPP, TRIzol reagent, the RNeasy column, and sonication resulted in the highest RNA yield from a natural chimney. This indirect extraction procedure is simple, rapid, inexpensive, and may be used for large-scale RNA extraction.

  15. Defying Dissolution: Discovery of Deep-Sea Scleractinian Coral Reefs in the North Pacific.

    Science.gov (United States)

    Baco, Amy R; Morgan, Nicole; Roark, E Brendan; Silva, Mauricio; Shamberger, Kathryn E F; Miller, Kelci

    2017-07-14

    Deep-sea scleractinian coral reefs are protected ecologically and biologically significant areas that support global fisheries. The absence of observations of deep-sea scleractinian reefs in the Central and Northeast Pacific, combined with the shallow aragonite saturation horizon (ASH) and high carbonate dissolution rates there, fueled the hypothesis that reef formation in the North Pacific was improbable. Despite this, we report the discovery of live scleractinian reefs on six seamounts of the Northwestern Hawaiian Islands and Emperor Seamount Chain at depths of 535-732 m and aragonite saturation state (Ω arag ) values of 0.71-1.33. Although the ASH becomes deeper moving northwest along the chains, the depth distribution of the reefs becomes shallower, suggesting the ASH is having little influence on their distribution. Higher chlorophyll moving to the northwest may partially explain the geographic distribution of the reefs. Principle Components Analysis suggests that currents are also an important factor in their distribution, but neither chlorophyll nor the available current data can explain the unexpected depth distribution. Further environmental data is needed to elucidate the reason for the distribution of these reefs. The discovery of reef-forming scleractinians in this region is of concern because a number of the sites occur on seamounts with active trawl fisheries.

  16. Oil degradation and biosurfactant production by the deep sea bacterium Dietzia maris As-13-3

    Directory of Open Access Journals (Sweden)

    Wanpeng eWang

    2014-12-01

    Full Text Available Abstract: Recent investigations of extreme environments have revealed numerous bioactive natural products. However, biosurfactant-producing strains from deep sea extreme environment are largely unknown. Here, we show that Dietzia maris As-13-3 isolated from deep sea hydrothermal field could produce di-rhamnolipid as biosurfactant. The critical micelle concentration (CMC of the purified di-rhamnolipid was determined to be 120 mgL-1, and it lowered the surface tension of water from 74±0.2 mN m-1 to 38±0.2 mN m-1. Further, the alkane metabolic pathway-related genes and di-rhamnolipid biosynthesis-related genes were also analyzed by the sequencing genome of D. maris As-13-3 and quantitative real-time PCR (Q-PCR, respectively. Q-PCR analysis showed that all these genes were induced by n-Tetradecane, n-Hexadecane and pristane. To the best of our knowledge, this is first report about the complete pathway of the di-rhamnolipid synthesis process in the genus Dietzia. Thus, our study provided the insights into Dietzia in respects of oil degradation and biosurfactant production, and will help to evaluate the potential of Dietzia in marine oil removal.

  17. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals

    Science.gov (United States)

    Guilderson, T. P.; McCarthy, M. D.; Dunbar, R. B.; Englebrecht, A.; Roark, E. B.

    2013-09-01

    δ15N and δ13C data obtained from samples of proteinaceous deep-sea corals collected from the North Pacific Subtropical Gyre (Hawaiian Archipelago) and the central equatorial Pacific (Line Islands) document multidecadal to century-scale variability in the isotopic composition of surface-produced particulate organic matter exported to the deep sea. Comparison of the δ13C data, where Line Islands samples are 0.6‰ more positive than the Hawaiian samples, supports the contention that the North Pacific Subtropical Gyre is more efficient than the tropical upwelling system at trapping and/or recycling nutrients within the mixed layer. δ15N values from the Line Islands samples are also more positive than those from the central gyre, and within the Hawaiian samples there is a gradient with more positive δ15N values in samples from the main Hawaiian Islands versus the French Frigate Shoals in the Northwestern Hawaiian Islands. The gradient in the Hawaiian samples likely reflects the relative importance of algal acquisition of metabolic N via dissolved seawater nitrate uptake versus nitrogen fixation. The Hawaiian sample set also exhibits a strong decrease in δ15N values from the mid-Holocene to present. We hypothesize that this decrease is most likely the result of decreasing trade winds, and possibly a commensurate decrease in entrainment of more positive δ15N-NO3 subthermocline water masses.

  18. Physiological compensation for environmental acidification is limited in the deep-sea urchin Strongylocentrotus fragilis

    Science.gov (United States)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2013-05-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals - particularly, calcifiers - are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of hypercapnia and hypoxia on the deep-sea urchin Strongylocentrotus fragilis, during two long-term exposure experiments (1 month and 4 month) at three levels of reduced pH at in situ O2 levels of approx. 10% saturation, and also to control pH at 100% O2 saturation. During the first experiment, internal acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by reduced pH, due in part to low non-bicarbonate extracellular fluid buffering capacity. During the second experiment, longer-term effects of hypercapnia and variable O2 on locomotion, feeding, growth, and gonadosomatic index (GSI) were investigated; results show significant mortality and correlation of all measured parameters with environmental acidification at pH 6.6. Transient adverse effects on locomotion and feeding were seen at pH 7.2, without compromise of growth or GSI. Based on the expected changes in ocean pH and oxygen, results suggest extinction of S. fragilis in the eastern North Pacific is unlikely. Rather, we expect a shoaling and contraction of its bathymetric range.

  19. Supernova-produced radionuclides in deep-sea sediments measured with AMS

    International Nuclear Information System (INIS)

    Feige, J.

    2014-01-01

    This thesis is dedicated to computational micromagnetics, where several new numerical methods are In this work a set of long-lived radionuclides is measured to detect supernova-traces presumably deposited on Earth 2-3 Myr ago. Approximately 100 samples of four deep-sea sediment cores (Indian Ocean) were analyzed for 26 Al, 53Mn, and 60 Fe with accelerator mass spectrometry (AMS). Additionally, 10 Be was measured to confirm the existing paleomagnetic chronology of the sediments. A signal of extraterrestrial 60 Fe, which is not produced in-situ on Earth, was detected in a time period of 1.7-3.2 Myr in the sediments used for this work. 60 Fe/ 26 Al ratios were used to calculate limits on theoretical nucleosynthesis models. A supernova-signature of 26 Al is hidden behind a terrestrial background. The measured 26 Al/ 10 Be ratios indicate, that the major source of 26 Al detected in the sediments is of atmospheric origin. Because of the extraordinarily good depth profile for the deep-sea sediments from the measured 26 Al data, this radionuclide was used for dating. (author) [de

  20. High Quantities of Microplastic in Arctic Deep-Sea Sediments from the HAUSGARTEN Observatory.

    Science.gov (United States)

    Bergmann, Melanie; Wirzberger, Vanessa; Krumpen, Thomas; Lorenz, Claudia; Primpke, Sebastian; Tekman, Mine B; Gerdts, Gunnar

    2017-10-03

    Although mounting evidence suggests the ubiquity of microplastic in aquatic ecosystems worldwide, our knowledge of its distribution in remote environments such as Polar Regions and the deep sea is scarce. Here, we analyzed nine sediment samples taken at the HAUSGARTEN observatory in the Arctic at 2340-5570 m depth. Density separation by MicroPlastic Sediment Separator and treatment with Fenton's reagent enabled analysis via Attenuated Total Reflection FTIR and μFTIR spectroscopy. Our analyses indicate the wide spread of high numbers of microplastics (42-6595 microplastics kg -1 ). The northernmost stations harbored the highest quantities, indicating sea ice as a possible transport vehicle. A positive correlation between microplastic abundance and chlorophyll a content suggests vertical export via incorporation in sinking (ice-) algal aggregates. Overall, 18 different polymers were detected. Chlorinated polyethylene accounted for the largest proportion (38%), followed by polyamide (22%) and polypropylene (16%). Almost 80% of the microplastics were ≤25 μm. The microplastic quantities are among the highest recorded from benthic sediments. This corroborates the deep sea as a major sink for microplastics and the presence of accumulation areas in this remote part of the world, fed by plastics transported to the North via the Thermohaline Circulation.

  1. Late Holocene variations in Pacific surface circulation and biogeochemistry inferred from proteinaceous deep-sea corals

    Directory of Open Access Journals (Sweden)

    T. P. Guilderson

    2013-09-01

    Full Text Available δ15N and δ13C data obtained from samples of proteinaceous deep-sea corals collected from the North Pacific Subtropical Gyre (Hawaiian Archipelago and the central equatorial Pacific (Line Islands document multidecadal to century-scale variability in the isotopic composition of surface-produced particulate organic matter exported to the deep sea. Comparison of the δ13C data, where Line Islands samples are 0.6‰ more positive than the Hawaiian samples, supports the contention that the North Pacific Subtropical Gyre is more efficient than the tropical upwelling system at trapping and/or recycling nutrients within the mixed layer. δ15N values from the Line Islands samples are also more positive than those from the central gyre, and within the Hawaiian samples there is a gradient with more positive δ15N values in samples from the main Hawaiian Islands versus the French Frigate Shoals in the Northwestern Hawaiian Islands. The gradient in the Hawaiian samples likely reflects the relative importance of algal acquisition of metabolic N via dissolved seawater nitrate uptake versus nitrogen fixation. The Hawaiian sample set also exhibits a strong decrease in δ15N values from the mid-Holocene to present. We hypothesize that this decrease is most likely the result of decreasing trade winds, and possibly a commensurate decrease in entrainment of more positive δ15N-NO3 subthermocline water masses.

  2. Hydrocarbons, PCBs and DDT in the NW Mediterranean deep-sea fish Mora moro

    Science.gov (United States)

    Solé, Montserrat; Porte, Cinta; Albaigés, Joan

    2001-02-01

    Data on aliphatic and polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and DDTs in the deep-sea fish Mora moro are reported in relation to the animal's weight/size and tissues (muscle, liver, digestive tube and gills). Fish samples were collected in the Gulf of Lions (NW Mediterranean) at an approximate depth of 1000 m. The concentrations of these organic pollutants followed the trend musclelipid content of the organs. No clear bioaccumulation dependence on fish weight/size was observed for gills, digestive tube and liver when the fat contents of these tissues were taken into account. However, the concentrations in muscle decreased with size, possibly implying a simple dilution effect by the increase of body weight. Hydrocarbons, and particularly PAHs, were strongly depleted in all tissues with respect to organochlorinated compounds if compared with the amounts present in bottom waters and sediment. Smaller specimens displayed for most pollutants qualitatively different patterns than larger fish, which could be attributed to their particular habitat/diet. The aliphatic hydrocarbon profiles suggested that Mora moro was exposed to a more predominant intake of biogenic rather than petrogenic hydrocarbons. The entrance and storage organs exhibited characteristic PAH and PCB distributions, reflecting different bioaccumulation and metabolic pathways. Compared with the profiles currently found in surface fish species, a relatively higher contribution of heavier components, namely hepta- and octochlorinated PCBs, and 4-6-ringed PAHs, was found in the deep-sea fish.

  3. A green fluorescent protein with photoswitchable emission from the deep sea.

    Directory of Open Access Journals (Sweden)

    Alexander Vogt

    Full Text Available A colorful variety of fluorescent proteins (FPs from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that approximately 15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37 degrees C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.

  4. Vertical migrations of a deep-sea fish and its prey.

    Directory of Open Access Journals (Sweden)

    Pedro Afonso

    Full Text Available It has been speculated that some deep-sea fishes can display large vertical migrations and likely doing so to explore the full suite of benthopelagic food resources, especially the pelagic organisms of the deep scattering layer (DSL. This would help explain the success of fishes residing at seamounts and the increased biodiversity found in these features of the open ocean. We combined active plus passive acoustic telemetry of blackspot seabream with in situ environmental and biological (backscattering data collection at a seamount to verify if its behaviour is dominated by vertical movements as a response to temporal changes in environmental conditions and pelagic prey availability. We found that seabream extensively migrate up and down the water column, that these patterns are cyclic both in short-term (tidal, diel as well as long-term (seasonal scales, and that they partially match the availability of potential DSL prey components. Furthermore, the emerging pattern points to a more complex spatial behaviour than previously anticipated, suggesting a seasonal switch in the diel behaviour mode (benthic vs. pelagic of seabream, which may reflect an adaptation to differences in prey availability. This study is the first to document the fine scale three-dimensional behaviour of a deep-sea fish residing at seamounts.

  5. GEOSTAR deep sea floor missions: magnetic data analysis and 1D geo electric structure underneath the Southern Tyrrhenian Sea

    International Nuclear Information System (INIS)

    Vitale, S.; De Santis, A.; Di Mauro, D.; Cafarella, L.; Palangio, P.; Beranzoli, L.; Favali, P.

    2009-01-01

    From 2000 to 2005 two geophysical exploration missions were undertaken in the Tyrrenian deep sea floor at depth between -2000 and -3000 m in the framework of the European-funded GEOSTAR Projects. The considered missions in this work are GEOSTAR-2 and ORION-GEOSTAR-3 with the main scientific objective of investigating the deep-sea floor by means of an automatic multiparameter benthic observatory station working continuously from around 5 to 12 months each time. During the two GEOSTAR deep sea floor missions, scalar and vector magnetometers acquired useful magnetic data both to improve global and regional geomagnetic reference models and to infer specific geo electric information about the two sites of magnetic measurements by means of a forward modelling.

  6. A natural history of the deep-sea aplacophoran Prochaetoderma yongei and its relationship to confamilials (Mollusca, Prochaetodermatidae)

    Science.gov (United States)

    Scheltema, Amélie H.; Ivanov, Dmitry L.

    2009-09-01

    Previously published studies are woven together into a natural history of a deep-sea aplacophoran mollusc species, Prochaetoderma yongei Scheltema, 1985, and its confamilial species in the Prochaetodermatidae. This amphi-Atlantic species occurs sometimes in great numbers at upper bathyal depths, rivaling polychaetes in numerical dominance. It appears to be an opportunist, with wide geographic and depth distribution, rapid development from lecithotrophic larva to settlement and maturity, and omnivory. A short illustrated morphological description using characters useful for identifying all prochaetodermatid species should prove useful to nontaxonomists whose business is the deep-sea benthic fauna.

  7. The geological history of deep-sea colonization by echinoids: roles of surface productivity and deep-water ventilation

    OpenAIRE

    Smith, Andrew B; Stockley, Bruce

    2005-01-01

    The origins and geological history of the modern fauna of deep-sea echinoids is explored using a combination of palaeontological and molecular data. We demonstrate that, whereas generalist omnivores have migrated into the deep sea in low numbers over the past 200 Myr, there was a short time-interval between approximately 75 and 55 Myr when the majority of specialist detritivore clades independently migrated off-shelf. This coincides with a marked increase in seasonality, continental run-off a...

  8. Microbial Diversity and Ecology in the Interfaces of the Deep-sea Anoxic Brine Pools in the Red Sea

    KAUST Repository

    Hikmawan, Tyas I.

    2015-05-01

    Deep-sea anoxic brine pools are one of the most extreme ecosystems on Earth, which are characterized by drastic changes in salinity, temperature, and oxygen concentration. The interface between the brine and overlaying seawater represents a boundary of oxic-anoxic layer and a steep gradient of redox potential that would initiate favorable conditions for divergent metabolic activities, mainly methanogenesis and sulfate reduction. This study aimed to investigate the diversity of Bacteria, particularly sulfate-reducing communities, and their ecological roles in the interfaces of five geochemically distinct brine pools in the Red Sea. Performing a comprehensive study would enable us to understand the significant role of the microbial groups in local geochemical cycles. Therefore, we combined culture-dependent approach and molecular methods, such as 454 pyrosequencing of 16S rRNA gene, phylogenetic analysis of functional marker gene encoding for the alpha subunits of dissimilatory sulfite reductase (dsrA), and single-cell genomic analysis to address these issues. Community analysis based on 16S rRNA gene sequences demonstrated high bacterial diversity and domination of Bacteria over Archaea in most locations. In the hot and multilayered Atlantis II Deep, the bacterial communities were stratified and hardly overlapped. Meanwhile in the colder brine pools, sulfatereducing Deltaproteobacteria were the most prominent bacterial groups inhabiting the interfaces. Corresponding to the bacterial community profile, the analysis of dsrA gene sequences revealed collectively high diversity of sulfate-reducing communities. Desulfatiglans-like dsrA was the prevalent group and conserved across the Red Sea brine pools. In addition to the molecular studies, more than thirty bacterial strains were successfully isolated and remarkably were found to be cytotoxic against the cancer cell lines. However, none of them were sulfate reducers. Thus, a single-cell genomic analysis was used to study

  9. Environmental and biological controls on Mg and Li in deep-sea scleractinian corals

    Science.gov (United States)

    Case, David H.; Robinson, Laura F.; Auro, Maureen E.; Gagnon, Alexander C.

    2010-12-01

    Deep-sea scleractinian corals precipitate aragonite skeletons that provide valuable archives of past ocean conditions. During calcification biological mediation causes variability in trace metal incorporation and isotopic ratios of the aragonite such that signals caused by environmental controls can be overwhelmed. This complicates the interpretation of geochemical proxies used for paleo-reconstructions. In this study we examine the environmental controls on the Mg/Li ratio of 34 individuals from seven genera of deep-sea scleractinian corals: Desmophyllum, Balanophyllia, Caryophyllia, Enallopsammia, Flabellum, Trochocyanthus, and Lophelia. In addition we examine the microscale distributions of Mg and Li in Desmophyllum and Balanophyllia using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Both Mg/Ca and Li/Ca ratios increased by more than a factor of two in the center of calcification regions compared to the outer, fibrous regions of the coral skeleton. As a result, replicate ~ 10 mg subsamples of coral show less variability in the Mg/Li ratio than Mg/Ca. Microscale Mg and Li results are consistent with Rayleigh-type incorporation of trace metals with additional processes dominating the composition within centers of calcification. Comparison of Mg/Li to seawater properties near the site of collection shows that the ratio is not controlled by either carbonate ion or salinity. It appears that temperature is the major control on the Mg/Li ratio. For all 34 samples the temperature correlation ( R2 = 0.62) is significantly better than for Mg/Ca ( R2 = 0.06). For corals of the family Caryophyllidae the R2 value increases to 0.82 with the exclusion of one sample that was observed to have an altered, chalky texture . Despite this excellent correlation the scatter in the data suggests that the Mg/Li ratio of deep-sea corals cannot be used to reconstruct temperature to better than approximately ± 1.6 °C without better temperature control and

  10. Retrodiction of secular variations in deep-sea CaCO3 burial during the Cenozoic

    Science.gov (United States)

    Boudreau, Bernard P.; Luo, Yiming

    2017-09-01

    Deep-sea sediments record changes in oceanic carbonate chemistry and CaCO3 sedimentation rate through temporal variations in the total burial of CaCO3 and the position of the carbonate snowline, i.e., the ocean depth at which CaCO3-free sediments are first recorded. This paper links mathematically secular changes in snowline to those in the burial rate through a set of relatively simple equations. When the available Cenozoic deep-sea burial records are employed to predict secular variations in snowline, the process fails at some time in the past, indicating that these records are not consistent with each other. The burial records are more likely the source of this problem, as they involve far more uncertainties than the snowline records. As a consequence, we introduce a method for estimating carbonate burial through the use of a canonical CaCO3-depth profile, which can respond dynamically to secular changes in carbonate sedimentation and the positions of both the snowline and the carbonate saturation horizon. The resulting synthetic CaCO3 burial record is consistent with snowline records and indicates that the burial rates offered by Davies and Worsley (1981) are generally too high, with highly questionable maxima at 25 and 47 Ma BP. Our estimates of burial are more consistent with the range advanced by Mackenzie and Morse (1992); nevertheless, our results differ from the latter with respect to timing and magnitude of the variations. Our approach allows simultaneous calculation of the mean carbonate ion concentration of the deep sea. We find that carbonate-ion levels fell through the Cenozoic and are similar to those calculated by Tyrrell and Zeebe (2004), using a different model. Secular variations in CaCO3 burial are found to be primarily driven by changes in the Ca2+-CO3 2 - ion product within the bottom-waters, with an increase in the sedimentation rate of CaCO3 of secondary importance over the Cenozoic.

  11. Growth rates and ages of deep-sea corals impacted by the Deepwater Horizon oil spill

    Science.gov (United States)

    Prouty, Nancy G.; Fisher, Charles R.; Demopoulos, Amanda W. J.; Druffel, Ellen R. M.

    2016-01-01

    The impact of the April 2010 Deepwater Horizon (DWH) spill on deep-sea coral communities in the Gulf of Mexico (GoM) is still under investigation, as is the potential for these communities to recover. Impacts from the spill include observation of corals covered with flocculent material, with bare skeleton, excessive mucous production, sloughing tissue, and subsequent colonization of damaged areas by hydrozoans. Information on growth rates and life spans of deep-sea corals is important for understanding the vulnerability of these ecosystems to both natural and anthropogenic perturbations, as well as the likely duration of any observed adverse impacts. We report radiocarbon ages and radial and linear growth rates based on octocorals (Paramuricea spp. and Chrysogorgia sp.) collected in 2010 and 2011 from areas of the DWH impact. The oldest coral radiocarbon ages were measured on specimens collected 11 km to the SW of the oil spill from the Mississippi Canyon (MC) 344 site: 599 and 55 cal yr BP, suggesting continuous life spans of over 600 years for Paramuricea biscaya, the dominant coral species in the region. Calculated radial growth rates, between 0.34 μm yr−1 and 14.20 μm yr−1, are consistent with previously reported proteinaceous corals from the GoM. Anomalously low radiocarbon (Δ14C) values for soft tissue from some corals indicate that these corals were feeding on particulate organic carbon derived from an admixture of modern surface carbon and a low 14C carbon source. Results from this work indicate fossil carbon could contribute 5–10% to the coral soft tissue Δ14C signal within the area of the spill impact. The influence of a low 14C carbon source (e.g., petro-carbon) on the particulate organic carbon pool was observed at all sites within 30 km of the spill site, with the exception of MC118, which may have been outside of the dominant northeast-southwest zone of impact. The quantitatively assessed extreme longevity and slow growth rates documented

  12. 50 CFR 648.72 - Minimum surf clam size.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Minimum surf clam size. 648.72 Section 648... Atlantic Surf Clam and Ocean Quahog Fisheries § 648.72 Minimum surf clam size. (a) Minimum length. The minimum length for surf clams is 4.75 inches (12.065 cm). (b) Determination of compliance. No more than 50...

  13. Microbial life in the Lake Medee, the largest deep-sea salt-saturated formation.

    Science.gov (United States)

    Yakimov, Michail M; La Cono, Violetta; Slepak, Vladlen Z; La Spada, Gina; Arcadi, Erika; Messina, Enzo; Borghini, Mireno; Monticelli, Luis S; Rojo, David; Barbas, Coral; Golyshina, Olga V; Ferrer, Manuel; Golyshin, Peter N; Giuliano, Laura

    2013-12-19

    Deep-sea hypersaline anoxic lakes (DHALs) of the Eastern Mediterranean represent some of the most hostile environments on our planet. We investigated microbial life in the recently discovered Lake Medee, the largest DHAL found to-date. Medee has two unique features: a complex geobiochemical stratification and an absence of chemolithoautotrophic Epsilonproteobacteria, which usually play the primary role in dark bicarbonate assimilation in DHALs interfaces. Presumably because of these features, Medee is less productive and exhibits reduced diversity of autochthonous prokaryotes in its interior. Indeed, the brine community almost exclusively consists of the members of euryarchaeal MSBL1 and bacterial KB1 candidate divisions. Our experiments utilizing cultivation and [(14)C]-assimilation, showed that these organisms at least partially rely on reductive cleavage of osmoprotectant glycine betaine and are engaged in trophic cooperation. These findings provide novel insights into how prokaryotic communities can adapt to salt-saturated conditions and sustain active metabolism at the thermodynamic edge of life.

  14. A launching vehicle for optical modules of a deep-sea neutrino telescope

    International Nuclear Information System (INIS)

    Wolf, E. de; Bakker, R.; Boer Rookhuizen, H.; Gostiaux, L.; Groenewegen, R.; Haren, H. van; Heerwaarden, J. van; Hillebrand, Th.; Laan, M.; Smit, A.

    2013-01-01

    KM3NeT is a future deep-sea research facility that will be built at depths between 3 and 5 km in the Mediterranean Sea. The facility will host a neutrino telescope consisting of several hundreds of detection units—vertical mechanical structures that suspend the optical sensor modules of the telescope. During the design phase of the KM3NeT telescope, two concepts for the mechanical design for the detection unit have been worked out, one of which is a mooring consisting of two parallel ropes with 20 optical sensor modules attached at regular intervals; a data cable runs along the full length of the structure. For this design, which usually is referred to as a string, a novel deployment method using a recyclable launching vehicle has been successfully tested during two cruises in the Ionian Sea. We will present the design and the results of the deployment tests

  15. Biological and environmental rhythms in (dark) deep-sea hydrothermal ecosystems

    Science.gov (United States)

    Cuvelier, Daphne; Legendre, Pierre; Laës-Huon, Agathe; Sarradin, Pierre-Marie; Sarrazin, Jozée

    2017-06-01

    During 2011, two deep-sea observatories focusing on hydrothermal vent ecology were up and running in the Atlantic (Eiffel Tower, Lucky Strike vent field) and the Northeast Pacific Ocean (NEP) (Grotto, Main Endeavour Field). Both ecological modules recorded imagery and environmental variables jointly for a time span of 23 days (7-30 October 2011) and environmental variables for up to 9 months (October 2011-June 2012). Community dynamics were assessed based on imagery analysis and rhythms in temporal variation for both fauna and environment were revealed. Tidal rhythms were found to be at play in the two settings and were most visible in temperature and tubeworm appearances (at NEP). A ˜ 6 h lag in tidal rhythm occurrence was observed between Pacific and Atlantic hydrothermal vents, which corresponds to the geographical distance and time delay between the two sites.

  16. Pressurized liquid extraction of selected molecular biomarkers in deep sea sediments used as proxies in paleoceanography.

    Science.gov (United States)

    Calvo, Eva; Pelejero, Carles; Logan, Graham A

    2003-03-14

    Pressurized liquid extraction has been performed on a suite of deep-sea sediments to assess its capability as an extraction technique in the analysis of molecular biomarkers used in paleoceanography. Specific compounds assessed comprise long-chain alkenones, n-alkanes, n-alcohols and, additionally, one diol and one keto-ol. These have been extracted by both pressurized liquid extraction and ultrasonication for comparison. One key result is that the U37(K') index (based on the degree of unsaturation of the alkenones and used as a paleothermometer in paleoceanography) remains intact after both extraction techniques. In terms of biomarker concentrations, which are often used to qualitatively assess changes in marine productivity and/or terrigenous inputs, pressurized liquid extraction is substantially more efficient than ultrasonication, providing higher amounts of extracted constituents, particularly for polar compounds.

  17. Biological and environmental rhythms in (dark deep-sea hydrothermal ecosystems

    Directory of Open Access Journals (Sweden)

    D. Cuvelier

    2017-06-01

    Full Text Available During 2011, two deep-sea observatories focusing on hydrothermal vent ecology were up and running in the Atlantic (Eiffel Tower, Lucky Strike vent field and the Northeast Pacific Ocean (NEP (Grotto, Main Endeavour Field. Both ecological modules recorded imagery and environmental variables jointly for a time span of 23 days (7–30 October 2011 and environmental variables for up to 9 months (October 2011–June 2012. Community dynamics were assessed based on imagery analysis and rhythms in temporal variation for both fauna and environment were revealed. Tidal rhythms were found to be at play in the two settings and were most visible in temperature and tubeworm appearances (at NEP. A  ∼  6 h lag in tidal rhythm occurrence was observed between Pacific and Atlantic hydrothermal vents, which corresponds to the geographical distance and time delay between the two sites.

  18. Seasonal variation of deep-sea bioluminescence in the Ionian Sea

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jessica, E-mail: j.craig@abdn.ac.u [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom); Jamieson, Alan J.; Bagley, Philip M.; Priede, Imants G. [University of Aberdeen, Oceanlab, Main Street, Newburgh, Aberdeenshire, AB41 6AA (United Kingdom)

    2011-01-21

    The ICDeep (Image Intensified Charge Coupled Device for Deep sea research) profiler was used to measure the density of deep bioluminescent animals (BL) through the water column in the east, west and mid-Ionian Sea and in the Algerian Basin. A west to east decrease in BL density was found. Generalized additive modelling was used to investigate seasonal variation in the east and west Ionian Sea (NESTOR and NEMO neutrino telescope sites, respectively) from BL measurements in autumn 2008 and spring 2009. A significant seasonal effect was found in the west Ionian Sea (p<0.001), where a deep autumnal peak in BL density occurred between 500 and 2400 m. No significant seasonal variation in BL density was found in the east Ionian Sea (p=0.07). In both spring and autumn, significant differences in BL density were found through the water column between the east and west Ionian Sea (p<0.001).

  19. Design of self-contained sensor for monitoring of deep-sea offshore platform

    Science.gov (United States)

    Song, Yang; Yu, Yan; Zhang, Chunwei; Dong, Weijie; Ou, Jinping

    2013-04-01

    Offshore platform, which is the base of the production and living in the sea, is the most important infrastructure for developing oil and gas resources. At present, there are almost 6500 offshore platforms servicing in the 53 countries' sea areas around the world, creating great wealth for the world. In general, offshore platforms may work for 20 years, however, offshore platforms are expensive, complex, bulky, and so many of them are on extended active duty. Because of offshore platforms servicing in the harsh marine environment for a long time, the marine environment have a great impact on the offshore platforms. Besides, with the impact and erosion of seawater, and material aging, the offshore platform is possible to be in unexpected situations when a badly sudden situation happens. Therefore, it is of great significance to monitor the marine environment and offshore platforms. The self-contained sensor for deep-sea offshore platform with its unique design, can not only effectively extend the working time of the sensor with the capability of converting vibration energy to electrical energy, but also simultaneously collect the data of acceleration, inclination, temperature and humidity of the deep sea, so that we can achieve the purpose of monitoring offshore platforms through analyzing the collected data. The self-contained sensor for monitoring of deep-sea offshore platform includes sensing unit, data collecting and storage unit, the energy supply unit. The sensing unit with multi-variables, consists of an accelerometer LIS344ALH, an inclinometer SCA103T and a temperature and humidity sensor SHT11; the data collecting and storage unit includes the MSP430 low-power MCU, large capacity memory, clock circuit and the communication interface, the communication interface includes USB interface, serial ports and wireless interface; in addition, the energy supply unit, converting vibration to electrical energy to power the overall system, includes the electromagnetic

  20. Cytoglobosins H and I, New Antiproliferative Cytochalasans from Deep-Sea-Derived Fungus Chaetomium globosum

    Directory of Open Access Journals (Sweden)

    Zhihan Zhang

    2016-12-01

    Full Text Available Cytoglobosins H (1 and I (2, together with seven known cytochalasan alkaloids (3–9, were isolated from the deep-sea-derived fungus Chaetomium globosum. The structures of new compounds 1 and 2 were elucidated by extensive 1D and 2D NMR and mass spectroscopic data. All the compounds were evaluated for their antiproliferative activities against MDA-MB-231 human breast cancer cells, LNCaP human prostate cancer cells, and B16F10 mouse melanoma cells. Compound 6 showed significant antiproliferative activity against LNCaP and B16F10 cell lines with IC50 values of 0.62 and 2.78 μM, respectively. Further testing confirmed that compound 6 inhibited the growth of LNCaP cells by inducing apoptosis.

  1. Microbiology of the Red Sea (and other) deep-sea anoxic brine lakes

    KAUST Repository

    Antunes, Andre

    2011-05-30

    Summary: The Red Sea harbours approximately 25 deep-sea anoxic brine pools. They constitute extremely unique and complex habitats with the conjugation of several extreme physicochemical parameters rendering them some of the most inhospitable environments on Earth. After 50 years of research mostly driven by chemists, geophysicists and geologists, the microbiology of the brines has been receiving increased interest in the last decade. Recent molecular and cultivation-based studies have provided us with a first glimpse on the enormous biodiversity of the local microbial communities, the identification of several new taxonomic groups, and the isolation of novel extremophiles that thrive in these environments. This review presents a general overview of these unusual biotopes and compares them with other similar environments in the Mediterranean Sea and the Gulf of Mexico, with a focus on their microbial ecology. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Between land and sea: divergent data stewardship practices in deep-sea biosphere research

    Science.gov (United States)

    Cummings, R.; Darch, P.

    2013-12-01

    Data in deep-sea biosphere research often live a double life. While the original data generated on IODP expeditions are highly structured, professionally curated, and widely shared, the downstream data practices of deep-sea biosphere laboratories are far more localized and ad hoc. These divergent data practices make it difficult to track the provenance of datasets from the cruise ships to the laboratory or to integrate IODP data with laboratory data. An in-depth study of the divergent data practices in deep-sea biosphere research allows us to: - Better understand the social and technical forces that shape data stewardship throughout the data lifecycle; - Develop policy, infrastructure, and best practices to improve data stewardship in small labs; - Track provenance of datasets from IODP cruises to labs and publications; - Create linkages between laboratory findings, cruise data, and IODP samples. In this paper, we present findings from the first year of a case study of the Center for Dark Energy Biosphere Investigations (C-DEBI), an NSF Science and Technology Center that studies life beneath the seafloor. Our methods include observation in laboratories, interviews, document analysis, and participation in scientific meetings. Our research uncovers the data stewardship norms of geologists, biologists, chemists, and hydrologists conducting multi-disciplinary research. Our research team found that data stewardship on cruises is a clearly defined task performed by an IODP curator, while downstream it is a distributed task that develops in response to local need and to the extent necessary for the immediate research team. IODP data are expensive to collect and challenging to obtain, often costing $50,000/day and requiring researchers to work twelve hours a day onboard the ships. To maximize this research investment, a highly trained IODP data curator controls data stewardship on the cruise and applies best practices such as standardized formats, proper labeling, and

  3. Deep-sea oil plume enriches psychrophilic oil-degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Dubinsky, E.A.; DeSantis, T.Z.; Andersen, G.L.; Piceno, Y.M.; Singh, N.; Jansson, J.K.; Probst, A.; Borglin, S.E.; Fortney, J.L.; Stringfellow, W.T.; Bill, M.; Conrad, M.S.; Tom, L.M.; Chavarria, K.L.; Alusi, T.R.; Lamendella, R.; Joyner, D.C.; Spier, C.; Auer, M.; Zemla, M.L.; Chakraborty, R.; Sonnenthal, E.L.; D' haeseleer, P.; Holman, H.-Y. N.; Osman, S.; Lu, Z.; Van Nostrand, J.D.; Deng, Y.; Zhou, J.; Mason, O.U.

    2010-09-01

    The biological effects and expected fate of the vast amount of oil in the Gulf of Mexico from the Deepwater Horizon blowout are unknown owing to the depth and magnitude of this event. Here, we report that the dispersed hydrocarbon plume stimulated deep-sea indigenous {gamma}-Proteobacteria that are closely related to known petroleum degraders. Hydrocarbon-degrading genes coincided with the concentration of various oil contaminants. Changes in hydrocarbon composition with distance from the source and incubation experiments with environmental isolates demonstrated faster-than-expected hydrocarbon biodegradation rates at 5 C. Based on these results, the potential exists for intrinsic bioremediation of the oil plume in the deep-water column without substantial oxygen drawdown.

  4. A deep sea community at the Kebrit brine pool in the Red Sea

    KAUST Repository

    Vestheim, Hege

    2015-02-26

    Approximately 25 deep sea brine pools occur along the mid axis of the Red Sea. These hypersaline, anoxic, and acidic environments have previously been reported to host diverse microbial communities. We visited the Kebrit brine pool in April 2013 and found macrofauna present just above the brine–seawater interface (~1465 m). In particular, inactive sulfur chimneys had associated epifauna of sea anemones, sabellid type polychaetes, and hydroids, and infauna consisting of capitellid polychaetes, gastropods of the genus Laeviphitus (fam. Elachisinidae), and top snails of the family Cocculinidae. The deep Red Sea generally is regarded as extremely poor in benthos. We hypothesize that the periphery along the Kebrit holds increased biomass and biodiversity that are sustained by prokaryotes associated with the brine pool or co-occurring seeps.

  5. Siderophile element concentrations in magnetic spherules from deep sea sediments revealed by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Nogami, Ken-ichi; Shimamura, Tadashi; Tazawa, Yuji; Yamakoshi, Kazuo.

    1980-01-01

    For the purpose of deciding the extraterrestrial origin of the magnetic spherules found in deep sea sediments, the siderophile elements Co, Ni, Ir and/or Au etc., were measured by instrumental neutron activation analysis. Spherules were collected from red clay samples which were dredged from Mid Pacific Ocean. Only spherules which had smooth surfaces and relatively high specific gravities were chosen for analysis. Existence of Co, Ni and Ir in most spherules suggests the possibility of an extraterrestrial origin for these spherules. It is not clear whether these spherules are droplets ablated from iron meteorites entering into the Earth's atmosphere or they are cosmic iron grains themselves. X-ray diffraction analysis suggested that these spherules are the products of rapid cooling materials. (author)

  6. Application of Moessbauer spectroscopy to the study of neptunium adsorbed on deep-sea sediments

    International Nuclear Information System (INIS)

    Bennett, B.A.; Rees, L.V.C.

    1987-03-01

    A Neptunium Moessbauer spectrometer (the first in Great Britain) was constructed and the Moessbauer spectra of NpAl Laves phase alloy obtained. Neptunium was sorbed onto a calcareous deep-sea sediment from sea water, using a successive-loading technique. Sorption appeared to be by an equilibrium reaction, and because of the low solubility of neptunium in seawater, this meant that the maximum loading that could be achieved was 8mg 237 Np/g sediment. This proved to be an adequate concentration for Moessbauer measurements and a Moessbauer spectrum was obtained. This showed that most of the neptunium was in exchange sites and not present as precipitates of neptunium compounds. It was probably in the 4+ state indicating that reduction had occurred during sorption. This work has demonstrated that Moessbauer Spectroscopy has great potential as an aid to understanding the mechanism of actinide sorption in natural systems. (author)

  7. Secondary Metabolites from the Deep-Sea Derived Fungus Acaromyces ingoldii FS121

    Directory of Open Access Journals (Sweden)

    Xiao-Wei Gao

    2016-03-01

    Full Text Available Activity-guided isolation of the fermentation broth of the deep-sea derived fungus Acaromyces ingoldii FS121, which was obtained from the China South Sea, yielded a new naphtha-[2,3-b]pyrandione analogue, acaromycin A (1 and a new thiazole analogue, acaromyester A (2, as well as the known compound (+-cryptosporin (3. Their structures, including absolute configurations, were determined by extensive spectroscopic analysis and electronic circular dichroism (ECD spectra. Compounds 1–3 were evaluated for in vitro growth inhibitory activities against four tumor cell lines (MCF-7, NCI-H460, SF-268 and HepG-2, wherein compounds 1 and 3 exhibited considerable growth inhibitory effects, with IC50 values less than 10 µM.

  8. A model for assessing the radiological impacts of deep-sea disposal of radioactive waste

    International Nuclear Information System (INIS)

    Chartier, M.; Durrieu de Madron, X.

    1989-01-01

    The Mark-A model for assessing radionuclide dispersion had been designed as realistic as possible within the constraints for a Simplicity sufficient to allow large numbers of low-cost runs. The Mark-A model has been recoded in F/CEA to increase its computational efficiency, and adapted for low-level waste assessments. A model of radionuclide transfers to man through living organisms has been added specifically for CRESP objectives. The box model calculates the radionuclide transfers from a deep-sea source to man. It takes into account time variations in the release rate from the waste form, advection by ocean currents, diffusion by turbulence, sorption to - desorption from suspended particles, settling of suspended particles and radionuclide burial by sediments, radionuclide uptake by the living organisms and radionuclide transfer to man via various pathways. The model equations describe the time variation of the activity in each box associated with transfers between boxes

  9. New Polyphenols from a Deep Sea Spiromastix sp. Fungus, and Their Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    Siwen Niu

    2015-04-01

    Full Text Available Eleven new polyphenols namely spiromastols A–K (1–11 were isolated from the fermentation broth of a deep sea-derived fungus Spiromastix sp. MCCC 3A00308. Their structures were determined by extensive NMR data and mass spectroscopic analysis in association with chemical conversion. The structures are classified as diphenyl ethers, diphenyl esters and isocoumarin derivatives, while the n-propyl group in the analogues is rarely found in natural products. Compounds 1–3 exhibited potent inhibitory effects against a panel of bacterial strains, including Xanthomanes vesicatoria, Pseudomonas lachrymans, Agrobacterium tumefaciens, Ralstonia solanacearum, Bacillus thuringensis, Staphylococcus aureus and Bacillus subtilis, with minimal inhibitory concentration (MIC values ranging from 0.25 to 4 µg/mL. The structure-activity relationships are discussed, while the polychlorinated analogues 1–3 are assumed to be a promising structural model for further development as antibacterial agents.

  10. Respiration of bivalves from three different deep-sea areas: Cold seeps, hydrothermal vents and organic carbon-rich sediments

    Science.gov (United States)

    Khripounoff, A.; Caprais, J. C.; Decker, C.; Le Bruchec, J.; Noel, P.; Husson, B.

    2017-08-01

    We studied bivalves (vesicomyids and mytilids) inhabiting four different areas of high sulfide and methane production: (1) in the Gulf of Guinea, two pockmarks (650 m and 3150 m depth) and one site rich in organic sediments in the deepest zone (4950 m average depth), (2) at the Azores Triple Junction on the Mid-Atlantic Ridge, one hydrothermal site (Lucky Strike vent field, 1700 m depth). Two types of Calmar benthic chambers were deployed, either directly set into the sediment (standard Calmar chamber) or fitted with a tank to isolate organisms from the sediment (modified Calmar chamber), to assess gas and solute exchanges in relation to bivalve bed metabolism. Fluxes of oxygen, total carbon dioxide, ammonium and methane were measured. At the site with organic-rich sediments, oxygen consumption by clams measured in situ with the standard benthic chamber was variable (1.3-6.7 mmol m-2 h-1) as was total carbon dioxide production (1-9.6 mmol m-2 h-1). The observed gas and solute fluxes were attributed primarily to bivalve respiration (vesicomyids or mytilids), but microbial and geochemical processes in the sediment may be also responsible for some of variations in the deepest stations. The respiration rate of isolated vesicomyids (16.1-0.25.7 μmol g-1 dry weight h-1) was always lower than that of mytilids (33 μmol g-1 dry weight h-1). This difference was attributed to the presence of a commensal scaleworm in the mytilids. The respiratory coefficient (QR) ≥1 indicated high levels of anaerobic metabolism. The O:N index ranged from 5 to 25, confirming that vesicomyids and mytilids, living in symbiosis with bacteria, have a protein-based food diet.

  11. DNA Barcoding and Genetic Structure Analysis of Deep-Sea Notacanthiform Fishes

    Directory of Open Access Journals (Sweden)

    David Barros-García

    2015-11-01

    Full Text Available Notacanthiformes Goodrich, 1909 is an order of deep-sea, benthopelagic or benthic fishes distributed from the continental slope to the abyssal plain, at a depth of between 125 and 4,900 m, but mostly occurring at depths of 450-2,500 m. They are characterized by an eel-like body, a snout projecting conspicuously beyond the mouth, large connective tissue nodules inserted between the pterygoid arch and maxilla and pelvic fin webs joined in the ventral midline. Fishes from this order were classified applying DNA barcoding. Cytochrome c oxidase subunit I (COI sequences belonging to new North Atlantic specimens and already deposited BOLD public records were used. The specimens from the two families of the order, Halosauridae (halosaurs and Notacanthidae (spiny eels, formed separated monophyletic clades in neighbor-joining trees and the sequences clustered as coherent species. Nine out of 16 species of Halosauridae and 9 out of 10 species of Notacanthidae were represented including 166 sequences of which 96% were successfully identified. The DNA barcode of the rare species Lipogenys gillii was obtained for the first time ever. The DNA barcode was further tested by exploring the genetic structure and historical demography of four species of notacanthiforms from five sample locations of the North Atlantic and South West Pacific. Neutrality tests, mismatch distribution and haplotype networks analyses pointed to a past bottleneck episode followed by a fast demographic expansion for all the samples. The genetic structure of the abyssal halosaur Halosauropsis macrochir showed no significant differences between the North Atlantic and South West Pacific samples. DNA barcoding was successful in validating field identifications and assigning species names to sequences of notacanthiforms worldwide. These results constitute a first example of high connectivity and gene flow in this group of deep-sea fish species. The historical demography suggests population

  12. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    Science.gov (United States)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  13. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    Science.gov (United States)

    de Beer, D.; Haeckel, M.; Neumann, J.; Wegener, G.; Inagaki, F.; Boetius, A.

    2013-08-01

    This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan). The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR) and anaerobic methane oxidation (AOM). Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7-15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000-1700 mM), which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  14. Saturated CO2 inhibits microbial processes in CO2-vented deep-sea sediments

    Directory of Open Access Journals (Sweden)

    D. de Beer

    2013-08-01

    Full Text Available This study focused on biogeochemical processes and microbial activity in sediments of a natural deep-sea CO2 seepage area (Yonaguni Knoll IV hydrothermal system, Japan. The aim was to assess the influence of the geochemical conditions occurring in highly acidic and CO2 saturated sediments on sulfate reduction (SR and anaerobic methane oxidation (AOM. Porewater chemistry was investigated from retrieved sediment cores and in situ by microsensor profiling. The sites sampled around a sediment-hosted hydrothermal CO2 vent were very heterogeneous in porewater chemistry, indicating a complex leakage pattern. Near the vents, droplets of liquid CO2 were observed emanating from the sediments, and the pH reached approximately 4.5 in a sediment depth > 6 cm, as determined in situ by microsensors. Methane and sulfate co-occurred in most sediment samples from the vicinity of the vents down to a depth of 3 m. However, SR and AOM were restricted to the upper 7–15 cm below seafloor, although neither temperature, low pH, nor the availability of methane and sulfate could be limiting microbial activity. We argue that the extremely high subsurface concentrations of dissolved CO2 (1000–1700 mM, which disrupt the cellular pH homeostasis, and lead to end-product inhibition. This limits life to the surface sediment horizons above the liquid CO2 phase, where less extreme conditions prevail. Our results may have to be taken into consideration in assessing the consequences of deep-sea CO2 sequestration on benthic element cycling and on the local ecosystem state.

  15. COVIS Detects Interconnections Between Atmospheric, Oceanic and Geologic systems at a Deep Sea Hydrothermal Vent

    Science.gov (United States)

    Bemis, K. G.; Xu, G.; Lee, R.

    2015-12-01

    COVIS (Cabled Observatory Vent Imaging Sonar) is an innovative sonar system designed to quantitatively monitor focused and diffuse flows from deep-sea hydrothermal vent clusters. From 9/2010 to 9/2015, COVIS was connected to the NEPTUNE observatory at Grotto vent in the Main Endeavour Field, JdFR. COVIS monitored plumes and diffuse discharge by transmitting high-frequency (200-400 kHz), pulsed acoustic waves and recording the backscattered signals to yield time series of plume heat and volume transports, plume bending, and diffuse flow area. Temporal variations indicate the rate of hydrothermal plume mixing with the ambient seawater increases with the magnitude of ocean currents. Such current-driven entrainment links the dynamics of a deep-sea hydrothermal plume with oceanic and atmospheric processes. We estimate the direction and relative amplitude of the local bottom currents from the bending angles of the plumes. A comparison with currents from an ADCP (~80 m south of Grotto) reveals significant complexity in the mean bottom flow structure within a hydrothermal vent field. Diffuse flow area, temperature, and faunal densities vary periodically reflecting some combination of tidal pressure and current interactions. The heat transport time series suggests the heat source driving the plume remained relatively steady for 41 months. Local seismic data reveals that increased heat transport in 2000 followed seismic events in 1999 and 2000 and the steady heat flux from 10/2011 to 2/2015 coincided with quiescent seismicity. Such a correlation points to the close linkage of a seafloor hydrothermal system with geological processes. These findings demonstrate the intimate interconnections of seafloor hydrothermal systems with processes spanning the Earth's interior to the sea surface. Further, they (and the time-series acquired by COVIS) testify to the effectiveness and robustness of employing an acoustic-imaging sonar for long-term monitoring of a seafloor hydrothermal

  16. Microbial stowaways: Addressing oil spill impacts and the artificial reef effect on deep-sea microbiomes

    Science.gov (United States)

    Hamdan, L. J.; Salerno, J. L.; Blackwell, C. A.; Little, B.; McGown, C.; Fitzgerald, L. A.; Damour, M.

    2016-02-01

    Shipwrecks enhance macro-biological diversity in the deep ocean, but, to date, studies have not explored the reef effect on deep-sea microbiological diversity. This is an important concept to address in a restoration framework, as microbial biogeochemical function impacts recruitment and adhesion of higher trophic levels on artificial reefs. In addition, microbial biofilms influence the preservation of shipwrecks through biologically mediated corrosion. Oil and gas-related activities have potential to disrupt the base of the reef trophic web; therefore, bacterial diversity and gene function at six shipwrecks (3 steel-hulled; 3 wood-hulled) in the northern Gulf of Mexico was investigated as part of the GOM-SCHEMA (Shipwreck Corrosion, Hydrocarbon Exposure, Microbiology, and Archaeology) project. Sites were selected based on proximity to the Deepwater Horizon spill's subsurface plume, depth, hull type, and existing archaeological data. Classification of taxa in sediments adjacent to and at distance from wrecks, in water, and on experimental steel coupons was used to evaluate how the presence of shipwrecks and spill contaminants in the deep biosphere influenced diversity. At all sites, and in all sample types, Proteobacteria were most abundant. Biodiversity was highest in surface sediments and in coupon biofilms adjacent to two steel-hulled wrecks in the study (Halo and Anona) and decreased with sediment depth and distance from the wrecks. Sequences associated with the iron oxidizing Mariprofundus genus were elevated at steel-hulled sites, indicating wreck-specific environmental selection. Despite evidence of the reef effect on microbiomes, bacterial composition was structured primarily by proximity to the spill and secondarily by hull material at all sites. This study provides the first evidence of an artificial reef effect on deep-sea microbial communities and suggests that biodiversity and function of primary colonizers of shipwrecks may be impacted by the spill.

  17. Hydrodynamic Environment and Ecosystem Diversity at two Deep-Sea Marine Protected Areas in Southern Biscay

    Science.gov (United States)

    González-Pola, C.; Ivey, G. N.; Jones, N. L.; Sanchez, F.; Kelly, S. M.; Bluteau, C.; Somavilla, R.

    2016-02-01

    Two nearby offshore deep sea areas in Southern Bay of Biscay (northern Spain), hosting valuable ecosystems, have been recently declared marine protected areas. The first one is Le Danois Bank, a seamount-like feature connected to the continental shelf by a saddle. The second one is the Aviles Canyon System (ACS) that breaks the continuity of the northern Spanish continental shelf. A number of observational multidisciplinary programs carried out within the last decade allowed a detailed identification of habitats and biological communities. As a long-term goal these programs aimed to understand the ecosystem functioning as a whole with the implicit focus in associated circulation and dynamics. The observational record includes deep sea photogrametry as well as standard hydrography and long-term mooring lines. A lander system provided high-frequency currents and thermal structure tens meters above bottom together with time lapse photographs at selected sites. Different characteristic habitats from sedimentary to rocky, associated with different fisheries, were described both in Le Danois Bank and the ACS. These include sponge aggregations and deep water corals. Noteworthy structured coral reefs only appeared in a relatively small area in one of the tributaries of the ACS (La Gaviera Canyon), where local near-bottom currents were stronger than anywhere else in the region. The development and violent breaking of an internal tidal bore was the main feature of such hotspot. Analytic estimates confirmed that La Gaviera is the only canyon were large patches of the seafloor are critical or near-critical to the semidiurnal internal tide and nearby upper flanks show also large patches of critical seafloor and large body forcing. A year-long near-bottom current record captured the development of three benthic storms, events lasting several days in which currents increases up to 3-fold the tidal max speeds and direction swings rapidly, losing the uniformity of tidal regime.

  18. Diel vertical migration in deep sea plankton is finely tuned to latitudinal and seasonal day length.

    Directory of Open Access Journals (Sweden)

    Hans van Haren

    Full Text Available Diel vertical migration (DVM is a ubiquitous phenomenon in marine and freshwater plankton communities. Most commonly, plankton migrate to surface waters at dusk and return to deeper waters at dawn. Up until recently, it was thought that DVM was triggered by a relative change in visible light intensity. However, evidence has shown that DVM also occurs in the deep sea where no direct and background sunlight penetrates. To identify whether such DVM is associated with latitudinal and seasonal day light variation, one and a half years of recorded acoustic data, a measure of zooplankton abundance and movement, were examined. Acoustic Doppler current profilers, moored at eight different sub-tropical latitudes in the North-Atlantic Ocean, measured in the vertical range of 500-1600 m. DVM was observed to follow day length variation with a change in season and latitude at all depths. DVM followed the rhythm of local sunrise and sunset precisely between 500 and 650 m. It continued below 650 m, where the deepest penetrable irradiance level are <10⁻⁷ times their near-surface values, but plankton shortened their time at depth by up to about 63% at 1600 m. This suggests light was no longer a cue for DVM. This trend stayed consistent both across latitudes and between the different seasons. It is hypothesized that another mechanism, rather than light, viz. a precise biochemical clock could maintain the solar diurnal and seasonal rhythms in deep sea plankton motions. In accordance with this hypothesis, the deepest plankton were consistently the first to migrate upwards.

  19. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    Full Text Available Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp. We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m. We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla, Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm of sediment was significantly different from deeper layers. We found that qualitative (presence-absence and quantitative (relative number of reads data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation

  20. Growth rate and age distribution of deep-sea black corals in the Gulf of Mexico

    Science.gov (United States)

    Prouty, N.G.; Roark, E.B.; Buster, N.A.; Ross, Steve W.

    2011-01-01

    Black corals (order Antipatharia) are important long-lived, habitat-forming, sessile, benthic suspension feeders that are found in all oceans and are usually found in water depths greater than 30 m. Deep-water black corals are some of the slowest-growing, longest-lived deep-sea corals known. Previous age dating of a limited number of black coral samples in the Gulf of Mexico focused on extrapolated ages and growth rates based on skeletal 210Pb dating. Our results greatly expand the age and growth rate data of black corals from the Gulf of Mexico. Radiocarbon analysis of the oldest Leiopathes sp. specimen from the upper De Soto Slope at 300 m water depth indicates that these animals have been growing continuously for at least the last 2 millennia, with growth rates ranging from 8 to 22 µm yr–1. Visual growth ring counts based on scanning electron microscopy images were in good agreement with the 14C-derived ages, suggestive of annual ring formation. The presence of bomb-derived 14C in the outermost samples confirms sinking particulate organic matter as the dominant carbon source and suggests a link between the deep-sea and surface ocean. There was a high degree of reproducibility found between multiple discs cut from the base of each specimen, as well as within duplicate subsamples. Robust 14C-derived chronologies and known surface ocean 14C reservoir age constraints in the Gulf of Mexico provided reliable calendar ages with future application to the development of proxy records.

  1. Physiological effects of environmental acidification in the deep-sea urchin Strongylocentrotus fragilis

    Science.gov (United States)

    Taylor, J. R.; Lovera, C.; Whaling, P. J.; Buck, K. R.; Pane, E. F.; Barry, J. P.

    2014-03-01

    Anthropogenic CO2 is now reaching depths over 1000 m in the Eastern Pacific, overlapping the Oxygen Minimum Zone (OMZ). Deep-sea animals are suspected to be especially sensitive to environmental acidification associated with global climate change. We have investigated the effects of elevated pCO2 and variable O2 on the deep-sea urchin Strongylocentrotus fragilis, a species whose range of 200-1200 m depth includes the OMZ and spans a pCO2 range of approx. 600-1200 μatm (approx. pH 7.6 to 7.8). Individuals were evaluated during two exposure experiments (1-month and 4 month) at control and three levels of elevated pCO2 at in situ O2 levels of approx. 10% air saturation. A treatment of control pCO2 at 100% air saturation was also included in experiment two. During the first experiment, perivisceral coelomic fluid (PCF) acid-base balance was investigated during a one-month exposure; results show S. fragilis has limited ability to compensate for the respiratory acidosis brought on by elevated pCO2, due in part to low non-bicarbonate PCF buffering capacity. During the second experiment, individuals were separated into fed and fasted experimental groups, and longer-term effects of elevated pCO2 and variable O2 on righting time, feeding, growth, and gonadosomatic index (GSI) were investigated for both groups. Results suggest that the acidosis found during experiment one does not directly correlate with adverse effects during exposure to realistic future pCO2 levels.

  2. Biological responses to disturbance from simulated deep-sea polymetallic nodule mining.

    Directory of Open Access Journals (Sweden)

    Daniel O B Jones

    Full Text Available Commercial-scale mining for polymetallic nodules could have a major impact on the deep-sea environment, but the effects of these mining activities on deep-sea ecosystems are very poorly known. The first commercial test mining for polymetallic nodules was carried out in 1970. Since then a number of small-scale commercial test mining or scientific disturbance studies have been carried out. Here we evaluate changes in faunal densities and diversity of benthic communities measured in response to these 11 simulated or test nodule mining disturbances using meta-analysis techniques. We find that impacts are often severe immediately after mining, with major negative changes in density and diversity of most groups occurring. However, in some cases, the mobile fauna and small-sized fauna experienced less negative impacts over the longer term. At seven sites in the Pacific, multiple surveys assessed recovery in fauna over periods of up to 26 years. Almost all studies show some recovery in faunal density and diversity for meiofauna and mobile megafauna, often within one year. However, very few faunal groups return to baseline or control conditions after two decades. The effects of polymetallic nodule mining are likely to be long term. Our analyses show considerable negative biological effects of seafloor nodule mining, even at the small scale of test mining experiments, although there is variation in sensitivity amongst organisms of different sizes and functional groups, which have important implications for ecosystem responses. Unfortunately, many past studies have limitations that reduce their effectiveness in determining responses. We provide recommendations to improve future mining impact test studies. Further research to assess the effects of test-mining activities will inform ways to improve mining practices and guide effective environmental management of mining activities.

  3. Genome sequence of Haloplasma contractile, an unusual contractile bacterium from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Haloplasma contractile, isolated from a deep-sea brine and representing a new order between Firmicutes and Mollicutes. Its complex morphology with contractile protrusions might be strongly influenced by the presence of seven MreB/Mbl homologs, which appears to be the highest copy number ever reported.

  4. Genome sequence of Halorhabdus tiamatea, the first archaeon isolated from a deep-sea anoxic brine lake.

    KAUST Repository

    Antunes, Andre

    2011-09-01

    We present the draft genome of Halorhabdus tiamatea, the first member of the Archaea ever isolated from a deep-sea anoxic brine. Genome comparison with Halorhabdus utahensis revealed some striking differences, including a marked increase in genes associated with transmembrane transport and putative genes for a trehalose synthase and a lactate dehydrogenase.

  5. Microbial biomass and organic nutrients in the deep-sea sediments of the Central Indian Ocean Basin

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Sheelu, G.; LokaBharathi, P.A.; Nair, S.; Mohandass, C.

    (TC)pergramdrysediment.Thebacterialsizewasmeasuredusinganocularmicrometer.ColonyFormingUnits.Colonyformingunitsofbacteriaandfungiisolatedfromplateswereidenti® eduptogenericlevelusingvariousbiochemical parameters(Oliver,1982)andmorphologicalcharacteristics(Carmichaeletal.,1980)respectively....InAreportonbaseline benthicconditionsinIndianPioneerarea.TechnicalreportofN.I.O.,Goa,India.Oliver,J.D.1982.Taxonomicschemefortheidenti® cationofmarinebacteria.Deep-SeaResearch29:795± 798.Parsons,T.R.,Y.Maita,andC.H.Lalli.1984.AManualofchemicalandbiologicalmethods forseawateranalysis...

  6. Mode of larval development in some deep-sea gastropods indicated by oxygen-18 values of their carbonate shells

    Science.gov (United States)

    Killingley, John S.; Rex, Michael A.

    1985-07-01

    Many prosobranch gastropods in the deep sea have been presumed to have planktotrophic development based on their larval shell morphologies. However, evidence for the pattern of dispersal in the water column for the planktotrophic larvae is scant and controversial. In this paper we analyze stable oxygen isotope composition of larval and adult shells for five planktotrophic and four lecithotrophic deep-sea prosobranchs. Larval and adult shells of the lecithotrophic species have the same δ 18O composition, reflecting larval development in an egg capsule on the bottom with little or no dispersal. The planktotrophic species show significant differences in δ 18O between larval and adult shells, indicating that larvae migrate vertically to warmer surface waters. Adult-larval differences in two planktotrophic species from several deep-sea basins in the North, Equatorial, and South Atlantic suggest that ontogenic vertical migration is a species-wide phenomenon. Results establish that planktotrophic larvae of some deep-sea prosobranch species undergo development and dispersal in surface waters, and confirm that larval shell morphology correlates with mode of development.

  7. Impressions of the turbulence variability in a weakly stratified, flat-bottom deep-sea ‘boundary layer’

    NARCIS (Netherlands)

    van Haren, H.

    2015-01-01

    The character of turbulent overturns in a weakly stratified deep-sea is investigated in some detail using 144 high-resolution temperature sensors at 0.7 m intervals, starting 5 m above the bottom. A 9-day, 1 Hz sampled record from the 912 m depth flat-bottom (<0.5% bottom-slope) mooring site in the

  8. Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis

    NARCIS (Netherlands)

    van der Horst, M.A.; Stalcup, T.P.; Kaledhonkar, S.; Kumauchi, M.; Hara, M.; Xie, A.; Hellingwerf, K.J.; Hoff, W.D.

    2009-01-01

    Idiomarina loihiensis is a heterotrophic deep sea bacterium with no known photobiology. We show that light suppresses biofilm formation in this organism. The genome of I. loihiensis encodes a single photoreceptor protein: a homologue of photoactive yellow protein (PYP), a blue light receptor with

  9. Living (stained) deep-sea foraminifera off Hachinohe (NE Japan, Western Pacific): environmental interplay in oxygen-depleted ecosystems

    NARCIS (Netherlands)

    Fontanier, C.; Duros, P.; Toyofuku, T.; Oguri, K.; Koho, K.A.; Buscail, R.; Grémare, A.; Radakovitch, O.; Deflandre, B.; de Nooijer, L.J.; Bichon, S.; Goubet, S.; Ivanovsky, A.; Chabaud, G.; Menniti, C.; Reichart, G.-J.; Kitazato, H.

    2014-01-01

    Live (Rose-Bengal stained) deep-sea foraminiferal faunashave been studied at five stations between 500–2000-m depthalong the NE Japanese margin (western Pacific) tounderstand how complex environmental conditions (e.g.,oxygen depletion, organic matter) control their structure(i.e., diversity,

  10. Archive of Core and Site/Hole Data and Photographs from the Deep Sea Drilling Project (DSDP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Deep Sea Drilling Project (DSDP) operated the D/V GLOMAR CHALLENGER from 1968-1983, drilling 1,112 holes at 624 sites worldwide. The DSDP was funded by the US...

  11. Bathyal sea urchins of the Bahamas, with notes on covering behavior in deep sea echinoids (Echinodermata: Echinoidea)

    Science.gov (United States)

    Pawson, David L.; Pawson, Doris J.

    2013-08-01

    In a survey of the bathyal echinoderms of the Bahama Islands region using manned submersibles, approximately 200 species of echinoderms were encountered and documented; 33 species were echinoids, most of them widespread in the general Caribbean area. Three species were found to exhibit covering behavior, the piling of debris on the upper surface of the body. Active covering is common in at least 20 species of shallow-water echinoids, but it has been reliably documented previously only once in deep-sea habitats. Images of covered deep-sea species, and other species of related interest, are provided. Some of the reasons adduced in the past for covering in shallow-water species, such as reduction of incident light intensity, physical camouflage, ballast in turbulent water, protection from desiccation, presumably do not apply in bathyal species. The main reasons for covering in deep, dark, environments are as yet unknown. Some covering behavior in the deep sea may be related to protection of the genital pores, ocular plates, or madreporite. Covering in some deep-sea species may also be merely a tactile reflex action, as some authors have suggested for shallow-water species.

  12. Reproductive biology of three gadiform fish species through the Mediterranean deep-sea range (147-1850 m

    Directory of Open Access Journals (Sweden)

    Guiomar Rotllant

    2002-06-01

    Full Text Available Knowledge of deep-sea reproductive biology is slight and interpretations of reproductive strategies in deep-sea fishes are controversial. Since the Mediterranean is a fairly stable and constant sea, we might expect a consistent pattern of reproduction of deep-sea species. Three gadiforms species with a succesive bathymetric and an ecological and economical importance in the Mediterranean fishing industry, Phycis blennoides, Mora moro and Lepidion lepidion, were selected for the present study. These three species of gadiforms are sexually dimorphic and their reproductive population is located at the lower zone of their bathymetric range. Females were always bigger than males. The smallest mature male was observed at 19, 32 and 18 cm TL (total length and the smallest mature female at 20, 34 and 20 cm TL for P. blennoides, M. moro and L. lepidion respectively. The three species are iteroparous and females could be all-at-once or batch-spawners. An autumn mature season was observed for P. blennoides, whereas M. moro and L. lepidion had mature individuals all year round except in summer. Hence, physical constancy at greater depths is able to lengthen the reproductive season and the deepest species has a quasi-continuous reproductive pattern. Similar reproductive tissues have been found in the three species studied, and they show analogous structure with other deep-sea gadiforms and their shallow-water congeners.

  13. The discovery of new deep-sea hydrothermal vent communities in the southern ocean and implications for biogeography.

    Directory of Open Access Journals (Sweden)

    Alex D Rogers

    2012-01-01

    Full Text Available Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp., stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae, bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more

  14. Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge

    Science.gov (United States)

    Xu, Wei; Gong, Lin-feng; Pang, Ka-Lai; Luo, Zhu-Hua

    2018-01-01

    Deep-sea hydrothermal sediment is known to support remarkably diverse microbial consortia. In deep sea environments, fungal communities remain less studied despite their known taxonomic and functional diversity. High-throughput sequencing methods have augmented our capacity to assess eukaryotic diversity and their functions in microbial ecology. Here we provide the first description of the fungal community diversity found in deep sea sediments collected at the Southwest Indian Ridge (SWIR) using culture-dependent and high-throughput sequencing approaches. A total of 138 fungal isolates were cultured from seven different sediment samples using various nutrient media, and these isolates were identified to 14 fungal taxa, including 11 Ascomycota taxa (7 genera) and 3 Basidiomycota taxa (2 genera) based on internal transcribed spacers (ITS1, ITS2 and 5.8S) of rDNA. Using illumina HiSeq sequencing, a total of 757,467 fungal ITS2 tags were recovered from the samples and clustered into 723 operational taxonomic units (OTUs) belonging to 79 taxa (Ascomycota and Basidiomycota contributed to 99% of all samples) based on 97% sequence similarity. Results from both approaches suggest that there is a high fungal diversity in the deep-sea sediments collected in the SWIR and fungal communities were shown to be slightly different by location, although all were collected from adjacent sites at the SWIR. This study provides baseline data of the fungal diversity and biogeography, and a glimpse to the microbial ecology associated with the deep-sea sediments of the hydrothermal vent system of the Southwest Indian Ridge.

  15. Star-shaped feeding traces produced by echiuran worms on the deep-sea floor of the Bay of Bengal

    Science.gov (United States)

    Ohta, Suguru

    1984-12-01

    Many star-shaped foraging traces were observed in bottom photographs of the deep-sea floor taken in the Bay of Bengal between the depths of 5025 and 2635 m. They were classified into 10 types according to their dimensions, aspect ratios (length/width) of their spokes, features of the central structure, and possible production mechanisms. The proboscis of a deep-sea bonellid echiuran worm was photographed at a depth of 2635 m in the act of producing one of the star-shaped foraging traces. On the basis of photographic observations and observations of shallow-water forms, several types of the feeding traces can be ascribed to the foraging of deep-sea echiuran worms on surface detritus. At least four types of the star-shaped trace are probably produced by deep-sea bonellid worms, and a linear correlation could be found between the aspect ratios of the spokes and maximum number of spokes around the central hole. A geometrical model experiment stimulating the feeding behavior of a bonellid worm suggested simple behavioral principles which afford maximum utilization of the surface area around a central hole with least expenditure of energy. The prediction of the maximum number of spokes for a given aspect of spokes by the model experiment agreed well with those observed, both utilizing about 76% of the fresh sediment surface within the span of the probiscis around a central hole. This efficient feeding pattern may have adaptive value in deep-sea environments such as the central part of the Bay of Bengal, where energy input is limited.

  16. Advances in taxonomy, ecology, and biogeography of Dirivultidae (copepoda associated with chemosynthetic environments in the deep sea.

    Directory of Open Access Journals (Sweden)

    Sabine Gollner

    2010-08-01

    Full Text Available Copepoda is one of the most prominent higher taxa with almost 80 described species at deep-sea hydrothermal vents. The unique copepod family Dirivultidae with currently 50 described species is the most species rich invertebrate family at hydrothermal vents.We reviewed the literature of Dirivultidae and provide a complete key to species, and map geographical and habitat specific distribution. In addition we discuss the ecology and origin of this family.Dirivultidae are only present at deep-sea hydrothermal vents and along the axial summit trough of midocean ridges, with the exception of Dirivultus dentaneus found associated with Lamellibrachia species at 1125 m depth off southern California. To our current knowledge Dirivultidae are unknown from shallow-water vents, seeps, whale falls, and wood falls. They are a prominent part of all communities at vents and in certain habitat types (like sulfide chimneys colonized by pompei worms they are the most abundant animals. They are free-living on hard substrate, mostly found in aggregations of various foundation species (e.g. alvinellids, vestimentiferans, and bivalves. Most dirivultid species colonize more than one habitat type. Dirivultids have a world-wide distribution, but most genera and species are endemic to a single biogeographic region. Their origin is unclear yet, but immigration from other deep-sea chemosynthetic habitats (stepping stone hypothesis or from the deep-sea sediments seems unlikely, since Dirivultidae are unknown from these environments. Dirivultidae is the most species rich family and thus can be considered the most successful taxon at deep-sea vents.

  17. Palynofacies reveal fresh terrestrial organic matter inputs in the terminal lobes of the Congo deep-sea fan

    Science.gov (United States)

    Schnyder, Johann; Stetten, Elsa; Baudin, François; Pruski, Audrey M.; Martinez, Philippe

    2017-08-01

    The Congo deep-sea fan is directly connected to the Congo River by a unique submarine canyon. The Congo River delivers up to 2×1012gPOC/yr, a part of which is funnelled by the submarine canyon and feeds the deep-sea environments. The more distal part of the Congo deep-sea fan, the terminal lobe area, has a surface of 2500 km2 and is situated up to 800 km offshore at depths of 4750-5000 m. It is a remarkable place to study the fate and distribution of the organic matter transferred from the continent to the deep ocean via turbidity currents. Forty-two samples were analyzed from the terminal lobes, including sites from the active channel, one of its levees and an abandoned distal channel. Samples were collected using multitube cores and push-cores using a Victor 6000 ROV, which surveyed the dense chemosynthetic habitats that locally characterize the terminal lobes. Palynofacies reveal a remarkably well-preserved, dominantly terrestrial particulate organic matter assemblage, that has been transferred from the continent into the deep-sea by turbidity currents. Delicate plant structures, cuticle fragments and plant cellular material is often preserved, highlighting the efficiency of turbidity currents to transfer terrestrial organic matter to the sea-floor, where it is preserved. Moreover, the palynofacies data reveal a general sorting by density or buoyancy of the organic particles, as the turbulent currents escaped the active channel, feeding the levees and the more distal, abandoned channel area. Finally, in addition to aforementioned hydrodynamic factors controlling the organic matter accumulation, a secondary influence of chemosynthetic habitats on organic matter preservation is also apparent. Palynofacies is therefore a useful tool to record the distribution of organic matter in recent and ancient deep-sea fan environments, an important topic for both academic and petroleum studies.

  18. Characterization of Microbial Communities Associated With Deep-Sea Hydrothermal Vent Animals of the East Pacific Rise and the Galápagos Rift

    Science.gov (United States)

    Ward, N.; Page, S.; Heidelberg, J.; Eisen, J. A.; Fraser, C. M.

    2002-12-01

    The composition of microbial communities associated with deep-sea hydrothermal vent animals is of interest because of the key role of bacterial symbionts in driving the chemosynthetic food chain of the vent system, and also because bacterial biofilms attached to animal exterior surfaces may play a part in settlement of larval forms. Sequence analysis of 16S ribosomal RNA (rRNA) genes from such communities provides a snapshot of community structure, as this gene is present in all Bacteria and Archaea, and a useful phylogenetic marker for both cultivated microbial species, and uncultivated species such as many of those found in the deep-sea environment. Specimens of giant tube worms (Riftia pachyptila), mussels (Bathymodiolus thermophilus), and clams (Calyptogena magnifica) were collected during the 2002 R/V Atlantis research cruises to the East Pacific Rise (9N) and Galápagos Rift. Microbial biofilms attached to the exterior surfaces of individual animals were sampled, as were tissues known to harbor chemosynthetic bacterial endosymbionts. Genomic DNA was extracted from the samples using a commercially available kit, and 16S rRNA genes amplified from the mixed bacterial communities using the polymerase chain reaction (PCR) and oligonucleotide primers targeting conserved terminal regions of the 16S rRNA gene. The PCR products obtained were cloned into a plasmid vector and the recombinant plasmids transformed into cells of Escherichia coli. Individual cloned 16S rRNA genes were sequenced at the 5' end of the gene (the most phylogenetically informative region in most taxa) and the sequence data compared to publicly available gene sequence databases, to allow a preliminary assignment of clones to taxonomic groups within the Bacteria and Archaea, and to determine the overall composition and phylogenetic diversity of the animal-associated microbial communities. Analysis of Riftia pachyptila exterior biofilm samples revealed the presence of members of the delta and

  19. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M. Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-04-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.).

  20. Adaptation and evolution of deep-sea scale worms (Annelida: Polynoidae): insights from transcriptome comparison with a shallow-water species

    Science.gov (United States)

    Zhang, Yanjie; Sun, Jin; Chen, Chong; Watanabe, Hiromi K.; Feng, Dong; Zhang, Yu; Chiu, Jill M.Y.; Qian, Pei-Yuan; Qiu, Jian-Wen

    2017-01-01

    Polynoid scale worms (Polynoidae, Annelida) invaded deep-sea chemosynthesis-based ecosystems approximately 60 million years ago, but little is known about their genetic adaptation to the extreme deep-sea environment. In this study, we reported the first two transcriptomes of deep-sea polynoids (Branchipolynoe pettiboneae, Lepidonotopodium sp.) and compared them with the transcriptome of a shallow-water polynoid (Harmothoe imbricata). We determined codon and amino acid usage, positive selected genes, highly expressed genes and putative duplicated genes. Transcriptome assembly produced 98,806 to 225,709 contigs in the three species. There were more positively charged amino acids (i.e., histidine and arginine) and less negatively charged amino acids (i.e., aspartic acid and glutamic acid) in the deep-sea species. There were 120 genes showing clear evidence of positive selection. Among the 10% most highly expressed genes, there were more hemoglobin genes with high expression levels in both deep-sea species. The duplicated genes related to DNA recombination and metabolism, and gene expression were only enriched in deep-sea species. Deep-sea scale worms adopted two strategies of adaptation to hypoxia in the chemosynthesis-based habitats (i.e., rapid evolution of tetra-domain hemoglobin in Branchipolynoe or high expression of single-domain hemoglobin in Lepidonotopodium sp.). PMID:28397791

  1. Analysis of hyper-baric biofilms on engineering surfaces formed in the Deep Sea

    Science.gov (United States)

    Meier, A.; Tsaloglou, N. M.; Connelly, D.; Keevil, B.; Mowlem, M.

    2012-04-01

    Long-term monitoring of the environment is essential to our understanding of global processes, such as global warming, and their impact. As biofilm formation occurs after only short deployment periods in the marine environment, it is a major problem in long-term operation of environmental sensors. This makes the development of anti-fouling strategies for in situ sensors critical to their function. The effects on sensors can range from measurement drift, which can be compensated, to blockage of channels and material degradation, rendering them inoperative. In general, the longer the deployment period the more severe the effects of the biofouling become. Until now, biofilm research has focused mainly on the eutrophic and euphotic zones of the oceans. Hyper-baric biofilms are poorly understood due to difficulties in experimental setup and the assumption that biofouling in these oligotrophic regions could be regarded as insignificant. Our study shows significant biofilm formation occurs in the deep sea. We deployed a variety of materials, typically used in engineering structures, on a 4500 metre deep mooring during a cruise to the Cayman Trough, for 10 days. The materials were clear plain glass, poly-methyl methacrylate (PMMA), Delrin™, and copper, a known antifouling agent. The biofilms were studied by fluorescence microscopy and molecular analysis. For microscopy the nucleic acid stain, SYTO©9, was used and surface coverage was quantified by using a custom MATLAB™ program. Further molecular analyses, including UV Vis spectrometric quantification of DNA, nucleic acid amplification using Polymerase Chain Reaction (PCR), and Denaturing Gradient Gel Electrophoresis (DGGE), were utilised for the analysis of the microbial community composition of these biofilms. Six 16S/18S universal primer sets representative for the three kingdoms, Archea, Bacteria, and Eukarya were used for the PCR and DGGE. Preliminary results from fluorescence microscopy showed that the biofilm

  2. Metabolic Potential of Microbial Genomes Reconstructed from a Deep-Sea Oligotrophic Sediment Metagenome

    Science.gov (United States)

    Tully, B. J.; Huber, J. A.; Heidelberg, J. F.

    2016-02-01

    The South Pacific Gyre (SPG) possesses the lowest rates of sedimentation, surface chlorophyll concentration and primary productivity in the global oceans, making it one of the most oligotrophic environments on earth. As a direct result of the low-standing biomass in surface waters, deep-sea sediments are thin and contain small amount of labile organic carbon. It was recently shown that the sediment column within the SPG is fully oxic through to the underlying basalt basement and may be representative of 9-37% of the global marine environment. In addition, it appears that approximately 50% of the total organic carbon is removed from the oligotrophic sediments within the first 20 centimeters beneath the sea floor (cmbsf). To understand the microbial processes that contribute to the removal of the labile organic matter, metagenomic sequencing and analysis was carried out on a sample of sediment collected from 0-5 cmbsf from SPG site 10 (U1369). Analysis of 9 partially reconstructed environmental genomes revealed that the members of the SPG surface sediment microbial community are phylogenetically distinct from surface/upper ocean organisms, with deep branches within the Alpha- and Gammaproteobacteria, Nitrospirae, Nitrospina, the phylum NC10, and several unique phylogenetic groups. Within these partially complete genomes there is evidence for microbially mediated metal (iron/manganese) oxidation and carbon fixation linked to the nitrification. Additionally, despite low sedimentation and hypothesized energy-limitation, members of the SPG microbial community had motility and chemotactic genes and possessed mechanisms for the utilization of high molecular weight organic matter, including exoproteases and peptide specific membrane transporters. Simultaneously, the SPG genomes showed a limited potential for the degradation of recalcitrant carbon compounds. Finally, the presence of putative genes with functions involved with denitrification and the consumption of C1

  3. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    Energy Technology Data Exchange (ETDEWEB)

    Naumann, C.L.

    2007-09-17

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called 'equivalent circuit diagram (=ECD) model' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/{mu}Pa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/{radical}(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with

  4. Deep-Sea Hydrothermal Vent Viruses Compensate for Microbial Metabolism in Virus-Host Interactions.

    Science.gov (United States)

    He, Tianliang; Li, Hongyun; Zhang, Xiaobo

    2017-07-11

    Viruses are believed to be responsible for the mortality of host organisms. However, some recent investigations reveal that viruses may be essential for host survival. To date, it remains unclear whether viruses are beneficial or harmful to their hosts. To reveal the roles of viruses in the virus-host interactions, viromes and microbiomes of sediment samples from three deep-sea hydrothermal vents were explored in this study. To exclude the influence of exogenous DNAs on viromes, the virus particles were purified with nuclease (DNase I and RNase A) treatments and cesium chloride density gradient centrifugation. The metagenomic analysis of viromes without exogenous DNA contamination and microbiomes of vent samples indicated that viruses had compensation effects on the metabolisms of their host microorganisms. Viral genes not only participated in most of the microbial metabolic pathways but also formed branched pathways in microbial metabolisms, including pyrimidine metabolism; alanine, aspartate, and glutamate metabolism; nitrogen metabolism and assimilation pathways of the two-component system; selenocompound metabolism; aminoacyl-tRNA biosynthesis; and amino sugar and nucleotide sugar metabolism. As is well known, deep-sea hydrothermal vent ecosystems exist in relatively isolated environments which are barely influenced by other ecosystems. The metabolic compensation of hosts mediated by viruses might represent a very important aspect of virus-host interactions. IMPORTANCE Viruses are the most abundant biological entities in the oceans and have very important roles in regulating microbial community structure and biogeochemical cycles. The relationship between virus and host microbes is broadly thought to be that of predator and prey. Viruses can lyse host cells to control microbial population sizes and affect community structures of hosts by killing specific microbes. However, viruses also influence their hosts through manipulation of bacterial metabolism. We found

  5. Development of sensors for the acoustic detection of ultra high energy neutrinos in the deep sea

    International Nuclear Information System (INIS)

    Naumann, C.L.

    2007-01-01

    In addition to the optical detection system used by the ANTARES detector, a proposal was made to include an acoustic system consisting of several modified ANTARES storeys to investigate the feasibility of building and operating an acoustic particle detection system in the deep sea and at the same time perform an extensive study of the acoustic properties of the deep sea environment. The directional characteristics of the sensors and their placement within the ANTARES detector had to be optimised for the study of the correlation properties of the acoustic noise at different length scales - from below a metre to above 100 metres. The so-called ''equivalent circuit diagram (=ECD) model'' - was applied to predict the acoustic properties of piezo elements, such as sensitivity and intrinsic noise, and was extended by including effects resulting from the geometrical shape of the sensors. A procedure was devised to gain the relevant ECD parameters from electrical impedance measurements of the piezo elements, both free and coupled to a surrounding medium. Based on the findings of this ECD model, intensive design studies were performed with prototype hydrophones using piezo elements as active sensors. The design best suited for the construction of acoustic sensors for ANTARES was determined, and a total of twelve hydrophones were built with a sensitivity of -145 to -140 dB re 1V/μPa between 5 and 50 kHz and an intrinsic noise power density around -90 dB re 1 V/√(Hz), giving a total noise rms of 7 mV in this frequency range. The hydrophones were pressure tested and calibrated for integration into the ANTARES acoustic system. In addition, three so-called Acoustic Modules, sensors in pressure resistant glass spheres with a sensitive bandwidth of about 80 kHz, were developed and built. The calibration procedure employed during the sensor design studies as well as for the final sensors to be installed in the ANTARES framework is presented, together with exemplary results for

  6. CREEP-2: Long-term time-dependent rock deformation in a deep-sea observatory.

    Science.gov (United States)

    Boon, Steve; Meredith, Philip; Heap, Michael; Berenzoli, Laura; Favali, Paolo

    2010-05-01

    Earthquake rupture and volcanic eruptions are the most spectacular manifestations of dynamic failure of a critically stressed crust. But these are actually rather rare events, and most of the crust spends most of its time in a highly-stressed but sub-critical state. Below a few hundred metres, the crust is saturated, and water-rock chemical reactions lead to time-dependent deformation that allows rocks to fail over extended periods of time at stresses far below their short-term strength by the mechanism of stress corrosion crack growth. This process is highly non-linear and a change in applied stress of around 5% can lead to a change in the time-to-failure of more than an order of magnitude. Theoretical calculations based on reaction rate theory suggest that such cracking may occur down to stresses as low as 20% of the rock strength, implying that time-dependent cracking will be an important deformation mechanism over geological time and at typical tectonic strain rates. A number of theoretical models have been proposed to explain this behaviour. However, it is currently not possible to discriminate between these competing models due to the relatively narrow bandwidth of strain rates that are practicably achievable in conventional laboratory experiments. Ultra-long-term experiments at very low strain rates are clearly essential to address this problem. We have therefore used the stability of the deep-sea environment to conduct ultra-long-term experiments. At depth, the temperature remains constant throughout the year and water pressure also remains essentially constant, especially in the Ionian Sea where the tidal range is minimal. We have successfully conducted a pilot experiment (CREEP-1) in which we used the constant sea-water pressure at depth to provide both a constant confining pressure and a constant deforming stress for our rock samples. Building on that success, we are now building a multi-sample deformation observatory (CREEP-2) to be deployed at

  7. Ubiquitous healthy diatoms in the deep sea confirms deep carbon injection by the biological pump

    Science.gov (United States)

    Agustí, Susana; González-Gordillo, Jose I.; Vaqué, Dolors; Estrada, Marta; Cerezo, Maria I.; Salazar, Guillem; Gasol, Josep M.; Duarte, Carlos M.

    2016-04-01

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean awaits confirmation. Photosynthetic plankton, directly responsible for trapping CO2 in organic form in the surface layer, are a key constituent of the flux of sinking particles and are assumed to die and become detritus upon leaving the photic layer. Research in the 1960-70's reported the occasional presence of well-preserved phytoplankton cells in the deep ocean, but these observations, which could signal at rapid sinking rates, were considered anecdotal. Using new developments we tested the presence of healthy phytoplankton cells in the deep sea (2000 to 4000 m depth) along the Malaspina 2010 Circumnavigation Expedition, a global expedition sampling the bathypelagic zone of the Atlantic, Indian and Pacific Oceans. In particular, we used a new microplankton sampling device, the Bottle-Net, 16S rDNA sequences, flow cytometric counts, vital stains and experiments to explore the abundance and health status of photosynthetic plankton cells between 2,000 and 4,000 m depth along the Circumnavigation track. We described the community of microplankton (> 20μm) found at the deep ocean (2000-4000 m depth), surprisingly dominated by phytoplankton, and within this, by diatoms. Moreover, we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark sea. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from few days to few weeks, corresponding to sinking rates of 124 to 732 m d-1, comparable to those of fast sinking aggregates and faecal pellets. These results confirm the

  8. Deep-sea Benthic Foraminifera in the SE Atlantic across Eocene Hyperthermal Events

    Science.gov (United States)

    Thomas, E.

    2016-12-01

    Short-term episodes of global warming (hyperthermal events) were superimposed on the warming trend into the Early Eocene Climate Optimum (EECO). The Paleocene-Eocene Thermal Maximum (PETM; 56 Ma) was the most extreme, followed by Eocene Thermal Maximum-2 and -3 (ETM2: 1.8 myr, ETM3: 3.1 myr post-PETM). Hyperthermals are characterized by negative carbon isotope excursions (CIEs, emission of isotopically light carbon in the ocean-atmosphere), negative oxygen isotope excursions (global warming) and carbonate dissolution (ocean acidification). Sensitivity of biota to environmental changes due to carbon emissions can be evaluated by studying their response to hyperthermals of different magnitude. Deep-sea benthic foraminiferal records across PETM, ETM2 and -3 are available for Site 1262 (3600 m) and 1263 (1500m) on SE Atlantic Walvis Ridge. Benthic foraminifera (carbonate and agglutinated) are absent in the carbonate-free PETM clay-layer (Site 1262: 65 kyr; Site1263: 10 kyr). Deep-sea benthic foraminifera suffered extinction and diversity loss at the start of the PETM, as they did globally, with diversity recovering only partially. Stable isotope records show a larger PETM-CIE and amount of warming at Site 1263 than global average (McCarren et al., 2008), and warming was more pronounced at Site 1263 than at 1262 during ETM2 (Jennions et al., 2015) and ETM3 (Roehl et al., 2005). During ETM2 and -3, carbonate dissolution affected the sites, both remaining between CCD and lysocline. Assemblages were more severely affected (larger drop in benthic foraminiferal accumulation rates, BFAR) at the shallower site, opposite to expected if caused mainly by carbonate corrosivity. The large decrease in BFAR indicates a decline in food arrival at the sea floor, more pronounced at the shallower site, as supported by changes in relative and absolute abundance of species, and more pronounced at ETM2 than at ETM3. Greater warming at intermediate depths could have been caused by ocean

  9. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls

    Science.gov (United States)

    Bienhold, Christina; Wenzhöfer, Frank; Rossel, Pamela E.; Boetius, Antje

    2017-01-01

    Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y) on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100–1700 m), but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were found at any time

  10. Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

    Directory of Open Access Journals (Sweden)

    Petra Pop Ristova

    Full Text Available Sinking of large organic food falls i.e. kelp, wood and whale carcasses to the oligotrophic deep-sea floor promotes the establishment of locally highly productive and diverse ecosystems, often with specifically adapted benthic communities. However, the fragmented spatial distribution and small area poses challenges for the dispersal of their microbial and faunal communities. Our study focused on the temporal dynamics and spatial distributions of sunken wood bacterial communities, which were deployed in the vicinity of different cold seeps in the Eastern Mediterranean and the Norwegian deep-seas. By combining fingerprinting of bacterial communities by ARISA and 454 sequencing with in situ and ex situ biogeochemical measurements, we show that sunken wood logs have a locally confined long-term impact (> 3y on the sediment geochemistry and community structure. We confirm previous hypotheses of different successional stages in wood degradation including a sulphophilic one, attracting chemosynthetic fauna from nearby seep systems. Wood experiments deployed at similar water depths (1100-1700 m, but in hydrographically different oceanic regions harbored different wood-boring bivalves, opportunistic faunal communities, and chemosynthetic species. Similarly, bacterial communities on sunken wood logs were more similar within one geographic region than between different seas. Diverse sulphate-reducing bacteria of the Deltaproteobacteria, the sulphide-oxidizing bacteria Sulfurovum as well as members of the Acidimicrobiia and Bacteroidia dominated the wood falls in the Eastern Mediterranean, while Alphaproteobacteria and Flavobacteriia colonized the Norwegian Sea wood logs. Fauna and bacterial wood-associated communities changed between 1 to 3 years of immersion, with sulphate-reducers and sulphide-oxidizers increasing in proportion, and putative cellulose degraders decreasing with time. Only 6% of all bacterial genera, comprising the core community, were

  11. Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity

    Science.gov (United States)

    Danovaro, Roberto; Carugati, Laura; Corinaldesi, Cinzia; Gambi, Cristina; Guilini, Katja; Pusceddu, Antonio; Vanreusel, Ann

    2013-08-01

    The deep sea is the largest biome of the biosphere. The knowledge of the spatial variability of deep-sea biodiversity is one of the main challenges of marine ecology and evolutionary biology. The choice of the observational spatial scale is assumed to play a key role for understanding processes structuring the deep-sea benthic communities and one of the most typical features of marine biodiversity distribution is the existence of bathymetric gradients. However, the analysis of biodiversity bathymetric gradients and the associated changes in species composition (beta diversity) typically compared large depth ranges (with intervals of 500 to 1000 or even 2000 m depth among sites). To test whether significant changes in alpha and beta diversity occur also at fine-scale bathymetric gradients (i.e., within few hundred-meter depth intervals) the variability of deep-sea nematode biodiversity and assemblage composition along a bathymetric transect (200-1200 m depth) with intervals of 200 m among sampling depths, was investigated. A hierarchical sampling strategy for the analysis of nematode species richness, beta diversity, functional (trophic) diversity, and related environmental variables, was used. The results indicate the lack of significant differences in taxonomic and functional diversity across sampling depths, but the presence of high beta diversity at all spatial scales investigated: between cores collected from the same box corer (on average 56%), among deployments at the same depth (58%), and between all sampling depths (62%). Such high beta diversity is influenced by the presence of small-scale patchiness in the deep sea and is also related to the large number of rare or very rare species (typically accounting for >80% of total species richness). Moreover, the number of ubiquitous nematode species across all sampling depths is quite low (ca. 15%). Multiple regression analyses provide evidence that such patterns could be related to the different availability

  12. Countermeasure Study on Deep-sea Oil Exploitation in the South China Sea——A Comparison between Deep-sea Oil Exploitation in the South China Sea and the Gulf of Mexico

    Science.gov (United States)

    Zhao, Hui; Qiu, Weiting; Qu, Weilu

    2018-02-01

    The unpromising situation of terrestrial oil resources makes the deep-sea oil industry become an important development strategy. The South China Sea has a vast sea area with a wide distribution of oil and gas resources, but there is a phenomenon that exploration and census rates and oil exploitation are low. In order to solve the above problems, this article analyzes the geology, oil and gas exploration and exploration equipment in the South China Sea and the Gulf of Mexico. Comparing the political environment of China and the United States energy industry and the economic environment of oil companies, this article points out China’s deep-sea oil exploration and mining problems that may exist. Finally, the feasibility of oil exploration and exploitation in the South China Sea is put forward, which will provide reference to improve the conditions of oil exploration in the South China Sea and promoting the stable development of China’s oil industry.

  13. High levels of natural radioactivity in biota from deep-sea hydrothermal vents: a preliminary communication

    Energy Technology Data Exchange (ETDEWEB)

    Charmasson, Sabine [Institut de Radioprotection et de Surete Nucleaire (IRSN), DEI/SESURE BP 330, F-83507 La Seyne sur mer Cedex (France)], E-mail: sabine.charmasson@irsn.fr; Sarradin, Pierre-Marie [Ifremer Centre de Brest, Departement Etudes des Ecosystemes Profonds, BP 70, 29280 Plouzane (France); Le Faouder, Antoine [Institut de Radioprotection et de Surete Nucleaire (IRSN), DEI/SESURE BP 330, F-83507 La Seyne sur mer Cedex (France); Agarande, Michele [IRSN/DEI/STEME, Bt501, Bois des Rames, 91400 Orsay (France); Loyen, Jeanne [IRSN/DEI/STEME, 31-35 Rue de l' Ecluse, 78116 Le Vesinet Cedex (France); Desbruyeres, Daniel [Ifremer Centre de Brest, Departement Etudes des Ecosystemes Profonds, BP 70, 29280 Plouzane (France)

    2009-06-15

    Hydrothermal deep-sea vent fauna is naturally exposed to a peculiar environment enriched in potentially toxic species such as sulphides, heavy metals and natural radionuclides. It is now well established that some of the organisms present in such an environment accumulate metals during their lifespan. Though only few radionuclide measurements are available, it seems likely that hydrothermal vent communities are exposed to high natural radiation doses. Various archived biological samples collected on the East Pacific Rise and the Mid-Atlantic Ridge in 1996, 2001 and 2002 were analysed by ICP-MS in order to determine their uranium contents ({sup 238}U, {sup 235}U and {sup 234}U). In addition {sup 210}Po-Pb were determined in 2 samples collected in 2002. Vent organisms are characterized by high U, and Po-Pb levels compared to what is generally encountered in organisms from outside hydrothermal vent ecosystems. Though the number of data is low, the results reveal various trends in relation to the site, the location within the mixing zone and/or the organisms' trophic regime.

  14. Extracellular DNA as a genetic recorder of microbial diversity in benthic deep-sea ecosystems.

    Science.gov (United States)

    Corinaldesi, C; Tangherlini, M; Manea, E; Dell'Anno, A

    2018-01-30

    Extracellular DNA in deep-sea sediments represents a major repository of genes, which previously belonged to living organisms. However, the extent to which these extracellular genes influence current estimates of prokaryotic biodiversity is unknown. We investigated the abundance and diversity of 16S rDNA sequences contained within extracellular DNA from continental margins of different biogeographic regions. We also compared the taxonomic composition of microbial assemblages through the analysis of extracellular DNA and DNA associated with living cells. 16S rDNA contained in the extracellular DNA pool contributed up to 50% of the total 16S rDNA copy number determined in the sediments. Ca. 4% of extracellular Operational Taxonomic Units (OTUs) were shared among the different biogeographic regions revealing the presence of a core of preserved OTUs. A higher fraction of OTUs was exclusive of each region potentially due to its geographic and thermohaline characteristics. Ca. one third of the OTUs identified in the extracellular DNA were absent from living prokaryotic assemblages, possibly representing the signatures of past assemblages. Our findings expand the knowledge of the contribution of extracellular microbial sequences to current estimates of prokaryotic diversity obtained through the analyses of "environmental DNA", and open new perspectives for understanding microbial successions in benthic ecosystems.

  15. Scientific Considerations for the Assessment and Management of Mine Tailings Disposal in the Deep Sea

    Directory of Open Access Journals (Sweden)

    Lindsay L. Vare

    2018-02-01

    Full Text Available Deep-sea tailings disposal (DSTD and its shallow water counterpart, submarine tailings disposal (STD, are practiced in many areas of the world, whereby mining industries discharge processed mud- and rock-waste slurries (tailings directly into the marine environment. Pipeline discharges and other land-based sources of marine pollution fall beyond the regulatory scope of the London Convention and the London Protocols (LC/LP. However, guidelines have been developed in Papua New Guinea (PNG to improve tailings waste management frameworks in which mining companies can operate. DSTD can impact ocean ecosystems in addition to other sources of stress, such as from fishing, pollution, energy extraction, tourism, eutrophication, climate change and, potentially in the future, from deep-seabed mining. Environmental management of DSTD may be most effective when placed in a broader context, drawing expertise, data and lessons from multiple sectors (academia, government, society, industry, and regulators and engaging with international deep-ocean observing programs, databases and stewardship consortia. Here, the challenges associated with DSTD are identified, along with possible solutions, based on the results of a number of robust scientific studies. Also highlighted are the key issues, trends of improved practice and techniques that could be used if considering DSTD (such as increased precaution if considering submarine canyon locations, likely cumulative impacts, and research needed to address current knowledge gaps.

  16. Sterilization of Exopolysaccharides Produced by Deep-Sea Bacteria: Impact on Their Stability and Degradation

    Directory of Open Access Journals (Sweden)

    Sylvia Colliec-Jouault

    2011-02-01

    Full Text Available Polysaccharides are highly heat-sensitive macromolecules, so high temperature treatments are greatly destructive and cause considerable damage, such as a great decrease in both viscosity and molecular weight of the polymer. The technical feasibility of the production of exopolysaccharides by deep-sea bacteria Vibrio diabolicus and Alteromonas infernus was previously demonstrated using a bioproduct manufacturing process. The objective of this study was to determine which sterilization method, other than heat sterilization, was the most appropriate for these marine exopolysaccharides and was in accordance with bioprocess engineering requirements. Chemical sterilization using low-temperature ethylene oxide and a mixture of ionized gases (plasmas was compared to the sterilization methods using gamma and beta radiations. The changes to both the physical and chemical properties of the sterilized exopolysaccharides were analyzed. The use of ethylene oxide can be recommended for the sterilization of polysaccharides as a weak effect on both rheological and structural properties was observed. This low-temperature gas sterilizing process is very efficient, giving a good Sterility Assurance Level (SAL, and is also well suited to large-scale compound manufacturing in the pharmaceutical industry.

  17. Nitrogen Fixation By Sulfate-Reducing Bacteria in Coastal and Deep-Sea Sediments

    Science.gov (United States)

    Bertics, V. J.; Löscher, C.; Salonen, I.; Schmitz-Streit, R.; Lavik, G.; Kuypers, M. M.; Treude, T.

    2011-12-01

    Sulfate-reducing bacteria (SRB) can greatly impact benthic nitrogen (N) cycling, by for instance inhibiting coupled denitrification-nitrification through the production of sulfide or by increasing the availability of fixed N in the sediment via dinitrogen (N2)-fixation. Here, we explored several coastal and deep-sea benthic habitats within the Atlantic Ocean and Baltic Sea, for the occurrence of N2-fixation mediated by SRB. A combination of different methods including microbial rate measurements of N2-fixation and sulfate reduction, geochemical analyses (porewater nutrient profiles, mass spectrometry), and molecular analyses (CARD-FISH, HISH-SIMS, "nested" PCR, and QPCR) were applied to quantify and identify the responsible processes and organisms, respectively. Furthermore, we looked deeper into the question of whether the observed nitrogenase activity was associated with the final incorporation of N into microbial biomass or whether the enzyme activity served another purpose. At the AGU Fall Meeting, we will present and compare data from numerous stations with different water depths, temperatures, and latitudes, as well as differences in key geochemical parameters, such as organic carbon content and oxygen availability. Current metabolic and molecular data indicate that N2-fixation is occurring in many of these benthic environments and that a large part of this activity may linked to SRB.

  18. Benthic Bioprocessing of Hydrocarbons in the Natural Deep-Sea Environment

    Science.gov (United States)

    Sultan, N.; MacDonald, I. R.; Bohrmann, G.; Schubotz, F.; Johansen, C.

    2017-12-01

    Science is accustomed to quantifying ecosystem processes that consume carbon from primary production as it drifts downward through the photic zone. Comparably efficient processes operate in reverse, as living and non-living components sequester and re-mineralize a large fraction of hydrocarbons that migrate out of traps and reservoirs to the seafloor interface. Together, they comprise a sink that prevents these hydrocarbons from escaping upward into the water column. Although quantification of the local or regional magnitude of this sink poses steep challenges, we can make progress by classifying and mapping the biological communities and geological intrusions that are generated from hydrocarbons in the deep sea. Gulf of Mexico examples discussed in this presentation extend across a broad range of depths (550, 1200, and 3200 m) and include major differences in hydrocarbon composition (from gas to liquid oil to asphaltene-dominated solids). Formation of gas hydrate is a dynamic process in each depth zone. At upper depths, gas hydrate is unstable at a timescale of months to years and serves as a substrate for microbial consortia and mussel symbiosis. At extreme depths, gas hydrate supports large and dense tubeworm colonies that conserve the material from decomposition. Timescales for biogeochemical weathering of oil and asphalts are decadal or longer, as shown by sequential alterations and changing biological colonization. Understanding these processes is crucial as we prepare for wider and deeper energy exploitation in the Gulf of Mexico and beyond.

  19. Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments.

    Science.gov (United States)

    Broecker, W S; Thurber, D L; Goddard, J; Ku, T L; Matthews, R K; Mesolella, K J

    1968-01-19

    Barbados provides a possibly unique opportunity for reconstruction of the times and elevations of late-Pleistocene high stands of the sea. The island appears to be rising from the sea at a uniform rate that is fast enough to separate in elevation coral-reef tracts formed at successive high stands of the sea. Unaltered coral found in the lower terraces enables high-precision Th(230): U(234) and Pa(231): U(235) dating. Three distinct high stands of the sea are found about 122,000, 103,000, and 82,000 years ago. New Pa(231) and Th(230) dates from a deep-sea core also indicate that Ericson's W-X cold-to-warm climatic change occurred close to 126,000 years ago. These data show a parallelism over the last 150,000 years between changes in Earth's climate and changes in the summer insolation predicted from cycles in the tilt and precession of Earth's axis.

  20. Self-recognition in corals facilitates deep-sea habitat engineering

    Science.gov (United States)

    Hennige, Sebastian J; Morrison, Cheryl L.; Form, Armin U.; Buscher, Janina; Kamenos, Nicholas A.; Roberts, J. Murray

    2014-01-01

    The ability of coral reefs to engineer complex three-dimensional habitats is central to their success and the rich biodiversity they support. In tropical reefs, encrusting coralline algae bind together substrates and dead coral framework to make continuous reef structures, but beyond the photic zone, the cold-water coral Lophelia pertusa also forms large biogenic reefs, facilitated by skeletal fusion. Skeletal fusion in tropical corals can occur in closely related or juvenile individuals as a result of non-aggressive skeletal overgrowth or allogeneic tissue fusion, but contact reactions in many species result in mortality if there is no ‘self-recognition’ on a broad species level. This study reveals areas of ‘flawless’ skeletal fusion in Lophelia pertusa, potentially facilitated by allogeneic tissue fusion, are identified as having small aragonitic crystals or low levels of crystal organisation, and strong molecular bonding. Regardless of the mechanism, the recognition of ‘self’ between adjacent L. pertusa colonies leads to no observable mortality, facilitates ecosystem engineering and reduces aggression-related energetic expenditure in an environment where energy conservation is crucial. The potential for self-recognition at a species level, and subsequent skeletal fusion in framework-forming cold-water corals is an important first step in understanding their significance as ecological engineers in deep-seas worldwide.

  1. Taxonomy of quaternary deep-sea ostracods from the Western North Atlantic ocean

    Science.gov (United States)

    Yasuhara, Moriaki; Okahashi, H.; Cronin, T. M.

    2009-01-01

    Late Quaternary sediments from Ocean Drilling Program (ODP) Hole 1055B, Carolina Slope, western North Atlantic (32??47.041??? N, 76??17.179??? W; 1798m water depth) were examined for deep-sea ostracod taxonomy. A total of 13933 specimens were picked from 207 samples and c. 120 species were identified. Among them, 87 species were included and illustrated in this paper. Twenty-eight new species are described. The new species are: Ambocythere sturgio, Argilloecia abba, Argilloecia caju, Argilloecia keigwini, Argilloecia robinwhatleyi, Aversovalva carolinensis, Bythoceratina willemvandenboldi, Bythocythere eugeneschornikovi, Chejudocythere tenuis, Cytheropteron aielloi, Cytheropteron demenocali, Cytheropteron didieae, Cytheropteron richarddinglei, Cytheropteron fugu, Cytheropteron guerneti, Cytheropteron richardbensoni, Eucytherura hazeli, Eucytherura mayressi, Eucytherura namericana, Eucytherura spinicorona, Posacythere hunti, Paracytherois bondi, Pedicythere atroposopetasi, Pedicythere kennettopetasi, Pedicythere klothopetasi, Pedicythere lachesisopetasi, Ruggieriella mcmanusi and Xestoleberis oppoae. Taxonomic revisions of several common species were made to reduce taxonomic uncertainty in the literature. This study provides a robust taxonomic baseline for application to palaeoceanographical reconstruction and biodiversity analyses in the deep and intermediate-depth environments of the North Atlantic Ocean. ?? The Palaeontological Association, 2009.

  2. Novel Lipolytic Enzymes Identified from Metagenomic Library of Deep-Sea Sediment

    Directory of Open Access Journals (Sweden)

    Jeong Ho Jeon

    2011-01-01

    Full Text Available Metagenomic library was constructed from a deep-sea sediment sample and screened for lipolytic activity. Open-reading frames of six positive clones showed only 33–58% amino acid identities to the known proteins. One of them was assigned to a new group while others were grouped into Families I and V or EstD Family. By employing a combination of approaches such as removing the signal sequence, coexpression of chaperone genes, and low temperature induction, we obtained five soluble recombinant proteins in Escherichia coli. The purified enzymes had optimum temperatures of 30–35°C and the cold-activity property. Among them, one enzyme showed lipase activity by preferentially hydrolyzing p-nitrophenyl palmitate and p-nitrophenyl stearate and high salt resistance with up to 4 M NaCl. Our research demonstrates the feasibility of developing novel lipolytic enzymes from marine environments by the combination of functional metagenomic approach and protein expression technology.

  3. Time-response of cultured deep-sea benthic foraminifera to different algal diets

    Science.gov (United States)

    Heinz, P.; Hemleben, Ch; Kitazato, H.

    2002-03-01

    The vertical distribution of benthic foraminifera in the surface sediment is influenced by environmental factors, mainly by food and oxygen supply. An experiment of three different time series was performed to investigate the response of deep-sea benthic foraminifera to simulated phytodetritus pulses under stable oxygen concentrations. Each series was fed constantly with one distinct algal species in equivalent amounts. The temporal reactions of the benthic foraminifera with regard to the vertical distribution in the sediment, the total number, and the species composition were observed and compared within the three series. Additionally, oxygen contents and bacterial cell numbers were measured to ensure that these factors were invariable and did not influence foraminiferal communities. The addition of algae leads to higher population densities 21 days after food was added. Higher numbers of individuals were probably caused by higher organic levels, which in turn induced reproduction. A stronger response is found after feeding with Amphiprora sp. and Pyramimonas sp., compared to Dunaliella tertiolecta. At a constant high oxygen supply, no migration to upper layers was observed after food addition, and more individuals were found in deeper layers. The laboratory results thus agree with the predictions of the TROX-model. An epifaunal microhabitat preference was shown for Adercotryma glomerata. Hippocrepina sp. was spread over the entire sediment depth with a shallow infaunal maximum. Melonis barleeanum preferred a deeper infaunal habitat. Bacterial cell concentrations were stable during the laboratory experiments and showed no significant response to higher organic fluxes.

  4. Cutting the Umbilical: New Technological Perspectives in Benthic Deep-Sea Research

    Directory of Open Access Journals (Sweden)

    Angelika Brandt

    2016-05-01

    Full Text Available Many countries are very active in marine research and operate their own research fleets. In this decade, a number of research vessels have been renewed and equipped with the most modern navigation systems and tools. However, much of the research gear used for biological sampling, especially in the deep-sea, is outdated and dependent on wired operations. The deployment of gear can be very time consuming and, thus, expensive. The present paper reviews wire-dependent, as well as autonomous research gear for biological sampling at the deep seafloor. We describe the requirements that new gear could fulfil, including the improvement of spatial and temporal sampling resolution, increased autonomy, more efficient sample conservation methodologies for morphological and molecular studies and the potential for extensive in situ real-time studies. We present applicable technologies from robotics research, which could be used to develop novel autonomous marine research gear, which may be deployed independently and/or simultaneously with traditional wired equipment. A variety of technological advancements make such ventures feasible and timely. In proportion to the running costs of modern research vessels, the development of such autonomous devices might be already paid off after a discrete number of pioneer expeditions.

  5. Sperm whale long-range echolocation sounds revealed by ANTARES, a deep-sea neutrino telescope

    Science.gov (United States)

    André, M.; Caballé, A.; van der Schaar, M.; Solsona, A.; Houégnigan, L.; Zaugg, S.; Sánchez, A. M.; Castell, J. V.; Solé, M.; Vila, F.; Djokic, D.; Adrián-Martínez, S.; Albert, A.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernandez-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zuñiga, J.

    2017-04-01

    Despite dedicated research has been carried out to adequately map the distribution of the sperm whale in the Mediterranean Sea, unlike other regions of the world, the species population status is still presently uncertain. The analysis of two years of continuous acoustic data provided by the ANTARES neutrino telescope revealed the year-round presence of sperm whales in the Ligurian Sea, probably associated with the availability of cephalopods in the region. The presence of the Ligurian Sea sperm whales was demonstrated through the real-time analysis of audio data streamed from a cabled-to-shore deep-sea observatory that allowed the hourly tracking of their long-range echolocation behaviour on the Internet. Interestingly, the same acoustic analysis indicated that the occurrence of surface shipping noise would apparently not condition the foraging behaviour of the sperm whale in the area, since shipping noise was almost always present when sperm whales were acoustically detected. The continuous presence of the sperm whale in the region confirms the ecological value of the Ligurian sea and the importance of ANTARES to help monitoring its ecosystems.

  6. Nonlinear contact between inner walls of deep sea pipelines in buckling process

    Science.gov (United States)

    Ma, Weilin; Yu, Jianxing; Zhou, Qingji; Xie, Bin; Cao, Jing; Li, Zhibo

    2015-02-01

    In order to study buckling propagation mechanism in deep sea pipelines, the contact between pipeline's inner walls in buckling process was studied. A two-dimensional ring model was used to represent the pipeline and a nonlinear spring model was adopted to simulate the contact between inner walls. Based on the elastoplastic constitutive relationship and the principle of virtual work theory, the coupling effect of pipeline's nonlinear large deformation and wall contact was included in the theoretical analysis with the aid of MATLAB, and the application scope of the theoretical model was also discussed. The calculated results show that during the loading process, the change in external pressure is closely related to the distribution of section stress, and once the walls are contacting each other, the external pressure increases and then remains stable after it reaches a specific value. Without fracture, the pipeline section will stop showing deformation. The results of theoretical calculations agree well with those of numerical simulations. Finally, in order to ensure reliability and accuracy of the theoretical results, the collapse pressure and propagation pressure were both verified by numerical simulations and experiments. Therefore, the theoretical model can be used to analyze pipeline's buckling deformation and contact between pipeline's inner walls, which forms the basis for further research on three-dimensional buckling propagation.

  7. Ecological and evolutionary consequences of benthic community stasis in the very deep sea (>1500 m)

    Science.gov (United States)

    Buzas, Martin A.; Hayek, Lee-Ann C.; Culver, Stephen J.; Hayward, Bruce W.; Osterman, Lisa E.

    2014-01-01

    An enigma of deep-sea biodiversity research is that the abyss with its low productivity and densities appears to have a biodiversity similar to that of shallower depths. This conceptualization of similarity is based mainly on per-sample estimates (point diversity, within-habitat, or α-diversity). Here, we use a measure of between-sample within-community diversity (β1H) to examine benthic foraminiferal diversity between 333 stations within 49 communties from New Zealand, the South Atlantic, the Gulf of Mexico, the Norwegian Sea, and the Arctic. The communities are grouped into two depth categories: 200–1500 m and >1500 m. β1H diversity exhibits no evidence of regional differences. Instead, higher values at shallower depths are observed worldwide. At depths of >1500 m the average β1H is zero, indicating stasis or no biodiversity gradient. The difference in β1H-diversity explains why, despite species richness often being greater per sample at deeper depths, the total number of species is greater at shallower depths. The greater number of communities and higher rate of evolution resulting in shorter species durations at shallower depths is also consistent with higher β1H values.

  8. Assessing the authenticity of commercial deep-sea drinking water by chemical and isotopic approaches.

    Science.gov (United States)

    Peng, Tsung-Ren; Liang, Wen-Jui; Liu, Tsang-Sen; Lin, Yu-Wen; Zhan, Wen-Jun

    2015-01-01

    This study combines stable isotopes and chemical elements with statistical principal component analysis (PCA) to assess the authenticity of bottled commercial drinking water desalinized from deep seawater in the Taiwan market. Isotopic results indicate that true bottled deep-sea drinking water (DSDW) exhibits about 0 ‰ for both δ(2)H and δ(18)O values, which are values similar to those of open seawater. By comparison, suspected counterfeit DSDW products display δ(2)H and δ(18)O values of around -51 ‰ and -8 ‰, respectively. These values are representative of terrestrial freshwater. In addition, suspected counterfeit DSDWs have δ and electrical conductivity values similar to a mixed water (MW) product that was manufactured by purifying terrestrial freshwater and adulterating this with small amounts of brine. Furthermore, PCA results indicate the chemical constitution of suspected DSDW products to be similar to the MW product which falls between purified terrestrial freshwater and desalinized open seawater. These similarities imply that suspected counterfeit DSDW products are manufactured in a similar manner to the declared MW product. This study demonstrates how combining knowledge of stable water isotopes and PCA can be used in assessing the authenticity of commercial DSDW products. The method should be of great interest to similar investigations elsewhere.

  9. Novel active kinetoplastids associated with hypersaline anoxic basins in the Eastern Mediterranean deep-sea

    Science.gov (United States)

    Edgcomb, V. P.; Orsi, W.; Breiner, H.-W.; Stock, A.; Filker, S.; Yakimov, M. M.; Stoeck, T.

    2011-10-01

    The combination of nearly saturated salt concentration and corresponding high density, high hydrostatic pressure, absence of light, anoxia, and a sharp chemocline make the deep hypersaline anoxic basins in the Eastern Mediterranean Sea some of the most polyextreme habitats on Earth. Using kinetoplastid-specific primers, we detected kinetoplastid flagellates in some of the harshest deep-sea environments known to date, including some whose small subunit ribosomal RNA gene sequences are not closely related to cultured representatives. Kinetoplastids, including presumably novel representatives appear to be specialists of halocline environments in the Eastern Mediterranean, and to comprise a significant fraction of the protist communities in the brines and haloclines of several basins. Fluorescent in situ hybridization data indicate a novel 'unidentified' sequence clade of kinetoplastids related to bodonids represents as much as 10% of the total protist community in the Discovery Basin halocline. Different kinetoplastid groups are unevenly represented in the different basins and habitats we sampled, which we discuss as a result of environmental selection.

  10. The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2.

    Directory of Open Access Journals (Sweden)

    Kathleen M Scott

    2006-11-01

    Full Text Available Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs, and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

  11. Enhancement of immune activation activities of Spirulina maxima grown in deep-sea water.

    Science.gov (United States)

    Choi, Woon Yong; Kang, Do Hyung; Lee, Hyeon Yong

    2013-06-06

    In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW), were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK) cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL) when compared to the control (1.1 × 104 viable cells/mL). Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth.

  12. Enhancement of Immune Activation Activities of Spirulina maxima Grown in Deep-Sea Water

    Directory of Open Access Journals (Sweden)

    Hyeon Yong Lee

    2013-06-01

    Full Text Available In this study, the immuno-modulatory and anticancer activities of marine algae, Spirulina maxima grown in deep-sea water (DSW, were investigated. It was found that the extract of S. maxima, cultured in DSW, effectively suppressed the expression of Bcl2 in A549 cells as well as inhibiting various human cancer cells with concentration dependency, which possibly implies that the extracts may play more important roles in controlling cancer cell growth. The secretion of cytokines IL-6 and TNF-α from human B cells was also greatly increased, compared to those of the extract grown in conventional sea-water. The growth of Human Natural Killer (NK cells in the presence of the extracts from DSW was significantly higher (12.2 × 104 viable cells/mL when compared to the control (1.1 × 104 viable cells/mL. Based on HPLC analysis, the increase in the biological activities of the extracts from DSW was caused by considerably high amounts of β-carotene and ascorbic acid because the DSW contained high concentrations and good ratios of several key minerals for biosynthesizing β-carotene and ascorbic acid, as well as maintaining high cell growth.

  13. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

    Energy Technology Data Exchange (ETDEWEB)

    Scott, K M; Sievert, S M; Abril, F N; Ball, L A; Barrett, C J; Blake, R A; Boller, A J; Chain, P G; Clark, J A; Davis, C R; Detter, C; Do, K F; Dobrinski, K P; Faza, B I; Fitzpatrick, K A; Freyermuth, S K; Harmer, T L; Hauser, L J; Hugler, M; Kerfeld, C A; Klotz, M G; Kong, W W; Land, M; Lapidus, A; Larimer, F W; Longo, D L; Lucas, S; Malfatti, S A; Massey, S E; Martin, D D; McCuddin, Z; Meyer, F; Moore, J L; Ocampo Jr., L H; Paul, J H; Paulsen, I T; Reep, D K; Ren, Q; Ross, R L; Sato, P Y; Thomas, P; Tinkham, L E; Zerugh, G T

    2007-01-10

    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 bp), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of CDSs encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. T. crunogena XCL-2 is unusual among obligate sulfur oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. A 38 kb prophage is present, and a high level of prophage induction was observed, which may play a role in keeping competing populations of close relatives in check. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

  14. Modern Deep-sea Sponges as Recorders of Bottom Water Silicon Isotopes

    Science.gov (United States)

    Hendry, K. R.; Georg, R. B.; Rickaby, R. E.; Robinson, L. F.; Halliday, A. N.

    2008-12-01

    Major zones of opal accumulation in the world oceans have experienced geographical shifts during the Cenozoic coincident with times of transition in oceanic circulation and climate. The global marine silica cycle is likely to respond to various large-scale changes including the distillation of Si and other nutrients in ocean basins; weathering and continental inputs; and biological productivity in surface waters. These processes could potentially be distinguished by their impact on the isotopic composition of dissolved silica in the world oceans. Although diatoms dominate uptake of silica in surface waters, box-modelling (de la Rocha and Bickle, 2005) suggests that sponges spicules have a greater potential to reflect whole ocean changes in the silica cycle, by recording deep-water silicon isotopes. Here, we introduce a new calibration study of modern deep- sea sponges collected on a transect cruise across the Drake Passage, in the Southern Ocean, from a range of depths and seawater silicic acid concentrations. Sponges were collected by benthic trawling, and dried immediately. The spicules were later isolated from cellular material and cleaned for surface contaminants, before dissolution and analysis by NuPlasma HR MC-ICP-MS in medium resolution mode. We discuss our preliminary data, the extent to which inter and intraspecies variations reflect environmental conditions, and the implications for palaeoreconstructions of the marine silicon cycle. de la Rocha, C. and M. Bickle (2005). Sensitivity of silicon isotopes to whole-ocean changes in the silica cycle. Marine Geology 217, 267-282.

  15. Cultured fungal associates from the deep-sea coral Lophelia pertusa

    Science.gov (United States)

    Galkiewicz, Julia P.; Stellick, Sarah H.; Gray, Michael A.; Kellogg, Christina A.

    2012-01-01

    The cold-water coral Lophelia pertusa provides important habitat to many deep-sea fishes and invertebrates. Studies of the microbial taxa associated with L. pertusa thus far have focused on bacteria, neglecting the microeukaryotic members. This is the first study to culture fungi from living L. pertusa and to investigate carbon source utilization by the fungal associates. Twenty-seven fungal isolates from seven families, including both filamentous and yeast morphotypes, were cultured from healthy L. pertusa colonies collected from the northern Gulf of Mexico, the West Florida Slope, and the western Atlantic Ocean off the Florida coast. Isolates from different sites were phylogenetically closely related, indicating these genera are widely distributed in association with L. pertusa. Biolog™ Filamentous Fungi microtiter plates were employed to determine the functional capacity of a subset of isolates to grow on varied carbon sources. While four of the isolates exhibited no growth on any provided carbon source, the rest (n=10) grew on 8.3–66.7% of carbon sources available. Carbohydrates, carboxylic acids, and amino acids were the most commonly metabolized carbon sources, with overlap between the carbon sources used and amino acids found in L. pertusa mucus. This study represents the first attempt to characterize a microeukaryotic group associated with L. pertusa. However, the functional role of fungi within the coral holobiont remains unclear.

  16. Proton-induced x-ray emission analysis of deep-sea ferromanganese nodules

    International Nuclear Information System (INIS)

    Kirchner, S.J.; Oona, H.; Perron, S.J.; Fernando, Q.; Lee, J.J.H.; Zeitlin, H.

    1980-01-01

    Seven samples of deep-sea ferromanganese nodules from the Pacific and Atlantic Oceans were analyzed by proton-induced X-ray emission (PIXE). The concentrations of Na, Mg, Al, Si, K, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Mo, Ba, Tl and Pb in the nodules were determined, and the accuracy of the determinations was verified independently by flame atomic absorption and emission techniques. Thin sample targets on Nuclepore filter disks backed with Kapton were used with 1-MeV protons for the low-energy region (0 to 8 keV) and 2-MeV protons and a 0.004-in. al filter for the high-energy region (5 to 35 keV) of the X-ray spectrum. X-ray yield data were obtained for elements from Na to U (11 < Z < 92), with standards of 99.999% purity and the thin target technqiue. Five different NBS standard reference materials (orchard leaves, pine needles, bovine liver, coal, and coal fly ash) were analyzed by this method to determine the precision and accuracy that could be achieved under the operating conditions of the PIXE system. 4 figures, 6 tables

  17. A simple model for the dispersion of radioactive wastes dumped on the deep-sea bed

    International Nuclear Information System (INIS)

    Shepherd, J.G.

    1976-01-01

    A simple model has been developed for the dispersion of radioactive materials in a closed and finite ocean. It allows for the simultaneous action of both diffusion and horizontal (but not vertical) advection, and thus avoids the major limitations of previous models. It is sufficiently versatile to handle non-Fickian diffusion and radioactive decay, but requires numerical integration using some semi-empirical form for the Green function of diffusion from a point source. The model has been used to estimate equilibrium concentrations of radioactive materials in sea water arising from the continuous release of material from a dump on the bottom of the deep ocean, using parameters appropriate for the North Atlantic. It is found that except under rather extreme conditions the surface concentrations do not exceed the long-term average value which would be established in a perfectly mixed ocean. The concentrations are also rather insensitive to the values of the diffusion and advection parameters used, except for that for vertical diffusion, but depend strongly on the overall removal rate of material from the ocean, including processes other than radioactive decay. It is suggested that safety assessments of deep-sea dumping should utilize estimates of the environmental capacities of the oceans based on the long-term 'well-mixed' average concentrations (which are very easily calculated) using a safety factor of no more than ten to allow for the possible effects of pluming and upwelling. (author)

  18. Radioisotope mobility across the sediment/water interface in the deep sea

    International Nuclear Information System (INIS)

    ten Brink, M.R.B.

    1987-01-01

    The removal of radiotracers from water to sediments and their partitioning between phases were used to study the rates and mechanisms of transfer for trace elements across the sediment/water interface in the deep sea. The in situ mobility of 22 Na, 134 Cs, 133 Ba, 65 Zn, 125 Sb, 7 Be, 203 Hg, 54 Mn, 60 Co, 59 Fe, 113 Gd, and 141 Ce was measured using MANOP Lander benthic chambers in the N. equatorial Pacific and in San Clemente Basin. The contributions to mobility of diffusion, bioturbation, advection of pore waters, and transport across the diffusive boundary layer was assessed. The penetration of particle reactive tracers in the upper cm suggested a mixing rate of ≤10 -7 cm 2 /s at Sites C and S and ≤10 -5 cm 2 /s at Sites M and H. Greater penetration could be correlated with worm tubes but no evidence of irrigation was found. The presence of nodules did not prevent transport of soluble tracers to the underlying sediment or concentrate tracers. Diffusion was the predominant mode of transport for radiotracers in the short-term in situ experiments

  19. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (HAUSGARTEN, Fram Strait).

    Science.gov (United States)

    Buttigieg, Pier Luigi; Ramette, Alban

    2014-01-01

    Marine bacteria colonizing deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometers and across water depths of several thousand meters (Jacob et al., 2013). Jacob et al. (2013) adopted what has become a classical view of microbial diversity - based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene - and observed a very large microbial community replacement at the HAUSGARTEN Long Term Ecological Research station (Eastern Fram Strait). Here, we revisited these data using the oligotyping approach and aimed to obtain new insight into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments. We also assessed the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterized dataset of high relevance for global change biology.

  20. Biogeographic patterns of bacterial microdiversity in Arctic deep-sea sediments (Hausgarten, Fram Strait

    Directory of Open Access Journals (Sweden)

    Pier Luigi eButtigieg

    2015-01-01

    Full Text Available Marine bacteria colonising deep-sea sediments beneath the Arctic ocean, a rapidly changing ecosystem, have been shown to exhibit significant biogeographic patterns along transects spanning tens of kilometres and across water depths reaching several thousands of metres (Jacob et al., 2013. Jacob et al. adopted what has become a classical view of microbial diversity based on operational taxonomic units clustered at the 97% sequence identity level of the 16S rRNA gene and observed a very large microbial community replacement at the Hausgarten Long-Term Ecological Research station (Eastern Fram Strait. Here, we revisited these data using the oligotyping approach with the aims of obtaining new insights into ecological and biogeographic patterns associated with bacterial microdiversity in marine sediments and of assessing the level of concordance of these insights with previously obtained results. Variation in oligotype dispersal range, relative abundance, co-occurrence, and taxonomic identity were related to environmental parameters such as water depth, biomass, and sedimentary pigment concentration. This study assesses ecological implications of the new microdiversity-based technique using a well-characterised dataset of high relevance for global change biology.

  1. A Novel Cold Active Esterase from a Deep Sea Sponge Stelletta normani Metagenomic Library

    Directory of Open Access Journals (Sweden)

    Erik Borchert

    2017-09-01

    Full Text Available Esterases catalyze the hydrolysis of ester bonds in fatty acid esters with short-chain acyl groups. Due to the widespread applications of lipolytic enzymes in various industrial applications, there continues to be an interest in novel esterases with unique properties. Marine ecosystems have long been acknowledged as a significant reservoir of microbial biodiversity and in particular of bacterial enzymes with desirable characteristics for industrial use, such as for example cold adaptation and activity in the alkaline pH range. We employed a functional metagenomic approach to exploit the enzymatic potential of one particular marine ecosystem, namely the microbiome of the deep sea sponge Stelletta normani. Screening of a metagenomics library from this sponge resulted in the identification of a number of lipolytic active clones. One of these encoded a highly, cold-active esterase 7N9, and the recombinant esterase was subsequently heterologously expressed in Escherichia coli. The esterase was classified as a type IV lipolytic enzyme, belonging to the GDSAG subfamily of hormone sensitive lipases. Furthermore, the recombinant 7N9 esterase was biochemically characterized and was found to be most active at alkaline pH (8.0 and displays salt tolerance over a wide range of concentrations. In silico docking studies confirmed the enzyme's activity toward short-chain fatty acids while also highlighting the specificity toward certain inhibitors. Furthermore, structural differences to a closely related mesophilic E40 esterase isolated from a marine sediment metagenomics library are discussed.

  2. Deep-sea redox across the Paleocene-Eocene thermal maximum

    Science.gov (United States)

    Pälike, Cecily; Delaney, Margaret L.; Zachos, James C.

    2014-04-01

    amounts of 13C-depleted carbon were released to the oceans and atmosphere during a period of abrupt global warming at the Paleocene-Eocene thermal maximum (PETM) (˜55 Ma). Investigations of qualitative sedimentologic and paleontologic redox proxies such as bioturbation and benthic assemblages from pelagic and hemipelagic sections suggest transient reductions in bottom water oxygen during this interval, possibly on a global scale. Here, we present bulk sediment manganese (Mn) and uranium (U) enrichment factors (EF) in Atlantic and Pacific deep-sea cores to constrain relative paleoredox changes across the PETM. Mn EF range from 1 to 9 in Atlantic sites, 1 to 35 in Southern Ocean sites, and are at crustal averages (EF = 1) in Pacific sites. U EF range from 1 to 5 in Atlantic sites, 1 to 90 in Southern Ocean sites, and are at crustal averages in Pacific sites. Our results indicate suboxic conditions prior to, during, and in the recovery from the PETM at intermediate depth sites in the Atlantic and Southern Ocean while the Pacific sites remained relatively oxygenated. The difference in oxygenation between the Atlantic and Pacific sites leads us to suggest the source for isotopically light carbon release during the PETM was in the Atlantic.

  3. High resolution deep-sea stable isotopes: do Early Eocene hyperthermals share a common origin?

    Science.gov (United States)

    Lauretano, Vittoria; Lourens, Lucas J.; Zachos, James C.; Sluijs, Appy

    2013-04-01

    During the Early Eocene, the Earth experienced a prolonged warming trend (55-50 Ma), punctuated by a series of short-lived global warming events known as "hyperthermals", of which the Paleocene-Eocene Thermal Maximum, (PETM) is the most extreme, followed by the ETM2 (Elmo) and the ETM3 ("X-event"). Along with these events, a number of less pronounced negative carbon isotope excursions, termed A to L by Cramer et al (2003), occurred throughout the Paleogene up to the Early Eocene Climatic Optimum (EECO). The drastic increase in temperature during the hyperthermals is associated with the release of large amounts of isotopically light carbon into the ocean-atmosphere system. Several hypotheses have been proposed to determine the sources and mechanisms of these carbon inputs, in particular the dissociation of marine gas hydrates. However, what still remains unclear is whether or not these events share a common source. To address this question we compare the quantitative relationship between high-resolution carbon and oxygen stable isotope records from benthic foraminiferal tests. A similar correspondence between changes in the carbon cycle and global temperature among the events, regardless of their magnitudes, would imply a similarity in their origins. Following Stap et al. 2010, we present the results of the comparison between our data and previously published data, using deep-sea material to extend the record to the I1-I2 events.

  4. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump

    KAUST Repository

    Agusti, Susana

    2015-07-09

    The role of the ocean as a sink for CO2 is partially dependent on the downward transport of phytoplankton cells packaged within fast-sinking particles. However, whether such fast-sinking mechanisms deliver fresh organic carbon down to the deep bathypelagic sea and whether this mechanism is prevalent across the ocean requires confirmation. Here we report the ubiquitous presence of healthy photosynthetic cells, dominated by diatoms, down to 4,000 m in the deep dark ocean. Decay experiments with surface phytoplankton suggested that the large proportion (18%) of healthy photosynthetic cells observed, on average, in the dark ocean, requires transport times from a few days to a few weeks, corresponding to sinking rates (124–732 m d−1) comparable to those of fast-sinking aggregates and faecal pellets. These results confirm the expectation that fast-sinking mechanisms inject fresh organic carbon into the deep sea and that this is a prevalent process operating across the global oligotrophic ocean.

  5. First report of ciliate (Protozoa) epibionts on deep-sea harpacticoid copepods

    Science.gov (United States)

    Sedlacek, Linda; Thistle, David; Fernandez-Leborans, Gregorio; Carman, Kevin R.; Barry, James P.

    2013-08-01

    We report the first observations of ciliate epibionts on deep-sea, benthic harpacticoid copepods. One ciliate epibiont species belonged to class Karyorelictea, one to subclass Suctoria, and one to subclass Peritrichia. Our samples came from the continental rise off central California (36.709°N, 123.523°W, 3607 m depth). We found that adult harpacticoids carried ciliate epibionts significantly more frequently than did subadult copepodids. The reason for the pattern is unknown, but it may involve differences between adults and subadult copepodids in size or in time spent swimming. We also found that the ciliate epibiont species occurred unusually frequently on the adults of two species of harpacticoid copepod; a third harpacticoid species just failed the significance test. When we ranked the 57 harpacticoid species in our samples in order of abundance, three species identified were, as a group, significantly more abundant than expected by chance if one assumes that the abundance of the group and the presence of ciliate epibionts on them were uncorrelated. High abundance may be among the reasons a harpacticoid species carries a ciliate epibiont species disproportionately frequently. For the combinations of harpacticoid species and ciliate epibiont species identified, we found one in which males and females differed significantly in the proportion that carried epibionts. Such a sex bias has also been reported for shallow-water, calanoid copepods.

  6. Spatio-temporal monitoring of deep-sea communities using metabarcoding of sediment DNA and RNA

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    2016-12-01

    Full Text Available We assessed spatio-temporal patterns of diversity in deep-sea sediment communities using metabarcoding. We chose a recently developed eukaryotic marker based on the v7 region of the 18S rRNA gene. Our study was performed in a submarine canyon and its adjacent slope in the Northwestern Mediterranean Sea, sampled along a depth gradient at two different seasons. We found a total of 5,569 molecular operational taxonomic units (MOTUs, dominated by Metazoa, Alveolata and Rhizaria. Among metazoans, Nematoda, Arthropoda and Annelida were the most diverse. We found a marked heterogeneity at all scales, with important differences between layers of sediment and significant changes in community composition with zone (canyon vs slope, depth, and season. We compared the information obtained from metabarcoding DNA and RNA and found more total MOTUs and more MOTUs per sample with DNA (ca. 20% and 40% increase, respectively. Both datasets showed overall similar spatial trends, but most groups had higher MOTU richness with the DNA template, while others, such as nematodes, were more diverse in the RNA dataset. We provide metabarcoding protocols and guidelines for biomonitoring of these key communities in order to generate information applicable to management efforts.

  7. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific.

    Science.gov (United States)

    Deng, Yinan; Ren, Jiangbo; Guo, Qingjun; Cao, Jun; Wang, Haifeng; Liu, Chenhui

    2017-11-28

    Deep-sea sediments contain high concentrations of rare earth element (REE) which have been regarded as a huge potential resource. Understanding the marine REE cycle is important to reveal the mechanism of REE enrichment. In order to determine the geochemistry characteristics and migration processes of REE, seawater, porewater and sediment samples were systematically collected from the western Pacific for REE analysis. The results show a relatively flat REE pattern and the HREE (Heavy REE) enrichment in surface and deep seawater respectively. The HREE enrichment distribution patterns, low concentrations of Mn and Fe and negative Ce anomaly occur in the porewater, and high Mn/Al ratios and low U concentrations were observed in sediment, indicating oxic condition. LREE (Light REE) and MREE (Middle REE) enrichment in upper layer and depletion of MREE in deeper layer were shown in porewater profile. This study suggests that porewater flux in the western Pacific basin is a minor source of REEs to seawater, and abundant REEs are enriched in sediments, which is mainly caused by the extensive oxic condition, low sedimentation rate and strong adsorption capacity of sediments. Hence, the removal of REEs of porewater may result in widespread REE-rich sediments in the western Pacific basin.

  8. Deep-sea fluxes of barium and lithogenic trace elements in the subtropical northeast Atlantic

    Science.gov (United States)

    Stern, Judith; Dellwig, Olaf; Waniek, Joanna J.

    2017-04-01

    Total particle flux, Barium and lithogenic trace element fluxes were measured at the mooring Kiel 276 (33°N, 22°W) in the deep-sea of the subtropical Northeast Atlantic. The particulate material was collected between 2002 and 2008 with a sediment trap in 2000 m depth and analyzed with ICP-OES/-MS to determine its geochemical composition. The particle flux is controlled by primary production, lithogenic particle inputs via atmospheric transport and the migration of the Azores Front. We used refractory trace elements (eg. Ti, Zr, and the rare earth elements) to demonstrate the changes in flux and composition of the material due to lithogenic inputs. Shortly after periods of high dust load and enhanced primary production an increase in lithogenic trace element fluxes occurred. Especially the formation of aggregates with biogenic matter seems to have a major impact on the downwards transport of lithogenic particles. The observation of particulate Ba is of great interest since it is known as a proxy for past and present primary production. Ba fluxes ranging between 0.02 mg m-2 d-1 and 1.21 mg m-2 d-1 with biogenic proportions up to 97%. The fluxes of particulate Barium in the water column are mainly attributed to the strength of primary production.

  9. Spawn in two deep-sea volute gastropods (Neogastropoda: Volutidae) from southwestern Atlantic waters

    Science.gov (United States)

    Penchaszadeh, Pablo E.; Teso, Valeria; Pastorino, Guido

    2017-12-01

    The gastropods Odontocymbiola pescalia and Provocator corderoi and their egg capsules were collected by the R/V Puerto Deseado from the Mar del Plata Submarine Canyon ( 37°53‧S, at depths of 291-1404 m) and from Burdwood Bank ( 54°27‧S, 128-785 m). Odontocymbiola pescalia egg capsules measured 15.67 ± 3.38 mm in diameter. They were subspherical in shape with an external calcareous layer. Each egg capsule contained 3-5 embryos and white material as extra embryonic food. Embryos grew to a size of up to 9.3 ± 1.1 mm in mean shell length before hatching as crawling juveniles. The spawn of P. corderoi consisted of a single dome shaped egg capsule of 14.17 ± 1.5 mm in diameter, attached to hard substrata by a basal membrane with a rounded outline. A curved semilunar furrow (seam) on one side of the capsules was always present. The number of embryos per capsule was 2-6. Embryos hatched as crawling juveniles with a shell length of 5.9 ± 0.6 mm. The size and number of whorls in the hatchling shell suggested a slow rate of development, akin to many other deep-sea invertebrates. The egg capsules and reproductive development strategies of both species were compared with those from other congeneric representatives.

  10. Sterilization of Exopolysaccharides Produced by Deep-Sea Bacteria: Impact on Their Stability and Degradation

    Science.gov (United States)

    Rederstorff, Emilie; Fatimi, Ahmed; Sinquin, Corinne; Ratiskol, Jacqueline; Merceron, Christophe; Vinatier, Claire; Weiss, Pierre; Colliec-Jouault, Sylvia

    2011-01-01

    Polysaccharides are highly heat-sensitive macromolecules, so high temperature treatments are greatly destructive and cause considerable damage, such as a great decrease in both viscosity and molecular weight of the polymer. The technical feasibility of the production of exopolysaccharides by deep-sea bacteria Vibrio diabolicus and Alteromonas infernus was previously demonstrated using a bioproduct manufacturing process. The objective of this study was to determine which sterilization method, other than heat sterilization, was the most appropriate for these marine exopolysaccharides and was in accordance with bioprocess engineering requirements. Chemical sterilization using low-temperature ethylene oxide and a mixture of ionized gases (plasmas) was compared to the sterilization methods using gamma and beta radiations. The changes to both the physical and chemical properties of the sterilized exopolysaccharides were analyzed. The use of ethylene oxide can be recommended for the sterilization of polysaccharides as a weak effect on both rheological and structural properties was observed. This low-temperature gas sterilizing process is very efficient, giving a good Sterility Assurance Level (SAL), and is also well suited to large-scale compound manufacturing in the pharmaceutical industry. PMID:21566796

  11. Library Construction from Subnanogram DNA for Pelagic Sea Water and Deep-Sea Sediments.

    Science.gov (United States)

    Hirai, Miho; Nishi, Shinro; Tsuda, Miwako; Sunamura, Michinari; Takaki, Yoshihiro; Nunoura, Takuro

    2017-12-27

    Shotgun metagenomics is a low biased technology for assessing environmental microbial diversity and function. However, the requirement for a sufficient amount of DNA and the contamination of inhibitors in environmental DNA leads to difficulties in constructing a shotgun metagenomic library. We herein examined metagenomic library construction from subnanogram amounts of input environmental DNA from subarctic surface water and deep-sea sediments using two library construction kits: the KAPA Hyper Prep Kit and Nextera XT DNA Library Preparation Kit, with several modifications. The influence of chemical contaminants associated with these environmental DNA samples on library construction was also investigated. Overall, shotgun metagenomic libraries were constructed from 1 pg to 1 ng of input DNA using both kits without harsh library microbial contamination. However, the libraries constructed from 1 pg of input DNA exhibited larger biases in GC contents, k-mers, or small subunit (SSU) rRNA gene compositions than those constructed from 10 pg to 1 ng DNA. The lower limit of input DNA for low biased library construction in this study was 10 pg. Moreover, we revealed that technology-dependent biases (physical fragmentation and linker ligation vs. tagmentation) were larger than those due to the amount of input DNA.

  12. On the Milankovitch sensitivity of the Quaternary deep-sea record

    Directory of Open Access Journals (Sweden)

    W. H. Berger

    2013-08-01

    Full Text Available The response of the climate system to external forcing (that is, global warming has become an item of prime interest, especially with respect to the rate of melting of land-based ice masses. The deep-sea record of ice-age climate change has been useful in assessing the sensitivity of the climate system to a different type of forcing; that is, to orbital forcing, which is well known for the last several million years. The expectation is that the response to one type of forcing will yield information about the likely response to other types of forcing. When comparing response and orbital forcing, one finds that sensitivity to this type of forcing varies greatly through time, evidently in dependence on the state of the system and the associated readiness of the system for change. The changing stability of ice masses is here presumed to be the chief underlying cause for the changing state of the system. A buildup of vulnerable ice masses within the latest Tertiary, when going into the ice ages, is thus here conjectured to cause a stepwise increase of climate variability since the early Pliocene.

  13. MITESS: a moored in situ trace element serial sampler for deep-sea moorings

    Science.gov (United States)

    Bell, Jory; Betts, Joe; Boyle, Edward

    2002-11-01

    We have designed, constructed and tested a trace element clean sampling device for long term deployment (6 months or longer) on deep-sea moorings. The device collects unfiltered 500 ml samples by opening and closing a bottle originally filled with dilute acid (passively replaced by denser seawater). Each sample is collected by an independent module, so failure of a single unit does not affect others. Seven years of deployments have refined the sampler into a rugged and reliable device. The device also can be hung below a wire to collect water column samples. Automated trace element sampler (ATE), a spinoff from moored in situ trace element serial sampler, is a single-module device for allowing trace metal clean near-surface samples to be collected by personnel not trained in trace element sampling. ATE/VANE, another variation, allows the same personnel to collect upper water column profiles on conventional hydrowire. The systems have been tested by comparing samples collected for lead and iron with those collected by previously proven sampling techniques.

  14. Poecillastrosides, Steroidal Saponins from the Mediterranean Deep-Sea Sponge Poecillastra compressa (Bowerbank, 1866

    Directory of Open Access Journals (Sweden)

    Kevin Calabro

    2017-06-01

    Full Text Available The first chemical investigation of the Mediterranean deep-sea sponge Poecillastra compressa (Bowerbank, 1866 led to the identification of seven new steroidal saponins named poecillastrosides A–G (1–7. All saponins feature an oxidized methyl at C-18 into a primary alcohol or a carboxylic acid. While poecillastrosides A–D (1–4 all contain an exo double bond at C-24 of the side-chain and two osidic residues connected at O-2′, poecillastrosides E–G (5–7 are characterized by a cyclopropane on the side-chain and a connection at O-3′ between both sugar units. The chemical structures were elucidated through extensive spectroscopic analysis (High-Resolution Mass Spectrometry (HRESIMS, 1D and 2D NMR and the absolute configurations of the sugar residues were assigned after acidic hydrolysis and cysteine derivatization followed by LC-HRMS analyses. Poecillastrosides D and E, bearing a carboxylic acid at C-18, were shown to exhibit antifungal activity against Aspergillus fumigatus.

  15. A numerical calculation method of environmental impacts for the deep sea mining industry - a review.

    Science.gov (United States)

    Ma, Wenbin; van Rhee, Cees; Schott, Dingena

    2018-03-01

    Since the gradual decrease of mineral resources on-land, deep sea mining (DSM) is becoming an urgent and important emerging activity in the world. However, until now there has been no commercial scale DSM project in progress. Together with the reasons of technological feasibility and economic profitability, the environmental impact is one of the major parameters hindering its industrialization. Most of the DSM environmental impact research focuses on only one particular aspect ignoring that all the DSM environmental impacts are related to each other. The objective of this work is to propose a framework for the numerical calculation methods of the integrated DSM environmental impacts through a literature review. This paper covers three parts: (i) definition and importance description of different DSM environmental impacts; (ii) description of the existing numerical calculation methods for different environmental impacts; (iii) selection of a numerical calculation method based on the selected criteria. The research conducted in this paper provides a clear numerical calculation framework for DSM environmental impact and could be helpful to speed up the industrialization process of the DSM industry.

  16. Impact of deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) on non-commercial fish species off West Greenland

    DEFF Research Database (Denmark)

    Jørgensen, Ole A; Bastardie, Francois; Eigaard, Ole Ritzau

    2014-01-01

    Since the late 1980s, a deep-sea fishery for Greenland halibut (Reinhardtius hippoglossoides) has been developing gradually in West Greenland. Deep-sea fish species are generally long-lived and characterized by late age of maturity, low fecundity, and slow growth, features that probably cause low...... resilience following overexploitation. In order to evaluate whether populations of nine potential bycatch species are negatively affected by the commercial fishery for Greenland halibut, scientific data from bottom-trawl surveys conducted in the same area and period as the commercial fishery were analysed....... During the period 1988–2011, population abundance and size composition changed as catch and effort in the Greenland halibut fishery increased. Two species showed a significant decrease in abundance, and four populations showed a significant reduction in mean weight of individuals (p , 0.05). Correlation...

  17. Population structure of Bathymodiolus manusensis, a deep-sea hydrothermal vent-dependent mussel from Manus Basin, Papua New Guinea

    Directory of Open Access Journals (Sweden)

    Andrew D. Thaler

    2017-08-01

    Full Text Available Deep-sea hydrothermal vents in the western Pacific are increasingly being assessed for their potential mineral wealth. To anticipate the potential impacts on biodiversity and connectivity among populations at these vents, environmental baselines need to be established. Bathymodiolus manusensis is a deep-sea mussel found in close association with hydrothermal vents in Manus Basin, Papua New Guinea. Using multiple genetic markers (cytochrome C-oxidase subunit-1 sequencing and eight microsatellite markers, we examined population structure at two sites in Manus Basin separated by 40 km and near a potential mining prospect, where the species has not been observed. No population structure was detected in mussels sampled from these two sites. We also compared a subset of samples with B. manusensis from previous studies to infer broader population trends. The genetic diversity observed can be used as a baseline against which changes in genetic diversity within the population may be assessed following the proposed mining event.

  18. Temporal change in deep-sea benthic ecosystems: a review of the evidence from recent time-series studies.

    Science.gov (United States)

    Glover, A G; Gooday, A J; Bailey, D M; Billett, D S M; Chevaldonné, P; Colaço, A; Copley, J; Cuvelier, D; Desbruyères, D; Kalogeropoulou, V; Klages, M; Lampadariou, N; Lejeusne, C; Mestre, N C; Paterson, G L J; Perez, T; Ruhl, H; Sarrazin, J; Soltwedel, T; Soto, E H; Thatje, S; Tselepides, A; Van Gaever, S; Vanreusel, A

    2010-01-01

    Societal concerns over the potential impacts of recent global change have prompted renewed interest in the long-term ecological monitoring of large ecosystems. The deep sea is the largest ecosystem on the planet, the least accessible, and perhaps the least understood. Nevertheless, deep-sea data collected over the last few decades are now being synthesised with a view to both measuring global change and predicting the future impacts of further rises in atmospheric carbon dioxide concentrations. For many years, it was assumed by many that the deep sea is a stable habitat, buffered from short-term changes in the atmosphere or upper ocean. However, recent studies suggest that deep-seafloor ecosystems may respond relatively quickly to seasonal, inter-annual and decadal-scale shifts in upper-ocean variables. In this review, we assess the evidence for these long-term (i.e. inter-annual to decadal-scale) changes both in biologically driven, sedimented, deep-sea ecosystems (e.g. abyssal plains) and in chemosynthetic ecosystems that are partially geologically driven, such as hydrothermal vents and cold seeps. We have identified 11 deep-sea sedimented ecosystems for which published analyses of long-term biological data exist. At three of these, we have found evidence for a progressive trend that could be potentially linked to recent climate change, although the evidence is not conclusive. At the other sites, we have concluded that the changes were either not significant, or were stochastically variable without being clearly linked to climate change or climate variability indices. For chemosynthetic ecosystems, we have identified 14 sites for which there are some published long-term data. Data for temporal changes at chemosynthetic ecosystems are scarce, with few sites being subjected to repeated visits. However, the limited evidence from hydrothermal vents suggests that at fast-spreading centres such as the East Pacific Rise, vent communities are impacted on decadal scales

  19. Organic carbon accumulation in modern sediments of the Angola basin influenced by the Congo deep-sea fan

    Science.gov (United States)

    Baudin, François; Martinez, Philippe; Dennielou, Bernard; Charlier, Karine; Marsset, Tania; Droz, Laurence; Rabouille, Christophe

    2017-08-01

    Geochemical data (total organic carbon-TOC content, δ13Corg, C:N, Rock-Eval analyses) were obtained on 150 core tops from the Angola basin, with a special focus on the Congo deep-sea fan. Combined with the previously published data, the resulting dataset (322 stations) shows a good spatial and bathymetric representativeness. TOC content and δ13Corg maps of the Angola basin were generated using this enhanced dataset. The main difference in our map with previously published ones is the high terrestrial organic matter content observed downslope along the active turbidite channel of the Congo deep-sea fan till the distal lobe complex near 5000 m of water-depth. Interpretation of downslope trends in TOC content and organic matter composition indicates that lateral particle transport by turbidity currents is the primary mechanism controlling supply and burial of organic matter in the bathypelagic depths.

  20. Mediterranean and Atlantic deep-sea fish assemblages: differences in biomass composition and size-related structure

    Directory of Open Access Journals (Sweden)

    Enric Massutí

    2004-12-01

    Full Text Available Data obtained over a period of twenty years from 214 bottom trawls, towed on a single warp at depths between 402 and 1993 m in the western Mediterranean (Algerian and Balearic basins and eastern North Atlantic (Rockall Trough and Porcupine Seabight, allowed a standardised comparison of density, biomass composition and size-related structure for both the whole fish fauna and for the most common species found within the deep-sea fish assemblages. All four areas are characterised by distinctly different and well-documented oceanographic conditions, biogeographical affinities and fishing exploitation. The results showed clear differences between the Atlantic and the Mediterranean deep-sea fish fauna, not only in density, species richness and composition, but also in the structure of the biomass that constitutes these assemblages. These differences are discussed in relation to environmental conditions and fishing pattern, which have determined the adaptive responses of both individual species and the whole ecosystem.

  1. Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean.

    Science.gov (United States)

    Courtene-Jones, Winnie; Quinn, Brian; Gary, Stefan F; Mogg, Andrew O M; Narayanaswamy, Bhavani E

    2017-12-01

    Microplastics are widespread in the natural environment and present numerous ecological threats. While the ultimate fate of marine microplastics are not well known, it is hypothesized that the deep sea is the final sink for this anthropogenic contaminant. This study provides a quantification and characterisation of microplastic pollution ingested by benthic macroinvertebrates with different feeding modes (Ophiomusium lymani, Hymenaster pellucidus and Colus jeffreysianus) and in adjacent deep water > 2200 m, in the Rockall Trough, Northeast Atlantic Ocean. Despite the remote location, microplastic fibres were identified in deep-sea water at a concentration of 70.8 particles m -3 , comparable to that in surface waters. Of the invertebrates examined (n = 66), 48% ingested microplastics with quantities enumerated comparable to coastal species. The number of ingested microplastics differed significantly between species and generalized linear modelling identified that the number of microplastics ingested for a given tissue mass was related to species and not organism feeding mode or the length or overall weight of the individual. Deep-sea microplastics were visually highly degraded with surface areas more than double that of pristine particles. The identification of synthetic polymers with densities greater and less than seawater along with comparable quantities to the upper ocean indicates processes of vertical re-distribution. This study presents the first snapshot of deep ocean microplastics and the quantification of microplastic pollution in the Rockall Trough. Additional sampling throughout the deep-sea is required to assess levels of microplastic pollution, vertical transportation and sequestration, which have the potential to impact the largest global ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)

    OpenAIRE

    Doya, C.; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; de Leo, Fabio; Juniper, S. Kim; Thomsen, L.; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure ope...

  3. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV)

    OpenAIRE

    Doya, Carolina; Duperron, Sébastien; Chatzievangelou, Damianos; Bahamon, Nixon; Purser, Autun; De Leo, Fabio C.; Juniper, S. Kim; Thomsen, Laurenz; Aguzzi, Jacopo

    2017-01-01

    Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs), such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled inf...

  4. Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge

    OpenAIRE

    Cui, Zhisong; Lai, Qiliang; Dong, Chunming; Shao, Zongze

    2008-01-01

    The bacteria involved in the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in deep sea subsurface environments are largely unknown. In order to reveal their biodiversity, sediments from 2.2 m under the bottom surface at a water depth of 3542 m were sampled on the Middle Atlantic Ridge with a gravity column sampler. The sediments were promptly enriched with either crude oil or a mixture of PAHs (naphthalene, phenanthrene and pyrene) as the sole carbon source, and further enriched w...

  5. Trace Fossils as Indicators of Depositional Sequence Boundaries in Lower Carboniferous Deep-Sea Fan Environment Moravice Formation, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Lehotský, T.; Bábek, O.; Mikuláš, Radek; Zapletal, J.

    2002-01-01

    Roč. 14, - (2002), s. 59-60 ISSN 1210-9606. [Áelazno 2002. Meeting of the Czech Tectonic Studies Group /7./. Áelazno, 09.05.2002-12.05.2002] R&D Projects: GA ČR GA205/00/0118 Keywords : trace fossils * Carboniferous * Deep- Sea Environment Subject RIV: DB - Geology ; Mineralogy http://geolines.gli.cas.cz/fileadmin/volumes/volume14/G14-059.pdf

  6. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys

    Science.gov (United States)

    Quattrini, Andrea; Demopoulos, Amanda W.J.

    2016-01-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494–4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities

  7. Chemical compositions of magnetic, stony spherules from deep-sea sediments determined by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Yamakoshi, Kazuo

    1984-01-01

    Chemical compositions of magnetic, stony spherules from deep sea sediments were determined by instrumental neutron activation analysis. High Ir, Au, Ni and Co contents indicate their extraterrestrial origin. The obtained compositions are considerably different from those of chondrites. It can be qualitatively interpreted, however, that cosmic matters having the compositions of chondrites are changed into magnetic, stony spherules by thermal degenerations during their atmospheric entry. (author)

  8. Bathyal feasting: post-spawning squid as a source of carbon for deep-sea benthic communities.

    Science.gov (United States)

    Hoving, H J T; Bush, S L; Haddock, S H D; Robison, B H

    2017-12-20

    In many oceanic carbon budgets there is a discrepancy between the energetic requirements of deep-sea benthic communities and the supply of organic matter. This suggests that there are unidentified and unmeasured food sources reaching the seafloor. During 11 deep-sea remotely operated vehicle (ROV) surveys in the Gulf of California, the remains (squid carcasses and hatched-out egg sheets) of 64 post-brooding squid were encountered. As many as 36 remains were encountered during a single dive. To our knowledge this is one of the largest numbers of natural food falls of medium-size deep-sea nekton described to date. Various deep-sea scavengers (Ophiuroidea, Holothuroidea, Decapoda, Asteroidea, Enteropneusta) were associated with the remains. Although many of the 80 examined ROV dives did not encounter dead squids or egg sheets ( n = 69), and the phenomenon may be geographically and temporally restricted, our results show that dead, sinking squid transport carbon from the water column to the seafloor in the Gulf of California. Based on food fall observations from individual dives, we estimate that annual squid carcass depositions may regionally contribute from 0.05 to 12.07 mg C m -2 d -1 to the seafloor in the areas where we observed the remains. The sinking of squid carcasses may constitute a significant but underestimated carbon vector between the water column and the seafloor worldwide, because squid populations are enormous and are regionally expanding as a result of climate change and pressure on fish stocks. In the future, standardized methods and surveys in geographical regions that have large squid populations will be important for investigating the overall contribution of squid falls to regional carbon budgets. © 2017 The Author(s).

  9. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys.

    Science.gov (United States)

    Quattrini, Andrea M; Demopoulos, Amanda W J

    2016-12-01

    A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013-2014) provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep) and depths (494-4689 m) off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals) of all observed fishes (25 species) were confirmed with ectoparasites, but higher percentages (∼33%) were observed for some of the most abundant fish species (e.g., Antimora rostrata). Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae) that infected four host species, two isopod families (Cymothoidae, Aegidae) that infected three host species, and one isopod family (Gnathiidae) that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp.), the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic communities, our

  10. Ectoparasitism on deep-sea fishes in the western North Atlantic: In situ observations from ROV surveys

    Directory of Open Access Journals (Sweden)

    Andrea M. Quattrini

    2016-12-01

    Full Text Available A complete understanding of how parasites influence marine ecosystem functioning requires characterizing a broad range of parasite-host interactions while determining the effects of parasitism in a variety of habitats. In deep-sea fishes, the prevalence of parasitism remains poorly understood. Knowledge of ectoparasitism, in particular, is limited because collection methods often cause dislodgment of ectoparasites from their hosts. High-definition video collected during 43 remotely operated vehicle surveys (2013–2014 provided the opportunity to examine ectoparasitism on fishes across habitats (open slope, canyon, seamount, cold seep and depths (494–4689 m off the northeastern U.S., while providing high-resolution images and valuable observations of fish behavior. Only 9% (n = 125 individuals of all observed fishes (25 species were confirmed with ectoparasites, but higher percentages (∼33% were observed for some of the most abundant fish species (e.g., Antimora rostrata. Ectoparasites included two copepod families (Lernaeopodidae, Sphyriidae that infected four host species, two isopod families (Cymothoidae, Aegidae that infected three host species, and one isopod family (Gnathiidae that infected 19 host species. Hyperparasitism was also observed. As host diversity declined with depth, ectoparasite diversity declined; only gnathiids were observed at depths down to 3260 m. Thus, gnathiids appear to be the most successful group to infect a diversity of fishes across a broad depth range in the deep sea. For three dominant fishes (A. rostrata, Nezumia bairdii, Synaphobranchus spp., the abundance and intensity of ectoparasitism peaked in different depths and habitats depending on the host species examined. Notably, gnathiid infections were most intense on A. rostrata, particularly in submarine canyons, suggesting that these habitats may increase ectoparasite infections. Although ectoparasitism is often overlooked in deep-sea benthic

  11. A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd2+ tolerance and precipitation

    Science.gov (United States)

    Wang, Clifford L.; Ozuna, Samantha C.; Clark, Douglas S.; Keasling, Jay D.

    2009-01-01

    Pseudomonas aeruginosa CW961, an isolate from the vicinity of a deep-sea hydrothermal vent, grew in the presence of 5 mM Cd2+ and removed Cd2+ from solution. Sulfate was sufficient for growth when Cd2+ was not present in the culture medium; however, thiosulfate was necessary for Cd2+ precipitation and cell survival in the presence of Cd2+. PMID:20725529

  12. A deep-sea hydrothermal vent isolate, Pseudomonas aeruginosa CW961, requires thiosulfate for Cd tolerance and precipitation.

    Science.gov (United States)

    Wang, Clifford L; Ozuna, Samantha C; Clark, Douglas S; Keasling, Jay D

    2002-04-01

    Pseudomonas aeruginosa CW961, an isolate from the vicinity of a deep-sea hydrothermal vent, grew in the presence of 5 mM Cd(2+) and removed Cd(2+) from solution. Sulfate was sufficient for growth when Cd(2+) was not present in the culture medium; however, thiosulfate was necessary for Cd(2+) precipitation and cell survival in the presence of Cd(2+).

  13. The effects of natural iron fertilisation on deep-sea ecology: the Crozet Plateau, Southern Indian Ocean.

    Directory of Open Access Journals (Sweden)

    George A Wolff

    Full Text Available The addition of iron to high-nutrient low-chlorophyll (HNLC oceanic waters stimulates phytoplankton, leading to greater primary production. Large-scale artificial ocean iron fertilization (OIF has been proposed as a means of mitigating anthropogenic atmospheric CO(2, but its impacts on ocean ecosystems below the photic zone are unknown. Natural OIF, through the addition of iron leached from volcanic islands, has been shown to enhance primary productivity and carbon export and so can be used to study the effects of OIF on life in the ocean. We compared two closely-located deep-sea sites (∼400 km apart and both at ∼4200 m water depth to the East (naturally iron fertilized; +Fe and South (HNLC of the Crozet Islands in the southern Indian Ocean. Our results suggest that long-term geo-engineering of surface oceanic waters via artificial OIF would lead to significant changes in deep-sea ecosystems. We found that the +Fe area had greater supplies of organic matter inputs to the seafloor, including polyunsaturated fatty acid and carotenoid nutrients. The +Fe site also had greater densities and biomasses of large deep-sea animals with lower levels of evenness in community structuring. The species composition was also very different, with the +Fe site showing similarities to eutrophic sites in other ocean basins. Moreover, major differences occurred in the taxa at the +Fe and HNLC sites revealing the crucial role that surface oceanic conditions play in changing and structuring deep-sea benthic communities.

  14. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge

    Science.gov (United States)

    Yuan, Jun; Lai, Qiliang; Sun, Fengqin; Zheng, Tianling; Shao, Zongze

    2015-01-01

    The bacteria involved in organic pollutant degradation in pelagic deep-sea environments are largely unknown. In this report, the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria was analyzed in deep-sea water on the Southwest Indian Ridge (SWIR). After enrichment with a PAH mixture (phenanthrene, anthracene, fluoranthene, and pyrene), nine bacterial consortia were obtained from depths of 3946–4746 m. While the consortia degraded all four PAHs when supplied in a mixture, when PAHs were tested individually, only phenanthrene supported growth. Thus, degradation of the PAH mixture reflected a cometabolism of anthracene, fluoranthene, and pyrene with phenanthrene. Further, both culture-dependent and independent methods revealed many new bacteria involved in PAH degradation. Specifically, the alpha and gamma subclasses of Proteobacteria were confirmed as the major groups within the communities. Additionally, Actinobacteria, the CFB group and Firmicutes were detected. Denaturing Gradient Gel Electrophoresis (DGGE) analysis showed that bacteria closely affiliated with Alcanivorax, Novosphingobium, and Rhodovulum occurred most frequently in different PAH-degrading consortia. By using general heterotrophic media, 51 bacteria were isolated from the consortia and of these 34 grew with the PAH mixture as a sole carbon source. Of these, isolates most closely related to Alterierythrobacter, Citricella, Erythrobacter, Idiomarina, Lutibacterium, Maricaulis, Marinobacter, Martelella, Pseudidiomarina, Rhodobacter, Roseovarius, Salipiger, Sphingopyxis, and Stappia were found to be PAH degraders. To the best of our knowledge, this is the first time these bacteria have been identified in this context. In summary, this report revealed significant diversity among the PAH-degrading bacteria in the deep-sea water column. These bacteria may play a role in PAH removal in deep-sea environments. PMID:26379634

  15. The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography

    Science.gov (United States)

    Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagnon, Alexander C.; Prouty, Nancy G.; Brendan Roark, E.; de Flierdt, Tina van

    2014-01-01

    Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.

  16. Deep-Sea Mega-Epibenthic Assemblages from the SW Portuguese Margin (NE Atlantic) Subjected to Bottom-Trawling Fisheries

    OpenAIRE

    Sofia P. Ramalho; Sofia P. Ramalho; Lidia Lins; Lidia Lins; Juan Bueno-Pardo; Eliana A. Cordova; Joel M. Amisi; Nikolaos Lampadariou; Ann Vanreusel; Marina R. Cunha

    2017-01-01

    Bottom-trawling fisheries are a common threat to the health of continental margins worldwide. Together with numerous environmental and biological processes, physical disturbance induced by trawlers can largely shape the benthic habitats and their associated assemblages. At the SW Portuguese Margin, crustacean bottom trawlers have exploited deep-sea habitats for a few decades, but its effects on the benthic biodiversity are practically unknown. During the spring-summer of 2013 and 2014, severa...

  17. The geochemistry of deep-sea coral skeletons: a review of vital effects and applications for palaeoceanography

    Science.gov (United States)

    Robinson, Laura F.; Adkins, Jess F.; Frank, Norbert; Gagon, Alexander C.; Prouty, Nancy G.; Roark, E. Brendan; van de Flierdt, Tina

    2014-01-01

    Deep-sea corals were discovered over a century ago, but it is only over recent years that focused efforts have been made to explore the history of the oceans using the geochemistry of their skeletal remains. They offer a promising archive of past oceanic environments given their global distribution, layered growth patterns, longevity and preservation as well as our ability to date them using radiometric techniques. This paper provides an overview of the current state-of-the-art in terms of geochemical approaches to using deep-sea coral skeletons to explore the history of the ocean. Deep-sea coral skeletons have a wide array of morphologies (e.g. solitary cup corals, branching colonial corals) and materials (calcite, aragonite and proteins). As such their biomineralization strategies are diverse, leading to complex geochemistry within coral skeletons. Notwithstanding these complications, progress has been made on developing methods for reconstructing the oceanographic environment in the past using trace elements and isotopic methods. Promising approaches within certain coral groups include clumped isotopes and Mg/Li for temperature reconstructions, boron isotopes and radiocarbon for carbon cycling, εNd, and radiocarbon for circulation studies and δ15N, P/Ca and Ba/Ca for nutrient tracer studies. Likewise there is now a range of techniques for dating deep-sea corals skeletons (e.g. U-series, radiocarbon), and determining their growth rates (e.g. radiocarbon and 210Pb). Dating studies on historic coral populations in the Atlantic, Southern Ocean and Pacific point to climate and environmental changes being dominant controls on coral populations over millennial and orbital timescales. This paper provides a review of a range of successes and promising approaches. It also highlights areas in which further research would likely provide new insights into biomineralization, palaeoceanography and distribution of past coral populations.

  18. Buried in time: Culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Raghukumar, S.; Sheelu, G.; Gupta, S.M.; Nath, B.N.; Rao, B.R.

    replicates were maintained for each treatment. After 10 days of incubation, the deep-sea culture vessels were decompressed gradually and the contents of the pouches were immersed in lactophenol-cotton blue stain. Percentage germination of spores... from the Saharan deserts during dust storms, reach the Caribbean islands in the Pacific and cause the aspergillosis disease in seafans (Shinn et al., 2000; Smith et al., 1996). It is likely that such spores might eventually sink to the deep...

  19. WHATS-3: An Improved Flow-Through Multi-bottle Fluid Sampler for Deep-Sea Geofluid Research

    Directory of Open Access Journals (Sweden)

    Junichi Miyazaki

    2017-06-01

    Full Text Available Deep-sea geofluid systems, such as hydrothermal vents and cold seeps, are key to understanding subseafloor environments of Earth. Fluid chemistry, especially, provides crucial information toward elucidating the physical, chemical, and biological processes that occur in these ecosystems. To accurately assess fluid and gas properties of deep-sea geofluids, well-designed pressure-tight fluid samplers are indispensable and as such they are important assets of deep-sea geofluid research. Here, the development of a new flow-through, pressure-tight fluid sampler capable of four independent sampling events (two subsamples for liquid and gas analyses from each is reported. This new sampler, named WHATS-3, is a new addition to the WHATS-series samplers and a major upgrade from the previous WHATS-2 sampler with improvements in sample number, valve operational time, physical robustness, and ease of maintenance. Routine laboratory-based pressure tests proved that it is suitable for operation up to 35 MPa pressure. Successful field tests of the new sampler were also carried out in five hydrothermal fields, two in Indian Ocean, and three in Okinawa Trough (max. depth 3,300 m. Relations of Mg and major ion species demonstrated bimodal mixing trends between a hydrothermal fluid and seawater, confirming the high quality of fluids sampled. The newly developed WHATS-3 sampler is well-balanced in sampling capability, field usability, and maintenance feasibility, and can serve as one of the best geofluid samplers available at present to conduct efficient research of deep-sea geofluid systems.

  20. The influence of larval migration and dispersal depth on potential larval trajectories of a deep-sea bivalve

    Science.gov (United States)

    McVeigh, Doreen M.; Eggleston, David B.; Todd, Austin C.; Young, Craig M.; He, Ruoying

    2017-09-01

    Many fundamental questions in marine ecology require an understanding of larval dispersal and connectivity, yet direct observations of larval trajectories are difficult or impossible to obtain. Although biophysical models provide an alternative approach, in the deep sea, essential biological parameters for these models have seldom been measured empirically. In this study, we used a biophysical model to explore the role of behaviorally mediated migration from two methane seep sites in the Gulf of Mexico on potential larval dispersal patterns and population connectivity of the deep-sea mussel ;Bathymodiolus; childressi, a species for which some biological information is available. Three possible larval dispersal strategies were evaluated for larvae with a Planktonic Larval Duration (PLD) of 395 days: (1) demersal drift, (2) dispersal near the surface early in larval life followed by an extended demersal period before settlement, and (3) dispersal near the surface until just before settlement. Upward swimming speeds varied in the model based on the best data available. Average dispersal distances for simulated larvae varied between 16 km and 1488 km. Dispersal in the upper water column resulted in the greatest dispersal distance (1173 km ± 2.00), followed by mixed dispersal depth (921 km ± 2.00). Larvae originating in the Gulf of Mexico can potentially seed most known seep metapopulations on the Atlantic continental margin, whereas larvae drifting demersally cannot (237 km ± 1.43). Depth of dispersal is therefore shown to be a critical parameter for models of deep-sea connectivity.

  1. Bacterial and archaeal communities in the deep-sea sediments of inactive hydrothermal vents in the Southwest India Ridge

    Science.gov (United States)

    Zhang, Likui; Kang, Manyu; Xu, Jiajun; Xu, Jian; Shuai, Yinjie; Zhou, Xiaojian; Yang, Zhihui; Ma, Kesen

    2016-05-01

    Active deep-sea hydrothermal vents harbor abundant thermophilic and hyperthermophilic microorganisms. However, microbial communities in inactive hydrothermal vents have not been well documented. Here, we investigated bacterial and archaeal communities in the two deep-sea sediments (named as TVG4 and TVG11) collected from inactive hydrothermal vents in the Southwest India Ridge using the high-throughput sequencing technology of Illumina MiSeq2500 platform. Based on the V4 region of 16S rRNA gene, sequence analysis showed that bacterial communities in the two samples were dominated by Proteobacteria, followed by Bacteroidetes, Actinobacteria and Firmicutes. Furthermore, archaeal communities in the two samples were dominated by Thaumarchaeota and Euryarchaeota. Comparative analysis showed that (i) TVG4 displayed the higher bacterial richness and lower archaeal richness than TVG11; (ii) the two samples had more divergence in archaeal communities than bacterial communities. Bacteria and archaea that are potentially associated with nitrogen, sulfur metal and methane cycling were detected in the two samples. Overall, we first provided a comparative picture of bacterial and archaeal communities and revealed their potentially ecological roles in the deep-sea environments of inactive hydrothermal vents in the Southwest Indian Ridge, augmenting microbial communities in inactive hydrothermal vents.

  2. Comparative analysis of deep-sea bacterioplankton OMICS revealed the occurrence of habitat-specific genomic attributes.

    Science.gov (United States)

    Smedile, Francesco; Messina, Enzo; La Cono, Violetta; Yakimov, Michail M

    2014-10-01

    Bathyal aphotic ocean represents the largest biotope on our planet, which sustains highly diverse but low-density microbial communities, with yet untapped genomic attributes, potentially useful for discovery of new biomolecules, industrial enzymes and pathways. In the last two decades, culture-independent approaches of high-throughput sequencing have provided new insights into structure and function of marine bacterioplankton, leading to unprecedented opportunities to accurately characterize microbial communities and their interactions with the environments. In the present review we focused on the analysis of relatively few deep-sea OMICS studies, completed thus far, to find the specific genomic patterns determining the lifeway and adaptation mechanisms of prokaryotes thriving in the dark deep ocean below the depth of 1000m. Phylogenomic and omic studies provided clear evidence that the bathyal microbial communities are distinct from the epipelagic counterparts and, along with generally larger genomes, possess their own habitat-specific genomic attributes. The high abundance in the deep ocean OMICS of the systems for environmental sensing, signal transduction and metabolic versatility as compared to the epipelagic counterparts is thought to enable the deep-sea bacterioplankton to rapidly adapt to changing environmental conditions associated with resource scarcity and high diversity of energy and carbon substrates in the bathyal biotopes. Together with a versatile heterotrophy, mixotrophy and anaplerosis are thought to enable the deep-sea bacterioplankton to cope with these environmental conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. An evaluation of deep-sea benthic megafauna length measurements obtained with laser and stereo camera methods

    Science.gov (United States)

    Dunlop, Katherine M.; Kuhnz, Linda A.; Ruhl, Henry A.; Huffard, Christine L.; Caress, David W.; Henthorn, Richard G.; Hobson, Brett W.; McGill, Paul; Smith, Kenneth L.

    2015-02-01

    The 25 year time-series collected at Station M, ~4000 m on the Monterey Deep-sea Fan, has substantially improved understanding of the role of the deep-ocean benthic environment in the global carbon cycle. However, the role of deep-ocean benthic megafauna in carbon bioturbation, remineralization and sequestration is relatively unknown. It is important to gather both accurate and precise measurements of megafaunal community abundance, size distribution and biomass to further define their role in deep-sea carbon cycling and possible sequestration. This study describes initial results from a stereo camera system attached to a remotely operated vehicle and analyzed using the EventMeasure photogrammetric measurement software to estimate the density, length and biomass of 10 species of mobile epibenthic megafauna. Stereo length estimates were compared to those from a single video camera system equipped with sizing lasers and analyzed using the Monterey Bay Aquarium Research Institute's Video Annotation and Reference System. Both camera systems and software were capable of high measurement accuracy and precision (megafauna species studied. The stereo image analysis process took substantially longer than the video analysis and the value of the EventMeasure software tool would be improved with developments in analysis automation. The stereo system is less influenced by object orientation and height, and is potentially a useful tool to be mounted on an autonomous underwater vehicle and for measuring deep-sea pelagic animals where the use of lasers is not feasible.

  4. Bones as biofuel: a review of whale bone composition with implications for deep-sea biology and palaeoanthropology.

    Science.gov (United States)

    Higgs, Nicholas D; Little, Crispin T S; Glover, Adrian G

    2011-01-07

    Whales are unique among vertebrates because of the enormous oil reserves held in their soft tissue and bone. These 'biofuel' stores have been used by humans from prehistoric times to more recent industrial-scale whaling. Deep-sea biologists have now discovered that the oily bones of dead whales on the seabed are also used by specialist and generalist scavenging communities, including many unique organisms recently described as new to science. In the context of both cetacean and deep-sea invertebrate biology, we review scientific knowledge on the oil content of bone from several of the great whale species: Balaenoptera musculus, Balaenoptera physalus, Balaenoptera borealis, Megaptera novaeangliae, Eschrichtius robustus, Physeter macrocephalus and the striped dolphin, Stenella coeruleoalba. We show that data collected by scientists over 50 years ago during the heyday of industrial whaling explain several interesting phenomena with regard to the decay of whale remains. Variations in the lipid content of bones from different parts of a whale correspond closely with recently observed differences in the taphonomy of deep-sea whale carcasses and observed biases in the frequency of whale bones at archaeological sites.

  5. HB1204: Deep-Sea Corals and Benthic Habitats in Northeast Deepwater Canyons on NOAA Ship Henry Bigelow between 20120703 and 20120718

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A multi-disciplinary team of scientists on the Henry Bigelow HB1204 mission surveyed and ground-truthed known or suspected deep-sea coral habitats associated with...

  6. Post-capture immune gene expression studies in the deep-sea hydrothermal vent mussel Bathymodiolus azoricus acclimatized to atmospheric pressure

    Digital Repository Service at National Institute of Oceanography (India)

    Barros, I.; Divya, B.; Martins, I.; Vandeperre, F.; Santos, R.S.; Bettencourt, R.

    gradients, and potentially toxic concentrations of sulfur, methane and heavy metals constitute driving factors for the foundation of chemosynthetic-based ecosystems. Of all the different macroorganisms found at deep-sea hydrothermal vents, the mussel...

  7. Nile damming as plausible cause of extinction and drop in abundance of deep-sea shrimp in the western Mediterranean over broad spatial scales

    Science.gov (United States)

    Cartes, J. E.; Maynou, F.; Fanelli, E.

    2011-11-01

    Greatly increased retention of flow in Nile River reservoirs was initiated in 1964, after completion of the Aswan High Dam, which induced important oceanographic changes in the Mediterranean Sea, including deep waters (below a depth of 150 m). Based on an analysis of data series starting in the 1940s/1950s, the giant red shrimp Aristaeomorpha foliacea has become locally extinct off of the Catalonian coasts (and elsewhere in the northwestern Mediterranean) at depths of 400-900 m, with a simultaneous and significant drop in the catches of red shrimp, Aristeus antennatus, in the second half of the 1960s. The extinction and sharp decline of deep-shrimp populations off Catalonian coast (at ca. 3200 km westwards from Nile Delta) followed the 1964 drop in Nile discharge with a delay of ca. 3-5 yrs (breakpoint analysis applied to data series). The breakpoints detected in the second half of 1960s both in Nile runoff and shrimps’ abundance were independent of climatic events in the study area (e.g. changes in NAO) and occurred before the increase in fishing effort off Catalonian coasts (breakpoint in 1973-1974). The Levantine Intermediate Water (LIW), inhabited by A. foliacea in the western Basin, had significant temperature (T) and salinity (S) increases in the 1950-1970 period, and Nile damming has contributed about 45% of the total S increase of Western Mediterranean deep-water masses from the 1960s to the late 1990s (Skliris and Lascaratos, 2004). This had to increase, for instance, LIW salinity at its formation site in the eastern Mediterranean. Nile damming was probably a triggering factor for the extinction/drop in abundance of deep-sea shrimp off Catalonian coasts.

  8. The Clam Trail: Blending Science Education, Public Art, and Tourism

    Science.gov (United States)

    Muscio, Cara; Flimlin, Gef; Bushnell, Rick

    2011-01-01

    The Barnegat Bay Shellfish Restoration's Clam Trail is an award-winning scavenger hunt that combines science education, public art, and tourism. This family adventure has participants seeking out giant painted fiberglass clams, upweller clam nurseries, and points of interest in search of science facts to record on their forms. Upon returning these…

  9. The influence of buried nodules on the mobility of metals in deep sea sediments

    Science.gov (United States)

    Heller, Christina; Kuhn, Thomas

    2017-04-01

    Hydrothermal fluids can extract significant amounts of heat from oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Fluid recharge and discharge occur at basement outcrops in between impermeable pelagic deep sea sediments. Recharge of oxic seawater causes upward oxygen diffusion into sediments overlying the permeable basalt in areas proximal to recharge sites. It is suggested that this oxygen has a strong impact on sediments and Mn-nodules during fluid exposure time. The aim of this study is to investigate if/how fluid flow through oceanic crust influence the distribution and element budget of Mn-nodules. Nodules occur widespread at the seafloor of the Clarion-Clipperton Zone (CCZ) in the equatorial North Pacific and were analyzed in many studies worldwide. Nodules buried in the deep sea sediments could be found only rarely (von Stackelberg, 1997, Geol. Soc. Spec. Publ., 119: 153-176). High resolution side-scan sonar recordings (unpublished Data BGR Hannover) indicate that there exist a coherent layer of nodules buried in the sediments of the working area. During the expedition SO 240/FLUM nodules were found on the sediment surface in 4200 to 4300 m water depth as well as in the sediment down to 985 cm below seafloor. In general, nodules consist of different nm- to µm-thick, dense and porous layers. The geochemical composition of bulk nodules and single nodule layers were determined by XRF, ICP-MS/OES, XRD and by high resolution analyses with electron microprobe and LA-ICP-MS. Dense layers have low Mn/Fe ratios ( 10) and high Ni+Cu and Li concentrations. The different compositions depend on different formation processes of the layers. They were formed by metal precipitation from oxic (hydrogenetic) and suboxic (diagenetic) bottom-near seawater and/or pore water (Wegorzewski and Kuhn, 2014, Mar. Geol. 357, 123-138). Preliminary results show that there are significant differences between the geochemical composition

  10. Eocene-Pliocene deep sea ostracodes from ODP site 744A, Southern Indian Ocean

    Directory of Open Access Journals (Sweden)

    Cristianini T. Bergue

    2010-09-01

    Full Text Available The Eocene-Pliocene deep sea ostracodes from the ODP site 744A (Kerguelen Plateau are herein studied under the taxonomic and paleoecologic aspects. 28 species are identified, being the genera Krithe, Cytherella and Dutoitella the most diversified. A faunal threshold was recorded in the Early Oligocene, which is tentatively explained under the knowledge of the paleoceanographical studies carried out not only in the Kerguelen Plateau but also in adjacent areas. The faunal turnover and variations in both richness and abundance possibly reflect the inception of psychrosphere and the influence of hydrological changes in the preservation of carapaces. Moreover, the influence of those changes on carbonate preservation is discussed as the cause of faunal impoverishment in the upper portion of the core.Ostracodes do intervalo Eoceno-Plioceno do sítio 744A do ODP (Platô Kerguelen são aqui estudados sob o aspecto taxonômico e paleoecológico. 28 espécies são identificadas, sendo os gêneros Krithe, Cytherella e Dutoitella os mais diversificados. Uma transição faunística registrada no Eoligoceno é investigada com base em estudos paleoceanográficos realizados no Platô Kerguelen e em áreas adjacentes. A transição e as variações de riqueza e abundância possivelmente refletem o estabelecimento da psicrosfera e mudanças hidrológicas associadas, na composição da fauna. Além disso, a influência destas mudanças na preservação do carbonato é discutida comopossível causa do empobrecimento da fauna na porção superior do testemunho.

  11. Implications of Deoxygenation and Acidification for Deep Sea Urchins in Southern California

    Science.gov (United States)

    Sato, Kirk Nicholas Suda

    Implications of multiple climate drivers for sea urchins were investigated across a spectrum of biological organization ranging from the urchin guild scale, to individual life history traits, to the geochemistry, material properties and porosity of sea urchin calcium carbonate skeletal tests. Using pink fragile sea urchins (Strongylocentrotus fragilis) on the southern California upwelling margin as a model species, links between biological traits and environmental parameters in nature across multiple spatial and temporal scales revealed correlations with dissolved oxygen (DO), pH, and temperature. Temporal trends in sea urchin populations assessed from trawl surveys conducted in southern California over the last 20 years (1994-2013) revealed changes in deep-sea urchin densities and depth distributions that coincide with trends in DO and pH on multidecadal and interdecadal (El Nino Southern Oscillation) time scales. The shallower urchin species ( Lytechinus pictus) decreased in density in the upper 200 m by 80%, and the deeper S. fragilis increased in density by ˜300%, providing the first evidence of habitat compression and expansion in sea urchin populations associated with secular and interdecadal variability in DO and pH. In this context, marketable food quality properties of the roe were compared between S. fragilis and the currently fished California red urchin, Mesocentrotus franciscanus, to assess the feasibility of developing a climate change-tolerant future S. fragilis trap fishery. Although roe color, texture, and resilience were similar between the two species, smaller and softer S. fragilis roe suggest it may only supplement, but not replace M. franciscanus in future fisheries. In comparisons across natural margin depth and climate gradients from 100-1100 m, S. fragilis exhibited reduced gonad production, smaller, weaker and more porous calcified tests in the Oxygen Minimum Zone (DO variability in species' traits along natural gradients on upwelling

  12. Archaea appear to dominate the microbiome of Inflatella pellicula deep sea sponges.

    Directory of Open Access Journals (Sweden)

    Stephen A Jackson

    Full Text Available Microbes associated with marine sponges play significant roles in host physiology. Remarkable levels of microbial diversity have been observed in sponges worldwide through both culture-dependent and culture-independent studies. Most studies have focused on the structure of the bacterial communities in sponges and have involved sponges sampled from shallow waters. Here, we used pyrosequencing of 16S rRNA genes to compare the bacterial and archaeal communities associated with two individuals of the marine sponge Inflatella pellicula from the deep-sea, sampled from a depth of 2,900 m, a depth which far exceeds any previous sequence-based report of sponge-associated microbial communities. Sponge-microbial communities were also compared to the microbial community in the surrounding seawater. Sponge-associated microbial communities were dominated by archaeal sequencing reads with a single archaeal OTU, comprising ~60% and ~72% of sequences, being observed from Inflatella pellicula. Archaeal sequencing reads were less abundant in seawater (~11% of sequences. Sponge-associated microbial communities were less diverse and less even than any other sponge-microbial community investigated to date with just 210 and 273 OTUs (97% sequence identity identified in sponges, with 4 and 6 dominant OTUs comprising ~88% and ~89% of sequences, respectively. Members of the candidate phyla, SAR406, NC10 and ZB3 are reported here from sponges for the first time, increasing the number of bacterial phyla or candidate divisions associated with sponges to 43. A minor cohort from both sponge samples (~0.2% and ~0.3% of sequences were not classified to phylum level. A single OTU, common to both sponge individuals, dominates these unclassified reads and shares sequence homology with a sponge associated clone which itself has no known close relative and may represent a novel taxon.

  13. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913.

    Science.gov (United States)

    Zeng, Zhenshun; Cai, Xingsheng; Wang, Pengxia; Guo, Yunxue; Liu, Xiaoxiao; Li, Baiyuan; Wang, Xiaoxue

    2017-01-01

    Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913), an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid-liquid interface and pellicles at the liquid-air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA). The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  14. Monitoring the sedimentary carbon in an artificially disturbed deep-sea sedimentary environment.

    Science.gov (United States)

    Nath, B Nagender; Khadge, N H; Nabar, Sapana; Raghukumar, Chandralata; Ingole, B S; Valsangkar, A B; Sharma, Rahul; Srinivas, K

    2012-05-01

    An area of 0.6 km(2) in the manganese nodule field of the Central Indian Basin was physically disturbed and sediments discharged in the near bottom waters to simulate seabed mining and study its impact on benthic ecosystem. An estimated 2 to 3 tonnes of sedimentary organic carbon (C(org)) was resuspended into the water column during a 9-day experiment. The majority of the sediment cores from within the disturbed area and areas towards the south showed a ~30% increase in C(org) content as well as an increase in carbon burial rates after disturbance, though with a reduction in carbon/phosphorus ratios. High specific surface area (SSA~25 m(2) g(-1)) and low C(org)/SSA ratios (mostly <0.5) are typical of deep-sea sediments. The increased C(org) values were probably due to the organic matter from dead biota and the migration and redeposition of fine-grained, organic-rich particles. Spatial distribution patterns of C(org) contents of cores taken before and after disturbance were used to infer the direction of plume migration and re-sedimentation. A positive relationship was observed between total and labile C(org) and macrobenthos density and total bacterial numbers prior to disturbance, whereas a negative relationship was seen after disturbance owing to drastic reduction in the density of macrofauna and bacteria. Overall decrease in labile organic matter, benthic biota and redistribution of organic matter suggest that the commercial mining of manganese nodules may have a significant immediate negative effect on the benthic ecosystem inducing changes in benthic community structure.

  15. Biogeography of Deep-Sea Benthic Bacteria at Regional Scale (LTER HAUSGARTEN, Fram Strait, Arctic)

    Science.gov (United States)

    Jacob, Marianne; Soltwedel, Thomas; Boetius, Antje; Ramette, Alban

    2013-01-01

    Knowledge on spatial scales of the distribution of deep-sea life is still sparse, but highly relevant to the understanding of dispersal, habitat ranges and ecological processes. We examined regional spatial distribution patterns of the benthic bacterial community and covarying environmental parameters such as water depth, biomass and energy availability at the Arctic Long-Term Ecological Research (LTER) site HAUSGARTEN (Eastern Fram Strait). Samples from 13 stations were retrieved from a bathymetric (1,284–3,535 m water depth, 54 km in length) and a latitudinal transect (∼ 2,500 m water depth; 123 km in length). 454 massively parallel tag sequencing (MPTS) and automated ribosomal intergenic spacer analysis (ARISA) were combined to describe both abundant and rare types shaping the bacterial community. This spatial sampling scheme allowed detection of up to 99% of the estimated richness on phylum and class levels. At the resolution of operational taxonomic units (97% sequence identity; OTU3%) only 36% of the Chao1 estimated richness was recovered, indicating a high diversity, mostly due to rare types (62% of all OTU3%). Accordingly, a high turnover of the bacterial community was also observed between any two sampling stations (average replacement of 79% of OTU3%), yet no direct correlation with spatial distance was observed within the region. Bacterial community composition and structure differed significantly with increasing water depth along the bathymetric transect. The relative sequence abundance of Verrucomicrobia and Planctomycetes decreased significantly with water depth, and that of Deferribacteres increased. Energy availability, estimated from phytodetrital pigment concentrations in the sediments, partly explained the variation in community structure. Overall, this study indicates a high proportion of unique bacterial types on relatively small spatial scales (tens of kilometers), and supports the sampling design of the LTER site HAUSGARTEN to study

  16. Biogeography of Deep-sea benthic bacteria at regional scale (LTER HAUSGARTEN, Fram Strait, Arctic.

    Directory of Open Access Journals (Sweden)

    Marianne Jacob

    Full Text Available Knowledge on spatial scales of the distribution of deep-sea life is still sparse, but highly relevant to the understanding of dispersal, habitat ranges and ecological processes. We examined regional spatial distribution patterns of the benthic bacterial community and covarying environmental parameters such as water depth, biomass and energy availability at the Arctic Long-Term Ecological Research (LTER site HAUSGARTEN (Eastern Fram Strait. Samples from 13 stations were retrieved from a bathymetric (1,284-3,535 m water depth, 54 km in length and a latitudinal transect (∼ 2,500 m water depth; 123 km in length. 454 massively parallel tag sequencing (MPTS and automated ribosomal intergenic spacer analysis (ARISA were combined to describe both abundant and rare types shaping the bacterial community. This spatial sampling scheme allowed detection of up to 99% of the estimated richness on phylum and class levels. At the resolution of operational taxonomic units (97% sequence identity; OTU3% only 36% of the Chao1 estimated richness was recovered, indicating a high diversity, mostly due to rare types (62% of all OTU3%. Accordingly, a high turnover of the bacterial community was also observed between any two sampling stations (average replacement of 79% of OTU3%, yet no direct correlation with spatial distance was observed within the region. Bacterial community composition and structure differed significantly with increasing water depth along the bathymetric transect. The relative sequence abundance of Verrucomicrobia and Planctomycetes decreased significantly with water depth, and that of Deferribacteres increased. Energy availability, estimated from phytodetrital pigment concentrations in the sediments, partly explained the variation in community structure. Overall, this study indicates a high proportion of unique bacterial types on relatively small spatial scales (tens of kilometers, and supports the sampling design of the LTER site HAUSGARTEN to

  17. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    KAUST Repository

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  18. Identification, visualization, and sorting of translationally active microbial consortia from deep-sea methane seeps

    Science.gov (United States)

    Hatzenpichler, R.; Connon, S. A.; Goudeau, D.; Malmstrom, R.; Woyke, T.; Orphan, V. J.

    2015-12-01

    Within the past few years, great progress has been made in tapping the genomes of individual cells separated from environmental samples. Unfortunately, however, most often these efforts have been target blind, as they did not pre-select for taxa of interest or focus on metabolically active cells that could be considered key species of the system at the time. This problem is particularly pronounced in low-turnover systems such as deep sea sediments. In an effort to tap the genetic potential hidden within functionally active cells, we have recently developed an approach for the in situ fluorescent tracking of protein synthesis in uncultured cells via bioorthogonal non-canonical amino acid-tagging (BONCAT). This technique depends on the incorporation of synthetic amino acids that carry chemically modifiable tags into newly made proteins, which later can be visualized via click chemistry-mediated fluorescence-labeling. BONCAT is thus able to specifically target proteins that have been expressed in reaction to an experimental condition. We are particularly interested in using BONCAT to understand the functional potential of slow-growing syntrophic consortia of anaerobic methanotrophic archaea and sulfate-reducing bacteria which together catalyze the anaerobic oxidation of methane (AOM) in marine methane seeps. In order to specifically target consortia that are active under varying environmental regimes, we are studying different subpopulations of these inter-domain consortia via a combination of BONCAT with rRNA-targeted FISH. We then couple the BONCAT-enabled staining of active consortia with their separation from inactive members of the community via fluorescence-activated cell-sorting (FACS) and metagenomic sequencing of individual consortia. Using this approach, we were able to identify previously unrecognized AOM-partnerships. By comparing the mini-metagenomes obtained from individual consortia with each other we are starting to gain a more hollistic understanding

  19. Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments

    KAUST Repository

    Wang, Yong

    2016-07-01

    Aerophobetes (or CD12) is a recently defined bacterial phylum, of which the metabolic processes and ecological importance remain unclear. In the present study, we obtained the draft genome of an Aerophobetes bacterium TCS1 from saline sediment near the Thuwal cold seep in the Red Sea using a genome binning method. Analysis of 16S rRNA genes of TCS1 and close relatives revealed wide distribution of Aerophobetes in deep-sea sediments. Phylogenetic relationships showed affinity between Aerophobetes TCS1 and some thermophilic bacterial phyla. The genome of TCS1 (at least 1.27 Mbp) contains a full set of genes encoding core metabolic pathways, including glycolysis and pyruvate fermentation to produce acetyl-CoA and acetate. The identification of cross-membrane sugar transporter genes further indicates its potential ability to consume carbohydrates preserved in the sediment under the microbial mat. Aerophobetes bacterium TCS1 therefore probably carried out saccharolytic and fermentative metabolism. The genes responsible for autotrophic synthesis of acetyl-CoA via the Wood–Ljungdahl pathway were also found in the genome. Phylogenetic study of the essential genes for the Wood–Ljungdahl pathway implied relative independence of Aerophobetes bacterium from the known acetogens and methanogens. Compared with genomes of acetogenic bacteria, Aerophobetes bacterium TCS1 genome lacks the genes involved in nitrogen metabolism, sulfur metabolism, signal transduction and cell motility. The metabolic activities of TCS1 might depend on geochemical conditions such as supplies of CO2, hydrogen and sugars, and therefore the TCS1 might be a facultative bacterium in anaerobic saline sediments near cold seeps. © 2016, Science China Press and Springer-Verlag Berlin Heidelberg.

  20. Biofilm Formation and Heat Stress Induce Pyomelanin Production in Deep-Sea Pseudoalteromonas sp. SM9913

    Directory of Open Access Journals (Sweden)

    Zhenshun Zeng

    2017-09-01

    Full Text Available Pseudoalteromonas is an important bacterial genus present in various marine habitats. Many strains of this genus are found to be surface colonizers on marine eukaryotes and produce a wide range of pigments. However, the exact physiological role and mechanism of pigmentation were less studied. Pseudoalteromonas sp. SM9913 (SM9913, an non-pigmented strain isolated from the deep-sea sediment, formed attached biofilm at the solid–liquid interface and pellicles at the liquid–air interface at a wide range of temperatures. Lower temperatures and lower nutrient levels promoted the formation of attached biofilm, while higher nutrient levels promoted pellicle formation of SM9913. Notably, after prolonged incubation at higher temperatures growing planktonically or at the later stage of the biofilm formation, we found that SM9913 released a brownish pigment. By comparing the protein profile at different temperatures followed by qRT-PCR, we found that the production of pigment at higher temperatures was due to the induction of melA gene which is responsible for the synthesis of homogentisic acid (HGA. The auto-oxidation of HGA can lead to the formation of pyomelanin, which has been shown in other bacteria. Fourier Transform Infrared Spectrometer analysis confirmed that the pigment produced in SM9913 was pyomelanin-like compound. Furthermore, we demonstrated that, during heat stress and during biofilm formation, the induction level of melA gene was significantly higher than that of the hmgA gene which is responsible for the degradation of HGA in the L-tyrosine catabolism pathway. Collectively, our results suggest that the production of pyomelanin of SM9913 at elevated temperatures or during biofilm formation might be one of the adaptive responses of marine bacteria to environmental cues.

  1. A simple model for the dispersion of radioactive wastes dumped on the deep-sea bed

    International Nuclear Information System (INIS)

    Shepherd, J.G.

    1976-01-01

    A simple model has been developed for the dispersion of radioactive materials in a closed and finite ocean. It allows for the simultaneous action of both diffusion and horizontal (but not vertical) advection, and thus avoids the major limitations of previous models such as that of Webb and Morley. It is sufficiently versatile to handle non-Fickian diffusion and radioactive decay, but requires numerical integration using some semi-empirical form for the Green's function of diffusion from a point source. The model has been used to estimate equilibrium concentrations of radioactive materials in sea water arising from the continuous release of material from a dump on the bottom of the deep ocean, using parameters appropriate for the North Atlantic. It is found that except under rather extreme conditions the surface concentrations do not exceed the long-term average value which would be established in a perfectly mixed ocean. The concentrations are also rather insensitive to the values of the diffusion and advection parameters used, except for that for vertical diffusion, but depend strongly on the overall removal rate of material from the ocean, including processes other than radioactive decay. It is suggested that safety assessments of deep-sea dumping should utilize estimates of the environmental capacities of the oceans based on the long-term 'well-mixed' average concentrations (which are very easily calculated) using a safety factor of no more than ten to allow for the possible effects of pluming and upwelling. In so far as their results are comparable, the present model yields estimates which are close to those of the Webb-Morley model for overall half-lives between 30 and 3000 years, but which become increasingly more restrictive for longer-lived materials. (author)

  2. Biochemical characterization of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2.

    Science.gov (United States)

    Zhang, Likui; Huang, Yanchao; Xu, Dandan; Yang, Lixiang; Qian, Kaicheng; Chang, Guozhu; Gong, Yong; Zhou, Xiaojian; Ma, Kesen

    2016-09-01

    His-Asn-His (HNH) proteins are a very common family of small nucleic acid-binding proteins that are generally associated with endonuclease activity and are found in all kingdoms of life. Although HNH endonucleases from mesophiles have been widely investigated, the biochemical functions of HNH endonucleases from thermophilic bacteriophages remain unknown. Here, we characterized the biochemical properties of a thermostable HNH endonuclease from deep-sea thermophilic bacteriophage GVE2. The recombinant GVE2 HNH endonuclease exhibited non-specific cleavage activity at high temperature. The optimal temperature of the GVE2 HNH endonuclease for cleaving DNA was 60-65 °C, and the enzyme retained its DNA cleavage activity even after heating at 100 °C for 30 min, suggesting the enzyme is a thermostable endonuclease. The GVE2 HNH endonuclease cleaved DNA over a wide pH spectrum, ranging from 5.5 to 9.0, and the optimal pH for the enzyme activity was 8.0-9.0. Furthermore, the GVE2 HNH endonuclease activity was dependent on a divalent metal ion. While the enzyme is inactive in the presence of Cu(2+), the GVE2 HNH endonuclease displayed cleavage activity of varied efficiency with Mn(2+), Mg(2+), Ca(2+), Fe(2+), Co(2+), Zn(2+), and Ni(2+). The GVE2 HNH endonuclease activity was inhibited by NaCl. This study provides the basis for determining the role of this endonuclease in life cycle of the bacteriophage GVE2 and suggests the potential application of the enzyme in molecular biology and biotechnology.

  3. Food web flows through a sub-arctic deep-sea benthic community

    Science.gov (United States)

    Gontikaki, E.; van Oevelen, D.; Soetaert, K.; Witte, U.

    2011-11-01

    The benthic food web of the deep Faroe-Shetland Channel (FSC) was modelled by using the linear inverse modelling methodology. The reconstruction of carbon pathways by inverse analysis was based on benthic oxygen uptake rates, biomass data and transfer of labile carbon through the food web as revealed by a pulse-chase experiment. Carbon deposition was estimated at 2.2 mmol C m -2 d -1. Approximately 69% of the deposited carbon was respired by the benthic community with bacteria being responsible for 70% of the total respiration. The major fraction of the labile detritus flux was recycled within the microbial loop leaving merely 2% of the deposited labile phytodetritus available for metazoan consumption. Bacteria assimilated carbon at high efficiency (0.55) but only 24% of bacterial production was grazed by metazoans; the remaining returned to the dissolved organic matter pool due to viral lysis. Refractory detritus was the basal food resource for nematodes covering ∼99% of their carbon requirements. On the contrary, macrofauna seemed to obtain the major part of their metabolic needs from bacteria (49% of macrofaunal consumption). Labile detritus transfer was well-constrained, based on the data from the pulse-chase experiment, but appeared to be of limited importance to the diet of the examined benthic organisms (preferred prey, in this case, was other macrofaunal animals rather than nematodes. Bacteria and detritus contributed 53% and 12% to the total carbon ingestion of carnivorous polychaetes suggesting a high degree of omnivory among higher consumers in the FSC benthic food web. Overall, this study provided a unique insight into the functioning of a deep-sea benthic community and demonstrated how conventional data can be exploited further when combined with state-of-the-art modelling approaches.

  4. Dependence of Bacterial Magnetosome Morphology on Chemical Conditions in Deep-sea Sediments

    Science.gov (United States)

    Yamazaki, T.; Suzuki, Y.; Kawamura, N.

    2016-12-01

    Magnetotactic bacteria (MTB) should play an important role for biogeochemical cycles of iron. MTB are considered to be microaerophilic and most commonly live near or below the oxic-anoxic transition zone (OATZ). However, common occurrence of magnetofossils in Pacific red clay (Yamazaki & Shimono, 2013), which contains abundant dissolved oxygen and does not have an OATZ, may conflict with the widespread interpretations of the ecology of MTB. For better understanding of the ecology in deep-sea sediments, we conducted rock-magnetic, biogeochemical, and microbiological analyses of Japan Sea surface sediments with an OATZ. Rock magnetic proxies and TEM images indicate that magnetofossils occur throughout the sediment columns regardless of the OATZ, even at the sediment-water interface. The proportion of magnetofossils with teardrop morphology increases near the OATZ. These suggest that some species producing teardrop magnetosomes prefer a chemical condition near the OATZ, whereas other species may live in microaerophilic microenvironments around organic particles near the sediment-water interface. The fact that morphology of magnetofossils in Pacific red clay is >90% octahedral suggests that even some species of MTB that yield octahedral magnetosomes might be aerotolerant and prefer oxic environments. To strengthen the notion above, pyrosequencing of 16S rRNA gene sequences was conducted for the corresponding sediments. Among diverse bacterial lineages known to produce magnetosomes, 16S rRNA gene sequences phylogenetically affiliated within the lineage of Nitrospirae known to produce teardrop magnetosomes were distributed only around the OATZ, whereas those affiliated within the family Rhodospirillaceae (α-Proteobacteria) and known to produce octahedral magnetosomes were distributed in all investigated Japan Sea sediments regardless of the OATZ. It is strongly suggested that the dependency on the OATZ is different among phylogenetically and morphologically diverse MTB.

  5. Continuous cooling transformation behaviors of CLAM steel

    International Nuclear Information System (INIS)

    Wu, Qing-sheng; Zheng, Shu-hui; Huang, Qun-ying; Liu, Shao-jun; Han, Yang-yang

    2013-01-01

    The continuous cooling transformation (CCT) behaviors of CLAM (China Low Activation Martensitic) steel were studied, the CCT diagram was constructed, and the influence of cooling rates on the microstructures was also investigated. The microstructures were investigated using optical microscopy (OM) and microhardness tests were also carried out. The results showed that CLAM steel possessed high hardenability and there were ferrite and martensite transformation regions only. The maximum cooling rate to form ferrite microstructure was found to be 10–12 K/min. In order to obtain fully ferrite microstructure, the cooling rate should be lower than 1 K/min. The CCT diagram also gave relevant parameters such as the transformation temperatures, i.e., A c1 , A c3 , M s and M f were 1124 K, 1193 K, 705 K and 593 K, respectively. The diagram made it possible to predict the microstructures and properties of CLAM steel with different cooling rates

  6. Stratified prokaryote network in the oxic-anoxic transition of a deep-sea halocline

    NARCIS (Netherlands)

    Daffonchio, D; Borin, S; Brusa, T; Brusetti, L; van der Wielen, PWJJ; Bolhuis, Henk; Yakimov, MM; D'Auria, G; Giuliano, L; Marty, D; Tamburini, C; McGenity, TJ; Hallsworth, JE; Sass, AM; Timmis, KN; Tselepides, A; de Lange, GJ; Hubner, A; Thomson, J; Varnavas, SP; Gasparoni, F; Gerber, HW; Malinverno, E; Corselli, C; Garcin, J; McKew, B; Golyshin, PN; Lampadariou, N; Polymenakou, P; Calore, D; Cenedese, S; Zanon, F; Hoog, S

    2006-01-01

    The chemical composition of the Bannock basin has been studied in some detail(1,2). We recently showed that unusual microbial populations, including a new division of Archaea (MSBL1)(3), inhabit the NaCl-rich hypersaline brine. High salinities tend to reduce biodiversity(4), but when brines come

  7. Response of the Asiatic clam, Corbicula manilensis, to gamma radiation

    International Nuclear Information System (INIS)

    Tilly, L.J.; Corey, J.C.; Bibler, N.E.

    1977-01-01

    When heat exchangers for reactors were plugged by the Asiatic clam, acute gamma radiation was considered as a possible control. Clams were collected and sorted by size; during irradiation the clams were submerged in natural water. Clams of both sizes survived large doses with no radiation damage evident in 30 days. Mortality rose steeply at doses of 2.4 x 10 4 Rad and above; smaller clams showed a greater resistance than large ones. The feasibility of using periodic exposure to gamma radiation as a means for controlling corbicula infestations is discussed

  8. Abundance and Distribution of Diagnostic Carbon Fixation Genes in a Deep-Sea Hydrothermal Gradient Ecosystem

    Science.gov (United States)

    Blumenfeld, H. N.; Kelley, D. S.; Girguis, P. R.; Schrenk, M. O.

    2010-12-01

    The walls of deep-sea hydrothermal vent chimneys sustain steep thermal and chemical gradients resulting from the mixing of hot (350°C+) hydrothermal fluids with cold, oxygenated seawater. The chemical disequilibrium generated from this process has the potential to drive numerous chemolithoautotrophic metabolisms, many of which have been demonstrated to be operative in microbial pure cultures. In addition to the well-known Calvin Cycle, at least five additional pathways have been discovered including the Reverse Tricarboxylic Acid Cycle (rTCA), the Reductive Acetyl-CoA pathway, and the 3-hydroxyproprionate pathway. Most of the newly discovered pathways have been found in thermophilic and hyperthermophilic Bacteria and Archaea, which are the well represented in microbial diversity studies of hydrothermal chimney walls. However, to date, little is known about the environmental controls that impact various carbon fixation pathways. The overlap of limited microbial diversity with distinct habitat conditions in hydrothermal chimney walls provides an ideal setting to explore these relationships. Hydrothermal chimney walls from multiple structures recovered from the Juan de Fuca Ridge in the northeastern Pacific were sub-sampled and analyzed using PCR-based assays. Earlier work showed elevated microbial abundances in the outer portions of mature chimney walls, with varying ratios of Archaea to Bacteria from the outer to inner portions of the chimneys. Common phylotypes identified in these regions included Epsilonproteobacteria, Gammaproteobacteria, and Desulfurococcales. Total genomic DNA was extracted from mineralogically distinct niches within these structures and queried for genes coding key regulatory enzymes for each of the well studied carbon fixation pathways. Preliminary results show the occurrence of genes representing rTCA cycle (aclB) and methyl coenzyme A reductase (mcrA) - a proxy for the Reductive Acetyl-CoA Pathway within interior portion of mature

  9. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico

    Science.gov (United States)

    Armstrong-Altrin, John S.; Machain-Castillo, María Luisa

    2016-11-01

    The mineralogy, geochemistry, and radiocarbon ages of two sediment cores (GMX1 and GMX2) collected from the deep sea area of the Southwestern Gulf of Mexico (∼876-1752 m water depth) were studied to infer the sedimentation rate, provenance, heavy metal contamination, and depositional environment. The sediments are dominated by silt and clay fractions. The mineralogy determined by X-Ray diffractometry for the sediment cores reveals that montmorillonite and muscovite are the dominant clay minerals. The sections between 100 and 210 cm of the sediment cores GMX1 and GMX2, respectively, are characterized by the G. menardii group and G. Inflata planktonic foraminiferal species, which represent the Holocene and Pleistocene, respectively. The radiocarbon-age measurements of mixed planktonic foraminifera varied from ∼268 to 45,738 cal. years B.P and ∼104 to 25,705 cal. years B.P, for the sediment cores GMX1 and GMX2, respectively. The variation in age between the two sediment cores is due to a change in sediment accumulation rate, which was lowest at the location GMX1 (0.006 cm/yr) and highest at the location GMX2 (0.017 cm/yr). The chemical index of alteration (CIA), chemical index of weathering (CIW), and index of chemical maturity (ICV) values indicated a moderate intensity of weathering in the source area. The total rare earth element concentrations (∑REE) in the cores GMX1 and GMX2 vary from ∼94 to 171 and ∼78 to 151, respectively. The North American Shale Composite (NASC) normalized REE patterns showed flat low REE (LREE), heavy REE (HREE) depletion with low negative to positive Eu anomalies, which suggested that the sediments were likely derived from intermediate source rocks. The enrichment factor of heavy metals indicated that the Cd and Zn concentrations in the sediment cores were impacted by an anthropogenic source. The redox-proxy trace element ratios such as V/Cr, Ni/Co, Cu/Zn, (Cu + Mo)/Zn, and Ce/Ce* indicated that the sediments were deposited

  10. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages

    Directory of Open Access Journals (Sweden)

    María F. Sánchez Goñi

    2018-01-01

    Full Text Available Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth’s other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs, ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials and cold phases (Greenland stadials. The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold

  11. Pollen from the Deep-Sea: A Breakthrough in the Mystery of the Ice Ages.

    Science.gov (United States)

    Sánchez Goñi, María F; Desprat, Stéphanie; Fletcher, William J; Morales-Molino, César; Naughton, Filipa; Oliveira, Dulce; Urrego, Dunia H; Zorzi, Coralie

    2018-01-01

    Pollen from deep-sea sedimentary sequences provides an integrated regional reconstruction of vegetation and climate (temperature, precipitation, and seasonality) on the adjacent continent. More importantly, the direct correlation of pollen, marine and ice indicators allows comparison of the atmospheric climatic changes that have affected the continent with the response of the Earth's other reservoirs, i.e., the oceans and cryosphere, without any chronological uncertainty. The study of long continuous pollen records from the European margin has revealed a changing and complex interplay between European climate, North Atlantic sea surface temperatures (SSTs), ice growth and decay, and high- and low-latitude forcing at orbital and millennial timescales. These records have shown that the amplitude of the last five terrestrial interglacials was similar above 40°N, while below 40°N their magnitude differed due to precession-modulated changes in seasonality and, particularly, winter precipitation. These records also showed that vegetation response was in dynamic equilibrium with rapid climate changes such as the Dangaard-Oeschger (D-O) cycles and Heinrich events, similar in magnitude and velocity to the ongoing global warming. However, the magnitude of the millennial-scale warming events of the last glacial period was regionally-specific. Precession seems to have imprinted regions below 40°N while obliquity, which controls average annual temperature, probably mediated the impact of D-O warming events above 40°N. A decoupling between high- and low-latitude climate was also observed within last glacial warm (Greenland interstadials) and cold phases (Greenland stadials). The synchronous response of western European vegetation/climate and eastern North Atlantic SSTs to D-O cycles was not a pervasive feature throughout the Quaternary. During periods of ice growth such as MIS 5a/4, MIS 11c/b and MIS 19c/b, repeated millennial-scale cold-air/warm-sea decoupling events

  12. Dispersion of deep-sea hydrothermal vent effluents and larvae by submesoscale and tidal currents

    Science.gov (United States)

    Vic, Clément; Gula, Jonathan; Roullet, Guillaume; Pradillon, Florence

    2018-03-01

    Deep-sea hydrothermal vents provide sources of geochemical materials that impact the global ocean heat and chemical budgets, and support complex biological communities. Vent effluents and larvae are dispersed and transported long distances by deep ocean currents, but these currents are largely undersampled and little is known about their variability. Submesoscale (0.1-10 km) currents are known to play an important role for the dispersion of biogeochemical materials in the ocean surface layer, but their impact for the dispersion in the deep ocean is unknown. Here, we use a series of nested regional oceanic numerical simulations with increasing resolution (from δx = 6 km to δx = 0.75 km) to investigate the structure and variability of highly-resolved deep currents over the Mid-Atlantic Ridge (MAR) and their role on the dispersion of the Lucky Strike hydrothermal vent effluents and larvae. We shed light on a submesoscale regime of oceanic turbulence over the MAR at 1500 m depth, contrasting with open-ocean - i.e., far from topographic features - regimes of turbulence, dominated by mesoscales. Impacts of submesoscale and tidal currents on larval dispersion and connectivity among vent populations are investigated by releasing neutrally buoyant Lagrangian particles at the Lucky Strike hydrothermal vent. Although the absolute dispersion is overall not sensitive to the model resolution, submesoscale currents are found to significantly increase both the horizontal and vertical relative dispersion of particles at O(1-10) km and O(1-10) days, resulting in an increased mixing of the cloud of particles. A fraction of particles are trapped in submesoscale coherent vortices, which enable transport over long time and distances. Tidal currents and internal tides do not significantly impact the horizontal relative dispersion. However, they roughly double the vertical dispersion. Specifically, particles undergo strong tidally-induced mixing close to rough topographic features

  13. Evidence for isolated evolution of deep-sea ciliate communities through geological separation and environmental selection.

    Science.gov (United States)

    Stock, Alexandra; Edgcomb, Virginia; Orsi, William; Filker, Sabine; Breiner, Hans-Werner; Yakimov, Michail M; Stoeck, Thorsten

    2013-07-08

    Deep hypersaline anoxic basins (DHABs) are isolated habitats at the bottom of the eastern Mediterranean Sea, which originate from the ancient dissolution of Messinian evaporites. The different basins have recruited their original biota from the same source, but their geological evolution eventually constituted sharp environmental barriers, restricting genetic exchange between the individual basins. Therefore, DHABs are unique model systems to assess the effect of geological events and environmental conditions on the evolution and diversification of protistan plankton. Here, we examine evidence for isolated evolution of unicellular eukaryote protistan plankton communities driven by geological separation and environmental selection. We specifically focused on ciliated protists as a major component of protistan DHAB plankton by pyrosequencing the hypervariable V4 fragment of the small subunit ribosomal RNA. Geospatial distributions and responses of marine ciliates to differential hydrochemistries suggest strong physical and chemical barriers to dispersal that influence the evolution of this plankton group. Ciliate communities in the brines of four investigated DHABs are distinctively different from ciliate communities in the interfaces (haloclines) immediately above the brines. While the interface ciliate communities from different sites are relatively similar to each other, the brine ciliate communities are significantly different between sites. We found no distance-decay relationship, and canonical correspondence analyses identified oxygen and sodium as most important hydrochemical parameters explaining the partitioning of diversity between interface and brine ciliate communities. However, none of the analyzed hydrochemical parameters explained the significant differences between brine ciliate communities in different basins. Our data indicate a frequent genetic exchange in the deep-sea water above the brines. The "isolated island character" of the different brines

  14. Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan

    Science.gov (United States)

    Méjanelle, Laurence; Rivière, Béatrice; Pinturier, Laurence; Khripounoff, Alexis; Baudin, François; Dachs, Jordi

    2017-08-01

    Hydrocarbons were analyzed in sediments from the Congo River deep-sea fan, from the Congo River, and in sinking particles collected by sediment traps 40 m above the sediment. Studied sites encompassed three lobes of decreasing age of formation along the canyon: sites A, F and C and a another lobe system, disconnected from the active channel since 4 ka, Site E. Terrestrial long-chain odd n-alkanes were dominant in all sediments of the lobe system. Unsaturated terpenoids sourced by higher plants, such as gammacerene, lupene, ursene and oleanene, were also detected. At site C, characterized by high accumulation rates (10-20 cm yr-1), the organic matter spends less time in the oxic layer than at other sites and high phytadiene concentrations 10-17 μg gOC-1) evidenced recent terrestrial and phytoplanktonic remains reworked in anaerobic conditions. In these sediments, organic carbon-normalized concentrations of terrestrial alkanes and terpenoids were several fold higher than in the lobe sediments with lower accumulation rates (sites A and F), arguing for a more rapid degradation of terrestrial hydrocarbons than bulk organic carbon in the first steps of pre-diagenesis. Ample variations in the contributions of biomarkers from higher plants, ferns, bacteria and angiosperms, indicate an heterogeneous contribution of the soil and vegetation detritus delivered to the Congo lobe sediments. Lower concentrations in terrestrial hydrocarbons at site E, 45 km away from the active canyon, indicated that river particles are still admixed to the dominant marine organic matter. Diploptene and hop-7(21)-ene have a dual origin, from terrestrial and marine microorganisms. Scatter in their relationship to gammacerene argues for a contribution of marine microorganisms, in addition to soils-sourced microorganisms. The close distribution patterns of diploptene, hop-21-ene, hop-7(21)ene and neohop-13(18)-ene is in line with the hypothesis of sequential clay-catalyzed isomerisation of bacterial

  15. Imaging microbial metal metabolism in situ under conditions of the deep-sea hydrothermal vents

    Science.gov (United States)

    Oger, P. M.; Daniel, I.; Simionovici, A.; Picard, A.

    2006-12-01

    High-pressure biotopes are the most widely spread biotopes on Earth. They represent one possible location for the origin of life. They also share striking similarities with extraterrestrial biotopes such as those postulated for Europe or Mars. In absence of light, dissimilatory reduction of metals (DMR) is fueling the ecosystem. Monitoring the metabolism of the deep-sea hydrothermal vent microbial fauna under P, T and chemical conditions relevant to their isolation environment can be difficult because of the confinement and because most spectroscopic probes do not sense metallic ions in solution. We demonstrated the possibility to use Xray spectroscopy to monitor the speciation of metallic species in solution. Experiments were performed at The ESRF using Selenium (Se) detoxification by Agrobacterium tumefaciens as an analog of DMR. The reduction of Se from selenite to the metal was monitored by a combiantion of two Xray spectroscopic techniques (XANES and μXRF). Cells were incubated in the low pressure DAC in growth medium supplemented with 5mM Selenite and incubated under pressures up to 60 Mpa at 30°C for 24h. The evolution of the speciation can be easily monitored and the concentration of each Se species determined from the Xray spectra by linear combinations of standard spectra. Selenite is transformed by the bacterium into a mixture of metal Se and methylated Se after 24 hours. Se detoxification is observed in situ up to at least 25 MPa. The technique, developped for Se can be adapted to monitor other elements more relevant to DMR such as As, Fe or S, which should allow to monitor in situ under controlled pressure and temperature the metabolism of vent organisms. It is also amenable to the monitoring of toxic metals. Xray spectroscopy and the lpDAC are compatible with other spectroscopic techniques, such as Raman, UV or IR spectroscopies, allowing to probe other metabolic activities. Hence, enlarging the range of metabolic information that can be obtained in

  16. Reconstructing Holocene Regional Environmental Variability from North Atlantic Deep-Sea Sediments using Environmental Magnetic Properties

    Science.gov (United States)

    Strano, S. E.; Stoner, J. S.; Almasi, P. F.; Bond, G.

    2009-12-01

    Environmental magnetic records of North Atlantic sediments offer insights on regional primary depositional processes because diagenetic alteration is minimal. Depositional processes in the North Atlantic are largely controlled by ice sheet and ocean circulation variability. Here we present 5 high-resolution (~15-45 cm/kyr) environmental magnetic records derived using u-channel samples from North Atlantic deep-sea sediment cores. KN-158-04-2GC (43°29‧N, 54°52‧W, 3942 m) and KN-158-04-22GC (44°18‧N, 46°15‧W, 3959 m) were taken from the North American continental rise. While cores KN-158-04-53GC (55°27‧N, 14°42‧W, 2184 m) , KN-158-04-46GC (52°58‧N, 19°49‧W, 2758 m) and KN-158-04-57GC (58°39‧N, 25°25‧W, 2768 m) are from the Rockall Plateau, Rockall Trough and Iceland Basin, respectively. With the exception of 46GC, all cores have well-constrained Holocene radiocarbon chronologies. Magnetic concentration is estimated by ARM (kARM), IRM (SIRM) and magnetic susceptibility (k). Magnetic grain-size is estimated by the AF demagnetization of IRM and ARM and by kARM/k, SIRM/k and SIRM/kARM ratios. In addition, magnetic mineralogy is estimated by S-ratios. Although 22GC and 57GC are from different sides of the North Atlantic basin, they display similar magnetic concentration variability and k values that are different and larger than for the other 3 cores. Still, all 5 cores show a decrease in magnetic concentration throughout the Holocene, likely reflecting either dilution by increasing biogenic material and/or a reduction in terrigenous supply toward the modern. The latter hypothesis is supported by the magnetic properties of 2GC, 22GC, 46GC and 53GC, which suggest a gradual decrease in magnetic grain size, consistent with reduced terrigenous input. While these 4 cores show this distinct pattern, 57GC exhibits small secular change in magnetic grain size and mineralogy during the Holocene. This consistency as well as high magnetic susceptibility

  17. Deep sea animal density and size estimated using a Dual-frequency IDentification SONar (DIDSON) offshore the island of Hawaii

    Science.gov (United States)

    Giorli, Giacomo; Drazen, Jeffrey C.; Neuheimer, Anna B.; Copeland, Adrienne; Au, Whitlow W. L.

    2018-01-01

    Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators' distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases.

  18. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness

    Science.gov (United States)

    Jiang, Mingjing; He, Jie; Wang, Jianfeng; Zhou, Yaping; Zhu, Fangyuan

    2017-12-01

    Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.

  19. Early Eocene deep-sea benthic foraminiferal faunas: Recovery from the Paleocene Eocene Thermal Maximum extinction in a greenhouse world

    Science.gov (United States)

    Thomas, Ellen; D’haenens, Simon; Speijer, Robert P.; Alegret, Laia

    2018-01-01

    The early Eocene greenhouse world was marked by multiple transient hyperthermal events. The most extreme was the Paleocene-Eocene Thermal Maximum (PETM, ~56 Ma), linked to the extinction of the globally recognised deep-sea benthic foraminiferal Velasco fauna, which led to the development of early Eocene assemblages. This turnover has been studied at high resolution, but faunal development into the later early Eocene is poorly documented. There is no widely accepted early Eocene equivalent of the Late Cretaceous-Paleocene Velasco fauna, mainly due to the use of different taxonomic concepts. We compiled Ypresian benthic foraminiferal data from 17 middle bathyal-lower abyssal ocean drilling sites in the Pacific, Atlantic and Indian Oceans, in order to characterise early Eocene deep-sea faunas by comparing assemblages across space, paleodepth and time. Nuttallides truempyi, Oridorsalis umbonatus, Bulimina trinitatensis, the Bulimina simplex group, the Anomalinoides spissiformis group, pleurostomellids, uniserial lagenids, stilostomellids and lenticulinids were ubiquitous during the early Eocene (lower-middle Ypresian). Aragonia aragonensis, the Globocassidulina subglobosa group, the Cibicidoides eocaenus group and polymorphinids became ubiquitous during the middle Ypresian. The most abundant early Ypresian taxa were tolerant to stressed or disturbed environments, either by opportunistic behavior (Quadrimorphina profunda, Tappanina selmensis, Siphogenerinoides brevispinosa) and/or the ability to calcify in carbonate-corrosive waters (N. truempyi). Nuttallides truempyi, T. selmensis and other buliminids (Bolivinoides cf. decoratus group, Bulimina virginiana) were markedly abundant during the middle Ypresian. Contrary to the long-lived, highly diverse and equitable Velasco fauna, common and abundant taxa reflect highly perturbed assemblages through the earliest Ypresian, with lower diversity and equitability following the PETM extinction. In contrast, the middle Ypresian

  20. Environmental hazard assessment of a marine mine tailings deposit site and potential implications for deep-sea mining.

    Science.gov (United States)

    Mestre, Nélia C; Rocha, Thiago L; Canals, Miquel; Cardoso, Cátia; Danovaro, Roberto; Dell'Anno, Antonio; Gambi, Cristina; Regoli, Francesco; Sanchez-Vidal, Anna; Bebianno, Maria João

    2017-09-01

    Portmán Bay is a heavily contaminated area resulting from decades of metal mine tailings disposal, and is considered a suitable shallow-water analogue to investigate the potential ecotoxicological impact of deep-sea mining. Resuspension plumes were artificially created by removing the top layer of the mine tailings deposit by bottom trawling. Mussels were deployed at three sites: i) off the mine tailings deposit area; ii) on the mine tailings deposit beyond the influence from the resuspension plumes; iii) under the influence of the artificially generated resuspension plumes. Surface sediment samples were collected at the same sites for metal analysis and ecotoxicity assessment. Metal concentrations and a battery of biomarkers (oxidative stress, metal exposure, biotransformation and oxidative damage) were measured in different mussel tissues. The environmental hazard posed by the resuspension plumes was investigated by a quantitative weight of evidence (WOE) model that integrated all the data. The resuspension of sediments loaded with metal mine tails demonstrated that chemical contaminants were released by trawling subsequently inducing ecotoxicological impact in mussels' health. Considering as sediment quality guidelines (SQGs) those indicated in Spanish action level B for the disposal of dredged material at sea, the WOE model indicates that the hazard is slight off the mine tailings deposit, moderate on the mine tailings deposit without the influence from the resuspension plumes, and major under the influence of the resuspension plumes. Portmán Bay mine tailings deposit is a by-product of sulphide mining, and despite differences in environmental setting, it can reflect the potential ecotoxic effects to marine fauna from the impact of resuspension of plumes created by deep-sea mining of polymetallic sulphides. A similar approach as in this study could be applied in other areas affected by sediment resuspension and for testing future deep-sea mining sites in

  1. Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water

    International Nuclear Information System (INIS)

    Koschinsky, A.; Winkler, A.; Fritsche, U.

    2003-01-01

    In experiments of 7 days duration using voltammetric and radiotracer measurement techniques, the role of different particle types in the sorption of dissolved metal species in a disturbed deep-sea bottom seawater system were investigated. Resuspension of oxic to suboxic surface sediment into the bottom water in the deep sea (either by natural events or industrial activities like Mn nodule mining) has been shown to be followed quickly by scavenging of dissolved heavy metals, e.g. released from interstitial water, on the resuspended particles. Compared to other deep-sea particles (like clay minerals, calcite and apatite), Mn and Fe oxides and oxyhydroxides were found to be by far the most important phases in scavenging many dissolved heavy metals. Only Pb was sorbed strongly on all particles used, with highest affinity to carbonate fluorapatite. Caesium + was significantly scavenged only by clay minerals like illite. The sorption experiments support a simple electrostatic model: Hydrated cations and labile cationic chloro-complexes in seawater like Mn 2+ , MnCl + , Co 2+ , Ni 2+ , Cu 2+ , Zn 2+ , Ba 2+ , and PbCl + , are preferentially adsorbed or ion-exchanged on the negatively charged surfaces of Mn oxides. In contrast, oxyanions and neutrally or negatively charged complexes like HVO 4 2- , MoO 4 2- , HAsO 4 2- , UO 2 (CO 3 ) 2 2- , and PbCO 3 0 associate with neutral to slightly positive amphoteric Fe oxyhydroxide particles. Metals forming strong chloro-complexes in seawater like Cd (CdCl 2 0 ), are less readily sorbed by oxides than others. A comparison of the results of voltammetric and radiotracer techniques revealed that after fast sorption within the first hour, isotopic exchange dominated reactions on MnO 2 -rich particles in the following days. This was especially pronounced for Mn and Co which are bound to the Mn oxide surface via a redox transformation

  2. Dioxin compounds in the deep-sea rose shrimp Aristeus antennatus (Risso, 1816) throughout the Mediterranean Sea

    Science.gov (United States)

    Rotllant, Guiomar; Abad, Esteban; Sardà, Francisco; Ábalos, Manuela; Company, Joan B.; Rivera, Josep

    2006-12-01

    Polychlorodibenzo- p-dioxins (PCDDs) and polychlorodibenzofurans (PCDFs) are among the more toxic anthropogenic contaminants. They are fat-soluble and accumulate in animal tissues. Exposure to PCDD/Fs can cause several endocrine, reproductive and developmental problems in animals, including human beings. Several studies have demonstrated that fish and invertebrates living in association with sediments are exposed to and accumulate contaminants, but to date there have been no studies of PCDD/Fs contamination in deep-sea regions. Specimens of Aristeus antennatus (Risso, 1816) were collected from depths of 600-2500 m at different points in the Mediterranean Sea, from the western basin off the coast of Barcelona to the central basin off the Peloponnesian Peninsula, with otter trawl gear. Amounts of PCDD/Fs were measured in different animal tissues by high resolution gas chromatography coupled to high resolution mass spectrometry (HRGC-HRMS). This is the first study to report the presence of PCDD/Fs in deep-sea organisms dwelling at depths below 600 m. A. antennatus presented levels of PCDD/Fs of the same order of magnitude, or slightly higher, as those found in shallow-water species ( Melicertus kerathurus) with respect to land-generated contamination. This highlights the widespread distribution of these pollutants and the potential threat posed to the biodiversity of fragile and vulnerable ecosystems such as the deep-sea. PCDD/F levels detected in the edible parts (muscle) of the commercial shrimp A. antennatus were clearly below the toxic limit value established by European legislation. Levels followed the trend muscletendency for higher levels of PCDD/F contamination in samples obtained from deeper (2500 m) than from shallower sites (600 m).

  3. [Predominant strains of polycyclic aromatic hydrocarbon-degrading consortia from deep sea of the Middle Atlantic Ridge].

    Science.gov (United States)

    Cui, Zhisong; Shao, Zongze

    2009-07-01

    In order to identify the predominant strains of polycyclic aromatic hydrocarbon (PAH)-degrading consortia harboring in sea water and surface sediment collected from deep sea of the Middle Atlantic Ridge. We employed enrichment method and spread-plate method to isolate cultivable bacteria and PAHs degraders from deep sea samples. Phylogenetic analysis was conducted by 16S rRNA gene sequencing of the bacteria. Then we analyzed the dominant bacteria in the PAHs-degrading consortia by denaturing gradient gel electrophoresis (DGGE) combined with DNA sequencing. Altogether 16 cultivable bacteria were obtained, including one PAHs degrader Novosphingobium sp. 4D. Phylogenetic analysis showed that strains closely related to Alcanivorax dieselolei NO1A (5/16) and Tistrella mobilis TISTR 1108T (5/16) constituted two biggest groups among the cultivable bacteria. DGGE analysis showed that strain 4L (also 4M and 4N, Alcanivorax dieselolei NO1A, 99.21%), 4D (Novosphingobium pentaromativorans US6-1(T), 97.07%) and 4B (also 4E, 4H and 4K, Tistrella mobilis TISTR 1108T, > 99%) dominated the consortium MC2D. While in consortium MC3CO, the predominant strains were strain 5C (also 5H, Alcanivorax dieselolei NO1A, > 99%), uncultivable strain represented by band 5-8 (Novosphingobium aromaticivorans DSM 12444T, 99.41%), 5J (Tistrella mobilis TISTR 1108T, 99.52%) and 5F (also 5G, Thalassospira lucentensis DSM 14000T, degrading consortia in sea water and surface sediment of Middle Atlantic Ridge deep sea, with Novosphingobium spp. as their main PAHs degraders.

  4. Amino acid stable isotope applications to deep-sea corals: A molecular geochemistry approach to reconstructing past ocean conditions

    Science.gov (United States)

    McMahon, K.; McCarthy, M. D.; Guilderson, T. P.; Sherwood, O.; Williams, B.; Larsen, T.; Glynn, D. S.

    2017-12-01

    Future climate change is predicted to alter ocean productivity, food web dynamics, biogeochemical cycling, and the efficacy of the biological pump. Proteinaceous deep-sea corals act as "living sediment traps," providing long-term, high-resolution records of exported surface ocean production and a window into past changes in ocean condition as a historical context for potential future changes. Here, we present recent work developing the application of compound-specific stable isotope analysis of individual amino acids to proteinaceous deep-sea corals to reconstruct past changes in phytoplankton community composition and biogeochemical cycling. We present new calibrations for molecular isotope comparisons between metabolically active coral polyp tissue and bioarchival proteinaceous skeleton. We then applied these techniques to deep-sea corals from the North Pacific Subtropical Gyre (NPSG) to reconstruct centennial to millennial time scale changes in phytoplankton community composition and biogeochemical cycling as a function of regional climate change. This work suggests that the NPSG has undergone multiple major phytoplankton regime shifts over the last millennium between prokaryotic and eukaryotic phytoplankton communities and associated sources of nitrogen fueling production. The most recent regime, which started around the end of the Little Ice Age and the onset of the Industrial era, is unprecedented in the last 1000 years and resulted in a 30-50% increase in diazotrophic cyanobacteria contribution to export production and an associated 17-27% increase in N2-fixation in the NPSG over last century. By offering the first direct phylogenetic context for long-term shifts in isotopic records of exported particulate organic matter, our data represent a major step forward in understanding the evolution of marine plankton community dynamics, food web architecture, biogeochemical cycling, and the climate feedback loops through the biological pump.

  5. Tetroazolemycins A and B, Two New Oxazole-Thiazole Siderophores from Deep-Sea Streptomyces olivaceus FXJ8.012

    Directory of Open Access Journals (Sweden)

    Ying Huang

    2013-05-01

    Full Text Available Two new oxazole/thiazole derivatives, named tetroazolemycins A (1 and B (2, have been isolated from the acetone extract of the mycelium of Streptomyces olivaceus FXJ8.012 derived from deep-sea water, together with three known compounds, spoxazomicins A–C (3–5, isolated from the fermentation supernatant. The planar structure and relative configuration of tetroazolemycins were elucidated by a combination of spectroscopic analyses, including 1D- and 2D-NMR techniques, and showed to be new pyochelin-type antibiotics. Both compounds showed metal ion-binding activity and their Zn2+ complexes exhibited weak activity against pathogenic bacteria Klebsiella pneumoniae.

  6. New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications

    International Nuclear Information System (INIS)

    Koenig, Samuel; Solé, Montserrat; Fernández-Gómez, Cristal; Díez, Sergi

    2013-01-01

    A number of studies have found high levels of mercury (Hg) in deep-sea organisms throughout the world's oceans, but the underlying causes are not clear as there is no consensus on the origin and cycling of Hg in the ocean. Recent findings suggested that Hg accumulation may increase with increasing forage depth and pointed to the deep-water column as the origin of most Hg in marine biota, especially its organic methylmercury (MeHg) form. In the present study, we determined the total mercury (THg) levels in 12 deep-sea fish species and a decapod crustacean and investigated their relationship with the species' nitrogen stable isotope ratio (δ 15 N) as an indicator of their trophic level, average weight and habitat depth. THg levels ranged from 0.27 to 4.42 μg/g w.w. and exceeded in all, except one species, the recommended 0.5 μg/g w.w. guideline value. While THg levels exhibited a strong relationship with δ 15 N values and to a lesser extent with weight, the habitat depth, characterized as the species' depth of maximum abundance (DMA), had also a significant effect on Hg accumulation. The fish species with a shallower depth range exhibited lower THg values than predicted by their trophic level (δ 15 N) and body mass, while measured THg values were higher than predicted in deeper-dwelling fish. Overall, the present results point out a potential risk for human health from the consumption of deep-sea fish. In particular, for both, the red shrimp Aristeus antennatus, which is one of the most valuable fishing resources of the Mediterranean, as well as the commercially exploited fish Mora moro, THg levels considerably exceeded the recommended 0.5 μg/g w.w. limit and should be consumed with caution. -- Highlights: ► High total mercury (THg) levels were detected in Mediterranean deep-sea organisms. ► Uniform contamination pattern was observed across the Mediterranean basin. ► All except one species exceeded recommended consumption limit of 0.5 μg/g w.w. ► THg

  7. The use of in situ photography in studies of the deep-sea benthos at I.O.S

    International Nuclear Information System (INIS)

    Lampitt, R.S.; Rice, A.L.; Thurston, M.H.

    1984-01-01

    Photography has been a part of benthic biology studies at IOS since 1975. It has been used in several modes and as an adjunct to a number of other techniques. A substantial body of valuable data has been obtained about the abundance, distribution and behaviour of deep sea species, about seasonal changes of the sea floor and about the rates of some fundamental biological processes. Most of the data could not have been obtained using any other technique and we expect photography to continue to form an important part of the IOS programme both independently and in conjunction with other systems. (author)

  8. Isotopic signatures associated with growth and metabolic activities of chemosynthetic nitrate-reducing microbes from deep-sea hydrothermal vents

    Science.gov (United States)

    Perez-Rodriguez, I. M.; Foustoukos, D.; Fogel, M. L.; Sievert, S. M.

    2013-12-01

    Epsilonproteobacteria and Aquificaceae have been identified as dominant members of microbial communities at deep-sea hydrothermal vents. Cultured representatives from these two groups appear to be mostly genetically wired to perform chemosynthesis at moderate-to-high temperatures (45 - 80oC) under anaerobic and sulfidic conditions. In this study we used Caminibacter mediatlanticus and Thermovibrio ammonificans as model organisms to constrain physiological parameters associated with dissimilatory nitrate reduction to ammonium (DNRA) in deep-sea vent Epsilonproteobacteria and Aquificaceae. We postulate that nitrate-based metabolic processes are of relevance for understanding primary production as well as nitrate mobilization in deep-sea vents. By constraining growth and respiration rates during DNRA, we observed that C. mediatlanticus achieved higher cell densities than T. ammonificans while exhibiting similar growth rates. DNRA kinetic rate constants and cell-specific nitrate reduction rates (csNRR) obtained from our data showed that within similar time frames T. ammonificans used 2.5 to 3 times as much nitrate than C. mediatlanticus and it did so ~3 times faster. However, the increased consumption of nitrate in T. ammonificans did not translate into higher growth yield. This is suggestive of either differential efficiencies in energy generating pathways or differential organic matter production (cell biomass versus extracellular organic material) associated with DNRA in these microorganisms. Nitrogen isotope fractionation for nitrate was similar for both organisms, with discrimination factors of ~ -5 to -6‰ for C. mediatlanticus and ~ -7 to -8‰ for T. ammonificans. Similar experiments performed under high hydrostatic pressure conditions (50 and 200 bar) showed that changes in pressure greatly affected both growth rates and DNRA kinetic rate constants in both microorganisms, however, δ15N discrimination factors for nitrate were not affected. This study provides

  9. Enzymatic microbial Mn(II) oxidation and Mn biooxide production in the Guaymas Basin deep-sea hydrothermal plume

    Science.gov (United States)

    Dick, Gregory J.; Clement, Brian G.; Webb, Samuel M.; Fodrie, F. Joel; Bargar, John R.; Tebo, Bradley M.

    2009-11-01

    Microorganisms play important roles in mediating biogeochemical reactions in deep-sea hydrothermal plumes, but little is known regarding the mechanisms that underpin these transformations. At Guaymas Basin (GB) in the Gulf of California, hydrothermal vents inject fluids laden with dissolved Mn(II) (dMn) into the deep waters of the basin where it is oxidized and precipitated as particulate Mn(III/IV) oxides, forming turbid hydrothermal "clouds". Previous studies have predicted extremely short residence times for dMn at GB and suggested they are the result of microbially-mediated Mn(II) oxidation and precipitation. Here we present biogeochemical results that support a central role for microorganisms in driving Mn(II) oxidation in the GB hydrothermal plume, with enzymes being the primary catalytic agent. dMn removal rates at GB are remarkably fast for a deep-sea hydrothermal plume (up to 2 nM/h). These rapid rates were only observed within the plume, not in background deep-sea water above the GB plume or at GB plume depths (˜1750-2000 m) in the neighboring Carmen Basin, where there is no known venting. dMn removal is dramatically inhibited under anoxic conditions and by the presence of the biological poison, sodium azide. A conspicuous temperature optimum of dMn removal rates (˜40 °C) and a saturation-like (i.e. Michaelis-Menten) response to O 2 concentration were observed, indicating an enzymatic mechanism. dMn removal was resistant to heat treatment used to select for spore-forming organisms, but very sensitive to low concentrations of added Cu, a cofactor required by the putative Mn(II)-oxidizing enzyme. Extended X-ray absorption fine structure spectroscopy (EXAFS) and synchrotron radiation-based X-ray diffraction (SR-XRD) revealed the Mn oxides to have a hexagonal birnessite or δ-MnO 2-like mineral structure, indicating that these freshly formed deep-sea Mn oxides are strikingly similar to primary biogenic Mn oxides produced by laboratory cultures of bacteria

  10. New insights into mercury bioaccumulation in deep-sea organisms from the NW Mediterranean and their human health implications

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Samuel, E-mail: koenig@icm.csic.es [Institut de Ciencies del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Catalunya (Spain); Institut de Diagnosi Ambiental i Estudis de l' Aigua (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona, Catalunya (Spain); Sole, Montserrat [Institut de Ciencies del Mar (ICM-CSIC), Passeig Maritim de la Barceloneta 37-49, 08003 Barcelona, Catalunya (Spain); Fernandez-Gomez, Cristal; Diez, Sergi [Institut de Diagnosi Ambiental i Estudis de l' Aigua (IDAEA-CSIC), C/Jordi Girona 18, 08034 Barcelona, Catalunya (Spain)

    2013-01-01

    A number of studies have found high levels of mercury (Hg) in deep-sea organisms throughout the world's oceans, but the underlying causes are not clear as there is no consensus on the origin and cycling of Hg in the ocean. Recent findings suggested that Hg accumulation may increase with increasing forage depth and pointed to the deep-water column as the origin of most Hg in marine biota, especially its organic methylmercury (MeHg) form. In the present study, we determined the total mercury (THg) levels in 12 deep-sea fish species and a decapod crustacean and investigated their relationship with the species' nitrogen stable isotope ratio ({delta}{sup 15}N) as an indicator of their trophic level, average weight and habitat depth. THg levels ranged from 0.27 to 4.42 {mu}g/g w.w. and exceeded in all, except one species, the recommended 0.5 {mu}g/g w.w. guideline value. While THg levels exhibited a strong relationship with {delta}{sup 15}N values and to a lesser extent with weight, the habitat depth, characterized as the species' depth of maximum abundance (DMA), had also a significant effect on Hg accumulation. The fish species with a shallower depth range exhibited lower THg values than predicted by their trophic level ({delta}{sup 15}N) and body mass, while measured THg values were higher than predicted in deeper-dwelling fish. Overall, the present results point out a potential risk for human health from the consumption of deep-sea fish. In particular, for both, the red shrimp Aristeus antennatus, which is one of the most valuable fishing resources of the Mediterranean, as well as the commercially exploited fish Mora moro, THg levels considerably exceeded the recommended 0.5 {mu}g/g w.w. limit and should be consumed with caution. -- Highlights: Black-Right-Pointing-Pointer High total mercury (THg) levels were detected in Mediterranean deep-sea organisms. Black-Right-Pointing-Pointer Uniform contamination pattern was observed across the Mediterranean

  11. The carbonate mineralogy and distribution of habitat-forming deep-sea corals in the southwest pacific region

    Science.gov (United States)

    Bostock, Helen C.; Tracey, Dianne M.; Currie, Kim I.; Dunbar, Gavin B.; Handler, Monica R.; Mikaloff Fletcher, Sara E.; Smith, Abigail M.; Williams, Michael J. M.

    2015-06-01

    Habitat-forming deep-sea scleractinian and alcyonacean corals from around the southwest Pacific were analysed for their calcium carbonate mineralogy. Scleractinian coral species Solenosmilia variabilis, Enallopsammia rostrata, Goniocorella dumosa, Madrepora oculata and Oculina virgosa were all found to be 100% aragonitic, while some members of the alcyonacean taxa Keratoisis spp., Lepidisis spp., and Paragorgia spp. were determined to be high magnesium (Mg) calcite (with 8-11 mol% MgCO3) and Primnoa sp. is bimineralic with both aragonite and Mg calcite. The majority of these habitat-forming deep-sea corals are found at intermediate depths (800-1200 m) in the Antarctic Intermediate Waters (AAIW) with low salinities (~34.5), temperatures of 4-8 °C and high oxygen concentrations (>180 μmol/kg) and currently sitting above the aragonite saturation horizon (ASH). However, habitat-forming corals have been recorded from greater depths, in cooler waters (2-4 °C) that are undersaturated with respect to aragonite (Ωaragonite160 μmol/kg. To address the sampling depth bias the coral records were normalised by the number of benthic stations (sampling effort) in the same depth range. This shows that the highest number of corals per sampling effort is between 1000 and 1400 m with corals present in over 5% of the stations at these depths. The normalised records and Boot Strap analyses suggests that scleractinian corals, especially S. variabilis should be present in >1% of stations down to 1800 m water depth, with E. rostrata, M. oculata and G. dumosa slightly shallower. While alcyonacean corals are found in >1% down to 2600 m, with Keratoisis spp. the deepest down to 2600 m, while Lepidisis spp. and Paragorgia spp. found down to 1800 m. This suggests that most species can probably tolerate some undersaturation of aragonite (Ωaragonite=0.8-0.9), with several species/genera (S. variabilis; Keratoisis spp.) even more tolerant of lower carbonate concentrations ([CO3 2 -]), down

  12. Origins of the deep-sea sediments and their variations with time. Annual progress report No. 6, May 1975

    International Nuclear Information System (INIS)

    Biscaye, P.E.

    1975-05-01

    Techniques for studying water mass mixing and sediment transport in the benthic layer of the deep sea and the effects of these processes on the continental shelf specifically in the New York Bight were studied. Results are presented for the first major combined geochemistry-physical oceanography cruise. Data on the nature of the bottom sediments are presented principally in context of their potential as sources of both radon and methane in the lower water column. Preliminary data on the nature and composition of suspended particulates also indicate potential for tracing the mechanisms of solids dispersal in the Bight. (PCS)

  13. Mesonerilla neridae, n. sp. (Nerillidae): First meiofaunal annelid from deep-sea hydrothermal vents

    DEFF Research Database (Denmark)

    Worsaae, Katrine; Rouse, Greg W

    2009-01-01

    Though most common in coastal sandy bottoms, nerillid annelids have been found in a broad variety of habitats around the world and two genera have previously been reported from the deep sea. During a cruise to the southern East Pacific Rise and northern Pacific Antarctic Ridge (near Easter Island......) in 2005, six specimens of a new species of Mesonerilla were collected at depths of 2234-2649 m. Samples were taken via DSV Alvin with a slurp gun collecting fine silt and volcanic glass shards in cracks, fissures, and mussel beds from 5-20 m away from active venting areas. As well as being the first deep...

  14. Pickle from blood clam (Anadara granosa) meat

    OpenAIRE

    Gupta, S.S.; Basu, S.

    1985-01-01

    A pickle was prepared from blood clam (Anadara granosa) meat. The pickle was subjected to biochemical, bacteriological and organoleptic tests at different stages of storage. The pickle has a shelf-life of more than 5½ months at ambient temperature.

  15. Temporary expansion to shelf depths rather than an onshore-offshore trend: the shallow-water rise and demise of the modern deep-sea brittle star family Ophiacanthidae (Echinodermata: Ophiuroidea)

    OpenAIRE

    Thuy, Ben

    2013-01-01

    Hypotheses on the age and possible antiquity of the modern deep-sea fauna put forward to date almost all agree on the assumption that the deep-sea fauna is largely the result of colonisation from shallow-water environments. Here, the fossil record of the Ophiacanthidae, a modern deep-sea brittle star family with extensive fossil occurrences at shelf depths, is systematically traced against a calibrated phylogeny. Several lines of evidence suggest that the Ophiacanthidae originated and greatly...

  16. Deep-sea echinoderm oxygen consumption rates and an interclass comparison of metabolic rates in Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea.

    Science.gov (United States)

    Hughes, Sarah Jane Murty; Ruhl, Henry A; Hawkins, Lawrence E; Hauton, Chris; Boorman, Ben; Billett, David S M

    2011-08-01

    Echinoderms are important components of deep-sea communities because of their abundance and the fact that their activities contribute to carbon cycling. Estimating the echinoderm contribution to food webs and carbon cycling is important to our understanding of the functioning of the deep-sea environment and how this may alter in the future as climatic changes take place. Metabolic rate data from deep-sea echinoderm species are, however, scarce. To obtain such data from abyssal echinoderms, a novel in situ respirometer system, the benthic incubation chamber system (BICS), was deployed by remotely operated vehicle (ROV) at depths ranging from 2200 to 3600 m. Oxygen consumption rates were obtained in situ from four species of abyssal echinoderm (Ophiuroidea and Holothuroidea). The design and operation of two versions of BICS are presented here, together with the in situ respirometry measurements. These results were then incorporated into a larger echinoderm metabolic rate data set, which included the metabolic rates of 84 echinoderm species from all five classes (Asteroidea, Crinoidea, Echinoidea, Holothuroidea and Ophiuroidea). The allometric scaling relationships between metabolic rate and body mass derived in this study for each echinoderm class were found to vary. Analysis of the data set indicated no change in echinoderm metabolic rate with depth (by class or phylum). The allometric scaling relationships presented here provide updated information for mass-dependent deep-sea echinoderm metabolic rate for use in ecosystem models, which will contribute to the study of both shallow water and deep-sea ecosystem functioning and biogeochemistry.

  17. Studies of the reproductive biology of deep-sea megabenthos IV. The echinoderm species Peniagone azorica and P. diaphana (elasipodida: holothuroidea)

    International Nuclear Information System (INIS)

    Tyler, P.A.; Muirhead, A.

    1984-01-01

    This report is the fourth in a series from a study of the reproductive processes in deep-sea benthic megainvertebrates. The concept of this study is based on the premise that reproduction is the most sensitive physiological process of marine invertebrates and will therefore be the first to be affected by any undue stress. Benthic megainvertebrates were selected as these are readily visible in both deep-sea photographs and television. However studies of sublethal levels of contaminants in shallow water marine invertebrates have shown that when these organisms are exposed to stress, their general biology, e.g., respiration, growth, etc. may not be affected, whilst the gametogenic biology may be totally disrupted. Thus the present study of the gametogenic biology of deep-sea megainvertebrates provides a benchmark study against which 'post-disposal' specimens could be compared. This would provide a sensitive indicator of radioactive release that may not be determined from other studies of adult ecology. If the gametogenic process is not affected by the uptake of radionuclides it is possible that any dispersal of spawned eggs or larvae may transfer these radionuclides into another part of the deep-sea food chain or deep-sea environment. (author)

  18. Temporal variability of vertical migration of zooplankton at deep-sea floor in the Amundsen Sea, Antarctica

    Science.gov (United States)

    Sul La, Hyoung; Ha, Ho Kyung; Kang, Chan Young; Wåhlin, Anna; Park, Jisoo; Lee, SangHoon; Shin, Hyoung Chul

    2014-05-01

    Vertical migration of zooplankton is ubiquitous behavior in marine plankton community. Observations on diel, seasonal, and interannual variation of zooplankton behavior can support the knowledge for understanding of marine ecosystems. However, daily and seasonal rhythms are little observed in the deep-sea with seasonally ice-covered water. We described the pattern of diel vertical distribution (DVM) above deep-sea floor in a seasonally ice-covered Amundsen Sea. Times series of acoustic backscatter was observed using a bottom-moored, upward-looking Acoustic Doppler current profiler (ADCP) in the depth of 250-550 m. Multi-frequency acoustic backscatter data (38 and 120 kHz, EK60) were collected to identify the composition of DVM between fish and zooplankton using a dB differencing technique. The seasonal vertical distribution of zooplankton was clearly governed by the seasonal phase of surface solar radiation (SSR) and sea ice condition (SIC), while water temperature did not affect on the DVM variation. The main depths of zooplankton were primarily distributed near 250 m with high SSR and low SIC period and found near bottom in the lowermost layers (>400 m) with low SSR and high SIC between mid-April and mid-November. The temporal variation of main depths of zooplankton was significantly correlated with both SSR and SIC (r = 0.87 and -0.70, respectively, pbiological pump.

  19. An upper limit to interstellar Pu-224 abundance as deduced from radiochemical search in deep-sea sediment

    International Nuclear Information System (INIS)

    Paul, M.; Valenta, A.; Ahman, I.

    2005-01-01

    Short-lived radionuclides with halflives of a few 10 7 years, now-extinct in the solar system, are expected to be present in the interstellar medium (ISM) as freshly synthesized matter in supermovae. Grains of ISM origin recently discovered in the inner solar system and at Earth orbit may accrete onto Earth after ablation in the atmosphere. As pointed out by one of the authors (K.S.) in 1974, a favorable matrix of detection of such extraterrestrial material is deep-sea sediments with very low sedimentation rates of ∼1 mm.ky -1 . We report here a search for the 'live' Pu-244 in a 1 kg-deep-sea dry sediment collected in 1992 in the North Pacific. After a 546 day a-counting of a Pu fraction chemically separated from the alkaline-fused sediment sample at Kanazawa Univ. AMS analysis was performed at Hebrew Univ. and Weizmann Institute. Only one count of Pu-244 with no background ions was detected, indicating no excess over the expected stratospheric man-made fallout. A limit of 0.2 Pu-244 atoms cm -2 .y -1 for extra terrestrial deposition was set under reasonable assumptions and it was then concluded from this result and the available data on ISM that the abundance of Pu-244 in the ISM is less than 2 X 10 -11 g-Pu-244 (g ISM) -1 . Implications of the present result will be discussed.

  20. A New Deep-Sea Suctorian-Nematode Epibiosis (Loricophrya-Tricoma) from the Blanes Submarine Canyon (NW Mediterranean).

    Science.gov (United States)

    Fernandez-Leborans, Gregorio; Román, Sara; Martin, Daniel

    2017-07-01

    During a pluri-disciplinary study carried out within the frame of the Spanish research project DOS MARES, multicore samples were collected along the Blanes submarine canyon and its adjacent open slope to study the structure and dynamics of the meiofaunal organisms, mainly nematodes. Among the 5808 nematode individuals identified, only 190 of them belonged to the genus Tricoma (Desmoscolecidae), and only two harboured epibiont suctorian ciliates. The three specimens were located near the tail of the basibionts. A careful examination of the ciliates revealed that they were suctorians, which are here described as a new species of Loricophrya, namely L. mediterranea sp. nov. The new species is characterized by having a conical, slightly elongated lorica, narrowing towards posterior end; an anterior end inward curved, surrounding the lorica opening; a body placed near the lorica opening, occupying 1/3 of the lorica length, 4-8 capitate tentacles, and a peripheral, oval to sausage-shaped macronucleus. Our findings represent the first known report of an association with a deep-sea species of Tricoma, and the first record in the Mediterranean Sea, for a species of Loricophrya. The significance of the relationships between suctorian ciliates and their host in extreme environments such as deep-sea submarine canyons is discussed.

  1. Archaeology of Archaea: geomicrobiological record of Pleistocene thermal events concealed in a deep-sea subseafloor environment.

    Science.gov (United States)

    Inagaki, F; Takai, K; Komatsu, T; Kanamatsu, T; Fujioka, K; Horikoshi, K

    2001-12-01

    A record of the history of the Earth is hidden in the Earth's crust, like the annual rings of an old tree. From very limited records retrieved from deep underground, one can infer the geographical, geological, and biological events that occurred throughout Earth's history. Here we report the discovery of vertically shifted community structures of Archaea in a typical oceanic subseafloor core sample (1410 cm long) recovered from the West Philippine Basin at a depth of 5719 m. Beneath a surface community of ubiquitous deep-sea archaea (marine crenarchaeotic group I; MGI), an unusual archaeal community consisting of extremophilic archaea, such as extreme halophiles and hyperthermophiles, was present. These organisms could not be cultivated, and may be microbial relicts more than 2 million years old. Our discovery of archaeal rDNA in this core sample, probably associated with the past terrestrial volcanic and submarine hydrothermal activities surrounding the West Philippine Basin, serves as potential geomicrobiological evidence reflecting novel records of geologic thermal events in the Pleistocene period concealed in the deep-sea subseafloor.

  2. A new species of brooding Psolidae (Echinodermata: Holothuroidea) from deep-sea off Argentina, Southwestern Atlantic Ocean

    Science.gov (United States)

    Martinez, Mariano I.; Penchaszadeh, Pablo E.

    2017-12-01

    This paper describes a new species of Psolus (Holothuroidea, Echinodermata), P. lawrencei sp. nov., (19 specimens) found in the deep sea (308-1398 m) in the Southwestern Atlantic Ocean (SWAO) (around 38°S-54°W) with brooders (up to 3.15 mm) in the tentacles of females and a penis-like genital papilla on males. The presence of dorsal scales, the concave shape of the ossicles with a bridge, the distribution of podia on the dorsal side and the absence of large and conspicuous oral and anal valves are unique for this species. Furthermore, this is the first species of this genus found outside Antarctica that broods between its tentacles. The paper also reviews the reproductive, brooding development and morphological characteristics of P. lawrencei sp. nov. and compares them with those of several members of the family Psolidae. Finally, a possible connectivity between the deep-sea populations in the SWAO and in Antarctica is considered based on the appearance of a similar reproductive pattern in populations found in both areas, which suggests a past or present connection between these regions.

  3. Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: deep sea as a test bed.

    Science.gov (United States)

    Yasuhara, Moriaki; Doi, Hideyuki; Wei, Chih-Lin; Danovaro, Roberto; Myhre, Sarah E

    2016-05-19

    The link between biodiversity and ecosystem functioning (BEF) over long temporal scales is poorly understood. Here, we investigate biological monitoring and palaeoecological records on decadal, centennial and millennial time scales from a BEF framework by using deep sea, soft-sediment environments as a test bed. Results generally show positive BEF relationships, in agreement with BEF studies based on present-day spatial analyses and short-term manipulative experiments. However, the deep-sea BEF relationship is much noisier across longer time scales compared with modern observational studies. We also demonstrate with palaeoecological time-series data that a larger species pool does not enhance ecosystem stability through time, whereas higher abundance as an indicator of higher ecosystem functioning may enhance ecosystem stability. These results suggest that BEF relationships are potentially time scale-dependent. Environmental impacts on biodiversity and ecosystem functioning may be much stronger than biodiversity impacts on ecosystem functioning at long, decadal-millennial, time scales. Longer time scale perspectives, including palaeoecological and ecosystem monitoring data, are critical for predicting future BEF relationships on a rapidly changing planet. © 2016 The Author(s).

  4. Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter

    KAUST Repository

    De Busserolles, Fanny

    2015-03-06

    Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world\\'s most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species\\' visual field. © 2015 S. Karger AG, Basel.

  5. Deep sea benthic foraminifera as a proxy of methane hydrates from IODP site 890B Cascadia Margin

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Ministry of Petroleum, Noida (India). National Gas Hydrates Program; Gupta, A.K. [Indian Inst. of Technology, Kharagpur (India). Dept of Geology and Geophysics

    2008-07-01

    The release of methane from marine reservoirs of methane hydrates into the atmosphere has been linked to climate change through variations in benthic foraminifera signatures. This paper investigated deep sea benthic foraminifera from 174 samples taken from the north Pacific Ocean near the Cascadia Margin. The aim of the study was to develop a better understanding of benthic foraminiferal distribution in the methane-rich environment of the Cascadia Margin. Benthic foraminifera are good indicators of paleoproductivity in areas where carbon fluxes are high. Factor and cluster analyses were used to identify 6 biofacies. Ecological data from recent deep sea benthic foraminifera were used to characterize the biofacies. A benthic faunal record was used to determine oxygenation, surface productivity, and organic food supplies. Results of the study indicated that benthic assemblages showed a major shift at 2 to 3 K yrs BP and 6 to 10.5 BP coincided with the increasing amplitude of interstadial cycles, in which methane fluxes may have played a significant role. It was concluded that the dissociation of gas hydrates and the release of methane into the atmosphere may have caused an increase in the population of highly reducing environmental species.. 55 refs., 1 tab., 3 figs.

  6. Captive rearing of the deep-sea coral Eguchipsammia fistula from the Red Sea demonstrates remarkable physiological plasticity

    KAUST Repository

    Roik, Anna Krystyna

    2015-01-20

    The presence of the cosmopolitan deep-sea coral Eguchipsammia fistula has recently been documented in the Red Sea, occurring in warm (>20 °C), oxygen- and nutrient-limited habitats. We collected colonies of this species from the central Red Sea that successfully resided in aquaria for more than one year. During this period the corals were exposed to increased oxygen levels and nutrition ad libitum unlike in their natural habitat. Specimens of long-term reared E. fistula colonies were incubated for 24 h and calcification (G) as well as respiration rates (R) were measured. In comparison to on-board measurements of G and R rates on freshly collected specimens, we found that G was increased while R was decreased. E. fistula shows extensive tissue growth and polyp proliferation in aquaculture and can be kept at conditions that notably differ from its natural habitat. Its ability to cope with rapid and prolonged changes in regard to prevailing environmental conditions indicates a wide physiological plasticity. This may explain in part the cosmopolitan distribution of this species and emphasizes its value as a deep-sea coral model to study mechanisms of acclimation and adaptation.

  7. δ18O Record of the Last Deglaciation Measured in the Tyrrhenian Deep-Sea Core CT85-5

    Science.gov (United States)

    Taricco, Carla; Mancuso, Salvatore; Hajdas, Irka; Rubinetti, Sara; Bernasconi, Stefano M.

    2014-05-01

    We present the δ18O measurements corresponding to the upper 450 cm of the Central Mediterranean deep-sea core CT85-5. The detailed radiocarbon chronology of this core, which is based on the analysis of foraminifera shells, is reported in Hajdas et al. (2011). This chronology shows regular features, but a reversal in 14C ages appears, corresponding to a layer containing the deposit of the Campanian Ignimbrite (~ 40 kyr cal BP) that overlaps with the layer where an enhanced 10Be concentration in sediment was found (Castagnoli et al. 1995). Due to this feature of the core, a reliable calibration of δ18O profile was obtained only for the last 270 cm. The comparison between our δ18O profile and Mediterranean and high latitudes records, including North Atlantic sediments and Greenland ice cores, will be discussed. I. Hajdas, C. Taricco, G. Bonani, J. Beer, S. M. Bernasconi, L. Wacker, Anomalous radiocarbon ages found in Campanian Ignimbrite deposit of the Mediterranean deep-sea core CT85-5, Radiocarbon, 53, n. 4, 575, 2011. Castagnoli G.C., Albrecht A., Beer J., Bonino G., Shen C., Callegari E., Taricco C., Dittrich-Hannen B., Kubik P.,Suter M., Zhu G.M., Evidence for enhanced 10Be deposition in Mediterranean sediments 35 kyr BP, Geophysical Research Letters, 22(6), 707, 1995.

  8. Deep-sea octopus (Graneledone boreopacifica) conducts the longest-known egg-brooding period of any animal.

    Science.gov (United States)

    Robison, Bruce; Seibel, Brad; Drazen, Jeffrey

    2014-01-01

    Octopuses typically have a single reproductive period and then they die (semelparity). Once a clutch of fertilized eggs has been produced, the female protects and tends them until they hatch. In most shallow-water species this period of parental care can last from 1 to 3 months, but very little is known about the brooding of deep-living species. In the cold, dark waters of the deep ocean, metabolic processes are often slower than their counterparts at shallower depths. Extrapolations from data on shallow-water octopus species suggest that lower temperatures would prolong embryonic development periods. Likewise, laboratory studies have linked lower temperatures to longer brooding periods in cephalopods, but direct evidence has not been available. We found an opportunity to directly measure the brooding period of the deep-sea octopus Graneledone boreopacifica, in its natural habitat. At 53 months, it is by far the longest egg-brooding period ever reported for any animal species. These surprising results emphasize the selective value of prolonged embryonic development in order to produce competitive hatchlings. They also extend the known boundaries of physiological adaptations for life in the deep sea.

  9. First Insights into the Viral Communities of the Deep-sea Anoxic Brines of the Red Sea

    KAUST Repository

    Antunes, Andre

    2015-10-31

    The deep-sea brines of the Red Sea include some of the most extreme and unique environments on Earth. They combine high salinities with increases in temperature, heavy metals, hydrostatic pressure, and anoxic conditions, creating unique settings for thriving populations of novel extremophiles. Despite a recent increase of studies focusing on these unusual biotopes, their viral communities remain unexplored. The current survey explores four metagenomic datasets obtained from different brine-seawater interface samples, focusing specifically on the diversity of their viral communities. Data analysis confirmed that the particle-attached viral communities present in the brine-seawater interfaces were diverse and generally dominated by Caudovirales, yet appearing distinct from sample to sample. With a level of caution, we report the unexpected finding of Phycodnaviridae, which infects algae and plants, and trace amounts of insect-infecting Iridoviridae. Results from Kebrit Deep revealed stratification in the viral communities present in the interface: the upper-interface was enriched with viruses associated with typical marine bacteria, while the lower-interface was enriched with haloviruses and halophages. These results provide first insights into the unexplored viral communities present in deep-sea brines of the Red Sea, representing one of the first steps for ongoing and future sampling efforts and studies.

  10. Investigation of trophic ecology in Newfoundland cold-water deep-sea corals using lipid class and fatty acid analyses

    Science.gov (United States)

    Salvo, Flora; Hamoutene, Dounia; Hayes, Vonda E. Wareham; Edinger, Evan N.; Parrish, Christopher C.

    2018-03-01

    The trophic behavior of some deep-sea Newfoundland cold-water corals was explored using fatty acid (FA) and lipid profiles. No significant effect of geographic location and/or depth was identified in lipid or FA composition. However, differences were detected between and within taxon groups in hexa- or octocoral subclasses. Phospholipids constituted the main lipid class in all groups except black-thorny corals which had less structural lipids likely due to their morphology (stiff axes) and slower growth rates. Within each subclass, major differences in the identity of dominant FAs were detected at the order level, whereas differences between species and taxon groups of the same order were mainly driven by a variation in proportions of the dominant FA. Soft corals and gorgonians (Order Alcyonacea) were close in composition and are likely relying on phytodetritus resulting from algae, macrophytes and/or foraminifera, while sea pens (Order Pennatulacea) seem to consume more diatoms and/or herbivorous zooplankton with the exception of Pennatula sp. In the hexacoral subclass, black-thorny corals ( Stauropathes arctica) differed significantly from the stony-cup corals ( Flabellum alabastrum); S. arctica was seemingly more carnivorous (zooplankton markers) than F. alabastrum, which appears omnivorous (phyto- and zooplankton markers). Our results suggest that deep-sea corals are not as opportunistic as expected but have some selective feeding associated with taxonomy.

  11. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea

    KAUST Repository

    Takahashi, Masateru

    2018-01-24

    The deep-sea brines of the Red Sea are remote and unexplored environments characterized by high temperatures, anoxic water, and elevated concentrations of salt and heavy metals. This environment provides a rare system to study the interplay between halophilic and thermophilic adaptation in biologic macromolecules. The present article reports the first DNA polymerase with halophilic and thermophilic features. Biochemical and structural analysis by Raman and circular dichroism spectroscopy showed that the charge distribution on the protein’s surface mediates the structural balance between stability for thermal adaptation and flexibility for counteracting the salt-induced rigid and nonfunctional hydrophobic packing. Salt bridge interactions via increased negative and positive charges contribute to structural stability. Salt tolerance, conversely, is mediated by a dynamic structure that becomes more fixed and functional with increasing salt concentration. We propose that repulsive forces among excess negative charges, in addition to a high percentage of negatively charged random coils, mediate this structural dynamism. This knowledge enabled us to engineer a halophilic version of KOD DNA polymerase.—Takahashi, M., Takahashi, E., Joudeh, L. I., Marini, M., Das, G., Elshenawy, M. M., Akal, A., Sakashita, K., Alam, I., Tehseen, M., Sobhy, M. A., Stingl, U., Merzaban, J. S., Di Fabrizio, E., Hamdan, S. M. Dynamic structure mediates halophilic adaptation of a DNA polymerase from the deep-sea brines of the Red Sea.

  12. Using Deep-Sea Scientific Drilling to Enhance Ocean Science Literacy

    Science.gov (United States)

    Passow, Michael; Cooper, Sharon; Kurtz, Nicole; Burgio, Marion; Cicconi, Alessia

    2017-04-01

    Beginning with confirmation of sea floor spreading in Leg 3 of the Deep Sea Drilling Project in 1968, scientific ocean drilling has provided much of the evidence supporting modern understanding of the Earth System, global climate changes, and many other important concepts. But for more than three decades, results of discoveries were published primarily in scientific journals and cruise volumes. On occasion, science journalists would write articles for the general public, but organized educational outreach efforts were rare. Starting about a decade ago, educators were included in the scientific party aboard the JOIDES Resolution. These "teachers-at-sea" developed formats to translate the technical and scientific activities into language understandable to students, teachers, and the public. Several "Schools of Rock" have enabled groups of teachers and informal science educators to experience what happens aboard the JOIDES Resolution. Over the past few years, educational outreach efforts based on scientific drilling expanded to create a large body of resources that promote Ocean Science Literacy. Partnerships between scientists and educators have produced a searchable database of inquiry-centered classroom and informal science activities. These are available for free through the JOIDES Resolution website, joidesresolution.org. Activities are aligned with the Ocean Literacy Principles (http://oceanliteracy.wp2.coexploration.org/) and Science Education Standards. In addition to a suite of lessons based on the science behind scientific drilling, participants have developed a range of educational resources that include graphic novels ("Tales of the Resolution" (http://joidesresolution.org/node/263) ; children's books ("Uncovering Earth's Secrets" and "Where the Wild Microbes Grow" http://joidesresolution.org/node/2998); posters, videos, and other materials. Cooper and Kurtz are currently overseeing improvements and revisions to the JR education website pages. The

  13. Deep-sea mud volcanoes - a window to alteration processes in old oceanic crust?

    Science.gov (United States)

    Hensen, Christian; Scholz, Florian; Nuzzo, Marianne; Valadares, Vasco; Terrinha, Pedro; Liebetrau, Volker; Kaul, Norbert; Manzoni, Sonia; Schmidt, Mark; Gràcia, Eulàlia

    2013-04-01

    A number of deep sea mud volcanoes (>4700 m water depth) were discovered during a recent expedition with the German research vessel Meteor along a prominent WSW-ENE trending strike-slip fault (SWIM 1; Zitellini et al., 2009) in the western extension of the Gulf of Cadiz (NE Atlantic). Mud volcanism was unambiguously related to tectonic activity along the fault and fluids expelled at these sites show a very distinct geochemical composition that has not been reported from any other mud volcano to date. In previous studies on deep-water mud volcanoes in the Western Gulf of Cadiz accretionary wedge it was hypothesized that the discharge fluids were affected by alteration processes occurring in the old (>140 Ma) and deeply buried (>4 km) oceanic crust (Scholz et al., 2009; Sallarès et al, 2011). This hypothesis is supported by recent findings at the mud volcanoes located to the west of the realm of tectonic deformation driven by the accretionary wedge of the Gulf of Cadiz. Pore water geochemical analyses revealed fluid sources from oceanic crust and oldest sedimentary strata. Regardless of the ultimate source, these findings suggest that large strike-slip faults may play a significant, yet unrecognized role in terms of fluid circulation and element redistribution. To date, hot vents and cold seeps occurring at active spreading centers and forearcs of subduction zones have been pinpointed as hotspots of fluid activity. However, bearing in mind that transform-type plate boundaries are equal in length compared to other types of plate boundaries, fluid exchange at this type of plate boundary may provide a similarly important pathway for water and element exchange between the lithosphere and ocean. Sallarès V., Gailler A., Gutscher M.-A., Graindorge D., Bartolomé R., Gràcia E., Díaz J., Dañobeitia J.J. and Zitellini N. (2011) Seismic evidence for the presence of Jurassic oceanic crust in the central Gulf of Cadiz (SW Iberian margin), Earth and Planetary Science Letters

  14. Fluidal deep-sea volcanic ash as an indicator of explosive volcanism (Invited)

    Science.gov (United States)

    Clague, D. A.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2013-12-01

    Fluidal glassy lava fragments are now known to be abundant at sites of submarine eruptions including the mid-ocean ridge system, near-ridge seamount chains, mid-plate volcanoes and the submarine rifts of ocean islands, deep-sea (4200m) alkalic lava fields, back-arc spreading centers, and arc volcanoes. Fluidal fragments at these diverse settings have compositions including basanite, tholeiite, boninite, andesite, dacite, and rhyolite. Fragments include straight, bent, curved, and coiled Pele's hair; flat, curved, twisted, folded, bent, or keeled ribbons; and flat, curved, or intensely folded limu o Pele. Most of these morphologies attach to blocky glass fragments. The fluidal fragments from different settings and depths are strikingly similar in morphology with variable vesicularity and particle thickness. They have been sampled flat and steep, rocky to sediment-covered substrates. Two different mechanisms are proposed to explain their origin: magmatic-volatile fragmentation during eruption and sea floor lava-water interactions. Volatiles in the melts and ambient water are present in all submarine volcanic settings, making it difficult to separate their role in forming the fragments. Submarine bubble-burst (strombolian) activity has been observed in situ at an active vent at -1200m on West Mata Volcano. However, lava-water interaction at elevated pressure has not been observed to make such fluidal fragments except in laboratory simulations. Lava-water interaction models suggest that pore water in sediment trapped beneath advancing lava flows migrates into the overlying flow where it expands to steam, and the expanding steam bubble escapes explosively through the flow top to form the fluidal fragments. This is different from the hollow (water-filled) pillars that form in inflating flows as trapped water escapes. Pillars grow upwards at contacts between flow lobes, thus the water exiting through pillars never enters (or exits) the molten lava flow interior. Another

  15. The isotope composition of inorganic germanium in seawater and deep sea sponges

    Science.gov (United States)

    Guillermic, Maxence; Lalonde, Stefan V.; Hendry, Katharine R.; Rouxel, Olivier J.

    2017-09-01

    for deep-sea sponges sampled nearby allowed us to determine a Ge isotope fractionation factor of -0.87 ± 0.37‰ (2SD, n = 12) during Ge uptake by sponges. Although Ge has long been considered as a geochemical twin of Si, this work underpins fundamental differences in their isotopic behaviors both during biomineralization processes and in their oceanic distributions. This suggests that combined with Si isotopes, Ge isotopes hold significant promise as a complementary proxy for delineating biological versus source effects in the evolution of the marine silicon cycle through time.

  16. Analysis of trace elements in the shell of asari clams

    International Nuclear Information System (INIS)

    Arakawa, J.; Sakamoto, W.; Arai, N.; Yoshida, K.

    1999-01-01

    Strontium concentration in the shells of asari clams collected at different locations was analyzed by PIXE. The Sr concentration of external surface of shell umbo was ranged from 1000 to 3500 ppm for individuals. The Sr concentration of clams collected at Shirahama showed positive correlation with shell length, whereas clams collected at Maizuru did not show significant correlation. This result may be caused from the difference of the spawning seasons between two areas. (author)

  17. Design and implementation of optical imaging and sensor systems for characterization of deep-sea biological camouflage

    Science.gov (United States)

    Haag, Justin Mathew

    The visual ecology of deep-sea animals has long been of scientific interest. In the open ocean, where there is no physical structure to hide within or behind, diverse strategies have evolved to solve the problem of camouflage from a potential predator. Simulations of specific predator-prey scenarios have yielded estimates of the range of possible appearances that an animal may exhibit. However, there is a limited amount of quantitative information available related to both animal appearance and the light field at mesopelagic depths (200 m to 1000 m). To mitigate this problem, novel optical instrumentation, taking advantage of recent technological advances, was developed and is described in this dissertation. In the first half of this dissertation, the appearance of mirrored marine animals is quantitatively evaluated. A portable optical imaging scatterometer was developed to measure angular reflectance, described by the bidirectional reflectance distribution function (BRDF), of biological specimens. The instrument allows for BRDF capture from samples of arbitrary size, over a significant fraction of the reflectance hemisphere. Multiple specimens representing two species of marine animals, collected at mesopelagic depths, were characterized using the scatterometer. Low-dimensional parametric models were developed to simplify use of the data sets, and to validate the BRDF method. Results from principal component analysis confirm that BRDF measurements can be used to study intra- and interspecific variability of mirrored marine animal appearance. Collaborative efforts utilizing the BRDF data sets to develop physically-based scattering models are underway. In the second half of this dissertation, another key part of the deep-sea biological camouflage problem is examined. Two underwater radiometers, capable of low-light measurements, were developed to address the lack of available information related to the deep-sea light field. Quantitative comparison of spectral

  18. Continuous cooling transformation behaviors of CLAM steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qing-sheng, E-mail: qingsheng.wu@fds.org.cn; Zheng, Shu-hui; Huang, Qun-ying; Liu, Shao-jun; Han, Yang-yang

    2013-11-15

    The continuous cooling transformation (CCT) behaviors of CLAM (China Low Activation Martensitic) steel were studied, the CCT diagram was constructed, and the influence of cooling rates on the microstructures was also investigated. The microstructures were investigated using optical microscopy (OM) and microhardness tests were also carried out. The results showed that CLAM steel possessed high hardenability and there were ferrite and martensite transformation regions only. The maximum cooling rate to form ferrite microstructure was found to be 10–12 K/min. In order to obtain fully ferrite microstructure, the cooling rate should be lower than 1 K/min. The CCT diagram also gave relevant parameters such as the transformation temperatures, i.e., A{sub c1}, A{sub c3}, M{sub s} and M{sub f} were 1124 K, 1193 K, 705 K and 593 K, respectively. The diagram made it possible to predict the microstructures and properties of CLAM steel with different cooling rates.

  19. Deep-Sea Investigations on Hydrothermal Site Rainbow (MAR 36°14 N)

    Science.gov (United States)

    Dyment, J.; Fouquet, Y.; Gente, P.; Ildefonse, B.; Thibaud, R.; Hoise, E.; Bissessur, D.; Yatheesh, V.; Scientific Party, M.

    2008-12-01

    Hydrothermal site Rainbow, one of the few known site on an ultramafic basement, is an exceptional target for the multidisciplinary study of hydrothermal phenomena. It is one of the two targets of the MoMAR (Monitoring the Mid Atlantic Ridge) project patronized by InterRidge, and is the focus of an IODP drilling project. What makes this site exceptional is the abundance of natural hydrogen, methane, and iron, an element which plays a major role in active processes, down to the scale of molecules. During Cruise MomarDream (25 Aug. - 15 Sept. 2008), R/V L'Atalante and ROV Victor spent 3 weeks on site Rainbow to carry out detailed investigation of this unique area. The goals of the cruise were, first, to study the role of iron in the geological, hydrological, and biological processes, and second, to identify potential drilling targets. Beyond the requirement of a "zero state" for the repeated observations and in fine the site monitoring in the framework of the MOMAR project, the completion of an exhaustive inventory of the biological populations is needed for the sake of preservation of a fragile environment. Multibeam bathymetry and magnetics have been collected by ROV Victor 50 m above the seafloor on a 4 km × 3 km wide box centered on the site and covering about 25% of the Rainbow Massif. Similarly, multibeam bathymetry, magnetics, and high resolution photographs have been acquired 10 m above the seafloor on a 650 m × 500 m box centered on the site, and on a 300 m × 300 m box centered on a field of dead clams. A nearly full coverage was obtained in these boxes. Direct geological exploration was also carried out and allowed the collection of rock samples, complemented by an intensive dredge program when the ROV was onboard. A large part of the cruise was devoted to biological studies sensu lato, including the collection of fluids dedicated to the study of abiotic organic molecules and metagenomics, the collection of sulfide for microbiological investigations, in

  20. Comparative metagenomic analysis of the microbial communities in the surroundings of Iheya north and Iheya ridge hydrothermal fields reveals insights into the survival strategy of microorganisms in deep-sea environments

    Science.gov (United States)

    Wang, Hai-liang; Sun, Li

    2018-04-01

    In this study, metagenomic analysis was performed to investigate the taxonomic compositions and metabolic profiles of the microbial communities inhabiting the sediments in the surroundings of Iheya North and Iheya Ridge hydrothermal fields. The microbial communities in four different samples were found to be dominated by bacteria and, to a much lesser extent, archaea belonging to the phyla Proteobacteria, Actinobacteria, Planctomycetes, Firmicutes, Deinococcus-Thermus, and Nitrospirae, which play important roles in the cycling of carbon, nitrogen, and sulfur. All four microbial communities (i) contained chemoautotrophs and heterotrophs, the former probably fixed CO2 via various carbon fixation pathways, and the latter may degrade organic matters using nitrate and sulfate as electron acceptors, (ii) exhibited an abundance of DNA repair genes and bacterial sulfur oxidation mediated by reverse sulfate reduction, and (iii) harbored bacteria and archaea involved in anaerobic methane oxidation via intra-aerobic denitrification and reverse methanogenesis, which were found for the first time in hydrothermal areas. Furthermore, genes involved in DNA repair, reductive acetyl-CoA pathway, and ammonia metabolism were possibly affected by distance to the vent fields. These findings facilitate our understanding of the strategies of the microbial communities to adapt to the environments in deep sea areas associated with hydrothermal vents.

  1. Heat-flow and lateral seismic-velocity heterogeneities near Deep Sea Drilling Project-Ocean Drilling Program Site 504

    Science.gov (United States)

    Lowell, Robert P.; Stephen, Ralph A.

    1991-11-01

    Both conductive heat-flow and seismic-velocity data contain information relating to the permeability of the oceanic crust. Deep Sea Drilling Project-Ocean Drilling Program Site 504 is the only place where both detailed heat-flow and seismic-velocity field studies have been conducted at the same scale. In this paper we examine the correlation between heat flow and lateral heterogeneities in seismic velocity near Site 504. Observed heterogeneities in seismic velocity, which are thought to be related to variations in crack density in the upper 500 m of the basaltic crust, show little correlation with the heat-flow pattern. This lack of correlation highlights some of the current difficulties in using seismic-velocity data to infer details of spatial variations in permeability that are significant in controlling hydrothermal circulation.

  2. Major and minor element geochemistry of deep-sea sediments in the Azores Platform and southern seamount region.

    Science.gov (United States)

    Palma, Carla; Oliveira, Anabela; Valença, Manuela; Cascalho, João; Pereira, Eduarda; Lillebø, Ana I; Duarte, Armando C; Pinto de Abreu, Manuel

    2013-10-15

    The Azores Platform and the Irving and Great Meteor seamounts south of the archipelago (38°N-29°N) have rarely been studied geochemically, a fact which is surprising given that they represent the south-eastern limit of region V outlined in the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention). The main aim of the present work was therefore to characterise the spatial variability of major and minor elements in deep-sea sediment cores from these two regions. XRD and geochemical analyses revealed that whereas the Azores Platform sediments are composed of a mixture of biogenic and detrital volcanic material, those at the seamounts are characterised by carbonated biogenic remains. The latter sediments were found to contain very low amounts of volcanic or hydrothermal detrital material, being almost entirely comprised of CaCO3 (more than 80%). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. The Deep-Sea Polyextremophile Halobacteroides lacunaris TB21 Rough-Type LPS: Structure and Inhibitory Activity towards Toxic LPS

    Science.gov (United States)

    Di Lorenzo, Flaviana; Palmigiano, Angelo; Paciello, Ida; Pallach, Mateusz; Garozzo, Domenico; Bernardini, Maria-Lina; La Cono, Violetta; Yakimov, Michail M.; Molinaro, Antonio; Silipo, Alba

    2017-01-01

    The structural characterization of the lipopolysaccharide (LPS) from extremophiles has important implications in several biomedical and therapeutic applications. The polyextremophile Gram-negative bacterium Halobacteroides lacunaris TB21, isolated from one of the most extreme habitats on our planet, the deep-sea hypersaline anoxic basin Thetis, represents a fascinating microorganism to investigate in terms of its LPS component. Here we report the elucidation of the full structure of the R-type LPS isolated from H. lacunaris TB21 that was attained through a multi-technique approach comprising chemical analyses, NMR spectroscopy, and Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry. Furthermore, cellular immunology studies were executed on the pure R-LPS revealing a very interesting effect on human innate immunity as an inhibitor of the toxic Escherichia coli LPS. PMID:28653982

  4. Imprint of past environmental regimes on structure and succession of a deep-sea hydrothermal vent community.

    Science.gov (United States)

    Mullineaux, Lauren S; Micheli, Fiorenza; Peterson, Charles H; Lenihan, Hunter S; Markus, Nilauro

    2009-08-01

    Dramatic perturbations of ecological communities through rapid shifts in environmental regime do not always result in complete mortality of residents. Instead, legacy individuals may remain and influence the succession and composition of subsequent communities. We used a reciprocal transplant experiment to investigate whether a legacy effect is detectable in communities experiencing an abrupt increase or decrease in hydrothermal fluid flux at deep-sea vents. Vent habitats are characterized by strong gradients in productivity and physico-chemical stressors, both of which tend to increase with increasing vent fluid flux. In our experiments, many species survived transplantation from cool (water temperatures theory developed in the rocky intertidal that predicts the predominance of physical control at the high-stress end of an environmental gradient. Prediction of successional transitions in vents and other habitats experiencing regime shifts in which remnant species may survive must take into account the possible influence of historical effects.

  5. Determining sources of deep-sea mud by organic matter signatures in the Sunda trench and Aceh basin off Sumatra

    Science.gov (United States)

    Omura, Akiko; Ikehara, Ken; Arai, Kohsaku; Udrekh

    2017-12-01

    The content, optically determined properties, and stable isotope composition of organic carbon in fine-grained sediment cores were analyzed to investigate the origins of deep-sea sediments deposited in the Aceh forearc basin and on the Sunda trench floor off Sumatra from the late Pleistocene to the Holocene. In the Aceh basin, the depositional frequency of turbidite mud decreased as sea level rose during the deglaciation. The terrigenous organic carbon content was high at the end of the last glacial period, whereas during the deglaciation most of the organic carbon was of marine origin. In the Sunda trench, the Holocene turbidites consisted of remobilized slope sediments from two different sources: sediments derived from the old Bengal/Nicobar fan included thermally matured organic fragments, whereas those derived from the trench slope contained little terrigenous organic carbon.

  6. Focusing of sound pulses using the time reversal technique on 100-km paths in a deep sea

    Science.gov (United States)

    Virovlyansky, A. L.; Kazarova, A. Yu.; Lyubavin, L. Ya.

    2012-11-01

    Numerical and analytical studies are performed on how unstable fluctuations of the parameters of the medium in a deep sea affect the focusing of sound pulses using the time reversal method. The simplest situation, when point sources and receivers are used for emission and reception, is considered. Pulse propagation in the direct and backward directions is numerically simulated by the parabolic equation method. Calculations are performed for sound signals with frequencies of several tens of hertz. It is shown that, in the presence of sound velocity fluctuations caused by random internal waves, noticeable attenuation of the field amplitude at the center of the focal spot can be observed beginning from distances of 200 to 400 km. As the central frequency of the pulsed signal increases, the effect of nonstationarity of the perturbation on th