WorldWideScience

Sample records for ckm matrix element

  1. Semileptonic decays and CKM matrix elements in a TCF

    International Nuclear Information System (INIS)

    A Tau-Charm Factory (TCF) could improve the knowledge of CKM matrix elements since it is an incomparable tool to check the models and methods applied to extract Vbu from B decay partial widths. Some recent proposals to improve the parton model are discussed. The predictions from quark models, QCD sum rules, effective Lagrangians and lattice QCD on exclusive decays are compared. Quark models have anticipated on heavy quark symmetry. The extrapolation from D to B is discussed. Present uncertainties do not allow to predict reliably the B → π,ρlν matrix elements. (author). 31 refs., 2 figs., 4 tabs

  2. Measurement of the CKM matrix element |V_ts|²

    CERN Document Server

    Unverdorben, Christopher Gerhard

    This is the first direct measurement of the CKM matrix element |V_ts|, using data collected by the ATLAS detector in 2012 at √s=8 TeV pp-collisions with a total integrated luminosity of 20.3 fb⁻¹. The analysis is based on 112171 reconstructed tt̅ candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 tt̅→WWbs̅ decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element |V_ts|². To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K0s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called "boosted decision trees". The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of |V_ts|² < 1.74 % at 95 % confidence level is set, includi...

  3. Semileptonic Decays and CKM Matrix Elements in a TCF

    CERN Document Server

    Yaouanc, A L

    1993-01-01

    We argue that a Tau-Charm factory (TCF) could improve our knowledge of CKM matrix elements since it is an incomparable tool to check the models and methods applied to extract $V_{bu}$ from $B$ decay partial widths. We report on some recent proposals to improve on parton model. Turning to exclusive decays, we compare the predictions from quark models, QCD sum rules, effective Lagrangians and lattice QCD. Quark models have anticipated on heavy quark symmetry. Their difficutly to account for the $q^2$ dependence might be partly cured by relativistic corrections. QCD sum rules and lattice seem to disagree on the $q^2$ dependence of axial form factors. We discuss the extrapolation from $D$ to $B$. Present uncertainties do not allow to predict reliably the $B\\ra\\pi,\\rho l \

  4. Prospects of Direct Determination of |V_tq| CKM Matrix Elements at the LHC

    CERN Document Server

    Lagouri, Theodota

    2012-01-01

    The prospects of measuring the CKM matrix elements |V_tq| with top quarks decays at the LHC are discussed here, with the top quarks produced in the processes pp \\rightarrow ttbarX and pp \\rightarrow t/tbarX, and the subsequent decays t \\rightarrow Ws and/or tbar \\rightarrow Wsbar. As for the direct measurement of |V_tb|, there is also a lot of interest in the direct measurements of |V_ts| and |V_td|, as the absolute values of these CKM matrix elements can be modified by approximately a factor 2 from their SM values. Direct determination of these matrix elements will require a good tagging of the t \\rightarrow s transition (for |V_ts|) and t \\rightarrow d transition (for |V_td|) in the top quark decays, and a very large top quark statistics, which is available at the LHC. Lacking a good tagging for the t \\rightarrow d transition, and also because of the small size of the CKM-matrix element, |V_td| = O(10^-2), direct measurements of |V_ts| at the LHC with main emphasis at the centre of mass energy sqrt(s) of 14...

  5. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    This is the first direct measurement of the CKM matrix element vertical stroke Vts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb-1. The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W+W-b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke Vts vertical stroke 2. To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K0s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke Vts vertical stroke 2<1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke Vts vertical stroke 2, provides the best direct limit on vertical stroke Vts vertical stroke 2 up to now.

  6. The CKM matrix and CP violation

    International Nuclear Information System (INIS)

    The CKM picture of the quark sector is reviewed. The author explains how the phenomena of quark mixing, CP violation and the absence of flavor changing neutral currents arise in the Standard Model. He describes the determination of the CKM elements from direct measurements, from unitarity and from indirect measurements. He discusses the motivation for schemes of quark mass matrices and analyzes the Fritzsch scheme as an example. Finally, he lists the experimental and theoretical improvements expected in the future in the determination of the CKM matrix. 86 refs., 6 figs

  7. First determination of the quark mixing matrix element $V_{tb}$ from electroweak corrections to Z decays and implications for CKM matrix unitarity

    CERN Document Server

    Swain, J D

    1999-01-01

    We present a new method for the determination of the Cabibbo- Kobayashi-Maskawa quark mixing matrix element V/sub tb/ from electroweak loop corrections, in particular those affecting the process Z to bb. From a combined analysis of results from the LEP, SLC, Tevatron, and neutrino scattering experiments we determine V /sub tb/=0.77/sub -0.24//sup +18/. We comment briefly on the implications of this measurement for the mass of the top quark and Higgs boson, alpha /sub s/, and CKM unitarity. (19 refs).

  8. The CKM Matrix and the unitarity triangle

    International Nuclear Information System (INIS)

    This report contains the results of the Workshop on the CKM Unitarity Triangle that was held at CERN on 13-16 February 2002. There had been several Workshops on B physics that concentrated on studies at e+e- machines, at the Tevatron, or at LHC separately. Here we brought together experts of different fields, both theorists and experimentalists, to study the determination of the CKM matrix from all the available data of K, D, and B physics. The analysis of LEP data for B physics is reaching its end, and one of the goals of the Workshop was to underline the results that have been achieved at LEP, SLC, and CESR. Another goal was to prepare for the transfer of responsibility for averaging B physics properties, that has developed within the LEP community, to the present main actors of these studies, from the B factory and the Tevatron experiments. The optimal way to combine the various experimental and theoretical inputs and to fit for the apex of the Unitarity Triangle has been a contentious issue. A further goal of the Workshop was to bring together the proponents of different fitting strategies, and to compare their approaches when applied to the same inputs. Since lattice QCD plays a very important role in the determination of the non-perturbative parameters needed to constrain the CKM unitarity triangle, the first Workshop was seen as an excellent opportunity to bring together lattice theorists with the aim of establishing a working group to compile averages for phenomenologically relevant quantities. Representatives from lattice collaborations around the world were invited to attend a meeting during the Workshop. A consensus was reached to set up three test working groups, collectively known as the ''CKM Lattice Working Group'', to review a number of well-studied quantities: quark masses, the kaon B-parameter, and the matrix elements relevant for neutral B-meson mixing. These proceedings are organized as a coherent document with chapters covering the domains of

  9. Novel formulations of CKM matrix renormalization

    CERN Document Server

    Kniehl, B A

    2009-01-01

    We review two recently proposed on-shell schemes for the renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix in the Standard Model. One first constructs gauge-independent mass counterterm matrices for the up- and down-type quarks complying with the hermiticity of the complete mass matrices. Diagonalization of the latter then leads to explicit expressions for the CKM counterterm matrix, which are gauge independent, preserve unitarity, and lead to renormalized amplitudes that are non-singular in the limit in which any two quarks become mass degenerate. One of the schemes also automatically satisfies flavor democracy.

  10. Measurement of the electroweak top quark production cross section and the CKM matrix element Vtb with the DOe experiment

    International Nuclear Information System (INIS)

    the Standard Model expectation by 2 standard deviations. The result of the analysis presented here is in good agreement with the result of σ(p anti p→tb+X,tqb+X)=4.8± 1.3 pb, obtained from the combination of three other analyses performed on the same data set. From the cross section measurement a measurement of the strength vertical stroke Vtb x f1L vertical stroke of the V-A coupling at the Wtb-vertex has been extracted. The result is vertical stroke Vtb x f1L vertical stroke =1.42-0.20+0.21. This value is above the Standard Model expectation by about 2∝standard deviations. The measurement agrees within uncertainties with the measurement of vertical stroke Vtb x f1L vertical stroke =1.31-0.21+0.25 obtained by another analysis performed on the same data set. Constraining the prior of this measurement to the interval [0,1], i.e. setting the strength of the left-handed coupling f1L=1, a result for the CKM matrix element vertical stroke Vtb vertical stroke has been determined to vertical stroke Vtb vertical stroke =1.00-0.08+0.00. From the posterior probability density of this measurement a lower limit for Vtb has been set at 95% confidence level: vertical stroke Vtb vertical stroke >0.79 rate at 95% C.L. (orig.)

  11. Measurement of the electroweak top quark production cross section and the CKM matrix element Vtb with the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Matthias [RWTH Aachen Univ. (Germany)

    2009-06-29

    At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of {radical}s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |Vtb| matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V{sub tb}| would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s

  12. Measurement of the electroweak top quark production cross section and the CKM matrix element Vtb with the D0 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Matthias; /Aachen, Tech. Hochsch.

    2009-06-01

    At particle accelerators the Standard Model has been tested and will be tested further to a great precision. The data analyzed in this thesis have been collected at the world's highest energetic-collider, the Tevatron, located at the Fermi National Accelerator Laboratory (FNAL) in the vicinity of Chicago, IL, USA. There, protons and antiprotons are collided at a center-of-mass energy of {radical}s = 1.96 TeV. The discovery of the top quark was one of the remarkable results not only for the CDF and D0 experiments at the Tevatron collider, but also for the Standard Model, which had predicted the existence of the top quark because of symmetry arguments long before already. Still, the Tevatron is the only facility able to produce top quarks. The predominant production mechanism of top quarks is the production of a top-antitop quark pair via the strong force. However, the Standard Model also allows the production of single top quarks via the electroweak interaction. This process features the unique opportunity to measure the |V{sub tb}| matrix element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix directly, without assuming unitarity of the matrix or assuming that the number of quark generations is three. Hence, the measurement of the cross section of electroweak top quark production is more than the technical challenge to extract a physics process that only occurs one out of ten billion collisions. It is also an important test of the V-A structure of the electroweak interaction and a potential window to physics beyond the Standard Model in the case where the measurement of |V{sub tb}| would result in a value significantly different from 1, the value predicted by the Standard Model. At the Tevatron two production processes contribute significantly to the production of single top quarks: the production via the t-channel, also called W-gluon fusion, and the production via the s-channel, known as well as W* process. This analysis searches for the combined s+t channel

  13. Experimental Status of the CKM Matrix

    CERN Document Server

    Porter, Frank C

    2016-01-01

    The CKM matrix, V, relates the quark mass and flavor bases. In the standard model, V is unitary 3X3, and specified by four arbitrary parameters, including a phase allowing for $CP$ violation. We review the experimental determination of V, including the four parameters in the standard model context. This is an active field; the precision of experimental measurements and theoretical inputs continues to improve. The consistency of the determination with the standard model unitarity is investigated. While there remain some issues the overall agreement with standard model unitarity is good.

  14. Renormalization Group Equations for the CKM matrix

    CERN Document Server

    Kielanowski, P; Montes de Oca Y, J H

    2008-01-01

    We derive the one loop renormalization group equations for the Cabibbo-Kobayashi-Maskawa matrix for the Standard Model, its two Higgs extension and the minimal supersymmetric extension in a novel way. The derived equations depend only on a subset of the model parameters of the renormalization group equations for the quark Yukawa couplings so the CKM matrix evolution cannot fully test the renormalization group evolution of the quark Yukawa couplings. From the derived equations we obtain the invariant of the renormalization group evolution for three models which is the angle $\\alpha$ of the unitarity triangle. For the special case of the Standard Model and its extensions with $v_{1}\\approx v_{2}$ we demonstrate that also the shape of the unitarity triangle and the Buras-Wolfenstein parameters $\\bar{\\rho}=(1-{1/2}\\lambda^{2})\\rho$ and $\\bar{\\eta}=(1-{1/2}\\lambda^{2})\\eta$ are conserved. The invariance of the angles of the unitarity triangle means that it is not possible to find a model in which the CKM matrix mi...

  15. Determination of the CKM matrix element vertical stroke Vcb vertical stroke, the B → Xsγ decay rate, and the b-quark mass

    International Nuclear Information System (INIS)

    In this work, the preliminary measurements of two fundamental parameters of the Standard Model of particles physics are presented: the CKM matrix element vertical stroke Vcb vertical stroke, and the b-quark mass. The measurement of the absolute value of the CKM matrix element Vcb uses the full set of recorded data of 429.06 fb-1 of B anti B mesons of the BABAR experiment. The CKM matrix element is obtained by measuring the branching fractions and non-perturbative shape parameters of the two transitions into the charmed 1S ground states, B → Dlνl and B → D*l νl, respectively. The kinematic of the produced lepton is measured and the kinematics of the short-lived charmed mesons is reconstructed from kaon and pion candidates. By combining the reconstructed three-momenta of both particles with the angular information of the decay, three independent variables can be obtained. The measured distributions in these variables are analyzed in a three-dimensional global fit, which simultaneously extracts the decay parameters and branching fractions of both charmed transitions. We find that B → Dl νl: vertical stroke Vcb vertical stroke =(36.14±0.57stat.±1.30sys.±0.80theo.) x 10-3, B → D*l νl: vertical stroke Vcb vertical stroke =(39.71±0.26stat.±0.73sys.±0.74theo.) x 10-3, where the uncertainties are statistical, systematic, and theoretical, respectively. In the Standard Model, both measured values of vertical stroke Vcb vertical stroke can be averaged to further minimize the uncertainties. We find Combined: vertical stroke Vcb vertical stroke =(38.29±0.26stat.±0.64sys.±0.52theo.) x 10-3. Furthermore, several scenarios are explored how possible future unquenched lattice QCD points can be incorporated into the measurement, to further reduce the uncertainty on vertical stroke Vcb vertical stroke. The b-quark mass is determined by analyzing measured B → Xsγ photon energy spectra from BABAR and Belle. Due to the sizeable background contributions from other

  16. Determination of the CKM Element V(Ub)

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Dominique; /Victoria U.

    2007-04-06

    The precise determination of the CKM matrix element |V{sub ub}| is crucial in testing the Standard Model mechanism for CP violation. From a sample of 88 million B{bar B} pairs collected with the BABAR detector, charmless semileptonic B decays are selected using simultaneous requirements on the electron energy, E{sub e}, and the invariant mass squared of the electron-neutrino pair, q{sup 2}. The partial branching fraction, unfolded for detector effects, is determined in a region of the q{sup 2}-E{sub e} plane where the dominating semileptonic decays to charm mesons are highly suppressed. Theoretical calculations based on the Heavy Quark Expanion allows for a determination of |V{sub ub}| = (3.95 {+-} 0.27{sub -0.42}{sup +0.58} {+-} 0.25) x 10{sup -3}, where the errors represent experimental, heavy quark parameters and theoretical uncertainties, respectively.

  17. Measurement of the electroweak top quark production cross section and the CKM matrix element V{sub tb} with the DOe experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Matthias

    2009-06-29

    .2 standard deviations. The measured cross section value exceeds the Standard Model expectation by 2 standard deviations. The result of the analysis presented here is in good agreement with the result of {sigma}(p anti p{yields}tb+X,tqb+X)=4.8{+-} 1.3 pb, obtained from the combination of three other analyses performed on the same data set. From the cross section measurement a measurement of the strength vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke of the V-A coupling at the Wtb-vertex has been extracted. The result is vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke =1.42{sub -0.20}{sup +0.21}. This value is above the Standard Model expectation by about 2{proportional_to}standard deviations. The measurement agrees within uncertainties with the measurement of vertical stroke V{sub tb} x f{sub 1}{sup L} vertical stroke =1.31{sub -0.21}{sup +0.25} obtained by another analysis performed on the same data set. Constraining the prior of this measurement to the interval [0,1], i.e. setting the strength of the left-handed coupling f{sub 1}{sup L}=1, a result for the CKM matrix element vertical stroke V{sub tb} vertical stroke has been determined to vertical stroke V{sub tb} vertical stroke =1.00{sub -0.08}{sup +0.00}. From the posterior probability density of this measurement a lower limit for V{sub tb} has been set at 95% confidence level: vertical stroke V{sub tb} vertical stroke >0.79 rate at 95% C.L. (orig.)

  18. Precise test of the unitarity of the CKM matrix via superallowed nuclear beta decay

    Science.gov (United States)

    Park, Hyo-In

    2016-03-01

    Superallowed 0+ --> 0+ nuclear beta decay between isospin T = 1 analogue states is a sensitive probe for studying the fundamental properties of the weak interaction. Today, the most precise measurements of the decay strengths (or ft values) of fourteen superallowed transitions, ranging from 10C to 74Rb, provide a direct determination of the vector coupling constant GV, and lead to the most precise value of Vud, the up-down quark-mixing element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. When Vud is combined with the other top-row elements, Vus and Vub, the sum of squares of the top-row elements of the CKM matrix satisfies the unitarity condition at the level of +/-0.06%. The impact of this result on searches for new physics beyond the Standard Model motivates further work to improve even further the precision of the CKM-matrix unitarity sum. Our current focus is on measurements to constrain the uncertainty in calculations of the isospin-symmetry-breaking corrections needed to determine Vud from the experimental data. This can be achieved with high-precision comparisons of the ft values from four pairs of accessible mirror superallowed decays with A 38mK and 38mK --> 38Ar, and our progress on measuring 42Ti decay. The measured ratio of the mirror ft values for A = 38 agrees well with the corrections currently used, and points the way to even tighter constraints on the unitarity of the CKM matrix. If the three mirror pairs, with A = 26 , A = 34 and A = 42 confirm and strengthen our present conclusion, it will become possible to shrink the systematic uncertainty on Vud, reduce the uncertainty on the CKM-matrix unitarity sum, and further constrain the scope for possible extensions to the Standard Model.

  19. The CKM matrix from anti-SU(7) unification of GUT families

    CERN Document Server

    Kim, Jihn E; Seo, Min-Seok

    2015-01-01

    We estimate the CKM matrix elements in the recently proposed minimal model, anti-SU(7) GUT for the family unification, $[\\,3\\,]+2\\,[\\,2\\,]+8\\,[\\,\\bar{1}\\,]$+\\,(singlets). It is shown that the real angles of the right-handed unitary matrix diagonalizing the mass matrix can be determined to fit the Particle Data Group data. However, the phase in the right-handed unitary matrix is not constrained very much. We also includes an argument about allocating the Jarlskog phase in the CKM matrix. Phenomenologically, there are three classes of possible parametrizations, $\\delq=\\alpha,\\beta,$ or $\\gamma$ of the unitarity triangle. For the choice of $\\delq=\\alpha$, the phase is close to a maximal one.

  20. A new approach to a global fit of the CKM matrix

    International Nuclear Information System (INIS)

    We report on a new approach to a global CKM matrix analysis taking into account most recent experimental and theoretical results. The statistical framework (Rfit) developed in this paper advocates frequentist statistics. Other approaches, such as Bayesian statistics or the 95% CL scan method are also discussed. We emphasize the distinction of a model testing and a model dependent, metrological phase in which the various parameters of the theory are estimated. Measurements and theoretical parameters entering the global fit are thoroughly discussed, in particular with respect to their theoretical uncertainties. Graphical results for confidence levels are drawn in various one and two-dimensional parameter spaces. Numerical results are provided for all relevant CKM parameterizations, the CKM elements and theoretical input parameters. Predictions for branching ratios of rare K and B meson decays are obtained. A simple, predictive SUSY extension of the Standard Model is discussed. (authors)

  1. A new approach to a global fit of the CKM matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hoecker, A.; Lacker, H.; Laplace, S. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Le Diberder, F. [Laboratoire de Physique Nucleaire et des Hautes Energies, 75 - Paris (France)

    2001-05-01

    We report on a new approach to a global CKM matrix analysis taking into account most recent experimental and theoretical results. The statistical framework (Rfit) developed in this paper advocates frequentist statistics. Other approaches, such as Bayesian statistics or the 95% CL scan method are also discussed. We emphasize the distinction of a model testing and a model dependent, metrological phase in which the various parameters of the theory are estimated. Measurements and theoretical parameters entering the global fit are thoroughly discussed, in particular with respect to their theoretical uncertainties. Graphical results for confidence levels are drawn in various one and two-dimensional parameter spaces. Numerical results are provided for all relevant CKM parameterizations, the CKM elements and theoretical input parameters. Predictions for branching ratios of rare K and B meson decays are obtained. A simple, predictive SUSY extension of the Standard Model is discussed. (authors)

  2. Global Fits of the CKM Matrix with the SCAN Method

    CERN Document Server

    Eigen, G; Hitlin, D G; Porter, F C

    2015-01-01

    We present a Scan Method analysis of the allowed region of the rho bar - eta bar plane using the latest input measurements of the CKM matrix elements, sin 2 beta, B0(s,d) mixing, epsilon(K), alpha and gamma. In this approach, we make no assumptions as to the distribution of theory uncertainties; rather, we scan over the range of plausible theoretical uncertainties and determine confidence level contours in the rho bar eta bar plane. We determine alpha from branching fraction and CP asymmetry measurements of B decays to all light pseudoscalar-pseudoscalar, pesudoscalar-vector, vector-vector and a1-psudoscalar mesons and determine gamma from D(*)K(*), D(*) pi and D rho modes, thereby including correlations between the angles of the unitarity triangle. We parametrize the individual decay amplitudes in terms of color-allowed tree, color-suppressed tree, gluonic penguin, singlet penguin, electroweak penguin, as well as W-exchange and W-annihilation amplitudes. Our procedure accounts for all correlations among the ...

  3. Determination of the CKM-matrix element |V{sub ub}| from the electron energy spectrum measured in inclusive B→X{sub u}eν decay with the BABAR detector

    Energy Technology Data Exchange (ETDEWEB)

    Lueck, Thomas

    2013-01-30

    This document presents a measurement of the CKM matrix-element vertical stroke V{sub ub} vertical stroke in inclusive semileptonic B→X{sub u}eν events on a dataset of 471 million B anti B events recorded by the BABAR detector. Inclusive B→X{sub u}eν decays are selected by reconstructing a high energetic electron (positron). Background suppression is achieved by selecting events with electron (positron) energies near the kinematical allowed endpoint of B→X{sub u}eν decays. A B→D{sup *}eν veto is applied to further suppress background. This veto uses D{sup *} mesons which have been reconstructed with a partial reconstruction technique.

  4. Tree FCNC and non-unitarity of CKM matrix

    International Nuclear Information System (INIS)

    We discuss possible signatures of the tree level FCNC, which results from the non-unitarity of CKM matrix. We first define the unitarity step-by-step, and possible test of the non-unitarity through the 4-value-KM parametrization. We, then, show how the phase angle of the unitary triangle would change in case of the vector-like down quark model. As another example of tree FCNC, we investigate the leptophobic Z′ model and its application to the recent Bs mixing measurements. (author)

  5. Determination of the Form Factors for the Decay B0 --> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    CERN Document Server

    Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Y G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Y; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côte, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Banerjee, S; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2006-01-01

    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element $|V_{cb}|$ and of the parameters $\\rho^2$, $R_1$, and $R_2$, which fully characterize the form factors of the $B^0 \\to D^{*-}\\ell^{+}\

  6. Breaking of flavor permutational symmetry and the CKM matrix

    International Nuclear Information System (INIS)

    Different ansaetze for the breaking of the flavor permutational symmetry according to SL(3) x SR(3) superset of SL(2) x SR(2) give different Hermitian mass matrices which differ in the symmetry breaking pattern. In this work we obtain a clear and precise indication on the preferred symmetry breaking pattern. The preferred pattern allows us to compute the CKM mixing matrix, the Jarlskog invariant J, and the three inner angles of the unitarity triangle in terms of four quark mass ratios and the CP violating phase Φ. Excellent agreement with the experimentally determined absolute values of the entries in the CKM matrix is obtained for Φ=90 deg. The corresponding computed values of the Jarlskog invariant and the inner angles are J=3.00x10-5, α=84 deg., β=24 deg. and γ=72 deg. in very good agreement with current data on CP violation in the neutral kaon-antikaon system and oscillations in the Bs deg.-B-bars deg. system

  7. The breaking of the flavour permutational symmetry Mass textures and the CKM matrix

    CERN Document Server

    Mondragón, A

    1999-01-01

    Different anzätse for the breaking of the flavour permutational symmetry acording to S_{L}(3) X S_{R}(3) \\supset S_{L}(2) X S_{R}(2) give different Hermitian mass matrices of the same modified Fritzsch type, which differ in the symmetry breaking pattern. In this work we obtain a clear and precise indication on the preferred symmetry breaking scheme from a fit of the predicted |V^{th}| to the experimentally determined absolute values of the elements of the CKM matrix. The preferred scheme leads to simple mass textures and allows us to compute the CKM mixing matrix, the Jarlskog invariant J, and the three inner angles of the unitarity triangle in terms of four quark mass ratios and only one free parameter: the CP violating phase \\Phi. Excellent agreement with the experimentally determined absolute values of the entries in the CKM matrix is obtained for \\Phi=90 degrees. The corresponding computed values of the Jarlskog invariant and the inner angles are J=3 x 10^{-5}, agreement with current data on CP violation...

  8. The breaking of the flavour permutational symmetry Mass textures and the CKM matrix

    CERN Document Server

    Mondragón, A

    1998-01-01

    Different ansaetze for the breaking of the flavour permutational symmetry according to S(3)L X S(3)R in S(2)L X S(2)R give different Hermitian mass matrices of the same modified Fritzsch type which are classified in terms of an auxiliary S(2) which is not a subgroup of S(3)L X S(3)R. A fit of the predicted theoretical Vckm to the experimentally determined absolute values of the elements of the CKM matrix gives a clear and precise indication on the preferred symmetry breaking scheme. The preferred scheme leads to simple mass textures and allows us to compute the CKM mixing matrix in terms of four quark mass ratios and only one free parameter: the CP violating phase Phi. Excellent agreement with the experimentally determined absolute values of the entries in the CKM matrix is obtained for Phi = 76.8 deg. The corresponding computed value of the Jarlskog invariant is J = -2.18 10^-5 in very good agreement with current data on CP violation in the neutral kaon-antikaon system.

  9. Determination of the Form Factors for the Decay B0 -> D*- l+ nu_l and of the CKM Matrix Element |V_cb|

    CERN Document Server

    Aubert, B; Boutigny, D; Karyotakis, Yu; Lees, J P; Poireau, V; Prudent, X; Tisserand, V; Zghiche, A; Garra Tico, J; Graugès-Pous, E; López, L; Palano, A; Eigen, G; Ofte, I; Stugu, B; Sun, L; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lopes-Pegna, D; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Tackmann, K; Wenzel, W A; Del Amo-Sánchez, P; Hawkes, C M; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Schröder, T; Steinke, M; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Saleem, M; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Bondioli, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Martin, E C; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Liu, F; Long, O; Shen, B C; Zhang, L; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Schalk, T; Schumm, B A; Seiden, A; Williams, D C; Wilson, M G; Winstrom, L O; Chen, E; Cheng, C H; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Gabareen, A M; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Wacker, K; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Lombardo, V; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cecchi, A; Cibinetto, G; Franchini, P; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Santoro, V; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Dauncey, P D; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Guo, Z J; Lae, C K; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Bequilleux, J; Davier, M; Grosdidier, G; Höcker, A; Lepeltier, V; Le Diberder, F R; Lutz, A M; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Serrano, J; Sordini, V; Stocchi, A; Wang, W F; Wormser, G; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; George, K A; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; West, T J; Yi, J I; Anderson, J; Chen, C; Jawahery, A; Roberts, D A; Simi, G; Tuggle, J M; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Salvati, E; Saremi, S; Cowan, R; Fisher, P H; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; De Nardo, Gallieno; Fabozzi, F; Lista, L; Monorchio, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Morris, J P; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gagliardi, N; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Ben-Haim, E; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; Leruste, P; Malcles, J; Ocariz, J; Pérez, A; Gladney, L; Biasini, M; Covarelli, R; Manoni, E; Angelini, C; Batignani, G; Bettarini, S; Calderini, G; Carpinelli, M; Cenci, R; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Biesiada, J; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Baracchini, E; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Jackson, P D; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Renga, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; Castelli, G; Franek, B; Olaiya, E O; Ricciardi, S; Röthel, W; Wilson, F F; Aleksan, R; Emery, S; Escalier, M; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Pelliccioni, M; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Milanes, D A; Oyanguren, A; Albert, J; Banerjee, Sw; Bhuyan, B; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Dasu, S; Flood, K T; Hollar, J J; Kutter, P E; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2007-01-01

    We present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V_{cb}| and of the parameters rho^2, R_1(1), and R_2(1), which fully characterize the form factors for the B0 -> D*- l+ nu_l decay in the framework of HQET. The results, based on a selected sample of about 52,800 B0 -> D*- l+ nu_l decays, recorded by the BaBar detector, are rho2=1.156+-0.094+-0.028, R_1(1)=1.329+-0.131+-0.044, R_2(1)=0.859+-0.077+-0.022, and F(1)|V_cb|=(35.0+-0.4+-1.1)x10^-3. The first error is the statistical and the second is the systematic uncertainty. Combining these measurements with the previous BaBar measurement of the form factors, which employs a different fit technique on a partial sample of the data, we improve the statistical precision of the result, rho2=1.179+-0.048+-0.028, R_1(1)=1.417+-0.061+-0.044, R_2(1)=0.836+-0.037+-0.022, and F(1)|V_cb| = (34.7+-0.3+-1.1)x10^-3. Using lattice calculations for the axial form factor $\\mathcal{F}(1)$, we extract |V_cb| =(37.7+-0.3+-1.2+1.2-1.4)x10^-3, where th...

  10. The CKM matrix and the unitarity triangle. Proceedings, workshop, Geneva, Switzerland, February 13-16, 2002

    Energy Technology Data Exchange (ETDEWEB)

    M. Battaglia et al.

    2004-04-02

    This report contains the results of the Workshop on the CKM Unitarity Triangle that was held at CERN on 13-16 February 2002. There had been several Workshops on B physics that concentrated on studies at e{sup +}e{sup -} machines, at the Tevatron, or at LHC separately. Here we brought together experts of different fields, both theorists and experimentalists, to study the determination of the CKM matrix from all the available data of K, D, and B physics. The analysis of LEP data for B physics is reaching its end, and one of the goals of the Workshop was to underline the results that have been achieved at LEP, SLC, and CESR. Another goal was to prepare for the transfer of responsibility for averaging B physics properties, that has developed within the LEP community, to the present main actors of these studies, from the B factory and the Tevatron experiments. The optimal way to combine the various experimental and theoretical inputs and to fit for the apex of the Unitarity Triangle has been a contentious issue. A further goal of the Workshop was to bring together the proponents of different fitting strategies, and to compare their approaches when applied to the same inputs. Since lattice QCD plays a very important role in the determination of the non-perturbative parameters needed to constrain the CKM unitarity triangle, the first Workshop was seen as an excellent opportunity to bring together lattice theorists with the aim of establishing a working group to compile averages for phenomenologically relevant quantities. Representatives from lattice collaborations around the world were invited to attend a meeting during the Workshop. A consensus was reached to set up three test working groups, collectively known as the ''CKM Lattice Working Group'', to review a number of well-studied quantities: quark masses, the kaon B-parameter, and the matrix elements relevant for neutral B-meson mixing. This report is organized as a coherent document with chapters

  11. Determination of the Form Factors for the Decay B0 -> D*-l+nu_l and of the CKM Matrix Element |Vcb|

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2006-09-26

    The authors present a combined measurement of the Cabibbo-Kobayashi-Maskawa matrix element |V{sub cb}| and of the parameters {rho}{sup 2}, R{sub 1}, and R{sub 2}, which fully characterize the form factors of the B{sup 0} {yields} D*{sup -}{ell}{sup +}{nu}{sub {ell}} decay in the framework of HQET, based on a sample of about 52,800 B{sup 0} {yields} D*{sup -}{ell}{sup +}{nu}{sub {ell}} decays recorded by the BABAR detector. The kinematical information of the fully reconstructed decay is used to extract the following values for the parameters (where the first errors are statistical and the second systematic): {rho}{sup 2} = 1.156 {+-} 0.094 {+-} 0.028, R{sub 1} = 1.329 {+-} 0.131 {+-} 0.044, R{sub 2} = 0.859 {+-} 0.077 {+-} 0.022, F(1)|V{sub cb}| = (35.03 {+-} 0.39 {+-} 1.15) x 10{sup -3}. By combining these measurements with the previous BABAR measurements of the form factors which employs a different technique on a partial sample of the data, they improve the statistical accuracy of the measurement, obtaining: {rho}{sup 2} = 1.179 {+-} 0.048 {+-} 0.028, R{sub 1} = 1.417 {+-} 0.061 {+-} 0.044, R{sub 2}, = 0.836 {+-} 0.037 {+-} 0.022, and F(1)|V{sub cb}| = (34.68 {+-} 0.32 {+-} 1.15) x 10{sup -3}. Using the lattice calculations for the axial form factor F(1), they extract |V{sub cb}| = (37.74 {+-} 0.35 {+-} 1.25 {+-} {sub 1.44}{sup 1.23}) x 10{sup -3}, where the third error is due to the uncertainty in F(1).

  12. Study of 14O as a test of the unitarity of the CKM matrix and the CVC hypothesis

    Energy Technology Data Exchange (ETDEWEB)

    Burke, Jason Timothy

    2004-06-01

    The study of superallowed beta decay in nuclei, in conjunction with other experiments, provide a test of the unitarity of the quark mixing matrix or CKM matrix. Nonunitarity of the CKM matrix could imply the existence of a fourth generation of quarks, right handed currents in the weak interaction, and/or new exotic fermions. Advances in radioactive beam techniques allow the creation of nearly pure samples of nuclei for beta decay studies. The subject of this thesis is the development of a radioactive beam of 14O and the study of the 14O halflife and branching ratio. The radioactive beam is produced by ionizing 12C14O radioactive gas and then accelerating with an ECR ion source. The 14O nucleus decays via superallowed beta decay with a branching ratio > 99 percent. The low Z of 14O is important for calculating reliable corrections to the beta decay that generally increase in with Z. The > 99 percent branching ratio can be established with modest precision on the complementary branching ratio.When this work began the experimentally determined CKM matrix was nonunitary by 2.5 standard deviations. Recent studies of Kaon, Hyperon, and B meson decays have been used to determine Vus and Vub matrix elements. In this work the halflife and branching ratio of 14O are measured and used to establish Vud. The unitarity of the CKM matrix is then assessed. The halflife of 14O was determined to be 70.683 +- 0.015 s and the GamowTeller branching ratio was found to be 0.643 +- 0.020 percent. Using these results the value of Vud is 0.9738 +- 0.0005. Incorporating the new values for Vus of 0.2272 +- 0.0030 and Vub of 0.0035 +- 0.0015 the squared sum of the first row of the CKM matrix is 0.9999 +- 0.0017 which is consistent with unitarity.

  13. Measurement of τ decays into a charged hadron accompanied by neutral π-mesons and determination of the CKM matrix element vertical stroke Vus vertical stroke

    International Nuclear Information System (INIS)

    This thesis presents the branching fraction measurement of the τ-→K-(nπ0)ντ (n=0,1,2,3) and τ-→π-(nπ0)ντ (n=3,4) decays. The measurement is based on a data sample of 435 million τ pairs produced in e+e- collisions and collected with the BABAR detector in 1999-2008. The analysis is validated using precisely known τ decays as control modes. The measured branching fractions are B(τ-→K-ντ)=(7.100±0.033±0.156) x 10-3, B(τ-→K-π0ντ)=(5.000±0.020±0.139) x 10-3, B(τ-→K-(2π0)ντ)=(5.654±0.144±0.323) x 10-4, B(τ-→K-(3π0)ντ)=(1.642±0.279±0.375) x 10-4, B(τ-→π-(3π0)ντ)=(1.216±0.010±0.047) x 10-2, B(τ-→π-(4π0)ντ)=(1.041±0.067±0.090) x 10-3, where the first uncertainty is statistical and the second systematic. The branching fraction B(τ-→π-(4π0)ντ) is measured for the first time. The precision of the results is comparable or significantly improved with respect to previous measurements. The branching fraction B(τ-→K-ντ) is combined with a lattice QCD calculation of the kaon decay constant to obtain the Cabibbo-Kobayashi-Maskawa matrix element vertical stroke Vus vertical stroke =0.2224±0.0025(exp)±0.0029(theo). The branching fractions of the τ decays into a kaon are combined with the current world averages. The resulting averages are used in the determination of the total τ branching fraction, Bs, into strangeness vertical stroke S vertical stroke =1 final states. Bs is used in conjunction with vertical stroke Vud vertical stroke and a small SU(3)-symmetry breaking correction to compute vertical stroke Vus vertical stroke =0.2176±0.0025(exp)±0.0010(theo).

  14. Determination of the CKM matrix element vertical stroke V{sub cb} vertical stroke, the B {yields} X{sub s}{gamma} decay rate, and the b-quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Bernlochner, Florian Urs

    2011-09-15

    In this work, the preliminary measurements of two fundamental parameters of the Standard Model of particles physics are presented: the CKM matrix element vertical stroke V{sub cb} vertical stroke, and the b-quark mass. The measurement of the absolute value of the CKM matrix element V{sub cb} uses the full set of recorded data of 429.06 fb{sup -1} of B anti B mesons of the BABAR experiment. The CKM matrix element is obtained by measuring the branching fractions and non-perturbative shape parameters of the two transitions into the charmed 1S ground states, B {yields} Dl{nu}{sub l} and B {yields} D{sup *}l {nu}{sub l}, respectively. The kinematic of the produced lepton is measured and the kinematics of the short-lived charmed mesons is reconstructed from kaon and pion candidates. By combining the reconstructed three-momenta of both particles with the angular information of the decay, three independent variables can be obtained. The measured distributions in these variables are analyzed in a three-dimensional global fit, which simultaneously extracts the decay parameters and branching fractions of both charmed transitions. We find that B {yields} Dl {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(36.14{+-}0.57{sub stat.}{+-}1.30{sub sys.}{+-}0.80{sub theo.}) x 10{sup -3}, B {yields} D{sup *}l {nu}{sub l}: vertical stroke V{sub cb} vertical stroke =(39.71{+-}0.26{sub stat.}{+-}0.73{sub sys.}{+-}0.74{sub theo.}) x 10{sup -3}, where the uncertainties are statistical, systematic, and theoretical, respectively. In the Standard Model, both measured values of vertical stroke V{sub cb} vertical stroke can be averaged to further minimize the uncertainties. We find Combined: vertical stroke V{sub cb} vertical stroke =(38.29{+-}0.26{sub stat.}{+-}0.64{sub sys.}{+-}0.52{sub theo.}) x 10{sup -3}. Furthermore, several scenarios are explored how possible future unquenched lattice QCD points can be incorporated into the measurement, to further reduce the uncertainty on

  15. Fermion masses and CKM mixing

    International Nuclear Information System (INIS)

    A perspective on the origin of mass and electroweak symmetry breaking is presented. Quark masses and CKM matrix elements are updated. Implications for some possible GUT constraints are discussed. An outlook and wish list for the future is given

  16. Selected Theoretical Issues in B-meson Physics: CKM matrix and Semileptonic Decays

    CERN Document Server

    Narodetskii, I M

    2003-01-01

    These notes are a written version of a lecture given at the International Seminar {\\it Modern Trends and Classical Approach} devoted to the 80$^{th}$ anniversary of Prof. Karen Ter-Martirosyan, ITEP September 30 -- October 1, 2002. The notes represent a non-technical review of our present knowledge on the phenomenology of weak decays of quarks, and their r\\^ole in the determination of the parameters of the Standard Model. They are meant as an introduction to some of the latest results and applications in the field. Specifically, we focus on CP violation in B-decays and the determination of the CKM matrix element $V_{cb}$ from semileptonic decays of $B$ mesons. We also briefly discuss phenomenological applications concerning the electron-energy spectra in semileptonic $B$ and $B_c$ decays.

  17. Constraints on the parameters of the $V_{CKM}$ matrix at the end of 1997

    CERN Document Server

    Parodi, F; Stocchi, A

    1998-01-01

    A review of the current status of the Cabibbo-Kobayashi-Maskawa matrix V_CKM is presented. This paper contains an update of the results published in hep-ph/9711261. Values of the parameters entering into the constraints, which restrict the range for rho and eta parameters, include recent measurements given at 1997 Summer Conferences and progress obtained by lattice QCD collaborations.Experimental constraints imposed by the measurements of epsilon_k,V_ub/V_cb, Delta m_d and by the limit on Delta m_s, are compatible and do not show evidence for New Physics inside measurements errors. Values for the angles alpha, beta and gamma of the C.K.M. triangle have been also obtained: rho=0.156 +- 0.090 , eta=0.328 +- 0.054 sin 2alpha = -0.10+-0.40 ,sin 2beta = 0.68 +- 0.10 ,gamma= 64+-12¡ Angles theta,theta_u,theta_d and phi proposed in the parametrisation (Phys. Lett. B5353 (1995) 114.) of the C.K.M. matrix have been also determined. Finally, as there are more constraints than the fitted rho and eta parameters, several...

  18. The CKM matrix from a scheme of flavour symmetry breaking

    International Nuclear Information System (INIS)

    A theoretical |VCKMth| mixing matrix which is a function of the four mass ratios and the CP violating phase α is derived from a simple scheme for breaking the flavour permutational symmetry. We assumed that the symmetry breaking pattern is the same in the u and d-sectors, and imposed a phenomenologically motivated constraint on the amount of mixing of singlet and doublet irreducible representations of S(3)L x S(3)R. A χ2 fit of the matrix of the absolute values |VCKMth| to the experimentally determined |VCKMexp| gives the best value for α=76.7 deg. and the value Jth=-2.18x10-5 for the Jarlskog invariant in good agreement with the experimental values. The agreement between |VCKMth| and |VCKMexp| is also very good with χ2=0.28

  19. A parametrization of the CKM mixing matrix from a scheme of S3L x S3R symmetry breaking

    CERN Document Server

    Mondragón, A

    1998-01-01

    Recent interest in flavour or horizontal symmetry building (mass textures) has been spurred mainly by the large top mass and, hence, the strong hierarchy in quark masses. Recently, various symmetry breaking schemes have been proposed based on the discrete, non-Abelian group S3L x S3R, which is broken according to S3L x S3R > S3_diag > S2_diag. The group S3 treats three objects symmetrically, while the hierarchical nature of the Yukawa matrices is a consequence of the representation structure, 1 + 2, of S3, which treats the generations differently. Different ansaetze for the breaking of the sub-nuclear democracy give different Hermitian mass matrices, M, of the same modified Fritzsch type which differ in the numerical value of the ratio M_23/M_22. A fit to the experimentally determined absolute values of the elements of the CKM matrix gives bounds on the possible values of the CP violating phase and gives a clear indication on the preferred symmetry breaking scheme. A parametrization of the CKM mixing matrix i...

  20. Breaking of flavor permutational symmetry and the CKM matrix

    International Nuclear Information System (INIS)

    The phase equivalence of the theoretical quark mixing matrix Vth derived from the breaking of the flavor permutational symmetry and the standard parameterization VPDG advocated by the Particle Data Group is explicity exhibited. From here, we derive exact explicit expressions for the three mixing angles θ12,θ13,θ23, and the CP violating phase δ13 in terms of the quark mass ratios (mu/mt,mc/mt,md/mb,ms/mb) and the parameters Z*1/2 and Φ* characterizing the preferred symmetry breaking pattern. The computed values for the CP violating phase and the mixing angles are: δ13*=75 deg., sin θ12*=0.221, sin θ13*=0.0034, and sin θ23*=0.040, which coincide almost exactly with the central values of the experimentally determined quantities

  1. Status of the CKM matrix as of Summer 2009 and sensitivity to New Physics

    International Nuclear Information System (INIS)

    We summarise the current status of the Cabbibo-Kobayaski-Maskawa matrix describing mixing and CP violation in the quark sector. We review the main ingredients of the global CKM analysis, with an emphasis on recent results and their impact. We assess the compatibility between various sources of information. We discuss the role of theoretical and experimental uncertainties. We use current data to analyse scenarios of potential deviations from the flavour sector in the Standard Model, by setting constraints on additional effective parameters accounting for possible New Physics effects. (author)

  2. Measurement of τ decays into a charged hadron accompanied by neutral π-mesons and determination of the CKM matrix element vertical stroke V{sub us} vertical stroke

    Energy Technology Data Exchange (ETDEWEB)

    Adametz, Aleksandra

    2011-07-06

    This thesis presents the branching fraction measurement of the τ{sup -}→K{sup -}(nπ{sup 0})ν{sub τ} (n=0,1,2,3) and τ{sup -}→π{sup -}(nπ{sup 0})ν{sub τ} (n=3,4) decays. The measurement is based on a data sample of 435 million τ pairs produced in e{sup +}e{sup -} collisions and collected with the BABAR detector in 1999-2008. The analysis is validated using precisely known τ decays as control modes. The measured branching fractions are B(τ{sup -}→K{sup -}ν{sub τ})=(7.100±0.033±0.156) x 10{sup -3}, B(τ{sup -}→K{sup -}π{sup 0}ν{sub τ})=(5.000±0.020±0.139) x 10{sup -3}, B(τ{sup -}→K{sup -}(2π{sup 0})ν{sub τ})=(5.654±0.144±0.323) x 10{sup -4}, B(τ{sup -}→K{sup -}(3π{sup 0})ν{sub τ})=(1.642±0.279±0.375) x 10{sup -4}, B(τ{sup -}→π{sup -}(3π{sup 0})ν{sub τ})=(1.216±0.010±0.047) x 10{sup -2}, B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ})=(1.041±0.067±0.090) x 10{sup -3}, where the first uncertainty is statistical and the second systematic. The branching fraction B(τ{sup -}→π{sup -}(4π{sup 0})ν{sub τ}) is measured for the first time. The precision of the results is comparable or significantly improved with respect to previous measurements. The branching fraction B(τ{sup -}→K{sup -}ν{sub τ}) is combined with a lattice QCD calculation of the kaon decay constant to obtain the Cabibbo-Kobayashi-Maskawa matrix element vertical stroke V{sub us} vertical stroke =0.2224±0.0025(exp)±0.0029(theo). The branching fractions of the τ decays into a kaon are combined with the current world averages. The resulting averages are used in the determination of the total τ branching fraction, B{sub s}, into strangeness vertical stroke S vertical stroke =1 final states. B{sub s} is used in conjunction with vertical stroke V{sub ud} vertical stroke and a small SU(3)-symmetry breaking correction to compute vertical stroke V{sub us} vertical stroke =0.2176±0.0025(exp)±0.0010(theo).

  3. (Beta)-decay experiments and the unitarity of the CKM matrix

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, P E

    2005-12-01

    The goal of this project was to perform very precise measurements of super-allowed Fermi {beta} decay in order to investigate a possible non-unitarity in the CKM matrix of the Standard Model of particle physics. Current data from 9 precisely measured {beta} decays indicated that the sum-of-squares of the first row of the CKM matrix differs from 1.0 at the 2.2{sigma} (or 98% confidence) level. If true, it would be the first firm indication of physics beyond the Standard Model--the model that has been the backbone of the worldwide physics community for more than 30 years. The physics goal of the project was to test and constrain the calculated correction factors that must be applied to the experimental data by performing measurements at the TRIUMF radioactive ion beam facility ISAC. Accurate and precise (precision goal >99.9%) half lives and decay branching ratios were measured for nuclei where different sets of calculated corrections give divergent results thereby allowing us to determine which theory, if any, gives the correct result. The LLNL contribution was to design and build the data acquisition system that will enable the experiments, and to provide theoretical calculations necessary for the interpretation of the results. The first planned measurement was {sup 34}Ar, to be followed by {sup 62}Ga and {sup 74}Rb. However, there were major problems in creating a suitable, intense beam of radioactive {sup 34}Ar. The collaboration decided to proceed with measurements on {sup 62}Ga and {sup 18}Ne. These experiments were performed in a series of measurements in the summer and fall of 2004. The LLNL team also is leading the effort to perform measurements on {sup 66}As and {sup 70}Br that are expected during 2006-2008. While the definitive experiments to meet the goals of the LDRD were not conducted during the funding period, the involvement in the radioactive program at TRIUMF has lead to a number of new initiatives, and has attracted new staff to LLNL. This LDRD has

  4. Constraints on the parameters of the CKM matrix by End 1998

    CERN Document Server

    Parodi, F; Stocchi, A

    1999-01-01

    A review of the current status of the Cabibbo-Kobayashi-Maskawa matrix (CKM) is presented. This paper is an update of the results published in [1]. The experimental constraints imposed by the measurements of \\epsilon_K, V_{ub}/V_{cb}, \\Delta m_d and from the limit on \\Delta m_d are used. Values of the constraints and of the parameters entering into the constraints, which restrict the range of the \\bar{\\rho} and \\bar{\\eta} parameters, include recent measurements presented at 1998 Summer Conferences and progress obtained by lattice QCD collaborations. The results are: \\bar{\\rho}=0.202 ^{+0.053}_{-0.059},\\bar{\\eta}=0.340 \\pm 0.035, from which the angles \\alpha, ^{+ 0.29}_{-0.28} ,\\sin 2 \\beta = 0.725 ^{+0.050}_{-0.060} ,\\gamma= (59.5^{+8.5}_{-7.5})^{\\circ}. Without using the constraint from \\epsilon_K, external measurements or theoretical inputs have been removed, in turn, from the constraints and their respective probability density functions have been obtained. Central values and uncertainties on these quantit...

  5. Measurement of the t-channel single-top-quark production cross section and of the |$V_{tb}$| CKM matrix element in pp collisions at $\\sqrt{s}$ = 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Klein, Benjamin; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Pol, Maria Elena; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Salerno, Roberto; Sauvan, Jean-baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kalsi, Amandeep Kaur; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dewanjee, Ram Krishna; Dugad, Shashikant; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Soares, Mara Senghi; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Eggert, Nicholas; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Gray, Julia; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Woods, Nathaniel

    2014-01-01

    Measurements are presented of the t-channel single-top-quark production cross section in proton-proton collisions at $\\sqrt{s}$ = 8 TeV. The results are based on a data sample corresponding to an integrated luminosity of 19.7 inverse-femtobarns recorded with the CMS detector at the LHC. The cross section is measured inclusively, as well as separately for top (t) and antitop ($\\bar{t}$), in final states with a muon or an electron. The measured inclusive t-channel cross section is $\\sigma_{t-channel}$ = 83.6 $\\pm$ 2.3 (stat) $\\pm$ 7.4 (syst) pb. The single t and $\\bar{t}$ cross sections are measured to be $\\sigma_{t-channel}$(t) = 53.8 $\\pm$ 1.5 (stat) $\\pm$ 4.4 (syst) pb and $\\sigma_{t-channel}(\\bar{t})$ = 27.6 $\\pm$ 1.3 (stat) $\\pm$ 3.7 (syst) pb, respectively. The measured ratio of cross sections is $R_{t-channel} = \\sigma_{t-channel}(t)/\\sigma_{t-channel}(\\bar{t})$ = 1.95 $\\pm$ 0.10 (stat) $\\pm$ 0.19 (syst), in agreement with the standard model prediction. The modulus of the Cabibbo-Kobayashi-Maskawa matrix...

  6. Study of no-charmed semi-leptonic decays of B mesons and measurement of the V{sub ub} term of the CKM matrix in the experiment BABAR; Etude des desintegrations semi-leptoniques non charmees des mesons B et mesure de l'element V{sub ub} de la matrice CKM dans l'experience BABAR

    Energy Technology Data Exchange (ETDEWEB)

    Serfass, B

    2001-09-01

    The aim of this work is to improve the accuracy of the measurement of the |V{sub ub}| term of the Cabibbo-Kobayashi-Maskawa matrix. |V{sub ub}| has been determined from the branching ratio of the decay: B{sup 0} {yields} {rho}{sup -}l{sup +}{nu} and experimental data from 22 millions BB-bar pairs has been used. We propose: branching ratio = (3.79{+-}0.41{sub -0.64}{sup +0.53}{+-}0.41).10{sup -4} and |V{sub ub}| = (3.83{+-}0.20{sub -0.34}{sup +0.26}{+-}0.60).10{sup -3}. The first part of this work explains how an accurate value of |V{sub ub}| can allow the standard model to be tested. The second part gives a description of the PEP-II collider and of the BABAR detector. The measurement of |V{sub ub}| is based on semi-leptonic decays, so an appropriate identification of leptons is required. This identification is made by the electromagnetic calorimeter and by the instrumented flux return (IFR) for electrons and muons respectively. The third part presents the analysis of exclusive semi-leptonic decays and the extraction of |V{sub ub}|. 5 modes of decay have been selected, the main difficulties rise from the presence of a neutrino that can not be detected and from the decay: b {yields} cl{nu} for which the branching ratio is about 100 times greater than that of decay: b {yields} ul{nu}. The quark c being heavier than the quark u, this implies the existence of an energy range for leptons that is not accessible to charmed decays. (A.C.)

  7. Superallowed beta decays, Vud and CKM matrix: the case of 38Km

    International Nuclear Information System (INIS)

    Full text: As part of a program to improve the experimental data base of positron decay Q-values and lifetimes from which Ft values are calculated, we have studied the decay of 38Km to 38Ar. Our recent measurement of the decay energy as 6044.34(12)keV is consistent with, but improves upon, the accepted value. The data base for the half-life of 38Km is however, much less satisfactory, with a Chi-square of 27 for five measurements. Accordingly, we have made a careful study of this problem, concentrating on an exploration of possible systematic effects due to low-level contaminant activities, the unavoidable presence of the decay of the 38K ground state, and the various side-effects of excessive count rates. As a result, we believe the problem to be now resolved. We will recommend a half-life for 38Km, and also a new, higher precision, Ft value. The assumption of the validity of the Conserved Vector Current Theory for the nine precisely determined Ft values of 0+ → 0+, T=1 superallowed beta decays, of which 38Km (β+)38Ar is an example, provides a high precision test of the unitarity of the first row of the CKM matrix. At the moment the test seems to fail at the few-sigma level on the low side when the value of Vud is derived from these beta decays, which would seem to indicate a possibility for new physics. However, if Vud is derived from Ft and asymmetry measurements for the decay of cold neutrons, the test is failed by roughly the same amount on the high side. Interestingly, the latest measurement of the neutron decay asymmetry coefficient, if not averaged with other earlier values would place the unitarity test at the same value as the that from the positron Ft values. We will briefly discuss this situation

  8. Status of |Vcb| and |Vub| CKM matrix elements

    International Nuclear Information System (INIS)

    We summarize the status of |Vcb| and |Vub| determinations, including the long standing tension among exclusive and inclusive determinations. We also discuss B meson semi-leptonic decays to excited states of the charm meson spectrum and leptonic and semileptonic B decays into final states which include τ leptons

  9. Measurement of the CKM angle gamma of the unitarity triangle of the CKM matrix in B± → D*K± decays at the BaBar experiment

    International Nuclear Information System (INIS)

    This thesis applies the Gronau-London-Wyler (GLW) method to the B± → D*K± decays in view of measuring the angle γ of the unitarity triangle of the CKM matrix at the Babar experiment. After a review of CP violation, we describe the different paths used so far for measuring γ, with a special emphasis on the GLW method. Then the analysis is presented. It relies on an optimized selection for maximizing signal sensitivity, and on an extended maximum likelihood fit from which we extract the four GLW observables A*(CP+), R*(CP+), A*(CP-) and R*(CP-). Results obtained using Run 1 to 5 of Babar, corresponding to 347 fb-1, i.e. 381*106 BB-bar pairs, give A*(CP+) equals -0.114±0.089±0.007; R*(CP+) equals 1.313±0.132±0.029; A*(CP-) equals 0.060±0.099±0.016 and R*(CP-) equals 1.081±0.119±0.034. Translated into cartesian coordinates x±* for comparing with Dalitz analysis, we get x+* equals 0,112±0,061±0,012; x-* equals 0,004±0,059±0,012. All these results are in agreement with previous measurements from Babar and Belle experiments. Precision is improved by a factor two on CP even observables and a factor three for CP odd observables, in particular due to the use of D* → D0γ decays, and is better on x±* than the world average of Babar and Belle Dalitz measurements. The statistics used is too small for providing a precise enough rB* with R*(CP±) that could constrain γ. However the combination of our results with Dalitz measurements will improve this constraint. (author)

  10. Fermi matrix element with isospin breaking

    CERN Document Server

    Guichon, P A M; Saito, K

    2011-01-01

    Prompted by the level of accuracy now being achieved in tests of the unitarity of the CKM matrix, we consider the possible modification of the Fermi matrix element for the $\\beta$-decay of a neutron, including possible in-medium and isospin violating corrections. While the nuclear modifications lead to very small corrections once the Behrends-Sirlin-Ademollo-Gatto theorem is respected, the effect of the $u-d$ mass difference on the conclusion concerning $V_{ud}$ is no longer insignificant. Indeed, we suggest that the correction to the value of $|V_{ud}|^2 \\, + \\, |V_{us}|^2 \\, + \\, |V_{ub}|^2$ is at the level of $10^{-4}$.

  11. Fermi matrix element with isospin breaking

    Energy Technology Data Exchange (ETDEWEB)

    Guichon, P.A.M., E-mail: anthony.thomas@adelaide.edu.a [SPhN-IRFU, CEA Saclay, F91191 Gif sur Yvette (France); Thomas, A.W. [CSSM, School of Chemistry and Physics, University of Adelaide, SA 5005 (Australia); Saito, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641, Yamazaki, Noda, Chiba, 278-8510 (Japan)

    2011-02-14

    Prompted by the level of accuracy now being achieved in tests of the unitarity of the CKM matrix, we consider the possible modification of the Fermi matrix element for the {beta}-decay of a neutron, including possible in-medium and isospin violating corrections. While the nuclear modifications lead to very small corrections once the Behrends-Sirlin-Ademollo-Gatto theorem is respected, the effect of the u-d mass difference on the conclusion concerning V{sub ud} is no longer insignificant. Indeed, we suggest that the correction to the value of |V{sub ud}|{sup 2}+|V{sub us}|{sup 2}+|V{sub ub}|{sup 2} is at the level of 10{sup -4}.

  12. CKM unitarity normalization tests, present and future

    International Nuclear Information System (INIS)

    The Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing matrix is a central pillar of the Electroweak Standard Model. The elements of the matrix must be determined from experiment, but the Model requires the matrix itself to be unitary. Any deviation from unitarity would signal the presence of ''new physics'' beyond the Standard Model, so tests of CKM unitarity have attracted considerable attention. Currently the most precise test is of the normalization of the top row, which has now reached a precision of 0.06% based on measurements of superallowed 0+ → 0+ nuclear β decay and of kaon semileptonic and leptonic decays. This work overviews the status of the normalization tests and speculates on likely future improvements. (copyright 2013 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. CP Violation and the CKM Matrix Assessing the Impact of the Asymmetric B Factories

    CERN Document Server

    Charles, J; Lacker, H M; Laplace, S; Le Diberder, F R; Malclès, J; Ocariz, J; Pivk, M; Roos, L

    2005-01-01

    and Kpi data with the other constraints in the unitarity plane when the hadronic matrix elements are calculated within QCD Factorization, where we apply a conservative treatment of the theoretical uncertainties. A global fit of QCD Factorization to all pipi and Kpi data leads to precise predictions of the related observables. Using an isospin-based phenomenological parameterization, we analyze separately the B --> Kpi decays, and the impact of electroweak penguins in response to recent discussions. We find that the present data are not sufficiently precise to constrain electroweak parameters neither hadronic amplitude ratios. We do not observe any unambiguous sign of New Physics, whereas there is some evidence for potentially large non-perturbative rescattering effects. Finally we use a model-independent description of a large class of New Physics effects in both B0/B0bar mixing and B decays, namely in the b --> d and b --> s gluonic penguin amplitudes, to perform a new numerical analysis. Significant non-sta...

  14. Overview of JYFLTRAP mass measurements and testing the unitarity of the CKM matrix

    International Nuclear Information System (INIS)

    The JYFLTRAP Penning trap setup, connected to the IGISOL facility, has been extensively used for mass measurements of short-lived radioactive ions. Using fusion and fission reactions, both the neutron deficient and neutron rich side of the nuclide chart can be accessed. Since the IGISOL technique is chemically rather insensitive, refractory elements such as zirconium and molybdenum are available as ion beams. On the neutron deficient side, atomic masses in the 100Sn region have been extensively studied. These studies|complemented with other Penning trap facilities offer valuable information on astrophysical γp process and υ-process paths

  15. Restoration of Parity and the Right-Handed Analog of the CKM Matrix

    CERN Document Server

    Senjanović, Goran

    2015-01-01

    In a recent Letter we determined analytically the right-handed quark mixing matrix in the minimal Left-Right symmetric theory with generalized Parity. We derived its explicit form as a series expansion in a small parameter that measures the departure from hermiticity of quark mass matrices. Here we analyze carefully the convergence of the series by including higher order terms and by comparing with numerical results. We apply our findings to some phenomenological applications such as the production and decays of the right-handed gauge boson $W_R$, the neutrinoless double beta decay, the decays of the heavy scalar doublet, the strong CP parameter and the theoretical limits on the new mass scale from the $K$ and $B$-meson physics. In particular, we demonstrate that the relevant coupling for the production of the $W_R$ gauge boson at hadronic colliders and for the neutrinoless double beta decay equals its left-handed counterpart, within a percent. We also demonstrate that the stability of the theoretical lower l...

  16. The leptonic CP phase is determined by an equation involving the PMNS matrix elements

    CERN Document Server

    Ke, Hong-Wei; Li, Xue-Qian

    2016-01-01

    Several approximate equalities among the matrix elements of CKM and PMNS imply that hidden symmetries may exist and be common for both quark and neutrino sectors. The CP phase of the CKM matrix ($\\delta_{\\rm CKM}$) is involved in these equalities and can be investigated when these equalities turn into several equations. As we substitute those experimentally measured values of the three mixing angles into the equations for quarks, it is noted that one of the equations which holds exactly has a solution $\\delta_{\\rm CKM}=68.95^\\circ$. That value accords with $(69.1^{+2.02}_{-3.85})^\\circ$ determined from available data. Generalizing the scenario to the lepton sector, the same equality determines the leptonic CP phase $\\delta_{\\rm PMNS}$ to be $ 276.10^\\circ$. Thus we predict the value of $\\delta_{\\rm PMNS}$ from the equation. So far there is no direct measurement on $\\delta_{\\rm PMNS}$ yet, but a recent analysis based on the neutrino oscillation data prefers the phase close to $270^\\circ$.

  17. $B^0_{(s)}$-mixing matrix elements from lattice QCD for the Standard Model and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bazavov, A. [Iowa U.; Bernard, C. [Washington U., St. Louis; Bouchard, C. M. [William-Mary Coll.; Chang, C. C. [Illinois U., Urbana; DeTar, C. [Utah U.; Du, Daping [Syracuse U.; El-Khadra, A. X. [Illinois U., Urbana; Freeland, E. D. [Art Inst. of Chicago; Gámiz, E. [Granada U., Theor. Phys. Astrophys.; Gottlieb, Steven [Indiana U.; Heller, U. M. [APS, New York; Kronfeld, A. S. [TUM-IAS, Munich; Laiho, J. [Syracuse U.; Mackenzie, P. B. [Fermilab; Neil, E. T. [RIKEN BNL; Simone, J. [Fermilab; Sugar, R. [UC, Santa Barbara; Toussaint, D. [Arizona U.; Van de Water, R. S. [Fermilab; Zhou, Ran [Fermilab

    2016-06-28

    We calculate---for the first time in three-flavor lattice QCD---the hadronic matrix elements of all five local operators that contribute to neutral $B^0$- and $B_s$-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral $B$-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio $\\xi = 1.206(18)(6)$, where the second error stems from the omission of charm sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty, relative to the 2013 Flavor Lattice Averaging Group results, tightens the constraint from $B$ mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings and pion masses close to the physical value. We use the asqtad-improved staggered action for the light valence quarks, and the Fermilab method for the bottom quark. We use heavy-light meson chiral perturbation theory modified to include lattice-spacing effects to extrapolate the five matrix elements to the physical point. We combine our results with experimental measurements of the neutral $B$-meson oscillation frequencies to determine the CKM matrix elements $|V_{td}| = 8.00(34)(8) \\times 10^{-3}$, $|V_{ts}| = 39.0(1.2)(0.4) \\times 10^{-3}$, and $|V_{td}/V_{ts}| = 0.2052(31)(10)$, which differ from CKM-unitarity expectations by about 2$\\sigma$. These results and others from flavor-changing-neutral currents point towards an emerging tension between weak processes that are mediated at the loop and tree levels.

  18. Staggered weak matrix element miscellany

    International Nuclear Information System (INIS)

    I report on work, done with Rajan Gupta and Greg Kilcup, using staggered fermions to study weak matrix elements in quenched QCD. I give an update on the ΔI = 1/2 rule on matrix elements relevant for ε'. I show results of a study of the dependence of BK on non-leading terms in the chiral expansion. I present our results for BK from quenched calculation at β = 6.4 on 323 x 48 lattices, based on ensemble of 12 configurations. 15 refs., 5 figs

  19. Final Technical Report for DE-SC0008098 [The Seventh International Workshop on the CKM Unitarity Triangle

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Alan

    2014-12-02

    The Seventh International Workshop on the CKM Unitarity Triangle (http://ckm2012.uc.edu/) was held at the University of Cincinnati September 28-October 2, 2012. This workshop series is one of the leading meetings in the field of quark flavor physics. The Cincinnati workshop provided a venue for theorists and experimentalists to discuss the latest results and to develop new ideas for improved analyses. The most recent measurements from current experiments as well as the status of future experiments were discussed. On the theoretical side, progress in lattice QCD and other calculational techniques that allow more precise determinations of CKM matrix elements were presented.

  20. Cabibbo–Kobayashi–Maskawa matrix: rephasing invariants and parameterizations

    International Nuclear Information System (INIS)

    In this work we study two topics: the first one considers the general phase invariant monomials built out of the CKM matrix elements and their conjugates. We show, that there exist 30 fundamental phase invariant monomials and 18 of them are a product of 4 CKM matrix elements and 12 are a product of 6 CKM matrix elements. In our main result we show that all rephasing invariant monomials can be expressed as a product of at most 5 factors with positive powers. Next, we propose a general method of a recursive construction of the CKM matrix for any number of generations. This allows to construct a parameterization with desired properties. As an application we generalize the Wolfenstein parameterization to the case of 4 generations and obtain restrictions on the CKM suppression of the fourth generation

  1. Extracting CKM parameters from B decays

    International Nuclear Information System (INIS)

    This note extracts CKM (Cabibbo-Kobayashi-Maskawa) parameters from currently triggerable B-decay modes. The classic Bd → J/ψKS asymmetry measures the angle β, one of the angles of the CKM unitarity triangle. The other angles of that triangle are more difficult to extract. A tagged, time-dependent study of Bs → J/ψφ extracts the angle γ. Such a study of Bd → J/ψρ0 independently determines γ, where Bd → J/ψK needs to be studied for normalization purposes. A tagged study of the classic Bd → π+π- extracts α if the penguin amplitude is negligible. The penguin may be sizable, however. An involved isospin analysis is then required. It measures α by disentangling the penguin from the tree amplitude. At hadron accelerators, this isospin analysis would require a tagged, time-dependent study of Bd → π0π0, which is currently impossible. This note presents alternatives for measuring α. The angle could be obtained from studies of exclusive modes that are governed by b → d ell +ell -, such as B → ρ ell +ell -. The branching ratio for such an exclusive mode is tiny, at the few 10-8 level. Another method for measuring this angle require the study of both Bd → π+π- and Bs → K+K-. Many more modes could be used to extract CKM parameters, if triggering on secondary vertices becomes feasible. The methods discussed here require high precision. They require tremendous effort experimentally and theoretically. Experiment will guide us toward the feasible modes and theory must accurately estimate ratios of related strong matrix elements

  2. Status of |V{sub cb}| and |V{sub ub}| CKM matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Ricciardi, Giulia [Dipartimento di Fisica, Università di Napoli Federico II Complesso Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli (Italy); INFN, Sezione di Napoli Complesso Universitario di Monte Sant’Angelo, Via Cintia, I-80126 Napoli (Italy)

    2016-01-22

    We summarize the status of |V{sub cb}| and |V{sub ub}| determinations, including the long standing tension among exclusive and inclusive determinations. We also discuss B meson semi-leptonic decays to excited states of the charm meson spectrum and leptonic and semileptonic B decays into final states which include τ leptons.

  3. Precision measurements of the CKM angle gamma

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The level of CP-violation permitted within the Standard Model cannot account for the matter dominated universe in which we live. Within the Standard Model the CKM matrix, which describes the quark couplings, is expected to be unitary. By making precise measurements of the CKM matrix parameters new physics models can be constrained, or with sufficient precision the effects of physics beyond the standard model might become apparent. The CKM angle gamma is the least well known angle of the unitarity triangle. It is the only angle easily accessible at tree-level, and furthermore has almost no theoretical uncertainties. Therefore it provides an invaluable Standard Model benchmark against which other new physics sensitive tests of the CP-violation can be made. I will discuss recent measurements of gamma using the the Run 1 LHCb dataset, which improve our knowledge of this key parameter.

  4. Gluonic Pole Matrix Elements in Spectator Models

    OpenAIRE

    Mukherjee, A; Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Mulders, P. J.

    2008-01-01

    We investigate the gluonic pole matrix element contributing to the first $p_T$ moment of the distribution and fragmentation functions in a spectator model. By performing a spectral analysis, we find that for a large class of spectator models, the contribution of gluonic pole matrix elements is non-zero for the distribution correlators, whereas in fragmentation correlators they vanish. This outcome is important in the study of universality for fragmentation functions.

  5. $B^0_{(s)}$-mixing matrix elements from lattice QCD for the Standard Model and beyond

    CERN Document Server

    Bazavov, A; Bouchard, C M; Chang, C C; DeTar, C; Du, Daping; El-Khadra, A X; Freeland, E D; Gamiz, E; Gottlieb, Steven; Heller, U M; Kronfeld, A S; Laiho, J; Mackenzie, P B; Neil, E T; Simone, J; Sugar, R; Toussaint, D; Van de Water, R S; Zhou, Ran

    2016-01-01

    We calculate---for the first time in three-flavor lattice QCD---the hadronic matrix elements of all five local operators that contribute to neutral $B^0$- and $B_s$-meson mixing in and beyond the Standard Model. We present a complete error budget for each matrix element and also provide the full set of correlations among the matrix elements. We also present the corresponding bag parameters and their correlations, as well as specific combinations of the mixing matrix elements that enter the expression for the neutral $B$-meson width difference. We obtain the most precise determination to date of the SU(3)-breaking ratio $\\xi = 1.203(17)(6)$, where the second error stems from the omission of charm sea quarks, while the first encompasses all other uncertainties. The threefold reduction in total uncertainty tightens the constraint from $B$ mixing on the Cabibbo-Kobayashi-Maskawa (CKM) unitarity triangle. Our calculation employs gauge-field ensembles generated by the MILC Collaboration with four lattice spacings a...

  6. Transferring elements of a density matrix

    International Nuclear Information System (INIS)

    We study restrictions imposed by quantum mechanics on the process of matrix-element transfer. This problem is at the core of quantum measurements and state transfer. Given two systems A and B with initial density matrices λ and r, respectively, we consider interactions that lead to transferring certain matrix elements of unknown λ into those of the final state r-tilde of B. We find that this process eliminates the memory on the transferred (or certain other) matrix elements from the final state of A. If one diagonal matrix element is transferred, r(tilde sign)aa=λaa, the memory on each nondiagonal element λa≠b is completely eliminated from the final density operator of A. Consider the following three quantities, Reλa≠b, Imλa≠b, and λaa-λbb (the real and imaginary part of a nondiagonal element and the corresponding difference between diagonal elements). Transferring one of them, e.g., Rer(tilde sign)a≠b=Reλa≠b, erases the memory on two others from the final state of A. Generalization of these setups to a finite-accuracy transfer brings in a trade-off between the accuracy and the amount of preserved memory. This trade-off is expressed via system-independent uncertainty relations that account for local aspects of the accuracy-disturbance trade-off in quantum measurements. Thus, the general aspect of state disturbance in quantum measurements is elimination of memory on non-diagonal elements, rather than diagonalization.

  7. Simple matrix elements with dynamical fermions

    International Nuclear Information System (INIS)

    We report on studies of simple matrix elements from simulations with two flavors of sea quarks, both staggered and Wilson. We show the decay constants of vector and pseudoscalar mesons. The effects of sea quarks are small. These simulations are done at relatively large lattice spacing compared to most quenched studies. (orig.)

  8. Neutrinos versus Quarks, MNS versus CKM

    CERN Document Server

    Chen, Mu-Chun

    2009-01-01

    We review recent developments in models of fermion masses and mixing for both quark and lepton sectors. Emphases are given to models based on finite group family symmetries. In particular, we describe one recent model based on SU(5) combined with a family symmetry based on the double tetrahedral group, T'. In this model, a near tri-bimaximal MNS matrix and a realistic CKM matrix are simultaneously generated; the MNS matrix gets slightly modified by virtue of having the Georgi-Jarlskog relations. Due to the presence of complex Clebsch-Gordon coefficients in T', CP violation in this model is entirely geometrical in origin.

  9. Measurement of the CKM matrix angle {gamma} in B{sup {+-}} {yields} D{sup 0} (K{sub S}{pi}{pi}) K{sup *{+-}} using BABAR detector at Slac; Mesure de l'angle {gamma} de la matrice CKM a l'aide des desintegrations B{sup {+-}} {yields} D{sup 0} (K{sub S}{pi}{pi}) K{sup *{+-}} en utilisant le detecteur BABAR a Slac

    Energy Technology Data Exchange (ETDEWEB)

    Pruvot, St

    2007-07-15

    CP violation in the B mesons system has been studied by the B factories for almost 8 years. After a first success with the high precision measurement of the Unitarity Triangle angle {beta}, they are now facing a new challenge: the study of the 2 last angles, {alpha} and {gamma}, which are still poorly known. The work presented in this thesis is related to the measurement of the angle {gamma} using the B{sup -} {yields} D{sup 0}K{sup *-} events from data collected by the BABAR detector at Slac (Stanford linear accelerator). The method is based on the interferences between two amplitudes along the Dalitz plot of the three-body decay D{sup 0} {yields} K{sub S}{pi}{pi}, one related to the V{sub ub} element of the CKM matrix and the other related to the V{sub cb} element. This method has already been used in the measurement of {gamma}in B{sup -} {yields} D{sup 0}K{sup -} and B{sup -} {yields} D{sup *0}K{sup -} decays. Adding the new mode B{sup -} {yields} D{sup 0}K{sup *-} helps improving the statistical error of the measurement by 3 degrees which leads to: {gamma} (67 {+-} 28 {+-} 13 {+-} 11) degrees. The first error is statistical, the second one comes from experimental systematic uncertainties and the third one is the systematic uncertainty associated to the model used to describe the Dalitz plot D{sup 0} {yields} K{sub S}{pi}{pi}. Since this model is a crucial point for the analysis, we describe it in detail. For the future, in order to improve the measurement of {gamma}, it will be necessary to refine the Dalitz model as the number of events available at the B factories will increase. (author)

  10. Heavy-to-light chromomagentic matrix element

    CERN Document Server

    Dimou, Maria; Zwicky, Roman

    2013-01-01

    We report the computation of the matrix element of the chromomagnetic operator of the flavour changing neutral current (FCNC)-type between a $B$- or $D$-meson state and a light hadron and off-shell photon. The computation is carried out by using the method of light-cone sum rules (LCSR). It is found that the matrix element exhibits a large strong phase for which we give a long distance interpretation. The analytic structure of the correlation function in use admits a complex anomalous threshold on the physical sheet, the meaning and handling of which within the sum rule approach is discussed. We compare our results to QCD factorisation for which spectator photon emission is end-point divergent.

  11. Hadronic matrix elements: Lessons learnt from lattice QCD

    International Nuclear Information System (INIS)

    I summarise our progress in calculation of matrix elements relevant to non-leptonic Kaon decays. I also present lattice Monte Carlo results for scalar density and axial current matrix elements of the baryon octet. (orig.)

  12. The Matrix Element Method and Vector-Like Quark Searches

    CERN Document Server

    Morrison, Benjamin

    2016-01-01

    In my time at the CERN summer student program, I worked on applying the matrix element method to vector-like quark identification. I worked in the ATLAS University of Geneva group under Dr. Olaf Nackenhorst. I developed automated plotting tools with ROOT, a script for implementing and optimizing generated matrix element calculation code, and kinematic transforms for the matrix element method.

  13. Measuring Sparticles with the Matrix Element

    International Nuclear Information System (INIS)

    We apply the Matrix Element Method (MEM) to mass determination of squark pair production with direct decay to quarks and LSP at the LHC, showing that simultaneous mass determination of squarks and LSP is possible. We furthermore propose methods for inclusion of QCD radiation effects in the MEM. The goal of the LHC at CERN, scheduled to start this year, is to discover new physics through deviations from the Standard Model (SM) predictions. After discovery of deviations from the SM, the next step will be classification of the new physics. An important first goal in this process will be establishing a mass spectrum of the new particles. One of the most challenging scenarios is pair-production of new particles which decay to invisible massive particles, giving missing energy signals. Many methods have been proposed for mass determination in such scenarios (for a recent list of references, see e.g. [1]). In this proceeding, we report the first steps in applying the Matrix Element Method (MEM) in the context of supersymmetric scenarios giving missing energy signals. After a quick review of the MEM, we will focus on squark pair production, a process where other mass determination techniques have difficulties to simultaneously determine the LSP and squark masses. Finally, we will introduce methods to extend the range of validity of the MEM, by taking into account initial state radiation (ISR) in the method.

  14. Rephasing invariants of the Cabibbo-Kobayashi- Maskawa matrix

    Science.gov (United States)

    Pérez R., H.; Kielanowski, P.; Juárez W., S. R.

    2016-03-01

    The paper is motivated by the importance of the rephasing invariance of the CKM (Cabibbo-Kobayashi-Maskawa) matrix observables. These observables appear in the discussion of the CP violation in the standard model (Jarlskog invariant) and also in the renormalization group equations for the quark Yukawa couplings. Our discussion is based on the general phase invariant monomials built out of the CKM matrix elements and their conjugates. We show that there exist 30 fundamental phase invariant monomials and 18 of them are a product of 4 CKM matrix elements and 12 are a product of 6 CKM matrix elements. In the main theorem we show that a general rephasing invariant monomial can be expressed as a product of at most five factors: four of them are fundamental phase invariant monomials and the fifth factor consists of powers of squares of absolute values of the CKM matrix elements. We also show that the imaginary part of any rephasing invariant monomial is proportional to the Jarlskog's invariant J or is 0.

  15. First Measurement of the Ratio $B(t \\to Wb)/B(t \\to Wq)$ and Associated Limit on the CKM Element $|V_{tb}|$

    CERN Document Server

    Affolder, T; Akopian, A M; Albrow, Michael G; Amaral, P; Amendolia, S R; Amidei, D; Anikeev, K; Antos, J; Apollinari, G; Arisawa, T; Asakawa, T; Ashmanskas, W J; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bailey, M W; Bailey, S; De Barbaro, P; Barbaro-Galtieri, A; Barnes, Virgil E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bell, W H; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Bergé, J P; Berryhill, J W; Bevensee, B; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C A; Bloom, K; Blumenfeld, B; Blusk, S R; Bocci, A; Bodek, Arie; Bokhari, W; Bölla, G; Bonushkin, Yu; Bortoletto, Daniela; Boudreau, J; Brandl, A; van den Brink, S C; Bromberg, C; Brozovic, M; Bruner, N L; Buckley-Geer, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Calafiura, P; Campbell, M; Carithers, W C; Carlson, J; Carlsmith, D; Caskey, W; Cassada, J A; Castro, A; Cauz, D; Cerri, A; Chan, A W; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I E; Chlachidze, G; Chlebana, F S; Christofek, L S; Chu, M L; Chung, Y S; Ciobanu, C I; Clark, A G; Connolly, A; Conway, J; Cordelli, M; Cranshaw, J; Cronin-Hennessy, D; Cropp, R; Culbertson, R J; Dagenhart, D; D'Auria, S; De Jongh, F; Dell'Agnello, S; Dell'Orso, Mauro; Demortier, L; Deninno, M M; Derwent, P F; Devlin, T; Dittmann, J R; Donati, S; Done, J; Dorigo, T; Eddy, N; Einsweiler, Kevin F; Elias, J E; Engels, E; Erbacher, R D; Errede, D; Errede, S; Fan, Q; Feild, R G; Fernández, J P; Ferretti, C; Field, R D; Fiori, I; Flaugher, B L; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Fukui, Y; Furic, I K; Galeotti, S; Gallinaro, M; Gao, T; García-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Glenzinski, D A; Gold, M; Goldstein, J; Gordon, A; Gorelov, I V; Goshaw, A T; Gotra, Yu; Goulianos, K; Green, C; Grim, G P; Gris, P; Groer, L S; Grosso-Pilcher, C; Günther, M; Guillian, G; Guimarães da Costa, J; Haas, R M; Haber, C; Hafen, E S; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Herndon, M; Hill, C; Hoffman, K D; Holck, C; Hollebeek, R J; Holloway, L E; Hughes, R; Huston, J; Huth, J E; Ikeda, H; Incandela, J R; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jensen, H; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K M; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R D; Khazins, D M; Kikuchi, T; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, M J; Kim, S H; Kim, Y K; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Koehn, P; Köngeter, A; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A V; Kovács, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lamoureux, J I; Lancaster, J; Lancaster, M; Lander, R; Latino, G; LeCompte, T J; Lee, A M; Lee, K; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Litvintsev, D O; Lobban, O; Lockyer, N; Loken, J G; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lyons, L; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, Michelangelo L; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mayer, J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E A; Menguzzato, M; Menzione, A; Mesropian, C; Meyer, A; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Mitselmakher, G; Moggi, N; Moore, E; Moore, R; Morita, Y; Moulik, T; Mulhearn, M; Mukherjee, A; Müller, T; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nagaslaev, V; Nahn, S; Nakada, H; Nakaya, T; Nakano, I; Nelson, C; Nelson, T; Neu, C; Neuberger, D; Newman-Holmes, C; Ngan, C Y P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pappas, S P; Partos, D S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Popovic, M; Prokoshin, F; Proudfoot, J; Ptohos, F; Pukhov, O; Punzi, G; Ragan, K; Rakitine, A; Reher, D; Reichold, A; Ribon, A; Riegler, W; Rimondi, F; Ristori, L; Riveline, M; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Roy, A; Safonov, A; Saint-Denis, R; Sakumoto, W K; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S L; Seidel, S; Seiya, Y; Semenov, A A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M J; Siegrist, J L; Sill, A F; Sinervo, P K; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, Paris; Spinella, F; Spiropulu, M; Spiegel, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takano, T; Takashima, R; Takikawa, K; Tamburello, P D; Tartarelli, F; Tanaka, M; Tannenbaum, B; Taylor, W; Tecchio, M; Tesarek, R J; Teng, P K; Terashi, K; Tether, S; Thompson, A S; Thurman-Keup, R M; Tipton, P; Tkaczyk, S M; Tollefson, K; Tollestrup, Alvin V; Toyoda, H; Trischuk, W; De Trocóniz, J F; Tseng, J; Turini, N; Ukegawa, F; Vaiciulis, T; Valls, J; Vejcik, S; Velev, G V; Vidal, R; Vilar, R; Volobuev, I P; Vucinic, D; Wagner, R G; Wagner, R L; Wahl, J; Wallace, N B; Walsh, A M; Wang, C; Wang, M J; Watanabe, T; Waters, D; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Wolinski, S; Worm, S; Wu, X; Wyss, J; Yagil, A; Yao, W; Yeh, G P; Yeh, P; Yoh, J K; Yosef, C; Yoshida, T; Yu, I; Yu, S; Yu, Z; Zanetti, A; Zetti, F; Zucchelli, S

    2001-01-01

    We present the first measurement of the ratio of branching fraction R= B(t-->wb)/B(t-->Wq) from ppbar collisions at sqrt(s)=1.8 TeV. The data set corresponds to 109 pb-1 of data recorded by the Collider Detector at Fermilab during the 1992-1995 Tevatron run. We measure R=0.94+.31-.24 (stat+syst) or R>0.61 (0.56) at 90 (95) %C.L., in agreement with the standard model predictions. This measurement yields a limit of the Cabibbo-Kobayashi-Maskawa quark mixing matrix element Vtb under the assumption of three generation unitarity.

  16. Diagonal multisoliton matrix elements in finite volume

    Science.gov (United States)

    Pálmai, T.; Takács, G.

    2013-02-01

    We consider diagonal matrix elements of local operators between multisoliton states in finite volume in the sine-Gordon model and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Takács which were only valid for diagonal scattering. In order to test the conjecture, we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.

  17. Partonic pole matrix elements for fragmentation

    International Nuclear Information System (INIS)

    In the parton picture hard physical processes can conveniently be described in terms of parton distribution functions (PDFs) and fragmentation functions (FFs). While it is sufficient to consider only two-parton correlation functions at leading twist, three-parton correlation functions need to be taken into account at subleading twist. Of these three-parton correlation functions the partonic pole matrix elements (PPMEs) are of particular interest, as they are connected to single spin asymmetries and universality breaking terms of PDFs and FFs. So far the studies in this field mostly dealt with PPMEs for PDFs, while PPMEs for FFs were only considered within models. We, however, obtained new, model-independent information on PPMEs for FFs. Our results as well as their physical implications are presented in this talk.

  18. New CKM-related studies on b decays in the DELPHI experiment at LEP

    CERN Document Server

    Mitaroff, Winfried A

    2003-01-01

    The e-e+ collider LEP, running at sqrt{s} = m(Z0), has been a copious source of b-hadrons produced in decays Z0 -> b \\b. We present recent studies using up to 4*10^6 hadronic Z0 decays acquired by the DELPHI detector between 1992 and 2000. They rely on efficient particle identification, precise track and vertex reconstruction and sophisticated data analysis algorithms. Presented are: a new measurement of the CKM matrix element |V_cb| in the semileptonic exclusive decays B0_d -> D*+ l- \

  19. Lattice matrix elements and CP violation in and physics: Status and outlook

    Indian Academy of Sciences (India)

    Amarjit Soni

    2004-02-01

    Status of lattice calculations of hadron matrix elements along with CP violation in $B$ and in $K$ systems is reviewed. Lattice has provided useful input which, in conjunction with experimental data, leads to the conclusion that CP-odd phase in the CKM matrix plays the dominant role in the observed asymmetry in $B→ K_{s}$. It is now quite likely that any beyond the SM, CP-odd, phase will cause only small deviations in $B$-physics. Search for the effects of the new phase(s) will consequently require very large data samples as well as very precise theoretical predictions. Clean determination of all the angles of the unitarity triangle therefore becomes essential. In this regard $B→ KD^{0}$ processes play a unique role. Regarding $K$-decays, remarkable progress made by theory with regard to maintenance of chiral symmetry on the lattice is briefly discussed. First application already provide quantitative information on $B_{K}$ and the $ I=1/2$ rule. In the lattice calculation, the enhancement in Re $A_{0}$ appears to arise solely from tree operators, esp. $Q_{2}$; penguin contribution to Re $A_{0}$ appears to be very small. However, improved calculations are necessary for $'/$ as the contributions of QCD penguins and electroweak penguins largely seem to cancel. There are good reasons, though, to believe that these cancellations will not survive improvements that are now underway. Importance of determining the unitarity triangle purely from $K$-decays is also emphasized.

  20. Possible lattice approach to B to D pi (K) matrix elements

    CERN Document Server

    Aubin, C; Soni, Amarjit

    2011-01-01

    We present an approach for computing the real parts of the nonleptonic B to DP and B to D-bar P (P=K,pi) decay amplitudes by using lattice QCD methods. While it remains very challenging to calculate the imaginary parts of these matrix elements on the lattice, we stress that their real parts play a significant role in extracting the angle gamma in the b-d unitarity triangle of the CKM matrix. The real part on its own gives a lower bound to the absolute magnitude of the amplitude which is in itself an important constraint for determining gamma. Also the relevant phase can be obtained by using B-decays in conjunction with relevant charm decay data. Direct four-point function calculations on the lattice, while computationally demanding, does yield the real part as that is not impeded by the Maiani-Testa theorem. As an approximation, we argue that the chiral expansion of these decays is valid in a framework similar to that of hard-pion chiral perturbation theory. In addition to constructing the leading-order opera...

  1. Measurement of the CKM angle gamma of the unitarity triangle of the CKM matrix in B{sup {+-}} {yields} D{sup *}K{sup {+-}} decays at the BaBar experiment; Mesure de l'angle gamma du triangle d'unitarite de la matrice CKM dans les desintegrations B{sup {+-}} {yields} D{sup *}K{sup {+-}} aupres de l'experience BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Latour, E

    2007-10-15

    This thesis applies the Gronau-London-Wyler (GLW) method to the B{sup {+-}} {yields} D{sup *}K{sup {+-}} decays in view of measuring the angle {gamma} of the unitarity triangle of the CKM matrix at the Babar experiment. After a review of CP violation, we describe the different paths used so far for measuring {gamma}, with a special emphasis on the GLW method. Then the analysis is presented. It relies on an optimized selection for maximizing signal sensitivity, and on an extended maximum likelihood fit from which we extract the four GLW observables A{sup *}(CP+), R{sup *}(CP+), A{sup *}(CP-) and R{sup *}(CP-). Results obtained using Run 1 to 5 of Babar, corresponding to 347 fb{sup -1}, i.e. 381*10{sup 6} BB-bar pairs, give A{sup *}(CP+) equals -0.114{+-}0.089{+-}0.007; R{sup *}(CP+) equals 1.313{+-}0.132{+-}0.029; A{sup *}(CP-) equals 0.060{+-}0.099{+-}0.016 and R{sup *}(CP-) equals 1.081{+-}0.119{+-}0.034. Translated into cartesian coordinates x{sub {+-}}{sup *} for comparing with Dalitz analysis, we get x{sub +}{sup *} equals 0,112{+-}0,061{+-}0,012; x{sub -}{sup *} equals 0,004{+-}0,059{+-}0,012. All these results are in agreement with previous measurements from Babar and Belle experiments. Precision is improved by a factor two on CP even observables and a factor three for CP odd observables, in particular due to the use of D{sup *} {yields} D{sup 0}{gamma} decays, and is better on x{sub {+-}}{sup *} than the world average of Babar and Belle Dalitz measurements. The statistics used is too small for providing a precise enough r{sub B}{sup *} with R{sup *}(CP{+-}) that could constrain {gamma}. However the combination of our results with Dalitz measurements will improve this constraint. (author)

  2. Radial Matrix Elements of Hydrogen Atom and the Correspondence Principle

    Indian Academy of Sciences (India)

    T. N. Chakrabarty

    2004-03-01

    Radial dipole matrix elements having astrophysical importance have been computed for highly excited states of hydrogen atom. Computation is based on Heisenberg’s form of correspondence principle for Coulomb potential. Particular attention has been paid to the choice of classical analogue (c) of principal quantum number (). The computed radial matrix elements are in good agreement with quantum mechanical results. Further, radial matrix elements for few transitions involving high neighboring states of hydrogen atom are presented.

  3. Multipole matrix elements for 208Pb

    International Nuclear Information System (INIS)

    New measurements of inelastic proton scattering to low-lying states of 208Pb at 200 and 400 MeV are reported. Deformation lengths extracted from angular distributions for the 3- (2.614 MeV), 51- (3.198 MeV), 52- (3.209 MeV), 2+ (4.086 MeV) and 4+ (4.324 MeV) states are in good accord with values extracted at other incident proton energies. The fact that the deformation lengths are independent of incident proton energy within experimental uncertainty provides support for the validity of the collective DWBA for medium energy proton scattering to strongly excited states. Advantage is taken of this to extract statistically more precise values of the ratio of neutron to proton multipole matrix elements (M/sub n//M/sub p/). Different methods of determining the appropriate average value of M/sub n//M/sub p/ are discussed. 3 refs., 1 tab

  4. Hadronic matrix elements in lattice QCD

    International Nuclear Information System (INIS)

    The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is

  5. Elements of matrix modeling and computing with Matlab

    CERN Document Server

    White, Robert E

    2006-01-01

    As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat

  6. O(a) improvement of nucleon matrix elements

    International Nuclear Information System (INIS)

    We report on preliminary results of a high statistics quenched lattice QCD calculation of nucleon matrix elements within the Symanzik improvement programme. Using the recently determined renormalisation constants from the Alpha Collaboration we present a fully non-perturbative calculation of the forward nucleon axial matrix element with O(a) lattice artifacts completely removed. Runs are made at β=6.0 and β=6.2, in an attempt to check scaling and O(a2) effects. We also briefly describe results for left angle x right angle, the matrix element of a higher derivative operator. (orig.)

  7. Nuclear Matrix Elements for Tests of Fundamental Symmetries

    CERN Document Server

    Brown, B A; Robledo, L M; Romalis, M V; Zelevinsky, V

    2016-01-01

    The nuclear matrix elements for the momentum quadrupole operator and nucleon spin operator are important for interpretation of precision atomic physics experiments that search for violations of Lorentz and CPT symmetry and for new spin-dependent forces. We use the configuration-interaction nuclear shell model and self-consistent mean field theory to calculate the relevant matrix elements in $^{21}$Ne, $^{131}$Xe, and $^{201}$Hg. We find that the spin expectation values in these nuclei are dominated by the odd neutron, while the quadrupole moment of the nucleon momentum, M, has comparable neutron and proton contributions. These are the first microscopic calculations of the nuclear matrix elements for the momentum quadrupole tensor that go beyond the single-particle estimate. We show that they are strongly suppressed by the many-body correlations, in contrast to the well known enhancement of the spatial quadrupole nuclear matrix elements.

  8. Aspects of merging fixed order matrix elements to parton showers

    International Nuclear Information System (INIS)

    With the interfaces to several matrix element generators and one loop providers such as GoSam, MadGraph and OpenLoops an automatized matching and merging of matrix elements to parton showers will be possible. In the talk I show recent progress of merging in Herwig++. The choice of scales and pdfs are discussed. Also the inclusion of QCD corrections and comparisons to LEP and LHC data are shown.

  9. Study of B{sup {+-}} {yields} K{sup {+-}}{pi}{sup 0} and B{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0} decay modes with the BABAR detector and constraints from B {yields} {pi}{pi}, K{pi}, KK modes on the CKM matrix; Etude des desintegrations B{sup {+-}} {yields} K{sup {+-}}{pi}{sup 0} et B{sup {+-}} {yields} {pi}{sup {+-}}{pi}{sup 0} avec le detecteur BABAR et contraintes des modes B {yields} {pi}{pi}, K{pi}, KK sur la matrice CKM

    Energy Technology Data Exchange (ETDEWEB)

    Malcles, J

    2006-04-15

    The analysis of B{sup {+-}} {yields} pi{sup {+-}}{pi}{sup 0} and B{sup {+-}} {yields} K{sup {+-}}{pi}{sup 0} modes has been done with a sample of 227 millions of B pairs corresponding to 205 fb{sup -1} of data collected between october 1999 and july 2004 with the BABAR detector. The branching ratios and CP asymmetries obtained are: Br({pi}{pi}{sup 0}) = (5.57 {+-} 0.60 {+-} 0.33)*10{sup -6}; Br(K{pi}{sup 0}) (11.50 {+-} 0.65 {+-} 0.57)*10{sup -6}; A({pi}{pi}{sup 0}) = (-0.007 {+-} 0.104 {+-} 0.023); and A(K{pi}{sup 0}) = (0.066 {+-} 0.055 {+-} 0.010). The constraints on the angle alpha of the unitarity triangle have been derived from the isospin analysis of B {yields} {pi}{pi} modes. The isospin symmetry has also been used to relate B {yields} K{pi} modes in order to constraint the CKM matrix. More significant constraints have been obtained with the SU(3) symmetry for B, Bs {yields} {pi}{pi}/ K{pi}/ KK modes. They are in good agreement with the Standard CKM fit. It has been shown that such an analysis will be competitive with the Standard CKM fit in the future and will allow to determine SU(3) breaking or New Physics parameters from data. (author)

  10. Murphy elements from the double-row transfer matrix

    International Nuclear Information System (INIS)

    We consider the double-row (open) transfer matrix constructed from generic tensor-type representations of Hecke algebras of various types. For different choices of boundary conditions for the relevant integrable lattice model we express the double-row transfer matrix solely in terms of generators of the corresponding Hecke algebra (tensor-type realizations). We then expand the open transfer matrix and extract the associated Murphy elements from the first/last terms of the expansion. Suitable combinations of the Murphy elements, as has been shown, commute with the corresponding Hecke algebra. (letter)

  11. Fundamental measurements and instrumentation 'CKM'

    International Nuclear Information System (INIS)

    The physics being pursued by CKM (E921), an experiment recently approved at Fermilab, has as goal testing the description of CP Violation within the Standard model. Measuring the branching ratio of K+ → π+vv-bar with 10% accuracy, we can extract the magnitude of Vtd with an overall precision (including theoretical uncertainties) of 10%. Within the collaboration, the experimental high energy physics group at IF-UASLP has the responsibility for designing, testing, and building two Ring Imaging Cherenkov detectors. The present status of the experiment is shown in this poster

  12. Acceleration of matrix element computations for precision measurements

    International Nuclear Information System (INIS)

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment

  13. Acceleration of matrix element computations for precision measurements

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, O., E-mail: obrandt@fnal.gov [II. Physikalisches Institut, Georg-August-Universität Göttingen, Göttingen (Germany); Gutierrez, G.; Wang, M.H.L.S. [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States); Ye, Z. [University of Illinois at Chicago, Chicago, IL 60607 (United States)

    2015-03-01

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross-section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by a factor of 90. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing environment.

  14. Neutrinoless double-β decay and nuclear transition matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Rath, P. K. [Department of Physics, University of Lucknow, Lucknow-226007, India Email: pkrath-lu@yahoo.co.in (India)

    2015-10-28

    Within mechanisms involving the light Majorana neutrinos, squark-neutrino, Majorons, sterile neutrinos and heavy Majorana neutrino, nuclear transition matrix elements for the neutrinoless (β{sup −}β{sup −}){sub 0ν} decay of {sup 96}Zr, {sup 100}Mo, {sup 128,130}Te and {sup 150}Nd nuclei are calculated by employing the PHFB approach. Effects due to finite size of nucleons, higher order currents, short range correlations, and deformations of parent as well as daughter nuclei on the calculated matrix elements are estimated. Uncertainties in nuclear transition matrix elements within long-ranged mechanisms but for double Majoron accompanied (β{sup −}β{sup −}ϕϕ){sub 0ν} decay modes are 9%–15%. In the case of short ranged heavy Majorona neutrino exchange mechanism, the maximum uncertainty is about 35%. The maximum systematic error within the mechanism involving the exchange of light Majorana neutrino is about 46%.

  15. Neutrinoless double-β decay and nuclear transition matrix elements

    Science.gov (United States)

    Rath, P. K.

    2015-10-01

    Within mechanisms involving the light Majorana neutrinos, squark-neutrino, Majorons, sterile neutrinos and heavy Majorana neutrino, nuclear transition matrix elements for the neutrinoless (β-β-)0ν decay of 96Zr, 100Mo, 128,130Te and 150Nd nuclei are calculated by employing the PHFB approach. Effects due to finite size of nucleons, higher order currents, short range correlations, and deformations of parent as well as daughter nuclei on the calculated matrix elements are estimated. Uncertainties in nuclear transition matrix elements within long-ranged mechanisms but for double Majoron accompanied (β-β-ϕϕ)0ν decay modes are 9%-15%. In the case of short ranged heavy Majorona neutrino exchange mechanism, the maximum uncertainty is about 35%. The maximum systematic error within the mechanism involving the exchange of light Majorana neutrino is about 46%.

  16. Acceleration of matrix element computations for precision measurements

    CERN Document Server

    Brandt, Oleg; Wang, Michael H L S; Ye, Zhenyu

    2014-01-01

    The matrix element technique provides a superior statistical sensitivity for precision measurements of important parameters at hadron colliders, such as the mass of the top quark or the cross section for the production of Higgs bosons. The main practical limitation of the technique is its high computational demand. Using the concrete example of the top quark mass, we present two approaches to reduce the computation time of the technique by two orders of magnitude. First, we utilize low-discrepancy sequences for numerical Monte Carlo integration in conjunction with a dedicated estimator of numerical uncertainty, a novelty in the context of the matrix element technique. Second, we utilize a new approach that factorizes the overall jet energy scale from the matrix element computation, a novelty in the context of top quark mass measurements. The utilization of low-discrepancy sequences is of particular general interest, as it is universally applicable to Monte Carlo integration, and independent of the computing e...

  17. The effects of flavour symmetry breaking on hadron matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, A.N.; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe (Japan); Pleiter, D. [Juelich Research Centre (Germany); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zanotti, J.M. [Adelaide Univ. (Australia). School of Chemistry and Physics

    2012-12-15

    By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.

  18. Nucleon matrix elements using the variational method in lattice QCD

    CERN Document Server

    Dragos, Jack; Kamleh, Waseem; Leinweber, Derek B; Nakamura, Yoshifumi; Rakow, Paul E L; Schierholz, Gerrit; Young, Ross D; Zanotti, James M

    2016-01-01

    The extraction of hadron matrix elements in lattice QCD using the standard two- and three-point correlator functions demands careful attention to systematic uncertainties. One of the most commonly studied sources of systematic error is contamination from excited states. We apply the variational method to calculate the axial vector current $g_{A}$, the scalar current $g_{S}$ and the quark momentum fraction $\\left$ of the nucleon and we compare the results to the more commonly used summation and two-exponential fit methods. The results demonstrate that the variational approach offers a more efficient and robust method for the determination of nucleon matrix elements.

  19. The effects of flavour symmetry breaking on hadron matrix elements

    International Nuclear Information System (INIS)

    By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.

  20. Discoveries far from the lamppost with matrix elements and ranking

    International Nuclear Information System (INIS)

    The prevalence of null results in searches for new physics at the LHC motivates the effort to make these searches as model-independent as possible. We describe procedures for adapting the Matrix Element Method for situations where the signal hypothesis is not known a priori. We also present general and intuitive approaches for performing analyses and presenting results, which involve the flattening of background distributions using likelihood information. The first flattening method involves ranking events by background matrix element, the second involves quantile binning with respect to likelihood (and other) variables, and the third method involves reweighting histograms by the inverse of the background distribution

  1. The effects of flavour symmetry breaking on hadron matrix elements

    CERN Document Server

    Cooke, A N; Nakamura, Y; Pleiter, D; Rakow, P E L; Schierholz, G; Zanotti, J M

    2012-01-01

    By considering a flavour expansion about the SU(3)-flavour symmetric point, we investigate how flavour-blindness constrains octet baryon matrix elements after SU(3) is broken by the mass difference between the strange and light quarks. We find the expansions to be highly constrained along a mass trajectory where the singlet quark mass is held constant, which proves beneficial for extrapolations of 2+1 flavour lattice data to the physical point. We investigate these effects numerically via a lattice calculation of the flavour-conserving and flavour-changing matrix elements of the vector and axial operators between octet baryon states.

  2. Improved Determination of the CKM Angle alpha from B to pi pi decays

    CERN Document Server

    Bóna, M; Franco, E; Lubicz, V; Martinelli, G; Parodi, F; Pierini, M; Roudeau, P; Schiavi, C; Silvestrini, L; Sordini, V; Stocchi, A; Vagnoni, V

    2007-01-01

    Motivated by a recent paper that compares the results of the analysis of the CKM angle alpha in the frequentist and in the Bayesian approaches, we have reconsidered the information on the hadronic amplitudes, which helps constraining the value of alpha in the Standard Model. We find that the Bayesian method gives consistent results irrespective of the parametrisation of the hadronic amplitudes and that the results of the frequentist and Bayesian approaches are equivalent when comparing meaningful probability ranges or confidence levels. We also find that from B to pi pi decays alone the 95% probability region for alpha is the interval [80^o,170^o], well consistent with recent analyses of the unitarity triangle where, by using all the available experimental and theoretical information, one gets alpha = (93 +- 4)^o. Last but not least, by using simple arguments on the hadronic matrix elements, we show that the unphysical region alpha ~ 0, present in several experimental analyses, can be eliminated.

  3. Some measurements for determining strangeness matrix elements in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.; Pollock, S.J.; Ying, S. [Washington Univ., Seattle, WA (United States); Frederico, T. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados; Krein, [Universidade Estadual Paulista, Sao Paulo, SP (Brazil). Inst. de Fisica Teorica; Williams, A.G. [Florida State Univ., Tallahassee, FL (United States)

    1991-12-31

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  4. Some measurements for determining strangeness matrix elements in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Henley, E.M.; Pollock, S.J.; Ying, S. (Washington Univ., Seattle, WA (United States)); Frederico, T. (Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados); Krein, (Universidade Estadual Paulista, Sao Paulo, SP (Brazil). Inst. de Fisica Teorica); Williams, A.G. (Florida State Univ., Tallahassee, FL (United States))

    1991-01-01

    Some experiments to measure strangeness matrix elements of the proton are proposed. Two of these suggestions are described in some detail, namely electro-production of phi mesons and the difference between neutrino and antineutrino scattering for isospin zero targets such as deuterium.

  5. Graphitic matrix materials for spherical HTR fuel elements

    International Nuclear Information System (INIS)

    The present report comprises the essential results of material development and irradiation testing of graphitic matrix materials for spherical HTR fuel elements and completes the documentation of the irradiation data for 20 matrix materials (Juel-1702). The main emphasis is given to the matrices A3-3 (standard matrix) and A3-27 (matrix synthesized resin), both of which are being used as structural materials for the fuel elements of the AVR and the THTR respectively. In addition, comparisons are made between 18 A3-variants and the standard matrix A3-3. It is shown that three of the variants come into question as a potential for use. The results described were obtained in the framework of the HTR project 'Hochtemperaturreaktor-Brennstoffkreislauf' (HBK), in which are involved the Gesellschaft fuer Hochtemperaturreaktor-Technik mbH, Hochtemperaturreaktor-Brennelemente GmbH, Hochtemperatur-Reaktorbau GmbH, Kernforschungsanlage Juelich GmbH, NUKEM GmbH, and Sigri Elektrographit GmbH/Ringsdorff-Werke GmbH. The project is sponsored by the 'Bundesministerium fuer Forschung und Technologie' and by the state of 'Nordrhein-Westfalen'. (orig.)

  6. Graphitic matrix materials for spherical HTR fuel elements

    International Nuclear Information System (INIS)

    The report comprises the graphical documentation of irradiation results on graphitic matrix materials for spherical HTR fuel elements. The plotted results are based on data analyses of the series of exposures in the High Flux Reactor Petten (HFR). The documentation includes information about the changes of - the dimensions - the dynamic modulus of elasticity - the coefficient of thermal expansion of the materials after irradiation with fast neutrons. The irradiation experiments and the data analyses are part of the matrix development and irradiation programme, whose objective, realization and results obtained are summarized. (orig./IHOE)

  7. Importance of Matrix Elements in the ARPES Spectra of BISCO

    International Nuclear Information System (INIS)

    We have carried out extensive first-principles angle-resolved photointensity (ARPES) simulations in Bi2212 wherein the photoemission process is modeled realistically by taking into account the full crystal wave functions of the initial and final states in the presence of the surface. The spectral weight of the ARPES feature associated with the CuO2 plane bands is found to undergo large and systematic variations with k(parallelsign) as well as the energy and polarization of the incident photons. These theoretical predictions are in good accord with the corresponding measurements, indicating that the remarkable observed changes in the spectral weights in Bi2212 are essentially a matrix element effect and that the importance of matrix elements should be kept in mind in analyzing the ARPES spectra in the high Tc 's. (c) 1999 The American Physical Society

  8. Magic wavelengths, matrix elements, polarizabilities, and lifetimes of Cs

    CERN Document Server

    Safronova, M S; Clark, Charles W

    2016-01-01

    Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are determined for levels with principal quantum numbers $n \\leq 12$ and orbital angular momentum quantum numbers $l \\leq 3$. Recommended values and estimates of uncertainties are provided for a number of electric-dipole transitions and the electric dipole polarizabilities of the $ns$, $np$, and $nd$ states. We also report a calculation of the electric quadrupole polarizability of the ground state. We display the dynamic polarizabilities of the $6s$ and $7p$ states for optical wavelengths between 1160 nm and 1800 nm and identify corresponding magic wavelengths for the $6s-7p_{1/2}$, $6s-7p_{3/2}$ transitions. The values of relevant matrix elements needed for polarizability calculations at other wavelengths are provided.

  9. Magic wavelengths, matrix elements, polarizabilities, and lifetimes of Cs

    Science.gov (United States)

    Safronova, M. S.; Safronova, U. I.; Clark, Charles W.

    2016-07-01

    Motivated by recent interest in their applications, we report a systematic study of Cs atomic properties calculated by a high-precision relativistic all-order method. Excitation energies, reduced matrix elements, transition rates, and lifetimes are determined for levels with principal quantum numbers n ≤12 and orbital angular momentum quantum numbers l ≤3 . Recommended values and estimates of uncertainties are provided for a number of electric-dipole transitions and the electric dipole polarizabilities of the n s , n p , and n d states. We also report a calculation of the electric quadrupole polarizability of the ground state. We display the dynamic polarizabilities of the 6 s and 7 p states for optical wavelengths between 1160 and 1800 nm and identify corresponding magic wavelengths for the 6 s -7 p1 /2 and 6 s -7 p3 /2 transitions. The values of relevant matrix elements needed for polarizability calculations at other wavelengths are provided.

  10. Nuclear matrix elements for double-{\\beta} decay

    CERN Document Server

    Barea, J; Iachello, F; 10.1103/PhysRevC.87.014315

    2013-01-01

    Background: Direct determination of the neutrino mass through double-$\\beta$ decay is at the present time one of the most important areas of experimental and theoretical research in nuclear and particle physics. Purpose: We calculate nuclear matrix elements for the extraction of the average neutrino mass in neutrinoless double-$\\beta$ decay. Methods: The microscopic interacting boson model (IBM-2) is used. Results: Nuclear matrix elements in the closure approximation are calculated for $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{110}$Pd, $^{116}$Cd, $^{124}$Sn, $^{128}$Te, $^{130}$Te, $^{148}$Nd, $^{150}$Nd, $^{154}$Sm, $^{160}$Gd, and $^{198}$Pt decay. Conclusions: Realistic predictions for the expected half-lives in neutrinoless double-$\\beta$ decay with light and heavy neutrino exchange in terms of neutrino masses are made and limits are set from current experiments.

  11. Semiclassical Gaussian matrix elements for chaotic quantum wells

    CERN Document Server

    Saraga, D S

    1999-01-01

    We derive semiclassical expressions for spectra, weighted by matrix elements of a Gaussian observable, relevant to a range of molecular and mesoscopic systems. We apply the formalism to the particular example of the resonant tunneling diode (RTD) in tilted fields. The RTD is a new experimental realization of a mesoscopic system exhibiting a transition to chaos. It has generated much interest and several different semiclassical theories for the RTD have been proposed recently.Our formalism clarifies the relationship between the different approaches and to previous work on semiclassical theories of matrix elements. We introduce three possible levels of approximation in the application of the stationary phase approximation, depending on typical length scales of oscillations of the semiclassical Green's function, relative to the degree of localization of the observable. Different types of trajectories (periodic, normal, closed and saddle orbits) are shown to arise from such considerations. We propose a new type o...

  12. Ionic dipole and quadrupole matrix elements from nonadiabatic core polarization

    International Nuclear Information System (INIS)

    The radial matrix elements connecting the ionic Ba+6s ground state to low-lying excited 6p and 5d states can be extracted from the K splittings of the bound 6snl states in much the same way that ionic polarizabilities are extracted from the separations between l states. We develop an expression for the K splitting by a pair of expansions which allows us to compare the contributions of different ionic states. This comparison confirms that all but the lowest two may be safely ignored. Finally, we extract the radial Ba+ matrix elements =4.03(12) and 2 vertical bar 5d>=9.76(29) from the experimentally obtained K splittings

  13. Fast Stiffness Matrix Calculation for Nonlinear Finite Element Method

    Directory of Open Access Journals (Sweden)

    Emir Gülümser

    2014-01-01

    Full Text Available We propose a fast stiffness matrix calculation technique for nonlinear finite element method (FEM. Nonlinear stiffness matrices are constructed using Green-Lagrange strains, which are derived from infinitesimal strains by adding the nonlinear terms discarded from small deformations. We implemented a linear and a nonlinear finite element method with the same material properties to examine the differences between them. We verified our nonlinear formulation with different applications and achieved considerable speedups in solving the system of equations using our nonlinear FEM compared to a state-of-the-art nonlinear FEM.

  14. Reweighting QCD matrix-element and parton-shower calculations

    CERN Document Server

    Bothmann, Enrico; Schumann, Steffen

    2016-01-01

    We present the implementation and validation of the techniques used to efficiently evaluate parametric and perturbative theoretical uncertainties in matrix-element plus parton-shower simulations within the Sherpa event-generator framework. By tracing the full $\\alpha_s$ and PDF dependences, including the parton-shower component, as well as the fixed-order scale uncertainties, we compute variational event weights on-the-fly, thereby greatly reducing the computational costs to obtain theoretical-uncertainty estimates.

  15. A stochastic method for computing hadronic matrix elements

    International Nuclear Information System (INIS)

    We present a stochastic method for the calculation of baryon three-point functions that is more versatile compared to the typically used sequential method. We analyze the scaling of the error of the stochastically evaluated three-point function with the lattice volume and find a favorable signal-to-noise ratio suggesting that our stochastic method can be used efficiently at large volumes to compute hadronic matrix elements.

  16. Strong Linear Correlation Between Eigenvalues and Diagonal Matrix Elements

    CERN Document Server

    Shen, J J; Zhao, Y M; Yoshinaga, N

    2008-01-01

    We investigate eigenvalues of many-body systems interacting by two-body forces as well as those of random matrices. We find a strong linear correlation between eigenvalues and diagonal matrix elements if both of them are sorted from the smaller values to larger ones. By using this linear correlation we are able to predict reasonably all eigenvalues of given shell model Hamiltonian without complicated iterations.

  17. A new program for calculating matrix elements in atomic structure

    International Nuclear Information System (INIS)

    The solution of many problems concerning the electronic structure of atoms requires the evaluation of the matrix elements of the Hamiltonian operator, including the electrostatic interaction. These matrix elements may be expressed as weighted sums of radial integrals. The program we describe in this paper evaluates the coefficients of the Slater integrals and, if these are given, computes all the matrix elements for a given set of configurations. This program has nearly the same purposes as Hibbert's program and is also based on the Racach techniques. The main difference between this algorithm and the cited one is the method used to calculate the recoupling coefficients. While Hibbert's programs use Burke's algorithm to calculate these coefficients, in our program they are computed using the graphical techniques developed by Jucys et al. According to this method, that we describe in another paper the formulae needed to calculate the recoupling coefficients are previously derived and simplified (as a first step of the program). The use of this method may considerably reduce the running time, specially in the case of large configuration interaction matrices. (orig.)

  18. Algebraic evaluation of matrix elements in the Laguerre function basis

    Science.gov (United States)

    McCoy, A. E.; Caprio, M. A.

    2016-02-01

    The Laguerre functions constitute one of the fundamental basis sets for calculations in atomic and molecular electron-structure theory, with applications in hadronic and nuclear theory as well. While similar in form to the Coulomb bound-state eigenfunctions (from the Schrödinger eigenproblem) or the Coulomb-Sturmian functions (from a related Sturm-Liouville problem), the Laguerre functions, unlike these former functions, constitute a complete, discrete, orthonormal set for square-integrable functions in three dimensions. We construct the SU(1, 1) × SO(3) dynamical algebra for the Laguerre functions and apply the ideas of factorization (or supersymmetric quantum mechanics) to derive shift operators for these functions. We use the resulting algebraic framework to derive analytic expressions for matrix elements of several basic radial operators (involving powers of the radial coordinate and radial derivative) in the Laguerre function basis. We illustrate how matrix elements for more general spherical tensor operators in three dimensional space, such as the gradient, may then be constructed from these radial matrix elements.

  19. CP violation and Kaon weak matrix elements from Lattice QCD

    CERN Document Server

    Garron, Nicolas

    2015-01-01

    In this short review, I present the recent lattice computations of kaon weak matrix elements relevant to $K \\to \\pi\\pi$ decays and neutral kaon mixing. These matrix elements are key to the theoretical determination of the CP violation parameters $\\epsilon$ and $\\epsilon'$ . Impressive progress have been achieved recently, in particular the first realistic computation of $\\epsilon'/\\epsilon$ with physical kinematics has been reported in [1]. The novelty is the $\\Delta I = 1/2$ channel, whereas the $\\Delta I = 3/2$ contribution is now computed at several values of the lattice spacing and extrapolated to the continuum limit. I will also present the status of $B_K$ and discuss its error budget, with a particular emphasis on the perturbative error. Finally I will review the matrix elements of neutral kaon mixing beyond the standard model and will argue that the discrepancy observed by different collaborations could be explained by the renormalisation procedure of the relevant four-quark operators.

  20. Intermediate coupling collision strengths from LS coupled R-matrix elements

    International Nuclear Information System (INIS)

    Fine structure collision strength for transitions between two groups of states in intermediate coupling and with inclusion of configuration mixing are obtained from LS coupled reactance matrix elements (R-matrix elements) and a set of mixing coefficients. The LS coupled R-matrix elements are transformed to pair coupling using Wigner 6-j coefficients. From these pair coupled R-matrix elements together with a set of mixing coefficients, R-matrix elements are obtained which include the intermediate coupling and configuration mixing effects. Finally, from the latter R-matrix elements, collision strengths for fine structure transitions are computed (with inclusion of both intermediate coupling and configuration mixing). (Auth.)

  1. Fourth SM family, breaking of mass democracy, and the CKM mixings

    International Nuclear Information System (INIS)

    We consider the violation of the democratic mass matrix in the framework of the four-family standard model. Predictions of fourth-family fermion masses as well as quark and lepton CKM mixings are presented. Production and decay modes of new fermions are discussed. copyright 1996 The American Physical Society

  2. Tevatron combination of single-top-quark cross sections and determination of the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element V.sub.tb./sub

    Czech Academy of Sciences Publication Activity Database

    Aaltonen, T.; Abazov, V. M.; Abbott, B.; Kupčo, Alexander; Lokajíček, Miloš; Lysak, R.

    2015-01-01

    Roč. 115, č. 15 (2015), "152003"-"152003-11". ISSN 0031-9007 Institutional support: RVO:68378271 Keywords : Batavia TEVATRON Coll * channel cross section * measured * CKM matrix * CDF * DZERO * 1960 GeV-cms Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.512, year: 2014

  3. Tutorial Note on Merging Matrix Elements with Parton Showers

    CERN Document Server

    Rössler, Thomas

    2015-01-01

    In this short note, I introduce to essential conceptual features and main building blocks of matrix element merging algorithms, operating on fixed order calculations both at leading order and next-to-leading order. The intention is purely pedagogical, i.e. to familiarize the reader with the essential basic concepts in a concise way, thus serving as an introduction to beginners and other interested readers. Unitarization is discussed briefly. The tutorial is highly biased towards transverse momentum ordered parton showers, and in particular towards merging schemes as they are implemented in the Pythia8 general purpose Monte Carlo generator.

  4. Controlling inclusive cross sections in parton shower + matrix element merging

    Energy Technology Data Exchange (ETDEWEB)

    Plaetzer, Simon

    2012-11-15

    We propose an extension of matrix element plus parton shower merging at tree level to preserve inclusive cross sections obtained from the merged and showered sample. Implementing this constraint generates approximate next-to-leading order (NLO) contributions similar to the LoopSim approach. We then show how full NLO, or in principle even higher order, corrections can be added consistently, including constraints on inclusive cross sections to account for yet missing parton shower accuracy at higher logarithmic order. We also show how NLO accuracy below the merging scale can be obtained.

  5. Semiclassical hyperspherical matrix elements for helium doubly excited states

    International Nuclear Information System (INIS)

    A classical description of the two-electron atom, analogous to the quantum adiabatic hyperspherical channel approach, is presented. The classical problems, analogue to the quantum eigenvalue problem for the great angular momentum operator, and the separated dynamical systems defined by each of the other constants of the motion of the non-interacting system are solved, using the Hamiltonian-Jacobi method. Some matrix elements of the Coulomb interaction terms of the Hamilton for doubly excited helium atom using the Heisenberg correspondence principle are calculated. (author). 26 refs, 4 tabs

  6. SYMBMAT: Symbolic computation of quantum transition matrix elements

    Science.gov (United States)

    Ciappina, M. F.; Kirchner, T.

    2012-08-01

    We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Catalogue identifier: AEMI_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMI_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem

  7. Study of Charmless Semileptonic B Decays And a Measurement of the CKM Matrix Element |Vub| at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary Peter [Imperial College, London (United Kingdom)

    2004-04-01

    This thesis presents a measurement of exclusive charmless semileptonic branching fractions of B mesons measured using 81.9fb-1 of data (approximately 90 million BB pairs) collected between 1999 and 2002 by the BaBar detector operating at the PEP-II e+e- storage ring, at SLAC.

  8. Measurement of the Electroweak Single Top Quark Production Cross Section and the CKM Matrix Element $|V_{tb}|$ at CDF Run II

    Energy Technology Data Exchange (ETDEWEB)

    Larana, Bruno Casal [Univ. of Cantabria (Spain)

    2010-01-01

    The establishment of the electroweak single top quark production at CDF is experimentally challenging. The small single top signal hidden under large uncertain background processes makes it necessary an excellent understanding of the detector and a detailed study of the processes involved. Moreover, simple counting experiments are not sufficient to extract enough information from the candidate event sample and multivariate analysis techniques are crucial to distinguish signal from background. This thesis presents the world’s most sensitive individual search, together with CDF’s Neural Network analysis, for the combined s- and t-channel single top production. This analysis uses a dataset that corresponds to an integrated luminosity of 3.2fb-1, and is based on a Boosted Decision Tree method that combines information from several input variables to construct a final powerful discriminant, reaching a sensitivity to the combined single top quark production equivalent to 5.2σ. The measured combined single top quark production cross section is 2.1+0.7 -0.6 pb assuming a top quark mass of 175 GeV/c2. The probability that this result comes from a background-only fluctuation (p-value) is 0.0002, which corresponds to 3.5σ.

  9. CKM and PMNS Mixing Matrices from Discrete Subgroups of SU(2

    Directory of Open Access Journals (Sweden)

    Potter F.

    2014-07-01

    Full Text Available One of the greatest challenges in particle physics is to determine the first principles origin of the quark and lepton mixing matrices CKM and PMNS that relate the flavor states to the mass states. This first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite binary rotational subgroups of SU(2 called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R 3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R 4 . The traditional 3 3 CKM matrix is extracted as a submatrix of the 4 4 CKM4 matrix. The predicted fourth family of quarks has not been discovered yet. If these two additional quarks exist, there is the possibility that the Standard Model lagrangian may apply all the way down to the Planck scale.

  10. Diagonal multi-soliton matrix elements in finite volume

    CERN Document Server

    Pálmai, T

    2012-01-01

    We consider diagonal matrix elements of local operators between multi-soliton states in finite volume in the sine-Gordon model, and formulate a conjecture regarding their finite size dependence which is valid up to corrections exponential in the volume. This conjecture extends the results of Pozsgay and Tak\\'acs which were only valid for diagonal scattering. In order to test the conjecture we implement a numerical renormalization group improved truncated conformal space approach. The numerical comparisons confirm the conjecture, which is expected to be valid for general integrable field theories. The conjectured formula can be used to evaluate finite temperature one-point and two-point functions using recently developed methods.

  11. Generalized hypervirial and Blanchard's recurrence relations for radial matrix elements

    International Nuclear Information System (INIS)

    Based on the Hamiltonian identity, we propose a generalized expression of the second hypervirial for an arbitrary central potential wavefunction in arbitrary dimensions D. We demonstrate that the new proposed second hypervirial formula is very powerful in deriving the general Blanchard's and Kramers' recurrence relations among the radial matrix elements. As their useful and important applications, we derive all general Blanchard's and Kramers' recurrence relations and some identities for the Coulomb-like potential, harmonic oscillator and Kratzer oscillator. The recurrence relation and identity between the exponential functions and the powers of the radial function are established for the Morse potential. The corresponding general Blanchard's and Kramers' recurrence relations in 2D are also briefly studied

  12. Application of FIRE for the calculation of photon matrix elements

    Indian Academy of Sciences (India)

    Norihisa Watanabe

    2009-10-01

    The next-to-next-to-leading order (the order $ _{s}^{2}$ ) corrections to the first moment of the polarized virtual photon structure function $g_{1}^{} (x, Q^{2}, P^{2})$ are studied in perturbative QCD for the kinematical region $^{2} \\ll P^{2} Q^{2}$, where $−Q^{2} (−P^{2})$ is the mass square of the probe (target) photon and is the QCD scale parameter. In order to evaluate the two-loop Feynman diagrams for the photon matrix element of the gluon operator, I apply the recently developed algorithm FIRE which reduces a complicated sum of scalar Feynman integrals to a linear combination of a few master integrals. The details of the calculation are presented.

  13. Quasiclassical Coulomb matrix elements in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Supersymmetric WKB (SWKB) wave functions diverging at the turning points and quantization relations up to the order h6 are derived directly from the supersymmetric partner Schroedinger equations. The resulting supersymmetric partner wave functions are used, without any Langer-type correction, for dipole radial integral calculations for bound-bound transitions in the Coulomb approximation. To our knowledge, this is the first analytical calculation of matrix elements using SWKB wave functions. The bosonic SWKB partner wave function yields the WKB radial integral formula of Pankratov and Meyer-ter-Vehn which was derived by applying the Langer correction to the centrifugal potential. The new dipole radial integral expression obtained from the fermionic SWKB partner wave function overestimates the oscillator strengths with respect to accepted values. However, we verify that in the classical limit both supersymmetric partner SWKB results converge to the same value. (author). 48 refs, 2 tabs

  14. Structure of nuclear transition matrix elements for neutrinoless double- decay

    Indian Academy of Sciences (India)

    P K Rath

    2010-08-01

    The structure of nuclear transition matrix elements (NTMEs) required for the study of neutrinoless double- decay within light Majorana neutrino mass mechanism is disassembled in the PHFB model. The NTMEs are calculated using a set of HFB intrinsic wave functions, the reliability of which has been previously established by obtaining an overall agreement between the theoretically calculated spectroscopic properties and the available experimental data. Presently, we study the role of short-range correlations, radial evolution of NTMEs and deformation effects due to quadrupolar correlations. In addition, limits on effective light neutrino mass $\\langle m_{} \\rangle$ are extracted from the observed limits on half-lives $T_{1/2}^{0}$ of neutrinoless double- decay.

  15. How random are matrix elements of the nuclear shell model Hamiltonian?

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper we study the general behavior of matrix elements of the nuclear shell model Hamiltonian.We find that nonzero off-diagonal elements exhibit a regular pattern,if one sorts the diagonal matrix elements from smaller to larger values.The correlation between eigenvalues and diagonal matrix elements for the shell model Hamiltonian is more remarkable than that for random matrices with the same distribution unless the dimension is small.

  16. Fabrication of synthetic diffractive elements using advanced matrix laser lithography

    International Nuclear Information System (INIS)

    In this paper we present a matrix laser writing device based on a demagnified projection of a micro-structure from a computer driven spatial light modulator. The device is capable of writing completely aperiodic micro-structures with resolution higher than 200 000 DPI. An optical system is combined with ultra high precision piezoelectric stages with an elementary step ∼ 4 nm. The device operates in a normal environment, which significantly decreases the costs compared to competitive technologies. Simultaneously, large areas can be exposed up to 100 cm2. The capabilities of the constructed device will be demonstrated on particular elements fabricated for real applications. The optical document security is the first interesting field, where the synthetic image holograms are often combined with sophisticated aperiodic micro-structures. The proposed technology can easily write simple micro-gratings creating the color and kinetic visual effects, but also the diffractive cryptograms, waveguide couplers, and other structures recently used in the field of optical security. A general beam shaping elements and special photonic micro-structures are another important applications which will be discussed in this paper.

  17. What do we know about neutrinoless double-beta decay nuclear matrix elements?

    CERN Document Server

    Menéndez, J

    2016-01-01

    The detection of neutrinoless double-beta decay will establish the Majorana nature of neutrinos. In addition, if the nuclear matrix elements of this process are reliably known, the experimental lifetime will provide precious information about the absolute neutrino masses and hierarchy. I review the status of nuclear structure calculations for neutrinoless double-beta decay matrix elements, and discuss some key issues to be addressed in order to meet the demand for accurate nuclear matrix elements.

  18. Higgs Pair Production: Improved Description by Matrix Element Matching

    CERN Document Server

    Li, Qiang; Zhao, Xiaoran

    2013-01-01

    Higgs pair production is crucial for measuring the Higgs boson self-coupling. The dominant channel at hadron colliders is gluon fusion via heavy-quark loops. We present the results of a fully exclusive simulation of gluon fusion Higgs pair production based on the matrix elements for hh + 0, 1 partons including full heavy-quark loop dependence, matched to a parton shower. We examine and validate this new description by comparing it with (a) Higgs Effective Theory predictions, (b) exact hh + 0-parton sample showered by pythia, and (c) exact hh+1-parton distributions, by looking at the most relevant kinematic distributions, such as PTh, PThh, Mhh spectra, and jet rate as well. We find that matched samples provide an state-of-the-art accurate exclusive description of the final state. The relevant LHE files for Higgs pair productions at the LHC can be accessed via http://hepfarm02.phy.pku.edu.cn/foswiki/CMS/HH, which can be used for relevant experimental analysis.

  19. Controlling excited-state contamination in nucleon matrix elements

    Science.gov (United States)

    Yoon, Boram; Gupta, Rajan; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank; Nucleon Matrix Elements NME Collaboration

    2016-06-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2 +1 -flavor ensemble with lattices of size 323×64 generated using the rational hybrid Monte Carlo algorithm at a =0.081 fm and with Mπ=312 MeV . The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a 2-state fit to data at multiple values of the source-sink separation tsep. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of tsep needed to demonstrate convergence of the isovector charges of the nucleon to the tsep→∞ estimates is presented.

  20. Matrix element method for high performance computing platforms

    Science.gov (United States)

    Grasseau, G.; Chamont, D.; Beaudette, F.; Bianchini, L.; Davignon, O.; Mastrolorenzo, L.; Ochando, C.; Paganini, P.; Strebler, T.

    2015-12-01

    Lot of efforts have been devoted by ATLAS and CMS teams to improve the quality of LHC events analysis with the Matrix Element Method (MEM). Up to now, very few implementations try to face up the huge computing resources required by this method. We propose here a highly parallel version, combining MPI and OpenCL, which makes the MEM exploitation reachable for the whole CMS datasets with a moderate cost. In the article, we describe the status of two software projects under development, one focused on physics and one focused on computing. We also showcase their preliminary performance obtained with classical multi-core processors, CUDA accelerators and MIC co-processors. This let us extrapolate that with the help of 6 high-end accelerators, we should be able to reprocess the whole LHC run 1 within 10 days, and that we have a satisfying metric for the upcoming run 2. The future work will consist in finalizing a single merged system including all the physics and all the parallelism infrastructure, thus optimizing implementation for best hardware platforms.

  1. Controlling Excited-State Contamination in Nucleon Matrix Elements

    CERN Document Server

    Yoon, Boram; Bhattacharya, Tanmoy; Engelhardt, Michael; Green, Jeremy; Joó, Bálint; Lin, Huey-Wen; Negele, John; Orginos, Kostas; Pochinsky, Andrew; Richards, David; Syritsyn, Sergey; Winter, Frank

    2016-01-01

    We present a detailed analysis of methods to reduce statistical errors and excited-state contamination in the calculation of matrix elements of quark bilinear operators in nucleon states. All the calculations were done on a 2+1 flavor ensemble with lattices of size $32^3 \\times 64$ generated using the rational hybrid Monte Carlo algorithm at $a=0.081$~fm and with $M_\\pi=312$~MeV. The statistical precision of the data is improved using the all-mode-averaging method. We compare two methods for reducing excited-state contamination: a variational analysis and a two-state fit to data at multiple values of the source-sink separation $t_{\\rm sep}$. We show that both methods can be tuned to significantly reduce excited-state contamination and discuss their relative advantages and cost-effectiveness. A detailed analysis of the size of source smearing used in the calculation of quark propagators and the range of values of $t_{\\rm sep}$ needed to demonstrate convergence of the isovector charges of the nucleon to the $t_...

  2. Unravelling $t\\tbar h$ via the matrix element method

    CERN Document Server

    Artoisenet, Pierre; Maltoni, Fabio; Mattelaer, Olivier

    2013-01-01

    Associated production of the Higgs boson with a top-antitop pair is a key channel to gather further information on the nature of the newly discovered boson at the LHC. Experimentally, however, its observation is very challenging due to the combination of small rates, difficult multi-jet final states and overwhelming backgrounds. In the Standard Model the largest number of events is expected when h->bb, giving rise to a WWbbbb signature, deluged in tt+jets. A promising strategy to improve the sensitivity is to maximally exploit the theoretical information on the signal and background processes by means of the matrix element method. We show how, despite the complexity of the final state, the method can be efficiently applied to discriminate the signal against combinatorial and tt+jets backgrounds. Remarkably, we find that a moderate integrated luminosity in the next LHC run will be enough to make the signature involving both W's decaying leptonically as sensitive as the single-lepton one.

  3. Matrix elements for Morse oscillators: A ''local'' optimized approach

    International Nuclear Information System (INIS)

    Matrix elements Mυυ' = (ψυ|Q(r - re)| ψυ') for Morse oscillators are considered. A ''local'' approach to the determination of Mυυ' suggests the form Mυυ' = ΣiIυυ'(i), where Iυυ'(i) is proved to be of the form Iυυ'(i) = Σn an(ri+1 - ri)n, (i) being the interval (ri, ri+1), an are simply related to the parameters of the Morse function, to υ, υ' and to the parameters of the functions Q. The intervals (i) are automatically determined by a ''local'' error control; their number is shown to be limited (20 ∼ 50 for practical cases). The method is applied to the case Q(r) = (r - re)l, but also to Q(r) = (r - re)lem(r-re), and to any function Q expandable in (i) in power series. It can be used for high and low υ, υ' and l with equal ease. It can be used for the rotating Morse oscillator as well as for other potential functions under certain specified conditions. (author). 22 refs

  4. A top quark mass measurement using a matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Linacre, Jacob Thomas; /Oxford U.

    2010-02-01

    A measurement of the mass of the top quark is presented, using top-antitop pair (t{bar t}) candidate events for the lepton+jets decay channel. The measurement makes use of Tevatron p{bar p} collision data at centre-of-mass energy {radical}s = 1.96 TeV, collected at the CDF detector. The top quark mass is measured by employing an unbinned maximum likelihood method where the event probability density functions are calculated using signal (t{bar t}) and background (W+jets) matrix elements, as well as a set of parameterised jet-to-parton mapping functions. The likelihood function is maximised with respect to the top quark mass, the fraction of signal events, and a correction to the jet energy scale (JES) of the calorimeter jets. The simultaneous measurement of the JES correction ({Delta}{sub JES}) provides an in situ jet energy calibration based on the known mass of the hadronically decaying W boson. Using 578 lepton+jets candidate events corresponding to 3.2 fb{sup -1} of integrated luminosity, the top quark mass is measured to be m{sub t} = 172.4 {+-} 1.4 (stat+{Delta}{sub JES}) {+-} 1.3 (syst) GeV=c{sup 2}, one of the most precise single measurements to date.

  5. Dirac matrices as elements of superalgebraic matrix algebra

    OpenAIRE

    Monakhov, V. V.

    2016-01-01

    The paper considers a Clifford extension of the Grassmann algebra, in which operators are built from Grassmann variables and by the derivatives with respect to them. It is shown that a subalgebra which is isomorphic to the usual matrix algebra exists in this algebra, the Clifford exten-sion of the Grassmann algebra is a generalization of the matrix algebra and contains superalgebraic operators expanding matrix algebra and produces supersymmetric transformations.

  6. The temporal Fresnel number in terms of ray matrix elements

    International Nuclear Information System (INIS)

    By using the analogy between temporal ray matrix and the well known ray matrix, the temporal Fresnel number, which gives the qualitative and quasiquantitative characteristics (shape, width and chirp) of optical pulses, is derived. A concept of effective propagation time is introduced. Several typical examples are discussed. 6 refs

  7. Bag-model matrix elements of the parity-violating weak hamiltonian for charmed baryons

    International Nuclear Information System (INIS)

    Baryon matrix elements of the parity-violating part of the charmchanging weak Hamiltonian might be significant and comparable with those of the parity-conserving one due to large symmetry breaking. Expression for these new matrix elements by using the MIT-bag model are derived and their implications on earlier calculations of nonleptonic charmed-baryon decays are estimated

  8. Application of the Finite-Element Z-Matrix Method to e-H2 Collisions

    Science.gov (United States)

    Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    The present study adapts the Z-matrix formulation using a mixed basis of finite elements and Gaussians. This is a energy-independent basis which allows flexible boundary conditions and is amenable to efficient algorithms for evaluating the necessary matrix elements with molecular targets.

  9. Calculation of a weak nonleptonic matrix element using ``Weinberg'' sum rules

    OpenAIRE

    Donoghue, John F.

    1994-01-01

    There is a ``toy'' weak matrix element which can be expressed as an integral over the vector and axial vector spectral functions, $\\rho_V (s) - \\rho_A (s)$. I review our recent evaluation of these spectral functions, the study of four ``Weinberg'' sum rules and the calculation of this matrix element.

  10. High convergence order finite elements with lumped mass matrix

    DEFF Research Database (Denmark)

    Jensen, Morten skårup

    1996-01-01

    A method for deriving hexahedral finite elements with lumped mass matrices for three-dimensional problems is presented. These elements meet the theoretical conditions for high order convergence, and two numerical examples based on the three-dimensional scalar wave equation show that this is also...... the case in practice and that their accuracy is comparable to elements with consistent mass matrices....

  11. Matrix element evaluation in the unitary group approach to the electron correlation problem

    International Nuclear Information System (INIS)

    Computationally effective formulations are presented for the evaluation of matrix elements of unitary group generators and products of generators between Gelfand states. These matrix elements are the coefficients of the orbital integrals in the expressions for the Hamiltonian matrix elements in the Gelfand basis, and as such are the key elements in any application of the unitary group approach to wave-function calculations. The present formulations, which, like previous analyses, result in a simple factorization of the generator matrix elements, are based on a graphical representation of the Gelfand basis, and do not require orbital permutations or an interpretation of the Gelfand states in terms of Young tableaus. It is shown that the resulting formalism can lead to very efficient procedures for direct configuration-interaction calculations, and probably also for perturbation-theory treatments. 15 references

  12. Measurement of CKM-angle gamma with Charmed B0 Meson Decays

    Energy Technology Data Exchange (ETDEWEB)

    Baak, Max Arjen

    2007-07-17

    This thesis reports measurements of the time-dependent CP asymmetries in fully reconstructed B{sup 0} {yields} (D{sup (*){-+}} and B{sup 0} {yields} D{sup {-+}} {rho}{sup {+-}}) decays in approximately 232 million {Upsilon}(4S) {yields} B{bar B} events, collected with the BABAR detector at the PEP-II asymmetric-energy B factory at the Stanford Linear Accelerator Center in California, as published in Ref. [14]. The phenomenon of CP violation allows one to distinguish between matter and antimatter, and, as such, is one of the essential ingredients needed to explain the apparent abundance of matter over antimatter in the universe. The Standard Model describes the observed elementary particles in terms of three generations of quarks and leptons, as well as the weak, electromagnetic, and strong interactions between them. In the Standard Model, CP violation is incorporated in the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which describes the weak interactions between the quarks. The weak interactions between quarks are described by coupling constants that are functions of three real parameters and one irreducible complex phase. The magnitude of all CP violating effects in the Standard Model is related to this complex phase. The measurement of the CP violating phase of the CKM matrix is an important part of the present scientific program in particle physics. Violation of the CP symmetry manifests itself as a non-zero area of the Unitarity Triangle. The Unitarity Triangle needs to be overconstrained by experimental measurements in order to demonstrate that the CKM mechanism is the correct explanation of this phenomenon. No stringent measurement of the CKM-angle {gamma} is yet available.

  13. The calculating formula for radial matrix elements of a relativistic harmonic oscillator

    Institute of Scientific and Technical Information of China (English)

    强稳朝

    2003-01-01

    A universal practical formula is given for calculating an integral which includes two confluent hypergeometric functions, power and exponential functions; then by means of this formula, the expressions of the radial matrix elements for a relativistic harmonic oscillator are given.

  14. Electromagnetic transition matrix elements in the continuous spectrum of atoms: theory and computation

    CERN Document Server

    Komninos, Yannis; Nicolaides, Cleanthes A

    2014-01-01

    In a variety of problems concerning the coupling of atomic and molecular states to strong and or short electromagnetic pulses, it is necessary to solve the time-dependent Schroedinger equation nonperturbatively. To this purpose, we have proposed and applied to various problems the state-specific expansion approach. Its implementation requires the computation of bound-bound, bound-free and free-free N-electron matrix elements of the operator that describes the coupling of the electrons to the external electromagnetic field. The present study penetrates into the mathematical properties of the free-free matrix elements of the full electric field operator of the multipolar Hamiltonian. kk is the photon wavenumber, and the field is assumed linearly polarized, propagating along the z axis. Special methods are developed and applied for the computation of such matrix elements using energy-normalized, numerical scattering wavefunctions. It is found that, on the momentum (energy) axis, the free-free matrix elements hav...

  15. Obtaining Atomic Matrix Elements from Vector Tune-Out Wavelengths using Atom Interferometry

    CERN Document Server

    Fallon, A J

    2016-01-01

    Accurate values for atomic dipole matrix elements are useful in many areas of physics, and in particular for interpreting experiments such as atomic parity violation. Obtaining accurate matrix element values is a challenge for both experiment and theory. A new technique that can be applied to this problem is tune-out spectroscopy, which is the measurement of light wavelengths where the electric polarizability of an atom has a zero. Using atom interferometry methods, tune-out wavelengths can be measured very accurately. Their values depend on the ratios of various dipole matrix elements and are thus useful for constraining theory and broadening the application of experimental values. Tune-out wavelength measurements to date have focused on zeros of the scalar polarizability, but in general the vector polarizability also contributes. We show here that combined measurements of the vector and scalar polarizabilities can provide more detailed information about the matrix element ratios, and in particular can disti...

  16. Two-loop massive operator matrix elements for polarized and unpolarized deep-inelastic scattering

    International Nuclear Information System (INIS)

    The O(α2s) massive operator matrix elements for unpolarized and polarized heavy flavor production at asymptotic values Q2 >> m2 are calculated in Mellin space without applying the integration-by-parts method. (orig.)

  17. On the calculation of matrix elements from the time dependent variational principle

    International Nuclear Information System (INIS)

    A general prescription is given for the calculation of matrix elements of operators from periodic solutions to the time dependent variational principle. As an example it is applied to the model of Lipkin, Meshkov and Glick. (orig.)

  18. Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory

    NARCIS (Netherlands)

    M. Kormos; G. Mussardo; B. Pozsgay

    2010-01-01

    We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic

  19. On matrix elements of phase-angular momentum commutator in Hilbert space of arbitrary dimensions

    OpenAIRE

    Johal, Ramandeep S.

    2002-01-01

    We discuss correspondence between the predictions of quantum theories for rotation angle formulated in infinite and finite dimensional Hilbert spaces, taking as example, the calculation of matrix elements of phase-angular momentum commutator. A new derivation of the matrix elements is presented in infinite space, making use of a unitary transformation that maps from the state space of periodic functions to non-periodic functions, over which the spectrum of angular momentum operator is in gene...

  20. Uncertainties in nuclear matrix elements for neutrinoless double-beta decay

    International Nuclear Information System (INIS)

    I briefly review calculations of the matrix elements governing neutrinoless double-beta decay, focusing on attempts to assign uncertainties. At present, systematic error dominates statistical error and assigning uncertainty is difficult. For some purposes, however, statistical assessment of uncertainty is profitable and, after describing the nuclear models in which matrix elements are commonly calculated, I highlight some statistical uncertainty analysis within the quasiparticle random-phase approximation. I also propose, in broad terms, strategies for reducing both systematic and statistical error. (paper)

  1. Nucleon matrix elements with Nf=2+1+1 maximally twisted fermions

    International Nuclear Information System (INIS)

    We present a lattice calculation of nucleon matrix elements using four dynamical flavors using the Nf=2+1+1 maximally twisted mass formulation. The renormalization is performed non-perturbatively in the RI'-MOM scheme. We give results for the vector and axial vector operators with up to one-derivative and put particular emphasis on systematic effects in the calculation of the matrix elements.

  2. 3-Loop massive O(T2F) contributions to the DIS operator matrix element Agg

    International Nuclear Information System (INIS)

    Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A(3)gg,Q is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.

  3. Consensus Report of a Workshop on "Matrix elements for Neutrinoless Double Beta Decay"

    OpenAIRE

    Zuber, K.

    2005-01-01

    This is the consensus of a Workshop on "Matrix elements for Neutrinoless Double Beta Decay" held at the IPPP Durham (UK). The aim of this workshop has been to define a well planned, coherent strategy to reduce the errors on nuclear matrix element calculations for double beta decay to a level of 30% by performing the necessary measurements with currently existing and planned facilities. These measurements should provide reliable input for the theoretical calculations. The outcome of the worksh...

  4. Top Quark Produced Through the Electroweak Force: Discovery Using the Matrix Element Analysis and Search for Heavy Gauge Bosons Using Boosted Decision Trees

    Energy Technology Data Exchange (ETDEWEB)

    Pangilinan, Monica [Brown Univ., Providence, RI (United States)

    2010-05-01

    The top quark produced through the electroweak channel provides a direct measurement of the Vtb element in the CKM matrix which can be viewed as a transition rate of a top quark to a bottom quark. This production channel of top quark is also sensitive to different theories beyond the Standard Model such as heavy charged gauged bosons termed W'. This thesis measures the cross section of the electroweak produced top quark using a technique based on using the matrix elements of the processes under consideration. The technique is applied to 2.3 fb-1 of data from the D0 detector. From a comparison of the matrix element discriminants between data and the signal and background model using Bayesian statistics, we measure the cross section of the top quark produced through the electroweak mechanism σ(p$\\bar{p}$ → tb + X, tqb + X) = 4.30-1.20+0.98 pb. The measured result corresponds to a 4.9σ Gaussian-equivalent significance. By combining this analysis with other analyses based on the Bayesian Neural Network (BNN) and Boosted Decision Tree (BDT) method, the measured cross section is 3.94 ± 0.88 pb with a significance of 5.0σ, resulting in the discovery of electroweak produced top quarks. Using this measured cross section and constraining |Vtb| < 1, the 95% confidence level (C.L.) lower limit is |Vtb| > 0.78. Additionally, a search is made for the production of W' using the same samples from the electroweak produced top quark. An analysis based on the BDT method is used to separate the signal from expected backgrounds. No significant excess is found and 95% C.L. upper limits on the production cross section are set for W' with masses within 600-950 GeV. For four general models of W{prime} boson production using decay channel W' → t$\\bar{p}$, the lower mass limits are the following: M(W'L with SM couplings) > 840 GeV; M(W'R) > 880 GeV or 890 GeV if the

  5. Dalitz Analysis of D0 to K0(S) Pi+ Pi- and Measurement of the CKM Angle Gamma in Charged B+- Decays to D(*) K+- Decays

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Yan-Pan

    2007-07-10

    Despite more than thirty years having elapsed since the discovery of CP violation, our understanding about the source and the nature of this phenomenon is still very limited. In the standard model of particle physics, CP violation is due to the presence of an non-irreducible weak phase in the Cabibbo-Kabayashi-Maskawa(CKM) matrix. Up to now, all the experimental results are in good agreement with the standard model. However, it is important for us to over-constrain the CKM quark-mixing matrix and explore the possibility of new physics beyond the standard model. The B meson provides an ideal place to measure CP violation due to its heavy mass and potentially large CP-violating effects. In particular, the angle {gamma} of the Unitary Triangle relating the elements of the CKM matrix is extremely crucial in terms of CP violation and constraints on the new physics models. Various methods using B{sup -} {yields} D{sup 0}K{sup -} decays have been proposed to measure based on the interference between the V{sub cb} and V{sub ub} amplitudes. Despite the simple concept, the measurement turns out to be experimentally challenging due to the small branching fraction and the small value of {tau}{sub B}, the amplitude ratio between the two contributing Feynman diagrams. In this thesis a novel technique to measure {gamma} in B{sup -} {yields} D{sup (*)} K{sup -} decay using a Dalitz plot analysis of D{sup 0} {yields} K{sub s}{pi}{sup +}{pi}{sup -} is presented. Until the turn on of LHC{sub b} [1] later in the decade, this remains the most promising method to measure {gamma}. This thesis is roughly separated into two parts. The first part involves a study of hadron spectroscopy and the Dalitz plot analysis of the D{sup 0} {yields} K{sub S}{sup 0}{pi}{sup +}{pi}{sup -}. The second part of the thesis involves the measurement of {gamma} in B{sup -} {yields} D{sup (*)} K{sup -} using the results of the D{sup 0} {yields} K{sub S}{sup 0}{pi}{sup +}{pi}{sup -} dalitz plot analysis.

  6. THE STRESS SUBSPACE OF HYBRID STRESS ELEMENT AND THE DIAGONALIZATION METHOD FOR FLEXIBILITY MATRIX H

    Institute of Scientific and Technical Information of China (English)

    张灿辉; 冯伟; 黄黔

    2002-01-01

    The following is proved: 1 ) The linear independence of assumed stress modes is the necessary and sufficient condition for the nonsingular fiexibility matrix; 2) The equivalent assumed stress modes lead to the identical hybrid element. The Hilbert stress subspace of the assumed stress modes is established. So, it is easy to derive the equivalent orthogonal normal stress modes by Schmidt 's method. Because of the resulting diagonal fiexibility matrix, the identical hybrid element is free from the complex matrix inversion so that the hybrid efficiency is improved greatly. The numerical examples show that the method is effective.

  7. Composition Feature of the Element Tangent Stiffness Matrix of Geometrically Nonlinear 2D Frame Structures

    Directory of Open Access Journals (Sweden)

    Romanas Karkauskas

    2011-04-01

    Full Text Available The expressions of the finite element method tangent stiffness matrix of geometrically nonlinear constructions are not fully presented in publications. The matrixes of small displacements stiffness are usually presented only. To solve various problems of construction analysis or design and to specify the mode of the real deflection of construction, it is necessary to have a fully described tangent matrix analytical expression. This paper presents a technique of tangent stiffness matrix generation using discrete body total potential energy stationary conditions considering geometrically nonlinear 2D frame element taking account of interelement interaction forces only. The obtained vector-function derivative of internal forces considering nodal displacements is the tangent stiffness matrix. The analytical expressions having nodal displacements of matrixes forming the content of the 2D frame construction element tangent stiffness matrix are presented in the article. The suggested methodology has been checked making symbolical calculations in the medium of MatLAB calculation complex. The analytical expression of the stiffness matrix has been obtained.Article in Lithuanian

  8. On the generalized eigenvalue method for energies and matrix elements in lattice field theory

    International Nuclear Information System (INIS)

    We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(EN+1-En) t). The gap EN+1-En can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/mb in HQET. (orig.)

  9. Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)

    International Nuclear Information System (INIS)

    The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase

  10. Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)

    Science.gov (United States)

    Werry, Jason L.; Gould, Mark D.; Isaac, Phillip S.

    2015-12-01

    The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase.

  11. Use of R-matrix theory in light element evaluations

    International Nuclear Information System (INIS)

    R-matrix theory is a general framework for describing nuclear reactions (neutron- and charged-particle-induced) that is particularly well-suited for including resonances. We will review some unconventional properties of resonances that arise from this theory, including non-Breit-Wigner (BW) resonances and shadow poles, and discuss their physical consequences. Examples will be given from the analyses of several light systems that have been used in ENDF evaluations, including 4He, 5He, 15N, and 17O. The resonances in the helium systems tend to be significantly non-BW in character, while almost all the resonances in 15N and 17O are Breit-Wigner. An interesting exception in the case of 15N indicates that some of the sub-threshold levels that have been assumed to be bound might be virtual. We find that fitting data from all possible reactions simultaneously results in level schemes for the compound systems that differ in some cases significantly from the ''accepted'' published level information

  12. Matrix exponentials, SU(N) group elements, and real polynomial roots

    CERN Document Server

    Van Kortryk, T S

    2015-01-01

    The exponential of an NxN matrix can always be expressed as a matrix polynomial of order N-1. In particular, a general group element for the fundamental representation of SU(N) can be expressed as a matrix polynomial of order N-1 in a traceless NxN hermitian generating matrix, with polynomial coefficients consisting of elementary trigonometric functions dependent on N-2 invariants in addition to the group parameter. These invariants are just angles determined by the direction of a real N-vector whose components are the eigenvalues of the hermitian matrix. Equivalently, the eigenvalues are given by projecting the vertices of an (N-1)-simplex onto a particular axis passing through the center of the simplex. The orientation of the simplex relative to this axis determines the angular invariants and hence the real eigenvalues of the matrix.

  13. CP Violation: The CKM Matrix and New Physics

    OpenAIRE

    Wyler, Daniel

    2002-01-01

    Loop corrections for physics beyond the Standard Model are computed. DWe discuss the influence of new physics on CP-violating observables. Assuming the standard model gives a correct description of tree level processes, we show how a consistent procedure can determine the parameters of the standard model and check its validity also in loop induced processes. A method to include new physics in a systematic way is sketched.

  14. Correlation between eigenvalues and sorted diagonal matrix elements of a large dimensional matrix

    International Nuclear Information System (INIS)

    Functional dependences of eigenvalues as functions of sorted diagonal elements are given for realistic nuclear shell model (NSM) hamiltonian, the uniform distribution hamiltonian and the GOE hamiltonian. In the NSM case, the dependence is found to be linear. We discuss extrapolation methods for more accurate predictions for low-lying states. (author)

  15. Shell-structure influence on the multinucleon transfer in nucleon transfer matrix elements

    International Nuclear Information System (INIS)

    An analysis of the experimental data on the charge (mass) distributions of products in nuclear reactions with heavy ions [1], dependence of yield of fragments on their isotope numbers and ones of projectile- and target nuclei [2], and cross sections of the formation of evaporation residues at synthesis of new superheavy elements [3] shows that the individual peculiarities (shell structure, N/Z-ratio) of interacting nuclei play decisive role at formation and evolution of dinuclear system. Therefore, the appropriate microscopic model should be used for the theoretical analysis of the above mentioned effects. The main quantities which must be included into model are the realistic scheme of single-particle states, nucleon separation energy, single-particle matrix elements of nucleon transitions in nuclei and nucleon exchange between them caused by influence of the mean-field of partner-nucleus. In this work the nucleon transfer matrix elements were calculated for the Wood-Saxon potential for spherical nucleus. The eigenvalues and wave functions of single-particle states were obtained by numerical solving Schroedinger's equation. The integral estimation of the matrix elements is found by comparing the calculated width of the charge distributions of the reaction products with the experimental data. In the early paper [4], the same matrix elements were calculated analytically using an approximation for wave functions: authors have used wave functions of the spherical potential well. The numerical values of squares of proton transfer matrix elements found in this work are nearly in coincidence with that presented in [4]. There is a difference between curves of dependencies of the matrix elements under discussion on the relative distance between centres of nuclei when this distance is smaller than sum of nuclei radii. (author)

  16. A Matrix Model for Reliability of a Cold-Standby system with Identical Repairable Elements

    Science.gov (United States)

    Farahpour, Peyman; Mahshid, Kamrouz; Sharifi, Mani; Palizban, Aidin

    2011-09-01

    In this paper we studied a cold standby system with n identical constant failure rate repairable elements. The system has m repairmen and each repairman only works on the one failed element. After failings one element, another element replace immediately. The failure and repair rate of each element is constant as λ, μ. At first a matrix model presented to determine the state of the system. Then we establish the differential equations between the states of the system and finally with a numerical example, we illustrate the method of solving the equations. This paper divided to five main parts, we present some studies about the redundancy allocation and the marcovian models in the introduction. In the second part introduce the system description. In the third part differential equations of the system have been presented in a matrix. A numerical example presented in the 4th part to illustrated how to work with these equations. Last parts we deal with conclusion and future studies.

  17. Quasi-exact evaluation of time domain MFIE MOT matrix elements

    KAUST Repository

    Shi, Yifei

    2013-07-01

    A previously proposed quasi-exact scheme for evaluating matrix elements resulting from the marching-on-in-time (MOT) discretization of the time domain electric field integral equation (EFIE) is extended to matrix entries resulting from the discretization of its magnetic field integral equation (MFIE) counterpart. Numerical results demonstrate the accuracy of the scheme as well as the late-time stability of the resulting MOT-MFIE solver. © 2013 IEEE.

  18. Finite element analysis of stress transfer in carbon nanotube reinforced magnesium matrix composites

    OpenAIRE

    Li, Sinian; Wang, Yang; Rümmeli, M. H.; Vlček, Jaroslav; Pištora, Jaromír; Lesňák, Michal

    2010-01-01

    A simplified finite element model was established to simulate deformation of carbon nanotubes (CNTs) reinforcing magnesium matrix composites during the tensile test. The stress and strain of matrix and reinforcement agent and the effect of interface on mechanical behaviour of composites were specially studied. The simulation results showed that for uniformly distributed CNTs a stress concentration occurs from the fibre axis towards the interface. The simulations proved that the destruction of...

  19. Comparison of Cut-Based and Matrix Element Method Results for BSM Quarks

    CERN Document Server

    Akyazi, Erdogan; Yilmaz, Metin

    2012-01-01

    The Matrix Element Method has been used originally to reduce statistical uncertainty of the top quark mass measurement in both D{\\O} and CDF experiments at Tevatron with great success. After the method became more popular, it has also been applied to other analysis such as electroweak single top quark production, estimation of the longitudinal W boson helicity fraction in top quark decays and searches for the Higgs boson. It can also be applied to any mass analysis which includes exclusive decay channels at hadron colliders for BSM researches. In this work, mass analysis results for fourth family up-type quark with both Classic Cut-Based and Matrix Element Methods are compared. We show that even with very small number of events, Matrix Element Method gives better estimations for the mass value and its error, especially for event samples in which ratio of Signal and Background events is greater than 0.2.

  20. The two-loop QCD matrix element for $e^{+}e^{-} \\to 3$ jets

    CERN Document Server

    Garland, L W; Glover, E W Nigel; Koukoutsakis, A; Remiddi, E

    2002-01-01

    We compute the ${\\cal O}(\\alpha_s^3)$ virtual QCD corrections to the $\\gamma^*\\to q\\bar q g$ matrix element arising from the interference of the two-loop with the tree-level amplitude and from the self-interference of the one-loop amplitude. The calculation is performed by reducing all loop integrals appearing in the two-loop amplitude to a small set of known master integrals. Infrared and ultraviolet divergences are both regularized using conventional dimensional regularization, and the ultraviolet renormalization is performed in the $\\bar{MS}$ scheme. The infrared pole structure of the matrix elements agrees with the prediction made by Catani using an infrared factorization formula. The analytic result for the finite terms of both matrix elements is expressed in terms of one- and two-dimensional harmonic polylogarithms.

  1. Speeding up matrix element computations by means of MPI parallel programming

    International Nuclear Information System (INIS)

    The solution of some quantum-mechanical problems asks computing large sets of matrix elements involving non-factorable two-dimensional integrals. In the present paper we discuss effective means, using MPI parallel programming, for speeding up the computation of large sets of such matrix elements. To make sound comparison of the computing times, we have developed the sequential code PotentialPC and the parallel code PotentialMPI, able to solve the problems of interest on a personal computer and on a multi-core cluster, respectively. Investigation of case study problems involving matrix elements of specific operators over oscillatory bases showed a gain of CPU time exceeding two orders of magnitude

  2. Bethe Ansatz Matrix Elements as Non-Relativistic Limits of Form Factors of Quantum Field Theory

    OpenAIRE

    Kormos, M.; Mussardo, G.; Pozsgay, B.

    2010-01-01

    We show that the matrix elements of integrable models computed by the Algebraic Bethe Ansatz can be put in direct correspondence with the Form Factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe Ansatz model can be regarded as a suitable non-relativistic limit of the S-matrix of a field theory, and when there is a well-defined mapping between the Hilbert spaces and operators of the two theories. This correspondence provides an efficient method to compu...

  3. Two-loop QED Operator Matrix Elements with Massive External Fermion Lines

    CERN Document Server

    Blümlein, Johannes; van Neerven, Wilhelmus

    2011-01-01

    The two-loop massive operator matrix elements for the fermionic local twist--2 operators with external massive fermion lines in Quantum Electrodynamics (QED) are calculated up to the constant terms in the dimensional parameter $\\epsilon = D - 4$. We investigate the hypothesis of Ref. \\cite{BBN} that the 2--loop QED initial state corrections to $e^+e^-$ annihilation into a virtual neutral gauge boson, except power corrections of $O((m_f^2/s)^k), k \\geq 1$, can be represented in terms of these matrix elements and the massless 2-loop Wilson coefficients of the Drell-Yan process.

  4. Two-loop QED operator matrix elements with massive external fermion lines

    Science.gov (United States)

    Blümlein, Johannes; De Freitas, Abilio; van Neerven, Wilhelmus

    2012-02-01

    The two-loop massive operator matrix elements for the fermionic local twist-2 operators with external massive fermion lines in Quantum Electrodynamics (QED) are calculated up to the constant terms in the dimensional parameter ɛ=D-4. We investigate the hypothesis of Berends et al. (1988) [1] that the 2-loop QED initial state corrections to ee annihilation into a virtual neutral gauge boson, except power corrections of O((), k⩾1, can be represented in terms of these matrix elements and the massless 2-loop Wilson coefficients of the Drell-Yan process.

  5. Configuration interaction matrix elements. I. Algebraic approach to the relationship between unitary group generators and permutations

    International Nuclear Information System (INIS)

    Matrix elements of unitary group generators between spin-adapted antisymmetric states are shown to be proportional to spin matrix elements of so-called line-up permutations. The proportionality factor is given explicitly as a simple function of the orbital occupation numbers. If one bases the theory on ordered orbital products, the line-up permutations are given a priori. The final formulas have a very simple structure; this property is a direct consequence of the fact that the spin functions have been taken to be geminally antisymmetric. 1 table

  6. Two-loop QED operator matrix elements with massive external fermion lines

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Freitas, Abilio de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Universidad Simon Bolivar, Caracas (Venezuela). Dept. de Fisica; Neerven, Wilhelmus van [Leiden Univ. (Netherlands). Institut-Lorentz

    2011-07-15

    The two-loop massive operator matrix elements for the fermionic local twist-2 operators with external massive fermion lines in Quantum Electrodynamics (QED) are calculated up to the constant terms in the dimensional parameter {epsilon}=D-4. We investigate the hypothesis of F. A. Berends et al. (1988) that the 2-loop QED initial state corrections to e{sup +}e{sup -} annihilation into a virtual neutral gauge boson, except power corrections of O((m{sup 2}{sub f}/s){sup k}), k {>=} 1, can be represented in terms of these matrix elements and the massless 2-loop Wilson coefficients of the Drell-Yan process. (orig.)

  7. Temperature dependent electron Lande g-factor and interband matrix element in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Jens; Doehrmann, Stefanie; Haegele, Daniel; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany)

    2007-07-01

    High precision measurements of the electron Lande g-factor in GaAs are presented using spin quantum beat spectroscopy at low excitation densities and temperatures ranging from 2.6 to 300 K. Influences of nuclear spin polarization at low temperatures have been fully compensated. Comparing these measurements with available data for the temperature dependent effective mass reveals an unexpected strong temperature dependence of the interband matrix element and resolves a long lasting discrepancy between experiment and kp - theory. The strong decrease of the interband matrix element with increasing temperature is explained by phonon induced fluctuations of the interatomic spacing and adiabatic following of the electrons.

  8. Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)

    International Nuclear Information System (INIS)

    Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities

  9. Measurement of Rotatory Optics Element in Tensor Dielectric Matrix for Rotatory Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    LIU Jinghao; ZHANG Xiaofan; LI Huazhou; BAO Zhenwu

    2005-01-01

    The rotatory optics element in the tensor dielectric coefficient matrix is an important parameter for analyzing and calculating a rotatory optical fiber by electromagnetic theory. But the mea-surement of rotatory optics element is difficult for the rotatory optical fiber. A simple principle and method for measuring rotatory optics element are put forward in this paper. Firstly by using electromagnetic theory it was demonstrated that the rotatory optics element has a simple linear relation with the rotatory angle, and then the rotatory optics element has a simple linear relation with the magnetic field strength (or bias current in the helix coil) . Secondly a measurement system for the rotatory optics element in the rotatory optical fiber was designed. Using the measurement system the rotatory element can be obtained by measuring the bias current simply.

  10. CKM and PMNS mixing matrices from discrete subgroups of SU(2)

    Science.gov (United States)

    Potter, Franklin

    2015-07-01

    Remaining within the realm of the Standard Model(SM) local gauge group, this first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite) binary rotational subgroups of SU(2) called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R4. The traditional 3x3 CKM matrix is extracted as a submatrix of the 4x4 CKM4 matrix. If these two additional quarks b' and t' of a 4th quark family exist, there is the possibility that the SM lagrangian may apply all the way down to the Planck scale. There are then numerous other important consequences. The Weinberg angle is derived using these same quaternion generators, and the triangle anomaly cancellation is satisfied even though there is an obvious mismatch of three lepton families to four quark families. In a discrete space, one can also use these generators to derive a unique connection from the electroweak local gauge group SU(2)L x U(1)Y acting in R4 to the discrete group Weyl E8 in R8. By considering Lorentz transformations in discrete (3,1)-D spacetime, one obtains another Weyl E8 discrete symmetry group in R8, so that the combined symmetry is Weyl E8 x Weyl E8 = "discrete" SO(9,1) in 10-D spacetime. This unique connection is in direct contrast to the 10500 possible connections for superstring theory!

  11. LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix

    International Nuclear Information System (INIS)

    Laser-induced breakdown spectroscopy (LIBS) has been applied to the analysis of heavy metals in liquid samples. A new approach was presented to lower the limit of detection (LOD) and minimize the sample matrix effects, in which dried wood pellets absorbed the given amounts of Cr standard solutions and then were baked because they have stronger and rapid absorption properties for liquid samples as well as simple elemental compositions. In this work, we have taken a typical heavy metal Cr element as an example, and investigated the spectral feasibility of Cr solutions and dried wood pellets before and after absorbing Cr solutions at the same experimental conditions. The results were demonstrated to successfully produce a superior analytical response for heavy metal elements by using wood pellet as sample matrix according to the obtained LOD of 0.07 ppm for Cr element in solutions

  12. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.

  13. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    International Nuclear Information System (INIS)

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite

  14. An Experiment on Preparation of Matrix Graphite Powder for HTR fuel element

    International Nuclear Information System (INIS)

    Nuclear fuel for HTGR (High Temperature Gas Cooled Reactor) to produce nuclear hydrogen is called TRISO coated fuel, which consists of 500-μm spherical UO2 particles coated with Pyrolytic Carbon(PyC) and SiC in four layers. The coated TRISO particles are mixed with matrix graphite powder and pressed into a spherical shape of about 60 mm in diameter or a cylindrical compact and heat-treated at about 1900 .deg. C. These fuel elements have a variety of sizes and forms depending on the types of nuclear reactors. Basic steps of manufacturing the fuel element include preparation of graphite matrix powder, overcoating fuel particles, mixing fuel particles with matrix, carbonating green compact and the final high temperature heat processing of the carbonated fuel compact. In order to develop fuel compact fabrication technology, it is important to develop a basic technology for matrix graphite powder (MGP) preparation which has strong influence on the material properties of fuel element. In this work, an experiment was attempted by mixing natural and artificial graphite powders, kneading with binder in methanol medium, drying and milling to prepare a simulated matrix graphite powder with proper characteristics for further steps, i.e., further mixing with coated particles, compaction and heat treatment

  15. Calculation of massive 2-loop operator matrix elements with outer gluon lines

    International Nuclear Information System (INIS)

    Massive on-shell operator matrix elements and self-energy diagrams with outer gluon lines are calculated analytically at O(α2s), using Mellin-Barnes integrals and representations through generalized hypergeometric functions. This method allows for a direct evaluation without decomposing the integrals using the integration-by-parts method. (orig.)

  16. Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements

    Science.gov (United States)

    Kumar, Deepak; Roy, Rene; Kweon, Jin-Hwe; Choi, Jin-ho

    2015-10-01

    Sub-laminate damage in the form of matrix cracking and delamination was simulated by using interface cohesive elements in the finite element (FE) software ABAQUS. Interface cohesive elements were inserted parallel to the fiber orientation in the transverse ply with equal spacing (matrix cracking) and between the interfaces (delamination). Matrix cracking initiation in the cohesive elements was based on stress traction separation laws and propagated under mixed-mode loading. We expanded the work of Shi et al. (Appl. Compos. Mater. 21, 57-70 2014) to include delamination and simulated additional [45/-45/0/90]s and [02/90n]s {n = 1,2,3} CFRP laminates and a [0/903]s GFRP laminate. Delamination damage was quantified numerically in terms of damage dissipative energy. We observed that transverse matrix cracks can propagate to the ply interface and initiate delamination. We also observed for [0/90n/0] laminates that as the number of 90° ply increases past n = 2, the crack density decreases. The predicted crack density evolution compared well with experimental results and the equivalent constraint model (ECM) theory. Empirical relationships were established between crack density and applied stress by linear curve fitting. The reduction of laminate elastic modulus due to cracking was also computed numerically and it is in accordance with reported experimental measurements.

  17. Three-loop contributions to the gluonic massive operator matrix elements at general values of N

    International Nuclear Information System (INIS)

    Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the O(nfT2FCF,A) and O(T2FCF,A) gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.

  18. Accurate determination of electric-dipole matrix elements in K and Rb from Stark shift measurements

    CERN Document Server

    Arora, Bindiya; Clark, Charles W

    2007-01-01

    Stark shifts of potassium and rubidium D1 lines have been measured with high precision by Miller et al [1]. In this work, we combine these measurements with our all-order calculations to determine the values of the electric-dipole matrix elements for the 4p_j-3d_j' transitions in K and for the 5p_j-4d_j' transitions in Rb to high precision. The 4p_1/2-3d_3/2 and 5p_1/2-4d_3/2 transitions contribute on the order of 90% to the respective polarizabilities of the np_1/2 states in K and Rb, and the remaining 10% can be accurately calculated using the relativistic all-order method. Therefore, the combination of the experimental data and theoretical calculations allows us to determine the np-(n-1)d matrix elements and their uncertainties. We compare these values with our all-order calculations of the np-(n-1)d matrix elements in K and Rb for a benchmark test of the accuracy of the all-order method for transitions involving nd states. Such matrix elements are of special interest for many applications, such as determi...

  19. Effects of quenching and partial quenching on QCD penguin matrix elements

    NARCIS (Netherlands)

    Golterman, Maarten; Pallante, Elisabetta

    2002-01-01

    We point out that chiral transformation properties of penguin operators change in the transition from unquenched to (partially) quenched QCD. The way in which this affects the lattice determination of weak matrix elements can be understood in the framework of (partially) quenched chiral perturbation

  20. GENERAL FORMULA AND RECURRENCE FORMULA FOR RADIAL MATRIX ELEMENTS OF N-DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

    Institute of Scientific and Technical Information of China (English)

    CHEN CHANG-YUAN

    2000-01-01

    In this paper, the general formulas and the recurrence formulas for radial matrix elements of N-dimensional isotropic harmonic oscillator are obtained. The relevant results of 2- dimensional and 3- dimensiona] isotropic harmonic oscillators reported in the reference papers are contained in a more general equations derived in this paper as special cases.

  1. Precision Measurement of the Quadrupole Transition Matrix Element in a Single Trapped $^{40}$Ca$^{+}$

    CERN Document Server

    Shao, H; Guan, H; Li, C; Shi, T; Gao, K

    2016-01-01

    We report the first experimental determination of the $4s \\ ^{2}S_{1/2} $ $\\leftrightarrow $ $3d \\ ^{2}D_{5/2}$ quadrupole transition matrix element in $^{40}$Ca$^+$ by measuring the branching ratio of the $3d \\ ^{2}D_{5/2} $ state decaying into the ground state $4s \\ ^{2}S_{1/2} $ and the lifetime of the $3d \\ ^{2}D_{5/2} $ state, using a technique of highly synchronized measurement sequence for laser control and highly efficient quantum state detection for quantum jumps. The measured branching ratio and improved lifetime are, respectively, 0.9992(80) and 1.1652(46) s, which yield the value of the quadrupole transition matrix element (in absolute value) 9.737(43)~$ea_{0}^{2}$ with the uncertainty at the level of 0.44\\%. The measured quadrupole transition matrix element is in good agreement with the most precise many-body atomic structure calculations. Our method can be universally applied to measurements of transition matrix elements in single ions and atoms of similar structure.

  2. Finite-Element Z-Matrix Calculation of Electron-N2 Collisions

    Science.gov (United States)

    Huo, Winifred M.; Dateo, Christopher E.

    1999-01-01

    The finite element Z-matrix method has been applied in a multichannel study of e-N2 Collisions for electron energies from threshold to 30 eV. General agreement is obtained comparing with existing experimental and theoretical data. Some discrepancies are also found.

  3. Multipole matrix elements for Coulomb excitation of rotation aligned brand in 164Er

    International Nuclear Information System (INIS)

    The possibility of exciting high spin states of the rotation-aligned band is studied. A microscopic model has been employed to estimate large l multipole matrix elements for transitions to high spin states. Possible multipole Coulomb excitation paths are given. Large l multipole transitions to high spin states by inelastic proton scattering are studied. (author). 19 refs., 4 figs

  4. Nuclear Matrix Elements for the $\\beta\\beta$ Decay of the $^{76}$Ge

    CERN Document Server

    Brown, B A; Horoi, M

    2015-01-01

    The nuclear matrix elements for two-neutrino double-beta (2 n$\\beta\\beta$ ) and zero-neutrino double-beta (0 n$\\beta\\beta$) decay of 76 Ge are evaluated in terms of the configuration interaction (CI), quasiparticle random phase approximation (QRPA) and interacting boson model (IBM) methods. We show that the decomposition of the matrix elements in terms of interemediate states in 74 Ge is dominated by ground state of this nucleus. We consider corrections to the CI results that arise from configurations admixtures involving orbitals out-side of the CI configuration space by using results from QRPA, many-body-perturbation theory, and the connections to related observables. The CI two-neutrino matrix element is reduced due to the inclusion of spin-orbit partners, and to many-body correlations connected with Gamow-Teller beta decay. The CI zero-neutrino matrix element for the heavy neutrino is enhanced due to particle-particle correlations that are connected with the odd-even oscillations in the nuclear masse...

  5. Bessel equation as an operator identity's matrix element in quantum mechanics

    International Nuclear Information System (INIS)

    We study the well-known Bessel equation itself in the framework of quantum mechanics. We show that the Bessel equation is a spontaneous result of an operator identity's matrix element in some definite entangled state representations, which is a fresh look. Application of this operator formalism in the Hankel transform of Laplace equation is presented

  6. A possible probe of neutrinoless double-beta decay nuclear matrix elements

    International Nuclear Information System (INIS)

    Future experiments on the search for the 0νββ decay will be sensitive to the effective Majorana mass in the region of the inverted mass hierarchy. If a positive signal is observed, a possibility to test models of calculation of nuclear matrix elements of the process will appear. We discuss this possibility in some detail

  7. Heavy flavor operator matrix elements at O(αs3)

    International Nuclear Information System (INIS)

    The heavy quark effects in deep.inelastic scattering in the asymptotic regime Q2>>m2 can be described by heavy flavor operator matrix elements. Complete analytic expressions for these objects are currently known to NLO. We present first results for fixed moments at NNLO. This involves a recalculation of fixed moments of the corresponding NNLO anomalous dimensions, which we thereby confirm. (orig.)

  8. Propriety of approximation for calculations of nuclear matrix elements by Woods-Saxon wave functions

    International Nuclear Information System (INIS)

    Single-particle matrix elements of the nucleon transfer were calculated by Woods-Saxon potential wave functions and results are compared by spherical well approximation. The application of the approximation of the mean field of nuclei at heavy-ion collisions by the spherical well, which is widely used in the model based on dinuclear concept, is proved

  9. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites

    DEFF Research Database (Denmark)

    Frederiksson, Per; Gudmundson, Peter; Mikkelsen, Lars Pilgaard

    2009-01-01

    quadrilateral type are examined and a few numerical issues are addressed related to these elements as well as to strain gradient plasticity theories in general. Numerical results are presented for an idealized cell model of a metal matrix composite under shear loading. It is shown that strengthening due to...

  10. A Literature Study of Matrix Element Influenced to the Result of Analysis Using Absorption Atomic Spectroscopy Method (AAS)

    International Nuclear Information System (INIS)

    The gold sample analysis can be deviated more than >10% to those thrue value caused by the matrix element. So that the matrix element character need to be study in order to reduce the deviation. In rock samples, the matrix elements can cause self quenching, self absorption and ionization process, so there is a result analysis error. In the rock geochemical process, the elements of the same group at the periodic system have the tendency to be together because of their same characteristic. In absorption Atomic Spectroscopy analysis, the elements associate can absorb primer energy with similar wave length so that it can cause deviation in the result interpretation. The aim of study is to predict matrix element influences from rock sample with application standard method for reducing deviation. In quantitative way, assessment of primer light intensity that will be absorbed is proportional to the concentration atom in the sample that relationship between photon intensity with concentration in part per million is linier (ppm). These methods for eliminating matrix elements influence consist of three methods : external standard method, internal standard method, and addition standard method. External standard method for all matrix element, internal standard method for elimination matrix element that have similar characteristics, addition standard methods for elimination matrix elements in Au, Pt samples. The third of standard posess here accuracy are about 95-97%. (author)

  11. Modelling of polypropylene fibre-matrix composites using finite element analysis

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Polypropylene (PP fibre-matrix composites previously prepared and studied experimentally were modelled using finite element analysis (FEA in this work. FEA confirmed that fibre content and composition controlled stress distribution in all-PP composites. The stress concentration at the fibre-matrix interface became greater with less fibre content. Variations in fibre composition were more significant in higher stress regions of the composites. When fibre modulus increased, the stress concentration at the fibres decreased and the shear stress at the fibre-matrix interface became more intense. The ratio between matrix modulus and fibre modulus was important, as was the interfacial stress in reducing premature interfacial failure and increasing mechanical properties. The model demonstrated that with low fibre concentration, there were insufficient fibres to distribute the applied stress. Under these conditions the matrix yielded when the applied stress reached the matrix yield stress, resulting in increased fibre axial stress. When the fibre content was high, there was matrix depletion and stress transfer was inefficient. The predictions of the FEA model were consistent with experimental and published data.

  12. A Novel Formulation of Cabibbo-Kobayashi-Maskawa Matrix Renormalization

    CERN Document Server

    Kniehl, Bernd A

    2009-01-01

    We present a gauge-independent quark mass counterterm for the on-shell renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the Standard Model that is directly expressed in terms of the Lorentz-invariant self-energy functions, and automatically satisfies the hermiticity constraints of the mass matrix. It is very convenient for practical applications and leads to a gauge-independent CKM counterterm matrix that preserves unitarity and satisfies other highly desirable theoretical properties, such as flavor democracy.

  13. A novel formulation of Cabibbo-Kobayashi-Maskawa matrix renormalization

    Science.gov (United States)

    Kniehl, Bernd A.; Sirlin, Alberto

    2009-03-01

    We present a gauge-independent quark mass counterterm for the on-shell renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the Standard Model that is directly expressed in terms of the Lorentz-invariant self-energy functions, and automatically satisfies the hermiticity constraints of the mass matrix. It is very convenient for practical applications and leads to a gauge-independent CKM counterterm matrix that preserves unitarity and satisfies other highly desirable theoretical properties, such as flavor democracy.

  14. A Novel Formulation of Cabibbo-Kobayashi-Maskawa Matrix Renormalization

    OpenAIRE

    Kniehl, Bernd A.; Sirlin, Alberto

    2008-01-01

    We present a gauge-independent quark mass counterterm for the on-shell renormalization of the Cabibbo-Kobayashi-Maskawa (CKM) matrix in the Standard Model that is directly expressed in terms of the Lorentz-invariant self-energy functions, and automatically satisfies the hermiticity constraints of the mass matrix. It is very convenient for practical applications and leads to a gauge-independent CKM counterterm matrix that preserves unitarity and satisfies other highly desirable theoretical pro...

  15. Matrix rings over a principal ideal domain in which elements are nil-clean

    Directory of Open Access Journals (Sweden)

    Somayeh Hadjirezaei

    2016-05-01

    Full Text Available An element of a ring $R$ is called nil-clean if it is the sum of an idempotent and a nilpotent element. A ring is called nil-clean if each of its elements is nil-clean. S. Breaz et al. in [1] proved their main result that the matrix ring $\\mathbb{M}_{ n}(F$ over a field $F$ is nil-clean if and only if $F\\cong \\mathbb{F}_2$, where $\\mathbb{F}_2$ is the field of two elements. M. T. Ko\\c{s}an et al. generalized this result to a division ring. In this paper, we show that the $n\\times n$ matrix ring over a principal ideal domain $R$ is a nil-clean ring if and only if $R$ is isomorphic to $\\mathbb{F}_2$. Also, we show that the same result is true for the $2\\times 2$ matrix ring over an integral domain $R$. As a consequence, we show that for a commutative ring $R$, if $\\mathbb{M}_{ 2}(R$ is a nil-clean ring, then dim$R=0$ and char${R}/{J(R}=2$.

  16. The hidden symmetries in the PMNS matrix and the light sterile neutrino(s)

    CERN Document Server

    Ke, Hong-Wei; Chen, Shuai; Liu, Tan; Li, Xue-Qian

    2015-01-01

    The approximately symmetric form of the PMNS matrix suggests that there could exist a hidden symmetry which makes the PMNS matrix different from the CKM matrix for quarks. In literature, all the proposed fully symmetric textures exhibit an explicit $\\mu-\\tau$ symmetry in addition to other symmetries which may be different for various textures. Observing obvious deviations of the practical PMNS matrix elements from those in the symmetric textures, there must be a mechanism to distort the symmetry. It might be due to existence of light sterile neutrinos. In this work, we study the case of the Tribimaximal texture and propose that its apparent symmetry disappears due to existence of a sterile neutrino. We observe that introducing just one sterile neutrino is still not sufficient to recover the data, thus a slight $\\mu-\\tau$ symmetry breaking is also needed. By considering those factors, we obtain the PMNS matrix elements which are consistent with data within the experimental tolerance.

  17. Two-loop massive fermionic operator matrix elements and intial state QED corrections to e+e-→γ*/Z*

    International Nuclear Information System (INIS)

    We describe the calculation of the two-loop massive operator matrix elements for massive external fermions. These matrix elements are needed for the calculation of the O(α2) initial state radiative corrections to e+e- annihilation into a neutral virtual gauge boson, based on the renormalization group technique. (orig.)

  18. Two-loop QED operator matrix elements with massive external fermion lines

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes, E-mail: johannes.bluemlein@desy.de [DESY, Zeuthen, Platanenallee 6, D-15735 Zeuthen (Germany); De Freitas, Abilio [DESY, Zeuthen, Platanenallee 6, D-15735 Zeuthen (Germany); Departamento de Fisica, Universidad Simon Bolivar, Apartado Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); van Neerven, Wilhelmus [Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 HA Leiden (Netherlands)

    2012-02-21

    The two-loop massive operator matrix elements for the fermionic local twist-2 operators with external massive fermion lines in Quantum Electrodynamics (QED) are calculated up to the constant terms in the dimensional parameter {epsilon}=D-4. We investigate the hypothesis of Berends et al. (1988) that the 2-loop QED initial state corrections to e{sup +}e{sup -} annihilation into a virtual neutral gauge boson, except power corrections of O((m{sub f}{sup 2}/s){sup k}), k Greater-Than-Or-Slanted-Equal-To 1, can be represented in terms of these matrix elements and the massless 2-loop Wilson coefficients of the Drell-Yan process.

  19. Two-loop operator matrix elements for massive fermionic local twist-2 operators in QED

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Universidad Simon Bolivar, Caracas (Venezuela). Dept. de Fisica; Neerven, W.L. van [Rijksuniversiteit Leiden (Netherlands). Inst. Lorentz voor Theoretische Natuurkunde

    2011-11-15

    We describe the calculation of the two--loop massive operator matrix elements with massive external fermions in QED. We investigate the factorization of the O({alpha}{sup 2}) initial state corrections to e{sup +}e{sup -} annihilation into a virtual boson for large cms energies s >>m{sup 2}{sub e} into massive operator matrix elements and the massless Wilson coefficients of the Drell-Yan process adapting the color coefficients to the case of QED, as proposed by F. A. Berends et. al. (Nucl. Phys. B 297 (1988)429). Our calculations show explicitly that the representation proposed there works at one-loop order and up to terms linear in ln (s/m{sup 2}{sub e}) at two-loop order. However, the two-loop constant part contains a few structural terms, which have not been obtained in previous direct calculations. (orig.)

  20. Two-loop operator matrix elements for massive fermionic local twist-2 operators in QED

    CERN Document Server

    Blümlein, J; van Neerven, W L

    2011-01-01

    We describe the calculation of the two--loop massive operator matrix elements with massive external fermions in QED. We investigate the factorization of the $O(\\alpha^2)$ initial state corrections to $e^+e^-$ annihilation into a virtual boson for large cms energies $s \\gg m_e^2$ into massive operator matrix elements and the massless Wilson coefficients of the Drell-Yan process adapting the color coefficients to the case of QED, as proposed by Berends et. al. in Ref. [1]. Our calculations show explicitly that the representation proposed in Ref. [1] works at one-loop order and up to terms linear in $\\ln(s/m^2_e)$ at two-loop order. However, the two-loop constant part contains a few structural terms, which have not been obtained in previous direct calculations.

  1. Charge-independent trend of isoscalar matrix elements along the N∼Z line

    International Nuclear Information System (INIS)

    Shell model calculations have been carried out using the m-scheme numerical code ANTOINE in order to elucidate the particular trend of the isoscalar matrix elements, M0, for A=4n+2 isobaric triplets ranging from A=18 to A=42. The 21+(T=1)->01+(T=1) transition energies, reduced transition probabilities and isoscalar matrix elements are predicted to a high degree of accuracy. The general agreement of M0 between those from mirror pairs and those from TZ=0 nuclides support our shell model calculations. The predicted results tie together recent experimental data, and the trend of M0 strength along the sd and beginning of the fp shells is interpreted in terms of the dynamic shell structure. Certain discrepancies arise at A=18 and A=38 isobaric triplets, which might be explained in terms of core polarization effects and the low occupancy of the orbits at the extremes of the sd shell. sd shell

  2. Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia Cheng [Univ. of Illinois, Champaign, IL (United States)

    2015-01-01

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched Nf = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a2 tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.

  3. Probing non-perturbative QCD through hadronic matrix elements extracted from exclusive hard processes

    CERN Document Server

    Pire, B

    2009-01-01

    QCD is the theory of strong interactions and non-perturbative methods have been developed to address the confinement property of QCD. Many experimental measurements probe the confining dynamics, and it is well-known that hard scattering processes allow the extraction of non perturbative hadronic matrix elements. To study exclusive hard processes, such as electromagnetic form factors and reactions like gamma* N -> gamma N', gamma* N -> pi N', gamma* gamma -> pi pi, antiproton proton ->gamma* pi in particular kinematics (named as generalized Bjorken regime), one introduces specific non-perturbative objects, namely generalized parton distributions (GPDs), distribution amplitudes (DA) and transition distribution amplitudes (TDA), which are Fourier transformed non-diagonal matrix elements of non-local operators on the light-cone. We review here a selected sample of exclusive amplitudes in which the quark and gluon content of hadrons is probed, and emphasize that much remains to be done to successfully compute thei...

  4. Multipolar correlations and deformation effect on nuclear transition matrix elements of double-$\\beta $ decay

    CERN Document Server

    Chandra, R; Rath, P K; Raina, P K; Hirsch, J G

    2009-01-01

    The two neutrino and neutrinoless double beta decay of $^{94,96}$Zr, $^{98,100}$Mo, $^{104}$Ru, $^{110}$Pd, $^{128,130}$Te and $^{150}$Nd isotopes for the $0^{+}\\to 0^{+}$ transition is studied within the PHFB framework along with an effective two-body interaction consisting of pairing, quadrupole-quadrupole and hexadecapole-hexadecapole correlations. It is found that the effect of hexadecapolar correlations can be assimilated substantially as a renormalization of the quadrupole-quadrupole interaction. The effect of deformation on nuclear transition matrix elements is investigated by varying the strength of quadrupolar correlations in the parent and daughter nuclei independently. The variation of the nuclear transition matrix elements as a function of the difference in deformation parameters of parent and daughter nuclei reveals that in general, the former tend to be maximum for equal deformation and they decrease as the difference in deformation parameters increases, exhibiting a very similar trend for the $...

  5. Kinetic-energy matrix elements for atomic Hylleraas-CI wave functions.

    Science.gov (United States)

    Harris, Frank E

    2016-05-28

    Hylleraas-CI is a superposition-of-configurations method in which each configuration is constructed from a Slater-type orbital (STO) product to which is appended (linearly) at most one interelectron distance rij. Computations of the kinetic energy for atoms by this method have been difficult due to the lack of formulas expressing these matrix elements for general angular momentum in terms of overlap and potential-energy integrals. It is shown here that a strategic application of angular-momentum theory, including the use of vector spherical harmonics, enables the reduction of all atomic kinetic-energy integrals to overlap and potential-energy matrix elements. The new formulas are validated by showing that they yield correct results for a large number of integrals published by other investigators. PMID:27250282

  6. Constraining anomalous Higgs boson couplings to the heavy flavor fermions using matrix element techniques

    CERN Document Server

    Gritsan, Andrei V; Schulze, Markus; Xiao, Meng

    2016-01-01

    In this paper we investigate anomalous interactions of the Higgs boson with heavy fermions, employing shapes of kinematic distributions. We study the processes $pp \\to t\\bar{t} + H$, $b\\bar{b} + H$, $tq+H$, and $pp \\to H\\to\\tau^+\\tau^-$, and present applications of event generation, re-weighting techniques for fast simulation of anomalous couplings, as well as matrix element techniques for optimal sensitivity. We extend the MELA technique, which proved to be a powerful matrix element tool for Higgs boson discovery and characterization during Run I of the LHC, and implement all analysis tools in the JHU generator framework. A next-to-leading order QCD description of the $pp \\to t\\bar{t} + H$ process allows us to investigate the performance of MELA in the presence of extra radiation. Finally, projections for LHC measurements through the end of Run III are presented.

  7. Short-distance matrix elements for D-meson mixing for 2+1 lattice QCD

    International Nuclear Information System (INIS)

    We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched Nf = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a2 tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a2 tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.

  8. Inelastic proton scattering as a mean for the determination of neutron and proton matrix element ratios

    CERN Document Server

    Alamanos, N; Lagoyannis, A; Musumarra, A

    1999-01-01

    The determination of ratio of neutron over proton matrix elements by inelastic proton scattering, for 0 sup +->2 sup + transitions, is investigated via the comparison between experimental data and theoretical calculations. Calculations into the context of a macroscopic and a microscopic description are performed for a wide mass range nuclei: sup 1 sup 8 O, sup 3 sup 0 Si, sup 3 sup 2 sup , sup 3 sup 4 S, sup 4 sup 8 Ca, sup 8 sup 8 Sr, for which these ratios were determined previously with an independent technique. At that point the choice of the theoretical model may be very critical. It is thus the purpose of this investigation to point out the most suitable model. It is found that in general both theoretical models can be employed for the reliable determination of neutron over proton matrix element ratios.

  9. The multivariate Krawtchouk polynomials as matrix elements of the rotation group representations on oscillator states

    International Nuclear Information System (INIS)

    An algebraic interpretation of the bivariate Krawtchouk polynomials is provided in the framework of the three-dimensional isotropic harmonic oscillator model. These polynomials in two discrete variables are shown to arise as matrix elements of unitary reducible representations of the rotation group in three dimensions. Many of their properties are derived by exploiting the group-theoretic setting. The bivariate Tratnik polynomials of Krawtchouk type are seen to be special cases of the general polynomials that correspond to particular rotations involving only two parameters. It is explained how the approach generalizes naturally to (d + 1) dimensions and allows us to interpret multivariate Krawtchouk polynomials as matrix elements of SO(d + 1) unitary representations. Indications are given on the connection with other algebraic models for these polynomials. (paper)

  10. Systematics of neutrinoless double beta decay matrix elements in a major shell

    International Nuclear Information System (INIS)

    We analyze nuclear matrix elements (NME) of neutrinoless double beta decay calculated for the Cadmium isotopes. Energy density functional methods including beyond mean field effects such as symmetry restoration and shape mixing are used. Strong shell effects are found associated to the underlying nuclear structure of the initial and final nuclei. Furthermore, we show that NME for two-neutrino double beta decay evaluated in the closure approximation, M2νcl, display a constant proportionality with respect to the Gamow-Teller part of the neutrinoless NME, M0νGT. This opens the possibility of determining the M0νGT matrix elements from β-+ Gamow-Teller strength functions. Finally, the interconnected role of deformation, pairing, configuration mixing and shell effects in the NMEs is discussed.

  11. Lattice calculation of hadronic weak matrix elements: the ΔI = 1/2 rule

    International Nuclear Information System (INIS)

    A lattice Monte Carlo technique for calculating the matrix elements of weak operators is described. Emphasis is placed on the ΔI = 1/2 rule, which is such a large effect that the significant errors associated with current lattice methods (statistics, finite size, finite lattice spacing, extrapolations in quark mass, etc.) should not disguise the important qualitative features. A detailed exposition of the analytic bases for the calculation is given, and an attempt is made to avoid the questionable phenomenological assumptions (such as some of those inherent in the Penguin approach) which were necessary when matrix elements could not be calculated. The current state of the calculation-in-progress is described. This work is being done in collaboration with A. Soni, T. Draper, G. Hockney, and M. Rushton

  12. Measurement of dipole matrix element of atomic Gd transitions using Rabi flopping

    International Nuclear Information System (INIS)

    Dipole matrix elements were measured for two transitions of the gadolinium atom by detecting the laser-induced fluorescence as a function of laser intensity using Rabi flopping. Those values are 2.7 x 10-19 and 3.0 x 10-19 esu·cm for 9D2-9F2(0-17381 cm-1) and 9D5-9D4(999-17931 cm-1), respectively. Optical Bloch equations for two-level atoms were calculated for each pair of magnetic sublevels, where the effects of inhomogeneous broadening and laser intensity fluctuation were included. Experimental results were well described by this model. This method is very useful for determining a dipole matrix element which is one of the basic parameters for laser isotope separation. (author)

  13. Matrix Elements for $D$- and $B$-Mixing from 2+1 Flavor Lattice QCD

    CERN Document Server

    Chang, C C; Bouchard, C M; El-Khadra, A X; Freeland, E D; Gámiz, E; Kronfeld, A S; Laiho, J; van de Water, R S

    2013-01-01

    We present the status of our calculation of hadronic matrix elements for $D$- and $B$-meson mixing. We use a large set of the MILC collaboration's $N_f=2+1$ asqtad ensembles, which includes lattice spacings in the range $a\\approx0.12$-0.045 fm, and up/down to strange quark mass ratios as low as 0.05. The asqtad action is also employed for the light valence quarks. For the heavy quarks we use the Sheikholeslami-Wohlert action with the Fermilab interpretation. Our calculation covers the complete set of five local operators needed to describe $B$-meson mixing in the Standard Model and Beyond. In the charm sector, our calculation of local mixing matrix elements may be used to constrain new physics models. We present final correlator fit results on the full data set for the $B$-meson mixing project and preliminary fit results for the $D$-meson mixing project.

  14. Least change in the Determinant or Permanent of a matrix under perturbation of a single element: continuous and discrete cases

    OpenAIRE

    Ito, Genta

    2008-01-01

    We formulate the problem of finding the probability that the determinant of a matrix undergoes the least change upon perturbation of one of its elements, provided that most or all of the elements of the matrix are chosen at random and that the randomly chosen elements have a fixed probability of being non-zero. Also, we show that the procedure for finding the probability that the determinant undergoes the least change depends on whether the random variables for the matrix elements are continu...

  15. Addressable test matrix for measuring analog transfer characteristics of test elements used for integrated process control and device evaluation

    Science.gov (United States)

    Buehler, Martin G. (Inventor)

    1988-01-01

    A set of addressable test structures, each of which uses addressing schemes to access individual elements of the structure in a matrix, is used to test the quality of a wafer before integrated circuits produced thereon are diced, packaged and subjected to final testing. The electrical characteristic of each element is checked and compared to the electrical characteristic of all other like elements in the matrix. The effectiveness of the addressable test matrix is in readily analyzing the electrical characteristics of the test elements and in providing diagnostic information.

  16. Nuclear matrix elements from direct lifetime or cross-section measurements

    International Nuclear Information System (INIS)

    The method of simultaneous lifetime and g factor measurements using a plunger device and the RDDS and TDRIV techniques is introduced. Results on lifetimes and hyperfine-interaction parameters for 2+1 states in 104-108Pd, 96,98,104Ru, and 92,94Zr, using a plunger device. Another method to obtain electromagnetic matrix elements is direct cross section measurements using NRF. The method is outlined, and some recent results on 76Se are shown.

  17. Classical-Wigner Phase Space Approximation to Cumulative Matrix Elements in Coherent Control

    OpenAIRE

    McQuarrie, B. R.; Abrashkevich, Dmitri G.; Brumer, Paul

    2003-01-01

    The classical limit of the Wigner-Weyl representation is used to approximate products of bound-continuum matrix elements that are fundamental to many coherent control computations. The range of utility of the method is quantified through an examination of model problems, single-channel Na_2 dissociation and multi-arrangement channel photodissociation of CH_2IBr. Very good agreement with the exact quantum results is found for a wide range of system parameters.

  18. Three-Loop Contributions to the Gluonic Massive Operator Matrix Elements at General Values of N

    CERN Document Server

    Ablinger, J; De Freitas, A; Hasselhuhn, A; Klein, S; Raab, C; Round, M; Schneider, C; Wi\\ssbrock, F

    2013-01-01

    Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the $O(n_f T_F^2 C_{F,A})$ and $O(T_F^2 C_{F,A})$ gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.

  19. Double beta decay versus cosmology: Majorana CP phases and nuclear matrix elements

    CERN Document Server

    Deppisch, F; Suhonen, J; Deppisch, Frank; P\\"as, Heinrich; Suhonen, Jouni

    2004-01-01

    We discuss the relation between the absolute neutrino mass scale, the effective mass measured in neutrinoless double beta decay, and the Majorana CP phases. Emphasis is placed on estimating the upper bound on the nuclear matrix element entering calculations of the double beta decay half life. Consequently, one of the Majorana CP phases can be constrained when combining the claimed evidence for neutrinoless double beta decay with the neutrino mass bound from cosmology.

  20. Three-loop contributions to the gluonic massive operator matrix elements at general values of N

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Hasselhuhn, Alexander [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); De Freitas, Abilio; Round, Mark; Schneider, Carsten; Wissbrock, Fabian [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Klein, Sebastian [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Physik E

    2012-12-15

    Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the O(n{sub f}T{sup 2}{sub F}C{sub F,A}) and O(T{sup 2}{sub F}C{sub F,A}) gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.

  1. Three-Loop Contributions to the Gluonic Massive Operator Matrix Elements at General Values of N

    OpenAIRE

    Ablinger, J.; Blümlein, J.; Freitas, A; Hasselhuhn, A.(Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, Linz, A-4040, Austria); Klein, S.; Raab, C.; Round, M.; Schneider, C; Wißbrock, F.

    2012-01-01

    Recent results on the calculation of 3-loop massive operator matrix elements in case of one and two heavy quark masses are reported. They concern the $O(n_f T_F^2 C_{F,A})$ and $O(T_F^2 C_{F,A})$ gluonic corrections, two-mass quarkonic moments, and ladder- and Benz-topologies. We also discuss technical aspects of the calculations.

  2. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.)

  3. Generating two-dimensional oscillator matrix elements sorted by angular momentum

    International Nuclear Information System (INIS)

    Generating functions are found for two-dimensional harmonic-oscillator integrals. These integrals are classified by angular momentum, permitting inclusion of a constant magnetic field. A generating function is obtained for matrix elements of a Gaussian perturbation, and as an example these are used to compute eigenstates for a particle in a wine bottle-bottom potential. Along with this specific example a straightforward method of generalizing the results is presented

  4. Closed expressions for matrix elements of the trigonometric Poeschl-Teller potential

    International Nuclear Information System (INIS)

    Analytical matrix elements of the xn (n>0) and [tan(x)]m[cos(x)]m'dn/dxn operators are derived using the eigenfunctions of the symmetric trigonometric Poeschl-Teller potential. The closed formulas are written in terms of Gauss hypergeometric functions and could be used in variational calculations to describe vibrational energy levels associated with bending modes. Multiprecision computational packages are considered in order to obtain an arbitrary level of precision.

  5. Closed expressions for matrix elements of the trigonometric Pöschl-Teller potential

    Science.gov (United States)

    Rey, Michaël; Michelot, Françoise

    2010-10-01

    Analytical matrix elements of the x ( n>0) and [[d/dx operators are derived using the eigenfunctions of the symmetric trigonometric Pöschl-Teller potential. The closed formulas are written in terms of Gauss hypergeometric functions and could be used in variational calculations to describe vibrational energy levels associated with bending modes. Multiprecision computational packages are considered in order to obtain an arbitrary level of precision.

  6. Heavy flavor operator matrix elements at O({alpha}{sub s}{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, Isabella; Buemlein, Johannes; Klein, Sebastian

    2008-12-15

    The heavy quark effects in deep.inelastic scattering in the asymptotic regime Q{sup 2}>>m{sup 2} can be described by heavy flavor operator matrix elements. Complete analytic expressions for these objects are currently known to NLO. We present first results for fixed moments at NNLO. This involves a recalculation of fixed moments of the corresponding NNLO anomalous dimensions, which we thereby confirm. (orig.)

  7. Matrix elements for sum of power-law potentials in quantum mechanic using generalized hypergeometric functions

    Directory of Open Access Journals (Sweden)

    Ma'zoozeh E. Abu-Amra

    2008-04-01

    Full Text Available In this paper we derive close form for the matrix elements for $hat H=-Delta +V$, where $V$ is a pure power-law potential. We use trial functions of the form $$ psi _n(r= sqrt{{frac{2eta ^{gamma/2}(gamma _n} {n!Gamma(gamma }}} r^{gamma - 1/2} e^{-frac{sqrt{eta }}{2}r^q} _pF_1 ( -n,a_2,ldots ,a_p;gamma;sqrt {eta } r^q, $$ for $eta, q,gamma >0$ to obtain the matrix elements for $hat H$. These formulas are then optimized with respect to variational parameters $eta ,q$ and $gamma $ to obtain accurate upper bounds for the given nonsolvable eigenvalue problem in quantum mechanics. Moreover, we write the matrix elements in terms of the generalized hypergeomtric functions. These results are generalization of those found earlier in [2], [8-16] for power-law potentials. Applications and comparisons with earlier work are presented.

  8. Measurement of branching fractions of B decays to K1(1270)pi and K1(1400)pi and determination of the CKM angle alpha from B0 --> a1(1260) - pi-

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone; /Milan U. /SLAC

    2011-02-07

    In the Standard Model, CP violation in weak interactions involving quarks is parameterized by an irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing-matrix. The precise determination of the CKM elements is a necessary ingredient for a stringent test of the Standard Model predictions, and is a crucial input for reducing the theoretical error in many New Physics searches with flavor, e.g., in the kaon sector. The unitarity of the CKM matrix is typically expressed as a triangle relationship among its parameters, where the area of the so-called Unitarity Triangle visually depicts the amount of asymmetry between the decays of B particles and their antimatter counterparts. In the past few years, the BABAR and Belle experiments have been able to measure all three angles of the triangle from CP asymmetry measurements. The first asymmetry measurements in B particle decays, about ten years ago, allowed to determine {beta}, which is now known to better than 5% precision. The angles {alpha} and {gamma}, measured in much rarer processes, required several years of data taking before analyses could yield reliable answers. A remarkable feature is that the direct measurement of the angles of the Unitarity Triangle generates an area that is consistent with the area predicted by measurement of the sides. In this thesis we have presented the branching fraction measurements of charged and neutral B meson decays to K{sub 1}(1270){pi} and K{sub 1}(1400){pi}, obtained from a data sample of 454 million {Upsilon}(4S) {yields} B{bar B} events. This analysis is particularly challenging from the experimental side since the branching fractions involved are very low, at the level of 10{sup -6} - 10{sup -7}, and the signal is characterized by the simultaneous presence of two overlapping resonances, which exhibit sizeable interference effects. The combined K{sub 1}(1270){pi} and K{sub 1}(1400){pi} signal is therefore modeled with a K-matrix formalism, which accounts for

  9. Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites

    Science.gov (United States)

    Nemeth, Noel N.; Mital, Subodh; Lang, Jerry

    2010-01-01

    Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.

  10. Multibody operator matrix elements and subduction coefficients in U(n): II

    International Nuclear Information System (INIS)

    Matrix elements of multibody operators in Gel'fand and similar bases of irreducible representations of U(n) are evaluated algebraically to arbitrary order. It is shown that in all cases the matrix element expressions consist of products of terms, each a matrix factor associated only with subgroup labels at step U(k)contains U(k-1) in the group chain U(n)contains hor-ellipsis contains U(k)contains hor-ellipsis contains (1). Further, the matrices at step k occurring in the product are diagonalizable according to the irreps of SN, which signifies also for N the number of one-body operators contained in the multibody operator at the level. The results extend previous work that was directed at special cases of multibody operators. Attention has been focused recently on such operators in connection with spin-dependent and higher-order multipole spin-independent interactions as arise in the unitary group approach. Explicit phase relations are incorporated throughout the treatment. copyright 1997 American Institute of Physics

  11. Experimental studies of nuclear matrix elements for neutrino-less ββ decays

    Energy Technology Data Exchange (ETDEWEB)

    Ejiri, H. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan and Nuclear Science, Czech Technical University, Brehová, Prague (Czech Republic)

    2013-12-30

    Nuclear matrix elements M{sup 0ν} for neutrino less double beta decays (0νββ) are crucial for neutrino studies in 0νββ experiments. The neutrino mass to be studied is sensitive to M{sup 0ν}, while theoretical calculations for M{sup 0ν} are hard. Thus experimental studies of nuclear structures and single β matrix elements M{sub β} associated with 0νββ are useful to confirm and help the theoretical calculations. This reports briefly experimental methods and recent charge exchange reaction studies for M{sub β}. The single β elements for M{sup ±}(2{sup −}) associated with M{sup 0ν}(2{sup −}), which is the major component of M{sup 0ν}, are found to be reduced (quenched) much by the spin isospin correlation and the nuclear medium (non-nucleonic isobar) effect. The present result suggests that the spin isospin components of M{sup 0ν} is fairly reduced (quenched)

  12. The multivariate Meixner polynomials as matrix elements of SO(d, 1) representations on oscillator states

    Science.gov (United States)

    Genest, Vincent X.; Miki, Hiroshi; Vinet, Luc; Zhedanov, Alexei

    2014-01-01

    The multivariate Meixner polynomials are shown to arise as matrix elements of unitary representations of the SO(d, 1) group on oscillator states. These polynomials depend on d discrete variables and are orthogonal with respect to the negative multinomial distribution. The emphasis is put on the bivariate case for which the SO(2, 1) connection is used to derive the main properties of the polynomials: orthogonality relation, raising/lowering relations, generating function, recurrence relations and difference equations as well as explicit expressions in terms of standard (univariate) Krawtchouk and Meixner polynomials. It is explained how these results generalize directly to d variables.

  13. The multivariate Meixner polynomials as matrix elements of SO(d, 1) representations on oscillator states

    International Nuclear Information System (INIS)

    The multivariate Meixner polynomials are shown to arise as matrix elements of unitary representations of the SO(d, 1) group on oscillator states. These polynomials depend on d discrete variables and are orthogonal with respect to the negative multinomial distribution. The emphasis is put on the bivariate case for which the SO(2, 1) connection is used to derive the main properties of the polynomials: orthogonality relation, raising/lowering relations, generating function, recurrence relations and difference equations as well as explicit expressions in terms of standard (univariate) Krawtchouk and Meixner polynomials. It is explained how these results generalize directly to d variables. (paper)

  14. The Matrix Element Method at next-to-leading order accuracy

    CERN Document Server

    Martini, Till

    2015-01-01

    The Matrix Element Method (MEM) has proven beneficial to make maximal use of the information available in experimental data. However, so far it has mostly been used in Born approximation only. In this paper we discuss an extension to NLO accuracy. As a prerequisite we present an efficient method to calculate event weights for jet events at NLO accuracy. As illustration and proof of concept we apply the method to the extraction of the top-quark mass in e+e- annihilation. We observe significant differences when moving from LO to NLO which may be relevant for the interpretation of top-quark mass measurements at hadron colliders relying on the MEM.

  15. The O(αs3TF2) contributions to the gluonic operator matrix element

    Science.gov (United States)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.

    2014-08-01

    The O(αs3TF2CF(CA)) contributions to the transition matrix element Agg,Q relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines.

  16. Spatially dependent burnup implementation into the nodal program based on the finite element response matrix method

    International Nuclear Information System (INIS)

    In this work a spatial burnup scheme and feedback effects has been implemented into the FERM ( 'Finite Element Response Matrix' )program. The spatially dependent neutronic parameters have been considered in three levels: zonewise calculation, assembly wise calculation and pointwise calculation. Flux and power distributions and the multiplication factor were calculated and compared with the results obtained by CITATIOn program. These comparisons showed that processing time in the Ferm code has been hundred of times shorter and no significant difference has been observed in the assembly average power distribution. (Author)

  17. Spin Density Matrix Elements in exclusive production of ω mesons at Hermes

    Directory of Open Access Journals (Sweden)

    Marianski B.

    2014-03-01

    Full Text Available Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and –t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.

  18. Spin Density Matrix Elements in exclusive production of ω mesons at Hermes

    Science.gov (United States)

    Marianski, B.; Terkulov, A.

    2014-03-01

    Spin density matrix elements have been determined for exclusive ω meson production on hydrogen and deuterium targets, in the kinematic region of 1.0 < Q2 < 10.0 GeV2, 3.0 < W < 6.3 GeV and -t' < 0.2 GeV2. The data, from which SDMEs are determined, were accumulated with the HERMES forward spectrometer during the running period of 1996 to 2007 using the 27.6 GeV electron or positron beam of HERA. A sizable contribution of unnatural parity exchange amplitudes is found for exclusive ω meson production.

  19. On calculating matrix elements of slater determinant wave functions in the cluster model. Pt. 2

    International Nuclear Information System (INIS)

    A method for projecting angular momentum in two-cluster systems with intrinsic orbital angular momentum is presented. The method is an analytical one making use of Racah algebra and exploiting tensor properties of two-cluster shell model wave functions. As an application, reduced matrix elements of spin-isospin independent scalar operators and of the electric charge multipole operator are calculated in the case where one of the clusters in the two-cluster wave function may carry an intrinsic orbital angular momentum. (orig.)

  20. Stochastic sandwich method with low mode substitution for nucleon isovector matrix elements

    CERN Document Server

    Yang, Yi-Bo; Draper, Terrence; Gong, Ming; Liu, Keh-Fei

    2015-01-01

    We introduce a stochastic sandwich method with low-mode substitution to evaluate the connected three-point functions. The isovector matrix elements of the nucleon for the axial-vector coupling $g_A^3$, scalar couplings $g_S^3$ and the quark momentum fraction $\\langle x\\rangle_{u -d}$ are calculated with overlap fermion on 2+1 flavor domain-wall configurations on a $24^3 \\times 64$ lattice at $m_{\\pi} = 330$ MeV with lattice spacing $a = 0.114$ fm.

  1. Electron-H2 Collisions Studied Using the Finite Element Z-Matrix Method

    Science.gov (United States)

    Huo, Winifred M.; Brown, David; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    We have applied the Z-matrix method, using a mixed basis of finite elements and Gaussians, to study e-H2 elastic and inelastic collisions. Special attention is paid to the quality of the basis set and the treatment of electron correlation. The calculated cross sections are invariant, to machine accuracy, with respect to the choice of parameters a, b, d, e as long as they satisfy Equation (3). However, the log derivative approach, i.e., the choice a = -e = 1, b = d = 0 appears to converge slightly faster than other choices. The cross sections agree well with previous theoretical results. Comparison will be made with available experimental data.

  2. Nucleon matrix elements with $N_f=2+1+1$ maximally twisted fermions

    CERN Document Server

    Dinter, Simon; Constantinou, Martha; Drach, Vincent; Jansen, Karl; Renner, Dru

    2010-01-01

    We present the first lattice calculation of nucleon matrix elements using four dynamical flavors. We use the $N_f=2+1+1$ maximally twisted mass formulation. The renormalization is performed non-perturbatively in the RI$^\\prime$-MOM scheme and results are given for the vector and axial vector operators with up to one-derivative. Our calculation of the average momentum of the unpolarized non-singlet parton distribution is presented and compared to our previous results obtained from the $N_f=2$ case.

  3. Equilibrium and equilibration in a gluon plasma with improved matrix elements

    Directory of Open Access Journals (Sweden)

    Zhang Bin

    2014-03-01

    Full Text Available The hot and dense matter created in the early stage of a relativistic heavy ion collision is composed mainly of gluons. Radiative processes can play an important role for the thermalization of such partonic systems. The simplest parton number changing processes are commonly described by the Gunion-Bertsch formula. We show that the cross section from the exact matrix element for the lowest order radiative process could be significantly smaller than that based on the Gunion-Bertsch formula. In light of this, we discuss the role of radiative processes on the equilibrium and equilibration of a gluon plasma.

  4. Elimination of matrix effect in quantitative analysis of elements using x-ray fluorescence

    International Nuclear Information System (INIS)

    The emission-transmission method of Leroux and Mahmud, an experimental technique for compensating matrix effects in photon excited X-ray fluorescence analysis, was used to determine the concentration of lead and antimony in pellets of galalith. The effect of interfering elements was studied by adding various concentrations of mercury and tin to the respective pellets. To illustrate possible environmental applications, a number of pellets was prepared from leaves of almond trees located in different regions of Rio de Janeiro. Lead concentrations were determined for the dried leaf material and showed values ranging from 50 to 145 parts per million

  5. Uncertainties in nuclear transition matrix elements for neutrinoless $\\beta \\beta $ decay II: the heavy Majorana neutrino mass mechanism

    CERN Document Server

    Rath, P K; Raina, P K; Chaturvedi, K; Hirsch, J G

    2011-01-01

    Employing four different parametrization of the pairing plus multipolar type of effective two-body interaction and three different parametrizations of Jastrow-type of short range correlations, the uncertainties in the nuclear transition matrix elements $M_{N}^{(0\

  6. LHCb Measurement of the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Ali, S

    2014-01-01

    In this poster we present the latest result by the LHCb collaboration in determining the CKM angle $\\gamma$ ($(67.1 \\pm 12)^{\\circ}$). The result is determined by combining several $B \\to Dh$ analyses. Latest results from the decay time dependent $B_{s} \\to D_{s}K$ analysis is also reported, along with a few other decay channels interesting for determination of $\\gamma$ in the future.

  7. Massive 3-loop ladder diagrams for quarkonic local operator matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, Johannes; Hasselhuhn, Alexander; Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Klein, Sebastian [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik

    2012-06-15

    3-loop diagrams of the ladder-type, which emerge for local quarkonic twist-2 operator matrix elements, are computed directly for general values of the Mellin variable N using Appell-function representations and applying modern summation technologies provided by the package Sigma and the method of hyperlogarithms. In some of the diagrams generalized harmonic sums with {xi} element of {l_brace}1,1/2,2{r_brace} emerge beyond the usual nested harmonic sums. As the asymptotic representation of the corresponding integrals shows, the generalized sums conspire giving well behaved expressions for large values of N. These diagrams contribute to the 3-loop heavy flavor Wilson coefficients of the structure functions in deep-inelastic scattering in the region Q{sup 2} >> m{sup 2}.

  8. Measurement of the top quark mass in the lepton+jets final state with the matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro,

    2006-09-01

    We present a measurement of the top quark mass with the Matrix Element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the Matrix Element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty.

  9. 3-loop Massive $O(T_F^2)$ Contributions to the DIS Operator Matrix Element $A_{gg}$

    CERN Document Server

    Ablinger, J; De Freitas, A; Hasselhuhn, A; von Manteuffel, A; Round, M; Schneider, C

    2014-01-01

    Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element $A_{gg,Q}^{(3)}$ is performed. In the Mellin space result one finds finite nested binomial sums. In $x$-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.

  10. Development of a diffuse element matrix in 'planar' technology. A particular application: logical gate with coupled emitter

    International Nuclear Information System (INIS)

    In a first part, after a brief recall concerning 'planar' technology we discuss the various parasitic elements associated with integrated circuits components. Mathematical formulae of these elements are derived. In a second part, we present a matrix of 22 transistors and 12 resistors which has been realized. This matrix enables the integration of the major part of nuclear circuits. Some of the obtained circuits are shown, particularly an emitter coupled logic gate which presents good electrical behaviour. (author)

  11. Temperature dependent Electron Land\\'e g-Factor and Interband Matrix Element in GaAs

    OpenAIRE

    Hübner, J.; Döhrmann, S.; Hägele, D.; Oestreich, M.

    2006-01-01

    Very high precision measurements of the electron Lande g-factor in GaAs are presented using spin-quantum beat spectroscopy at low excitation densities and temperatures ranging from 2.6 to 300 K. In colligation with available data for the temperature dependent effective mass a temperature dependence of the interband matrix element within a common five level kp-theory can model both parameters consistently. A strong decrease of the interband matrix element with increasing temperature consistent...

  12. Fluctuations of Matrix Elements of Regular Functions of Gaussian Random Matrices

    Science.gov (United States)

    Lytova, A.; Pastur, L.

    2009-01-01

    We find the limit of the variance and prove the Central Limit Theorem (CLT) for the matrix elements φ jk ( M), j, k=1,…, n of a regular function φ of the Gaussian matrix M (GOE and GUE) as its size n tends to infinity. We show that unlike the linear eigenvalue statistics Tr φ( M), a traditional object of random matrix theory, whose variance is bounded as n→∞ and the CLT is valid for Tr φ( M)- E{Tr φ( M)}, the variance of φ jk ( M) is O(1/ n), and the CLT is valid for sqrt{n}(\\varphi _{jk}(M)-E\\{\\varphi _{jk}(M)\\}) . This shows the role of eigenvectors in the forming of the asymptotic regime of various functions (statistics) of random matrices. Our proof is based on the use of the Fourier transform as a basic characteristic function, unlike the Stieltjes transform and moments, used in majority of works of the field. We also comment on the validity of analogous results for other random matrices.

  13. Measurement of the t-channel single-top-quark production cross section and of the |$V_{tb}$| CKM matrix element in pp collisions at $\\sqrt{s}$ = 8 TeV

    OpenAIRE

    Khachatryan, V.; Brochero Cifuentes, J. A.; Cabrillo, I. J.(Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain); Calderón-Urrea, Alejandro; Duarte Campderros, J.; Fernández, M; Gómez, G.; González Sánchez, J.; Graziano, A.; López Virto, A.; Marco, Jesús; Marco, Rafael; Martínez-Rivero, Celso; Matorras, Francisco; Muñoz Sánchez, F. J.

    2014-01-01

    We acknowledge support from BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lit...

  14. A Precision Measurement of the Neutron Twist-3 Matrix Element $d_2^n$: Probing Color Forces

    CERN Document Server

    Posik, M; Parno, D S; Allada, K; Armstrong, W; Averett, T; Benmokhtar, F; Bertozzi, W; Camsonne, A; Canan, M; Cates, G D; Chen, C; Chen, J -P; Choi, S; Chudakov, E; Cusanno, F; Dalton, M M; Deconinck, W; de Jager, C W; Deng, X; Deur, A; Dutta, C; Fassi, L El; Franklin, G B; Friend, M; Gao, H; Garibaldi, F; Gilad, S; Gilman, R; Glamazdin, O; Golge, S; Gomez, J; Guo, L; Hansen, O; Higinbotham, D W; Holmstrom, T; Huang, J; Hyde, C; Ibrahim, H F; Jiang, X; Jin, G; Katich, J; Kelleher, A; Kolarkar, A; Korsch, W; Kumbartzki, G; LeRose, J J; Lindgren, R; Liyanage, N; Long, E; Lukhanin, A; Mamyan, V; McNulty, D; Meziani, Z -E; Michaels, R; Mihovilovič, M; Moffit, B; Muangma, N; Nanda, S; Narayan, A; Nelyubin, V; Norum, B; Nuruzzaman,; Oh, Y; Peng, J C; Qian, X; Qiang, Y; Rakhman, A; Riordan, S; Saha, A; Sawatzky, B; Shabestari, M H; Shahinyan, A; Širca, S; Solvignon, P; Subedi, R; Sulkosky, V; Tobias, A; Troth, W; Wang, D; Wang, Y; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yuan, L; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, B; Zheng, X

    2014-01-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken $x$ (0.25 $ \\le x \\le $ 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized $^3$He target. In this dedicated experiment, the spin structure function $g_2$ on $^3$He was determined with precision at large $x$, and the neutron twist-three matrix element $d_2^n$ was measured at $\\left$ of 3.21 and 4.32 GeV$^2$/$c^2$, with an absolute precision of about $10^{-5}$. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at $\\left =$ 5 GeV$^2$/$c^2$. Combining $d_2^n$ and a newly extracted twist-four matrix element, $f_2^n$, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  15. Nuclear matrix elements of 0νββ decay with improved short-range correlations

    International Nuclear Information System (INIS)

    Nuclear matrix elements of the neutrinoless double beta (0νββ) decays of 96Zr, 100Mo, 116Cd, 128Te, 130Te, and 136Xe are calculated for the light-neutrino exchange mechanism by using the proton-neutron quasiparticle random-phase approximation (pnQRPA) with a realistic nucleon-nucleon force. The particle-particle strength parameter gpp of the pnQRPA is fixed by the data on the two-neutrino double β and single β decays. The finite size of a nucleon, the higher-order terms of nucleonic weak currents, and the nucleon-nucleon short-range correlations (s.r.c) are taken into account. The s.r.c. are computed by the traditional Jastrow method and by the more advanced unitary correlation operator method (UCOM). A comparison of the results obtained by the two methods reveals that the UCOM computed matrix elements are considerably larger than the Jastrow computed ones. This result is important to the assessment of the neutrino-mass sensitivity of present and future double β experiments

  16. Neutrinoless beta-beta matrix element of 76Ge from spectroscopic data

    CERN Document Server

    Suhonen, J

    2008-01-01

    In this work we use the recently measured neutron pairing correlations in the 76Ge and 76Se nuclei as a guideline to adjust the single-particle energies in the 1p0f0g shell. The resulting BCS occupations reproduce the measured pairing data. The proton energies were inspected by using the odd-mass nuclei adjacent to 76Ge and 76Se as spectroscopic tools. The nuclear matrix element of the neutrinoless double beta (0-nu-beta-beta) decay of 76Ge is calculated in this fitted single-particle basis by using the proton-neutron quasiparticle random-phase approximation (pnQRPA) in a realistic model space and by adopting effective microscopic two-nucleon interactions. We include the nucleon-nucleon short-range correlations and other relevant corrections at the nucleon level. It is found that the resulting 0-nu-beta-beta matrix element is smaller than in the previous pnQRPA calculations, and closer to the recently reported shell-model results.

  17. Nuclear matrix elements of neutrinoless double beta decay with improved short-range correlations

    CERN Document Server

    Kortelainen, Markus

    2007-01-01

    Nuclear matrix elements of the neutrinoless double beta decays of 96Zr, 100Mo, 116Cd, 128Te, 130Te and 136Xe are calculated for the light-neutrino exchange mechanism by using the proton-neutron quasiparticle random-phase approximation (pnQRPA) with a realistic nucleon-nucleon force. The g_pp parameter of the pnQRPA is fixed by the data on the two-neutrino double beta decays and single beta decays. The finite size of a nucleon, the higher-order terms of nucleonic weak currents, and the nucleon-nucleon short-range correlations (s.r.c) are taken into account. The s.r.c. are computed by the traditional Jastrow method and by the more advanced unitary correlation operator method (UCOM). Comparison of the results obtained by the two methods is carried out. The UCOM computed matrix elements turn out to be considerably larger than the Jastrow computed ones. This result is important for the assessment of the neutrino-mass sensitivity of the present and future double beta experiments.

  18. A Mathematica script for harmonic oscillator nuclear matrix elements arising in semileptonic electroweak interactions

    CERN Document Server

    Haxton, Wick

    2007-01-01

    Semi-leptonic electroweak interactions in nuclei - such as \\beta decay, \\mu capture, charged- and neutral-current neutrino reactions, and electron scattering - are described by a set of multipole operators carrying definite parity and angular momentum, obtained by projection from the underlying nuclear charge and three-current operators. If these nuclear operators are approximated by their one-body forms and expanded in the nucleon velocity through order |\\vec{p}|/M, where \\vec{p} and M are the nucleon momentum and mass, a set of seven multipole operators is obtained. Nuclear structure calculations are often performed in a basis of Slater determinants formed from harmonic oscillator orbitals, a choice that allows translational invariance to be preserved. Harmonic-oscillator single-particle matrix elements of the multipole operators can be evaluated analytically and expressed in terms of finite polynomials in q^2, where q is the magnitude of the three-momentum transfer. While results for such matrix elements a...

  19. A new program for calculating matrix elements of one-particle operators in jj-coupling

    International Nuclear Information System (INIS)

    The aim of this paper is to calculate the matrix elements of one-particle tensor operators occurring in atomic and nuclear theory between configuration state functions representing states containing any number of open shells in jj-coupling. The program calculates the angular part of these matrix elements. The program is essentially a new version of RDMEJJ, written by J.J. Chang. The aims of this version are to eliminate inconsistencies from RDMEJJ, to modify its input requirements for consistency with MCP75, and to modify its output so that it can be stored in a discfile for access by other compatible programs. The program assumes that the configurational states are built from a common orthonormal set of basis orbitals. The number of electrons in a shell having j>=9/2 is restricted to be not greater than 2 by the available CFP routines . The present version allows up to 40 orbitals and 50 configurational states with <=10 open shells; these numbers can be changed by recompiling with modified COMMON/DIMENSION statements. The user should ensure that the CPC library subprograms AAGD, ACRI incorporate all current updates and have been converted to use double precision floating point arithmetic. (Auth.)

  20. Precision Measurement of the Neutron Twist-3 Matrix Element dn2: Probing Color Forces

    Energy Technology Data Exchange (ETDEWEB)

    Posik, Matthew; Flay, David; Parno, Diana; Allada, Kalyan; Armstrong, Whitney; Averett, Todd; Benmokhtar, Fatiha; Bertozzi, William; Camsonne, Alexandre; Canan, Mustafa; Cates, Gordon; Chen, Chunhua; Chen, Jian-Ping; Choi, Seonho; Chudakov, Eugene; Cusanno, Francesco; Dalton, Mark; Deconinck, Wouter; De Jager, Cornelis; Deng, Xiaoyan; Deur, Alexandre; Dutta, Chiranjib; El Fassi, Lamiaa; Franklin, Gregg; Friend, Megan; Gao, Haiyan; Garibaldi, Franco; Gilad, Shalev; Gilman, Ronald; Glamazdin, Oleksandr; Golge, Serkan; Gomez, Javier; Guo, Lei; Hansen, Jens-Ole; Higinbotham, Douglas; Holmstrom, Timothy; Huang, J; Hyde, Charles; Ibrahim Abdalla, Hassan; Jiang, Xiaodong; Jin, Ge; Katich, Joseph; Kelleher, Aidan; Kolarkar, Ameya; Korsch, Wolfgang; Kumbartzki, Gerfried; LeRose, John; Lindgren, Richard; Liyanage, Nilanga; Long, Elena; Lukhanin, Oleksandr; Mamyan, Vahe; McNulty, Dustin; Meziani, Zein-Eddine; Michaels, Robert; Mihovilovic, Miha; Moffit, Bryan; Muangma, Navaphon; Nanda, Sirish; Narayan, Amrendra; Nelyubin, Vladimir; Norum, Blaine; Nuruzzaman, nfn; Oh, Yongseok; Peng, Jen-chieh; Qian, Xin; Qiang, Yi; Rakhman, Abdurahim; Riordan, Seamus; Saha, Arunava; Sawatzky, Bradley; Hashemi Shabestari, Mitra; Shahinyan, Albert; Sirca, Simon; Solvignon-Slifer, Patricia; Subedi, Ramesh; Sulkosky, Vincent; Tobias, William; Troth, Wolfgang; Wang, Diancheng; Wang, Y; Wojtsekhowski, Bogdan; Yan, X; Yao, Huan; Ye, Yunxiu; Ye, Zhihong; Yuan, Lulin; Zhan, X; Zhang, Y; Zhang, Y -W; Zhao, Bo; Zheng, Xiaochao

    2014-07-01

    Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25 lte x lte 0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized 3He target. In this dedicated experiment, the spin structure function g2 on 3He was determined with precision at large x, and the neutron twist-three matrix element dn2 was measured at ?Q2? of 3.21 and 4.32 GeV2/c2, with an absolute precision of about 10?5. Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ?Q2?= 5 GeV2/c2. Combining dn2 and a newly extracted twist-four matrix element, fn2, the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 60 MeV/fm in magnitude.

  1. Many-body-localization transition: strong multifractality spectrum for matrix elements of local operators

    Science.gov (United States)

    Monthus, Cécile

    2016-07-01

    For short-ranged disordered quantum models in one dimension, the many-body-localization is analyzed via the adaptation to the many-body context (Serbyn et al 2015 Phys. Rev. X 5 041047) of the Thouless point of view on the Anderson transition: the question is whether a local interaction between two long chains is able to reshuffle completely the eigenstates (delocalized phase with a volume-law entanglement) or whether the hybridization between tensor states remains limited (many-body-localized phase with an area-law entanglement). The central object is thus the level of hybridization induced by the matrix elements of local operators, as compared with the difference of diagonal energies. The multifractal analysis of these matrix elements of local operators is used to analyze the corresponding statistics of resonances. Our main conclusion is that the critical point is characterized by the strong-multifractality spectrum f(0≤slant α ≤slant 2)=\\fracα{2} , well known in the context of Anderson localization in spaces of effective infinite dimensionality, where the size of the Hilbert space grows exponentially with the volume. Finally, the possibility of a delocalized non-ergodic phase near criticality is discussed.

  2. Measurement of single top quark production at D0 using a matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Mitrevski, Jovan Pavle; /Columbia U.

    2007-07-01

    Until now, the top quark has only been observed produced in pairs, by the strong force. According to the standard model, it can also be produced singly, via an electroweak interaction. Top quarks produced this way provide powerful ways to test the charged-current electroweak interactions of the top quark, to measure |V{sub tb}|, and to search for physics beyond the standard model. This thesis describes the application of the matrix element analysis technique to the search for single top quark production with the D0 detector using 0.9 fb{sup -1} of Run II data. From a comparison of the matrix element discriminants between data and the background model, assuming a Standard Model s-channel to t-channel cross section ratio of {sigma}{sub s}/{sigma}{sub t} = 0.44, we measure the single top quark production cross section: {sigma}(p{bar p} {yields} tb + X, tqb + X) = 4.8{sub -1.4}{sup +1.6} pb. This result has a p-value of 0.08%, corresponding to a 3.2 standard deviation Gaussian equivalent significance.

  3. Reduced matrix elements of summations of one-particle tensor products

    International Nuclear Information System (INIS)

    This adaptation is a generalization of the program SPINORBITWEIGHTS and calculates the reduced matrix elements of a general tensor operation wsup((kappak)q), which may be written as a sum of N one-particle tensor operators wsub(i)sup((kappak)q), as defined exactly by Armstrong and Feneuille. The operator wsup((kappak)q) is a spin x orbital tensor product with rank kappa in the spin space and rank k in the orbital space. The matrix elements will be calculated to the same basis set of configuration wave functions as described in the early code. With the use of this program any one-particle interaction in an N-electron atom, like multipole radiation or hyperfine structure interactions, may be calculated in a very efficient way. The program is restricted to configurations with any number of s-, p- and d-electrons, but no more than two electrons in any shell of higher orbital angular momentum. The wave functions are restricted to pure LS-coupling. (Auth.)

  4. TAUOLA of tau lepton decays-- framework for hadronic currens, matrix elements and anomalous decays

    CERN Document Server

    Chrzaszcz, M; Was, Z; Zaremba, J

    2016-01-01

    We present an update of the Monte Carlo event generator TAUOLA for tau lepton decays, with substantially increased list of decay channels and new initialization options. The core of the program remains written in FORTRAN but necessary arrangements have been made to allow handling of the user-provided hadronic currents and matrix elements at the execution time. Such solution may simplify preparation of new hadronic currents and may be useful for fitting to the experimental data as well. We have implemented as default for TAUOLA a set of hadronic currents, which is compatible with the default initialization used by BaBar collaboration. Options for currents available in previous releases are still stored in the code, sometimes left defunct or activated by internal flags only. The new version of the program, includes also implementation of Lepton Flavour Violating tau decays. Finally, we present, as an example, a set of C++ methods for handling user-provided currents, matrix elements or complete new decay channel...

  5. Top Quark Mass Measurement in the Lepton plus Jets Channel Using a Modified Matrix Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, J.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Alvarez Gonzalez, B.; /CSIC, Catalunya; Amerio, S.; /INFN, Padua; Amidei, D.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, A.; /Frascati; Antos, J.; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.

    2008-12-01

    The authors report a measurement of the top quark mass, m{sub t}, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector. They analyze a sample corresponding to an integrated luminosity of 1.9 rfb{sup -1}. They select events with an electron or muon, large missing transverse energy, and exactly four high-energy jets in the central region of the detector, at least one of which is tagged as coming from a b quark. They calculate a signal likelihood using a matrix element integration method, where the matrix element is modified by using effective propagators to take into account assumptions on event kinematics. The event likelihood is a function of m{sub t} and a parameter JES that determines in situ the calibration of the jet energies. They use a neural network discriminant to distinguish signal from background events. They also apply a cut on the peak value of each event likelihood curve to reduce the contribution of background and badly reconstructed events. Using the 318 events that pass all selection criteria, they find m{sub t} = 172.7 {+-} 1.8 (stat. + JES) {+-} 1.2(syst.) GeV/c{sup 2}.

  6. Overcoming Matrix Effects in a Complex Sample: Analysis of Multiple Elements in Multivitamins by Atomic Absorption Spectroscopy

    Science.gov (United States)

    Arnold, Randy J.; Arndt, Brett; Blaser, Emilia; Blosser, Chris; Caulton, Dana; Chung, Won Sog; Fiorenza, Garrett; Heath, Wyatt; Jacobs, Alex; Kahng, Eunice; Koh, Eun; Le, Thao; Mandla, Kyle; McCory, Chelsey; Newman, Laura; Pithadia, Amit; Reckelhoff, Anna; Rheinhardt, Joseph; Skljarevski, Sonja; Stuart, Jordyn; Taylor, Cassie; Thomas, Scott; Tse, Kyle; Wall, Rachel; Warkentien, Chad

    2011-01-01

    A multivitamin tablet and liquid are analyzed for the elements calcium, magnesium, iron, zinc, copper, and manganese using atomic absorption spectrometry. Linear calibration and standard addition are used for all elements except calcium, allowing for an estimate of the matrix effects encountered for this complex sample. Sample preparation using…

  7. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob; Schneider, Carsten [Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC); Bluemlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Wissbrock, Fabian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Reserach Inst. for Symbolic Computation (RISC)

    2014-02-15

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝a{sup N}, a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  8. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    International Nuclear Information System (INIS)

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version to the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∝30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N element of C. Integrals with a power-like divergence in N-space∝aN, a element of R, a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  9. Nucleon distribution amplitudes and proton decay matrix elements on the lattice

    International Nuclear Information System (INIS)

    Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present a calculation of the first few moments of the leading-twist nucleon DA within lattice QCD. In addition we deal with the normalization of the next-to-leading (twist-four) DAs. The matrix elements determining the latter quantities are also responsible for proton decay in grand unified theories. Our lattice evaluation makes use of gauge field configurations generated with two flavors of clover fermions. The relevant operators are renormalized nonperturbatively with the final results given in the MS scheme. We find that the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes claimed in the literature.

  10. Improved method for eliminating center-of-mass coordinates from matrix elements in oscillator basis

    International Nuclear Information System (INIS)

    This paper presents a concise, efficient method of reducing potential energy matrix elements to relative coordinates, when one is using an oscillator basis. It is especially suited to computer calculations. One nice feature of the method is its modular form, which allows a wide range of calculations. Separate FORTRAN subroutines have been written which calculate and store tables of the one-dimensional brackets of an equation that is presented and the single particle brackets from the isotropic to the axially symmetric oscillator equations. The tables are used by other subroutines which calculate the modified brackets and the brackets with spin. The methods developed here are a substantial improvement over what has been done heretofore, and open up new possibilities for performing nuclear structure calculations

  11. The gluonic operator matrix elements at O(α2s) for DIS heavy flavor production

    International Nuclear Information System (INIS)

    We calculate the O(α2s) gluonic operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q2 >> m2, up to the linear terms in the dimensional parameter ε, (D= 4 + ε). These quantities are required for the description of parton distribution functions in the variable flavor number scheme (VFNS). The O(α2sε) terms contribute at the level of the O(α3s) corrections through renormalization. We also comment on additional terms, which have to be considered in the fixed (FFNV) and variable flavor number scheme, adopting the MS scheme for the running coupling constant. (orig.)

  12. A light-scattering study of the scattering matrix elements of Arizona Road Dust

    International Nuclear Information System (INIS)

    We report measurements of the light scattering matrix elements of Arizona Road Dust, which has irregular shapes. Our experimental apparatus used photodiode arrays to detect scattered light simultaneously at many angles including small angles that are necessary for accurate characterization of large particles. The setup was calibrated with single slit diffraction and water droplet scattering. Guinier analysis yielded the dust particle size. Q-space analysis of the dust scattering yielded a comprehensive description of scattering in terms of power laws with quantifiable exponents. - Highlights: • The scattering apparatus detects light at 31 angles, 0.3–157°, simultaneously. • Three sizes of Arizona Road Dust are studied. • Guinier analysis characterizes the radii of gyration of the dusts. • Q-space analysis of dust scattered intensity reveals power laws with exponents

  13. Deformation and the Nuclear Matrix Elements of the Neutrinoless Double Beta Decay

    CERN Document Server

    Menendez, J; Caurier, E; Nowacki, F

    2008-01-01

    In this talk I will review the "state of the art" of the calculations of the nuclear matrix elements (NME) of the neutrinoless double beta decays for the nuclei 48Ca, 76Ge, 82Se, 124Sn, 128Te, 130Te and 136Xe in the framework of the Interacting Shell Model (ISM), and compare them with the NME's obtained using the Quasi-particle RPA approach (QRPA). I will also discuss the effect of the competition between the pairing and quadrupole correlations in the value of these NME's. In particular I will show that, as the difference in deformation between parent and grand daughter grows, the NME's of both the neutrinoless and the two neutrino modes decrease rapidly.

  14. Investigation of the E2 and E3 matrix elements in 200Hg using inelastic scattering

    Directory of Open Access Journals (Sweden)

    Rand E. T.

    2014-03-01

    Full Text Available A nuclear structure campaign has been initiated to investigate the isotopes of mercury near A = 199. Currently 199Hg provides the most stringent limit on an atomic electric dipole moment (EDM. The observation of a permanent EDM would represent a clear signal of CP violation from new physics beyond the Standard Model. Theoretical calculations for 199Hg are very difficult and give varied predictions for the excited-state spectrum. Understanding the E2 and E3 strengths in the neighbouring even-even isotopes of mercury will make it possible to develop a nuclear structure model for the Schiff strength based on these matrix elements, and thereby constrain present model predictions of the contribution of octupole collectivity to the Schiff moment of the nucleus.

  15. Nucleon distribution apmlitudes and proton decay matrix elements on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Vladimir M.; Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (GB). School of Physics] (and others)

    2008-11-15

    Baryon distribution amplitudes (DAs) are crucial for the theory of hard exclusive reactions. We present a calculation of the first few moments of the leading-twist nucleon DA within lattice QCD. In addition we deal with the normalization of the next-to-leading (twist-four) DAs. The matrix elements determining the latter quantities are also responsible for proton decay in Grand Unified Theories. Our lattice evaluation makes use of gauge field configurations generated with two flavors of clover fermions. The relevant operators are renormalized nonperturbatively with the final results given in the MS scheme. We find that the deviation of the leading-twist nucleon DA from its asymptotic form is less pronounced than sometimes claimed in the literature. (orig.)

  16. Two-loop massive operator matrix elements for unpolarized heavy flavor production to O({epsilon})

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, I.; Bluemlein, J.; Klein, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2008-02-15

    We calculate the O({alpha}{sup 2}{sub s}) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q{sup 2}>>m{sup 2}, up to the O({epsilon}) contributions. These terms contribute through the renormalization of the O({alpha}{sup 3}{sub s}) heavy flavor Wilson coefficients of the structure function F{sub 2}(x,Q{sup 2}). The calculation has been performed using light-cone expansion techniques without using the integration-by-parts method. We represent the individual Feynman diagrams by generalized hypergeometric structures, the {epsilon}-expansion of which leads to infinite sums depending on the Mellin variable N. These sums are finally expressed in terms of nested harmonic sums using the general summation techniques implemented in the Sigma package. (orig.)

  17. Calculating Three Loop Ladder and V-Topologies for Massive Operator Matrix Elements by Computer Algebra

    CERN Document Server

    Ablinger, J; Blümlein, J; De Freitas, A; von Manteuffel, A; Schneider, C

    2015-01-01

    Three loop ladder and $V$-topology diagrams contributing to the massive operator matrix element $A_{Qg}$ are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable $N$ and the dimensional parameter $\\varepsilon$. Given these representations, the desired Laurent series expansions in $\\varepsilon$ can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural ...

  18. HELAC-Onia: an automatic matrix element generator for heavy quarkonium physics

    CERN Document Server

    Shao, Hua-Sheng

    2013-01-01

    By the virtues of the Dyson-Schwinger equations, we upgrade the published code \\mtt{HELAC} to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub \\mtt{HELAC-Onia}. We rewrote the original \\mtt{HELAC} to make the new program be able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, \\mtt{HELAC-Onia} is also sufficiently numerical stable in dealing with P-wave quarkonia (e.g. $h_{c,b},\\chi_{c,b}$) and P-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.

  19. HELAC-Onia: An automatic matrix element generator for heavy quarkonium physics

    Science.gov (United States)

    Shao, Hua-Sheng

    2013-11-01

    By the virtues of the Dyson-Schwinger equations, we upgrade the published code HELAC to be capable to calculate the heavy quarkonium helicity amplitudes in the framework of NRQCD factorization, which we dub HELAC-Onia. We rewrote the original HELAC to make the new program be able to calculate helicity amplitudes of multi P-wave quarkonium states production at hadron colliders and electron-positron colliders by including new P-wave off-shell currents. Therefore, besides the high efficiencies in computation of multi-leg processes within the Standard Model, HELAC-Onia is also sufficiently numerical stable in dealing with P-wave quarkonia (e.g. h,χ) and P-wave color-octet intermediate states. To the best of our knowledge, it is a first general-purpose automatic quarkonium matrix elements generator based on recursion relations on the market.

  20. The multivariate Charlier polynomials as matrix elements of the Euclidean group representation on oscillator states

    International Nuclear Information System (INIS)

    A family of multivariate orthogonal polynomials generalizing the standard (univariate) Charlier polynomials is shown to arise in the matrix elements of the unitary representation of the Euclidean group E(d) on oscillator states. These polynomials in d discrete variables are orthogonal on the product of d Poisson distributions. The accent is put on the d = 2 case and the group theoretical setting is used to obtain the main properties of the polynomials: orthogonality and recurrence relations, difference equation, raising/lowering relations, generating function, hypergeometric and integral representations and explicit expression in terms of standard Charlier and Krawtchouk polynomials. The approach is seen to extend straightforwardly to an arbitrary number of variables. The contraction of SO(3) to E(2) is used to show that the bivariate Charlier polynomials correspond to a limit of the bivariate Krawtchouk polynomials. (paper)

  1. Two-loop massive operator matrix elements for unpolarized heavy flavor production to O(ε)

    International Nuclear Information System (INIS)

    We calculate the O(α2s) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q2>>m2, up to the O(ε) contributions. These terms contribute through the renormalization of the O(α3s) heavy flavor Wilson coefficients of the structure function F2(x,Q2). The calculation has been performed using light-cone expansion techniques without using the integration-by-parts method. We represent the individual Feynman diagrams by generalized hypergeometric structures, the ε-expansion of which leads to infinite sums depending on the Mellin variable N. These sums are finally expressed in terms of nested harmonic sums using the general summation techniques implemented in the Sigma package. (orig.)

  2. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless ββ Decays

    Science.gov (United States)

    Caurier, E.; Menéndez, J.; Nowacki, F.; Poves, A.

    2008-02-01

    We study in this Letter the neutrinoless double beta decay nuclear matrix elements (NME’s) in the framework of the interacting shell model. We analyze them in terms of the total angular momentum of the decaying neutron pair and as a function of the seniority truncations in the nuclear wave functions. This point of view turns out to be very adequate to gauge the accuracy of the NME’s predicted by different nuclear models. In addition, it gives back the protagonist role in this process to the pairing interaction, the one which is responsible for the very existence of double beta decay emitters. We show that low seniority approximations, comparable to those implicit in the quasiparticle RPA in a spherical basis, tend to overestimate the NME’s in several decays.

  3. The influence of pairing on the nuclear matrix elements of the neutrinoless double beta decays

    CERN Document Server

    Caurier, E; Nowacki, F; Poves, A

    2007-01-01

    We study in this letter the behavior of the neutrinoless double beta decay nuclear matrix elements (NME's) in the framework of the Interacting Shell Model. We analize them in terms of the total angular momentum of the decaying neutron pair and as a function of the seniority truncations in the nuclear wave functions. This point of view turns out to be very adequate to gauge the accuracy of the NME's predicted by different nuclear structure models. In addition, it gives back the due protagonism in this process to the pairing interaction, the interaction which is responsible for the very existence of double beta decay emitters. We show that low seniority approximations, such as the quasiparticle RPA in an spherical basis, tend to overestimate the values of the NME's.

  4. Energy density functional study of nuclear matrix elements for neutrinoless $\\beta\\beta$ decay

    CERN Document Server

    Rodríguez, Tomás R

    2010-01-01

    We present an extensive study of nuclear matrix elements (NME) for the neutrinoless double beta decay of the nuclei $^{48}$Ca, $^{76}$Ge, $^{82}$Se, $^{96}$Zr, $^{100}$Mo, $^{124}$Sn, $^{128}$Te, $^{130}$Te, $^{136}$Xe, and $^{150}$Nd based on state-of-the-art energy density functional methods using the Gogny D1S functional. Beyond mean-field effects are included within the generating coordinate method with particle number and angular momentum projection for both initial and final ground states. We obtain a rather constant value for the NME's around 4.7 with the exception of $^{48}$Ca and $^{150}$Nd, where smaller values are found. We analyze the role of deformation and pairing in the evaluation of the NME and present detailed results for the decay of $^{150}$Nd.

  5. Nuclear matrix elements in neutrinoless double beta decay: beyond mean-field covariant density functional theory

    CERN Document Server

    Yao, J M; Hagino, K; Ring, P; Meng, J

    2014-01-01

    We report a systematic study of nuclear matrix elements (NMEs) in neutrinoless double-beta decays with state-of-the-art beyond mean-field covariant density functional theory. The dynamic effects of particle-number and angular-momentum conservations as well as quadrupole shape fluctuations are taken into account with projections and generator coordinate method for both initial and final nuclei. The full relativistic transition operator is adopted to calculate the NMEs which are found to be consistent with the results of previous beyond non-relativistic mean-field calculation based on a Gogny force with the exception of $^{150}$Nd. Our study shows that the total NMEs can be well approximated by the pure axial-vector coupling term, the calculation of which is computationally much cheaper than that of full terms.

  6. Standard Model anatomy of WIMP dark matter direct detection II: QCD analysis and hadronic matrix elements

    CERN Document Server

    Hill, Richard J

    2014-01-01

    Models of Weakly Interacting Massive Particles (WIMPs) specified at the electroweak scale are systematically matched to effective theories at hadronic scales where WIMP-nucleus scattering observables are evaluated. Anomalous dimensions and heavy quark threshold matching conditions are computed for the complete basis of lowest-dimension effective operators involving quarks and gluons. The resulting QCD renormalization group evolution equations are solved. The status of relevant hadronic matrix elements is reviewed and phenomenological illustrations are given, including details for the computation of the universal limit of nucleon scattering with heavy $SU(2)_W\\times U(1)_Y$ charged WIMPs. Several cases of previously underestimated hadronic uncertainties are isolated. The results connect arbitrary models specified at the electroweak scale to a basis of $n_f=3$ flavor QCD operators. The complete basis of operators and Lorentz invariance constraints through order $v^2/c^2$ in the nonrelativistic nucleon effective...

  7. Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

    CERN Document Server

    ,

    2016-01-01

    We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

  8. An iterative parallel sparse matrix equation solver with application to finite element modeling of electromagnetic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Cwik, T.; Jamnejad, V.; Zuffada, C. [California Institute of Technology, Pasadena, CA (United States)

    1994-12-31

    The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.

  9. Nuclear-Structure Data Relevant to Neutinoless-Double-Beta-Decay Matrix Elements

    Science.gov (United States)

    Kay, Benjamin

    2015-10-01

    An observation of neutrinoless double beta decay is one of the most exciting prospects in contemporary physics. It follows that calculations of the nuclear matrix elements for this process are of high priority. The change in the wave functions between the initial and final states of the neutrinoless-double-beta-decay candidates 76Ge-->76Se, 100Mo-->100Ru, 130Te-->130Xe, and 136Xe-->136Ba have been studied with transfer reactions. The data are focused on the change in the occupancies of the valence orbitals in the ground states as two neutrons decay into two protons. The results set a strict constraint on any theoretical calculations describing this rearrangement and thus on the magnitude of the nuclear matrix elements for this process, which currently exhibit uncertainties at the factor of 2-4 level. Prior to these measurements there were limited experimental data were available A = 76 and 100 systems, and very limited data for the A = 130 and 136 systems, in a large part due to the gaseous Xe isotopes involved. The uncertainties on most of these data are estimated to range from 0.1-0.3 nucleons. The program started with the A = 76 system, with subsequent calculations, modified to reproduce the experimental occupancies, exhibiting a significant reduction in the discrepancy between various models. New data are available for the A = 100 , 130, and 136 systems. I review the program, making detailed comparisons between the latest theoretical calculations and the experimental data where available. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357.

  10. FRODO: a MuPAD program to calculate matrix elements between contracted wavefunctions

    Science.gov (United States)

    Angeli, C.; Cimiraglia, R.

    2005-09-01

    A symbolic program performing the Formal Reduction of Density Operators (FRODO) has been developed in the MuPAD computer algebra system with the purpose of evaluating the matrix elements of the electronic Hamiltonian between internally contracted functions in a complete active space (CAS) scheme. The program is illustrated making use of two meaningful examples. Program summaryTitle of program:FRODO Catalogue identifier:ADVY Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVY Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer:Any computer on which the MuPAD computer algebra system can be installed Operating systems under which the program has been tested:Linux Programming language used:MuPAD vs. 2.5.3 for Linux No. of lines in distributed program, including test data, etc.:3939 No. of bytes in distributed program, including test data, etc.:19 661 Distribution format:tar.gz Nature of physical problem: In order to improve on the CAS-SCF wavefunction one can resort to multireference perturbation theory or configuration interaction based on internally contracted functions (ICF) which are obtained by application of the excitation operators to the reference CAS-SCF wavefunction. The formulation of such matrix elements is quite cumbersome and a computer algebra system like MuPAD appears ideally suited to perform such a task. Method of solution: The method adopted consists in successively eliminating all occurrences of inactive orbital indices (core and virtual) from the products of excitation operators which appear in the definition of the ICF's and in the electronic Hamiltonian expressed in the second quantization formalism. Restrictions due to the complexity of the problem: The program is limited to no more than doubly excited ICF's.

  11. Measurement of the partial branching fraction for inclusive semileptonic B meson decays to light hadrons B → Xulv and an improved determination of the quark-mixing matrix element vertical stroke Vub

    International Nuclear Information System (INIS)

    This thesis presents an analysis of inclusive semileptonic B→ Xue anti νe decays using approximately 454 million Υ(4S)→B anti B decays collected during the years 1999 to 2008 with the BABAR detector. The electron energy, Ee, and the invariant mass squared of the electron-neutrino pair, q2, are reconstructed, where the neutrino kinematics is deduced from the decay products of both B mesons. The final hadronic state, Xu, consists of a sum of many hadronic channels, each of which contains at least one u quark. The variables q2 and Ee are then combined to compute the maximum kinematically allowed invariant mass squared of the hadronic system, shmax. Using these kinematic quantities, the partial branching fraction, ΔB(B → Xulv), unfolded for detector effects, is measured to be ΔB(Ee>2.0 GeV, shmax2) (3.33±0.18±0.21) x 10-4 in the Υ(4S) and ΔB(Ee>1.9 GeV, shmax2)= (4.57±0.24±0.32) x 10-4 in the B meson rest frames. The quoted errors are statistical and systematic, respectively. The CKM matrix element vertical stroke Vub vertical stroke is determined from the measured ΔB using theoretical calculation based on Heavy Quark Expansion. The result is vertical stroke Vub vertical stroke =(4.19±0.18-0.20-0.25+0.26+0.26) x 10-3, where the errors represent experimental uncertainties, uncertainties from HQE parameters and theoretical uncertainties, respectively. (orig.)

  12. Measurement of the CKM angle $\\gamma$ at LHCb

    CERN Multimedia

    Gersabeck, M

    2009-01-01

    The precise measurement of the CKM unitarity triangle angle $\\gamma$ is a key goal of the LHCb physics programme. The uncertainty on $\\gamma$, the currently least-well known of the three angles, will be reduced dramatically. Complementary measurements will be made in tree-level processes, and modes where loop diagrams play an important role. The tree-level measurements will cover time-integrated as well as time- dependent measurements in both the $B^0_d$ and the $B^0_s$ sectors. The ensemble of these measurements will provide a powerful test of whether new physics phases contribute to heavy-flavour transitions.

  13. Spin Density Matrix Elements in Exclusive Production of Omega Mesons at HERMES

    Science.gov (United States)

    Marukyan, Hrachya

    2016-02-01

    Exclusive electroproduction of ω mesons on unpolarized hydrogen and deuterium targets is studied at HERMES in the kinematic region of Q2 > 1.0GeV2, 3.0GeV < W < 6.3GeV, and ‑ t‧ < 0.2GeV2. The data were accumulated during the 1996-2007 running period using the 27.6GeV longitudinally polarized electron or positron beams at HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio shows that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are derived and presented in projections of Q2 or ‑ t‧. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse ω production by longitudinal and transverse virtual photons is determined for the first time. Good agreement is found between the HERMES proton data and results of a pQCD-inspired phenomenological model that includes pion-pole contributions.

  14. Estimate the Ranges of $\\rho$ and $\\eta$ only from the Kobayashi-Maskawa Matrix Elements of the First Two Generations

    CERN Document Server

    Liu, Y

    1998-01-01

    Based on the relation between weak CP phase and the other three mixing angles in Cabibbo-Kobayashi-Maskawa matrix postulated by us before, the ranges of rho and eta have been estimated by using the best known two KM matrix elements Vud and Vcd (or Vus). It is found that, the upper limit on eta is about 0.008 which is consistent with that estimated by Wolfenstein more than ten years ago but far small than the present popular estimation.

  15. Heavy-ion double charge exchange reactions: a tool towards 0v\\b{eta}\\b{eta} nuclear matrix elements

    CERN Document Server

    Cappuzzello, F; Agodi, C; Bond`ı, M; Carbone, D; Cunsolo, A; Foti, A

    2015-01-01

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial and final state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0+ --> 0+ transition to 40Args, at least at very forward angles.

  16. Heavy-ion double charge exchange reactions: A tool toward 0 νββ nuclear matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Cappuzzello, F.; Bondi, M. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Laboratori Nazionali del Sud, Catania (Italy); Cavallaro, M.; Agodi, C.; Carbone, D.; Cunsolo, A. [INFN, Laboratori Nazionali del Sud, Catania (Italy); Foti, A. [Universita di Catania, Dipartimento di Fisica e Astronomia, Catania (Italy); INFN, Sezione di Catania, Catania (Italy)

    2015-11-15

    The knowledge of the nuclear matrix elements for the neutrinoless double beta decay is fundamental for neutrino physics. In this paper, an innovative technique to extract information on the nuclear matrix elements by measuring the cross section of a double charge exchange nuclear reaction is proposed. The basic point is that the initial- and final-state wave functions in the two processes are the same and the transition operators are similar. The double charge exchange cross sections can be factorized in a nuclear structure term containing the matrix elements and a nuclear reaction factor. First pioneering experimental results for the {sup 40}Ca({sup 18}O,{sup 18}Ne){sup 40}Ar reaction at 270 MeV incident energy show that such cross section factorization reasonably holds for the crucial 0{sup +} → 0{sup +} transition to {sup 40}Ar{sub gs}, at least at very forward angles. (orig.)

  17. Architecture Design of Trigger and DAQ System for Fermilab CKM Experiment

    Institute of Scientific and Technical Information of China (English)

    JinyuanWU

    2001-01-01

    The Fermilab CKM (E921) experiment studies a rare kaon decay which has a very small branching ratio and can be very hard to separate from background processes.A trigger and DAQ system is required to collecto all necessary unformation for background rejection and to maintain high reliability at high beam rate.The unique challenges have emphasized the following guiding concepts:(1) Collecting background is as important as collecting good events.(2) A DAQ "event" should not be just a "snap shot" of the detector.It should be a short history record of the detector around the candidate event. The hit history provides information to understand temporary detector blindness,which is extremely important to the CKM experiment.(3) The main purpose of the trigger system should not be "knocking down trigger rate" or "throwing out garbage events" .Instead,it should classify the events and select appropriate data collecting straegies among various predefined ones for the given types of the events.The following methodologies are epmployed in the architecture to fulfill the experiment requirements without confronting unnecessary technical difficulties.(1) Continuous digitization near the detector elements is utilized to preserve the data quality.(2) The concept of minimum synchronization is adopted to eliminate the needs of time matching signal paths.(3) A global level 1 trigger performs coincident and veto functions using digital timing information to avoid problems due to signal degrading in long calbes.(4) The DAQ logic allows to collect chronicle records around the interesting events with different levels of detail of ADC information,so that very low energy particles in the veto systems can be best detected.(5) A re-programmable hardware trigger(L2.5)and a software trigger(L3) sitting in the DAQ stream are planned to perform data selection functioins based on full detector data with adjustability.

  18. Energy and energy gradient matrix elements with N-particle explicitly correlated complex Gaussian basis functions with L=1.

    Science.gov (United States)

    Bubin, Sergiy; Adamowicz, Ludwik

    2008-03-21

    In this work we consider explicitly correlated complex Gaussian basis functions for expanding the wave function of an N-particle system with the L=1 total orbital angular momentum. We derive analytical expressions for various matrix elements with these basis functions including the overlap, kinetic energy, and potential energy (Coulomb interaction) matrix elements, as well as matrix elements of other quantities. The derivatives of the overlap, kinetic, and potential energy integrals with respect to the Gaussian exponential parameters are also derived and used to calculate the energy gradient. All the derivations are performed using the formalism of the matrix differential calculus that facilitates a way of expressing the integrals in an elegant matrix form, which is convenient for the theoretical analysis and the computer implementation. The new method is tested in calculations of two systems: the lowest P state of the beryllium atom and the bound P state of the positronium molecule (with the negative parity). Both calculations yielded new, lowest-to-date, variational upper bounds, while the number of basis functions used was significantly smaller than in previous studies. It was possible to accomplish this due to the use of the analytic energy gradient in the minimization of the variational energy. PMID:18361554

  19. High Energy WW Scattering at the LHC with the Matrix Element Method

    CERN Document Server

    Freitas, A

    2013-01-01

    Perhaps the most important question in particle physics today is whether the boson with mass near 125 GeV discovered at the Large Hadron Collider (LHC) is the Higgs Boson of the Standard Model. Since a particularly important property of the Standard Model Higgs is its role in unitarizing longitudinal WW scattering, we study the ability of the LHC to probe this process in the case of same-sign W pair production. We find that the use of the Matrix Element Method increases the significance with which the Higgs sector can be probed in this channel. In particular, it allows one to distinguish between a light and heavy SM Higgs in this channel alone with a high degree of significance, as well as to set important limits in the parameter space of the Two Higgs Doublet Model and the Strongly-Interacting Light Higgs Model with less than 200/fb at the 14-TeV LHC, thus providing crucial information about the putative Higgs boson's role in electroweak symmetry breaking.

  20. Improving NLO-parton shower matched simulations with higher order matrix elements

    CERN Document Server

    Hamilton, Keith

    2010-01-01

    In recent times the algorithms for the simulation of hadronic collisions have been subject to two substantial improvements: the inclusion, within parton showering, of exact higher order tree level matrix elements (MEPS) and, separately, next-to-leading order corrections (NLOPS). In this work we examine the key criteria to be met in merging the two approaches in such a way that the accuracy of both is preserved, in the framework of the POWHEG approach to NLOPS. We then ask to what extent these requirements may be fulfilled using existing simulations, without modifications. The result of this study is a pragmatic proposal for merging MEPS and NLOPS events to yield much improved MENLOPS event samples. We apply this method to W boson and top quark pair production. In both cases results for distributions within the remit of the NLO calculations exhibit no discernible changes with respect to the pure NLOPS prediction; conversely, those sensitive to the distribution of multiple hard jets assume, exactly, the form of...

  1. A measurement of the top quark mass with a matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, Adam Paul; /UC, Berkeley

    2006-12-01

    The authors present a measurement of the mass of the top quark. The event sample is selected from proton-antiproton collisions, at 1.96 TeV center-of-mass energy, observed with the CDF detector at Fermilab's Tevatron. They consider a 318 pb{sup -1} dataset collected between March 2002 and August 2004. They select events that contain one energetic lepton, large missing transverse energy, exactly four energetic jets, and at least one displaced vertex b tag. The analysis uses leading-order t{bar t} and background matrix elements along with parameterized parton showering to construct event-by-event likelihoods as a function of top quark mass. From the 63 events observed with the 318 pb{sup -1} dataset they extract a top quark mass of 172.0 {+-} 2.6(stat) {+-} 3.3(syst) GeV/c{sup 2} from the joint likelihood. The mean expected statistical uncertainty is 3.2 GeV/c{sup 2} for m{sub t} = 178 GTeV/c{sup 2} and 3.1 GeV/c{sup 2} for m{sub t} = 172.5 GeV/c{sup 2}. The systematic error is dominated by the uncertainty of the jet energy scale.

  2. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    International Nuclear Information System (INIS)

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  3. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    Science.gov (United States)

    Ablinger, J.; Behring, A.; Blümlein, J.; De Freitas, A.; von Manteuffel, A.; Schneider, C.

    2016-05-01

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element AQg are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  4. Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, Jakob [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Blümlein, Johannes; Raab, Clemens [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, Carsten [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Wißbrock, Fabian [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2014-08-15

    We calculate convergent 3-loop Feynman diagrams containing a single massive loop equipped with twist τ=2 local operator insertions corresponding to spin N. They contribute to the massive operator matrix elements in QCD describing the massive Wilson coefficients for deep-inelastic scattering at large virtualities. Diagrams of this kind can be computed using an extended version of the method of hyperlogarithms, originally being designed for massless Feynman diagrams without operators. The method is applied to Benz- and V-type graphs, belonging to the genuine 3-loop topologies. In case of the V-type graphs with five massive propagators, new types of nested sums and iterated integrals emerge. The sums are given in terms of finite binomially and inverse binomially weighted generalized cyclotomic sums, while the 1-dimensionally iterated integrals are based on a set of ∼30 square-root valued letters. We also derive the asymptotic representations of the nested sums and present the solution for N∈C. Integrals with a power-like divergence in N-space ∝a{sup N},a∈R,a>1, for large values of N emerge. They still possess a representation in x-space, which is given in terms of root-valued iterated integrals in the present case. The method of hyperlogarithms is also used to calculate higher moments for crossed box graphs with different operator insertions.

  5. Investigation of Product Performance of Al-Metal Matrix Composites Brake Disc using Finite Element Analysis

    Science.gov (United States)

    Fatchurrohman, N.; Marini, C. D.; Suraya, S.; Iqbal, AKM Asif

    2016-02-01

    The increasing demand of fuel efficiency and light weight components in automobile sectors have led to the development of advanced material parts with improved performance. A specific class of MMCs which has gained a lot of attention due to its potential is aluminium metal matrix composites (Al-MMCs). Product performance investigation of Al- MMCs is presented in this article, where an Al-MMCs brake disc is analyzed using finite element analysis. The objective is to identify the potentiality of replacing the conventional iron brake disc with Al-MMCs brake disc. The simulation results suggested that the MMCs brake disc provided better thermal and mechanical performance as compared to the conventional cast iron brake disc. Although, the Al-MMCs brake disc dissipated higher maximum temperature compared to cast iron brake disc's maximum temperature. The Al-MMCs brake disc showed a well distributed temperature than the cast iron brake disc. The high temperature developed at the ring of the disc and heat was dissipated in circumferential direction. Moreover, better thermal dissipation and conduction at brake disc rotor surface played a major influence on the stress. As a comparison, the maximum stress and strain of Al-MMCs brake disc was lower than that induced on the cast iron brake disc.

  6. Fermi nuclear matrix element of allowed isospin-hindered positron decay of /sup 56/Co

    International Nuclear Information System (INIS)

    The experimental measurement of the asymmetry parameter of the β+ decay from the 4+ ground state of /sup 56/Co to the 2.085 MeV 4+ state of /sup 56/Fe not only yields a value for the Fermi nuclear matrix element M/sub F/, but also has significant Fermi-Gamow-Teller mixing and is of interest for a time-reversal invariance test of the weak interaction. To date, nine such measurements have been made and the values of the M/sub F/ fall into two groups: M/sub F/∼10/sup -5/ and M/sub F/∼(3--5) x 10/sup -4/. Our theoretical calculation using the Nilsson model and a one-body spheroidal Coulomb potential yields M/sub F/ = 2.3 x 10/sup -4/ for β = 0.1 and M/sub F/ = 6 x 10/sup -4/ for β = 0.2, which are in reasonable agreement with the experimental values of M/sub F/∼(3--5) x 10/sup -4/

  7. Automated evaluation of matrix elements between contracted wavefunctions: A Mathematica version of the FRODO program

    Science.gov (United States)

    Angeli, C.; Cimiraglia, R.

    2013-02-01

    A symbolic program performing the Formal Reduction of Density Operators (FRODO), formerly developed in the MuPAD computer algebra system with the purpose of evaluating the matrix elements of the electronic Hamiltonian between internally contracted functions in a complete active space (CAS) scheme, has been rewritten in Mathematica. New version : A program summaryProgram title: FRODO Catalogue identifier: ADV Y _v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVY_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 3878 No. of bytes in distributed program, including test data, etc.: 170729 Distribution format: tar.gz Programming language: Mathematica Computer: Any computer on which the Mathematica computer algebra system can be installed Operating system: Linux Classification: 5 Catalogue identifier of previous version: ADV Y _v1_0 Journal reference of previous version: Comput. Phys. Comm. 171(2005)63 Does the new version supersede the previous version?: No Nature of problem. In order to improve on the CAS-SCF wavefunction one can resort to multireference perturbation theory or configuration interaction based on internally contracted functions (ICFs) which are obtained by application of the excitation operators to the reference CAS-SCF wavefunction. The previous formulation of such matrix elements in the MuPAD computer algebra system, has been rewritten using Mathematica. Solution method: The method adopted consists in successively eliminating all occurrences of inactive orbital indices (core and virtual) from the products of excitation operators which appear in the definition of the ICFs and in the electronic Hamiltonian expressed in the second quantization formalism. Reasons for new version: Some years ago we published in this journal a couple of papers [1, 2

  8. Matrix elements of the electromagnetic operator between kaon and pion states

    CERN Document Server

    Baum, I; Lubicz, V; Simula, S

    2010-01-01

    We compute the matrix elements of the electromagnetic (EM) operator between kaon and pion states, using lattice QCD with maximally twisted-mass fermions and two flavors of dynamical quarks (Nf = 2). The EM operator is renormalized non-perturbatively in the RI'/MOM scheme and our simulations cover pion masses as light as 260 MeV and three values of the lattice spacing, ranging from ~ 0.07 up to ~ 0.1 fm. At the physical point our preliminary result for the K -> pion tensor form factor at zero-momentum transfer is fT[K\\pi](0) = 0.42(2_stat), which differs significantly from the old quenched result fT[K\\pi](0) = 0.78(6) obtained by the SPQcdR Collaboration with pion masses above 500 MeV. We investigate the source of this difference and conclude that it is mainly related to the chiral extrapolation of the quenched data. For the case of the tensor charge of the pion we obtain the preliminary value fT[\\pi\\pi](0) = 0.200(14_stat), which can be compared with the result fT[\\pi\\pi](0) = 0.216(34) obtained at Nf = 2 by ...

  9. Matrix Elements of One-body and Two-body Operators Between Arbitrary HFB Multi-quasiparticle States

    Institute of Scientific and Technical Information of China (English)

    HU; Qing-li; GAO; Zao-chun; CHEN; Yong-shou

    2013-01-01

    Efficient evaluations of the overlaps and the matrix elements of the Hamiltonian between HFB states are basic blocks to establish post-HFB calculations.Since 2009,Pfaffian has been applied to express the overlaps between two arbitrary HFB states to avoid the combinatorial explosion and the sign ambiguity.

  10. Elastic modulus of biopolymer matrix in nacre measured using coupled atomic force microscopy bending and inverse finite element techniques

    International Nuclear Information System (INIS)

    A novel approach combining the atomic force microscopy probing of nacre biopolymer strand and the inverse finite element analysis has been used to directly measure the elastic modulus of nacre biopolymer matrix. An elastic modulus of 11 ± 3 GPa was determined for the first time from the direct measurement of the nacre biopolymer matrix. This property is essential for a fundamental understanding of the roles that the biopolymer matrix plays in nacre's strengthening and toughening, and provides guidelines in selecting engineering polymers for biomimetic materials design and fabrication. Such coupled experimental and modeling techniques should find more applications in studying the mechanical behavior of biological materials. Highlights: → Modulus of nacre biopolymer was directly measured using AFM and inverse FEM. → An elastic modulus of 10.57 ± 2.56 GPa was determined for nacre biopolymer matrix. → New approach developed in this study is useful for testing of biological materials.

  11. Measurement of branching fractions of B decays to K1(1270)π and K1(1400)π and determination of the CKM angle α from B0→ a1(1260)± π

    Energy Technology Data Exchange (ETDEWEB)

    Stracka, Simone [Univ. of Milan (Italy)

    2011-02-01

    In the Standard Model, CP violation in weak interactions involving quarks is parameterized by an irreducible complex phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark-mixing-matrix. The precise determination of the CKM elements is a necessary ingredient for a stringent test of the Standard Model predictions, and is a crucial input for reducing the theoretical error in many New Physics searches with flavor, e.g., in the kaon sector. The unitarity of the CKM matrix is typically expressed as a triangle relationship among its parameters, where the area of the so-called Unitarity Triangle visually depicts the amount of asymmetry between the decays of B particles and their antimatter counterparts. In the past few years, the BABAR and Belle experiments have been able to measure all three angles of the triangle from CP asymmetry measurements. The first asymmetry measurements in B particle decays, about ten years ago, allowed to determine β, which is now known to better than 5% precision. The angles α and γ, measured in much rarer processes, required several years of data taking before analyses could yield reliable answers. A remarkable feature is that the direct measurement of the angles of the Unitarity Triangle generates an area that is consistent with the area predicted by measurement of the sides. In this thesis we have presented the branching fraction measurements of charged and neutral B meson decays to K1(1270)π and K1(1400)π, obtained from a data sample of 454 million Υ(4S) → B$\\bar{B}$ events. This analysis is particularly challenging from the experimental side since the branching fractions involved are very low, at the level of 10-6 - 10-7, and the signal is characterized by the simultaneous presence of two overlapping resonances, which exhibit sizeable interference effects. The combined K1(1270)π and K1(1400)π signal is therefore modeled with a K-matrix formalism, which accounts for

  12. Higgs Mass Constraints on a Fourth Family: Upper and Lower Limits on CKM Mixing

    Energy Technology Data Exchange (ETDEWEB)

    Chanowitz, Michael S.

    2010-06-25

    Theoretical and experimental limits on the Higgs boson mass restrict CKM mixing of a possible fourth family beyond the constraints previously obtained from precision electroweak data alone. Existing experimental and theoretical bounds on m{sub H} already significantly restrict the allowed parameter space. Zero CKM mixing is excluded and mixing of order {theta}{sub Cabbibo} is allowed. Upper and lower limits on 3-4 CKM mixing are exhibited as a function of m{sub H}. We use the default inputs of the Electroweak Working Group and also explore the sensitivity of both the three and four family fits to alternative inputs.

  13. Constrained positive matrix factorization: Elemental ratios, spatial distinction, and chemical transport model source contributions

    Science.gov (United States)

    Sturtz, Timothy M.

    Source apportionment models attempt to untangle the relationship between pollution sources and the impacts at downwind receptors. Two frameworks of source apportionment models exist: source-oriented and receptor-oriented. Source based apportionment models use presumed emissions and atmospheric processes to estimate the downwind source contributions. Conversely, receptor based models leverage speciated concentration data from downwind receptors and apply statistical methods to predict source contributions. Integration of both source-oriented and receptor-oriented models could lead to a better understanding of the implications sources have on the environment and society. The research presented here investigated three different types of constraints applied to the Positive Matrix Factorization (PMF) receptor model within the framework of the Multilinear Engine (ME-2): element ratio constraints, spatial separation constraints, and chemical transport model (CTM) source attribution constraints. PM10-2.5 mass and trace element concentrations were measured in Winston-Salem, Chicago, and St. Paul at up to 60 sites per city during two different seasons in 2010. PMF was used to explore the underlying sources of variability. Information on previously reported PM10-2.5 tire and brake wear profiles were used to constrain these features in PMF by prior specification of selected species ratios. We also modified PMF to allow for combining the measurements from all three cities into a single model while preserving city-specific soil features. Relatively minor differences were observed between model predictions with and without the prior ratio constraints, increasing confidence in our ability to identify separate brake wear and tire wear features. Using separate data, source contributions to total fine particle carbon predicted by a CTM were incorporated into the PMF receptor model to form a receptor-oriented hybrid model. The level of influence of the CTM versus traditional PMF was

  14. Calculating three loop ladder and V-topologies for massive operator matrix elements by computer algebra

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). Inst. fuer Physik

    2015-09-15

    Three loop ladder and V-topology diagrams contributing to the massive operator matrix element A{sub Qg} are calculated. The corresponding objects can all be expressed in terms of nested sums and recurrences depending on the Mellin variable N and the dimensional parameter ε. Given these representations, the desired Laurent series expansions in ε can be obtained with the help of our computer algebra toolbox. Here we rely on generalized hypergeometric functions and Mellin-Barnes representations, on difference ring algorithms for symbolic summation, on an optimized version of the multivariate Almkvist-Zeilberger algorithm for symbolic integration, and on new methods to calculate Laurent series solutions of coupled systems of differential equations. The solutions can be computed for general coefficient matrices directly for any basis also performing the expansion in the dimensional parameter in case it is expressible in terms of indefinite nested product-sum expressions. This structural result is based on new results of our difference ring theory. In the cases discussed we deal with iterative sum- and integral-solutions over general alphabets. The final results are expressed in terms of special sums, forming quasi-shuffle algebras, such as nested harmonic sums, generalized harmonic sums, and nested binomially weighted (cyclotomic) sums. Analytic continuations to complex values of N are possible through the recursion relations obeyed by these quantities and their analytic asymptotic expansions. The latter lead to a host of new constants beyond the multiple zeta values, the infinite generalized harmonic and cyclotomic sums in the case of V-topologies.

  15. Rovibrational matrix elements of the multipole moments and of the polarizability of the H2 molecule in the solid phase: Effect of intermolecular potential

    Indian Academy of Sciences (India)

    Adya Prasad Mishra; T K Balasubramanian

    2001-10-01

    Rovibrational matrix elements of the multipole moments ℓ up to rank 10 and of the linear polarizability of the H2 molecule in the condensed phase have been computed taking into account the effect of the intermolecular potential. Comparison with gas phase matrix elements shows that the effect of solid state interactions is marginal.

  16. Two-loop massive fermionic operator matrix elements and intial state QED corrections to e{sup +}e{sup -}{yields}{gamma}{sup *}/Z{sup *}

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)]|[Universidad Simon Bolivar, Caracas (Venezuela). Dept. de Fisica; Neerven, W. van [Leiden Univ. (Netherlands). Lorentz Institute

    2008-12-15

    We describe the calculation of the two-loop massive operator matrix elements for massive external fermions. These matrix elements are needed for the calculation of the O({alpha}{sup 2}) initial state radiative corrections to e{sup +}e{sup -} annihilation into a neutral virtual gauge boson, based on the renormalization group technique. (orig.)

  17. Uncertainties in neutrinoless $\\beta \\beta $ decay transition matrix elements within mechanisms involving light Majorana neutrinos, classical Majorons and sterile neutrinos

    CERN Document Server

    Rath, P K; Chaturvedi, K; Lohani, P; Raina, P K; Hirsch, J G

    2013-01-01

    In the PHFB model, uncertainties in the nuclear transition matrix elements for the neutrinoless double-$\\beta $ decay of $\\ ^{94,96}$Zr, $^{98,100}$Mo, $^{104}$Ru, $^{110}$Pd, $^{128,130}$Te and $^{150}$Nd isotopes within mechanisms involving light Majorana neutrinos, classical Majorons and sterile neutrinos are statistically estimated by considering sets of sixteen (twenty-four) matrix elements calculated with four different parametrization of the pairing plus multipolar type of effective two-body interaction, two sets of form factors and two (three) different parameterizations of Jastrow type of short range correlations. In the mechanisms involving the light Majorana neutrinos and classical Majorons, the maximum uncertainty is about 15% and in the scenario of sterile neutrinos, it varies in between approximately 4 (9)%--20 (36)% without(with) Jastrow short range correlations with Miller-Spencer parametrization, depending on the considered mass of the sterile neutrinos.

  18. Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime

    CERN Document Server

    Whiting, Daniel J; Adams, Charles S; Hughes, Ifan G

    2016-01-01

    Applying large magnetic fields to gain access to the hyperfine Paschen-Back regime can isolate three-level systems in a hot alkali metal vapors, thereby simplifying usually complex atom-light interactions. We use this method to make the first direct measurement of the $|\\langle\\mathrm{5P}| er||\\mathrm{5D}\\rangle|$ matrix element in $^{87}$Rb. An analytic model with only three-levels accurately models the experimental electromagnetically induced transparency spectra and extracted Rabi-frequencies are used to determine the dipole matrix element. We measure $|\\langle\\mathrm{5P}_{3/2}|er||\\mathrm{5D}_{5/2}\\rangle| = (2.290\\pm0.002_{\\rm stat}\\pm0.05_{\\rm syst})~ea_{0}$ which is in excellent agreement with the theoretical calculations of Safronova, Williams and Clark, Phys. Rev. A 69(2), 022509 (2004).

  19. The change of picture in approximate relativistic theories: Matrix elements of rq in the quantum-defect approximation

    International Nuclear Information System (INIS)

    The so-called change of picture for operators that arise in approximate two- and one-component relativistic theories is investigated in the framework of the phenomenological and supersymmetry-based quantum-defect approaches. Using the Su transformation that brings the radial wave equations of the Dirac-Coulomb problem into a form nearly identical to those of Schroedinger and Klein-Gordon like equations, we derive the Dirac representative of the nonrelativistic position operator r. A new transition operator that accounts for initial and final states of the active electron is proposed. The recurrence relations obtained previously and applied efficiently to compute diagonal and off-diagonal matrix elements are rederived accordingly. Numerical results for matrix elements of rq between states of the one-electron alkali-like atomic systems exhibit the general trends related to the picture change correction to atomic characteristics. (author)

  20. The nuclear matrix elements of double beta decay in Pseudo-SU(4) model

    International Nuclear Information System (INIS)

    Due to the importance in determining the neutrino mass, the study of the neutrinoless double beta decay (ουββ) has gained much attention in recent years. In the perspective of nuclear structure the focus is the calculation of the nuclear matrix elements (NME) of the relevant nuclei. One way to tackle the problem is to study the NME of the corresponding 2υββ. To this end, various models are explored, i.e. the Interacting Shell Model, the Interacting Boson Model, etc. This work intends to calculate the NME of the 2υββ decay 76Ge→76 Se in the framework of the pseudo-SU(4) x pseudo-SU(6) model, since the concept of pseudo-orbit and pseudo-spin describes well the strong mixing among the p 1/2 -p 3/2 -f 5/2 (or the fds) orbits. The shell model space of the two nuclei is decomposed into fds- and g-subshell. While for the g-subshell the seniority zero restriction applies [4], in the ~ ds subshell the gSU(3) symmetry dominates, which reflects the strong interaction between proton- and neutron-sector. For the nuclei 76Ge and 76Se, the experimental occupation numbers of different orbits provide constraints to the configurations (N N and [M M ] in the g- and the fds-subshell, respectively. In the g-subshell it is reasonable to restrict the configuration to (n1, n2) with n1 = 0, 2 and n2 = 4, 6, 8, respectively for both nuclei. The corresponding configurations in the fds-subshell are [(4-n1), (16-n2)] for 76Ge and [(6-n1), (14-n2)] for 76Se, respectively. Through an algebraic analysis of the gSU(4) x gSU(6) model, taking into account the seniority-zero restriction for g-subshell, the two beta decays happen only either within the g-subshell or in the fds-subshell. Therefore there exist only two types of transition, i.e. (n1, n2) ! ((n1 + 2), (n2 - 2)), or [m1,m2] ! [(m1 + 2), (m2 - 2)]. This feature greatly simplifies the calculation of NME of the 2υββ. The amplitudes of the configurations are determined by fitting the nuclear properties of the two nuclei and then

  1. Analysis of the influence of external magnetic field on transition matrix elements in quantum well and quantum cascade laser structures

    Science.gov (United States)

    Demić, Aleksandar; Radovanović, Jelena; Milanović, Vitomir

    2016-08-01

    We present a method for modeling nonparabolicity effects (NPE) in quantum nanostructures in presence of external electric and magnetic field by using second order perturbation theory. The method is applied to analysis of quantum well structure and active region of a quantum cascade laser (QCL). This model will allow us to examine the influence of magnetic field on dipole matrix element in QCL structures, which will provide a better insight to how NPE can affect the gain of QCL structures.

  2. The logarithmic contributions to the asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering

    Science.gov (United States)

    Behring, A.; Bierenbaum, I.; Blümlein, J.; De Freitas, A.; Klein, S.; Wißbrock, F.

    2014-09-01

    We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region $Q^2 \\gg m^2$ to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given both in Mellin-$N$ space and $z$-space.

  3. The transition matrix element Agq(N) of the variable flavor number scheme at O(αs3)

    Science.gov (United States)

    Ablinger, J.; Blümlein, J.; De Freitas, A.; Hasselhuhn, A.; von Manteuffel, A.; Round, M.; Schneider, C.; Wißbrock, F.

    2014-05-01

    We calculate the massive unpolarized operator matrix element Agq(3)(N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(αs3). A first independent recalculation is performed for the contributions ∝NF of the 3-loop anomalous dimension γgq(2)(N).

  4. The Transition Matrix Element A_{gq}(N) of the Variable Flavor Number Scheme at O(\\alpha_s^3)

    CERN Document Server

    Ablinger, J; De Freitas, A; Hasselhuhn, A; von Manteuffel, A; Schneider, M Round C; Wissbrock, F

    2014-01-01

    We calculate the massive operator matrix element $A_{gq}^{(3)}(N)$ to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable $N$. This is the first complete transition function needed in the variable flavor number scheme obtained at $O(\\alpha_s^3)$. A first independent recalculation is performed for the contributions $\\propto N_F$ of the 3-loop anomalous dimension $\\gamma_{gq}^{(2)}(N)$.

  5. Tables of one body transition density matrix elements for excitation of select states in 14N and 16O

    International Nuclear Information System (INIS)

    One body density matrix elements (OBDME) for select transitions from the ground to excited states in 14N and 16O have been obtained from shell model calculations made using complete (0 + 2) ℎω and (0 + 2 + 4)ℎω shell model spaces. These OBDME are presented in a form suitable for use in analyses of elastic and inelastic electron and proton scattering data. 12 refs., 12 tabs

  6. On the evaluation of the U(3) content of the matrix elements of one-and two-body operators

    International Nuclear Information System (INIS)

    An expression for the U(3) content of the matrix elements of one- and two-body operators in Elliott's basis is obtained. Three alternative ways of evaluating this content with increasing performance in computing time are presented. All of them allow an exact representation of that content in terms of integers, avoiding rounding errors in the computer codes. The role of dual bases in dealing with non-orthogonal bases is also clarified. (author)

  7. Wigner Function:from Ensemble Average of Density Operator to Its One Matrix Element in Entangled Pure States

    Institute of Scientific and Technical Information of China (English)

    FAN Hong-Yi

    2002-01-01

    We show that the Wigner function W = Tr(△ρ) (an ensemble average of the density operator ρ, △ is theWigner operator) can be expressed as a matrix element of ρ in the entangled pure states. In doing so, converting fromquantum master equations to time-evolution equation of the Wigner functions seems direct and concise. The entangledstates are defined in the enlarged Fock space with a fictitious freedom.

  8. Wigner Function:from Ensemble Average of Density Operator to Its Matrix Element in Entangled Pure States

    Institute of Scientific and Technical Information of China (English)

    FANHong-Yi

    2002-01-01

    We show that the Wigner function W=Tr(Δρ)( an ensemble average of the density operator ρ,Δis the Wigner operator) can be expressed as a matrix element of ρ in the entangled pure states.In doing so,converting from quantum master equations to time-evolution equation of the Wigner functions seems direct and concise,The entangled states are defined in the enlarged Fock space with a fictitious freedom.

  9. A novel approach for computing glueball masses and matrix elements in Yang-Mills theories on the lattice

    OpenAIRE

    Della Morte, Michele; Giusti, Leonardo

    2010-01-01

    We make use of the global symmetries of the Yang-Mills theory on the lattice to design a new computational strategy for extracting glueball masses and matrix elements which achieves an exponential reduction of the statistical error with respect to standard techniques. By generalizing our previous work on the parity symmetry, the partition function of the theory is decomposed into a sum of path integrals each giving the contribution from multiplets of states with fixed quantum numbers associat...

  10. Analysis of dipole matrix element in quantum well and quantum cascade laser under the influence of external magnetic field

    Directory of Open Access Journals (Sweden)

    Demić Aleksandar

    2016-01-01

    Full Text Available We present a method for modeling nonparabolicity effects (NPE in quantum nanostructures by using second order perturbation theory. We will analyze application of this model on a quantum well without external electric field and a quantum cascade laser (QCL. This model will allow us to examine the influence of magnetic field on dipole matrix element in QCL structures which will give better insight how NPE can disrupt gain of QCL structures. [Projekat Ministarstva nauke Republike Srbije, br. III45010

  11. The transition matrix element Agq(N) of the variable flavor number scheme at O(α3s)

    OpenAIRE

    Ablinger, J.Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz, Austria; Blümlein, J.; Freitas, A; Hasselhuhn, A.(Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, Linz, A-4040, Austria); von Manteuffel, A.; Round, M.; Schneider, C; Wißbrock, F.

    2014-01-01

    We calculate the massive unpolarized operator matrix element A(3)gq(N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N . This is the first complete transition function needed in the variable flavor number scheme obtained at O(α3s) . A first independent recalculation is performed for the contributions ∝NF of the 3-loop anomalous dimension γ(2)gq(N) .

  12. Elementary interaction matrix elements for FP∞N-BN generalized Fourier transform method in anisotropic neutron transport

    International Nuclear Information System (INIS)

    Exhaustive treatment is presented for the analytical and numerical evaluation of elementary spatial and angular interaction matrix elements arising in transport problems with anisotropic scattering when plane and spherical geometries in order. Their use concern mainly projected FP∞N-BN Fourier generalized transform method adopted to face anisotropic scattering neutron transport in spectral calculation for fast reactors and in multilayer plane systems for shielding problems. Their application extend to radioactive transfer and to high energy charged particles sputtering problems

  13. Heavy flavour production in deep-inelastic scattering. Two-loop massive operator matrix elements and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.

    2007-10-18

    We calculate the O({epsilon})-term of the two-loop massive operator matrix elements for twist 2-operators, which contribute to the heavy flavour Wilson coefficients in unpolarized deep-inelastic scattering in the asymptotic limit Q{sup 2} >> m{sup 2}. Our calculation was performed in Mellin space using Mellin-Barnes integrals and generalized hypergeometric functions. The O({epsilon})-term contributes in the renormalization at 3-loop order. (orig.)

  14. Heavy flavour production in deep-inelastic scattering. Two-loop massive operator matrix elements and beyond

    International Nuclear Information System (INIS)

    We calculate the O(ε)-term of the two-loop massive operator matrix elements for twist 2-operators, which contribute to the heavy flavour Wilson coefficients in unpolarized deep-inelastic scattering in the asymptotic limit Q2 >> m2. Our calculation was performed in Mellin space using Mellin-Barnes integrals and generalized hypergeometric functions. The O(ε)-term contributes in the renormalization at 3-loop order. (orig.)

  15. Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    CERN Document Server

    Brunner, T; Andreoiu, C; Brodeur, M; Delheji, P; Ettenauer, S; Frekers, D; Gallant, A T; Gernhäuser, R; Grossheim, A; Krücken, R; Lennarz, A; Lunney, D; Mücher, D; Ringle, R; Simon, M C; Simon, V V; Sjue, S K L; Zuber, K; Dilling, J

    2013-01-01

    A new technique has been developed at TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of $\\beta\\beta$ decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of $^{124}$Cs.

  16. Trapped-ion decay spectroscopy towards the determination of ground-state components of double-beta decay matrix elements

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, T. [TRIUMF, Vancouver (Canada); Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Lapierre, A.; Delheji, P.; Grossheim, A.; Ringle, R.; Simon, M.C.; Sjue, S.K.L. [TRIUMF, Vancouver (Canada); Andreoiu, C. [Simon Fraser University, Department of Chemistry, Burnaby (Canada); Brodeur, M. [University of Notre Dame, Department of Physics, Notre Dame, IN (United States); Ettenauer, S.; Gallant, A.T.; Dilling, J. [TRIUMF, Vancouver (Canada); University of British Columbia, Department of Physics and Astronomy, Vancouver (Canada); Frekers, D. [Westfaelische Wilhelms-Universitaet Muenster, Muenster (Germany); Gernhaeuser, R.; Kruecken, R.; Muecher, D. [Technische Universitaet Muenchen, Physik Department E12, Garching (Germany); Lennarz, A. [TRIUMF, Vancouver (Canada); Westfaelische Wilhelms-Universitaet Muenster, Muenster (Germany); Lunney, D. [Universite de Paris Sud, CSNSM-IN2P3-CNRS, Orsay (France); Simon, V.V. [TRIUMF, Vancouver (Canada); Ruprecht-Karls-Universitaet Heidelberg, Fakulaet fuer Physik und Astronomie, Heidelberg (Germany); Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Zuber, K. [Technische Universitaet Dresden, Institut fuer Kern- und Teilchenphysik, Dresden (Germany)

    2013-11-15

    A new technique has been developed at the TRIUMF's TITAN facility to perform in-trap decay spectroscopy. The aim of this technique is to eventually measure weak electron capture branching ratios (ECBRs) and by this to consequently determine GT matrix elements of {beta} {beta} decaying nuclei. These branching ratios provide important input to the theoretical description of these decays. The feasibility and power of the technique is demonstrated by measuring the ECBR of {sup 124}Cs. (orig.)

  17. Uncertainty evaluation for the matrix “solidified state” of fissionable elements

    International Nuclear Information System (INIS)

    In case of the analysis of the radioactive liquid samples, no matter the relative physical analysis method used, two impediments act that belong to the behavior in time of the dispersion state of the liquid samples to be analyzed and of the standard used in the analysis. That is, one of them refers to the state of the sample to be analyzed when being sampled, which “alter” during the time elapsed from sampling up to the analysis of the sample. The other impediment is the natural change of the dispersion state of the standard radioactive solutions, due to the occurrence and evolution in time of the radiocolloidal and pseudo-radiocolloidal states. These radiocolloidal states are states of aggregation and they lead to the destruction of the homogeneity of the solutions. Taking into consideration the advantages offered by the relative physical methods of analysis as against the chemical or the radiochemical ones, different ways of eliminating these impediments have been tried. We eliminated these impediments processing the liquid reference materials (the solutions calibrated in radionuclides of interest), immediately after the preparation. This processing changes the liquid physical state of the reference materials in a “solidified state”. Through this procedure the dispersion states of the samples, practically, can no longer be essentially modified in time and also ensure the uniform distribution of the radionuclides of interest in the elemental matrix of the samples “state solidified”. The homogeneity of the distribution of the atoms of the radionuclides from the samples “solidified state” was checked up through the track micromapping technique of the alpha particles. Through this technique, in the chemically etched track detectors that were put in direct contact with the sample for a determined period of time, the alpha exposure time of the detectors, micromaps of alpha tracks were obtained. These micromaps are retorts through tracks of the

  18. Energy levels and transition probability matrix elements of ruby for maser applications

    Science.gov (United States)

    Berwin, R. W.

    1971-01-01

    Program computes fine structure energy levels of ruby as a function of magnetic field. Included in program is matrix formulation, each row of which contains a magnetic field and four corresponding energy levels.

  19. Measurements of the CKM Angle phi3/gamma

    International Nuclear Information System (INIS)

    We present a review on the measurements of the CKM angle γ (φ3)1 as performed by the BABAR and Belle experiments at the asymmetric-energy e+e- B factories colliders PEP-II and KEKB. These measurements are using either charged or neutral B decays. For charged B decays the modes (tilde D)0K-, (tilde D)*0K-, and (tilde D)0K*- are employed, where (tilde D)0 indicates either a D0 or a (bar D)0 meson. Direct CP violation is exploited. It is caused by interferences between Vub and Vcb accessible transitions that generate asymmetries in the final states. For these decays various methods exist to enhance the sensitivity to the Vub transition, carrying the weak phase γ. For neutral B decays, the modes D(*)±π#-+# and D±ρ#-+# are used. In addition to the Vub and Vcb interferences, these modes are sensitive to the B0-(bar B)0 mixing, so that time dependent analyses are performed to extract sin(2β + γ). An alternative method would use the lower branching ratios decay modes (tilde D)(*)0(bar K)(*)0 where much larger asymmetries are expected. The various available methods are mostly ''theoretically clean'' and always free of penguins diagrams. In some cases a high sensitivity to γ is expected and large asymmetries may be seen. But these measurements are always experimentally difficult as one has to face with either low branching ratios, or small asymmetries, or additional technical/theoretical difficulties due to Dalitz/SU(3) and re-scattering models needed to treat/estimate nuisance parameters such as unknown strong phases and the relative magnitude of the amplitude of the interfering ''Vub'' transitions. Thus at the present time only a relatively limited precision on γ can be extracted from these measurements. The current world average is γ = (78-26+19)o [1]. For other methods and long term perspectives, as discussed in details, the reader is invited to consult the proceedings of the recent CKM workshop that was held in Nagoya (Japan) in December 2006 [2

  20. Matrix elements of left-right four fermion operators and the electropenguin contribution to epsilon'/epsilon in lattice QCD with Wilson fermions

    Science.gov (United States)

    Franco, E.; Maiani, L.; Martinelli, G.; Morelli, A.

    1988-10-01

    The K-pi and K-pi-pi elements of left-right four fermion operators in quenched lattice QCD at beta=6 are computed. The soft-pion relations derived from the chiral structure of the operators are checked. A large enhancement of matrix elements is observed and interpreted as the effect of a scalar octet pole in the pi-K channel. This observation has implications for the related calculation of weak matrix elements.

  1. Analytical $O(\\alpha_s)$ corrections to the beam frame double-spin density matrix elements of $e^+e^-\\to t\\bar t$

    CERN Document Server

    Kaldamäe, L; Körner, J G

    2016-01-01

    We provide analytical results for the $O(\\alpha_s)$ corrections to the double-spin density matrix elements in the reaction $e^+e^-\\to t\\bar t$. These concern the elements $ll$, $lt$, $ln$, $tt$, $tn$, and $nn$ of the double-spin density matrix elements where $l,t,n$ stand for longitudinal, transverse and normal orientations with respect to the beam frame spanned by the electron and the top quark momentum.

  2. The 5‘—flanking cis—acting elements of the human ε—globin gene associates with the nuclear matrix and binds to the nuclear matrix proteins

    Institute of Scientific and Technical Information of China (English)

    YANZHIJIANG; RUOLANQIAN

    1998-01-01

    The nuclear matrix attachment regions(MARs) and the binding nuclear matrix proteins in the 5'-flanking cisacting elements of the human ε-globin gene have been examined.Using in vitro DNA-matrix binding assay,it has been shown that the positive stage-specific regulatory element (ε-PREII,-446bp- -419bp) upstream of this gene could specifically associate with the nuclear matrix from K562 cells,indicating that ε-PREII may be an erythroidspecific facultative MAR.In gel mobility shift assay and Southwestern blotting assay,an erythroid-specific nuclear matrix protein (ε-NMPk) in K562 cells has been revealed to bind to this positive regulatory element (ε-PREII).Furthermore,we demonstrated that the silencer (-392bp- -177bp) upstream of the human ε-globin gene could associate with the nuclear matrices from K562,HEL and Raji cells.In addition,the nuclear matrix proteins prepared from these three cell lines could also bind to this silencer,suggesting that this silencer element might be a constitutive nuclear matrix attachment region(constitutive MAR).Our results demonstrated that the nuclear matrix and nuclear matrix proteins might play an important role in the regulation of the human ε-globin gene expression.

  3. The Reciprocal Pascal Matrix

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    The reciprocal Pascal matrix is the Hadamard inverse of the symmetric Pascal matrix. We show that the ordinary matrix inverse of the reciprocal Pascal matrix has integer elements. The proof uses two factorizations of the matrix of super Catalan numbers.

  4. Comparative study of perturbative methods for computing electron transfer tunneling matrix elements with a nonorthogonal basis set

    International Nuclear Information System (INIS)

    The authors consider the problem of computing tunneling matrix elements for bridge-mediated electron transfer reactions using the Loewdin [J. Math. Phys. 3, 969 (1962); J. Mol. Spectrosc. 13, 326 (1964)] projection-iteration technique with a nonorthogonal basis set. They compare the convergence properties of two different Loewdin projections, one containing the overlap matrix S and the other containing the inverse S-1 in the projected Hamiltonian. It was suggested in the literature that the projected Hamiltonian with S-1 has better convergence properties compared to the projected Hamiltonian with S. The authors test this proposal using a simple analytical model, and ab initio Hartree-Fock calculations on different molecules with several types of basis sets. Their calculations show that, for Gaussian-type basis sets, the projected Hamiltonian containing S has the best convergence properties, especially for diffuse basis sets and in the strong coupling limit. The limit of diffuse basis sets is relevant to tunneling matrix element calculations involving excited states and anionic electron transfer

  5. Comparative determination of the thermal conductivity of graphite matrixes of HTR fuel elements

    International Nuclear Information System (INIS)

    A 'laser flash' measuring equipment was used for the determination of the thermal conductivity of HTR graphit matrixes. A comparison with data from the same samples measured with a thermal conductivity measuring equipment shows a good agreement within the limits of error of the thermal conductivity measuring equipment. (author)

  6. Fixation of actinide elements into zeolites/zeotypes and Flexcrete-cement matrix

    International Nuclear Information System (INIS)

    The leaching behavior of α-emitter radionuclides (uranium and americium) from zeolite-L and the zeotype (SAPO-34) in a Flexcrete-cement matrix were examined by static and dynamic methods using 0.005M CaCl2 and synthetic ground water as leachants. The leaching rates of UO22+ were found to be higher by about ten orders of magnitude than those of Am3+ for both zeolite-L and SAPO-34 in the cement matrix. The static and dynamic leaching rates of UO22+ for SAPO-34 in CaCl2 and synthetic ground water were ten orders of magnitude lower than those for L. SAPO-34 showed good selectivity for uranium at pH 2-3.5 and L was usefully selective for Am3+. Distribution coefficients of Am3+ and UO22+ increased with equilibrium pH. (author) 20 refs.; 2 figs.; 4 tabs

  7. Two-dimensional point spread matrix of layered metal-dielectric imaging elements

    OpenAIRE

    Kotynski, Rafal; Antosiewicz, Tomasz; Krol, Karol; Panajotov, Krassimir

    2010-01-01

    We describe the change of the spatial distribution of the state of polarisation occurring during two-dimensional imaging through a multilayer and in particular through a layered metallic flat lens. Linear or circular polarisation of incident light is not preserved due to the difference in the amplitude transfer functions for the TM and TE polarisations. In effect, the transfer function and the point spread function that characterize 2D imaging through a multilayer both have a matrix form and ...

  8. Discrete Element Framework for Modelling Extracellular Matrix, Deformable Cells and Subcellular Components

    OpenAIRE

    Gardiner, Bruce S.; Wong, Kelvin K. L.; Joldes, Grand R.; Rich, Addison J.; Tan, Chin Wee; Burgess, Antony W.; Smith, David W.

    2015-01-01

    This paper presents a framework for modelling biological tissues based on discrete particles. Cell components (e.g. cell membranes, cell cytoskeleton, cell nucleus) and extracellular matrix (e.g. collagen) are represented using collections of particles. Simple particle to particle interaction laws are used to simulate and control complex physical interaction types (e.g. cell-cell adhesion via cadherins, integrin basement membrane attachment, cytoskeletal mechanical properties). Particles may ...

  9. Prediction of the residual structural integrity of a polymer matrix composite construction element

    OpenAIRE

    Cardon, Albert H.; Qin, Y.; Van Vossole, Chr.; Bouquet, P.

    2015-01-01

    Polymers are time-dependent materials. Polymer matrix composites behave as viscoelastic-viscoplastic anisotropic continua. Their thermomechanical characteristics are not only time-dependent, but are strongly influenced by the variations of the environmental conditions (temperature, moisture diffusion, radiation, etc.). This concerns not only the stiffness but also the strength characteristics, related to the damage development. Due to the composite nature, the number of potential damage sourc...

  10. STATISTIC MODELING OF THE CREEP BEHAVIOR OF METAL MATRIX COMPOSITES BASED ON FINITE ELEMENT ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    岳珠峰

    2002-01-01

    The aim of the paper is to discover the general creep mechanisms for the short fiber reinforcement matrix composites (MMCs) under uniaxial stress states and to build a relationship between the macroscopic steady creep behavior and the material micro geometric parameters. The unit cell models were used to calculate the macroscopic creep behavior with different micro geometric parameters of fibers on different loading directions. The influence of the geometric parameters of the fibers and loading directions on the macroscopic creep behavior had been obtained, and described quantitatively. The matrix/fiber interface had been considered by a third layer, matrix/fiber interlayer, in the unit cells with different creep properties and thickness. Based on the numerical results of the unit cell models, a statistic model had been presented for the plane randomly-distributed-fiber MMCs. The fiber breakage had been taken into account in the statistic model for it starts experimentally early in the creep life. With the distribution of the geometric parameters of the fibers, the results of the statistic model agree well with the experiments. With the statistic model, the influence of the geometric parameters and the breakage of the fibers as well as the properties and thickness of the interlayer on the macroscopic steady creep rate have been discussed.

  11. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    International Nuclear Information System (INIS)

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams

  12. The high-energy anomaly in ARPES spectra of the cuprates-many body or matrix element effect?

    OpenAIRE

    Rienks, E. D. L.; Ärrälä, M.; Lindroos, M.(European Spallation Source, ESS AB, P.O. Box 176, Lund, SE-221 00, Sweden); Roth, F.; Tabis, W.; G. Yu; Greven, M.; Fink, J

    2013-01-01

    We used polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd2-xCexCuO4, (x=0.123). We have found that at particular photon energies the anomalous, waterfalllike dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasi-particle band in a narrow momentum range. We confirm this interpretation expe...

  13. Simple hadronic matrix elements with Wilson valence quarks and dynamical staggered fermions at 6/g2=5.6

    International Nuclear Information System (INIS)

    We have measured some simple matrix elements for pseudoscalar and vector mesons made of Wilson valance quarks and staggered sea quarks at β=5.6 at sea quark masses amq=0.01 and 0.025. Our measurements include the decay constants of pseudoscalars (including fD), the wave function at the origin (or decay constant) of vector mesons, and the calculation of quark masses from current algebra. The effects of sea quarks on the simulations are small. We make comparisons to quenched simulations at similar values of the lattice spacing (1/a congruent 2 GeV)

  14. The nuclear matrix elements of 0νββ decay and the NUMEN project at INFN-LNS

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Balestra, F.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Branchina, V.; Calabrese, S.; Calabretta, L.; Calanna, A.; Calvo, D.; Carbone, D.; Cavallaro, M.; Colonna, M.; Ferrero, S.; Foti, A.; Finocchiaro, P.; Giraudo, G.; Greco, V.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lavagno, A.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Ruslan, M. V.; Santopinto, E.; Scaltrito, L.; Tudisco, S.; Zagatto, V.

    2016-05-01

    An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross sections measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavyion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy).

  15. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    Science.gov (United States)

    Agodi, C.; Cappuzzello, F.; Bonanno, D. L.; Bongiovanni, D. G.; Branchina, V.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Foti, A.; Finocchiaro, P.; Greco, V.; Lanzalone, G.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Tudisco, S.

    2015-10-01

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  16. NUMEN Project @ LNS : Heavy ions double charge exchange reactions towards the 0νββ nuclear matrix element determination

    Energy Technology Data Exchange (ETDEWEB)

    Agodi, C., E-mail: agodi@lns.infn.it; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Cuttone, G.; Finocchiaro, P.; Pandola, L.; Rifuggiato, D.; Tudisco, S. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Cappuzzello, F.; Greco, V. [INFN - Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Bonanno, D. L.; Bongiovanni, D. G.; Longhitano, F. [INFN - Sezione di Catania, Catania (Italy); Branchina, V. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); Foti, A.; Lo Presti, D. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN - Sezione di Catania, Catania (Italy); Lanzalone, G. [Università di Enna, Enna (Italy); and others

    2015-10-28

    In the NUMEN Project it is proposed an innovative technique to access the nuclear matrix elements entering in the expression of the life-time of the neutrinoless double beta decay, using relevant cross sections of double charge exchange reactions. A key aspect is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN Laboratori Nazionali del Sud (LNS) K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  17. The O(\\alpha_s^3 T_F^2) Contributions to the Gluonic Operator Matrix Element

    OpenAIRE

    Ablinger, J.; Blümlein, J.; Freitas, A; Hasselhuhn, A.(Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, Linz, A-4040, Austria); von Manteuffel, Andreas; Round, M.; Schneider, C

    2014-01-01

    The $O(\\alpha_s^3 T_F^2 C_F (C_A))$ contributions to the transition matrix element $A_{gg,Q}$ relevant for the variable flavor number scheme at 3--loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In $x$-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical detail...

  18. The nuclear matrix elements of 0νββ decay and the NUMEN project at INFN-LNS

    Directory of Open Access Journals (Sweden)

    Cappuzzello F.

    2016-01-01

    Full Text Available An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross sections measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS, for the acceleration of the required high resolution and low emittance heavyion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy.

  19. Two loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values $Q^2>>m^2$.

    OpenAIRE

    Bierenbaum, I.; Blümlein, J.; Klein, S.

    2007-01-01

    We calculate the $O(\\alpha_s^2)$ massive operator matrix elements for the twist--2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region $Q^2 \\gg m^2$. The calculation has been performed using light--cone expansion techniques. We confirm an earlier result obtained in \\cite{Buza:1995ie}. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a sign...

  20. Free vibration analysis of elastically supported Timoshenko columns with attached masses by transfer matrix and finite element methods

    Indian Academy of Sciences (India)

    Oktay Demirdaǧ

    2008-02-01

    This paper deals with the free vibration of Timoshenko columns with attached masses having rotary inertia. The support of the model is elastically restrained against rotation. The concept of fixity factor is used to define the stiffness of the elastic connection relative to that of the column. The governing equation of the column elements is solved by applying the separation of variables method in the transfer matrix method (TMM) algorithm. The same problems are solved, also, by finite element method (FEM) algorithm in which the matrices in equation of motion are obtained for Timoshenko column, and the results are compared with the ones of TMM. The comparison graphs are presented in numerical analysis to show the effectiveness of the considered methods, and it is resulted that FEM gives closer results to TMM.

  1. The ultrasound assisted extraction of matrix elements and heavy metal fractions associated with Fe, Al and Mn oxyhydroxides from soil

    Directory of Open Access Journals (Sweden)

    Stanišić Svetlana M.

    2012-01-01

    Full Text Available The single agent extractions of major and trace metals from soil sample were conducted by means of rotary mixer and ultrasonic bath with sonication time of 10, 20, 30, 40 and 50 min. The sequential extraction according to the BCR scheme was undertaken. The obtained soil extracts were analyzed by ICP-OES and according to the results the rotary mixer assisted extraction was more efficient in the case of alkaline-earth elements. However, by the use of ultrasound several times higher amounts of matrix elements (Fe, Al and Mn and heavy metals predominantly associated with Fe, Al and Mn oxyhydroxides were extracted. The increase of the sonication time failed to improve extraction yields. The changes of the conductivity, pH, oxidoreduction potential, particle size diameter and zeta potential of colloid particles, with the sonication time increase were measured. The extraction mechanism and expressed selectivity of ultrasound is discussed and explanation is suggested.

  2. 3-Loop massive O(T{sub 2}{sup F}) contributions to the DIS operator matrix element A{sub gg}

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hasselhuhn, A.; Round, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Inst. for Symbolic Computation (RISC); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence

    2014-09-15

    Contributions to heavy flavour transition matrix elements in the variable flavour number scheme are considered at 3-loop order. In particular a calculation of the diagrams with two equal masses that contribute to the massive operator matrix element A{sup (3)}{sub gg,Q} is performed. In the Mellin space result one finds finite nested binomial sums. In x-space these sums correspond to iterated integrals over an alphabet containing also square-root valued letters.

  3. The $O(\\alpha_s^3 n_f T_F^2 C_{A,F})$ contributions to the gluonic massive operator matrix elements

    OpenAIRE

    Blümlein, J.; Hasselhuhn, A.(Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, Linz, A-4040, Austria); Klein, S.; Schneider, C

    2013-01-01

    The $O(\\alpha_s^3 n_f T_F^2 C_{A,F})$ terms to the massive gluonic operator matrix elements are calculated for general values of the Mellin variable $N$. These twist-2 matrix elements occur as transition functions in the variable flavor number scheme at NNLO. The calculation uses sum-representations in generalized hypergeometric series turning into harmonic sums. The analytic continuation to complex values of $N$ is provided.

  4. Characteristic element of matrix attachment region mediates vector attachment and enhances nerve growth factor expression in Chinese hamster ovary cells.

    Science.gov (United States)

    Wang, X Y; Zhang, J H; Sun, Q L; Yao, Z Y; Deng, B G; Guo, W Y; Wang, L; Dong, W H; Wang, F; Zhao, C P; Wang, T Y

    2015-01-01

    Preliminary studies have suggested that a characteristic element of the matrix attachment region (MAR) in human interferon-β mediates the adhesion of vectors to Chinese hamster ovary (CHO) cells. In this study, we investigated if vector adhesion increased nerve growth factor (NGF) expression in CHO cells. The MAR characteristic element sequence of human interferon-β was inserted into the multiple-cloning site of the pEGFP-C1 vector. The target NGF gene was inserted upstream of the MAR characteristic element sequence to construct the MAR/NGF expression vector. The recombinant plasmid was transfected into CHO cells and stable monoclonal cells were selected using G418. NGF mRNA and protein expression was detected by reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Plasmid reduction experiments were used to determine the state of transfected plasmid in mammalian cells. The insertion of MAR into the vector increased NGF expression levels in CHO cells (1.93- fold) compared to the control. The recombinant plasmid expressing the MAR sequence was digested into a linear space vector. The inserted MAR and NGF sequences were consistent with those inserted into the plasmid before recombination. Therefore, we concluded that the MAR characteristic element mediates vector adhesion to CHO cells and enhances the stability and efficiency of the target gene expression. PMID:26345852

  5. Correlated analysis of fissile-element cross-sections and interpretation in terms of R-matrix parameters

    International Nuclear Information System (INIS)

    Fission, capture, and total cross-sections of 235U in the energy region below 50 eV have been analysed by least-squares procedures with a multilevel expansion of the Kapur-Peierls type. The simultaneous analysis of three data sets allows constraints to be imposed which reflect the unitarity of the formalism, thus achieving compatibility among the resonance parameters and limiting uncertainties arising from possible quasi-resonances or hidden small levels. In a manner analogous to those earlier applied to the analysis of η in 239Pu, the energy dependence of α can readily be interpreted. The multilevel parameters derived from data analysis cannot be used for statistical studies, however, as the pertinent distribution laws are as yet unknown. This fact makes it desirable to complement the analysis by deriving compatible R-matrix parameters, for which the distribution laws are well known. For this purpose, three independent approaches have been investigated: (1) direct data fitting in terms of the complex amplitudes of the theory; (2) a perturbation method; and (3) an analysis of the mathematical structure of the transformations governing the relation of R-matrix and multilevel expansions. Numerical results for R-matrix parameters obtained in these ways and of the uncertainties involved will be illustrated by examples based on the numerical analysis of theoretically prescribed cross-sections and by results obtained from the analysis of representative low-energy fissile-element cross-sections in the region below 50 eV. (author)

  6. Variable tunneling barriers in FEBID based PtC metal-matrix nanocomposites as a transducing element for humidity sensing.

    Science.gov (United States)

    Kolb, Florian; Schmoltner, Kerstin; Huth, Michael; Hohenau, Andreas; Krenn, Joachim; Klug, Andreas; List, Emil J W; Plank, Harald

    2013-08-01

    The development of simple gas sensing concepts is still of great interest for science and technology. The demands on an ideal device would be a single-step fabrication method providing a device which is sensitive, analyte-selective, quantitative, and reversible without special operating/reformation conditions such as high temperatures or special environments. In this study we demonstrate a new gas sensing concept based on a nanosized PtC metal-matrix system fabricated in a single step via focused electron beam induced deposition (FEBID). The sensors react selectively on polar H2O molecules quantitatively and reversibly without any special reformation conditions after detection events, whereas non-polar species (O2, CO2, N2) produce no response. The key elements are isolated Pt nanograins (2-3 nm) which are embedded in a dielectric carbon matrix. The electrical transport in such materials is based on tunneling effects in the correlated variable range hopping regime, where the dielectric carbon matrix screens the electric field between the particles, which governs the final conductivity. The specific change of these dielectric properties by the physisorption of polar gas molecules (H2O) can change the tunneling probability and thus the overall conductivity, allowing their application as a simple and straightforward sensing concept. PMID:23818049

  7. Two-dimensional point spread matrix of layered metal-dielectric imaging elements.

    Science.gov (United States)

    Kotyński, Rafał; Antosiewicz, Tomasz J; Król, Karol; Panajotov, Krassimir

    2011-02-01

    We describe the change of the spatial distribution of the state of polarization occurring during two-dimensional (2D) imaging through a multilayer and in particular through a layered metallic flat lens. Linear or circular polarization of incident light is not preserved due to the difference in the amplitude transfer functions for the TM and TE polarizations. In effect, the transfer function and the point spread function (PSF) that characterize 2D imaging through a multilayer both have a matrix form, and cross-polarization coupling is observed for spatially modulated beams with a linear or circular incident polarization. The PSF in a matrix form is used to characterize the resolution of the superlens for different polarization states. We demonstrate how the 2D PSF may be used to design a simple diffractive nanoelement consisting of two radial slits. The structure assures the separation of nondiffracting radial beams originating from two slits in the mask and exhibits an interesting property of a backward power flow in between the two rings. PMID:21293516

  8. Two-dimensional point spread matrix of layered metal-dielectric imaging elements

    CERN Document Server

    Kotynski, Rafal; Krol, Karol; Panajotov, Krassimir

    2010-01-01

    We describe the change of the spatial distribution of the state of polarisation occurring during two-dimensional imaging through a multilayer and in particular through a layered metallic flat lens. Linear or circular polarisation of incident light is not preserved due to the difference in the amplitude transfer functions for the TM and TE polarisations. In effect, the transfer function and the point spread function that characterize 2D imaging through a multilayer both have a matrix form and cross-polarisation coupling is observed for spatially modulated beams with a linear or circular incident polarisation. The point spread function in a matrix form is used to characterise the resolution of the superlens for different polarisation states. We demonstrate how the 2D PSF may be used to design a simple diffractive nanoelement consisting of two radial slits. The structure assures the separation of non-diffracting radial beams originating from two slits in the mask and exhibits an interesting property of a backwar...

  9. Assessment of the influence of anthropogenic factors on elements of the ecological network in Vojvodina (Serbia using the Leopold matrix

    Directory of Open Access Journals (Sweden)

    Kicošev Vesna

    2015-01-01

    Full Text Available Salt steppes and marshes represent the most valuable ecosystems in the world, providing numerous ecosystem services that are extremely vulnerable to anthropogenic influences. These types of habitat in the territory of Serbia are most dominant in Banat and a significant portion of them is under protection or in the process of becoming protected. The section surrounding the protected areas of Slano Kopovo Special Nature Reserve, Rusanda Nature Park and Okanj Bara Special Nature Reserve with the non-building area of Novi Bečej, Kumane, Melenci, Elemir and Taraš cadastral municipalities, has been chosen for the analysis. The aim of this paper was to assess the influence of specific anthropogenic factors on the elements of an ecological network using the analytical method that can generate the required results in a manner suitable for presentation to various stakeholders. To achieve this aim, the Leopold matrix model, used for assessing anthropogenic influence on the environment, has been chosen. The specificity of this issue of protecting and preserving elements of an ecological network resulted in the need to isolate and evaluate the factors affecting the preservation of habitats and functionality of ecosystems, unlike the concept of Leopold matrix, which treats all factors as equally important in the process of evaluation. Evaluation results indicate significant effects of historical, perennial manner of using the area and other resources in the non-building area.

  10. Measurement of the top quark mass in the lepton+jets final state with the matrix element method

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Agelou, M; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Black, K M; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Blumenschein, U; Böhnlein, A; Boeriu, O; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Claes, D; Clement, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Coppage, D; Corcoran, M; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Das, M; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Elvira, V D; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Fatakia, S N; Feligioni, L; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Fleck, I; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gay, A; Gay, P; Gelé, D; Gelhaus, R; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Kroninger, K; Krop, D; Kryemadhi, A; Kühl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lammers, S; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Magnan, A M; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martens, M; McCarthy, R; Meder, D; Melnitchouk, A; Mendes, A; Mendoza, L; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Mutaf, Y D; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Pérez, E; Peters, K; Petroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Rud, V I; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shephard, W D; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Turcot, A S; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; vanden Berg, P J; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vlimant, J R; Von Törne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Wang, M H L; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Womersley, J; Wood, D R; Wyatt, T R; Xie, Y; Xuan, N; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; al, et

    2006-01-01

    We present a measurement of the top quark mass with the Matrix Element method in the lepton+jets final state. As the energy scale for calorimeter jets represents the dominant source of systematic uncertainty, the Matrix Element likelihood is extended by an additional parameter, which is defined as a global multiplicative factor applied to the standard energy scale. The top quark mass is obtained from a fit that yields the combined statistical and systematic jet energy scale uncertainty. Using a data set of 370 pb-1 taken with the D0 experiment at Run II of the Fermilab Tevatron Collider, the mass of the top quark is measured using topological information to be: mtop(topo) = 169.2 +5.0-7.4 (stat.+JES) +1.5-1.4 (syst.) GeV, and when information about identified $b$ jets is included: mtop(b-tag) = 170.3 +4.1-4.5 (stat.+JES) +1.2-1.8 (syst.) GeV. The measurements yield a jet energy scale consistent with the reference scale.

  11. Matrix equation decomposition and parallel solution of systems resulting from unstructured finite element problems in electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Cwik, T. [California Institute of Technology, Pasadena, CA (United States); Katz, D.S. [Cray Research, El Segundo, CA (United States)

    1996-12-31

    Finite element modeling has proven useful for accurately simulating scattered or radiated electromagnetic fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of an electrical wavelength. An unstructured finite element model of realistic objects leads to a large, sparse, system of equations that needs to be solved efficiently with regard to machine memory and execution time. Both factorization and iterative solvers can be used to produce solutions to these systems of equations. Factorization leads to high memory requirements that limit the electrical problem size of three-dimensional objects that can be modeled. An iterative solver can be used to efficiently solve the system without excessive memory use and in a minimal amount of time if the convergence rate is controlled.

  12. Penguin Zoology in $B\\to\\pi\\pi$ and the Extraction of the CKM Angle $\\alpha$

    CERN Document Server

    Fleischer, Robert; Fleischer, Robert; Mannel, Thomas

    1996-01-01

    We reanalyze the decay $B_d\\to\\pi^+\\pi^-$ without assuming dominance of QCD penguins with internal top-quark exchanges. In that case the weak phase of the CKM angle $\\beta$. Nevertheless it is still possible to extract the CKM angle time-dependent CP-violating asymmetry of the transition $B_d\\to\\pi^+\\pi^-$. Aside from that CP asymmetry this approach needs as an input only amplitudes of decays with branching ratios of order $10^{-5}$ and will thus be well within reach at future $B$-factories.

  13. Large-basis shell-model calculation of the 10C→10B Fermi matrix element

    International Nuclear Information System (INIS)

    We use a 4ℎΩ shell-model calculation with a two-body effective interaction derived microscopically from the Reid93 potential to calculate the isospin-mixing correction for the 10C→10B superallowed Fermi transition. The effective interaction takes into account the Coulomb potential as well as the charge dependence of T=1 partial waves. Our results suggest the isospin-mixing correction δC∼0.1%, which is compatible with previous calculations. The correction obtained in those calculations, performed in a 0ℎΩ space, was dominated by deviation from unity of the radial overlap between the converted proton and the corresponding neutron. In the present calculation this effect is accommodated by the large model space. The obtained δC correction is about a factor of 4 too small to obtain unitarity of the Cabibbo-Kobayashi-Maskawa matrix with the present experimental data. copyright 1997 The American Physical Society

  14. An Investigation of Reliability Models for Ceramic Matrix Composites and their Implementation into Finite Element Codes

    Science.gov (United States)

    Duffy, Stephen F.

    1998-01-01

    The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural

  15. Electron-molecule scattering calculations in a 3D finite element R-matrix approach

    CERN Document Server

    Tonzani, S; Tonzani, Stefano; Greene, Chris H.

    2004-01-01

    We have implemented a three-dimensional finite element approach, based on tricubic polynomials in spherical coordinates, which solves the Schrodinger equation for scattering of a low energy electron from a molecule, approximating the electron exchange as a local potential. The potential is treated as a sum of three terms: electrostatic, exchange and polarization. The electrostatic term can be extracted directly from ab initio codes (GAUSSIAN 98 in the work described here), while the exchange term is approximated using different local density functionals. A local polarization potential approximately describes the long range attraction to the molecular target induced by the scattering electron.

  16. Determination of the nuclear matrix elements for the beta-decay of 149Pm

    International Nuclear Information System (INIS)

    The results of the β-γ directional correlation measurement of the first-forbidden β-transition of 149Pm showed a slight energy dependence in the reduced β-coefficient ratio, R(E sub(i))/R(E sub(k)), implying a deviation from the xi-approximation. The analysis is based on the theoretical expressions given by Morita and Morita and performed by the minimization of chi2 for the directional correlation coefficient ratio, A2(E sub(i))/A2(E sub(k)). Two sets of the nuclear matrix parametersand corresponding values of the γ-coefficient, A sub(2γ), and E2 mixing of the 286 keV transition were found: set I, x = -0.119 +- 0.140, u = -1.545 +- 0.160, y' = -15.46 +- 1.57, A sub(2γ) = 0.09 +- 0.12, 0.2% < E2 < 3.1%; set II, x = 0.795 +- 0.136, u = -1.363 +- 0.126, y' = -23.41 +- 1.42, A sub(2γ) = -0.61 +- 0.11, 19.4% < E2 < 37.8%. Set I is tentatively preferred. The deviation from the xi-approximation is interpreted in terms of the effect of cancellation among the parameters. (author)

  17. FERM3D: A finite element R-matrix electron molecule scattering code

    CERN Document Server

    Tonzani, S

    2006-01-01

    FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange. and polarisation. The electrostatic term can be extracted directly from ab initio codes ({\\sc{GAUSSIAN 98}} in the work described here), while the exchange term is approximated using a local density functional. A local polarisation potential based on density functional theory [C. Lee, W. Yang and R. G. Parr, {Phys. Rev. B} {37}, (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionisation calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is po...

  18. Measurement of the Spin-Density Matrix Elements in Exclusive Electroproduction of $\\rho^{0}$ Mesons at HERA

    CERN Document Server

    Abbiendi, G; Abramowicz, H; Acosta, D; Adamczyk, L; Adamus, M; Ahn, S H; Amelung, C; An Shiz Hong; Anselmo, F; Antonioli, P; Arneodo, M; Bacon, Trevor C; Badgett, W F; Bailey, D C; Bailey, D S; Bamberger, A; Barbagli, G; Bari, G; Barreiro, F; Barret, O; Bashindzhagian, G L; Bashkirov, V; Basile, M; Bauerdick, L A T; Bednarek, B; Behrens, U; Bellagamba, L; Bertolin, A; Bhadra, S; Bienlein, J K; Blaikley, H E; Bohnet, I; Bokel, C; Boogert, S; Bornheim, A; Borzemski, P; Boscherini, D; Botje, M; Breitweg, J; Brock, I; Brook, N H; Brugnera, R; Bruni, A; Bruni, G; Brümmer, N; Burgard, C; Burow, B D; Bussey, P J; Butterworth, J M; Bylsma, B; Caldwell, A; Capua, M; Cara Romeo, G; Carlin, R; Cartiglia, N; Cashmore, R J; Castellini, G; Catterall, C D; Chapin, D; Chekanov, S; Chwastowski, J; Ciborowski, J; Cifarelli, Luisa; Cindolo, F; Cirio, R; Cloth, P; Coboken, K; Coldewey, C; Cole, J E; Contin, A; Cooper-Sarkar, A M; Coppola, N; Cor, M; Cormack, C; Corriveau, F; Costa, M; Cottingham, W N; Crittenden, J; Cross, R; D'Agostini, G; Dagan, S; Dal Corso, F; Dardo, M; De Pasquale, S; De Wolf, E; Deffner, R; Del Peso, J; Deppe, O; Derrick, M; Deshpande, Abhay A; Desler, K; Devenish, R C E; Dhawan, S; Dolgoshein, B A; Dondana, S; Dosselli, U; Doyle, A T; Drews, G; Dulinski, Z; Durkin, L S; Dusini, S; Eckert, M; Edmonds, J K; Eisenberg, Y; Eisenhardt, S; Engelen, J; Epperson, D E; Ermolov, P F; Eskreys, Andrzej; Fagerstroem, C P; Fernández, J P; Ferrero, M I; Figiel, J; Filges, D; Foster, B; Foudas, C; Fox-Murphy, A; Fricke, U; Frisken, W R; Fusayasu, T; Gadaj, T; Galea, R; Gallo, E; García, G; Garfagnini, A; Gendner, N; Gialas, I; Gilmore, J; Ginsburg, C M; Giusti, P; Gladilin, L K; Glasman, C; Göbel, F; Golubkov, Yu A; Grabosch, H J; Graciani, R; Grosse-Knetter, J; Grzelak, G; Göttlicher, P; Haas, T; Hain, W; Hall-Wilton, R; Hamatsu, R; Hanna, D S; Harnew, N; Hart, H; Hart, J C; Hartmann, J; Hartner, G F; Hasell, D; Hayes, M E; Heaphy, E A; Heath, G P; Heath, H F; Hebbel, K; Heinloth, K; Heinz, L; Hernández, J M; Heusch, C A; Hilger, E; Hirose, T; Hochman, D; Holm, U; Homma, K; Hong, S J; Howell, G; Hughes, V W; Iacobucci, G; Iannotti, L; Iga, Y; Inuzuka, M; Ishii, T; Jakob, H P; Jelen, K; Jeoung, H Y; Jing, Z; Johnson, K F; Jones, T W; Kananov, S; Kappes, A; Karshon, U; Kasemann, M; Katz, U F; Kcira, D; Kerger, R; Khakzad, M; Khein, L A; Kim, C L; Kim, J Y; Kisielewska, D; Kitamura, S; Klanner, Robert; Klimek, K; Ko, I A; Koch, W; Koffeman, E; Kooijman, P; Koop, T; Korotkova, N A; Kotanski, A; Kowal, A M; Kowalski, H; Kowalski, T; Krakauer, D; Kreisel, A; Kuze, M; Kuzmin, V A; Kötz, U; Labarga, L; Lamberti, L; Lane, J B; Laurenti, G; Lee, J H; Lee, S B; Lee, S W; Levi, G; Levman, G M; Levy, A; Lim, H; Lim, I T; Limentani, S; Lindemann, L; Ling, T Y; Liu, W; Lohrmann, E; Long, K R; Lopez-Duran Viani, A; Lukina, O Yu; Löhr, B; Ma, K J; MacDonald, N; Maccarrone, G; Magill, S; Mallik, U; Margotti, A; Marini, G; Markun, P; Martin, J F; Martínez, M; Maselli, S; Massam, Thomas; Mastroberardino, A; Matsushita, T; Mattingly, M C K; Mattingly, S E K; McCance, G J; McCubbin, N A; McFall, J D; Mellado, B; Menary, S R; Meyer, A; Meyer-Larsen, A; Milewski, J; Milite, M; Miller, D B; Monaco, V; Monteiro, T; Morandin, M; Moritz, M; Murray, W N; Musgrave, B; Mönig, K; Nagano, K; Nam, S W; Nania, R; Nigro, A; Nishimura, T; Notz, D; Nowak, R J; Noyes, V A; Nylander, P; Ochs, A; Oh, B Y; Okrasinski, J R; Olkiewicz, K; Orr, R S; Pac, M Y; Padhi, S; Palmonari, F; Park, I H; Park, S K; Parsons, J A; Paul, E; Pavel, N; Pawlak, J M; Pawlak, R; Pelfer, Pier Giovanni; Pellegrino, A; Pelucchi, F; Peroni, C; Pesci, A; Petrucci, M C; Pfeiffer, M; Pic, D; Piotrzkowski, K; Poelz, G; Polenz, S; Polini, A; Posocco, M; Prinias, A; Proskuryakov, A S; Przybycien, M B; Puga, J; Quadt, A; Raach, H; Raso, M; Rautenberg, J; Re, J; Redondo, I; Reeder, D D; Ritz, S; Riveline, M; Rohde, M; Rulikowska-Zarebska, E; Ruske, O; Ruspa, M; Sabetfakhri, A; Sacchi, R; Sadrozinski, H F W; Saint-Laurent, M; Salehi, H; Samp, S; Sartorelli, G; Saull, P R B; Savin, A A; Saxon, D H; Schechter, A; Schioppa, M; Schlenstedt, S; Schmidke, W B; Schneekloth, U; Schnurbusch, H; Schwarzer, O; Sciulli, F; Scott, J; Sedgbeer, J K; Seiden, A; Selonke, F; Shah, T P; Shcheglova, L M; Sideris, D; Sievers, M; Simmons, D; Sinclair, L E; Skillicorn, I O; Smalska, B; Smith, W H; Solano, A; Solomin, A N; Son, D; Staiano, A; Stairs, D G; Stanco, L; Stanek, R; Stifutkin, A; Stonjek, S; Straub, P B; Strickland, E; Stroili, R; Susinno, G; Suszycki, L; Sutton, M R; Suzuki, I; Tandler, J; Tapper, A D; Tapper, R J; Tassi, E; Terron, J; Tiecke, H G; Tokushuku, K; Toothacker, W S; Tsurugai, T; Tuning, N; Tymieniecka, T; Umemori, K; Vaiciulis, A W; Van Sighem, A; Velthuis, J J; Verkerke, W; Voci, C; Vossebeld, Joost Herman; Votano, L; Walczak, R; Walker, R; Wang, S M; Waters, D S; Waugh, R; Weber, A; Whitmore, J J; Wichmann, R; Wick, K; Wieber, H; Wiggers, L; Wildschek, T; Williams, D C; Wing, M; Wodarczyk, M; Wolf, G; Wollmer, U; Wróblewski, A K; Wölfle, S; Yamada, S; Yamashita, T; Yamauchi, K; Yamazaki, Y; Yoshida, R; Youngman, C; Zajac, J; Zakrzewski, J A; Zamora Garcia, Y; Zawiejski, L; Zetsche, F; Zeuner, W; Zhu, Q; Zichichi, A; Zotkin, S A

    2000-01-01

    Exclusive electroproduction of rho^0 mesons has been measured using the ZEUS detector at HERA in two Q^2 ranges, 0.25matrix elements which completely define the angular distributions are presented and discussed.

  19. The O(\\alpha_s^3 T_F^2) Contributions to the Gluonic Operator Matrix Element

    CERN Document Server

    Ablinger, J; De Freitas, A; Hasselhuhn, A; von Manteuffel, A; Round, M; Schneider, C

    2014-01-01

    The $O(\\alpha_s^3 T_F^2 C_F (C_A))$ contributions to the transition matrix element $A_{gg,Q}$ relevant for the variable flavor number scheme at 3--loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In $x$-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines.

  20. New HERMES results on spin density matrix elements from exclusive diffractive {rho}{sup 0} and {phi} production

    Energy Technology Data Exchange (ETDEWEB)

    Hayrapetyan, Avetik; Dueren, Michael; Stenzel, Hasko; Benito, Roberto Perez; Yu, Weilin [Justus-Liebig Universitaet Giessen (Germany)

    2009-07-01

    The exclusive electroproduction of vector mesons such as {rho}{sup 0} and {phi} in deep-inelastic scattering is of particular interest to study the production mechanism and the nucleon structure. In the HERMES experiment, angular and momentum distributions of the scattered lepton and of the vector meson decay products are measured. Recent HERMES results on Spin Density Matrix Elements (SDME) for exclusive {rho}{sup 0} and {phi} meson production are presented. An observed hierarchy of relative sizes of helicity amplitudes will be shown. A comparison is done for results from Hydrogen and Deuterium targets. The data indicate a small but statistically significant non-conservation of s-channel helicity for {rho}{sup 0} meson production but not for {phi} meson production.

  1. Measurement of the WW+WZ Production Cross Section Using a Matrix Element Technique in Lepton + Jets Events

    CERN Document Server

    Aaltonen, T

    2010-01-01

    We present a measurement of the $WW+WZ$ production cross section observed in a final state consisting of an identified electron or muon, two jets, and missing transverse energy. The measurement is carried out in a data sample corresponding to up to 4.6~fb$^{-1}$ of integrated luminosity at $\\sqrt{s} = 1.96$ TeV collected by the CDF II detector. Matrix element calculations are used to separate the diboson signal from the large backgrounds. The $WW+WZ$ cross section is measured to be $17.4\\pm3.3$~pb, in agreement with standard model predictions. A fit to the dijet invariant mass spectrum yields a compatible cross section measurement.

  2. Graphical method in loop quantum gravity: I. Derivation of the closed formula for the matrix element of the volume operator

    CERN Document Server

    Yang, Jinsong

    2015-01-01

    To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In the series of papers, we will introduce a graphical method, developed by Yutsis and Brink, to loop quantum gravity. The graphical method provides a very powerful technique for simplifying complicated calculations. In this first paper, the closed formula of volume operator is derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the acting of operators as well as the spin network states, we use the simple rules for transforming graphs to yield the resulting formula. Comparing with the complicated algebraic derivation in some literatures, our procedure is more concise, intuitive and visual. The resulting matrix elements of volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin network states.

  3. Single element of the matrix source of negative hydrogen ions: Measurements of the extracted currents combined with diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Yordanov, D., E-mail: yordanov@phys.uni-sofia.bg; Lishev, St.; Shivarova, A. [Faculty of Physics, Sofia University, BG-1164 Sofia (Bulgaria)

    2016-02-15

    Combining measurements of the extracted currents with probe and laser-photodetachment diagnostics, the study is an extension of recent tests of factors and gas-discharge conditions stimulating the extraction of volume produced negative ions. The experiment is in a single element of a rf source with the design of a matrix of small-radius inductively driven discharges. The results are for the electron and negative-ion densities, for the plasma potential and for the electronegativity in the vicinity of the plasma electrode as well as for the currents of the extracted negative ions and electrons. The plasma-electrode bias and the rf power have been varied. Necessity of a high bias to the plasma electrode and stable linear increase of the extracted currents with the rf power are the main conclusions.

  4. Bivariate-t distribution for transition matrix elements in Breit-Wigner to Gaussian domains of interacting particle systems

    International Nuclear Information System (INIS)

    Interacting many-particle systems with a mean-field one-body part plus a chaos generating random two-body interaction having strength λ exhibit Poisson to Gaussian orthogonal ensemble and Breit-Wigner (BW) to Gaussian transitions in level fluctuations and strength functions with transition points marked by λ=λc and λ=λF, respectively; λF>>λc. For these systems a theory for the matrix elements of one-body transition operators is available, as valid in the Gaussian domain, with λ>λF, in terms of orbital occupation numbers, level densities, and an integral involving a bivariate Gaussian in the initial and final energies. Here we show that, using a bivariate-t distribution, the theory extends below from the Gaussian regime to the BW regime up to λ=λc. This is well tested in numerical calculations for 6 spinless fermions in 12 single-particle states

  5. The nuclear matrix elements of 0vββ decay and the NUMEN project at INFN-LNS

    Science.gov (United States)

    Cappuzzello, F.; Agodi, C.; Aciksoz, E.; Acosta, L.; Aslanouglou, X.; Auerbach, N.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello, T.; Boudhaim, S.; Bouhssa, M. L.; Boztosun, I.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Calvo, D.; Chávez Lomelí, E. R.; Colonna, M.; D'Agostino, G.; Deshmukh, N.; de Faria, P. N.; Ferrero, A.; Foti, A.; Finocchiaro, P.; Gomes, P. R. S.; Greco, V.; Hacisalihoglu, A.; Housni, Z.; Khouaja, A.; Inchaou, J.; Lanzalone, G.; La Via, F.; Lay, J. A.; Lenske, H.; Linares, R.; Lubian, J.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Lo Presti, D.; Medina, N.; Mendes, D. R.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Rifuggiato, D.; Rodrigues, M. R. D.; Santagati, G.; Santopinto, E.; Scaltrito, L.; Sgouros, O.; Solakcı, S. O.; Soukeras, V.; Tudisco, S.; Vsevolodovna, R. I. M.; Zagatto, V.

    2016-07-01

    An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross section measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy). However, a major upgrade is foreseen for the INFN-LNS research infrastructure to cope with beam currents as high as several ppA required by the project.

  6. Potential and matrix elements of the hamiltonian of internal rotation in molecules in the basis set of Mathieu functions

    Science.gov (United States)

    Turovtsev, V. V.; Orlov, Yu. D.; Tsirulev, A. N.

    2015-08-01

    The advantages of the orthonormal basis set of 2π-periodic Mathieu functions compared to the trigonometric basis set in calculations of torsional states of molecules are substantiated. Explicit expressions are derived for calculating the Hamiltonian matrix elements of a one-dimensional torsional Schrödinger equation with a periodic potential of the general form in the basis set of Mathieu functions. It is shown that variation of a parameter of Mathieu functions allows the rotation potential and the structural function to be approximated with a good accuracy by a small number of series terms. The conditions for the best choice of this parameter are specified, and approximations are obtained for torsional potentials of n-butane upon rotation about the central C-C bond and of its univalent radical n-butyl C2H5C·H2 upon rotation of the C·H2 group. All algorithms are implemented in the Maple package.

  7. Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values Q≫m

    Science.gov (United States)

    Bierenbaum, Isabella; Blümlein, Johannes; Klein, Sebastian

    2007-09-01

    We calculate the O(αs2) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q≫m. The calculation has been performed using light-cone expansion techniques. We confirm an earlier result obtained in [M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys. B 472 (1996) 611, arxiv:/hep-ph/9601302]. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a significant compactification of the analytic results derived previously. The results allow to determine the heavy flavor Wilson coefficients for F(x,Q) to O(αs2) and for F(x,Q) to O(αs3) for all but the power suppressed terms ∝(/Q)k,k⩾1.

  8. Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values Q2>>m2

    International Nuclear Information System (INIS)

    We calculate the O(α2s) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q2>>m2. The calculation has been performed using light.cone expansion techniques. We confirm an earlier result obtained in [1]. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a significant compactification of the analytic results derived previously. The results allow to determine the heavy flavor Wilson coefficients for F2(x,Q2) to O(α2s) and for FL(x,Q2) to O(α3s) for all but the power suppressed terms ∝(m2/Q2)k, k≥1. (orig.)

  9. The gluonic operator matrix elements at O({alpha}{sup 2}{sub s}) for DIS heavy flavor production

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, Isabella; Bluemlein, Johannes; Klein, Sebastian

    2008-12-15

    We calculate the O({alpha}{sup 2}{sub s}) gluonic operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q{sup 2} >> m{sup 2}, up to the linear terms in the dimensional parameter {epsilon}, (D= 4 + {epsilon}). These quantities are required for the description of parton distribution functions in the variable flavor number scheme (VFNS). The O({alpha}{sup 2}{sub s}{epsilon}) terms contribute at the level of the O({alpha}{sup 3}{sub s}) corrections through renormalization. We also comment on additional terms, which have to be considered in the fixed (FFNV) and variable flavor number scheme, adopting the MS scheme for the running coupling constant. (orig.)

  10. Two-Loop Massive Operator Matrix Elements and Unpolarized Heavy Flavor Production at Asymptotic Values Q^2 >> m^2

    CERN Document Server

    Bierenbaum, I; Klein, S; Bierenbaum, Isabella; Bl\\"umlein, Johannes; Klein, Sebastian

    2007-01-01

    We calculate the $O(\\alpha_s^2)$ massive operator matrix elements for the twist--2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region $Q^2 \\gg m^2$. The calculation has been performed using light--cone expansion techniques. We confirm an earlier result obtained in \\cite{Buza:1995ie}. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a significant compactification of the analytic results derived previously. The results allow to determine the heavy flavor Wilson coefficients for $F_2(x,Q^2)$ to $O(\\alpha_s^2)$ and for $F_L(x,Q^2)$ to $O(\\alpha_s^3)$ for all but the power suppressed terms $\\propto (m^2/Q^2)^k, k \\geq 1$.

  11. Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values Q2>>m2

    International Nuclear Information System (INIS)

    We calculate the O(αs2) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q2>>m2. The calculation has been performed using light-cone expansion techniques. We confirm an earlier result obtained in [M. Buza, Y. Matiounine, J. Smith, R. Migneron, W.L. van Neerven, Nucl. Phys. B 472 (1996) 611, (hep-ph/9601302)]. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a significant compactification of the analytic results derived previously. The results allow to determine the heavy flavor Wilson coefficients for F2(x,Q2) to O(αs2) and for FL(x,Q2) to O(αs3) for all but the power suppressed terms ∝(m2/Q2)k,k≥1

  12. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation

    Science.gov (United States)

    Stafilov, Trajče; Zendelovska, Dragica; Pavlovska, Gorica; Čundeva, Katarina

    2002-05-01

    The interferences of Ca and Mg as matrix elements in dolomite and gypsum on Ag, Cd, Cr, Mn, Tl and Zn absorbances during their electrothermal atomic absorption spectrometric (ETAAS) determination are investigated. The results reveal that Ca and Mg do not interfere on Zn and Mn, tend to decrease absorbances of Ag, Cd and Cr, while Tl suffers the most significant influence. A flotation separation method is proposed to eliminate matrix interferences. Hydrated iron(III) oxide, Fe 2O 3· xH 2O, and iron(III) hexamethylenedithiocarbamate, Fe(HMDTC) 3, are applied as flotation collectors. The influence of hydrophobic dithiocarbamate anion, HMDTC, on flotation recoveries of each analyte is studied. The most suitable concentrations of dolomite and gypsum solutions for flotation are determined. To avoid flotation suppression due to the reaction of Ca 2+ and Mg 2+ with surfactant ions, a fit foaming agent was selected. The elements present in dolomite and gypsum as traces have been analyzed by ETAAS. Their ETAAS limits of detection following flotation are found to be 0.021 μg·g -1 for Ag, 0.019 μg·g -1 for Cd, 0.014 μg·g -1 for Cr and 0.11 μg·g -1 for Tl. The determination of Mn and Zn can be performed by flame AAS (FAAS). The limit of detection for Mn is 1.5 μg·g -1, while for Zn 0.8 μg·g -1.

  13. FERM3D: A finite element R-matrix electron molecule scattering code

    Science.gov (United States)

    Tonzani, Stefano

    2007-01-01

    FERM3D is a three-dimensional finite element program, for the elastic scattering of a low energy electron from a general polyatomic molecule, which is converted to a potential scattering problem. The code is based on tricubic polynomials in spherical coordinates. The electron-molecule interaction is treated as a sum of three terms: electrostatic, exchange, and polarization. The electrostatic term can be extracted directly from ab initio codes ( GAUSSIAN 98 in the work described here), while the exchange term is approximated using a local density functional. A local polarization potential based on density functional theory [C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785] describes the long range attraction to the molecular target induced by the scattering electron. Photoionization calculations are also possible and illustrated in the present work. The generality and simplicity of the approach is important in extending electron-scattering calculations to more complex targets than it is possible with other methods. Program summaryTitle of program:FERM3D Catalogue identifier:ADYL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYL_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested:Intel Xeon, AMD Opteron 64 bit, Compaq Alpha Operating systems or monitors under which the program has been tested:HP Tru64 Unix v5.1, Red Hat Linux Enterprise 3 Programming language used:Fortran 90 Memory required to execute with typical data:900 MB (neutral CO 2), 2.3 GB (ionic CO 2), 1.4 GB (benzene) No. of bits in a word:32 No. of processors used:1 Has the code been vectorized?:No No. of lines in distributed program, including test data, etc.:58 383 No. of bytes in distributed program, including test data, etc.:561 653 Distribution format:tar.gzip file CPC Program library subprograms used:ADDA, ACDP Nature of physical problem:Scattering of an

  14. Selected Theoretical Issues in B-meson Physics: CKM matrix and Semileptonic Decays

    OpenAIRE

    I. M. Narodetskii(ITEP, Moscow)

    2003-01-01

    These notes are a written version of a lecture given at the International Seminar {\\it Modern Trends and Classical Approach} devoted to the 80$^{th}$ anniversary of Prof. Karen Ter-Martirosyan, ITEP September 30 -- October 1, 2002. The notes represent a non-technical review of our present knowledge on the phenomenology of weak decays of quarks, and their r\\^ole in the determination of the parameters of the Standard Model. They are meant as an introduction to some of the latest results and app...

  15. Aspects of CP violation with the BABAR detector. Constraints on the CKM Matrix

    International Nuclear Information System (INIS)

    This document presents the work done within the BABAR Collaboration as well as a phenomenological study on the interpretation of the B measurements related to the Unitarity Triangle. The read-out electronics of the Cerenkov detector, the DIRC, and especially the Time-Digital-Converter designed at LPNHE are described. Two major results of the BABAR Collaboration are presented: the measurement of the sin(2β) parameter in the b → ccs modes, which has established the CP violation in the B sector in 2001 and the study of CP asymmetries in the B0 → π+π- channel. The constraints on the Unitarity Triangle from the K0K0 system, the B semi-leptonic decays, the B oscillation parameters are in excellent agreement with those from sin(2β) and α. (author)

  16. Structural Anomalies Detected in Ceramic Matrix Composites Using Combined Nondestructive Evaluation and Finite Element Analysis (NDE and FEA)

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2003-01-01

    Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans

  17. New determination of double-beta-decay properties in 48Ca: high-precision Q-value measurement and improved nuclear matrix element calculations

    CERN Document Server

    Kwiatkowski, A A; Holt, J D; Chaudhuri, A; Chowdhury, U; Eibach, M; Engel, J; Gallant, A T; Grossheim, A; Horoi, M; Lennarz, A; Macdonald, T D; Pearson, M R; Schultz, B E; Simon, M C; Senkov, R A; Simon, V V; Zuber, K; Dilling, J

    2013-01-01

    We report a direct measurement of the Q-value of the neutrinoless double-beta-decay candidate 48Ca at the TITAN Penning-trap mass spectrometer, with the result that Q = 4267.98(32) keV. We measured the masses of both the mother and daughter nuclides, and in the latter case found a 1 keV deviation from the literature value. In addition to the Q-value, we also present results of a new calculation of the neutrinoless double-beta-decay nuclear matrix element of 48Ca. Using diagrammatic many-body perturbation theory to second order to account for physics outside the valence space, we constructed an effective shell-model double-beta-decay operator, which increased the nuclear matrix element by about 75% compared with that produced by the bare operator. The new Q-value and matrix element strengthen the case for a 48Ca double-beta-decay experiment.

  18. Measurements of b → u amplitude and CKM weak phase γ using B0 → D0K*0 decays reconstructed with the BABAR detector

    International Nuclear Information System (INIS)

    In this thesis we present CP violation studies in the B mesons system, and in particular measurements of the angle γ of the Unitarity Triangle, using data collected by the BABAR experiment. The angle γ is the relative weak phase between the Vub and Vcb elements of the CKM matrix. A crucial parameter, which drives the sensitivity to γ, is the ratio r between b → u and b → c transition amplitudes. In the first part of the thesis, general issues on γ studies and the status of the present measurements are introduced. The experimental work is then detailed. It is composed of two different analyses of B0 → D0(D-bar0)K*0. In the first analysis, these decays are studied through the ADS method, where the neutral D mesons are reconstructed into K±π±, K±π±π0 and K±π±π±π± final states. This analysis allows us to determine, for the first time, the ratio r for B0 → D0(D-bar0)K*0, which is found to be r equals (0.260 +0.077 -0.088). The large value for the parameter r makes the use of this channel interesting for present and future facilities, for the determination of γ. In the second analysis, the channel B0 → D0(D-bar0)K*0 is studied with a Dalitz method and the neutral D mesons are reconstructed into KSπ+π- final states. The determination of γ from this analysis is γ equals (162 ± 56) degrees, with a 180 degrees ambiguity. The result for r from the combination of the two analyses is: r equals (0.259 +0.073 -0.079). These results represent the first constraints on γ and r obtained from neutral B decays. Finally, data driven simulation studies are discussed, which show that the study of the B0 → D0(D-bar0)K*0 is competitive, for the determination of γ, with the other analysis aiming to extract γ from charged B decays. (author)

  19. Matrix elements of intraband transitions in quantum dot intermediate band solar cells: the influence of quantum dot presence on the extended-state electron wave-functions

    International Nuclear Information System (INIS)

    The intraband transitions which are essential for quantum dot intermediate band solar cells (QD IBSCs) are theoretically investigated by estimating the matrix elements from a ground bound state, which is often regarded as an intermediate band (IB), to conduction band (CB) states for a structure with a quantum dot (QD) embedded in a matrix (a QD/matrix structure). We have found that the QD pushes away the electron envelope functions (probability densities) from the QD region in almost all quantum states above the matrix CB minimum. As a result, the matrix elements of the intraband transitions in the QD/matrix structure are largely reduced, compared to those calculated assuming the envelope functions of free electrons (i.e., plane-wave envelope functions) in a matrix structure as the final states of the intraband transitions. The result indicates the strong influence of the QD itself on the intraband transitions from the IB to the CB states in QD IBSC devices. This work will help in better understanding the problem of the intraband transitions and give new insight, that is, engineering of quantum states is indispensable for the realization of QD IBSCs with high solar energy conversion efficiencies. (paper)

  20. Tensor hypercontraction: A universal technique for the resolution of matrix elements of local, finite-range $N$-body potentials in many-body quantum problems

    CERN Document Server

    Parrish, Robert M; Schunck, Nicolas F; Sherrill, C David; Martinez, Todd J

    2013-01-01

    Configuration-space matrix elements of N-body potentials arise naturally and ubiquitously in the Ritz-Galerkin solution of many-body quantum problems. For the common specialization of local, finite-range potentials, we develop the Tensor HyperContraction (THC) method, which provides a quantized renormalization of the coordinate-space form of the $N$-body potential, allowing for a highly separable tensor factorization of the configuration-space matrix elements. This representation allows for substantial computational savings in chemical, atomic, and nuclear physics simulations, particularly with respect to difficult "exchange-like" contractions.

  1. Nuclear transition matrix elements for Majoron-accompanied neutrinoless double-β decay within a projected-Hartree-Fock-Bogoliubov model

    Science.gov (United States)

    Rath, P. K.; Chandra, R.; Chaturvedi, K.; Lohani, P.; Raina, P. K.

    2016-02-01

    The model-dependent uncertainties in the nuclear transition matrix elements for the Majoron-accompanied neutrinoless double-β decay (0+→0+transition) of Zr,9694, 100Mo, Te,130128, and 150Nd isotopes are calculated by employing the projected-Hartree-Fock-Bogoliubov formalism with four different parametrizations of the pairing plus multipolar two-body interactions and three different parametrizations of the Jastrow short-range correlations. Uncertainties in the nuclear transition matrix elements turn out to be less than 15% and 21% for decays involving the emission of single and double Majorons, respectively.

  2. Weak Matrix Elements of Beyond the Standard Model $\\Delta s=2$ four-quark operators from nf=2+1 Domain-Wall fermions

    CERN Document Server

    Garron, Nicolas; Hudspith, Renwick J; Lytle, Andrew T

    2012-01-01

    We report on our computation of the hadronic matrix elements of the four-quark operators needed for the study of $K^0-{\\bar K^0}$ mixing beyond the Standard Model (SM). We consider nf=2+1 Domain-Wall fermions on Iwasaki gauge action with lightest unitary pion of 290 MeV and a single lattice spacing a=0.086 fm. The renormalization is performed non-perturbatively through the RI-MOM scheme and our results are converted perturbatively to MSbar. We have estimated the various systematic errors. Our results confirm a previous quenched study, where large ratios of non-SM to SM matrix elements were obtained.

  3. Improving the measurement of the CKM phase $\\phi_2 = \\alpha$ in $B \\to \\pi \\pi$ and $B \\to \\rho \\rho$ decays

    CERN Document Server

    Gronau, Michael

    2016-01-01

    CP-violating asymmetries in $B \\to \\pi \\pi$ and $B \\to \\rho \\rho$ decays can help specify the weak phase $\\phi_2 = \\alpha$ of the Cabibbo-Kobayashi-% Maskawa (CKM) matrix. We discuss the impact of improved measurements of these processes such as will be available in the near future, finding special value in better measurement of the time-dependent CP violation parameter $S_{00}$ in $B^0 \\to \\pi^0 \\pi^0$ and $B^0 \\to \\rho^0 \\rho^0$. Reducing the errors on $B \\to \\rho \\rho$ measurements by a factor of two can potentially lead to an error in $\\phi_2 = \\alpha$ just above $2^\\circ$, at which level isospin-breaking corrections must be considered.

  4. Search for rare processes with a Z+bb signature at the LHC, with the matrix element method

    CERN Document Server

    Beluffi, Camille; Lemaitre, Vincent

    This thesis presents a detailed study of the final state with the Z boson decaying into two leptons, produced in the CMS detector at the LHC. In order to tag this topology, sophisticated b jet tagging algorithms have been used, and the calibration of one of them, the Jet Probability (JP) tagger is exposed. A study of the tagger degradation at high energy has been done and led to a small gain of performance. This investigation is followed by the search for the associated production of the standard model (SM) Higgs boson with a Z boson and decaying into two b quarks (ZH channel), using the Matrix Element Method (MEM) and two b-taggers: JP and Combined Secondary Vertex (CSV). The MEM is an advanced tool that produces an event-by-event discriminating variable, called weight. To apply it, several sets of transfer function have been produced. The final results give an observed limit on the ZH production cross section with the H → bb branching ratio of 5.46xσSM when using the CSV tagger and 4.89xσSM when using t...

  5. A novel approach for computing glueball masses and matrix elements in Yang-Mills theories on the lattice

    CERN Document Server

    Della Morte, Michele

    2011-01-01

    We make use of the global symmetries of the Yang-Mills theory on the lattice to design a new computational strategy for extracting glueball masses and matrix elements which achieves an exponential reduction of the statistical error with respect to standard techniques. By generalizing our previous work on the parity symmetry, the partition function of the theory is decomposed into a sum of path integrals each giving the contribution from multiplets of states with fixed quantum numbers associated to parity, charge conjugation, translations, rotations and central conjugations Z_N^3. Ratios of path integrals and correlation functions can then be computed with a multi-level Monte Carlo integration scheme whose numerical cost, at a fixed statistical precision and at asymptotically large times, increases power-like with the time extent of the lattice. The strategy is implemented for the SU(3) Yang--Mills theory, and a full-fledged computation of the mass and multiplicity of the lightest glueball with vacuum quantum ...

  6. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    International Nuclear Information System (INIS)

    A measurement of the top quark mass in t(bar t) → l + jets candidate events, obtained from p(bar p) collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t(bar t) production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2

  7. Observable phi-eta-star at LHC and second-order QED matrix element in Z/gamma to l+ l- decays

    CERN Document Server

    Doan, Thi Kieu Oanh; Was, Z

    2013-01-01

    In a recent publication by ATLAS collaboration a new observable, the so-called phi-star angle, was used for precise measurement of transverse Z momentum. One of the dominant systematic errors for this measurement originates from the theoretical control of QED final-state bremsstrahlung. At present, it is estimated at the 0.3% level for the shape of the phi-star distribution. In this paper we discuss the possible effects of the second-order QED matrix element for that quantity. For that purpose, results from simulations based on the Yennie--Frautchi--Suura (YFS) exponentiation and featuring the second-order matrix elements are used and compared with the case when the matrix element is restricted to the first order. From this study we conclude that in order to reach the precision below 0.3% for the phi-star distribution at the LHC, inclusion of the second-order QED matrix element in a respective Monte Carlo event generator is necessary.

  8. A measurement of the top quark mass in 1.96 TeV proton-antiproton collisions using a novel matrix element method

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, John C.; /LBL, Berkeley

    2007-12-01

    A measurement of the top quark mass in t{bar t} {yields} l + jets candidate events, obtained from p{bar p} collisions at {radical}s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix elements techniques, the method involves an integration using the Standard Model matrix element for tt production and decay. however, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb{sup -1} data sample, using events with a high-p{sub T} lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find M{sub meas} = 169.8 {+-} 2.3(stat.) {+-} 1.4(syst.) GeV/c{sup 2}.

  9. Study on the photosensitive properties of the charge-coupled matrix as the element for measuring instruments of nuclear-physical experiment

    International Nuclear Information System (INIS)

    The main characteristics (sensitivity linearity, dynamical range and time of keeping the analogue signal) of the photomatrix assembled on charge-coupled devices (CCD) are investigated. The matrix comprising 144x232 elements have been used as a photosensitive element. The flowsheet of the bench for investigating CCD characteristics is presented. It is stated on the base of the results obtained that the dynamical range of the matrix on the CCD equals 100. Time of keeping analogue signal makes up dozens of milliseconds. Application matrix CCD with optical data input permits to decrease instrument expenditures by 100. The results obtained are the basis for development of measuring technique of nuclear-physical experiment on charge-coupled instruments

  10. Neutrino masses and mixings in a predictive SO(10) model with CKM CP violation

    International Nuclear Information System (INIS)

    It has recently been shown that a minimal SO(10) model with a single 10 and a single 126 Higgs field breaking B-L symmetry predicts large solar and atmospheric mixings in agreement with observations if it is assumed that the neutrino mass obeys the type II seesaw formula. No additional symmetries need to be assumed for this purpose. Understanding CP violation in the renormalizable version of the model, however, requires a significant non-CKM source. In this Letter we show that if we extend the model by the inclusion of a heavy 120-dimensional Higgs field, then it can accommodate CKM CP violation while remaining predictive in the neutrino sector. Among the predictions are: (i) solar mixing angle in the observed range; (ii) θ13 in the range of 0.1 to 0.26; (iii) the Dirac phase close to maximal for the central value of the solar mixing angle

  11. Improved Determination of the CKM Angle alpha from B to pi pi decays

    OpenAIRE

    UTfit Collaboration; Bona, M.; Ciuchini, M.; Franco, E.; Lubicz, V.; Martinelli, G; Parodi, F.; Pierini, M.; Roudeau, P.; Schiavi, C.; Silvestrini, L.; Sordini, V.; Stocchi, A.; Vagnoni, V.

    2007-01-01

    Motivated by a recent paper that compares the results of the analysis of the CKM angle alpha in the frequentist and in the Bayesian approaches, we have reconsidered the information on the hadronic amplitudes, which helps constraining the value of alpha in the Standard Model. We find that the Bayesian method gives consistent results irrespective of the parametrisation of the hadronic amplitudes and that the results of the frequentist and Bayesian approaches are equivalent when comparing meanin...

  12. Determination of Sub-Trace Sc, Y and Ln in Carbonate by ICP-MS with Inter-Element Matrix-Matched Technique

    Institute of Scientific and Technical Information of China (English)

    胡圣虹; 胡兆初; 刘勇胜; 林守麟; 高山

    2003-01-01

    A simple method for the determination of Sc, Y and Ln in carbonate at sub-μg*g-1 levels by ICP-MS with inter-elements matrix-matched technique was developed. A series of matrix-matched standard solution were prepared by adopting the normalized concentration values, which were calculated the statistic average compositions of reference values of REEs in carbonate standard reference materials. The matrix effects of Ca and Mg on REEs were studied in detail and the results show that the matrix effect of Ca and Mg can be ignored when the dilution factors are more than 1000. The combination of 115In and 103Rh as internal standard was selected to compensate the drift of analytical signals. The method proposed was applied to the analysis of ultra-trace REEs in carbonate references materials GSR-6, GSR-12 and real samples.

  13. Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions

    Science.gov (United States)

    Chen, Zhenhua; Chen, Xun; Wu, Wei

    2013-04-01

    In this series, the n-body reduced density matrix (n-RDM) approach for nonorthogonal orbitals and their applications to ab initio valence bond (VB) methods are presented. As the first paper of this series, Hamiltonian matrix elements between internally contracted VB wave functions are explicitly provided by means of nonorthogonal orbital based RDM approach. To this end, a more generalized Wick's theorem, called enhanced Wick's theorem, is presented both in arithmetical and in graphical forms, by which the deduction of expressions for the matrix elements between internally contracted VB wave functions is dramatically simplified, and the matrix elements are finally expressed in terms of tensor contractions of electronic integrals and n-RDMs of the reference VB self-consistent field wave function. A string-based algorithm is developed for the purpose of evaluating n-RDMs in an efficient way. Using the techniques presented in this paper, one is able to develop new methods and efficient algorithms for nonorthogonal orbital based many-electron theory much easier than by use of the first quantized formulism.

  14. Running sums for 2νββ-decay matrix elements within the quasiparticle random-phase approximation with account for deformation

    International Nuclear Information System (INIS)

    The 2νββ-decay running sums for 76Ge and 150Nd nuclei are calculated within a QRPA approach with account for deformation. A realistic nucleon-nucleon residual interaction based on the Brueckner G matrix (for the Bonn CD force) is used. The influence of different model parameters on the functional behavior of the running sums is studied. It is found that the parameter gpp renormalizing the G matrix in the QRPA particle-particle channel is responsible for a qualitative change in behavior of the running sums at higher excitation energies. For realistic values of gpp a significant negative contribution to the total 2νββ-decay matrix element is found to come from the energy region of the giant Gamow-Teller resonance. This behavior agrees with results of other authors.

  15. Measurement of the top quark mass with the matrix element method in the semileptonic decay channel at D0

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Petra

    2008-07-31

    The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with the W boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t anti t{yields}W{sup {+-}}W{sup -+}b anti b{yields}q anti ql{nu}b anti b is the ''golden channel'' for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb{sup -1} of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: m{sub t}=(169.2{+-}3.5(stat.){+-}1.0(syst.)) GeV. The

  16. Measurement of the top quark mass with the matrix element method in the semileptonic decay channel at D0

    International Nuclear Information System (INIS)

    The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with the W boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t anti t→W±W-+b anti b→q anti qlνb anti b is the ''golden channel'' for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb-1 of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: mt=(169.2±3.5(stat.)±1.0(syst.)) GeV. The simultaneous measurement of a scaling factor for the jet energy scale of

  17. On the Use of Finite Difference Matrix-Vector Products in Newton-Krylov Solvers for Implicit Climate Dynamics with Spectral Elements

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, David [Lawrence Livermore National Laboratory (LLNL); Woodward, Carol S. [Lawrence Livermore National Laboratory (LLNL); Evans, Katherine J [ORNL

    2015-01-01

    Efficient solution of global climate models requires effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a time step dictated by accuracy of the processes of interest rather than by stability governed by the fastest of the time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton s method is applied for these systems. Each iteration of the Newton s method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but this Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite-difference which may show a loss of accuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite-difference approximations of these matrix-vector products for climate dynamics within the spectral-element based shallow-water dynamical-core of the Community Atmosphere Model (CAM).

  18. The logarithmic contributions to the O(α{sup 3}{sub s}) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bierenbaum, I. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Klein, S. [RWTH Aachen Univ. (Germany). Inst. fuer Theoretische Teilchenphysik und Kosmologie; Wissbrock, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2014-03-15

    We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given both in Mellin-N space and z-space.

  19. The Logarithmic Contributions to the O(\\alpha_s^3) Asymptotic Massive Wilson Coefficients and Operator Matrix Elements in Deeply Inelastic Scattering

    CERN Document Server

    Behring, A; Blümlein, J; De Freitas, A; Klein, S; Wißbrock, F

    2014-01-01

    We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region $Q^2 \\gg m^2$ to 3-loop order in the fixed-flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given both in Mellin-$N$ space and $z$-space.

  20. A Measurement of the Top Quark Mass with the D0 Detector at s**(1/2) = 1.96-TeV using the Matrix Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Kroeninger, Kevin Alexander; /Bonn U.

    2004-04-01

    Using a data set of 158 and 169 pb{sup -1} of D0 Run-II data in the electron and muon plus jets channel, respectively, the top quark mass has been measured using the Matrix Element Method. The method and its implementation are described. Its performance is studied in Monte Carlo using ensemble tests and the method is applied to the Moriond 2004 data set.

  1. The logarithmic contributions to the O(α{sub s}{sup 3}) asymptotic massive Wilson coefficients and operator matrix elements in deeply inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Behring, A.; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Bierenbaum, I. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Klein, S. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Wissbrock, F. [Deutsches Elektronen Synchrotron, DESY, Zeuthen (Germany); Johannes Kepler University, Research Institute for Symbolic Computation (RISC), Linz (Austria); IHES, Bures-sur-Yvette (France)

    2014-09-15

    We calculate the logarithmic contributions to the massive Wilson coefficients for deep-inelastic scattering in the asymptotic region Q{sup 2} >> m{sup 2} to 3-loop order in the fixed flavor number scheme and present the corresponding expressions for the massive operator matrix elements needed in the variable flavor number scheme. Explicit expressions are given in Mellin N-space. (orig.)

  2. The transition matrix element A{sub gq}(N) of the variable flavor number scheme at O(α{sub s}{sup 3})

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Blümlein, J.; De Freitas, A. [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, A. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Manteuffel, A. von [PRISMA Cluster of Excellence and Institute of Physics, J. Gutenberg University, D-55099 Mainz (Germany); Round, M. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, C. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Wißbrock, F. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040 Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2014-05-15

    We calculate the massive unpolarized operator matrix element A{sub gq}{sup (3)}(N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O(α{sub s}{sup 3}). A first independent recalculation is performed for the contributions ∝N{sub F} of the 3-loop anomalous dimension γ{sub gq}{sup (2)}(N)

  3. The Transition Matrix Element $A_{gq}(N)$ of the Variable Flavor Number Scheme at $\\cal O(\\alpha_s^3)$

    OpenAIRE

    Ablinger, J.; Blümlein, J.; De Freitas, Abilio; Hasselhuhn, A.(Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, Linz, A-4040, Austria); von Manteuffel, A.; Round, M.; Schneider, C; Wissbrock, Fabian

    2014-01-01

    We calculate the massive operator matrix element $A_{gq}^{(3)}(N)$ to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable $N$. This is the first complete transition function needed in the variable flavor number scheme obtained at $O(\\alpha_s^3)$. A first independent recalculation is performed for the contributions $\\propto N_F$ of the 3-loop anomalous dimension $\\gamma_{gq}^{(2)}(N)$.

  4. The transition matrix element A{sub gq}(N) of the variable flavor number scheme at O({alpha}{sup 3}{sub s})

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Hasselhuhn, A.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence; Mainz Univ. (Germany). Inst. fuer Physik; Round, M.; Wissbrock, F. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2014-01-15

    We calculate the massive operator matrix element A{sup (3)}{sub gq}(N) to 3-loop order in Quantum Chromodynamics at general values of the Mellin variable N. This is the first complete transition function needed in the variable flavor number scheme obtained at O({alpha}{sup 3}{sub s}). A fist independent recalculation is performed for the contributions {proportional_to} N{sub F} of the 3-loop anomalous dimension {gamma}{sup (2)}{sub gq}(N).

  5. Use of Functionalized Resin for Matrix Separation and Trace Elements Determination in Petroleum Produced Formation Water by Inductively Coupled Plasma Mass Spectrometry

    OpenAIRE

    Ricardo Erthal Santelli; Aline Soares Freire; Eliane Padua Oliveira; Valfredo Azevedo Lemos; Cléber Galvão Novaes; Marcos Almeida Bezerra

    2012-01-01

    This work approaches the development of a procedure for separation and determination of five trace metals (Co, Cd, Pb, Ni, and Cu) from petroleum produced formation water. This procedure uses a styrene divinyl-benzene polymeric resin modified with 4-(5′-bromo-2′-tiazolilazo) orcinol, and the determination was performed by inductively coupled plasma mass spectrometry. A response surface methodology using a Doehlert matrix was used to optimize the solid-phase extraction of the studied elements....

  6. A Measurement of the Top Quark Mass in 1.96 TeV Proton-Antiproton Collisions Using a Novel Matrix Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, John [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    A measurement of the top quark mass in t$\\bar{t}$ → l + jets candidate events, obtained from p$\\bar{p}$ collisions at √s = 1.96 TeV at the Fermilab Tevatron using the CDF II detector, is presented. The measurement approach is that of a matrix element method. For each candidate event, a two dimensional likelihood is calculated in the top pole mass and a constant scale factor, 'JES', where JES multiplies the input particle jet momenta and is designed to account for the systematic uncertainty of the jet momentum reconstruction. As with all matrix element techniques, the method involves an integration using the Standard Model matrix element for t$\\bar{t}$ production and decay. However, the technique presented is unique in that the matrix element is modified to compensate for kinematic assumptions which are made to reduce computation time. Background events are dealt with through use of an event observable which distinguishes signal from background, as well as through a cut on the value of an event's maximum likelihood. Results are based on a 955 pb-1 data sample, using events with a high-pT lepton and exactly four high-energy jets, at least one of which is tagged as coming from a b quark; 149 events pass all the selection requirements. They find Mmeas = 169.8 ± 2.3(stat.) ± 1.4(syst.) GeV/c2.

  7. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, Eduardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Maestre, Salvador E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, Jose L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain)]. E-mail: jose.todoli@ua.es

    2006-03-15

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l{sup -1} in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l{sup -1} for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min.

  8. Use of stirred tanks for studying matrix effects caused by inorganic acids, easily ionized elements and organic solvents in inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    A stirred tank was used for the first time to elucidate the mechanism responsible for inductively coupled plasma atomic emission spectroscopy (ICP-AES) matrix effects caused by inorganic, acids and easily ionized elements (EIEs), as well as organic, ethanol and acetic acid, compounds. In order to gradually increase the matrix concentration, a matrix solution was introduced inside a stirred container (tank) initially filled with an aqueous multielement standard. PolyTetraFluoroEthylene (PTFE) tubing was used to deliver the resulting solution to the liquid sample introduction system. Matrix concentration ranged from 0 to 2 mol l-1 in the case of inorganic acids (i.e., nitric, sulfuric, hydrochloric and a mixture of them), from 0 to about 2500 mg l-1 for EIEs (i.e., sodium, calcium and mixtures of both) and from 0% to 15%, w/w for organic compounds. Up to 40-50 different solutions were prepared and measured in a period of time shorter than 6-7 min. This investigation was carried out in terms of emission intensity and tertiary aerosols characteristics. The experimental setup used in the present work allowed to thoroughly study the effect of matrix concentration on analytical signal. Generally speaking, the experiments concerning tertiary aerosol characterization revealed that, in the case of inorganic acids and EIEs, the mechanism responsible for changes in aerosol characteristics was the droplet fission. In contrast, for organic matrices it was found that the interference was caused by a change in both aerosol transport and plasma thermal characteristics. The extent of the interferences caused by organic as well as inorganic compounds was compared for a set of 14 emission lines through a wide range of matrix concentrations. With a stirred tank, it is possible to choose an efficient internal standard for any given matrix composition. The time required to complete this procedure was shorter than 7 min

  9. Perspectives of detecting CKM-suppressed top quark decays at ILC

    OpenAIRE

    Diaz-Cruz, J. L.; Pagliarone, C.

    2006-01-01

    Top quark decays are of particular interest as a mean to test the standard model (SM) predictions, both for the dominant ($t\\to b+W$) and rare decays ($t\\to q+W, cV, cVV,c\\phi^0,bWZ$). As the latter are highly suppressed, they become an excellent window to probe the predictions of theories beyond the SM. In particular, in this paper, we evaluate the corrections from new physics to the CKM-suppressed SM top quark decay $t\\to q+W$ ($q=d,s$), both within the effective lagrangian approach and the...

  10. Estimating $r_{B}^{D\\pi}$ as input to the determination of CKM angle $\\gamma$

    CERN Document Server

    Kenzie, Matthew; Tuning, Niels

    2016-01-01

    The interference between Cabibbo-favoured and Cabibbo-suppressed $B\\to D\\pi$ decay amplitudes provides sensitivity to the CKM angle $\\gamma$. The relative size of the interfering amplitudes is an important ingredient in the determination of $\\gamma$. Using branching fractions from various $B\\to Dh$ decays, and the measured value for $r_{B}^{DK}$, the magnitude of the amplitude ratio of $B^+\\to D^0\\pi^+$ and $B^+\\to \\bar{D}^0\\pi^+$ decays is estimated to be $r_{B}^{D\\pi} = 0.0053 \\pm 0.0007$.

  11. Matrix Tile Analysis

    OpenAIRE

    Givoni, Inmar; Cheung, Vincent; Frey, Brendan J.

    2012-01-01

    Many tasks require finding groups of elements in a matrix of numbers, symbols or class likelihoods. One approach is to use efficient bi- or tri-linear factorization techniques including PCA, ICA, sparse matrix factorization and plaid analysis. These techniques are not appropriate when addition and multiplication of matrix elements are not sensibly defined. More directly, methods like bi-clustering can be used to classify matrix elements, but these methods make the overly-restrictive assumptio...

  12. Measurement of the top quark mass with the matrix element method in the semileptonic decay channel at D0

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Petra [Ludwig Maximilian Univ., Munich (Germany)

    2008-07-31

    The top quark plays a special role in the Standard Model of Particle Physics. With its enormous mass of about 170 GeV it is as heavy as a gold atom and is the only quark with a mass near the electroweak scale. Together with theW boson mass, the top quark mass allows indirect constraints on the mass of the hypothetical Higgs boson, which might hold the clue to the origin of mass. Top pair production with a semileptonic decay t $\\bar{t}$ →W±W b$\\bar{b}$ →q $\\bar{t}$lnb$\\bar{b}$ is the ”golden channel” for mass measurements, due to a large branching fraction and a relatively low background contamination compared to other decay channels. Top mass measurements based on this decay, performed with the matrix element method, have always been among the single best measurements in the world. In 2007, the top mass world average broke the 1% level of precision. Its measurement is no longer dominated by statistical but instead by systematic uncertainties. The reduction of systematic uncertainties has therefore become a key issue for further progress. This thesis introduces two new developments in the treatment of b jets. The first improvement is an optimization in the way b identification information is used. It leads to an enhanced separation between signal and background processes and reduces the statistical uncertainty by about 16%. The second improvement determines differences in the detector response and thus the energy scales of light jets and b jets. Thereby, it addresses the major source of systematic uncertainty in the latest top mass measurements. The method was validated on Monte Carlo events at the generator level, calibrated with fully simulated events, including detector simulation, and applied to D0 Run II data corresponding to 1 fb-1 of integrated luminosity. Possible sources of systematic uncertainties were studied. The top mass is measured to be: mt = (169.2±3.5(stat.)±1.0(syst.)) GeV . The

  13. Constraints on the CKM angle $\\gamma$ and extensions with $B^\\pm$ $\\to DK^{\\ast} {^\\pm}$ decays at LHCb

    CERN Multimedia

    Nandi, Anita Katharine

    2016-01-01

    CKM angle $\\gamma$ is the least well know of the unitary triangle angles. The most common decay modes studied to determine $\\gamma$ are of the form $B \\to DK$. These have been extensively looked at in Run 1 at LHCb. Another possibility for LHCb are decays of the type $B^{\\pm} \\to DK^{*\\pm}$. A preliminary look at this final state in the Cabibbo favoured decay of the $D$, $D \\to K\\pi$ is presented. Data from Run1 and Run2 are used. Further analysis of the other $D \\to hh$ modes will give sensitivity to the CKM angle $\\gamma$.

  14. Testing the CKM picture of flavour and CP violation in rare K and B decays and particle-antiparticle mixing

    International Nuclear Information System (INIS)

    We summarize briefly the CKM picture of flavour and CP violation that governs the models with minimal flavour violation (MFV). We then describe how this framework can be effectively tested through particle-antiparticle mixing and rare K and B decays. In particular we provide a list of theoretically clean tests that the simplest version of the MFV framework, the constrained MFV hypothesis, has to face in the coming years. Finally we offer a brief look at the most popular SM extensions that go beyond the CKM framework like the general MSSM, Little Higgs model with T-parity and Randall-Sundrum models with bulk fermions. (author)

  15. Detection of Matrix Elements and Trace Impurities in Cu(In, Ga)Se2 Photovoltaic Absorbers Using Surface Analytical Techniques.

    Science.gov (United States)

    Kim, Min Jung; Lee, Jihye; Kim, Seon Hee; Kim, Haidong; Lee, Kang-Bong; Lee, Yeonhee

    2015-10-01

    Chalcopyrite Cu(In, Ga)Se2 (CIGS) thin films are well known as the next-generation solar cell materials notable for their high absorption coefficient for solar radiation, suitable band gap, and ability for deposition on flexible substrate materials, allowing the production of highly flexible and lightweight solar panels. To improve solar cell performances, a quantitative and depth-resolved elemental analysis of photovoltaic thin films is much needed. In this study, Cu(In, Ga)Se2 thin films were prepared on molybdenum back contacts deposited on soda-lime glass substrates via three-stage evaporation. Surface analyses via AES and SIMS were used to characterize the CIGS thin films and compare their depth profiles. We determined the average concentration of the matrix elements, Cu, In, Ga, and Se, using ICP-AES, XRF, and EPMA. We also obtained depth profiling results using TOF-SIMS, magnetic sector SIMS and AES, and APT, a sub-nanometer resolution characterization technique that enables three-dimensional elemental mapping. The SIMS technique, with its high detection limit and ability to obtain the profiles of elements in parallel, is a powerful tool for monitoring trace elements in CIGS thin films. To identify impurities in a CIGS layer, the distribution of trace elements was also observed according to depth by SIMS and APT. PMID:26726401

  16. Measurement of the partial branching fraction for inclusive semileptonic B meson decays to light hadrons B {yields} X{sub u}lv and an improved determination of the quark-mixing matrix element vertical stroke V{sub ub} vertical stroke

    Energy Technology Data Exchange (ETDEWEB)

    Volk, Alexei

    2009-07-01

    This thesis presents an analysis of inclusive semileptonic B{yields} X{sub u}e anti {nu}{sub e} decays using approximately 454 million {upsilon}(4S){yields}B anti B decays collected during the years 1999 to 2008 with the BABAR detector. The electron energy, E{sub e}, and the invariant mass squared of the electron-neutrino pair, q{sup 2}, are reconstructed, where the neutrino kinematics is deduced from the decay products of both B mesons. The final hadronic state, X{sub u}, consists of a sum of many hadronic channels, each of which contains at least one u quark. The variables q{sup 2} and E{sub e} are then combined to compute the maximum kinematically allowed invariant mass squared of the hadronic system, s{sub h}{sup max}. Using these kinematic quantities, the partial branching fraction, {delta}B(B {yields} X{sub u}lv), unfolded for detector effects, is measured to be {delta}B(E{sub e}>2.0 GeV, s{sub h}{sup max}<3.52 GeV{sup 2}) (3.33{+-}0.18{+-}0.21) x 10{sup -4} in the {upsilon}(4S) and {delta}B(E{sub e}>1.9 GeV, s{sub h}{sup max}<3.5 GeV{sup 2})= (4.57{+-}0.24{+-}0.32) x 10{sup -4} in the B meson rest frames. The quoted errors are statistical and systematic, respectively. The CKM matrix element vertical stroke V{sub ub} vertical stroke is determined from the measured {delta}B using theoretical calculation based on Heavy Quark Expansion. The result is vertical stroke V{sub ub} vertical stroke =(4.19{+-}0.18{sub -0.20-0.25}{sup +0.26+0.26}) x 10{sup -3}, where the errors represent experimental uncertainties, uncertainties from HQE parameters and theoretical uncertainties, respectively. (orig.)

  17. POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field

    Science.gov (United States)

    Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.

    2008-02-01

    A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data

  18. Formulae for the determination of the elements of the E\\"otvos matrix of the Earth's normal gravity field and a relation between normal and actual Gaussian curvature

    CERN Document Server

    Manoussakis, G

    2011-01-01

    In this paper we form relations for the determination of the elements of the E\\"otv\\"os matrix of the Earth's normal gravity field. In addition a relation between the Gauss curvature of the normal equipotential surface and the Gauss curvature of the actual equipotential surface both passing through the point P is presented. For this purpose we use a global Cartesian system (X, Y, Z) and use the variables X, and Y to form a local parameterization a normal equipotential surface to describe its fundamental forms and the plumbline curvature. The first and second order partial derivatives of the normal potential can be determined from suitable matrix transformations between the global Cartesian coordinates and the ellipsoidal coordinates. Due to the symmetry of the field the directions of the local system (x, y, z) are principal directions hence the first two diagonal elements of the E\\"otv\\"os matrix with the measure of the normal gravity vector are sufficient to describe the Gauss curvature of the normal equipot...

  19. Feature extraction and recognition for rolling element bearing fault utilizing short-time Fourier transform and non-negative matrix factorization

    Science.gov (United States)

    Gao, Huizhong; Liang, Lin; Chen, Xiaoguang; Xu, Guanghua

    2015-01-01

    Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, the time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classify the high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3% mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.

  20. Feature Extraction and Recognition for Rolling Element Bearing Fault Utilizing Short-Time Fourier Transform and Non-negative Matrix Factorization

    Institute of Scientific and Technical Information of China (English)

    GAO Huizhong; LIANG Lin; CHEN Xiaoguang; XU Guanghua

    2015-01-01

    Due to the non-stationary characteristics of vibration signals acquired from rolling element bearing fault, the time-frequency analysis is often applied to describe the local information of these unstable signals smartly. However, it is difficult to classify the high dimensional feature matrix directly because of too large dimensions for many classifiers. This paper combines the concepts of time-frequency distribution(TFD) with non-negative matrix factorization(NMF), and proposes a novel TFD matrix factorization method to enhance representation and identification of bearing fault. Throughout this method, the TFD of a vibration signal is firstly accomplished to describe the localized faults with short-time Fourier transform(STFT). Then, the supervised NMF mapping is adopted to extract the fault features from TFD. Meanwhile, the fault samples can be clustered and recognized automatically by using the clustering property of NMF. The proposed method takes advantages of the NMF in the parts-based representation and the adaptive clustering. The localized fault features of interest can be extracted as well. To evaluate the performance of the proposed method, the 9 kinds of the bearing fault on a test bench is performed. The proposed method can effectively identify the fault severity and different fault types. Moreover, in comparison with the artificial neural network(ANN), NMF yields 99.3%mean accuracy which is much superior to ANN. This research presents a simple and practical resolution for the fault diagnosis problem of rolling element bearing in high dimensional feature space.

  1. Matrix calculus

    CERN Document Server

    Bodewig, E

    1959-01-01

    Matrix Calculus, Second Revised and Enlarged Edition focuses on systematic calculation with the building blocks of a matrix and rows and columns, shunning the use of individual elements. The publication first offers information on vectors, matrices, further applications, measures of the magnitude of a matrix, and forms. The text then examines eigenvalues and exact solutions, including the characteristic equation, eigenrows, extremum properties of the eigenvalues, bounds for the eigenvalues, elementary divisors, and bounds for the determinant. The text ponders on approximate solutions, as well

  2. On the possibility of reprocessing of fuel elements of dispersion type with copper matrix by pyrochemical methods

    International Nuclear Information System (INIS)

    A consideration is given to pyrochemical processes suitable for separation of uranium dioxide from structural materials when reprocessing cermet type fuel elements. The estimation of the possibility to apply liquid antimony and bismuth, potassium and copper chlorides melts is made. The specimens compacted of copper and uranium dioxide powders in a stainless steel can are used as simulators of fuel element sections. It is concluded that the dissolution of structural materials in molten salts at the stage of uranium dioxide concentration is the process of choice for reprocessing of dispersion type fuel elements

  3. Intercomparison and certification of some Chinese and international food and biological matrix CRMs for several uncertified ultratrace elements by NAA

    International Nuclear Information System (INIS)

    Radiochemical neutron activation analysis was used for determinations of 8 rare elements (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in two Chinese CRMs, GBW 08503 (wheat) and GBW 09101 (hair), and Cs, Sr, Th and U in five NIST SRMs, 1548 (Total Diet), 1486 (Bone Meal), 8414 (Bovine Muscle), 1566a (Oyster Powder ) and 1575 (Pine Needles). These determinations are for eventual certification of above ultratrace elements so far not certified. The radiochemical separation scheme used in RNAA of NIST SRMs is an anion exchange followed by the coprecipitation by (REE)F3 for U and Th, and SrSo4 precipitation for Sr and Cs. For RNAA of the two Chinese CRMs, a one step (REE)F3 precipitation was used. Chemical yields were determined for all relevant elements by tracer experiments. All these materials were also analyzed by ICPMS, that offered an opportunity to compare the two major trace analytical techniques on their merits and drawbacks for these particular cases. RNAA is proven to be one of the important techniques in ultratrace analysis, especially in certification of some ultratrace elements. Determination of elements in sub-ng/g level is still an area to be further investigated because: (1) some such elements are important in food and health related environmental studies, (2) many of these elements have no (or very few) certified values in existing biological CRMs, (3) reliable techniques qualified for ultratrace analysis are needed to be established, and (4) sampling behavior of elements at these levels is still not very well known (recommended minimum sample size may not be adequate). (author)

  4. Lead hexamethylenedithiocarbamate as a chelate matrix for preconcentration and subsequent neutron-activation determination of trace elements in natural waters

    International Nuclear Information System (INIS)

    The authors studied the coprecipitation of trace elements with lead hexamethylenedithiocarbamate. The following elements were found to quantitatively preconcentrate at pH 5-7: Au(III), Ag(I), Co(II), Cr(III), Fe(III), Zn(II), Sb(III), and Hg(II). The preconcentration method developed was used for the neutron-activation analysis of waters from the central part of the Indian Ocean

  5. Formulae for the determination of the elements of the E\\"otvos matrix of the Earth's normal gravity field and a relation between normal and actual Gaussian curvature

    OpenAIRE

    Manoussakis, G.; Delikaraoglou, D.

    2011-01-01

    In this paper we form relations for the determination of the elements of the E\\"otv\\"os matrix of the Earth's normal gravity field. In addition a relation between the Gauss curvature of the normal equipotential surface and the Gauss curvature of the actual equipotential surface both passing through the point P is presented. For this purpose we use a global Cartesian system (X, Y, Z) and use the variables X, and Y to form a local parameterization a normal equipotential surface to describe its ...

  6. Charge-Transfer Matrix Elements by FMO-LCMO Approach: Hole Transfer in DNA with Parameter Tuned Range-Separated DFT

    CERN Document Server

    Kitoh-Nishioka, Hirotaka

    2016-01-01

    A scheme for computing charge-transfer matrix elements with the linear combination of fragment molecular orbitals and the 'nonempirically tuned range-separated' density functional is presented. It takes account of the self-consistent orbital relaxation induced by environmental Coulomb field and the exchange interaction in fragment pairs at low computational scaling along the system size. The accuracy was confirmed numerically on benchmark systems of imidazole and furane homo-dimer cations. Applications to hole transfers in DNA nucleobase pairs and in a $\\pi$-stack adenine octomer highlight the effects of orbital relaxation.

  7. Nuclear matrix elements for 0νβ−β− decays: Comparative analysis of the QRPA, shell model and IBM predictions

    International Nuclear Information System (INIS)

    In this work we report on general properties of the nuclear matrix elements involved in the neutrinoless double β− decays (0νβ−β− decays) of several nuclei. A summary of the values of the NMEs calculated along the years by the Jyväskylä-La Plata collaboration is presented. These NMEs, calculated in the framework of the quasiparticle random phase approximation (QRPA), are compared with those of the other available calculations, like the Shell Model (ISM) and the interacting boson model (IBA-2)

  8. Reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of tau leptons using matrix element techniques

    CERN Document Server

    Bianchini, L; Conway, J; Fowlie, A; Marzola, L; Veelken, C

    2016-01-01

    We present an algorithm for the reconstruction of the Higgs mass in events with Higgs bosons decaying into a pair of tau leptons. The algorithm is based on matrix element (ME) techniques and achieves a relative resolution on the Higgs boson mass of typically 15-20%. A previous version of the algorithm has been used in analyses of Higgs boson production performed by the CMS collaboration during LHC Run 1. The algorithm is described in detail and its performance on simulated events is assessed. The development of techniques to handle tau decays in the ME formalism represents an important result of this paper.

  9. Measurement of the CKM angle gamma in the B⁰->DK*⁰ decays using the Dalitz method in the LHCb experiment at CERN and photon reconstruction optimisation for the LHCb detector upgrade

    CERN Document Server

    Vallier, Alexis

    Quark mixing is described in the standard model of particle physics with the Cabibbo-Kobayashi-Maskawa mecanism. The angle gamma of the unitarity triangle is one of the parameters of this mecanism that is still determined with a large uncertainty. It can be measured without significant contribution of new physics, making it a standard model key measurement. The current precision of the best direct measurement of gamma is approximately 10°, whereas the global fits of the CKM parameters determine this angle up to a few degrees. Therefore precise measurement of this quantity is needed to further constrain the Unitarity Triangle of the CKM matrix, and check the consistency of the theory. This thesis reports a measurement of gamma with a Dalitz analysis of the B0->DK*0 channel where the D meson decays into K0Spipi, based on the 3 fb⁻¹ of proton-proton collision data collected by LHCb during the LHC Run I, at the centre-of-mass energy of 7 and 8 TeV. This channel is sensitive to gamma through the interference b...

  10. Application of the matrix element method in the search for ttH, $H\\to b\\overline{b}$ in the lepton+jets channel, using the ATLAS detector

    CERN Document Server

    Connelly, Ian; The ATLAS collaboration

    2015-01-01

    A talk summarising the use of the matrix element method in the lepton+jets ttH ($H\\to b\\bar{b}$) search channel with the 8 TeV dataset collected by ATLAS. A brief outline of the analysis strategy is presented followed by some details on the calculation of the matrix element method in creating a discriminating variable designed to separate two classes of events.

  11. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix

    Science.gov (United States)

    Iarovaia, Olga V.; Akopov, Sergey B.; Nikolaev, Lev G.; Sverdlov, Eugene D.; Razin, Sergey V.

    2005-01-01

    The spatial organization of an ∼170 kb region of human chromosome 19, including CD22 and GPR40–GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  12. Induction of transcription within chromosomal DNA loops flanked by MAR elements causes an association of loop DNA with the nuclear matrix.

    Science.gov (United States)

    Iarovaia, Olga V; Akopov, Sergey B; Nikolaev, Lev G; Sverdlov, Eugene D; Razin, Sergey V

    2005-01-01

    The spatial organization of an approximately 170 kb region of human chromosome 19, including CD22 and GPR40-GPR43 genes, was studied using in situ hybridization of a set of cosmid and PAC probes with nuclear halos prepared from proliferating and differentiated HL60 cells. The whole region under study was found to be looped out into the nuclear halo in proliferating cells. It is likely that the loop observed was attached to the nuclear matrix via MAR elements present at the flanks of the area under study. Upon dimethyl sulfoxide-induced differentiation of the cells the looped fragment became associated with the nuclear matrix. This change in the spatial organization correlated with the activation of transcription of at least two (CD22 and GPR43) genes present within the loop. The data obtained are discussed in the framework of the hypothesis postulating that the spatial organization of chromosomal DNA is maintained via constitutive (basic) and facultative (transcription-related) interactions of the latter with the nuclear matrix. PMID:16049024

  13. Evidence for B0->rho0rho0 Decay and Implications for the CKM Angle alpha

    CERN Document Server

    Aubert, B; Abrams, G S; Adye, T; Ahmed, S; Alam, M S; Albert, J; Aleksan, R; Allen, M T; Allison, J; Altenburg, D D; Andreotti, M; Angelini, C; Anulli, F; Arnaud, N; Asgeirsson, D J; Aston, D; Azzolini, V; Baak, M A; Back, J J; Baldini-Ferroli, R; Band, H R; Banerjee, Sw; Bard, D J; Barlow, N R; Barlow, R J; Barrett, M; Bartoldus, R; Batignani, G; Battaglia, M; Bauer, J M; Bechtle, P; Beck, T W; Behera, P K; Bellini, F; Ben-Haim, E; Benelli, G; Berger, N; Bernard, D; Berryhill, J W; Bettarini, S; Bettoni, D; Bevan, A J; Bhuyan, B; Bianchi, F; Biasini, M; Biesiada, J; Blanc, F; Blaylock, G; Blinov, V E; Bloom, P C; Blount, N L; Bomben, M; Bondioli, M; Bonneaud, G R; Bosisio, L; Boutigny, D; Boyd, J T; Bozzi, C; Brandt, T; Brau, J E; Briand, H; Brown, D N; Bruinsma, M; Brunet, S; Buchanan, C; Bugg, W; Bukin, A D; Bula, R; Burchat, P R; Burke, J P; Button-Shafer, J; Buzzo, A; Bóna, M; Cahn, R N; Calabrese, R; Calcaterra, A; Calderini, G; Campagnari, C; Carpinelli, M; Cartaro, C; Castelli, G; Cavallo, N; Cavoto, G; Cenci, R; Chai, X; Chaisanguanthum, K S; Chao, M; Charles, M J; Chauveau, J; Chavez, C A; Chen, A; Chen, C; Chen, E; Chen, J C; Chen, S; Chen, X; Chen, X R; Cheng, C H; Chia, Y M; Cibinetto, G; Clark, P J; Claus, R; Cochran, J; Coleman, J P; Contri, R; Convery, M R; Corwin, L A; Cossutti, F; Cottingham, W N; Covarelli, R; Cowan, G; Cowan, R; Crawley, H B; Cremaldi, L; Cunha, A; Curry, S; Côté, D; D'Orazio, A; Dahmes, B; Dallapiccola, C; Dasu, S; Dauncey, P D; David, P; Davier, M; Davis, C L; De Nardo, Gallieno; De Sangro, R; Del Amo-Sánchez, P; Del Buono, L; Del Re, D; Della Ricca, G; Denig, A G; Di Lodovico, F; Di Marco, E; Dingfelder, J C; Dong, L; Dorfan, J; Druzhinin, V P; Dubitzky, R S; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Dvoretskii, A; Ebert, M; Eckhart, E A; Eckmann, R; Edgar, C L; Edwards, A J; Eigen, G; Eisner, A M; Elmer, P; Emery, S; Ernst, J A; Escalier, M; Eschenburg, V; Eschrich, I; Eyges, V; Fabozzi, F; Faccini, R; Fang, F; Feltresi, E; Ferrarotto, F; Ferroni, F; Field, R C; Finocchiaro, G; Flacco, C J; Flack, R L; Flächer, H U; Flood, K T; Ford, W T; Forster, I J; Forti, F; Foulkes, S D; Franek, B; Frey, R; Fritsch, M; Fry, J R; Fulsom, B G; Gabathuler, E; Gaidot, A; Gallo, F; Gamba, D; Gamet, R; Gan, K K; Ganzhur, S F; Gary, J W; Gaspero, M; Gatto, C; Gaz, A; George, K A; Giorgi, M A; Gladney, L; Glanzman, T; Godang, R; Golubev, V B; Gowdy, S J; Gradl, W; Graham, M T; Graugès-Pous, E; Grenier, P; Gritsan, A V; Grosdidier, G; Groysman, Y; Haire, M; Halyo, V; Hamano, K; Hamel de Monchenault, G; Hamon, O; Harrison, P F; Harrison, T J; Hart, A J; Hartfiel, B L; Hast, C; Hauke, A; Hawkes, C M; Hearty, C; Held, T; Hertzbach, S S; Heusch, C A; Hill, E J; Hirschauer, J F; Hitlin, D G; Hollar, J J; Hong, T M; Honscheid, K; Hopkins, D A; Hrynóva, T; Hufnagel, D; Hulsbergen, W D; Hutchcroft, D E; Höcker, A; Igonkina, O; Innes, W R; Izen, J M; Jackson, P D; Jackson, P S; Jacobsen, R G; Jain, V; Jasper, H; Jawahery, A; Jessop, C P; Kadyk, J A; Kagan, H; Karyotakis, Yu; Kass, R; Kelsey, M H; Kerth, L T; Khan, A; Kim, H; Kim, P; Kirkby, D; Klose, V; Knecht, N S; Koch, H; Kolb, J A; Kolomensky, Yu G; Kovalskyi, D; Kowalewski, R V; Kozanecki, W; Kreisel, A; Krishnamurthy, M; Kroeger, R; Kroseberg, J; Kukartsev, G; Kutter, P E; Kyberd, P; La Vaissière, C de; Lacker, H M; Lae, C K; Lafferty, G D; Lanceri, L; Lange, D J; Lankford, A J; Latham, T E; Latour, E; Lau, Y P; Lazzaro, A; Le Diberder, F R; Lees, J P; Legendre, M; Leith, D W G S; Lepeltier, V; Leruste, P; Lewandowski, B; Li Gioi, L; Li, S; Li, X; Lista, L; Liu, F; Liu, H; Lo Vetere, M; LoSecco, J M; Lockman, W S; Lombardo, V; Long, O; Lopes-Pegna, D; Lopez-March, N; Lou, X C; Lu, M; Luitz, S; Lund, P; Luppi, E; Lusiani, A; Lutz, A M; Lynch, G; Lynch, H L; Lü, C; Lüth, V; MacFarlane, D B; Macri, M M; Mader, W F; Majewski, S A; Malcles, J; Mallik, U; Mancinelli, G; Mandelkern, M A; Marchiori, G; Margoni, M; Marks, J; Marsiske, H; Martin, E C; Martínez-Vidal, F; Mattison, T S; Mazur, M A; Mazzoni, M A; McKenna, J A; McMahon, T R; Mclachlin, S E; Meadows, B T; Mellado, B; Menges, W; Merkel, J; Messner, R; Meyer, N T; Meyer, W T; Mir, L M; Mishra, K; Mohanty, G B; Monge, M R; Monorchio, D; Moore, T B; Morandin, M; Morganti, M; Morganti, S; Morii, M; Morris, J P; Muheim, F; Müller, D R; Nagel, M; Narsky, I; Nash, J A; Nauenberg, U; Neal, H; Negrini, M; Neri, N; Nicholson, H; Nikolich, M B; Nogowski, R; Nugent, I M; O'Grady, C P; Ocariz, J; Ofte, I; Olaiya, E O; Olivas, A; Olsen, J; Onuchin, A P; Orimoto, T J; Osipenkov, I; Oyanguren, A; Ozcan, V E; Paar, H P; Pacetti, S; Palano, A; Palombo, F; Pan, B; Pan, Y; Panduro-Vazquez, W; Paoloni, E; Paolucci, P; Pappagallo, M; Park, W; Passaggio, S; Patel, P M; Patrignani, C; Patteri, P; Payne, D J; Pelizaeus, M; Pelliccioni, M; Perazzo, A; Perl, M; Peruzzi, I M; Peters, K; Petersen, B A; Petrella, A; Petzold, A; Piatenko, T; Piccolo, D; Piccolo, M; Piemontese, L; Pierini, M; Piredda, G; Playfer, S; Poireau, V; Polci, F; Pompili, A; Porter, F C; Posocco, M; Potter, C T; Prell, S; Prencipe, E; Prepost, R; Pripstein, M; Prudent, X; Pruvot, S; Pulliam, T; Purohit, M V; Qi, N D; Rahatlou, S; Rahimi, A M; Rahmat, R; Rama, M; Ratcliff, B N; Raven, G; Regensburger, J J; Ricciardi, S; Richman, J D; Ritchie, J L; Rizzo, G; Roberts, D A; Robertson, A I; Robertson, S H; Robutti, E; Rodier, S; Roe, N A; Ronan, M T; Roney, J M; Rong, G; Roodman, A; Rosenberg, E I; Rotondo, M; Roudeau, P; Rubin, A E; Röthel, W; Sacco, R; Saeed, M A; Saleem, M; Salnikov, A A; Salvati, E; Salvatore, F; Sanders, D A; Santroni, A; Saremi, S; Schalk, T; Schenk, S; Schilling, C J; Schindler, R H; Schofield, K C; Schott, G; Schröder, T; Schröder, H; Schubert, J; Schubert, K R; Schumm, B A; Schune, M H; Schwiening, J; Schwierz, R; Schwitters, R F; Sciacca, C; Sciolla, G; Seiden, A; Sekula, S J; Serednyakov, S I; Serrano, J; Sharma, V; Shen, B C; Sherwood, D J; Simard, M; Simi, G; Simonetto, F; Sinev, N B; Skovpen, Yu I; Smith, A J S; Smith, J G; Snoek, H L; Snyder, A; Sobie, R J; Soffer, A; Sokoloff, M D; Solodov, E P; Spaan, B; Spanier, S M; Spitznagel, M; Steinke, M; Stelzer, J; Stocchi, A; Stoker, D P; Stroili, R; Strom, D; Strube, J; Stugu, B; Su, D; Sullivan, M K; Summers, D J; Sundermann, J E; Suzuki, K; Swain, S K; Tackmann, K; Taras, P; Taylor, F; Telnov, A V; Teodorescu, L; Ter-Antonian, R; Thiebaux, C; Thompson, J M; Tisserand, V; Todyshev, K Yu; Toki, W H; Torrence, E; Tosi, S; Touramanis, C; Ulmer, K A; Uwer, U; Van Bakel, N; Vasseur, G; Vavra, J; Verderi, M; Viaud, F B; Vitale, L; Voci, C; Voena, C; Volk, A; Wacker, K; Wagner, A P; Wagner, S R; Waldi, R; Walker, D; Walsh, J J; Wang, P; Wang, W F; Wappler, F R; Watson, A T; Weaver, M; Wenzel, W A; West, T J; Wilden, L; Williams, D C; Wilson, F F; Wilson, J R; Wilson, M G; Wilson, R J; Winklmeier, F; Winstrom, L O; Wisniewski, W J; Wittgen, M; Wong, Q K; Wormser, G; Wren, A C; Wright, D H; Wright, D M; Wu, J; Wu, S L; Wulsin, H W; Xie, Y; Yamamoto, R K; Yarritu, A K; Ye, S; Yi, J I; Yi, K; Young, C C; Yu, Z; Yéche, C; Zain, S B; Zallo, A; Zeng, Q; Zghiche, A; Zhang, J; Zhang, L; Zhao, H W; Zhu, Y S; Ziegler, V; Zito, M; Çuhadar-Dönszelmann, T; al, et

    2006-01-01

    We search for the decays B0->rho0rho0, B0->rho0f0, and B0->f0f0 in a sample of about 384 million Upsilon(4S)->BBbar decays collected with the BABAR detector at the PEP-II asymmetric-energy e+e- collider at SLAC. We find evidence for B0->rho0rho0 with 3.5 sigma significance and measure the branching fraction BR = (1.07+-0.33+-0.19)10^-6 and longitudinal polarization fraction f_L = 0.87+-0.13+-0.04, where the first uncertainty is statistical, and the second is systematic. The uncertainty on the CKM unitarity angle alpha due to penguin contributions in B-> rho rho decays is 18 degrees at the 1 sigma level. We also set upper limits on the B0->rho0f0 and B0->f0f0 decay rates.

  14. 2000 CKM-triangle analysis a critical review with updated experimental inputs and theoretical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Roudeau, P.; Stocchi, A. [Laboratoire de l' Accelerateur Lineaire, 91 - Orsay (France); Ciuchini, M.; Lubicz, V. [Rome Univ., INFN (Italy); D' Agostini, G.; Franco, E.; Martinelli, G. [Rome Univ. La Sapienza and Sezione INFN, (Italy); Parodi, F. [Universita di Genova and INFN, Dipt. di Fisica (Italy)

    2000-12-01

    Within the Standard Model, a review of the current determination of the sides and angles of the CKM unitarity triangle is presented, using experimental constraints from the measurements of |{epsilon}{sub K}|, |V{sub ub}/V{sub cb}|, {delta}m{sub d} and from the limit on {delta}m{sub s}, available in September 2000. Results from the experimental search for B{sup 0}{sub s}-B-bar{sup 0}{sub s} oscillations are introduced in the present analysis using the likelihood. Special attention is devoted to the determination of the theoretical uncertainties. The purpose of the analysis is to infer regions where the parameters of interest lie with given probabilities. The BaBar '95% C.L. scanning' method is also commented. (authors)

  15. Electrochemical sensor for dopamine based on imprinted silica matrix-poly(aniline boronic acid) hybrid as recognition element.

    Science.gov (United States)

    Li, Jian; Zhang, Ning; Sun, Qingqing; Bai, Zhanming; Zheng, Jianbin

    2016-10-01

    A novel imprinted silica matrix-poly(aniline boronic acid) hybrid for electrochemical detection of dopamine (DA) was developed. Boronic acid functionalized conducting polymer was electrochemically prepared on Au electrode. The number of covalent binding sites toward DA templates was controlled by potential cycles. A precursory sol solution of ammonium fluorosilicate (as cross-linking monomer) containing DA was spin-coated on the polymer modified electrode. Under NH3 atmosphere, the hydroxyl ions were generated in the solution and catalyzed the hydrolysis of fluorosilicate to form silica matrix. After this aqueous sol-gel process, an inorganic framework around the DA template was formed and the imprinted hybrid for DA was also produced. As revealed by scanning electron microscopy, UV-vis spectroscopy and cyclic voltammetry characterization, DA was embedded in the imprinted hybrid successfully. The affinity and selectivity of the imprinted hybrid were also characterized by cyclic voltammetry. The imprinted hybrid showed higher affinity for DA than that for epinephrine, and little or no affinity for ascorbic acid and uric acid due to the combined effects of covalent interaction, cavities matching and electrostatic repulsion. The imprinted hybrid sensor exhibited a quick response (within 5min) to DA in the concentration range from 0.05 to 500μmolL(-1) with a detection limit of 0.018μmolL(-1). The prepared sensor was also applied to detect DA in real samples with a satisfactory result. PMID:27474321

  16. Two decay paths for calculation of nuclear matrix element of neutrinoless double-beta decay using quasiparticle random-phase approximation

    CERN Document Server

    Terasaki, Jun

    2015-01-01

    It is possible to employ virtual decay paths, including two-particle transfer, to calculate the nuclear matrix element of neutrinoless double-beta decay under the closure approximation, in addition to the true double-beta path. In the quasiparticle random-phase approximation (QRPA) approach, it is necessary to introduce the product wave functions of the like-particle and proton-neutron QRPA ground states, for achieving consistency between the calculations of the true and virtual paths. Using these different paths, the problem of whether or not these two methods give equivalent nuclear matrix elements (NME) is investigated. It is found that the two results are inequivalent, resulting from the different many-body correlations included in the two QRPA methods, i.e., the use of the product wave functions alone is not sufficient. The author proposes introduction of the proton-neutron pairing interaction with an adequate strength in the double-beta-path method, which carries less many-body correlations without this...

  17. Neutral Kaon Mixing Beyond the Standard Model with $n_f=2+1$ Chiral Fermions Part 1: Bare Matrix Elements and Physical Results

    CERN Document Server

    Garron, Nicolas; Lytle, Andew T

    2016-01-01

    We compute the hadronic matrix elements of the four-quark operators relevant for $K^0-{\\bar K^0}$ mixing beyond the Standard Model. Our results are from lattice QCD simulations with $n_f=2+1$ flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing ($a\\sim0.08$ and $a\\sim 0.11 \\, \\fm $) and with lightest unitary pion mass $\\sim 300\\, \\MeV$. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of $\\sim 5\\%$ or better.

  18. Relativistic semiclassical description of dipole matrix elements for arbitrary nlj → n'l'j' transitions in non-hydrogenic ions

    International Nuclear Information System (INIS)

    A new analytical expression of a previously proposed Klein-Gordon dipole matrix elements in the quasiclassical approach (including quantum defects) is presented. The intermediate state method in the semiclassical Coulomb approximation is used to derive the Klein-Gordon dipole radial integrals corresponding to single-electron nlj→n'l'j' transitions with arbitrary quantum numbers in non-hydrogenic ions. This last approach is extended to the second-order Dirac-Coulomb equation. Similar expressions are obtained in the two electromagnetic field gauges which in the non-relativistic limit give the length and velocity forms of the transition operator. A computational procedure for the evaluation of the Dirac formulae by the use of recursion relations, expressed in terms of Anger's functions, is also described. Numerical applications of the above-mentioned WKB methods, starting from the well known Schrodinger dipole matrix elements, are carried out for the calculation of the lowest 2s1/2-2p1/2,3/2 transitions in the lithium isoelectronic sequence for atomic number Z=3-92. Oscillator strengths for Rydberg 2s1/2-np1/2 (Ca17+, n=8-16 and Zr37+, n=3-20) and ns1/2-20p1/2.3/2 (Ca17+, Zr37+, W71+, U89+, n=19, 20) transitions are also reported. The f values obtained are compared and discussed with available experimental and other theoretical treatments. (Author)

  19. Theory and computation of the matrix elements of the full interaction of the electromagnetic field with an atomic state: Application to the Rydberg and the continuous spectrum

    International Nuclear Information System (INIS)

    We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states

  20. Lead hexamethylenedithiocarbamate as a chelate matrix for preconcentration and subsequent neutron-activation determination of trace elements in natural waters

    International Nuclear Information System (INIS)

    Coprecipitation of trace elements with lead hexamethylenedithiocarbamate has been studied. It has been shown the Au(3), Ag(1), Co(2), Cr(3), Fe(3), Zn(2), Sb(3), Hg(2) are concentrated quantitatively at pH 5-6. The method was used for neutron-activation analysis of waters of central parts of Indian Ocean, with limits of 0.001, 0.01, 0.05, 015, 0.2 for Ca, Ag, Cr, Zn, Fe respectively

  1. A Fast, Robust Matrix-Free Multi-level Preconditioner for Hybrid Marker-In-Cell Q2-P1 Finite Element Discretisations with Applications to Lithospheric Deformation

    Science.gov (United States)

    May, D. A.; Le Pourhiet, L.

    2012-12-01

    The use of a mixed finite element formulation to discretise Stokes equations, coupled with a particle based Lagrangian representation of the material lithology is a common numerical technique employed within geodynamics to study large deformation processes. The extension of this methodology to enable high-resolution, three-dimensional simulations still represents a number of significant computational challenges. Of most concern are the high computational memory requirements of the favoured Q2-P1 element, and the development of efficient, 'light-weight' and robust linear and non-linear solvers, which are performant on multi-core, massively parallel computational hardware. Our objective is to develop a 'cheap' and efficient methodology utilizing the mixed element Q2-P1, to study 3D geodynamic processes including subduction, rifting and folding with the inclusion of visco-plastic materials. For this class of problems, careful treatment of all of the aforementioned technical challenges is essential to achieve high resolution simulations. Here, I describe a flexible methodology which aims to rectify all of these issues. The key to the approach is 1) always pose the discrete problem in defect-correction form and 2) utilise a mixture of assembled and matrix-free operations to evaluate the non-linear residual and apply the operators and smoothers required to define the multi-level preconditioner for the Jacobian. The performance characteristics of the matrix-free, multi-level preconditioning strategy is demonstrated by considering several 3D visco-plastic models. The robustness of the preconditioner and non-linear solver with respect to the viscosity contrast and the topology of the viscosity field, together with the parallel scalability will be demonstrated.

  2. Selective matrix removal and ICP-OES determination of trace uranium, rare earth elements and yttrium in zircon minerals

    International Nuclear Information System (INIS)

    In this paper an accurate and highly reproducible separation method for determination of trace amounts of uranium and rare earth elements (La-Lu and Y; abreviated as REEs) in the refractory zircon mineral concentrates by inductively coupled plasma-optical emission spectrometer (ICP-OES) is described. The precipitation method used for separation of zirconium is simple, selective, rapid and environmental friendly. All the 16 geochemically important analytes were determined in a single solution with marginal improvement in detection limits (1.2-4.5 times) after separation. The method was validated by analyzing certified reference materials. (author)

  3. Measurement of the Top Quark Mass at D0 Run II with the Matrix Element Method in the Lepton+Jets Final State

    Energy Technology Data Exchange (ETDEWEB)

    Schieferdecker, Philipp; /Munich U.

    2005-08-01

    The mass of the top quark is a fundamental parameter of the Standard Model. Its precise knowledge yields valuable insights into unresolved phenomena in and beyond the Standard Model. A measurement of the top quark mass with the matrix element method in the lepton+jets final state in D0 Run II is presented. Events are selected requiring an isolated energetic charged lepton (electron or muon), significant missing transverse energy, and exactly four calorimeter jets. For each event, the probabilities to originate from the signal and background processes are calculated based on the measured kinematics, the object resolutions and the respective matrix elements. The jet energy scale is known to be the dominant source of systematic uncertainty. The reference scale for the mass measurement is derived from Monte Carlo events. The matrix element likelihood is defined as a function of both, m{sub top} and jet energy scale JES, where the latter represents a scale factor with respect to the reference scale. The top mass is obtained from a two-dimensional correlated fit, and the likelihood yields both the statistical and jet energy scale uncertainty. Using a dataset of 320 pb{sup -1} of D0 Run II data, the mass of the top quark is measured to be: m{sub top}{sup {ell}+jets} = 169.5 {+-} 4.4(stat. + JES){sub -1.6}{sup +1.7}(syst.) GeV; m{sub top}{sup e+jets} = 168.8 {+-} 6.0(stat. + JES){sub -1.9}{sup +1.9}(syst.) GeV; m{sub top}{sup {mu}+jets} = 172.3 {+-} 9.6(stat.+JES){sub -3.3}{sup +3.4}(syst.) GeV. The jet energy scale measurement in the {ell}+jets sample yields JES = 1.034 {+-} 0.034, suggesting good consistency of the data with the simulation. The measurement forecasts significant improvements to the total top mass uncertainty during Run II before the startup of the LHC, as the data sample will grow by a factor of ten and D0's tracking capabilities will be employed in jet energy reconstruction and flavor identification.

  4. Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix

    International Nuclear Information System (INIS)

    Time-frequency analysis is an effective tool to extract machinery health information contained in non-stationary vibration signals. Various time-frequency analysis methods have been proposed and successfully applied to machinery fault diagnosis. However, little research has been done on bearing fault diagnosis using texture features extracted from time-frequency representations (TFRs), although they may contain plenty of sensitive information highly related to fault pattern. Therefore, to make full use of the textural information contained in the TFRs, this paper proposes a novel fault diagnosis method based on S transform, gray level co-occurrence matrix (GLCM) and multi-class support vector machine (Multi-SVM). Firstly, S transform is chosen to generate the TFRs due to its advantages of providing frequency-dependent resolution while keeping a direct relationship with the Fourier spectrum. Secondly, the famous GLCM-based texture features are extracted for capturing fault pattern information. Finally, as a classifier which has good discrimination and generalization abilities, Multi-SVM is used for the classification. Experimental results indicate that the GLCM-based texture features extracted from TFRs can identify bearing fault patterns accurately, and provide higher accuracies than the traditional time-domain and frequency-domain features, wavelet packet node energy or two-direction 2D linear discriminant analysis based features of the same TFRs in most cases. (paper)

  5. Investigations of energy dependence of saturation thickness of multiply backscattered gamma photons in elements and alloys - an inverse matrix approach

    Science.gov (United States)

    Sabharwal, Arvind D.; Sandhu, B. S.; Singh, Bhajan

    2011-09-01

    In Compton scattering experiments employing thick targets one observes that the numbers of multiply backscattered photons increases with increase in target thickness and then saturate at a particular target thickness called the saturation thickness. The energy of each of gamma ray photons continues to decrease as the number of scatterings, the photon undergoes, increases in the sample having finite dimensions. The present experiment is an independent study of energy and intensity distributions of 279-, 320-, 511-, 662 keV, and 1.12 MeV gamma rays multiply backscattered from targets of different atomic numbers and alloys of various thicknesses, and are carried out in a backscattering geometry. The backscattered photons are detected by a NaI(Tl) scintillation detector. The detector response unscrambling, converting the observed pulse-height distribution to a true photon energy spectrum, is obtained with the help of a 12×12 inverse response matrix. The present experimental results confirm that for thick targets, there is significant contribution of multiply backscattered radiations emerging from the targets, having energy equal to that of singly scattered Compton process. The measured saturation thickness (in units of mean free path) for multiply backscattering of gamma photons is found to be decreasing with increase in energy of incident gamma photons.

  6. Fault diagnosis of rolling element bearing based on S transform and gray level co-occurrence matrix

    Science.gov (United States)

    Zhao, Minghang; Tang, Baoping; Tan, Qian

    2015-08-01

    Time-frequency analysis is an effective tool to extract machinery health information contained in non-stationary vibration signals. Various time-frequency analysis methods have been proposed and successfully applied to machinery fault diagnosis. However, little research has been done on bearing fault diagnosis using texture features extracted from time-frequency representations (TFRs), although they may contain plenty of sensitive information highly related to fault pattern. Therefore, to make full use of the textural information contained in the TFRs, this paper proposes a novel fault diagnosis method based on S transform, gray level co-occurrence matrix (GLCM) and multi-class support vector machine (Multi-SVM). Firstly, S transform is chosen to generate the TFRs due to its advantages of providing frequency-dependent resolution while keeping a direct relationship with the Fourier spectrum. Secondly, the famous GLCM-based texture features are extracted for capturing fault pattern information. Finally, as a classifier which has good discrimination and generalization abilities, Multi-SVM is used for the classification. Experimental results indicate that the GLCM-based texture features extracted from TFRs can identify bearing fault patterns accurately, and provide higher accuracies than the traditional time-domain and frequency-domain features, wavelet packet node energy or two-direction 2D linear discriminant analysis based features of the same TFRs in most cases.

  7. The quality of the recovered matrix material as an element of assessment of effectiveness of the composite recycling process

    Directory of Open Access Journals (Sweden)

    D. Nagolska

    2007-04-01

    Full Text Available Metal composites are ever more readily used as structural materials, due to their properties. Therefore, in spite of their difficult processing, their use constantly grows (e.g. SGL Carbon Poland S.A.. In consequence, the amount of their wastes grows too. Since the social pressure aimed at improving the quality of environment has recently intensified and the significance of the technologies enabling recovery of secondary materials has increased, the interest in recycling of metal composites also grew, irrespective of all the difficulties related thereto.One of the groups of metal composites includes the composites with saturated reinforcement. They may be recycled only with the method of components separation. The simplest way for this consists in choosing an appropriate environment in which the recycling occurs so as to enable free outflow of melted matrix from capillaries of the porous reinforcing profile. As an effectiveness measure of the process not only the yield of the melted metal but also its quality should be considered. The paper presents results of the studies on recycling of a group of composite materials with saturated reinforcement of various structures and chemical compositions. The environments including salt mixtures chosen for the considered composites reinforced with pressed fibre profiles satisfy the first and the most important quantity criterion. i.e. allow for achieving the required metal yield. For the composite of the highest yield level the quality of melted metal was analyzed which showed that the environment selected this way meets also another criterion that enables obtaining high quality alloys, thus allowing for their direct use in the process of reinforcing the composite casts. On the other hand, in the case of the composites reinforced with sinters the first criterion has not been met and, therefore, the metal quality in this case has not been assessed.

  8. First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels

    International Nuclear Information System (INIS)

    Analytic expressions for the first-order nonadiabatic coupling matrix elements between electronically excited states are first formulated exactly via both time-independent equation of motion and time-dependent response theory, and are then approximated at the configuration interaction singles, particle-hole/particle-particle random phase approximation, and time-dependent density functional theory/Hartree-Fock levels of theory. Note that, to get the Pulay terms arising from the derivatives of basis functions, the standard response theory designed for electronic perturbations has to be extended to nuclear derivatives. The results are further recast into a Lagrangian form that is similar to that for excited-state energy gradients and allows to use atomic orbital based direct algorithms for large molecules

  9. Two-loop massive operator matrix elements and unpolarized heavy flavor production at asymptotic values Q{sup 2}>>m{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bierenbaum, I.; Bluemlein, J.; Klein, S.

    2007-03-15

    We calculate the O({alpha}{sup 2}{sub s}) massive operator matrix elements for the twist-2 operators, which contribute to the heavy flavor Wilson coefficients in unpolarized deeply inelastic scattering in the region Q{sup 2}>>m{sup 2}. The calculation has been performed using light.cone expansion techniques. We confirm an earlier result obtained in [1]. The calculation is carried out without using the integration-by-parts method and in Mellin space using harmonic sums, which lead to a significant compactification of the analytic results derived previously. The results allow to determine the heavy flavor Wilson coefficients for F{sub 2}(x,Q{sup 2}) to O({alpha}{sup 2}{sub s}) and for F{sub L}(x,Q{sup 2}) to O({alpha}{sup 3}{sub s}) for all but the power suppressed terms {proportional_to}(m{sup 2}/Q{sup 2}){sup k}, k{>=}1. (orig.)

  10. First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhendong; Suo, Bingbing; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistryand Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2014-12-28

    The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.

  11. First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels

    Science.gov (United States)

    Li, Zhendong; Suo, Bingbing; Liu, Wenjian

    2014-12-01

    The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects.

  12. First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels

    International Nuclear Information System (INIS)

    The recently proposed rigorous yet abstract theory of first order nonadiabatic coupling matrix elements (fo-NACME) between electronically excited states [Z. Li and W. Liu, J. Chem. Phys. 141, 014110 (2014)] is specified in detail for two widely used models: The time-dependent density functional theory and the particle-particle Tamm-Dancoff approximation. The actual implementation employs a Lagrangian formalism with atomic-orbital based direct algorithms, which makes the computation of fo-NACME very similar to that of excited-state gradients. Although the methods have great potential in investigating internal conversions and nonadiabatic dynamics between excited states of large molecules, only prototypical systems as a first pilot application are considered here to illustrate some conceptual aspects

  13. The O(α{sub s}{sup 3}T{sub F}{sup 2}) contributions to the gluonic operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Blümlein, J.; De Freitas, A. [Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Hasselhuhn, A. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Manteuffel, A. von [PRISMA Cluster of Excellence, Institute of Physics, J. Gutenberg University, D-55099 Mainz (Germany); Round, M. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria); Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Schneider, C. [Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Altenbergerstraße 69, A-4040, Linz (Austria)

    2014-08-15

    The O(α{sub s}{sup 3}T{sub F}{sup 2}C{sub F}(C{sub A})) contributions to the transition matrix element A{sub gg,Q} relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines.

  14. The O(α{sub s}{sup 3}T{sub F}{sup 2}) contributions to the gluonic operator matrix element

    Energy Technology Data Exchange (ETDEWEB)

    Ablinger, J.; Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Bluemlein, J.; Freitas, A. de [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Hasselhuhn, A.; Round, M. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Manteuffel, A. von [Mainz Univ. (Germany). PRISMA Cluster of Excellence

    2014-05-15

    The O(α{sup 3}{sub s}T{sup 2}{sub F}C{sub F}(C{sub A})) contributions to the transition matrix element A{sub gg,Q} relevant for the variable flavor number scheme at 3-loop order are calculated. The corresponding graphs contain two massive fermion lines of equal mass leading to terms given by inverse binomially weighted sums beyond the usual harmonic sums. In x-space two root-valued letters contribute in the iterated integrals in addition to those forming the harmonic polylogarithms. We outline technical details needed in the calculation of graphs of this type, which are as well of importance in the case of two different internal massive lines.

  15. NUMEN Project @ LNS : Heavy Ions Double Charge Exchange as a tool towards the 0νββ Nuclear Matrix Element

    Science.gov (United States)

    Agodi, C.; Cappuzzello, F.; Bonanno, D. L.; Bongiovanni, D. G.; Branchina, V.; Calabrese, S.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Colonna, M.; Foti, A.; Finocchiaro, P.; Greco, V.; Lanzalone, G.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Tudisco, S.

    2016-06-01

    The NUMEN Project, proposed at INFN Laboratori Nazionali del Sud (LNS) in Catania, has the aim to access the nuclear matrix elements, entering the expression of the life time of double beta decay, by relevant cross sections of double charge exchange reactions. The basic point, on which it is based this innovative technique, is the coincidence of the initial and final state wave-functions in the two classes of processes and the similarity of the transition operators. A key aspect of the Project is the use of MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the INFN LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams.

  16. Effects of hydrostatic pressure on the donor binding energy and intra donor transition matrix elements in GaAs-GaAlAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Panahi, H. [Institutes for Studies in Theoretical Physics and Mathematics, Tehran 19395-1795 (Iran); Maleki, M. [Department of Physics, University of Guilan, Rasht 41335-1914 (Iran)

    2008-05-15

    The effects of hydrostatic pressure on the donor binding energy in GaAs-Ga{sub 0.7}Al{sub 0.3}As quantum wells have been studied in the effective mass approximation, using a variational approach for hydrogenic ground state 1s and excited states 2s, 2p{sub x}, 3p{sub x}. Results obtained show that the donor binding energy variation with the well width and the position of impurity under pressure is similar to that without pressure. The intra donor squared transition matrix elements are calculated as functions of impurity position in the presence of hydrostatic pressure. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Finite-volume corrections to the CP-odd nucleon matrix elements of the electromagnetic current from the QCD vacuum angle

    International Nuclear Information System (INIS)

    Nucleon electric dipole moments originating from strong CP-violation are being calculated by several groups using lattice QCD. We revisit the finite volume corrections to the CP-odd nucleon matrix elements of the electromagnetic current, which can be related to the electric dipole moments in the continuum, in the framework of chiral perturbation theory up to next-to-leading order taking into account the breaking of Lorentz symmetry. A chiral extrapolation of the recent lattice results of both the neutron and proton electric dipole moments is performed, which results in dn=(−2.7±1.2)×10−16eθ0 cm and dp=(2.1±1.2)×10−16eθ0 cm

  18. Matrix-Free Approximate Equilibration

    OpenAIRE

    Bradley, Andrew M.; Murray, Walter

    2011-01-01

    The condition number of a diagonally scaled matrix, for appropriately chosen scaling matrices, is often less than that of the original. Equilibration scales a matrix so that the scaled matrix's row and column norms are equal. Scaling can be approximate. We develop approximate equilibration algorithms for nonsymmetric and symmetric matrices having signed elements that access a matrix only by matrix-vector products.

  19. Application of tungsten-fibre-reinforced copper matrix composites to a high-heat-flux component: A design study by dual scale finite element analysis

    International Nuclear Information System (INIS)

    According to the European Power Plant Conceptual Study, actively cooled tungsten mono-block is one of the divertor design options for fusion reactors. In this study the coolant tube acts as a heat sink and the tungsten block as plasma-facing armour. A key material issue here is how to achieve high temperature strength and high heat conductivity of the heat sink tube simultaneously. Copper matrix composite reinforced with continuous strong fibres has been considered as a candidate material for heat sink of high-heat-flux components. Refractory tungsten wire is a promising reinforcement material due to its high strength, winding flexibility and good interfacial wetting with copper. We studied the applicability of tungsten-fibre-reinforced copper matrix composite heat sink tubes for the tungsten mono-block divertor by means of dual-scale finite element analysis. Thermo-elasto-plastic micro-mechanics homogenisation technique was applied. A heat flux of 15 MW/m2 with cooling water temperature of 320 oC was considered. Effective stress-free temperature was assumed to be 500 oC. Between the tungsten block and the composite heat sink tube interlayer (1 mm thick) of soft Cu was inserted. The finite element analysis yields the following results: The predicted maximum temperature at steady state is 1223 oC at the surface and 562 oC at the interface between tube and copper layer. On the macroscopic scale, residual stress is generated during fabrication due to differences in thermal expansion coefficients of the materials. Strong compressive stress occurs in the tungsten block around the tube while weak tensile stress is present in the interlayer. The local and global probability of brittle failure of the tungsten block was also estimated using the probabilistic failure theories. The thermal stresses are significantly decreased upon subsequent heat flux loading. Resolving the composite stress on microscopic scale yields a maximum fibre axial stress of 3000 MPa after fabrication

  20. Spin density matrix elements in exclusive $\\omega$ electroproduction on $^1$H and $^2$H targets at 27.5 GeV beam energy

    CERN Document Server

    Airapetian, A; Akopov, Z; Augustyniak, W; Avetissian, A; Blok, H P; Borissov, A; Bryzgalov, V; Capiluppi, M; Capitani, G P; Cisbani, E; Ciullo, G; Contalbrigo, M; Dalpiaz, P F; Deconinck, W; De Leo, R; De Sanctis, E; Diefenthaler, M; Di Nezza, P; Düren, M; Ehrenfried, M; Elbakian, G; Ellinghaus, F; Etzelmüller, E; Fabbri, R; Felawka, L; Frullani, S; Gabbert, D; Gapienko, G; Gapienko, V; Garibaldi, F; Gavrilov, G; Gharibyan, V; Hartig, M; Hasch, D; Holler, Y; Hristova, I; Ivanilov, A; Jackson, H E; Joosten, S; Kaiser, R; Karyan, G; Keri, T; Kinney, E; Kisselev, A; Korotkov, V; Kozlov, V; Kravchenko, P; Krivokhijine, V G; Lagamba, L; Lapikás, L; Lehmann, I; Lenisa, P; Lorenzon, W; Ma, B -Q; Mahon, D; Manaenkov, S I; Mao, Y; Marianski, B; Marukyan, H; Movsisyan, A; Murray, M; Naryshkin, Y; Nass, A; Nowak, W -D; Pappalardo, L L; Perez-Benito, R; Petrosyan, A; Reimer, P E; Reolon, A R; Riedl, C; Rith, K; Rostomyan, A; Ryckbosch, D; Schäfer, A; Schnell, G; Schüler, K P; Seitz, B; Shibata, T -A; Stahl, M; Stancari, M; Statera, M; Steffens, E; Steijger, J J M; Taroian, S; Terkulov, A; Truty, R; Trzcinski, A; Tytgat, M; Van Haarlem, Y; Van Hulse, C; Vikhrov, V; Vilardi, I; Wang, S; Yaschenko, S; Yen, S; Zeiler, D; Zihlmann, B; Zupranski, P

    2014-01-01

    Exclusive electroproduction of $\\omega$ mesons on unpolarized hydrogen and deuterium targets is studied in the kinematic region of Q$^2$>1.0 GeV$^2$, 3.0 GeV < W < 6.3 GeV, and -t'< 0.2 GeV$^2$. Results on the angular distribution of the $\\omega$ meson, including its decay products, are presented. The data were accumulated with the HERMES forward spectrometer during the 1996-2007 running period using the 27.6 GeV longitudinally polarized electron or positron beam of HERA. The determination of the virtual-photon longitudinal-to-transverse cross-section ratio reveals that a considerable part of the cross section arises from transversely polarized photons. Spin density matrix elements are presented in projections of Q$^2$ or -t'. Violation of s-channel helicity conservation is observed for some of these elements. A sizable contribution from unnatural-parity-exchange amplitudes is found and the phase shift between those amplitudes that describe transverse $\\omega$ production by longitudinal and transvers...